1 /*
  2  * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.  Oracle designates this
  8  * particular file as subject to the "Classpath" exception as provided
  9  * by Oracle in the LICENSE file that accompanied this code.
 10  *
 11  * This code is distributed in the hope that it will be useful, but WITHOUT
 12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 14  * version 2 for more details (a copy is included in the LICENSE file that
 15  * accompanied this code).
 16  *
 17  * You should have received a copy of the GNU General Public License version
 18  * 2 along with this work; if not, write to the Free Software Foundation,
 19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 20  *
 21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 22  * or visit www.oracle.com if you need additional information or have any
 23  * questions.
 24  */
 25 
 26 package java.lang.invoke;
 27 
 28 import java.io.Serializable;
 29 import java.util.Arrays;
 30 import java.lang.reflect.Array;
 31 import java.util.Objects;
 32 
 33 /**
 34  * <p>Methods to facilitate the creation of simple "function objects" that
 35  * implement one or more interfaces by delegation to a provided {@link MethodHandle},
 36  * possibly after type adaptation and partial evaluation of arguments.  These
 37  * methods are typically used as <em>bootstrap methods</em> for {@code invokedynamic}
 38  * call sites, to support the <em>lambda expression</em> and <em>method
 39  * reference expression</em> features of the Java Programming Language.
 40  *
 41  * <p>Indirect access to the behavior specified by the provided {@code MethodHandle}
 42  * proceeds in order through three phases:
 43  * <ul>
 44  *     <li><p><em>Linkage</em> occurs when the methods in this class are invoked.
 45  *     They take as arguments an interface to be implemented (typically a
 46  *     <em>functional interface</em>, one with a single abstract method), a
 47  *     name and signature of a method from that interface to be implemented, a
 48  *     {@linkplain MethodHandleInfo direct method handle} describing the desired
 49  *     implementation behavior for that method, and possibly other additional
 50  *     metadata, and produce a {@link CallSite} whose target can be used to
 51  *     create suitable function objects.
 52  *
 53  *     <p>Linkage may involve dynamically loading a new class that implements
 54  *     the target interface, or re-using a suitable existing class.
 55  *
 56  *     <p>The {@code CallSite} can be considered a "factory" for function
 57  *     objects and so these linkage methods are referred to as
 58  *     "metafactories".</li>
 59  *
 60  *     <li><p><em>Capture</em> occurs when the {@code CallSite}'s target is
 61  *     invoked, typically through an {@code invokedynamic} call site,
 62  *     producing a function object. This may occur many times for
 63  *     a single factory {@code CallSite}.
 64  *
 65  *     <p>If the behavior {@code MethodHandle} has additional parameters beyond
 66  *     those of the specified interface method, these are referred to as
 67  *     <em>captured parameters</em>, which must be provided as arguments to the
 68  *     {@code CallSite} target. The expected number and types of captured
 69  *     parameters are determined during linkage.
 70  *
 71  *     <p>Capture may involve allocation of a new function object, or may return
 72  *     a suitable existing function object. The identity of a function object
 73  *     produced by capture is unpredictable, and therefore identity-sensitive
 74  *     operations (such as reference equality, object locking, and {@code
 75  *     System.identityHashCode()}) may produce different results in different
 76  *     implementations, or even upon different invocations in the same
 77  *     implementation.</li>
 78  *
 79  *     <li><p><em>Invocation</em> occurs when an implemented interface method is
 80  *     invoked on a function object. This may occur many times for a single
 81  *     function object. The method referenced by the implementation
 82  *     {@code MethodHandle} is invoked, passing to it the captured arguments and
 83  *     the invocation arguments. The result of the method is returned.
 84  *     </li>
 85  * </ul>
 86  *
 87  * <p>It is sometimes useful to restrict the set of inputs or results permitted
 88  * at invocation.  For example, when the generic interface {@code Predicate<T>}
 89  * is parameterized as {@code Predicate<String>}, the input must be a
 90  * {@code String}, even though the method to implement allows any {@code Object}.
 91  * At linkage time, an additional {@link MethodType} parameter describes the
 92  * "dynamic" method type; on invocation, the arguments and eventual result
 93  * are checked against this {@code MethodType}.
 94  *
 95  * <p>This class provides two forms of linkage methods: a standard version
 96  * ({@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)})
 97  * using an optimized protocol, and an alternate version
 98  * {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}).
 99  * The alternate version is a generalization of the standard version, providing
100  * additional control over the behavior of the generated function objects via
101  * flags and additional arguments.  The alternate version adds the ability to
102  * manage the following attributes of function objects:
103  *
104  * <ul>
105  *     <li><em>Multiple methods.</em>  It is sometimes useful to implement multiple
106  *     variations of the method signature, involving argument or return type
107  *     adaptation.  This occurs when multiple distinct VM signatures for a method
108  *     are logically considered to be the same method by the language.  The
109  *     flag {@code FLAG_BRIDGES} indicates that a list of additional
110  *     {@code MethodType}s will be provided, each of which will be implemented
111  *     by the resulting function object.  These methods will share the same
112  *     name and instantiated type.</li>
113  *
114  *     <li><em>Multiple interfaces.</em>  If needed, more than one interface
115  *     can be implemented by the function object.  (These additional interfaces
116  *     are typically marker interfaces with no methods.)  The flag {@code FLAG_MARKERS}
117  *     indicates that a list of additional interfaces will be provided, each of
118  *     which should be implemented by the resulting function object.</li>
119  *
120  *     <li><em>Serializability.</em>  The generated function objects do not
121  *     generally support serialization.  If desired, {@code FLAG_SERIALIZABLE}
122  *     can be used to indicate that the function objects should be serializable.
123  *     Serializable function objects will use, as their serialized form,
124  *     instances of the class {@code SerializedLambda}, which requires additional
125  *     assistance from the capturing class (the class described by the
126  *     {@link MethodHandles.Lookup} parameter {@code caller}); see
127  *     {@link SerializedLambda} for details.</li>
128  * </ul>
129  *
130  * <p>Assume the linkage arguments are as follows:
131  * <ul>
132  *      <li>{@code factoryType} (describing the {@code CallSite} signature) has
133  *      K parameters of types (D1..Dk) and return type Rd;</li>
134  *      <li>{@code interfaceMethodType} (describing the implemented method type) has N
135  *      parameters, of types (U1..Un) and return type Ru;</li>
136  *      <li>{@code implementation} (the {@code MethodHandle} providing the
137  *      implementation) has M parameters, of types (A1..Am) and return type Ra
138  *      (if the method describes an instance method, the method type of this
139  *      method handle already includes an extra first argument corresponding to
140  *      the receiver);</li>
141  *      <li>{@code dynamicMethodType} (allowing restrictions on invocation)
142  *      has N parameters, of types (T1..Tn) and return type Rt.</li>
143  * </ul>
144  *
145  * <p>Then the following linkage invariants must hold:
146  * <ul>
147  *     <li>{@code interfaceMethodType} and {@code dynamicMethodType} have the same
148  *     arity N, and for i=1..N, Ti and Ui are the same type, or Ti and Ui are
149  *     both reference types and Ti is a subtype of Ui</li>
150  *     <li>Either Rt and Ru are the same type, or both are reference types and
151  *     Rt is a subtype of Ru</li>
152  *     <li>K + N = M</li>
153  *     <li>For i=1..K, Di = Ai</li>
154  *     <li>For i=1..N, Ti is adaptable to Aj, where j=i+k</li>
155  *     <li>The return type Rt is void, or the return type Ra is not void and is
156  *     adaptable to Rt</li>
157  * </ul>
158  *
159  * <p>Further, at capture time, if {@code implementation} corresponds to an instance
160  * method, and there are any capture arguments ({@code K > 0}), then the first
161  * capture argument (corresponding to the receiver) must be non-null.
162  *
163  * <p>A type Q is considered adaptable to S as follows:
164  * <table class="striped">
165  *   <caption style="display:none">adaptable types</caption>
166  *   <thead>
167  *     <tr><th scope="col">Q</th><th scope="col">S</th><th scope="col">Link-time checks</th><th scope="col">Invocation-time checks</th></tr>
168  *   </thead>
169  *   <tbody>
170  *     <tr>
171  *         <th scope="row">Primitive</th><th scope="row">Primitive</th>
172  *         <td>Q can be converted to S via a primitive widening conversion</td>
173  *         <td>None</td>
174  *     </tr>
175  *     <tr>
176  *         <th scope="row">Primitive</th><th scope="row">Reference</th>
177  *         <td>S is a supertype of the Wrapper(Q)</td>
178  *         <td>Cast from Wrapper(Q) to S</td>
179  *     </tr>
180  *     <tr>
181  *         <th scope="row">Reference</th><th scope="row">Primitive</th>
182  *         <td>for parameter types: Q is a primitive wrapper and Primitive(Q)
183  *         can be widened to S
184  *         <br>for return types: If Q is a primitive wrapper, check that
185  *         Primitive(Q) can be widened to S</td>
186  *         <td>If Q is not a primitive wrapper, cast Q to the base Wrapper(S);
187  *         for example Number for numeric types</td>
188  *     </tr>
189  *     <tr>
190  *         <th scope="row">Reference</th><th scope="row">Reference</th>
191  *         <td>for parameter types: S is a supertype of Q
192  *         <br>for return types: none</td>
193  *         <td>Cast from Q to S</td>
194  *     </tr>
195  *   </tbody>
196  * </table>
197  *
198  * @apiNote These linkage methods are designed to support the evaluation
199  * of <em>lambda expressions</em> and <em>method references</em> in the Java
200  * Language.  For every lambda expressions or method reference in the source code,
201  * there is a target type which is a functional interface.  Evaluating a lambda
202  * expression produces an object of its target type. The recommended mechanism
203  * for evaluating lambda expressions is to desugar the lambda body to a method,
204  * invoke an invokedynamic call site whose static argument list describes the
205  * sole method of the functional interface and the desugared implementation
206  * method, and returns an object (the lambda object) that implements the target
207  * type. (For method references, the implementation method is simply the
208  * referenced method; no desugaring is needed.)
209  *
210  * <p>The argument list of the implementation method and the argument list of
211  * the interface method(s) may differ in several ways.  The implementation
212  * methods may have additional arguments to accommodate arguments captured by
213  * the lambda expression; there may also be differences resulting from permitted
214  * adaptations of arguments, such as casting, boxing, unboxing, and primitive
215  * widening. (Varargs adaptations are not handled by the metafactories; these are
216  * expected to be handled by the caller.)
217  *
218  * <p>Invokedynamic call sites have two argument lists: a static argument list
219  * and a dynamic argument list.  The static argument list is stored in the
220  * constant pool; the dynamic argument is pushed on the operand stack at capture
221  * time.  The bootstrap method has access to the entire static argument list
222  * (which in this case, includes information describing the implementation method,
223  * the target interface, and the target interface method(s)), as well as a
224  * method signature describing the number and static types (but not the values)
225  * of the dynamic arguments and the static return type of the invokedynamic site.
226  *
227  * <p>The implementation method is described with a direct method handle
228  * referencing a method or constructor. In theory, any method handle could be
229  * used, but this is not compatible with some implementation techniques and
230  * would complicate the work implementations must do.
231  *
232  * @since 1.8
233  */
234 public final class LambdaMetafactory {
235 
236     private LambdaMetafactory() {}
237 
238     /** Flag for {@link #altMetafactory} indicating the lambda object
239      * must be serializable */
240     public static final int FLAG_SERIALIZABLE = 1 << 0;
241 
242     /**
243      * Flag for {@link #altMetafactory} indicating the lambda object implements
244      * other interfaces besides {@code Serializable}
245      */
246     public static final int FLAG_MARKERS = 1 << 1;
247 
248     /**
249      * Flag for alternate metafactories indicating the lambda object requires
250      * additional methods that invoke the {@code implementation}
251      */
252     public static final int FLAG_BRIDGES = 1 << 2;
253 
254     /** Flag for {@link #altMetafactory} indicating the lambda object
255      * must be a {@code Quotable} object, inspectable using code reflection. */
256     public static final int FLAG_QUOTABLE = 1 << 3;
257 
258     private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
259     private static final MethodType[] EMPTY_MT_ARRAY = new MethodType[0];
260 
261     // LambdaMetafactory bootstrap methods are startup sensitive, and may be
262     // special cased in java.lang.invoke.BootstrapMethodInvoker to ensure
263     // methods are invoked with exact type information to avoid generating
264     // code for runtime checks. Take care any changes or additions here are
265     // reflected there as appropriate.
266 
267     /**
268      * Facilitates the creation of simple "function objects" that implement one
269      * or more interfaces by delegation to a provided {@link MethodHandle},
270      * after appropriate type adaptation and partial evaluation of arguments.
271      * Typically used as a <em>bootstrap method</em> for {@code invokedynamic}
272      * call sites, to support the <em>lambda expression</em> and <em>method
273      * reference expression</em> features of the Java Programming Language.
274      *
275      * <p>This is the standard, streamlined metafactory; additional flexibility
276      * is provided by {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}.
277      * A general description of the behavior of this method is provided
278      * {@link LambdaMetafactory above}.
279      *
280      * <p>When the target of the {@code CallSite} returned from this method is
281      * invoked, the resulting function objects are instances of a class which
282      * implements the interface named by the return type of {@code factoryType},
283      * declares a method with the name given by {@code interfaceMethodName} and the
284      * signature given by {@code interfaceMethodType}.  It may also override additional
285      * methods from {@code Object}.
286      *
287      * @param caller Represents a lookup context with the accessibility
288      *               privileges of the caller.  Specifically, the lookup context
289      *               must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess()
290      *               full privilege access}.
291      *               When used with {@code invokedynamic}, this is stacked
292      *               automatically by the VM.
293      * @param interfaceMethodName The name of the method to implement.  When used with
294      *                            {@code invokedynamic}, this is provided by the
295      *                            {@code NameAndType} of the {@code InvokeDynamic}
296      *                            structure and is stacked automatically by the VM.
297      * @param factoryType The expected signature of the {@code CallSite}.  The
298      *                    parameter types represent the types of capture variables;
299      *                    the return type is the interface to implement.   When
300      *                    used with {@code invokedynamic}, this is provided by
301      *                    the {@code NameAndType} of the {@code InvokeDynamic}
302      *                    structure and is stacked automatically by the VM.
303      * @param interfaceMethodType Signature and return type of method to be
304      *                            implemented by the function object.
305      * @param implementation A direct method handle describing the implementation
306      *                       method which should be called (with suitable adaptation
307      *                       of argument types and return types, and with captured
308      *                       arguments prepended to the invocation arguments) at
309      *                       invocation time.
310      * @param dynamicMethodType The signature and return type that should
311      *                          be enforced dynamically at invocation time.
312      *                          In simple use cases this is the same as
313      *                          {@code interfaceMethodType}.
314      * @return a CallSite whose target can be used to perform capture, generating
315      *         instances of the interface named by {@code factoryType}
316      * @throws LambdaConversionException If {@code caller} does not have full privilege
317      *         access, or if {@code interfaceMethodName} is not a valid JVM
318      *         method name, or if the return type of {@code factoryType} is not
319      *         an interface, or if {@code implementation} is not a direct method
320      *         handle referencing a method or constructor, or if the linkage
321      *         invariants are violated, as defined {@link LambdaMetafactory above}.
322      * @throws NullPointerException If any argument is {@code null}.
323      * @throws SecurityException If a security manager is present, and it
324      *         <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
325      *         from {@code caller} to the package of {@code implementation}.
326      */
327     public static CallSite metafactory(MethodHandles.Lookup caller,
328                                        String interfaceMethodName,
329                                        MethodType factoryType,
330                                        MethodType interfaceMethodType,
331                                        MethodHandle implementation,
332                                        MethodType dynamicMethodType)
333             throws LambdaConversionException {
334         AbstractValidatingLambdaMetafactory mf;
335         mf = new InnerClassLambdaMetafactory(Objects.requireNonNull(caller),
336                                              Objects.requireNonNull(factoryType),
337                                              Objects.requireNonNull(interfaceMethodName),
338                                              Objects.requireNonNull(interfaceMethodType),
339                                              Objects.requireNonNull(implementation),
340                                              Objects.requireNonNull(dynamicMethodType),
341                                              false,
342                                              EMPTY_CLASS_ARRAY,
343                                              EMPTY_MT_ARRAY,
344                                  null);
345         mf.validateMetafactoryArgs();
346         return mf.buildCallSite();
347     }
348 
349     /**
350      * Facilitates the creation of simple "function objects" that implement one
351      * or more interfaces by delegation to a provided {@link MethodHandle},
352      * after appropriate type adaptation and partial evaluation of arguments.
353      * Typically used as a <em>bootstrap method</em> for {@code invokedynamic}
354      * call sites, to support the <em>lambda expression</em> and <em>method
355      * reference expression</em> features of the Java Programming Language.
356      *
357      * <p>This is the general, more flexible metafactory; a streamlined version
358      * is provided by {@link #metafactory(java.lang.invoke.MethodHandles.Lookup,
359      * String, MethodType, MethodType, MethodHandle, MethodType)}.
360      * A general description of the behavior of this method is provided
361      * {@link LambdaMetafactory above}.
362      *
363      * <p>The argument list for this method includes three fixed parameters,
364      * corresponding to the parameters automatically stacked by the VM for the
365      * bootstrap method in an {@code invokedynamic} invocation, and an {@code Object[]}
366      * parameter that contains additional parameters.  The declared argument
367      * list for this method is:
368      *
369      * <pre>{@code
370      *  CallSite altMetafactory(MethodHandles.Lookup caller,
371      *                          String interfaceMethodName,
372      *                          MethodType factoryType,
373      *                          Object... args)
374      * }</pre>
375      *
376      * <p>but it behaves as if the argument list is as follows:
377      *
378      * <pre>{@code
379      *  CallSite altMetafactory(MethodHandles.Lookup caller,
380      *                          String interfaceMethodName,
381      *                          MethodType factoryType,
382      *                          MethodType interfaceMethodType,
383      *                          MethodHandle implementation,
384      *                          MethodType dynamicMethodType,
385      *                          int flags,
386      *                          int altInterfaceCount,        // IF flags has MARKERS set
387      *                          Class... altInterfaces,       // IF flags has MARKERS set
388      *                          int altMethodCount,           // IF flags has BRIDGES set
389      *                          MethodType... altMethods      // IF flags has BRIDGES set
390      *                          MethodHandle quotableField    // IF flags has QUOTABLE set
391      *                          )
392      * }</pre>
393      *
394      * <p>Arguments that appear in the argument list for
395      * {@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)}
396      * have the same specification as in that method.  The additional arguments
397      * are interpreted as follows:
398      * <ul>
399      *     <li>{@code flags} indicates additional options; this is a bitwise
400      *     OR of desired flags.  Defined flags are {@link #FLAG_BRIDGES},
401      *     {@link #FLAG_MARKERS}, and {@link #FLAG_SERIALIZABLE}.</li>
402      *     <li>{@code altInterfaceCount} is the number of additional interfaces
403      *     the function object should implement, and is present if and only if the
404      *     {@code FLAG_MARKERS} flag is set.</li>
405      *     <li>{@code altInterfaces} is a variable-length list of additional
406      *     interfaces to implement, whose length equals {@code altInterfaceCount},
407      *     and is present if and only if the {@code FLAG_MARKERS} flag is set.</li>
408      *     <li>{@code altMethodCount} is the number of additional method signatures
409      *     the function object should implement, and is present if and only if
410      *     the {@code FLAG_BRIDGES} flag is set.</li>
411      *     <li>{@code altMethods} is a variable-length list of additional
412      *     methods signatures to implement, whose length equals {@code altMethodCount},
413      *     and is present if and only if the {@code FLAG_BRIDGES} flag is set.</li>
414      *     <li>{@code quotableField} is a
415      *     {@linkplain MethodHandles.Lookup#findGetter(Class, String, Class) getter} method handle
416      *     that is used to retrieve the string representation of the quotable lambda's associated
417      *     intermediate representation.</li>
418      * </ul>
419      *
420      * <p>Each class named by {@code altInterfaces} is subject to the same
421      * restrictions as {@code Rd}, the return type of {@code factoryType},
422      * as described {@link LambdaMetafactory above}.  Each {@code MethodType}
423      * named by {@code altMethods} is subject to the same restrictions as
424      * {@code interfaceMethodType}, as described {@link LambdaMetafactory above}.
425      *
426      * <p>When FLAG_SERIALIZABLE is set in {@code flags}, the function objects
427      * will implement {@code Serializable}, and will have a {@code writeReplace}
428      * method that returns an appropriate {@link SerializedLambda}.  The
429      * {@code caller} class must have an appropriate {@code $deserializeLambda$}
430      * method, as described in {@link SerializedLambda}.
431      *
432      * <p>When FLAG_QUOTABLE is set in {@code flags}, the function objects
433      * will implement {@code Quotable}.
434      *
435      * <p>When the target of the {@code CallSite} returned from this method is
436      * invoked, the resulting function objects are instances of a class with
437      * the following properties:
438      * <ul>
439      *     <li>The class implements the interface named by the return type
440      *     of {@code factoryType} and any interfaces named by {@code altInterfaces}</li>
441      *     <li>The class declares methods with the name given by {@code interfaceMethodName},
442      *     and the signature given by {@code interfaceMethodType} and additional signatures
443      *     given by {@code altMethods}</li>
444      *     <li>The class may override methods from {@code Object}, and may
445      *     implement methods related to serialization.</li>
446      * </ul>
447      *
448      * @param caller Represents a lookup context with the accessibility
449      *               privileges of the caller.  Specifically, the lookup context
450      *               must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess()
451      *               full privilege access}.
452      *               When used with {@code invokedynamic}, this is stacked
453      *               automatically by the VM.
454      * @param interfaceMethodName The name of the method to implement.  When used with
455      *                            {@code invokedynamic}, this is provided by the
456      *                            {@code NameAndType} of the {@code InvokeDynamic}
457      *                            structure and is stacked automatically by the VM.
458      * @param factoryType The expected signature of the {@code CallSite}.  The
459      *                    parameter types represent the types of capture variables;
460      *                    the return type is the interface to implement.   When
461      *                    used with {@code invokedynamic}, this is provided by
462      *                    the {@code NameAndType} of the {@code InvokeDynamic}
463      *                    structure and is stacked automatically by the VM.
464      * @param  args An array of {@code Object} containing the required
465      *              arguments {@code interfaceMethodType}, {@code implementation},
466      *              {@code dynamicMethodType}, {@code flags}, and any
467      *              optional arguments, as described above
468      * @return a CallSite whose target can be used to perform capture, generating
469      *         instances of the interface named by {@code factoryType}
470      * @throws LambdaConversionException If {@code caller} does not have full privilege
471      *         access, or if {@code interfaceMethodName} is not a valid JVM
472      *         method name, or if the return type of {@code factoryType} is not
473      *         an interface, or if any of {@code altInterfaces} is not an
474      *         interface, or if {@code implementation} is not a direct method
475      *         handle referencing a method or constructor, or if the linkage
476      *         invariants are violated, as defined {@link LambdaMetafactory above}.
477      * @throws NullPointerException If any argument, or any component of {@code args},
478      *         is {@code null}.
479      * @throws IllegalArgumentException If the number or types of the components
480      *         of {@code args} do not follow the above rules, or if
481      *         {@code altInterfaceCount} or {@code altMethodCount} are negative
482      *         integers.
483      * @throws SecurityException If a security manager is present, and it
484      *         <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
485      *         from {@code caller} to the package of {@code implementation}.
486      */
487     public static CallSite altMetafactory(MethodHandles.Lookup caller,
488                                           String interfaceMethodName,
489                                           MethodType factoryType,
490                                           Object... args)
491             throws LambdaConversionException {
492         Objects.requireNonNull(caller);
493         Objects.requireNonNull(interfaceMethodName);
494         Objects.requireNonNull(factoryType);
495         Objects.requireNonNull(args);
496         int argIndex = 0;
497         MethodType interfaceMethodType = extractArg(args, argIndex++, MethodType.class);
498         MethodHandle implementation = extractArg(args, argIndex++, MethodHandle.class);
499         MethodType dynamicMethodType = extractArg(args, argIndex++, MethodType.class);
500         int flags = extractArg(args, argIndex++, Integer.class);
501         Class<?>[] altInterfaces = EMPTY_CLASS_ARRAY;
502         MethodType[] altMethods = EMPTY_MT_ARRAY;
503         // Getter that returns the op of a Quotable instance
504         MethodHandle quotableOpGetter = null;
505         if ((flags & FLAG_MARKERS) != 0) {
506             int altInterfaceCount = extractArg(args, argIndex++, Integer.class);
507             if (altInterfaceCount < 0) {
508                 throw new IllegalArgumentException("negative argument count");
509             }
510             if (altInterfaceCount > 0) {
511                 altInterfaces = extractArgs(args, argIndex, Class.class, altInterfaceCount);
512                 argIndex += altInterfaceCount;
513             }
514         }
515         if ((flags & FLAG_BRIDGES) != 0) {
516             int altMethodCount = extractArg(args, argIndex++, Integer.class);
517             if (altMethodCount < 0) {
518                 throw new IllegalArgumentException("negative argument count");
519             }
520             if (altMethodCount > 0) {
521                 altMethods = extractArgs(args, argIndex, MethodType.class, altMethodCount);
522                 argIndex += altMethodCount;
523             }
524         }
525         if ((flags & FLAG_QUOTABLE) != 0) {
526             quotableOpGetter = extractArg(args, argIndex++, MethodHandle.class);
527             altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1);
528             altInterfaces[altInterfaces.length-1] = InnerClassLambdaMetafactory.CodeReflectionSupport.QUOTABLE_CLASS;
529         }
530         if (argIndex < args.length) {
531             throw new IllegalArgumentException("too many arguments");
532         }
533 
534         boolean isSerializable = ((flags & FLAG_SERIALIZABLE) != 0);
535         if (isSerializable) {
536             boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(factoryType.returnType());
537             for (Class<?> c : altInterfaces)
538                 foundSerializableSupertype |= Serializable.class.isAssignableFrom(c);
539             if (!foundSerializableSupertype) {
540                 altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1);
541                 altInterfaces[altInterfaces.length-1] = Serializable.class;
542             }
543         }
544 
545         AbstractValidatingLambdaMetafactory mf
546                 = new InnerClassLambdaMetafactory(caller,
547                                                   factoryType,
548                                                   interfaceMethodName,
549                                                   interfaceMethodType,
550                                                   implementation,
551                                                   dynamicMethodType,
552                                                   isSerializable,
553                                                   altInterfaces,
554                                                   altMethods,
555                                                   quotableOpGetter);
556         mf.validateMetafactoryArgs();
557         return mf.buildCallSite();
558     }
559 
560     private static <T> T extractArg(Object[] args, int index, Class<T> type) {
561         if (index >= args.length) {
562             throw new IllegalArgumentException("missing argument");
563         }
564         Object result = Objects.requireNonNull(args[index]);
565         if (!type.isInstance(result)) {
566             throw new IllegalArgumentException("argument has wrong type");
567         }
568         return type.cast(result);
569     }
570 
571     private static <T> T[] extractArgs(Object[] args, int index, Class<T> type, int count) {
572         @SuppressWarnings("unchecked")
573         T[] result = (T[]) Array.newInstance(type, count);
574         for (int i = 0; i < count; i++) {
575             result[i] = extractArg(args, index + i, type);
576         }
577         return result;
578     }
579 
580 }