1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "asm/assembler.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "code/aotCodeCache.hpp" 38 #include "code/compiledIC.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/gc_globals.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/objArrayKlass.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "vmreg_aarch64.inline.hpp" 48 49 50 #ifndef PRODUCT 51 #define COMMENT(x) do { __ block_comment(x); } while (0) 52 #else 53 #define COMMENT(x) 54 #endif 55 56 NEEDS_CLEANUP // remove this definitions ? 57 const Register SYNC_header = r0; // synchronization header 58 const Register SHIFT_count = r0; // where count for shift operations must be 59 60 #define __ _masm-> 61 62 63 static void select_different_registers(Register preserve, 64 Register extra, 65 Register &tmp1, 66 Register &tmp2) { 67 if (tmp1 == preserve) { 68 assert_different_registers(tmp1, tmp2, extra); 69 tmp1 = extra; 70 } else if (tmp2 == preserve) { 71 assert_different_registers(tmp1, tmp2, extra); 72 tmp2 = extra; 73 } 74 assert_different_registers(preserve, tmp1, tmp2); 75 } 76 77 78 79 static void select_different_registers(Register preserve, 80 Register extra, 81 Register &tmp1, 82 Register &tmp2, 83 Register &tmp3) { 84 if (tmp1 == preserve) { 85 assert_different_registers(tmp1, tmp2, tmp3, extra); 86 tmp1 = extra; 87 } else if (tmp2 == preserve) { 88 assert_different_registers(tmp1, tmp2, tmp3, extra); 89 tmp2 = extra; 90 } else if (tmp3 == preserve) { 91 assert_different_registers(tmp1, tmp2, tmp3, extra); 92 tmp3 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2, tmp3); 95 } 96 97 98 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 99 100 101 LIR_Opr LIR_Assembler::receiverOpr() { 102 return FrameMap::receiver_opr; 103 } 104 105 LIR_Opr LIR_Assembler::osrBufferPointer() { 106 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 107 } 108 109 //--------------fpu register translations----------------------- 110 111 112 address LIR_Assembler::float_constant(float f) { 113 address const_addr = __ float_constant(f); 114 if (const_addr == nullptr) { 115 bailout("const section overflow"); 116 return __ code()->consts()->start(); 117 } else { 118 return const_addr; 119 } 120 } 121 122 123 address LIR_Assembler::double_constant(double d) { 124 address const_addr = __ double_constant(d); 125 if (const_addr == nullptr) { 126 bailout("const section overflow"); 127 return __ code()->consts()->start(); 128 } else { 129 return const_addr; 130 } 131 } 132 133 address LIR_Assembler::int_constant(jlong n) { 134 address const_addr = __ long_constant(n); 135 if (const_addr == nullptr) { 136 bailout("const section overflow"); 137 return __ code()->consts()->start(); 138 } else { 139 return const_addr; 140 } 141 } 142 143 void LIR_Assembler::breakpoint() { Unimplemented(); } 144 145 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 146 147 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 148 149 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 150 //------------------------------------------- 151 152 static Register as_reg(LIR_Opr op) { 153 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 154 } 155 156 static jlong as_long(LIR_Opr data) { 157 jlong result; 158 switch (data->type()) { 159 case T_INT: 160 result = (data->as_jint()); 161 break; 162 case T_LONG: 163 result = (data->as_jlong()); 164 break; 165 default: 166 ShouldNotReachHere(); 167 result = 0; // unreachable 168 } 169 return result; 170 } 171 172 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 173 Register base = addr->base()->as_pointer_register(); 174 LIR_Opr opr = addr->index(); 175 if (opr->is_cpu_register()) { 176 Register index; 177 if (opr->is_single_cpu()) 178 index = opr->as_register(); 179 else 180 index = opr->as_register_lo(); 181 assert(addr->disp() == 0, "must be"); 182 switch(opr->type()) { 183 case T_INT: 184 return Address(base, index, Address::sxtw(addr->scale())); 185 case T_LONG: 186 return Address(base, index, Address::lsl(addr->scale())); 187 default: 188 ShouldNotReachHere(); 189 } 190 } else { 191 assert(addr->scale() == 0, 192 "expected for immediate operand, was: %d", addr->scale()); 193 ptrdiff_t offset = ptrdiff_t(addr->disp()); 194 // NOTE: Does not handle any 16 byte vector access. 195 const uint type_size = type2aelembytes(addr->type(), true); 196 return __ legitimize_address(Address(base, offset), type_size, tmp); 197 } 198 return Address(); 199 } 200 201 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 202 ShouldNotReachHere(); 203 return Address(); 204 } 205 206 Address LIR_Assembler::as_Address(LIR_Address* addr) { 207 return as_Address(addr, rscratch1); 208 } 209 210 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 211 return as_Address(addr, rscratch1); // Ouch 212 // FIXME: This needs to be much more clever. See x86. 213 } 214 215 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 216 // not encodable as a base + (immediate) offset, generate an explicit address 217 // calculation to hold the address in a temporary register. 218 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 219 precond(size == 4 || size == 8); 220 Address addr = frame_map()->address_for_slot(index, adjust); 221 precond(addr.getMode() == Address::base_plus_offset); 222 precond(addr.base() == sp); 223 precond(addr.offset() > 0); 224 uint mask = size - 1; 225 assert((addr.offset() & mask) == 0, "scaled offsets only"); 226 return __ legitimize_address(addr, size, tmp); 227 } 228 229 void LIR_Assembler::osr_entry() { 230 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 231 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 232 ValueStack* entry_state = osr_entry->state(); 233 int number_of_locks = entry_state->locks_size(); 234 235 // we jump here if osr happens with the interpreter 236 // state set up to continue at the beginning of the 237 // loop that triggered osr - in particular, we have 238 // the following registers setup: 239 // 240 // r2: osr buffer 241 // 242 243 // build frame 244 ciMethod* m = compilation()->method(); 245 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 246 247 // OSR buffer is 248 // 249 // locals[nlocals-1..0] 250 // monitors[0..number_of_locks] 251 // 252 // locals is a direct copy of the interpreter frame so in the osr buffer 253 // so first slot in the local array is the last local from the interpreter 254 // and last slot is local[0] (receiver) from the interpreter 255 // 256 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 257 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 258 // in the interpreter frame (the method lock if a sync method) 259 260 // Initialize monitors in the compiled activation. 261 // r2: pointer to osr buffer 262 // 263 // All other registers are dead at this point and the locals will be 264 // copied into place by code emitted in the IR. 265 266 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 267 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 268 int monitor_offset = BytesPerWord * method()->max_locals() + 269 (2 * BytesPerWord) * (number_of_locks - 1); 270 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 271 // the OSR buffer using 2 word entries: first the lock and then 272 // the oop. 273 for (int i = 0; i < number_of_locks; i++) { 274 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 275 #ifdef ASSERT 276 // verify the interpreter's monitor has a non-null object 277 { 278 Label L; 279 __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0)); 280 __ cbnz(rscratch1, L); 281 __ stop("locked object is null"); 282 __ bind(L); 283 } 284 #endif 285 __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0)); 286 __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0)); 287 __ str(r19, frame_map()->address_for_monitor_lock(i)); 288 __ str(r20, frame_map()->address_for_monitor_object(i)); 289 } 290 } 291 } 292 293 294 // inline cache check; done before the frame is built. 295 int LIR_Assembler::check_icache() { 296 return __ ic_check(CodeEntryAlignment); 297 } 298 299 void LIR_Assembler::clinit_barrier(ciMethod* method) { 300 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 301 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 302 303 Label L_skip_barrier; 304 305 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 306 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 307 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 308 __ bind(L_skip_barrier); 309 } 310 311 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 312 if (o == nullptr) { 313 __ mov(reg, zr); 314 } else { 315 __ movoop(reg, o); 316 } 317 } 318 319 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 320 address target = nullptr; 321 relocInfo::relocType reloc_type = relocInfo::none; 322 323 switch (patching_id(info)) { 324 case PatchingStub::access_field_id: 325 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 326 reloc_type = relocInfo::section_word_type; 327 break; 328 case PatchingStub::load_klass_id: 329 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 330 reloc_type = relocInfo::metadata_type; 331 break; 332 case PatchingStub::load_mirror_id: 333 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 334 reloc_type = relocInfo::oop_type; 335 break; 336 case PatchingStub::load_appendix_id: 337 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 338 reloc_type = relocInfo::oop_type; 339 break; 340 default: ShouldNotReachHere(); 341 } 342 343 __ far_call(RuntimeAddress(target)); 344 add_call_info_here(info); 345 } 346 347 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 348 deoptimize_trap(info); 349 } 350 351 352 // This specifies the rsp decrement needed to build the frame 353 int LIR_Assembler::initial_frame_size_in_bytes() const { 354 // if rounding, must let FrameMap know! 355 356 return in_bytes(frame_map()->framesize_in_bytes()); 357 } 358 359 360 int LIR_Assembler::emit_exception_handler() { 361 // generate code for exception handler 362 address handler_base = __ start_a_stub(exception_handler_size()); 363 if (handler_base == nullptr) { 364 // not enough space left for the handler 365 bailout("exception handler overflow"); 366 return -1; 367 } 368 369 int offset = code_offset(); 370 371 // the exception oop and pc are in r0, and r3 372 // no other registers need to be preserved, so invalidate them 373 __ invalidate_registers(false, true, true, false, true, true); 374 375 // check that there is really an exception 376 __ verify_not_null_oop(r0); 377 378 // search an exception handler (r0: exception oop, r3: throwing pc) 379 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 380 __ should_not_reach_here(); 381 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 382 __ end_a_stub(); 383 384 return offset; 385 } 386 387 388 // Emit the code to remove the frame from the stack in the exception 389 // unwind path. 390 int LIR_Assembler::emit_unwind_handler() { 391 #ifndef PRODUCT 392 if (CommentedAssembly) { 393 _masm->block_comment("Unwind handler"); 394 } 395 #endif 396 397 int offset = code_offset(); 398 399 // Fetch the exception from TLS and clear out exception related thread state 400 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 401 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 402 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 403 404 __ bind(_unwind_handler_entry); 405 __ verify_not_null_oop(r0); 406 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 407 __ mov(r19, r0); // Preserve the exception 408 } 409 410 // Perform needed unlocking 411 MonitorExitStub* stub = nullptr; 412 if (method()->is_synchronized()) { 413 monitor_address(0, FrameMap::r0_opr); 414 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 415 if (LockingMode == LM_MONITOR) { 416 __ b(*stub->entry()); 417 } else { 418 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 419 } 420 __ bind(*stub->continuation()); 421 } 422 423 if (compilation()->env()->dtrace_method_probes()) { 424 __ mov(c_rarg0, rthread); 425 __ mov_metadata(c_rarg1, method()->constant_encoding()); 426 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 427 } 428 429 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 430 __ mov(r0, r19); // Restore the exception 431 } 432 433 // remove the activation and dispatch to the unwind handler 434 __ block_comment("remove_frame and dispatch to the unwind handler"); 435 __ remove_frame(initial_frame_size_in_bytes()); 436 __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 437 438 // Emit the slow path assembly 439 if (stub != nullptr) { 440 stub->emit_code(this); 441 } 442 443 return offset; 444 } 445 446 447 int LIR_Assembler::emit_deopt_handler() { 448 // generate code for exception handler 449 address handler_base = __ start_a_stub(deopt_handler_size()); 450 if (handler_base == nullptr) { 451 // not enough space left for the handler 452 bailout("deopt handler overflow"); 453 return -1; 454 } 455 456 int offset = code_offset(); 457 458 __ adr(lr, pc()); 459 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 460 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 461 __ end_a_stub(); 462 463 return offset; 464 } 465 466 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 467 _masm->code_section()->relocate(adr, relocInfo::poll_type); 468 int pc_offset = code_offset(); 469 flush_debug_info(pc_offset); 470 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 471 if (info->exception_handlers() != nullptr) { 472 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 473 } 474 } 475 476 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 477 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 478 479 // Pop the stack before the safepoint code 480 __ remove_frame(initial_frame_size_in_bytes()); 481 482 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 483 __ reserved_stack_check(); 484 } 485 486 code_stub->set_safepoint_offset(__ offset()); 487 __ relocate(relocInfo::poll_return_type); 488 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 489 __ ret(lr); 490 } 491 492 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 493 guarantee(info != nullptr, "Shouldn't be null"); 494 __ get_polling_page(rscratch1, relocInfo::poll_type); 495 add_debug_info_for_branch(info); // This isn't just debug info: 496 // it's the oop map 497 __ read_polling_page(rscratch1, relocInfo::poll_type); 498 return __ offset(); 499 } 500 501 502 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 503 if (from_reg == r31_sp) 504 from_reg = sp; 505 if (to_reg == r31_sp) 506 to_reg = sp; 507 __ mov(to_reg, from_reg); 508 } 509 510 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 511 512 513 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 514 assert(src->is_constant(), "should not call otherwise"); 515 assert(dest->is_register(), "should not call otherwise"); 516 LIR_Const* c = src->as_constant_ptr(); 517 518 switch (c->type()) { 519 case T_INT: { 520 assert(patch_code == lir_patch_none, "no patching handled here"); 521 __ movw(dest->as_register(), c->as_jint()); 522 break; 523 } 524 525 case T_ADDRESS: { 526 assert(patch_code == lir_patch_none, "no patching handled here"); 527 __ mov(dest->as_register(), c->as_jint()); 528 break; 529 } 530 531 case T_LONG: { 532 assert(patch_code == lir_patch_none, "no patching handled here"); 533 if (AOTCodeCache::is_on_for_write()) { 534 // AOT code needs relocation info for card table base 535 address b = c->as_pointer(); 536 if (is_card_table_address(b)) { 537 __ lea(dest->as_register_lo(), ExternalAddress(b)); 538 break; 539 } 540 #if INCLUDE_CDS 541 if (AOTRuntimeConstants::contains(b)) { 542 __ load_aotrc_address(dest->as_register_lo(), b); 543 break; 544 } 545 #endif 546 } 547 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 548 break; 549 } 550 551 case T_OBJECT: { 552 if (patch_code == lir_patch_none) { 553 jobject2reg(c->as_jobject(), dest->as_register()); 554 } else { 555 jobject2reg_with_patching(dest->as_register(), info); 556 } 557 break; 558 } 559 560 case T_METADATA: { 561 if (patch_code != lir_patch_none) { 562 klass2reg_with_patching(dest->as_register(), info); 563 } else { 564 __ mov_metadata(dest->as_register(), c->as_metadata()); 565 } 566 break; 567 } 568 569 case T_FLOAT: { 570 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 571 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 572 } else { 573 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 574 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 575 } 576 break; 577 } 578 579 case T_DOUBLE: { 580 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 581 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 582 } else { 583 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 584 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 585 } 586 break; 587 } 588 589 default: 590 ShouldNotReachHere(); 591 } 592 } 593 594 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 595 LIR_Const* c = src->as_constant_ptr(); 596 switch (c->type()) { 597 case T_OBJECT: 598 { 599 if (! c->as_jobject()) 600 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 601 else { 602 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 603 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 604 } 605 } 606 break; 607 case T_ADDRESS: 608 { 609 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 610 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 611 } 612 case T_INT: 613 case T_FLOAT: 614 { 615 Register reg = zr; 616 if (c->as_jint_bits() == 0) 617 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 618 else { 619 __ movw(rscratch1, c->as_jint_bits()); 620 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 621 } 622 } 623 break; 624 case T_LONG: 625 case T_DOUBLE: 626 { 627 Register reg = zr; 628 if (c->as_jlong_bits() == 0) 629 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 630 lo_word_offset_in_bytes)); 631 else { 632 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 633 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 634 lo_word_offset_in_bytes)); 635 } 636 } 637 break; 638 default: 639 ShouldNotReachHere(); 640 } 641 } 642 643 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 644 assert(src->is_constant(), "should not call otherwise"); 645 LIR_Const* c = src->as_constant_ptr(); 646 LIR_Address* to_addr = dest->as_address_ptr(); 647 648 void (Assembler::* insn)(Register Rt, const Address &adr); 649 650 switch (type) { 651 case T_ADDRESS: 652 assert(c->as_jint() == 0, "should be"); 653 insn = &Assembler::str; 654 break; 655 case T_LONG: 656 assert(c->as_jlong() == 0, "should be"); 657 insn = &Assembler::str; 658 break; 659 case T_INT: 660 assert(c->as_jint() == 0, "should be"); 661 insn = &Assembler::strw; 662 break; 663 case T_OBJECT: 664 case T_ARRAY: 665 assert(c->as_jobject() == nullptr, "should be"); 666 if (UseCompressedOops && !wide) { 667 insn = &Assembler::strw; 668 } else { 669 insn = &Assembler::str; 670 } 671 break; 672 case T_CHAR: 673 case T_SHORT: 674 assert(c->as_jint() == 0, "should be"); 675 insn = &Assembler::strh; 676 break; 677 case T_BOOLEAN: 678 case T_BYTE: 679 assert(c->as_jint() == 0, "should be"); 680 insn = &Assembler::strb; 681 break; 682 default: 683 ShouldNotReachHere(); 684 insn = &Assembler::str; // unreachable 685 } 686 687 if (info) add_debug_info_for_null_check_here(info); 688 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 689 } 690 691 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 692 assert(src->is_register(), "should not call otherwise"); 693 assert(dest->is_register(), "should not call otherwise"); 694 695 // move between cpu-registers 696 if (dest->is_single_cpu()) { 697 if (src->type() == T_LONG) { 698 // Can do LONG -> OBJECT 699 move_regs(src->as_register_lo(), dest->as_register()); 700 return; 701 } 702 assert(src->is_single_cpu(), "must match"); 703 if (src->type() == T_OBJECT) { 704 __ verify_oop(src->as_register()); 705 } 706 move_regs(src->as_register(), dest->as_register()); 707 708 } else if (dest->is_double_cpu()) { 709 if (is_reference_type(src->type())) { 710 // Surprising to me but we can see move of a long to t_object 711 __ verify_oop(src->as_register()); 712 move_regs(src->as_register(), dest->as_register_lo()); 713 return; 714 } 715 assert(src->is_double_cpu(), "must match"); 716 Register f_lo = src->as_register_lo(); 717 Register f_hi = src->as_register_hi(); 718 Register t_lo = dest->as_register_lo(); 719 Register t_hi = dest->as_register_hi(); 720 assert(f_hi == f_lo, "must be same"); 721 assert(t_hi == t_lo, "must be same"); 722 move_regs(f_lo, t_lo); 723 724 } else if (dest->is_single_fpu()) { 725 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 726 727 } else if (dest->is_double_fpu()) { 728 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 729 730 } else { 731 ShouldNotReachHere(); 732 } 733 } 734 735 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 736 precond(src->is_register() && dest->is_stack()); 737 738 uint const c_sz32 = sizeof(uint32_t); 739 uint const c_sz64 = sizeof(uint64_t); 740 741 if (src->is_single_cpu()) { 742 int index = dest->single_stack_ix(); 743 if (is_reference_type(type)) { 744 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 745 __ verify_oop(src->as_register()); 746 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 747 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 748 } else { 749 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 750 } 751 752 } else if (src->is_double_cpu()) { 753 int index = dest->double_stack_ix(); 754 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 755 __ str(src->as_register_lo(), dest_addr_LO); 756 757 } else if (src->is_single_fpu()) { 758 int index = dest->single_stack_ix(); 759 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 760 761 } else if (src->is_double_fpu()) { 762 int index = dest->double_stack_ix(); 763 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 764 765 } else { 766 ShouldNotReachHere(); 767 } 768 } 769 770 771 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 772 LIR_Address* to_addr = dest->as_address_ptr(); 773 PatchingStub* patch = nullptr; 774 Register compressed_src = rscratch1; 775 776 if (patch_code != lir_patch_none) { 777 deoptimize_trap(info); 778 return; 779 } 780 781 if (is_reference_type(type)) { 782 __ verify_oop(src->as_register()); 783 784 if (UseCompressedOops && !wide) { 785 __ encode_heap_oop(compressed_src, src->as_register()); 786 } else { 787 compressed_src = src->as_register(); 788 } 789 } 790 791 int null_check_here = code_offset(); 792 switch (type) { 793 case T_FLOAT: { 794 __ strs(src->as_float_reg(), as_Address(to_addr)); 795 break; 796 } 797 798 case T_DOUBLE: { 799 __ strd(src->as_double_reg(), as_Address(to_addr)); 800 break; 801 } 802 803 case T_ARRAY: // fall through 804 case T_OBJECT: // fall through 805 if (UseCompressedOops && !wide) { 806 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 807 } else { 808 __ str(compressed_src, as_Address(to_addr)); 809 } 810 break; 811 case T_METADATA: 812 // We get here to store a method pointer to the stack to pass to 813 // a dtrace runtime call. This can't work on 64 bit with 814 // compressed klass ptrs: T_METADATA can be a compressed klass 815 // ptr or a 64 bit method pointer. 816 ShouldNotReachHere(); 817 __ str(src->as_register(), as_Address(to_addr)); 818 break; 819 case T_ADDRESS: 820 __ str(src->as_register(), as_Address(to_addr)); 821 break; 822 case T_INT: 823 __ strw(src->as_register(), as_Address(to_addr)); 824 break; 825 826 case T_LONG: { 827 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 828 break; 829 } 830 831 case T_BYTE: // fall through 832 case T_BOOLEAN: { 833 __ strb(src->as_register(), as_Address(to_addr)); 834 break; 835 } 836 837 case T_CHAR: // fall through 838 case T_SHORT: 839 __ strh(src->as_register(), as_Address(to_addr)); 840 break; 841 842 default: 843 ShouldNotReachHere(); 844 } 845 if (info != nullptr) { 846 add_debug_info_for_null_check(null_check_here, info); 847 } 848 } 849 850 851 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 852 precond(src->is_stack() && dest->is_register()); 853 854 uint const c_sz32 = sizeof(uint32_t); 855 uint const c_sz64 = sizeof(uint64_t); 856 857 if (dest->is_single_cpu()) { 858 int index = src->single_stack_ix(); 859 if (is_reference_type(type)) { 860 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 861 __ verify_oop(dest->as_register()); 862 } else if (type == T_METADATA || type == T_ADDRESS) { 863 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 864 } else { 865 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 866 } 867 868 } else if (dest->is_double_cpu()) { 869 int index = src->double_stack_ix(); 870 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 871 __ ldr(dest->as_register_lo(), src_addr_LO); 872 873 } else if (dest->is_single_fpu()) { 874 int index = src->single_stack_ix(); 875 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 876 877 } else if (dest->is_double_fpu()) { 878 int index = src->double_stack_ix(); 879 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 880 881 } else { 882 ShouldNotReachHere(); 883 } 884 } 885 886 887 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 888 address target = nullptr; 889 relocInfo::relocType reloc_type = relocInfo::none; 890 891 switch (patching_id(info)) { 892 case PatchingStub::access_field_id: 893 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 894 reloc_type = relocInfo::section_word_type; 895 break; 896 case PatchingStub::load_klass_id: 897 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 898 reloc_type = relocInfo::metadata_type; 899 break; 900 case PatchingStub::load_mirror_id: 901 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 902 reloc_type = relocInfo::oop_type; 903 break; 904 case PatchingStub::load_appendix_id: 905 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 906 reloc_type = relocInfo::oop_type; 907 break; 908 default: ShouldNotReachHere(); 909 } 910 911 __ far_call(RuntimeAddress(target)); 912 add_call_info_here(info); 913 } 914 915 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 916 917 LIR_Opr temp; 918 if (type == T_LONG || type == T_DOUBLE) 919 temp = FrameMap::rscratch1_long_opr; 920 else 921 temp = FrameMap::rscratch1_opr; 922 923 stack2reg(src, temp, src->type()); 924 reg2stack(temp, dest, dest->type()); 925 } 926 927 928 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 929 LIR_Address* addr = src->as_address_ptr(); 930 LIR_Address* from_addr = src->as_address_ptr(); 931 932 if (addr->base()->type() == T_OBJECT) { 933 __ verify_oop(addr->base()->as_pointer_register()); 934 } 935 936 if (patch_code != lir_patch_none) { 937 deoptimize_trap(info); 938 return; 939 } 940 941 if (info != nullptr) { 942 add_debug_info_for_null_check_here(info); 943 } 944 int null_check_here = code_offset(); 945 switch (type) { 946 case T_FLOAT: { 947 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 948 break; 949 } 950 951 case T_DOUBLE: { 952 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 953 break; 954 } 955 956 case T_ARRAY: // fall through 957 case T_OBJECT: // fall through 958 if (UseCompressedOops && !wide) { 959 __ ldrw(dest->as_register(), as_Address(from_addr)); 960 } else { 961 __ ldr(dest->as_register(), as_Address(from_addr)); 962 } 963 break; 964 case T_METADATA: 965 // We get here to store a method pointer to the stack to pass to 966 // a dtrace runtime call. This can't work on 64 bit with 967 // compressed klass ptrs: T_METADATA can be a compressed klass 968 // ptr or a 64 bit method pointer. 969 ShouldNotReachHere(); 970 __ ldr(dest->as_register(), as_Address(from_addr)); 971 break; 972 case T_ADDRESS: 973 __ ldr(dest->as_register(), as_Address(from_addr)); 974 break; 975 case T_INT: 976 __ ldrw(dest->as_register(), as_Address(from_addr)); 977 break; 978 979 case T_LONG: { 980 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 981 break; 982 } 983 984 case T_BYTE: 985 __ ldrsb(dest->as_register(), as_Address(from_addr)); 986 break; 987 case T_BOOLEAN: { 988 __ ldrb(dest->as_register(), as_Address(from_addr)); 989 break; 990 } 991 992 case T_CHAR: 993 __ ldrh(dest->as_register(), as_Address(from_addr)); 994 break; 995 case T_SHORT: 996 __ ldrsh(dest->as_register(), as_Address(from_addr)); 997 break; 998 999 default: 1000 ShouldNotReachHere(); 1001 } 1002 1003 if (is_reference_type(type)) { 1004 if (UseCompressedOops && !wide) { 1005 __ decode_heap_oop(dest->as_register()); 1006 } 1007 1008 __ verify_oop(dest->as_register()); 1009 } 1010 } 1011 1012 1013 int LIR_Assembler::array_element_size(BasicType type) const { 1014 int elem_size = type2aelembytes(type); 1015 return exact_log2(elem_size); 1016 } 1017 1018 1019 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1020 switch (op->code()) { 1021 case lir_idiv: 1022 case lir_irem: 1023 arithmetic_idiv(op->code(), 1024 op->in_opr1(), 1025 op->in_opr2(), 1026 op->in_opr3(), 1027 op->result_opr(), 1028 op->info()); 1029 break; 1030 case lir_fmad: 1031 __ fmaddd(op->result_opr()->as_double_reg(), 1032 op->in_opr1()->as_double_reg(), 1033 op->in_opr2()->as_double_reg(), 1034 op->in_opr3()->as_double_reg()); 1035 break; 1036 case lir_fmaf: 1037 __ fmadds(op->result_opr()->as_float_reg(), 1038 op->in_opr1()->as_float_reg(), 1039 op->in_opr2()->as_float_reg(), 1040 op->in_opr3()->as_float_reg()); 1041 break; 1042 default: ShouldNotReachHere(); break; 1043 } 1044 } 1045 1046 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1047 #ifdef ASSERT 1048 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1049 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1050 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1051 #endif 1052 1053 if (op->cond() == lir_cond_always) { 1054 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1055 __ b(*(op->label())); 1056 } else { 1057 Assembler::Condition acond; 1058 if (op->code() == lir_cond_float_branch) { 1059 bool is_unordered = (op->ublock() == op->block()); 1060 // Assembler::EQ does not permit unordered branches, so we add 1061 // another branch here. Likewise, Assembler::NE does not permit 1062 // ordered branches. 1063 if ((is_unordered && op->cond() == lir_cond_equal) 1064 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1065 __ br(Assembler::VS, *(op->ublock()->label())); 1066 switch(op->cond()) { 1067 case lir_cond_equal: acond = Assembler::EQ; break; 1068 case lir_cond_notEqual: acond = Assembler::NE; break; 1069 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1070 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1071 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1072 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1073 default: ShouldNotReachHere(); 1074 acond = Assembler::EQ; // unreachable 1075 } 1076 } else { 1077 switch (op->cond()) { 1078 case lir_cond_equal: acond = Assembler::EQ; break; 1079 case lir_cond_notEqual: acond = Assembler::NE; break; 1080 case lir_cond_less: acond = Assembler::LT; break; 1081 case lir_cond_lessEqual: acond = Assembler::LE; break; 1082 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1083 case lir_cond_greater: acond = Assembler::GT; break; 1084 case lir_cond_belowEqual: acond = Assembler::LS; break; 1085 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1086 default: ShouldNotReachHere(); 1087 acond = Assembler::EQ; // unreachable 1088 } 1089 } 1090 __ br(acond,*(op->label())); 1091 } 1092 } 1093 1094 1095 1096 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1097 LIR_Opr src = op->in_opr(); 1098 LIR_Opr dest = op->result_opr(); 1099 1100 switch (op->bytecode()) { 1101 case Bytecodes::_i2f: 1102 { 1103 __ scvtfws(dest->as_float_reg(), src->as_register()); 1104 break; 1105 } 1106 case Bytecodes::_i2d: 1107 { 1108 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1109 break; 1110 } 1111 case Bytecodes::_l2d: 1112 { 1113 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1114 break; 1115 } 1116 case Bytecodes::_l2f: 1117 { 1118 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1119 break; 1120 } 1121 case Bytecodes::_f2d: 1122 { 1123 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1124 break; 1125 } 1126 case Bytecodes::_d2f: 1127 { 1128 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1129 break; 1130 } 1131 case Bytecodes::_i2c: 1132 { 1133 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1134 break; 1135 } 1136 case Bytecodes::_i2l: 1137 { 1138 __ sxtw(dest->as_register_lo(), src->as_register()); 1139 break; 1140 } 1141 case Bytecodes::_i2s: 1142 { 1143 __ sxth(dest->as_register(), src->as_register()); 1144 break; 1145 } 1146 case Bytecodes::_i2b: 1147 { 1148 __ sxtb(dest->as_register(), src->as_register()); 1149 break; 1150 } 1151 case Bytecodes::_l2i: 1152 { 1153 _masm->block_comment("FIXME: This could be a no-op"); 1154 __ uxtw(dest->as_register(), src->as_register_lo()); 1155 break; 1156 } 1157 case Bytecodes::_d2l: 1158 { 1159 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1160 break; 1161 } 1162 case Bytecodes::_f2i: 1163 { 1164 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1165 break; 1166 } 1167 case Bytecodes::_f2l: 1168 { 1169 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1170 break; 1171 } 1172 case Bytecodes::_d2i: 1173 { 1174 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1175 break; 1176 } 1177 default: ShouldNotReachHere(); 1178 } 1179 } 1180 1181 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1182 if (op->init_check()) { 1183 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1184 __ ldarb(rscratch1, rscratch1); 1185 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1186 add_debug_info_for_null_check_here(op->stub()->info()); 1187 __ br(Assembler::NE, *op->stub()->entry()); 1188 } 1189 __ allocate_object(op->obj()->as_register(), 1190 op->tmp1()->as_register(), 1191 op->tmp2()->as_register(), 1192 op->header_size(), 1193 op->object_size(), 1194 op->klass()->as_register(), 1195 *op->stub()->entry()); 1196 __ bind(*op->stub()->continuation()); 1197 } 1198 1199 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1200 Register len = op->len()->as_register(); 1201 __ uxtw(len, len); 1202 1203 if (UseSlowPath || 1204 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1205 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1206 __ b(*op->stub()->entry()); 1207 } else { 1208 Register tmp1 = op->tmp1()->as_register(); 1209 Register tmp2 = op->tmp2()->as_register(); 1210 Register tmp3 = op->tmp3()->as_register(); 1211 if (len == tmp1) { 1212 tmp1 = tmp3; 1213 } else if (len == tmp2) { 1214 tmp2 = tmp3; 1215 } else if (len == tmp3) { 1216 // everything is ok 1217 } else { 1218 __ mov(tmp3, len); 1219 } 1220 __ allocate_array(op->obj()->as_register(), 1221 len, 1222 tmp1, 1223 tmp2, 1224 arrayOopDesc::base_offset_in_bytes(op->type()), 1225 array_element_size(op->type()), 1226 op->klass()->as_register(), 1227 *op->stub()->entry(), 1228 op->zero_array()); 1229 } 1230 __ bind(*op->stub()->continuation()); 1231 } 1232 1233 void LIR_Assembler::type_profile_helper(Register mdo, 1234 ciMethodData *md, ciProfileData *data, 1235 Register recv, Label* update_done) { 1236 1237 // Given a profile data offset, generate an Address which points to 1238 // the corresponding slot in mdo->data(). 1239 // Clobbers rscratch2. 1240 auto slot_at = [=](ByteSize offset) -> Address { 1241 return __ form_address(rscratch2, mdo, 1242 md->byte_offset_of_slot(data, offset), 1243 LogBytesPerWord); 1244 }; 1245 1246 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1247 Label next_test; 1248 // See if the receiver is receiver[n]. 1249 __ ldr(rscratch1, slot_at(ReceiverTypeData::receiver_offset(i))); 1250 __ cmp(recv, rscratch1); 1251 __ br(Assembler::NE, next_test); 1252 __ addptr(slot_at(ReceiverTypeData::receiver_count_offset(i)), 1253 DataLayout::counter_increment); 1254 __ b(*update_done); 1255 __ bind(next_test); 1256 } 1257 1258 // Didn't find receiver; find next empty slot and fill it in 1259 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1260 Label next_test; 1261 Address recv_addr(slot_at(ReceiverTypeData::receiver_offset(i))); 1262 __ ldr(rscratch1, recv_addr); 1263 __ cbnz(rscratch1, next_test); 1264 __ str(recv, recv_addr); 1265 __ mov(rscratch1, DataLayout::counter_increment); 1266 __ str(rscratch1, slot_at(ReceiverTypeData::receiver_count_offset(i))); 1267 __ b(*update_done); 1268 __ bind(next_test); 1269 } 1270 } 1271 1272 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1273 // we always need a stub for the failure case. 1274 CodeStub* stub = op->stub(); 1275 Register obj = op->object()->as_register(); 1276 Register k_RInfo = op->tmp1()->as_register(); 1277 Register klass_RInfo = op->tmp2()->as_register(); 1278 Register dst = op->result_opr()->as_register(); 1279 ciKlass* k = op->klass(); 1280 Register Rtmp1 = noreg; 1281 1282 // check if it needs to be profiled 1283 ciMethodData* md; 1284 ciProfileData* data; 1285 1286 const bool should_profile = op->should_profile(); 1287 1288 if (should_profile) { 1289 ciMethod* method = op->profiled_method(); 1290 assert(method != nullptr, "Should have method"); 1291 int bci = op->profiled_bci(); 1292 md = method->method_data_or_null(); 1293 assert(md != nullptr, "Sanity"); 1294 data = md->bci_to_data(bci); 1295 assert(data != nullptr, "need data for type check"); 1296 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1297 } 1298 Label* success_target = success; 1299 Label* failure_target = failure; 1300 1301 if (obj == k_RInfo) { 1302 k_RInfo = dst; 1303 } else if (obj == klass_RInfo) { 1304 klass_RInfo = dst; 1305 } 1306 if (k->is_loaded() && !UseCompressedClassPointers) { 1307 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1308 } else { 1309 Rtmp1 = op->tmp3()->as_register(); 1310 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1311 } 1312 1313 assert_different_registers(obj, k_RInfo, klass_RInfo); 1314 1315 if (should_profile) { 1316 Register mdo = klass_RInfo; 1317 __ mov_metadata(mdo, md->constant_encoding()); 1318 Label not_null; 1319 __ cbnz(obj, not_null); 1320 // Object is null; update MDO and exit 1321 Address data_addr 1322 = __ form_address(rscratch2, mdo, 1323 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1324 0); 1325 __ ldrb(rscratch1, data_addr); 1326 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1327 __ strb(rscratch1, data_addr); 1328 __ b(*obj_is_null); 1329 __ bind(not_null); 1330 1331 Label update_done; 1332 Register recv = k_RInfo; 1333 __ load_klass(recv, obj); 1334 type_profile_helper(mdo, md, data, recv, &update_done); 1335 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1336 __ addptr(counter_addr, DataLayout::counter_increment); 1337 1338 __ bind(update_done); 1339 } else { 1340 __ cbz(obj, *obj_is_null); 1341 } 1342 1343 if (!k->is_loaded()) { 1344 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1345 } else { 1346 __ mov_metadata(k_RInfo, k->constant_encoding()); 1347 } 1348 __ verify_oop(obj); 1349 1350 if (op->fast_check()) { 1351 // get object class 1352 // not a safepoint as obj null check happens earlier 1353 __ load_klass(rscratch1, obj); 1354 __ cmp( rscratch1, k_RInfo); 1355 1356 __ br(Assembler::NE, *failure_target); 1357 // successful cast, fall through to profile or jump 1358 } else { 1359 // get object class 1360 // not a safepoint as obj null check happens earlier 1361 __ load_klass(klass_RInfo, obj); 1362 if (k->is_loaded()) { 1363 // See if we get an immediate positive hit 1364 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1365 __ cmp(k_RInfo, rscratch1); 1366 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1367 __ br(Assembler::NE, *failure_target); 1368 // successful cast, fall through to profile or jump 1369 } else { 1370 // See if we get an immediate positive hit 1371 __ br(Assembler::EQ, *success_target); 1372 // check for self 1373 __ cmp(klass_RInfo, k_RInfo); 1374 __ br(Assembler::EQ, *success_target); 1375 1376 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1377 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1378 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1379 // result is a boolean 1380 __ cbzw(klass_RInfo, *failure_target); 1381 // successful cast, fall through to profile or jump 1382 } 1383 } else { 1384 // perform the fast part of the checking logic 1385 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1386 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1387 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1388 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1389 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1390 // result is a boolean 1391 __ cbz(k_RInfo, *failure_target); 1392 // successful cast, fall through to profile or jump 1393 } 1394 } 1395 __ b(*success); 1396 } 1397 1398 1399 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1400 const bool should_profile = op->should_profile(); 1401 1402 LIR_Code code = op->code(); 1403 if (code == lir_store_check) { 1404 Register value = op->object()->as_register(); 1405 Register array = op->array()->as_register(); 1406 Register k_RInfo = op->tmp1()->as_register(); 1407 Register klass_RInfo = op->tmp2()->as_register(); 1408 Register Rtmp1 = op->tmp3()->as_register(); 1409 1410 CodeStub* stub = op->stub(); 1411 1412 // check if it needs to be profiled 1413 ciMethodData* md; 1414 ciProfileData* data; 1415 1416 if (should_profile) { 1417 ciMethod* method = op->profiled_method(); 1418 assert(method != nullptr, "Should have method"); 1419 int bci = op->profiled_bci(); 1420 md = method->method_data_or_null(); 1421 assert(md != nullptr, "Sanity"); 1422 data = md->bci_to_data(bci); 1423 assert(data != nullptr, "need data for type check"); 1424 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1425 } 1426 Label done; 1427 Label* success_target = &done; 1428 Label* failure_target = stub->entry(); 1429 1430 if (should_profile) { 1431 Label not_null; 1432 Register mdo = klass_RInfo; 1433 __ mov_metadata(mdo, md->constant_encoding()); 1434 __ cbnz(value, not_null); 1435 // Object is null; update MDO and exit 1436 Address data_addr 1437 = __ form_address(rscratch2, mdo, 1438 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); 1439 __ ldrb(rscratch1, data_addr); 1440 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1441 __ strb(rscratch1, data_addr); 1442 __ b(done); 1443 __ bind(not_null); 1444 1445 Label update_done; 1446 Register recv = k_RInfo; 1447 __ load_klass(recv, value); 1448 type_profile_helper(mdo, md, data, recv, &update_done); 1449 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1450 __ addptr(counter_addr, DataLayout::counter_increment); 1451 __ bind(update_done); 1452 } else { 1453 __ cbz(value, done); 1454 } 1455 1456 add_debug_info_for_null_check_here(op->info_for_exception()); 1457 __ load_klass(k_RInfo, array); 1458 __ load_klass(klass_RInfo, value); 1459 1460 // get instance klass (it's already uncompressed) 1461 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1462 // perform the fast part of the checking logic 1463 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1464 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1465 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1466 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1467 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1468 // result is a boolean 1469 __ cbzw(k_RInfo, *failure_target); 1470 // fall through to the success case 1471 1472 __ bind(done); 1473 } else if (code == lir_checkcast) { 1474 Register obj = op->object()->as_register(); 1475 Register dst = op->result_opr()->as_register(); 1476 Label success; 1477 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1478 __ bind(success); 1479 if (dst != obj) { 1480 __ mov(dst, obj); 1481 } 1482 } else if (code == lir_instanceof) { 1483 Register obj = op->object()->as_register(); 1484 Register dst = op->result_opr()->as_register(); 1485 Label success, failure, done; 1486 emit_typecheck_helper(op, &success, &failure, &failure); 1487 __ bind(failure); 1488 __ mov(dst, zr); 1489 __ b(done); 1490 __ bind(success); 1491 __ mov(dst, 1); 1492 __ bind(done); 1493 } else { 1494 ShouldNotReachHere(); 1495 } 1496 } 1497 1498 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1499 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1500 __ cset(rscratch1, Assembler::NE); 1501 __ membar(__ AnyAny); 1502 } 1503 1504 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1505 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1506 __ cset(rscratch1, Assembler::NE); 1507 __ membar(__ AnyAny); 1508 } 1509 1510 1511 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1512 Register addr; 1513 if (op->addr()->is_register()) { 1514 addr = as_reg(op->addr()); 1515 } else { 1516 assert(op->addr()->is_address(), "what else?"); 1517 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1518 assert(addr_ptr->disp() == 0, "need 0 disp"); 1519 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1520 addr = as_reg(addr_ptr->base()); 1521 } 1522 Register newval = as_reg(op->new_value()); 1523 Register cmpval = as_reg(op->cmp_value()); 1524 1525 if (op->code() == lir_cas_obj) { 1526 if (UseCompressedOops) { 1527 Register t1 = op->tmp1()->as_register(); 1528 assert(op->tmp1()->is_valid(), "must be"); 1529 __ encode_heap_oop(t1, cmpval); 1530 cmpval = t1; 1531 __ encode_heap_oop(rscratch2, newval); 1532 newval = rscratch2; 1533 casw(addr, newval, cmpval); 1534 } else { 1535 casl(addr, newval, cmpval); 1536 } 1537 } else if (op->code() == lir_cas_int) { 1538 casw(addr, newval, cmpval); 1539 } else { 1540 casl(addr, newval, cmpval); 1541 } 1542 } 1543 1544 1545 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1546 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1547 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1548 1549 Assembler::Condition acond, ncond; 1550 switch (condition) { 1551 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1552 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1553 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1554 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1555 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1556 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1557 case lir_cond_belowEqual: 1558 case lir_cond_aboveEqual: 1559 default: ShouldNotReachHere(); 1560 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1561 } 1562 1563 assert(result->is_single_cpu() || result->is_double_cpu(), 1564 "expect single register for result"); 1565 if (opr1->is_constant() && opr2->is_constant() 1566 && opr1->type() == T_INT && opr2->type() == T_INT) { 1567 jint val1 = opr1->as_jint(); 1568 jint val2 = opr2->as_jint(); 1569 if (val1 == 0 && val2 == 1) { 1570 __ cset(result->as_register(), ncond); 1571 return; 1572 } else if (val1 == 1 && val2 == 0) { 1573 __ cset(result->as_register(), acond); 1574 return; 1575 } 1576 } 1577 1578 if (opr1->is_constant() && opr2->is_constant() 1579 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1580 jlong val1 = opr1->as_jlong(); 1581 jlong val2 = opr2->as_jlong(); 1582 if (val1 == 0 && val2 == 1) { 1583 __ cset(result->as_register_lo(), ncond); 1584 return; 1585 } else if (val1 == 1 && val2 == 0) { 1586 __ cset(result->as_register_lo(), acond); 1587 return; 1588 } 1589 } 1590 1591 if (opr1->is_stack()) { 1592 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1593 opr1 = FrameMap::rscratch1_opr; 1594 } else if (opr1->is_constant()) { 1595 LIR_Opr tmp 1596 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1597 const2reg(opr1, tmp, lir_patch_none, nullptr); 1598 opr1 = tmp; 1599 } 1600 1601 if (opr2->is_stack()) { 1602 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1603 opr2 = FrameMap::rscratch2_opr; 1604 } else if (opr2->is_constant()) { 1605 LIR_Opr tmp 1606 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1607 const2reg(opr2, tmp, lir_patch_none, nullptr); 1608 opr2 = tmp; 1609 } 1610 1611 if (result->type() == T_LONG) 1612 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1613 else 1614 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1615 } 1616 1617 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1618 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1619 1620 if (left->is_single_cpu()) { 1621 Register lreg = left->as_register(); 1622 Register dreg = as_reg(dest); 1623 1624 if (right->is_single_cpu()) { 1625 // cpu register - cpu register 1626 1627 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1628 "should be"); 1629 Register rreg = right->as_register(); 1630 switch (code) { 1631 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1632 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1633 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1634 default: ShouldNotReachHere(); 1635 } 1636 1637 } else if (right->is_double_cpu()) { 1638 Register rreg = right->as_register_lo(); 1639 // single_cpu + double_cpu: can happen with obj+long 1640 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1641 switch (code) { 1642 case lir_add: __ add(dreg, lreg, rreg); break; 1643 case lir_sub: __ sub(dreg, lreg, rreg); break; 1644 default: ShouldNotReachHere(); 1645 } 1646 } else if (right->is_constant()) { 1647 // cpu register - constant 1648 jlong c; 1649 1650 // FIXME. This is fugly: we really need to factor all this logic. 1651 switch(right->type()) { 1652 case T_LONG: 1653 c = right->as_constant_ptr()->as_jlong(); 1654 break; 1655 case T_INT: 1656 case T_ADDRESS: 1657 c = right->as_constant_ptr()->as_jint(); 1658 break; 1659 default: 1660 ShouldNotReachHere(); 1661 c = 0; // unreachable 1662 break; 1663 } 1664 1665 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1666 if (c == 0 && dreg == lreg) { 1667 COMMENT("effective nop elided"); 1668 return; 1669 } 1670 switch(left->type()) { 1671 case T_INT: 1672 switch (code) { 1673 case lir_add: __ addw(dreg, lreg, c); break; 1674 case lir_sub: __ subw(dreg, lreg, c); break; 1675 default: ShouldNotReachHere(); 1676 } 1677 break; 1678 case T_OBJECT: 1679 case T_ADDRESS: 1680 switch (code) { 1681 case lir_add: __ add(dreg, lreg, c); break; 1682 case lir_sub: __ sub(dreg, lreg, c); break; 1683 default: ShouldNotReachHere(); 1684 } 1685 break; 1686 default: 1687 ShouldNotReachHere(); 1688 } 1689 } else { 1690 ShouldNotReachHere(); 1691 } 1692 1693 } else if (left->is_double_cpu()) { 1694 Register lreg_lo = left->as_register_lo(); 1695 1696 if (right->is_double_cpu()) { 1697 // cpu register - cpu register 1698 Register rreg_lo = right->as_register_lo(); 1699 switch (code) { 1700 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1701 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1702 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1703 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1704 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1705 default: 1706 ShouldNotReachHere(); 1707 } 1708 1709 } else if (right->is_constant()) { 1710 jlong c = right->as_constant_ptr()->as_jlong(); 1711 Register dreg = as_reg(dest); 1712 switch (code) { 1713 case lir_add: 1714 case lir_sub: 1715 if (c == 0 && dreg == lreg_lo) { 1716 COMMENT("effective nop elided"); 1717 return; 1718 } 1719 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1720 break; 1721 case lir_div: 1722 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1723 if (c == 1) { 1724 // move lreg_lo to dreg if divisor is 1 1725 __ mov(dreg, lreg_lo); 1726 } else { 1727 unsigned int shift = log2i_exact(c); 1728 // use rscratch1 as intermediate result register 1729 __ asr(rscratch1, lreg_lo, 63); 1730 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1731 __ asr(dreg, rscratch1, shift); 1732 } 1733 break; 1734 case lir_rem: 1735 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1736 if (c == 1) { 1737 // move 0 to dreg if divisor is 1 1738 __ mov(dreg, zr); 1739 } else { 1740 // use rscratch1 as intermediate result register 1741 __ negs(rscratch1, lreg_lo); 1742 __ andr(dreg, lreg_lo, c - 1); 1743 __ andr(rscratch1, rscratch1, c - 1); 1744 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1745 } 1746 break; 1747 default: 1748 ShouldNotReachHere(); 1749 } 1750 } else { 1751 ShouldNotReachHere(); 1752 } 1753 } else if (left->is_single_fpu()) { 1754 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1755 switch (code) { 1756 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1757 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1758 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1759 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1760 default: 1761 ShouldNotReachHere(); 1762 } 1763 } else if (left->is_double_fpu()) { 1764 if (right->is_double_fpu()) { 1765 // fpu register - fpu register 1766 switch (code) { 1767 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1768 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1769 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1770 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1771 default: 1772 ShouldNotReachHere(); 1773 } 1774 } else { 1775 if (right->is_constant()) { 1776 ShouldNotReachHere(); 1777 } 1778 ShouldNotReachHere(); 1779 } 1780 } else if (left->is_single_stack() || left->is_address()) { 1781 assert(left == dest, "left and dest must be equal"); 1782 ShouldNotReachHere(); 1783 } else { 1784 ShouldNotReachHere(); 1785 } 1786 } 1787 1788 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1789 switch(code) { 1790 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1791 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1792 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1793 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1794 default : ShouldNotReachHere(); 1795 } 1796 } 1797 1798 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1799 1800 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1801 Register Rleft = left->is_single_cpu() ? left->as_register() : 1802 left->as_register_lo(); 1803 if (dst->is_single_cpu()) { 1804 Register Rdst = dst->as_register(); 1805 if (right->is_constant()) { 1806 switch (code) { 1807 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1808 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1809 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1810 default: ShouldNotReachHere(); break; 1811 } 1812 } else { 1813 Register Rright = right->is_single_cpu() ? right->as_register() : 1814 right->as_register_lo(); 1815 switch (code) { 1816 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1817 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1818 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1819 default: ShouldNotReachHere(); break; 1820 } 1821 } 1822 } else { 1823 Register Rdst = dst->as_register_lo(); 1824 if (right->is_constant()) { 1825 switch (code) { 1826 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1827 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1828 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1829 default: ShouldNotReachHere(); break; 1830 } 1831 } else { 1832 Register Rright = right->is_single_cpu() ? right->as_register() : 1833 right->as_register_lo(); 1834 switch (code) { 1835 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1836 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1837 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1838 default: ShouldNotReachHere(); break; 1839 } 1840 } 1841 } 1842 } 1843 1844 1845 1846 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1847 1848 // opcode check 1849 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1850 bool is_irem = (code == lir_irem); 1851 1852 // operand check 1853 assert(left->is_single_cpu(), "left must be register"); 1854 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1855 assert(result->is_single_cpu(), "result must be register"); 1856 Register lreg = left->as_register(); 1857 Register dreg = result->as_register(); 1858 1859 // power-of-2 constant check and codegen 1860 if (right->is_constant()) { 1861 int c = right->as_constant_ptr()->as_jint(); 1862 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1863 if (is_irem) { 1864 if (c == 1) { 1865 // move 0 to dreg if divisor is 1 1866 __ movw(dreg, zr); 1867 } else { 1868 // use rscratch1 as intermediate result register 1869 __ negsw(rscratch1, lreg); 1870 __ andw(dreg, lreg, c - 1); 1871 __ andw(rscratch1, rscratch1, c - 1); 1872 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1873 } 1874 } else { 1875 if (c == 1) { 1876 // move lreg to dreg if divisor is 1 1877 __ movw(dreg, lreg); 1878 } else { 1879 unsigned int shift = exact_log2(c); 1880 // use rscratch1 as intermediate result register 1881 __ asrw(rscratch1, lreg, 31); 1882 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1883 __ asrw(dreg, rscratch1, shift); 1884 } 1885 } 1886 } else { 1887 Register rreg = right->as_register(); 1888 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1889 } 1890 } 1891 1892 1893 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1894 if (opr1->is_constant() && opr2->is_single_cpu()) { 1895 // tableswitch 1896 Register reg = as_reg(opr2); 1897 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1898 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1899 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1900 Register reg1 = as_reg(opr1); 1901 if (opr2->is_single_cpu()) { 1902 // cpu register - cpu register 1903 Register reg2 = opr2->as_register(); 1904 if (is_reference_type(opr1->type())) { 1905 __ cmpoop(reg1, reg2); 1906 } else { 1907 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1908 __ cmpw(reg1, reg2); 1909 } 1910 return; 1911 } 1912 if (opr2->is_double_cpu()) { 1913 // cpu register - cpu register 1914 Register reg2 = opr2->as_register_lo(); 1915 __ cmp(reg1, reg2); 1916 return; 1917 } 1918 1919 if (opr2->is_constant()) { 1920 bool is_32bit = false; // width of register operand 1921 jlong imm; 1922 1923 switch(opr2->type()) { 1924 case T_INT: 1925 imm = opr2->as_constant_ptr()->as_jint(); 1926 is_32bit = true; 1927 break; 1928 case T_LONG: 1929 imm = opr2->as_constant_ptr()->as_jlong(); 1930 break; 1931 case T_ADDRESS: 1932 imm = opr2->as_constant_ptr()->as_jint(); 1933 break; 1934 case T_METADATA: 1935 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1936 break; 1937 case T_OBJECT: 1938 case T_ARRAY: 1939 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1940 __ cmpoop(reg1, rscratch1); 1941 return; 1942 default: 1943 ShouldNotReachHere(); 1944 imm = 0; // unreachable 1945 break; 1946 } 1947 1948 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1949 if (is_32bit) 1950 __ cmpw(reg1, imm); 1951 else 1952 __ subs(zr, reg1, imm); 1953 return; 1954 } else { 1955 __ mov(rscratch1, imm); 1956 if (is_32bit) 1957 __ cmpw(reg1, rscratch1); 1958 else 1959 __ cmp(reg1, rscratch1); 1960 return; 1961 } 1962 } else 1963 ShouldNotReachHere(); 1964 } else if (opr1->is_single_fpu()) { 1965 FloatRegister reg1 = opr1->as_float_reg(); 1966 assert(opr2->is_single_fpu(), "expect single float register"); 1967 FloatRegister reg2 = opr2->as_float_reg(); 1968 __ fcmps(reg1, reg2); 1969 } else if (opr1->is_double_fpu()) { 1970 FloatRegister reg1 = opr1->as_double_reg(); 1971 assert(opr2->is_double_fpu(), "expect double float register"); 1972 FloatRegister reg2 = opr2->as_double_reg(); 1973 __ fcmpd(reg1, reg2); 1974 } else { 1975 ShouldNotReachHere(); 1976 } 1977 } 1978 1979 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1980 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1981 bool is_unordered_less = (code == lir_ucmp_fd2i); 1982 if (left->is_single_fpu()) { 1983 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 1984 } else if (left->is_double_fpu()) { 1985 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 1986 } else { 1987 ShouldNotReachHere(); 1988 } 1989 } else if (code == lir_cmp_l2i) { 1990 Label done; 1991 __ cmp(left->as_register_lo(), right->as_register_lo()); 1992 __ mov(dst->as_register(), (uint64_t)-1L); 1993 __ br(Assembler::LT, done); 1994 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 1995 __ bind(done); 1996 } else { 1997 ShouldNotReachHere(); 1998 } 1999 } 2000 2001 2002 void LIR_Assembler::align_call(LIR_Code code) { } 2003 2004 2005 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2006 address call = __ trampoline_call(Address(op->addr(), rtype)); 2007 if (call == nullptr) { 2008 bailout("trampoline stub overflow"); 2009 return; 2010 } 2011 add_call_info(code_offset(), op->info()); 2012 __ post_call_nop(); 2013 } 2014 2015 2016 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2017 address call = __ ic_call(op->addr()); 2018 if (call == nullptr) { 2019 bailout("trampoline stub overflow"); 2020 return; 2021 } 2022 add_call_info(code_offset(), op->info()); 2023 __ post_call_nop(); 2024 } 2025 2026 void LIR_Assembler::emit_static_call_stub() { 2027 address call_pc = __ pc(); 2028 address stub = __ start_a_stub(call_stub_size()); 2029 if (stub == nullptr) { 2030 bailout("static call stub overflow"); 2031 return; 2032 } 2033 2034 int start = __ offset(); 2035 2036 __ relocate(static_stub_Relocation::spec(call_pc)); 2037 __ emit_static_call_stub(); 2038 2039 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2040 <= call_stub_size(), "stub too big"); 2041 __ end_a_stub(); 2042 } 2043 2044 2045 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2046 assert(exceptionOop->as_register() == r0, "must match"); 2047 assert(exceptionPC->as_register() == r3, "must match"); 2048 2049 // exception object is not added to oop map by LinearScan 2050 // (LinearScan assumes that no oops are in fixed registers) 2051 info->add_register_oop(exceptionOop); 2052 C1StubId unwind_id; 2053 2054 // get current pc information 2055 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2056 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2057 // As no instructions have been generated yet for this LIR node it's 2058 // possible that an oop map already exists for the current offset. 2059 // In that case insert an dummy NOP here to ensure all oop map PCs 2060 // are unique. See JDK-8237483. 2061 __ nop(); 2062 } 2063 int pc_for_athrow_offset = __ offset(); 2064 InternalAddress pc_for_athrow(__ pc()); 2065 __ adr(exceptionPC->as_register(), pc_for_athrow); 2066 add_call_info(pc_for_athrow_offset, info); // for exception handler 2067 2068 __ verify_not_null_oop(r0); 2069 // search an exception handler (r0: exception oop, r3: throwing pc) 2070 if (compilation()->has_fpu_code()) { 2071 unwind_id = C1StubId::handle_exception_id; 2072 } else { 2073 unwind_id = C1StubId::handle_exception_nofpu_id; 2074 } 2075 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2076 2077 // FIXME: enough room for two byte trap ???? 2078 __ nop(); 2079 } 2080 2081 2082 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2083 assert(exceptionOop->as_register() == r0, "must match"); 2084 2085 __ b(_unwind_handler_entry); 2086 } 2087 2088 2089 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2090 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2091 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2092 2093 switch (left->type()) { 2094 case T_INT: { 2095 switch (code) { 2096 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2097 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2098 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2099 default: 2100 ShouldNotReachHere(); 2101 break; 2102 } 2103 break; 2104 case T_LONG: 2105 case T_ADDRESS: 2106 case T_OBJECT: 2107 switch (code) { 2108 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2109 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2110 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2111 default: 2112 ShouldNotReachHere(); 2113 break; 2114 } 2115 break; 2116 default: 2117 ShouldNotReachHere(); 2118 break; 2119 } 2120 } 2121 } 2122 2123 2124 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2125 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2126 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2127 2128 switch (left->type()) { 2129 case T_INT: { 2130 switch (code) { 2131 case lir_shl: __ lslw (dreg, lreg, count); break; 2132 case lir_shr: __ asrw (dreg, lreg, count); break; 2133 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2134 default: 2135 ShouldNotReachHere(); 2136 break; 2137 } 2138 break; 2139 case T_LONG: 2140 case T_ADDRESS: 2141 case T_OBJECT: 2142 switch (code) { 2143 case lir_shl: __ lsl (dreg, lreg, count); break; 2144 case lir_shr: __ asr (dreg, lreg, count); break; 2145 case lir_ushr: __ lsr (dreg, lreg, count); break; 2146 default: 2147 ShouldNotReachHere(); 2148 break; 2149 } 2150 break; 2151 default: 2152 ShouldNotReachHere(); 2153 break; 2154 } 2155 } 2156 } 2157 2158 2159 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2160 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2161 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2162 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2163 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2164 } 2165 2166 2167 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2168 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2169 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2170 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2171 __ mov (rscratch1, c); 2172 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2173 } 2174 2175 2176 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2177 ShouldNotReachHere(); 2178 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2179 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2180 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2181 __ lea(rscratch1, __ constant_oop_address(o)); 2182 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2183 } 2184 2185 2186 // This code replaces a call to arraycopy; no exception may 2187 // be thrown in this code, they must be thrown in the System.arraycopy 2188 // activation frame; we could save some checks if this would not be the case 2189 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2190 ciArrayKlass* default_type = op->expected_type(); 2191 Register src = op->src()->as_register(); 2192 Register dst = op->dst()->as_register(); 2193 Register src_pos = op->src_pos()->as_register(); 2194 Register dst_pos = op->dst_pos()->as_register(); 2195 Register length = op->length()->as_register(); 2196 Register tmp = op->tmp()->as_register(); 2197 2198 CodeStub* stub = op->stub(); 2199 int flags = op->flags(); 2200 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2201 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2202 2203 // if we don't know anything, just go through the generic arraycopy 2204 if (default_type == nullptr // || basic_type == T_OBJECT 2205 ) { 2206 Label done; 2207 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2208 2209 // Save the arguments in case the generic arraycopy fails and we 2210 // have to fall back to the JNI stub 2211 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2212 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2213 __ str(src, Address(sp, 4*BytesPerWord)); 2214 2215 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2216 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2217 2218 // The arguments are in java calling convention so we shift them 2219 // to C convention 2220 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2221 __ mov(c_rarg0, j_rarg0); 2222 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2223 __ mov(c_rarg1, j_rarg1); 2224 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2225 __ mov(c_rarg2, j_rarg2); 2226 assert_different_registers(c_rarg3, j_rarg4); 2227 __ mov(c_rarg3, j_rarg3); 2228 __ mov(c_rarg4, j_rarg4); 2229 #ifndef PRODUCT 2230 if (PrintC1Statistics) { 2231 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2232 } 2233 #endif 2234 __ far_call(RuntimeAddress(copyfunc_addr)); 2235 2236 __ cbz(r0, *stub->continuation()); 2237 2238 // Reload values from the stack so they are where the stub 2239 // expects them. 2240 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2241 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2242 __ ldr(src, Address(sp, 4*BytesPerWord)); 2243 2244 // r0 is -1^K where K == partial copied count 2245 __ eonw(rscratch1, r0, zr); 2246 // adjust length down and src/end pos up by partial copied count 2247 __ subw(length, length, rscratch1); 2248 __ addw(src_pos, src_pos, rscratch1); 2249 __ addw(dst_pos, dst_pos, rscratch1); 2250 __ b(*stub->entry()); 2251 2252 __ bind(*stub->continuation()); 2253 return; 2254 } 2255 2256 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2257 2258 int elem_size = type2aelembytes(basic_type); 2259 int scale = exact_log2(elem_size); 2260 2261 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2262 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2263 2264 // test for null 2265 if (flags & LIR_OpArrayCopy::src_null_check) { 2266 __ cbz(src, *stub->entry()); 2267 } 2268 if (flags & LIR_OpArrayCopy::dst_null_check) { 2269 __ cbz(dst, *stub->entry()); 2270 } 2271 2272 // If the compiler was not able to prove that exact type of the source or the destination 2273 // of the arraycopy is an array type, check at runtime if the source or the destination is 2274 // an instance type. 2275 if (flags & LIR_OpArrayCopy::type_check) { 2276 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2277 __ load_klass(tmp, dst); 2278 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2279 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2280 __ br(Assembler::GE, *stub->entry()); 2281 } 2282 2283 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2284 __ load_klass(tmp, src); 2285 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2286 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2287 __ br(Assembler::GE, *stub->entry()); 2288 } 2289 } 2290 2291 // check if negative 2292 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2293 __ cmpw(src_pos, 0); 2294 __ br(Assembler::LT, *stub->entry()); 2295 } 2296 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2297 __ cmpw(dst_pos, 0); 2298 __ br(Assembler::LT, *stub->entry()); 2299 } 2300 2301 if (flags & LIR_OpArrayCopy::length_positive_check) { 2302 __ cmpw(length, 0); 2303 __ br(Assembler::LT, *stub->entry()); 2304 } 2305 2306 if (flags & LIR_OpArrayCopy::src_range_check) { 2307 __ addw(tmp, src_pos, length); 2308 __ ldrw(rscratch1, src_length_addr); 2309 __ cmpw(tmp, rscratch1); 2310 __ br(Assembler::HI, *stub->entry()); 2311 } 2312 if (flags & LIR_OpArrayCopy::dst_range_check) { 2313 __ addw(tmp, dst_pos, length); 2314 __ ldrw(rscratch1, dst_length_addr); 2315 __ cmpw(tmp, rscratch1); 2316 __ br(Assembler::HI, *stub->entry()); 2317 } 2318 2319 if (flags & LIR_OpArrayCopy::type_check) { 2320 // We don't know the array types are compatible 2321 if (basic_type != T_OBJECT) { 2322 // Simple test for basic type arrays 2323 __ cmp_klasses_from_objects(src, dst, tmp, rscratch1); 2324 __ br(Assembler::NE, *stub->entry()); 2325 } else { 2326 // For object arrays, if src is a sub class of dst then we can 2327 // safely do the copy. 2328 Label cont, slow; 2329 2330 #define PUSH(r1, r2) \ 2331 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2332 2333 #define POP(r1, r2) \ 2334 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2335 2336 __ PUSH(src, dst); 2337 2338 __ load_klass(src, src); 2339 __ load_klass(dst, dst); 2340 2341 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2342 2343 __ PUSH(src, dst); 2344 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2345 __ POP(src, dst); 2346 2347 __ cbnz(src, cont); 2348 2349 __ bind(slow); 2350 __ POP(src, dst); 2351 2352 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2353 if (copyfunc_addr != nullptr) { // use stub if available 2354 // src is not a sub class of dst so we have to do a 2355 // per-element check. 2356 2357 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2358 if ((flags & mask) != mask) { 2359 // Check that at least both of them object arrays. 2360 assert(flags & mask, "one of the two should be known to be an object array"); 2361 2362 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2363 __ load_klass(tmp, src); 2364 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2365 __ load_klass(tmp, dst); 2366 } 2367 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2368 Address klass_lh_addr(tmp, lh_offset); 2369 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2370 __ ldrw(rscratch1, klass_lh_addr); 2371 __ mov(rscratch2, objArray_lh); 2372 __ eorw(rscratch1, rscratch1, rscratch2); 2373 __ cbnzw(rscratch1, *stub->entry()); 2374 } 2375 2376 // Spill because stubs can use any register they like and it's 2377 // easier to restore just those that we care about. 2378 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2379 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2380 __ str(src, Address(sp, 4*BytesPerWord)); 2381 2382 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2383 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2384 assert_different_registers(c_rarg0, dst, dst_pos, length); 2385 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2386 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2387 assert_different_registers(c_rarg1, dst, length); 2388 __ uxtw(c_rarg2, length); 2389 assert_different_registers(c_rarg2, dst); 2390 2391 __ load_klass(c_rarg4, dst); 2392 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2393 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2394 __ far_call(RuntimeAddress(copyfunc_addr)); 2395 2396 #ifndef PRODUCT 2397 if (PrintC1Statistics) { 2398 Label failed; 2399 __ cbnz(r0, failed); 2400 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2401 __ bind(failed); 2402 } 2403 #endif 2404 2405 __ cbz(r0, *stub->continuation()); 2406 2407 #ifndef PRODUCT 2408 if (PrintC1Statistics) { 2409 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2410 } 2411 #endif 2412 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2413 2414 // Restore previously spilled arguments 2415 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2416 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2417 __ ldr(src, Address(sp, 4*BytesPerWord)); 2418 2419 // return value is -1^K where K is partial copied count 2420 __ eonw(rscratch1, r0, zr); 2421 // adjust length down and src/end pos up by partial copied count 2422 __ subw(length, length, rscratch1); 2423 __ addw(src_pos, src_pos, rscratch1); 2424 __ addw(dst_pos, dst_pos, rscratch1); 2425 } 2426 2427 __ b(*stub->entry()); 2428 2429 __ bind(cont); 2430 __ POP(src, dst); 2431 } 2432 } 2433 2434 #ifdef ASSERT 2435 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2436 // Sanity check the known type with the incoming class. For the 2437 // primitive case the types must match exactly with src.klass and 2438 // dst.klass each exactly matching the default type. For the 2439 // object array case, if no type check is needed then either the 2440 // dst type is exactly the expected type and the src type is a 2441 // subtype which we can't check or src is the same array as dst 2442 // but not necessarily exactly of type default_type. 2443 Label known_ok, halt; 2444 __ mov_metadata(tmp, default_type->constant_encoding()); 2445 2446 if (basic_type != T_OBJECT) { 2447 __ cmp_klass(dst, tmp, rscratch1); 2448 __ br(Assembler::NE, halt); 2449 __ cmp_klass(src, tmp, rscratch1); 2450 __ br(Assembler::EQ, known_ok); 2451 } else { 2452 __ cmp_klass(dst, tmp, rscratch1); 2453 __ br(Assembler::EQ, known_ok); 2454 __ cmp(src, dst); 2455 __ br(Assembler::EQ, known_ok); 2456 } 2457 __ bind(halt); 2458 __ stop("incorrect type information in arraycopy"); 2459 __ bind(known_ok); 2460 } 2461 #endif 2462 2463 #ifndef PRODUCT 2464 if (PrintC1Statistics) { 2465 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2466 } 2467 #endif 2468 2469 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2470 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2471 assert_different_registers(c_rarg0, dst, dst_pos, length); 2472 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2473 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2474 assert_different_registers(c_rarg1, dst, length); 2475 __ uxtw(c_rarg2, length); 2476 assert_different_registers(c_rarg2, dst); 2477 2478 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2479 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2480 const char *name; 2481 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2482 2483 CodeBlob *cb = CodeCache::find_blob(entry); 2484 if (cb) { 2485 __ far_call(RuntimeAddress(entry)); 2486 } else { 2487 __ call_VM_leaf(entry, 3); 2488 } 2489 2490 if (stub != nullptr) { 2491 __ bind(*stub->continuation()); 2492 } 2493 } 2494 2495 2496 2497 2498 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2499 Register obj = op->obj_opr()->as_register(); // may not be an oop 2500 Register hdr = op->hdr_opr()->as_register(); 2501 Register lock = op->lock_opr()->as_register(); 2502 Register temp = op->scratch_opr()->as_register(); 2503 if (LockingMode == LM_MONITOR) { 2504 if (op->info() != nullptr) { 2505 add_debug_info_for_null_check_here(op->info()); 2506 __ null_check(obj, -1); 2507 } 2508 __ b(*op->stub()->entry()); 2509 } else if (op->code() == lir_lock) { 2510 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2511 // add debug info for NullPointerException only if one is possible 2512 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2513 if (op->info() != nullptr) { 2514 add_debug_info_for_null_check(null_check_offset, op->info()); 2515 } 2516 // done 2517 } else if (op->code() == lir_unlock) { 2518 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2519 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2520 } else { 2521 Unimplemented(); 2522 } 2523 __ bind(*op->stub()->continuation()); 2524 } 2525 2526 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2527 Register obj = op->obj()->as_pointer_register(); 2528 Register result = op->result_opr()->as_pointer_register(); 2529 2530 CodeEmitInfo* info = op->info(); 2531 if (info != nullptr) { 2532 add_debug_info_for_null_check_here(info); 2533 } 2534 2535 __ load_klass(result, obj); 2536 } 2537 2538 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2539 ciMethod* method = op->profiled_method(); 2540 int bci = op->profiled_bci(); 2541 ciMethod* callee = op->profiled_callee(); 2542 2543 // Update counter for all call types 2544 ciMethodData* md = method->method_data_or_null(); 2545 assert(md != nullptr, "Sanity"); 2546 ciProfileData* data = md->bci_to_data(bci); 2547 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2548 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2549 Register mdo = op->mdo()->as_register(); 2550 __ mov_metadata(mdo, md->constant_encoding()); 2551 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2552 // Perform additional virtual call profiling for invokevirtual and 2553 // invokeinterface bytecodes 2554 if (op->should_profile_receiver_type()) { 2555 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2556 Register recv = op->recv()->as_register(); 2557 assert_different_registers(mdo, recv); 2558 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2559 ciKlass* known_klass = op->known_holder(); 2560 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2561 // We know the type that will be seen at this call site; we can 2562 // statically update the MethodData* rather than needing to do 2563 // dynamic tests on the receiver type 2564 2565 // NOTE: we should probably put a lock around this search to 2566 // avoid collisions by concurrent compilations 2567 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2568 uint i; 2569 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2570 ciKlass* receiver = vc_data->receiver(i); 2571 if (known_klass->equals(receiver)) { 2572 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2573 __ addptr(data_addr, DataLayout::counter_increment); 2574 return; 2575 } 2576 } 2577 2578 // Receiver type not found in profile data; select an empty slot 2579 2580 // Note that this is less efficient than it should be because it 2581 // always does a write to the receiver part of the 2582 // VirtualCallData rather than just the first time 2583 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2584 ciKlass* receiver = vc_data->receiver(i); 2585 if (receiver == nullptr) { 2586 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2587 Address recv_addr = 2588 __ form_address(rscratch2, mdo, 2589 md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)), 2590 LogBytesPerWord); 2591 __ str(rscratch1, recv_addr); 2592 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2593 __ addptr(data_addr, DataLayout::counter_increment); 2594 return; 2595 } 2596 } 2597 } else { 2598 __ load_klass(recv, recv); 2599 Label update_done; 2600 type_profile_helper(mdo, md, data, recv, &update_done); 2601 // Receiver did not match any saved receiver and there is no empty row for it. 2602 // Increment total counter to indicate polymorphic case. 2603 __ addptr(counter_addr, DataLayout::counter_increment); 2604 2605 __ bind(update_done); 2606 } 2607 } else { 2608 // Static call 2609 __ addptr(counter_addr, DataLayout::counter_increment); 2610 } 2611 } 2612 2613 2614 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2615 Unimplemented(); 2616 } 2617 2618 2619 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2620 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2621 } 2622 2623 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2624 assert(op->crc()->is_single_cpu(), "crc must be register"); 2625 assert(op->val()->is_single_cpu(), "byte value must be register"); 2626 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2627 Register crc = op->crc()->as_register(); 2628 Register val = op->val()->as_register(); 2629 Register res = op->result_opr()->as_register(); 2630 2631 assert_different_registers(val, crc, res); 2632 uint64_t offset; 2633 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2634 __ add(res, res, offset); 2635 2636 __ mvnw(crc, crc); // ~crc 2637 __ update_byte_crc32(crc, val, res); 2638 __ mvnw(res, crc); // ~crc 2639 } 2640 2641 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2642 COMMENT("emit_profile_type {"); 2643 Register obj = op->obj()->as_register(); 2644 Register tmp = op->tmp()->as_pointer_register(); 2645 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2646 ciKlass* exact_klass = op->exact_klass(); 2647 intptr_t current_klass = op->current_klass(); 2648 bool not_null = op->not_null(); 2649 bool no_conflict = op->no_conflict(); 2650 2651 Label update, next, none; 2652 2653 bool do_null = !not_null; 2654 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2655 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2656 2657 assert(do_null || do_update, "why are we here?"); 2658 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2659 assert(mdo_addr.base() != rscratch1, "wrong register"); 2660 2661 __ verify_oop(obj); 2662 2663 if (tmp != obj) { 2664 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2665 __ mov(tmp, obj); 2666 } else { 2667 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2668 } 2669 if (do_null) { 2670 __ cbnz(tmp, update); 2671 if (!TypeEntries::was_null_seen(current_klass)) { 2672 __ ldr(rscratch2, mdo_addr); 2673 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2674 __ str(rscratch2, mdo_addr); 2675 } 2676 if (do_update) { 2677 #ifndef ASSERT 2678 __ b(next); 2679 } 2680 #else 2681 __ b(next); 2682 } 2683 } else { 2684 __ cbnz(tmp, update); 2685 __ stop("unexpected null obj"); 2686 #endif 2687 } 2688 2689 __ bind(update); 2690 2691 if (do_update) { 2692 #ifdef ASSERT 2693 if (exact_klass != nullptr) { 2694 Label ok; 2695 __ load_klass(tmp, tmp); 2696 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2697 __ eor(rscratch1, tmp, rscratch1); 2698 __ cbz(rscratch1, ok); 2699 __ stop("exact klass and actual klass differ"); 2700 __ bind(ok); 2701 } 2702 #endif 2703 if (!no_conflict) { 2704 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2705 if (exact_klass != nullptr) { 2706 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2707 } else { 2708 __ load_klass(tmp, tmp); 2709 } 2710 2711 __ ldr(rscratch2, mdo_addr); 2712 __ eor(tmp, tmp, rscratch2); 2713 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2714 // klass seen before, nothing to do. The unknown bit may have been 2715 // set already but no need to check. 2716 __ cbz(rscratch1, next); 2717 2718 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2719 2720 if (TypeEntries::is_type_none(current_klass)) { 2721 __ cbz(rscratch2, none); 2722 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2723 __ br(Assembler::EQ, none); 2724 // There is a chance that the checks above 2725 // fail if another thread has just set the 2726 // profiling to this obj's klass 2727 __ dmb(Assembler::ISHLD); 2728 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2729 __ ldr(rscratch2, mdo_addr); 2730 __ eor(tmp, tmp, rscratch2); 2731 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2732 __ cbz(rscratch1, next); 2733 } 2734 } else { 2735 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2736 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2737 2738 __ ldr(tmp, mdo_addr); 2739 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2740 } 2741 2742 // different than before. Cannot keep accurate profile. 2743 __ ldr(rscratch2, mdo_addr); 2744 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2745 __ str(rscratch2, mdo_addr); 2746 2747 if (TypeEntries::is_type_none(current_klass)) { 2748 __ b(next); 2749 2750 __ bind(none); 2751 // first time here. Set profile type. 2752 __ str(tmp, mdo_addr); 2753 #ifdef ASSERT 2754 __ andr(tmp, tmp, TypeEntries::type_mask); 2755 __ verify_klass_ptr(tmp); 2756 #endif 2757 } 2758 } else { 2759 // There's a single possible klass at this profile point 2760 assert(exact_klass != nullptr, "should be"); 2761 if (TypeEntries::is_type_none(current_klass)) { 2762 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2763 __ ldr(rscratch2, mdo_addr); 2764 __ eor(tmp, tmp, rscratch2); 2765 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2766 __ cbz(rscratch1, next); 2767 #ifdef ASSERT 2768 { 2769 Label ok; 2770 __ ldr(rscratch1, mdo_addr); 2771 __ cbz(rscratch1, ok); 2772 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2773 __ br(Assembler::EQ, ok); 2774 // may have been set by another thread 2775 __ dmb(Assembler::ISHLD); 2776 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2777 __ ldr(rscratch2, mdo_addr); 2778 __ eor(rscratch2, rscratch1, rscratch2); 2779 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2780 __ cbz(rscratch2, ok); 2781 2782 __ stop("unexpected profiling mismatch"); 2783 __ bind(ok); 2784 } 2785 #endif 2786 // first time here. Set profile type. 2787 __ str(tmp, mdo_addr); 2788 #ifdef ASSERT 2789 __ andr(tmp, tmp, TypeEntries::type_mask); 2790 __ verify_klass_ptr(tmp); 2791 #endif 2792 } else { 2793 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2794 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2795 2796 __ ldr(tmp, mdo_addr); 2797 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2798 2799 __ orr(tmp, tmp, TypeEntries::type_unknown); 2800 __ str(tmp, mdo_addr); 2801 // FIXME: Write barrier needed here? 2802 } 2803 } 2804 2805 __ bind(next); 2806 } 2807 COMMENT("} emit_profile_type"); 2808 } 2809 2810 2811 void LIR_Assembler::align_backward_branch_target() { 2812 } 2813 2814 2815 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2816 // tmp must be unused 2817 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2818 2819 if (left->is_single_cpu()) { 2820 assert(dest->is_single_cpu(), "expect single result reg"); 2821 __ negw(dest->as_register(), left->as_register()); 2822 } else if (left->is_double_cpu()) { 2823 assert(dest->is_double_cpu(), "expect double result reg"); 2824 __ neg(dest->as_register_lo(), left->as_register_lo()); 2825 } else if (left->is_single_fpu()) { 2826 assert(dest->is_single_fpu(), "expect single float result reg"); 2827 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2828 } else { 2829 assert(left->is_double_fpu(), "expect double float operand reg"); 2830 assert(dest->is_double_fpu(), "expect double float result reg"); 2831 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2832 } 2833 } 2834 2835 2836 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2837 if (patch_code != lir_patch_none) { 2838 deoptimize_trap(info); 2839 return; 2840 } 2841 2842 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 2843 } 2844 2845 2846 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2847 assert(!tmp->is_valid(), "don't need temporary"); 2848 2849 CodeBlob *cb = CodeCache::find_blob(dest); 2850 if (cb) { 2851 __ far_call(RuntimeAddress(dest)); 2852 } else { 2853 __ mov(rscratch1, RuntimeAddress(dest)); 2854 __ blr(rscratch1); 2855 } 2856 2857 if (info != nullptr) { 2858 add_call_info_here(info); 2859 } 2860 __ post_call_nop(); 2861 } 2862 2863 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2864 if (dest->is_address() || src->is_address()) { 2865 move_op(src, dest, type, lir_patch_none, info, /*wide*/false); 2866 } else { 2867 ShouldNotReachHere(); 2868 } 2869 } 2870 2871 #ifdef ASSERT 2872 // emit run-time assertion 2873 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2874 assert(op->code() == lir_assert, "must be"); 2875 2876 if (op->in_opr1()->is_valid()) { 2877 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2878 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2879 } else { 2880 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2881 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2882 } 2883 2884 Label ok; 2885 if (op->condition() != lir_cond_always) { 2886 Assembler::Condition acond = Assembler::AL; 2887 switch (op->condition()) { 2888 case lir_cond_equal: acond = Assembler::EQ; break; 2889 case lir_cond_notEqual: acond = Assembler::NE; break; 2890 case lir_cond_less: acond = Assembler::LT; break; 2891 case lir_cond_lessEqual: acond = Assembler::LE; break; 2892 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2893 case lir_cond_greater: acond = Assembler::GT; break; 2894 case lir_cond_belowEqual: acond = Assembler::LS; break; 2895 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2896 default: ShouldNotReachHere(); 2897 } 2898 __ br(acond, ok); 2899 } 2900 if (op->halt()) { 2901 const char* str = __ code_string(op->msg()); 2902 __ stop(str); 2903 } else { 2904 breakpoint(); 2905 } 2906 __ bind(ok); 2907 } 2908 #endif 2909 2910 #ifndef PRODUCT 2911 #define COMMENT(x) do { __ block_comment(x); } while (0) 2912 #else 2913 #define COMMENT(x) 2914 #endif 2915 2916 void LIR_Assembler::membar() { 2917 COMMENT("membar"); 2918 __ membar(MacroAssembler::AnyAny); 2919 } 2920 2921 void LIR_Assembler::membar_acquire() { 2922 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2923 } 2924 2925 void LIR_Assembler::membar_release() { 2926 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2927 } 2928 2929 void LIR_Assembler::membar_loadload() { 2930 __ membar(Assembler::LoadLoad); 2931 } 2932 2933 void LIR_Assembler::membar_storestore() { 2934 __ membar(MacroAssembler::StoreStore); 2935 } 2936 2937 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2938 2939 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2940 2941 void LIR_Assembler::on_spin_wait() { 2942 __ spin_wait(); 2943 } 2944 2945 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2946 __ mov(result_reg->as_register(), rthread); 2947 } 2948 2949 2950 void LIR_Assembler::peephole(LIR_List *lir) { 2951 #if 0 2952 if (tableswitch_count >= max_tableswitches) 2953 return; 2954 2955 /* 2956 This finite-state automaton recognizes sequences of compare-and- 2957 branch instructions. We will turn them into a tableswitch. You 2958 could argue that C1 really shouldn't be doing this sort of 2959 optimization, but without it the code is really horrible. 2960 */ 2961 2962 enum { start_s, cmp1_s, beq_s, cmp_s } state; 2963 int first_key, last_key = -2147483648; 2964 int next_key = 0; 2965 int start_insn = -1; 2966 int last_insn = -1; 2967 Register reg = noreg; 2968 LIR_Opr reg_opr; 2969 state = start_s; 2970 2971 LIR_OpList* inst = lir->instructions_list(); 2972 for (int i = 0; i < inst->length(); i++) { 2973 LIR_Op* op = inst->at(i); 2974 switch (state) { 2975 case start_s: 2976 first_key = -1; 2977 start_insn = i; 2978 switch (op->code()) { 2979 case lir_cmp: 2980 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 2981 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 2982 if (opr1->is_cpu_register() && opr1->is_single_cpu() 2983 && opr2->is_constant() 2984 && opr2->type() == T_INT) { 2985 reg_opr = opr1; 2986 reg = opr1->as_register(); 2987 first_key = opr2->as_constant_ptr()->as_jint(); 2988 next_key = first_key + 1; 2989 state = cmp_s; 2990 goto next_state; 2991 } 2992 break; 2993 } 2994 break; 2995 case cmp_s: 2996 switch (op->code()) { 2997 case lir_branch: 2998 if (op->as_OpBranch()->cond() == lir_cond_equal) { 2999 state = beq_s; 3000 last_insn = i; 3001 goto next_state; 3002 } 3003 } 3004 state = start_s; 3005 break; 3006 case beq_s: 3007 switch (op->code()) { 3008 case lir_cmp: { 3009 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3010 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3011 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3012 && opr1->as_register() == reg 3013 && opr2->is_constant() 3014 && opr2->type() == T_INT 3015 && opr2->as_constant_ptr()->as_jint() == next_key) { 3016 last_key = next_key; 3017 next_key++; 3018 state = cmp_s; 3019 goto next_state; 3020 } 3021 } 3022 } 3023 last_key = next_key; 3024 state = start_s; 3025 break; 3026 default: 3027 assert(false, "impossible state"); 3028 } 3029 if (state == start_s) { 3030 if (first_key < last_key - 5L && reg != noreg) { 3031 { 3032 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3033 // reg->encoding(), 3034 // start_insn, first_key, last_key); 3035 // for (int i = 0; i < inst->length(); i++) { 3036 // inst->at(i)->print(); 3037 // tty->print("\n"); 3038 // } 3039 // tty->print("\n"); 3040 } 3041 3042 struct tableswitch *sw = &switches[tableswitch_count]; 3043 sw->_insn_index = start_insn, sw->_first_key = first_key, 3044 sw->_last_key = last_key, sw->_reg = reg; 3045 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3046 { 3047 // Insert the new table of branches 3048 int offset = last_insn; 3049 for (int n = first_key; n < last_key; n++) { 3050 inst->insert_before 3051 (last_insn + 1, 3052 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3053 inst->at(offset)->as_OpBranch()->label())); 3054 offset -= 2, i++; 3055 } 3056 } 3057 // Delete all the old compare-and-branch instructions 3058 for (int n = first_key; n < last_key; n++) { 3059 inst->remove_at(start_insn); 3060 inst->remove_at(start_insn); 3061 } 3062 // Insert the tableswitch instruction 3063 inst->insert_before(start_insn, 3064 new LIR_Op2(lir_cmp, lir_cond_always, 3065 LIR_OprFact::intConst(tableswitch_count), 3066 reg_opr)); 3067 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3068 tableswitch_count++; 3069 } 3070 reg = noreg; 3071 last_key = -2147483648; 3072 } 3073 next_state: 3074 ; 3075 } 3076 #endif 3077 } 3078 3079 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3080 Address addr = as_Address(src->as_address_ptr()); 3081 BasicType type = src->type(); 3082 bool is_oop = is_reference_type(type); 3083 3084 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3085 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3086 3087 switch(type) { 3088 case T_INT: 3089 xchg = &MacroAssembler::atomic_xchgalw; 3090 add = &MacroAssembler::atomic_addalw; 3091 break; 3092 case T_LONG: 3093 xchg = &MacroAssembler::atomic_xchgal; 3094 add = &MacroAssembler::atomic_addal; 3095 break; 3096 case T_OBJECT: 3097 case T_ARRAY: 3098 if (UseCompressedOops) { 3099 xchg = &MacroAssembler::atomic_xchgalw; 3100 add = &MacroAssembler::atomic_addalw; 3101 } else { 3102 xchg = &MacroAssembler::atomic_xchgal; 3103 add = &MacroAssembler::atomic_addal; 3104 } 3105 break; 3106 default: 3107 ShouldNotReachHere(); 3108 xchg = &MacroAssembler::atomic_xchgal; 3109 add = &MacroAssembler::atomic_addal; // unreachable 3110 } 3111 3112 switch (code) { 3113 case lir_xadd: 3114 { 3115 RegisterOrConstant inc; 3116 Register tmp = as_reg(tmp_op); 3117 Register dst = as_reg(dest); 3118 if (data->is_constant()) { 3119 inc = RegisterOrConstant(as_long(data)); 3120 assert_different_registers(dst, addr.base(), tmp, 3121 rscratch1, rscratch2); 3122 } else { 3123 inc = RegisterOrConstant(as_reg(data)); 3124 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3125 rscratch1, rscratch2); 3126 } 3127 __ lea(tmp, addr); 3128 (_masm->*add)(dst, inc, tmp); 3129 break; 3130 } 3131 case lir_xchg: 3132 { 3133 Register tmp = tmp_op->as_register(); 3134 Register obj = as_reg(data); 3135 Register dst = as_reg(dest); 3136 if (is_oop && UseCompressedOops) { 3137 __ encode_heap_oop(rscratch2, obj); 3138 obj = rscratch2; 3139 } 3140 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3141 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3142 __ lea(tmp, addr); 3143 (_masm->*xchg)(dst, obj, tmp); 3144 if (is_oop && UseCompressedOops) { 3145 __ decode_heap_oop(dst); 3146 } 3147 } 3148 break; 3149 default: 3150 ShouldNotReachHere(); 3151 } 3152 __ membar(__ AnyAny); 3153 } 3154 3155 #undef __