1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciUtilities.hpp" 36 #include "code/aotCodeCache.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_x86.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "vmreg_x86.inline.hpp" 48 49 50 // These masks are used to provide 128-bit aligned bitmasks to the XMM 51 // instructions, to allow sign-masking or sign-bit flipping. They allow 52 // fast versions of NegF/NegD and AbsF/AbsD. 53 54 // Note: 'double' and 'long long' have 32-bits alignment on x86. 55 static address double_quadword(jlong *adr, jlong lo, jlong hi) { 56 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 57 // of 128-bits operands for SSE instructions. 58 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 59 // Store the value to a 128-bits operand. 60 operand[0] = lo; 61 operand[1] = hi; 62 return (address)operand; 63 } 64 65 // Buffer for 128-bits masks used by SSE instructions. 66 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 67 68 // Static initialization during VM startup. 69 address LIR_Assembler::float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 70 address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 71 address LIR_Assembler::float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 72 address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 73 74 75 NEEDS_CLEANUP // remove this definitions ? 76 const Register SYNC_header = rax; // synchronization header 77 const Register SHIFT_count = rcx; // where count for shift operations must be 78 79 #define __ _masm-> 80 81 82 static void select_different_registers(Register preserve, 83 Register extra, 84 Register &tmp1, 85 Register &tmp2) { 86 if (tmp1 == preserve) { 87 assert_different_registers(tmp1, tmp2, extra); 88 tmp1 = extra; 89 } else if (tmp2 == preserve) { 90 assert_different_registers(tmp1, tmp2, extra); 91 tmp2 = extra; 92 } 93 assert_different_registers(preserve, tmp1, tmp2); 94 } 95 96 97 98 static void select_different_registers(Register preserve, 99 Register extra, 100 Register &tmp1, 101 Register &tmp2, 102 Register &tmp3) { 103 if (tmp1 == preserve) { 104 assert_different_registers(tmp1, tmp2, tmp3, extra); 105 tmp1 = extra; 106 } else if (tmp2 == preserve) { 107 assert_different_registers(tmp1, tmp2, tmp3, extra); 108 tmp2 = extra; 109 } else if (tmp3 == preserve) { 110 assert_different_registers(tmp1, tmp2, tmp3, extra); 111 tmp3 = extra; 112 } 113 assert_different_registers(preserve, tmp1, tmp2, tmp3); 114 } 115 116 117 118 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 119 if (opr->is_constant()) { 120 LIR_Const* constant = opr->as_constant_ptr(); 121 switch (constant->type()) { 122 case T_INT: { 123 return true; 124 } 125 126 default: 127 return false; 128 } 129 } 130 return false; 131 } 132 133 134 LIR_Opr LIR_Assembler::receiverOpr() { 135 return FrameMap::receiver_opr; 136 } 137 138 LIR_Opr LIR_Assembler::osrBufferPointer() { 139 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 140 } 141 142 //--------------fpu register translations----------------------- 143 144 145 address LIR_Assembler::float_constant(float f) { 146 address const_addr = __ float_constant(f); 147 if (const_addr == nullptr) { 148 bailout("const section overflow"); 149 return __ code()->consts()->start(); 150 } else { 151 return const_addr; 152 } 153 } 154 155 156 address LIR_Assembler::double_constant(double d) { 157 address const_addr = __ double_constant(d); 158 if (const_addr == nullptr) { 159 bailout("const section overflow"); 160 return __ code()->consts()->start(); 161 } else { 162 return const_addr; 163 } 164 } 165 166 void LIR_Assembler::breakpoint() { 167 __ int3(); 168 } 169 170 void LIR_Assembler::push(LIR_Opr opr) { 171 if (opr->is_single_cpu()) { 172 __ push_reg(opr->as_register()); 173 } else if (opr->is_double_cpu()) { 174 __ push_reg(opr->as_register_lo()); 175 } else if (opr->is_stack()) { 176 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 177 } else if (opr->is_constant()) { 178 LIR_Const* const_opr = opr->as_constant_ptr(); 179 if (const_opr->type() == T_OBJECT) { 180 __ push_oop(const_opr->as_jobject(), rscratch1); 181 } else if (const_opr->type() == T_INT) { 182 __ push_jint(const_opr->as_jint()); 183 } else { 184 ShouldNotReachHere(); 185 } 186 187 } else { 188 ShouldNotReachHere(); 189 } 190 } 191 192 void LIR_Assembler::pop(LIR_Opr opr) { 193 if (opr->is_single_cpu()) { 194 __ pop_reg(opr->as_register()); 195 } else { 196 ShouldNotReachHere(); 197 } 198 } 199 200 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 201 return addr->base()->is_illegal() && addr->index()->is_illegal(); 202 } 203 204 //------------------------------------------- 205 206 Address LIR_Assembler::as_Address(LIR_Address* addr) { 207 return as_Address(addr, rscratch1); 208 } 209 210 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 211 if (addr->base()->is_illegal()) { 212 assert(addr->index()->is_illegal(), "must be illegal too"); 213 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 214 if (! __ reachable(laddr)) { 215 __ movptr(tmp, laddr.addr()); 216 Address res(tmp, 0); 217 return res; 218 } else { 219 return __ as_Address(laddr); 220 } 221 } 222 223 Register base = addr->base()->as_pointer_register(); 224 225 if (addr->index()->is_illegal()) { 226 return Address( base, addr->disp()); 227 } else if (addr->index()->is_cpu_register()) { 228 Register index = addr->index()->as_pointer_register(); 229 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 230 } else if (addr->index()->is_constant()) { 231 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 232 assert(Assembler::is_simm32(addr_offset), "must be"); 233 234 return Address(base, addr_offset); 235 } else { 236 Unimplemented(); 237 return Address(); 238 } 239 } 240 241 242 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 243 Address base = as_Address(addr); 244 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 245 } 246 247 248 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 249 return as_Address(addr); 250 } 251 252 253 void LIR_Assembler::osr_entry() { 254 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 255 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 256 ValueStack* entry_state = osr_entry->state(); 257 int number_of_locks = entry_state->locks_size(); 258 259 // we jump here if osr happens with the interpreter 260 // state set up to continue at the beginning of the 261 // loop that triggered osr - in particular, we have 262 // the following registers setup: 263 // 264 // rcx: osr buffer 265 // 266 267 // build frame 268 ciMethod* m = compilation()->method(); 269 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 270 271 // OSR buffer is 272 // 273 // locals[nlocals-1..0] 274 // monitors[0..number_of_locks] 275 // 276 // locals is a direct copy of the interpreter frame so in the osr buffer 277 // so first slot in the local array is the last local from the interpreter 278 // and last slot is local[0] (receiver) from the interpreter 279 // 280 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 281 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 282 // in the interpreter frame (the method lock if a sync method) 283 284 // Initialize monitors in the compiled activation. 285 // rcx: pointer to osr buffer 286 // 287 // All other registers are dead at this point and the locals will be 288 // copied into place by code emitted in the IR. 289 290 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 291 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 292 int monitor_offset = BytesPerWord * method()->max_locals() + 293 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 294 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 295 // the OSR buffer using 2 word entries: first the lock and then 296 // the oop. 297 for (int i = 0; i < number_of_locks; i++) { 298 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 299 #ifdef ASSERT 300 // verify the interpreter's monitor has a non-null object 301 { 302 Label L; 303 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 304 __ jcc(Assembler::notZero, L); 305 __ stop("locked object is null"); 306 __ bind(L); 307 } 308 #endif 309 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 310 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 311 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 312 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 313 } 314 } 315 } 316 317 318 // inline cache check; done before the frame is built. 319 int LIR_Assembler::check_icache() { 320 return __ ic_check(CodeEntryAlignment); 321 } 322 323 void LIR_Assembler::clinit_barrier(ciMethod* method) { 324 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 325 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 326 327 Label L_skip_barrier; 328 Register klass = rscratch1; 329 330 __ mov_metadata(klass, method->holder()->constant_encoding()); 331 __ clinit_barrier(klass, &L_skip_barrier /*L_fast_path*/); 332 333 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 334 335 __ bind(L_skip_barrier); 336 } 337 338 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 339 jobject o = nullptr; 340 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 341 __ movoop(reg, o); 342 patching_epilog(patch, lir_patch_normal, reg, info); 343 } 344 345 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 346 Metadata* o = nullptr; 347 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 348 __ mov_metadata(reg, o); 349 patching_epilog(patch, lir_patch_normal, reg, info); 350 } 351 352 // This specifies the rsp decrement needed to build the frame 353 int LIR_Assembler::initial_frame_size_in_bytes() const { 354 // if rounding, must let FrameMap know! 355 356 // The frame_map records size in slots (32bit word) 357 358 // subtract two words to account for return address and link 359 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 360 } 361 362 363 int LIR_Assembler::emit_exception_handler() { 364 // generate code for exception handler 365 address handler_base = __ start_a_stub(exception_handler_size()); 366 if (handler_base == nullptr) { 367 // not enough space left for the handler 368 bailout("exception handler overflow"); 369 return -1; 370 } 371 372 int offset = code_offset(); 373 374 // the exception oop and pc are in rax, and rdx 375 // no other registers need to be preserved, so invalidate them 376 __ invalidate_registers(false, true, true, false, true, true); 377 378 // check that there is really an exception 379 __ verify_not_null_oop(rax); 380 381 // search an exception handler (rax: exception oop, rdx: throwing pc) 382 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 383 __ should_not_reach_here(); 384 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 385 __ end_a_stub(); 386 387 return offset; 388 } 389 390 391 // Emit the code to remove the frame from the stack in the exception 392 // unwind path. 393 int LIR_Assembler::emit_unwind_handler() { 394 #ifndef PRODUCT 395 if (CommentedAssembly) { 396 _masm->block_comment("Unwind handler"); 397 } 398 #endif 399 400 int offset = code_offset(); 401 402 // Fetch the exception from TLS and clear out exception related thread state 403 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 404 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), NULL_WORD); 405 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), NULL_WORD); 406 407 __ bind(_unwind_handler_entry); 408 __ verify_not_null_oop(rax); 409 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 410 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 411 } 412 413 // Perform needed unlocking 414 MonitorExitStub* stub = nullptr; 415 if (method()->is_synchronized()) { 416 monitor_address(0, FrameMap::rax_opr); 417 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 418 if (LockingMode == LM_MONITOR) { 419 __ jmp(*stub->entry()); 420 } else { 421 __ unlock_object(rdi, rsi, rax, *stub->entry()); 422 } 423 __ bind(*stub->continuation()); 424 } 425 426 if (compilation()->env()->dtrace_method_probes()) { 427 __ mov(rdi, r15_thread); 428 __ mov_metadata(rsi, method()->constant_encoding()); 429 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 430 } 431 432 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 433 __ mov(rax, rbx); // Restore the exception 434 } 435 436 // remove the activation and dispatch to the unwind handler 437 __ remove_frame(initial_frame_size_in_bytes()); 438 __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 439 440 // Emit the slow path assembly 441 if (stub != nullptr) { 442 stub->emit_code(this); 443 } 444 445 return offset; 446 } 447 448 449 int LIR_Assembler::emit_deopt_handler() { 450 // generate code for exception handler 451 address handler_base = __ start_a_stub(deopt_handler_size()); 452 if (handler_base == nullptr) { 453 // not enough space left for the handler 454 bailout("deopt handler overflow"); 455 return -1; 456 } 457 458 int offset = code_offset(); 459 InternalAddress here(__ pc()); 460 461 __ pushptr(here.addr(), rscratch1); 462 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 463 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 464 __ end_a_stub(); 465 466 return offset; 467 } 468 469 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 470 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 471 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 472 assert(result->fpu() == 0, "result must already be on TOS"); 473 } 474 475 // Pop the stack before the safepoint code 476 __ remove_frame(initial_frame_size_in_bytes()); 477 478 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 479 __ reserved_stack_check(); 480 } 481 482 // Note: we do not need to round double result; float result has the right precision 483 // the poll sets the condition code, but no data registers 484 485 code_stub->set_safepoint_offset(__ offset()); 486 __ relocate(relocInfo::poll_return_type); 487 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 488 __ ret(0); 489 } 490 491 492 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 493 guarantee(info != nullptr, "Shouldn't be null"); 494 int offset = __ offset(); 495 const Register poll_addr = rscratch1; 496 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 497 add_debug_info_for_branch(info); 498 __ relocate(relocInfo::poll_type); 499 address pre_pc = __ pc(); 500 __ testl(rax, Address(poll_addr, 0)); 501 address post_pc = __ pc(); 502 guarantee(pointer_delta(post_pc, pre_pc, 1) == 3, "must be exact length"); 503 return offset; 504 } 505 506 507 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 508 if (from_reg != to_reg) __ mov(to_reg, from_reg); 509 } 510 511 void LIR_Assembler::swap_reg(Register a, Register b) { 512 __ xchgptr(a, b); 513 } 514 515 516 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 517 assert(src->is_constant(), "should not call otherwise"); 518 assert(dest->is_register(), "should not call otherwise"); 519 LIR_Const* c = src->as_constant_ptr(); 520 521 switch (c->type()) { 522 case T_INT: { 523 assert(patch_code == lir_patch_none, "no patching handled here"); 524 __ movl(dest->as_register(), c->as_jint()); 525 break; 526 } 527 528 case T_ADDRESS: { 529 assert(patch_code == lir_patch_none, "no patching handled here"); 530 __ movptr(dest->as_register(), c->as_jint()); 531 break; 532 } 533 534 case T_LONG: { 535 assert(patch_code == lir_patch_none, "no patching handled here"); 536 if (AOTCodeCache::is_on_for_write()) { 537 // AOTCodeCache needs relocation info for card table base 538 address b = c->as_pointer(); 539 if (is_card_table_address(b)) { 540 __ lea(dest->as_register_lo(), ExternalAddress(b)); 541 break; 542 } 543 #if INCLUDE_CDS 544 if (AOTRuntimeConstants::contains(b)) { 545 __ load_aotrc_address(dest->as_register_lo(), b); 546 break; 547 } 548 #endif 549 } 550 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 551 break; 552 } 553 554 case T_OBJECT: { 555 if (patch_code != lir_patch_none) { 556 jobject2reg_with_patching(dest->as_register(), info); 557 } else { 558 __ movoop(dest->as_register(), c->as_jobject()); 559 } 560 break; 561 } 562 563 case T_METADATA: { 564 if (patch_code != lir_patch_none) { 565 klass2reg_with_patching(dest->as_register(), info); 566 } else { 567 __ mov_metadata(dest->as_register(), c->as_metadata()); 568 } 569 break; 570 } 571 572 case T_FLOAT: { 573 if (dest->is_single_xmm()) { 574 if (UseAVX <= 2 && c->is_zero_float()) { 575 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 576 } else { 577 __ movflt(dest->as_xmm_float_reg(), 578 InternalAddress(float_constant(c->as_jfloat()))); 579 } 580 } else { 581 ShouldNotReachHere(); 582 } 583 break; 584 } 585 586 case T_DOUBLE: { 587 if (dest->is_double_xmm()) { 588 if (UseAVX <= 2 && c->is_zero_double()) { 589 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 590 } else { 591 __ movdbl(dest->as_xmm_double_reg(), 592 InternalAddress(double_constant(c->as_jdouble()))); 593 } 594 } else { 595 ShouldNotReachHere(); 596 } 597 break; 598 } 599 600 default: 601 ShouldNotReachHere(); 602 } 603 } 604 605 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 606 assert(src->is_constant(), "should not call otherwise"); 607 assert(dest->is_stack(), "should not call otherwise"); 608 LIR_Const* c = src->as_constant_ptr(); 609 610 switch (c->type()) { 611 case T_INT: // fall through 612 case T_FLOAT: 613 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 614 break; 615 616 case T_ADDRESS: 617 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 618 break; 619 620 case T_OBJECT: 621 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 622 break; 623 624 case T_LONG: // fall through 625 case T_DOUBLE: 626 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 627 lo_word_offset_in_bytes), 628 (intptr_t)c->as_jlong_bits(), 629 rscratch1); 630 break; 631 632 default: 633 ShouldNotReachHere(); 634 } 635 } 636 637 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 638 assert(src->is_constant(), "should not call otherwise"); 639 assert(dest->is_address(), "should not call otherwise"); 640 LIR_Const* c = src->as_constant_ptr(); 641 LIR_Address* addr = dest->as_address_ptr(); 642 643 int null_check_here = code_offset(); 644 switch (type) { 645 case T_INT: // fall through 646 case T_FLOAT: 647 __ movl(as_Address(addr), c->as_jint_bits()); 648 break; 649 650 case T_ADDRESS: 651 __ movptr(as_Address(addr), c->as_jint_bits()); 652 break; 653 654 case T_OBJECT: // fall through 655 case T_ARRAY: 656 if (c->as_jobject() == nullptr) { 657 if (UseCompressedOops && !wide) { 658 __ movl(as_Address(addr), NULL_WORD); 659 } else { 660 __ xorptr(rscratch1, rscratch1); 661 null_check_here = code_offset(); 662 __ movptr(as_Address(addr), rscratch1); 663 } 664 } else { 665 if (is_literal_address(addr)) { 666 ShouldNotReachHere(); 667 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 668 } else { 669 __ movoop(rscratch1, c->as_jobject()); 670 if (UseCompressedOops && !wide) { 671 __ encode_heap_oop(rscratch1); 672 null_check_here = code_offset(); 673 __ movl(as_Address_lo(addr), rscratch1); 674 } else { 675 null_check_here = code_offset(); 676 __ movptr(as_Address_lo(addr), rscratch1); 677 } 678 } 679 } 680 break; 681 682 case T_LONG: // fall through 683 case T_DOUBLE: 684 if (is_literal_address(addr)) { 685 ShouldNotReachHere(); 686 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 687 } else { 688 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 689 null_check_here = code_offset(); 690 __ movptr(as_Address_lo(addr), r10); 691 } 692 break; 693 694 case T_BOOLEAN: // fall through 695 case T_BYTE: 696 __ movb(as_Address(addr), c->as_jint() & 0xFF); 697 break; 698 699 case T_CHAR: // fall through 700 case T_SHORT: 701 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 702 break; 703 704 default: 705 ShouldNotReachHere(); 706 }; 707 708 if (info != nullptr) { 709 add_debug_info_for_null_check(null_check_here, info); 710 } 711 } 712 713 714 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 715 assert(src->is_register(), "should not call otherwise"); 716 assert(dest->is_register(), "should not call otherwise"); 717 718 // move between cpu-registers 719 if (dest->is_single_cpu()) { 720 if (src->type() == T_LONG) { 721 // Can do LONG -> OBJECT 722 move_regs(src->as_register_lo(), dest->as_register()); 723 return; 724 } 725 assert(src->is_single_cpu(), "must match"); 726 if (src->type() == T_OBJECT) { 727 __ verify_oop(src->as_register()); 728 } 729 move_regs(src->as_register(), dest->as_register()); 730 731 } else if (dest->is_double_cpu()) { 732 if (is_reference_type(src->type())) { 733 // Surprising to me but we can see move of a long to t_object 734 __ verify_oop(src->as_register()); 735 move_regs(src->as_register(), dest->as_register_lo()); 736 return; 737 } 738 assert(src->is_double_cpu(), "must match"); 739 Register f_lo = src->as_register_lo(); 740 Register f_hi = src->as_register_hi(); 741 Register t_lo = dest->as_register_lo(); 742 Register t_hi = dest->as_register_hi(); 743 assert(f_hi == f_lo, "must be same"); 744 assert(t_hi == t_lo, "must be same"); 745 move_regs(f_lo, t_lo); 746 747 // move between xmm-registers 748 } else if (dest->is_single_xmm()) { 749 assert(src->is_single_xmm(), "must match"); 750 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 751 } else if (dest->is_double_xmm()) { 752 assert(src->is_double_xmm(), "must match"); 753 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 754 755 } else { 756 ShouldNotReachHere(); 757 } 758 } 759 760 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 761 assert(src->is_register(), "should not call otherwise"); 762 assert(dest->is_stack(), "should not call otherwise"); 763 764 if (src->is_single_cpu()) { 765 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 766 if (is_reference_type(type)) { 767 __ verify_oop(src->as_register()); 768 __ movptr (dst, src->as_register()); 769 } else if (type == T_METADATA || type == T_ADDRESS) { 770 __ movptr (dst, src->as_register()); 771 } else { 772 __ movl (dst, src->as_register()); 773 } 774 775 } else if (src->is_double_cpu()) { 776 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 777 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 778 __ movptr (dstLO, src->as_register_lo()); 779 780 } else if (src->is_single_xmm()) { 781 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 782 __ movflt(dst_addr, src->as_xmm_float_reg()); 783 784 } else if (src->is_double_xmm()) { 785 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 786 __ movdbl(dst_addr, src->as_xmm_double_reg()); 787 788 } else { 789 ShouldNotReachHere(); 790 } 791 } 792 793 794 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 795 LIR_Address* to_addr = dest->as_address_ptr(); 796 PatchingStub* patch = nullptr; 797 Register compressed_src = rscratch1; 798 799 if (is_reference_type(type)) { 800 __ verify_oop(src->as_register()); 801 if (UseCompressedOops && !wide) { 802 __ movptr(compressed_src, src->as_register()); 803 __ encode_heap_oop(compressed_src); 804 if (patch_code != lir_patch_none) { 805 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 806 } 807 } 808 } 809 810 if (patch_code != lir_patch_none) { 811 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 812 Address toa = as_Address(to_addr); 813 assert(toa.disp() != 0, "must have"); 814 } 815 816 int null_check_here = code_offset(); 817 switch (type) { 818 case T_FLOAT: { 819 assert(src->is_single_xmm(), "not a float"); 820 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 821 break; 822 } 823 824 case T_DOUBLE: { 825 assert(src->is_double_xmm(), "not a double"); 826 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 827 break; 828 } 829 830 case T_ARRAY: // fall through 831 case T_OBJECT: // fall through 832 if (UseCompressedOops && !wide) { 833 __ movl(as_Address(to_addr), compressed_src); 834 } else { 835 __ movptr(as_Address(to_addr), src->as_register()); 836 } 837 break; 838 case T_ADDRESS: 839 __ movptr(as_Address(to_addr), src->as_register()); 840 break; 841 case T_INT: 842 __ movl(as_Address(to_addr), src->as_register()); 843 break; 844 845 case T_LONG: { 846 Register from_lo = src->as_register_lo(); 847 Register from_hi = src->as_register_hi(); 848 __ movptr(as_Address_lo(to_addr), from_lo); 849 break; 850 } 851 852 case T_BYTE: // fall through 853 case T_BOOLEAN: { 854 Register src_reg = src->as_register(); 855 Address dst_addr = as_Address(to_addr); 856 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 857 __ movb(dst_addr, src_reg); 858 break; 859 } 860 861 case T_CHAR: // fall through 862 case T_SHORT: 863 __ movw(as_Address(to_addr), src->as_register()); 864 break; 865 866 default: 867 ShouldNotReachHere(); 868 } 869 if (info != nullptr) { 870 add_debug_info_for_null_check(null_check_here, info); 871 } 872 873 if (patch_code != lir_patch_none) { 874 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 875 } 876 } 877 878 879 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 880 assert(src->is_stack(), "should not call otherwise"); 881 assert(dest->is_register(), "should not call otherwise"); 882 883 if (dest->is_single_cpu()) { 884 if (is_reference_type(type)) { 885 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 886 __ verify_oop(dest->as_register()); 887 } else if (type == T_METADATA || type == T_ADDRESS) { 888 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 889 } else { 890 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 891 } 892 893 } else if (dest->is_double_cpu()) { 894 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 895 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 896 __ movptr(dest->as_register_lo(), src_addr_LO); 897 898 } else if (dest->is_single_xmm()) { 899 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 900 __ movflt(dest->as_xmm_float_reg(), src_addr); 901 902 } else if (dest->is_double_xmm()) { 903 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 904 __ movdbl(dest->as_xmm_double_reg(), src_addr); 905 906 } else { 907 ShouldNotReachHere(); 908 } 909 } 910 911 912 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 913 if (src->is_single_stack()) { 914 if (is_reference_type(type)) { 915 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 916 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 917 } else { 918 //no pushl on 64bits 919 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 920 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 921 } 922 923 } else if (src->is_double_stack()) { 924 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 925 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 926 927 } else { 928 ShouldNotReachHere(); 929 } 930 } 931 932 933 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 934 assert(src->is_address(), "should not call otherwise"); 935 assert(dest->is_register(), "should not call otherwise"); 936 937 LIR_Address* addr = src->as_address_ptr(); 938 Address from_addr = as_Address(addr); 939 940 if (addr->base()->type() == T_OBJECT) { 941 __ verify_oop(addr->base()->as_pointer_register()); 942 } 943 944 switch (type) { 945 case T_BOOLEAN: // fall through 946 case T_BYTE: // fall through 947 case T_CHAR: // fall through 948 case T_SHORT: 949 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 950 // on pre P6 processors we may get partial register stalls 951 // so blow away the value of to_rinfo before loading a 952 // partial word into it. Do it here so that it precedes 953 // the potential patch point below. 954 __ xorptr(dest->as_register(), dest->as_register()); 955 } 956 break; 957 default: 958 break; 959 } 960 961 PatchingStub* patch = nullptr; 962 if (patch_code != lir_patch_none) { 963 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 964 assert(from_addr.disp() != 0, "must have"); 965 } 966 if (info != nullptr) { 967 add_debug_info_for_null_check_here(info); 968 } 969 970 switch (type) { 971 case T_FLOAT: { 972 if (dest->is_single_xmm()) { 973 __ movflt(dest->as_xmm_float_reg(), from_addr); 974 } else { 975 ShouldNotReachHere(); 976 } 977 break; 978 } 979 980 case T_DOUBLE: { 981 if (dest->is_double_xmm()) { 982 __ movdbl(dest->as_xmm_double_reg(), from_addr); 983 } else { 984 ShouldNotReachHere(); 985 } 986 break; 987 } 988 989 case T_OBJECT: // fall through 990 case T_ARRAY: // fall through 991 if (UseCompressedOops && !wide) { 992 __ movl(dest->as_register(), from_addr); 993 } else { 994 __ movptr(dest->as_register(), from_addr); 995 } 996 break; 997 998 case T_ADDRESS: 999 __ movptr(dest->as_register(), from_addr); 1000 break; 1001 case T_INT: 1002 __ movl(dest->as_register(), from_addr); 1003 break; 1004 1005 case T_LONG: { 1006 Register to_lo = dest->as_register_lo(); 1007 Register to_hi = dest->as_register_hi(); 1008 __ movptr(to_lo, as_Address_lo(addr)); 1009 break; 1010 } 1011 1012 case T_BOOLEAN: // fall through 1013 case T_BYTE: { 1014 Register dest_reg = dest->as_register(); 1015 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1016 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1017 __ movsbl(dest_reg, from_addr); 1018 } else { 1019 __ movb(dest_reg, from_addr); 1020 __ shll(dest_reg, 24); 1021 __ sarl(dest_reg, 24); 1022 } 1023 break; 1024 } 1025 1026 case T_CHAR: { 1027 Register dest_reg = dest->as_register(); 1028 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1029 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1030 __ movzwl(dest_reg, from_addr); 1031 } else { 1032 __ movw(dest_reg, from_addr); 1033 } 1034 break; 1035 } 1036 1037 case T_SHORT: { 1038 Register dest_reg = dest->as_register(); 1039 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1040 __ movswl(dest_reg, from_addr); 1041 } else { 1042 __ movw(dest_reg, from_addr); 1043 __ shll(dest_reg, 16); 1044 __ sarl(dest_reg, 16); 1045 } 1046 break; 1047 } 1048 1049 default: 1050 ShouldNotReachHere(); 1051 } 1052 1053 if (patch != nullptr) { 1054 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1055 } 1056 1057 if (is_reference_type(type)) { 1058 if (UseCompressedOops && !wide) { 1059 __ decode_heap_oop(dest->as_register()); 1060 } 1061 1062 __ verify_oop(dest->as_register()); 1063 } 1064 } 1065 1066 1067 NEEDS_CLEANUP; // This could be static? 1068 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1069 int elem_size = type2aelembytes(type); 1070 switch (elem_size) { 1071 case 1: return Address::times_1; 1072 case 2: return Address::times_2; 1073 case 4: return Address::times_4; 1074 case 8: return Address::times_8; 1075 } 1076 ShouldNotReachHere(); 1077 return Address::no_scale; 1078 } 1079 1080 1081 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1082 switch (op->code()) { 1083 case lir_idiv: 1084 case lir_irem: 1085 arithmetic_idiv(op->code(), 1086 op->in_opr1(), 1087 op->in_opr2(), 1088 op->in_opr3(), 1089 op->result_opr(), 1090 op->info()); 1091 break; 1092 case lir_fmad: 1093 __ fmad(op->result_opr()->as_xmm_double_reg(), 1094 op->in_opr1()->as_xmm_double_reg(), 1095 op->in_opr2()->as_xmm_double_reg(), 1096 op->in_opr3()->as_xmm_double_reg()); 1097 break; 1098 case lir_fmaf: 1099 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1100 op->in_opr1()->as_xmm_float_reg(), 1101 op->in_opr2()->as_xmm_float_reg(), 1102 op->in_opr3()->as_xmm_float_reg()); 1103 break; 1104 default: ShouldNotReachHere(); break; 1105 } 1106 } 1107 1108 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1109 #ifdef ASSERT 1110 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1111 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1112 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1113 #endif 1114 1115 if (op->cond() == lir_cond_always) { 1116 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1117 __ jmp (*(op->label())); 1118 } else { 1119 Assembler::Condition acond = Assembler::zero; 1120 if (op->code() == lir_cond_float_branch) { 1121 assert(op->ublock() != nullptr, "must have unordered successor"); 1122 __ jcc(Assembler::parity, *(op->ublock()->label())); 1123 switch(op->cond()) { 1124 case lir_cond_equal: acond = Assembler::equal; break; 1125 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1126 case lir_cond_less: acond = Assembler::below; break; 1127 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1128 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1129 case lir_cond_greater: acond = Assembler::above; break; 1130 default: ShouldNotReachHere(); 1131 } 1132 } else { 1133 switch (op->cond()) { 1134 case lir_cond_equal: acond = Assembler::equal; break; 1135 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1136 case lir_cond_less: acond = Assembler::less; break; 1137 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1138 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1139 case lir_cond_greater: acond = Assembler::greater; break; 1140 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1141 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1142 default: ShouldNotReachHere(); 1143 } 1144 } 1145 __ jcc(acond,*(op->label())); 1146 } 1147 } 1148 1149 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1150 LIR_Opr src = op->in_opr(); 1151 LIR_Opr dest = op->result_opr(); 1152 1153 switch (op->bytecode()) { 1154 case Bytecodes::_i2l: 1155 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1156 break; 1157 1158 case Bytecodes::_l2i: 1159 __ movl(dest->as_register(), src->as_register_lo()); 1160 break; 1161 1162 case Bytecodes::_i2b: 1163 move_regs(src->as_register(), dest->as_register()); 1164 __ sign_extend_byte(dest->as_register()); 1165 break; 1166 1167 case Bytecodes::_i2c: 1168 move_regs(src->as_register(), dest->as_register()); 1169 __ andl(dest->as_register(), 0xFFFF); 1170 break; 1171 1172 case Bytecodes::_i2s: 1173 move_regs(src->as_register(), dest->as_register()); 1174 __ sign_extend_short(dest->as_register()); 1175 break; 1176 1177 case Bytecodes::_f2d: 1178 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1179 break; 1180 1181 case Bytecodes::_d2f: 1182 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1183 break; 1184 1185 case Bytecodes::_i2f: 1186 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1187 break; 1188 1189 case Bytecodes::_i2d: 1190 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1191 break; 1192 1193 case Bytecodes::_l2f: 1194 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1195 break; 1196 1197 case Bytecodes::_l2d: 1198 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1199 break; 1200 1201 case Bytecodes::_f2i: 1202 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1203 break; 1204 1205 case Bytecodes::_d2i: 1206 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1207 break; 1208 1209 case Bytecodes::_f2l: 1210 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1211 break; 1212 1213 case Bytecodes::_d2l: 1214 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1215 break; 1216 1217 default: ShouldNotReachHere(); 1218 } 1219 } 1220 1221 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1222 if (op->init_check()) { 1223 add_debug_info_for_null_check_here(op->stub()->info()); 1224 // init_state needs acquire, but x86 is TSO, and so we are already good. 1225 __ cmpb(Address(op->klass()->as_register(), 1226 InstanceKlass::init_state_offset()), 1227 InstanceKlass::fully_initialized); 1228 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1229 } 1230 __ allocate_object(op->obj()->as_register(), 1231 op->tmp1()->as_register(), 1232 op->tmp2()->as_register(), 1233 op->header_size(), 1234 op->object_size(), 1235 op->klass()->as_register(), 1236 *op->stub()->entry()); 1237 __ bind(*op->stub()->continuation()); 1238 } 1239 1240 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1241 Register len = op->len()->as_register(); 1242 __ movslq(len, len); 1243 1244 if (UseSlowPath || 1245 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1246 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1247 __ jmp(*op->stub()->entry()); 1248 } else { 1249 Register tmp1 = op->tmp1()->as_register(); 1250 Register tmp2 = op->tmp2()->as_register(); 1251 Register tmp3 = op->tmp3()->as_register(); 1252 if (len == tmp1) { 1253 tmp1 = tmp3; 1254 } else if (len == tmp2) { 1255 tmp2 = tmp3; 1256 } else if (len == tmp3) { 1257 // everything is ok 1258 } else { 1259 __ mov(tmp3, len); 1260 } 1261 __ allocate_array(op->obj()->as_register(), 1262 len, 1263 tmp1, 1264 tmp2, 1265 arrayOopDesc::base_offset_in_bytes(op->type()), 1266 array_element_size(op->type()), 1267 op->klass()->as_register(), 1268 *op->stub()->entry(), 1269 op->zero_array()); 1270 } 1271 __ bind(*op->stub()->continuation()); 1272 } 1273 1274 void LIR_Assembler::type_profile_helper(Register mdo, 1275 ciMethodData *md, ciProfileData *data, 1276 Register recv, Label* update_done) { 1277 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1278 Label next_test; 1279 // See if the receiver is receiver[n]. 1280 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1281 __ jccb(Assembler::notEqual, next_test); 1282 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1283 __ addptr(data_addr, DataLayout::counter_increment); 1284 __ jmp(*update_done); 1285 __ bind(next_test); 1286 } 1287 1288 // Didn't find receiver; find next empty slot and fill it in 1289 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1290 Label next_test; 1291 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1292 __ cmpptr(recv_addr, NULL_WORD); 1293 __ jccb(Assembler::notEqual, next_test); 1294 __ movptr(recv_addr, recv); 1295 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1296 __ jmp(*update_done); 1297 __ bind(next_test); 1298 } 1299 } 1300 1301 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1302 // we always need a stub for the failure case. 1303 CodeStub* stub = op->stub(); 1304 Register obj = op->object()->as_register(); 1305 Register k_RInfo = op->tmp1()->as_register(); 1306 Register klass_RInfo = op->tmp2()->as_register(); 1307 Register dst = op->result_opr()->as_register(); 1308 ciKlass* k = op->klass(); 1309 Register Rtmp1 = noreg; 1310 Register tmp_load_klass = rscratch1; 1311 1312 // check if it needs to be profiled 1313 ciMethodData* md = nullptr; 1314 ciProfileData* data = nullptr; 1315 1316 if (op->should_profile()) { 1317 ciMethod* method = op->profiled_method(); 1318 assert(method != nullptr, "Should have method"); 1319 int bci = op->profiled_bci(); 1320 md = method->method_data_or_null(); 1321 assert(md != nullptr, "Sanity"); 1322 data = md->bci_to_data(bci); 1323 assert(data != nullptr, "need data for type check"); 1324 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1325 } 1326 Label* success_target = success; 1327 Label* failure_target = failure; 1328 1329 if (obj == k_RInfo) { 1330 k_RInfo = dst; 1331 } else if (obj == klass_RInfo) { 1332 klass_RInfo = dst; 1333 } 1334 if (k->is_loaded() && !UseCompressedClassPointers) { 1335 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1336 } else { 1337 Rtmp1 = op->tmp3()->as_register(); 1338 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1339 } 1340 1341 assert_different_registers(obj, k_RInfo, klass_RInfo); 1342 1343 __ testptr(obj, obj); 1344 if (op->should_profile()) { 1345 Label not_null; 1346 Register mdo = klass_RInfo; 1347 __ mov_metadata(mdo, md->constant_encoding()); 1348 __ jccb(Assembler::notEqual, not_null); 1349 // Object is null; update MDO and exit 1350 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1351 int header_bits = BitData::null_seen_byte_constant(); 1352 __ orb(data_addr, header_bits); 1353 __ jmp(*obj_is_null); 1354 __ bind(not_null); 1355 1356 Label update_done; 1357 Register recv = k_RInfo; 1358 __ load_klass(recv, obj, tmp_load_klass); 1359 type_profile_helper(mdo, md, data, recv, &update_done); 1360 1361 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1362 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1363 1364 __ bind(update_done); 1365 } else { 1366 __ jcc(Assembler::equal, *obj_is_null); 1367 } 1368 1369 if (!k->is_loaded()) { 1370 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1371 } else { 1372 __ mov_metadata(k_RInfo, k->constant_encoding()); 1373 } 1374 __ verify_oop(obj); 1375 1376 if (op->fast_check()) { 1377 // get object class 1378 // not a safepoint as obj null check happens earlier 1379 if (UseCompressedClassPointers) { 1380 __ load_klass(Rtmp1, obj, tmp_load_klass); 1381 __ cmpptr(k_RInfo, Rtmp1); 1382 } else { 1383 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1384 } 1385 __ jcc(Assembler::notEqual, *failure_target); 1386 // successful cast, fall through to profile or jump 1387 } else { 1388 // get object class 1389 // not a safepoint as obj null check happens earlier 1390 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1391 if (k->is_loaded()) { 1392 // See if we get an immediate positive hit 1393 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1394 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1395 __ jcc(Assembler::notEqual, *failure_target); 1396 // successful cast, fall through to profile or jump 1397 } else { 1398 // See if we get an immediate positive hit 1399 __ jcc(Assembler::equal, *success_target); 1400 // check for self 1401 __ cmpptr(klass_RInfo, k_RInfo); 1402 __ jcc(Assembler::equal, *success_target); 1403 1404 __ push(klass_RInfo); 1405 __ push(k_RInfo); 1406 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1407 __ pop(klass_RInfo); 1408 __ pop(klass_RInfo); 1409 // result is a boolean 1410 __ testl(klass_RInfo, klass_RInfo); 1411 __ jcc(Assembler::equal, *failure_target); 1412 // successful cast, fall through to profile or jump 1413 } 1414 } else { 1415 // perform the fast part of the checking logic 1416 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1417 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1418 __ push(klass_RInfo); 1419 __ push(k_RInfo); 1420 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1421 __ pop(klass_RInfo); 1422 __ pop(k_RInfo); 1423 // result is a boolean 1424 __ testl(k_RInfo, k_RInfo); 1425 __ jcc(Assembler::equal, *failure_target); 1426 // successful cast, fall through to profile or jump 1427 } 1428 } 1429 __ jmp(*success); 1430 } 1431 1432 1433 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1434 Register tmp_load_klass = rscratch1; 1435 LIR_Code code = op->code(); 1436 if (code == lir_store_check) { 1437 Register value = op->object()->as_register(); 1438 Register array = op->array()->as_register(); 1439 Register k_RInfo = op->tmp1()->as_register(); 1440 Register klass_RInfo = op->tmp2()->as_register(); 1441 Register Rtmp1 = op->tmp3()->as_register(); 1442 1443 CodeStub* stub = op->stub(); 1444 1445 // check if it needs to be profiled 1446 ciMethodData* md = nullptr; 1447 ciProfileData* data = nullptr; 1448 1449 if (op->should_profile()) { 1450 ciMethod* method = op->profiled_method(); 1451 assert(method != nullptr, "Should have method"); 1452 int bci = op->profiled_bci(); 1453 md = method->method_data_or_null(); 1454 assert(md != nullptr, "Sanity"); 1455 data = md->bci_to_data(bci); 1456 assert(data != nullptr, "need data for type check"); 1457 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1458 } 1459 Label done; 1460 Label* success_target = &done; 1461 Label* failure_target = stub->entry(); 1462 1463 __ testptr(value, value); 1464 if (op->should_profile()) { 1465 Label not_null; 1466 Register mdo = klass_RInfo; 1467 __ mov_metadata(mdo, md->constant_encoding()); 1468 __ jccb(Assembler::notEqual, not_null); 1469 // Object is null; update MDO and exit 1470 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1471 int header_bits = BitData::null_seen_byte_constant(); 1472 __ orb(data_addr, header_bits); 1473 __ jmp(done); 1474 __ bind(not_null); 1475 1476 Label update_done; 1477 Register recv = k_RInfo; 1478 __ load_klass(recv, value, tmp_load_klass); 1479 type_profile_helper(mdo, md, data, recv, &update_done); 1480 1481 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1482 __ addptr(counter_addr, DataLayout::counter_increment); 1483 __ bind(update_done); 1484 } else { 1485 __ jcc(Assembler::equal, done); 1486 } 1487 1488 add_debug_info_for_null_check_here(op->info_for_exception()); 1489 __ load_klass(k_RInfo, array, tmp_load_klass); 1490 __ load_klass(klass_RInfo, value, tmp_load_klass); 1491 1492 // get instance klass (it's already uncompressed) 1493 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1494 // perform the fast part of the checking logic 1495 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1496 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1497 __ push(klass_RInfo); 1498 __ push(k_RInfo); 1499 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1500 __ pop(klass_RInfo); 1501 __ pop(k_RInfo); 1502 // result is a boolean 1503 __ testl(k_RInfo, k_RInfo); 1504 __ jcc(Assembler::equal, *failure_target); 1505 // fall through to the success case 1506 1507 __ bind(done); 1508 } else 1509 if (code == lir_checkcast) { 1510 Register obj = op->object()->as_register(); 1511 Register dst = op->result_opr()->as_register(); 1512 Label success; 1513 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1514 __ bind(success); 1515 if (dst != obj) { 1516 __ mov(dst, obj); 1517 } 1518 } else 1519 if (code == lir_instanceof) { 1520 Register obj = op->object()->as_register(); 1521 Register dst = op->result_opr()->as_register(); 1522 Label success, failure, done; 1523 emit_typecheck_helper(op, &success, &failure, &failure); 1524 __ bind(failure); 1525 __ xorptr(dst, dst); 1526 __ jmpb(done); 1527 __ bind(success); 1528 __ movptr(dst, 1); 1529 __ bind(done); 1530 } else { 1531 ShouldNotReachHere(); 1532 } 1533 1534 } 1535 1536 1537 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1538 if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 1539 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1540 Register newval = op->new_value()->as_register(); 1541 Register cmpval = op->cmp_value()->as_register(); 1542 assert(cmpval == rax, "wrong register"); 1543 assert(newval != noreg, "new val must be register"); 1544 assert(cmpval != newval, "cmp and new values must be in different registers"); 1545 assert(cmpval != addr, "cmp and addr must be in different registers"); 1546 assert(newval != addr, "new value and addr must be in different registers"); 1547 1548 if (op->code() == lir_cas_obj) { 1549 if (UseCompressedOops) { 1550 __ encode_heap_oop(cmpval); 1551 __ mov(rscratch1, newval); 1552 __ encode_heap_oop(rscratch1); 1553 __ lock(); 1554 // cmpval (rax) is implicitly used by this instruction 1555 __ cmpxchgl(rscratch1, Address(addr, 0)); 1556 } else { 1557 __ lock(); 1558 __ cmpxchgptr(newval, Address(addr, 0)); 1559 } 1560 } else { 1561 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1562 __ lock(); 1563 __ cmpxchgl(newval, Address(addr, 0)); 1564 } 1565 } else if (op->code() == lir_cas_long) { 1566 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1567 Register newval = op->new_value()->as_register_lo(); 1568 Register cmpval = op->cmp_value()->as_register_lo(); 1569 assert(cmpval == rax, "wrong register"); 1570 assert(newval != noreg, "new val must be register"); 1571 assert(cmpval != newval, "cmp and new values must be in different registers"); 1572 assert(cmpval != addr, "cmp and addr must be in different registers"); 1573 assert(newval != addr, "new value and addr must be in different registers"); 1574 __ lock(); 1575 __ cmpxchgq(newval, Address(addr, 0)); 1576 } else { 1577 Unimplemented(); 1578 } 1579 } 1580 1581 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1582 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1583 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1584 1585 Assembler::Condition acond, ncond; 1586 switch (condition) { 1587 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1588 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1589 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1590 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1591 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1592 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1593 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1594 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1595 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1596 ShouldNotReachHere(); 1597 } 1598 1599 if (opr1->is_cpu_register()) { 1600 reg2reg(opr1, result); 1601 } else if (opr1->is_stack()) { 1602 stack2reg(opr1, result, result->type()); 1603 } else if (opr1->is_constant()) { 1604 const2reg(opr1, result, lir_patch_none, nullptr); 1605 } else { 1606 ShouldNotReachHere(); 1607 } 1608 1609 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 1610 // optimized version that does not require a branch 1611 if (opr2->is_single_cpu()) { 1612 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1613 __ cmov(ncond, result->as_register(), opr2->as_register()); 1614 } else if (opr2->is_double_cpu()) { 1615 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1616 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1617 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 1618 } else if (opr2->is_single_stack()) { 1619 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 1620 } else if (opr2->is_double_stack()) { 1621 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 1622 } else { 1623 ShouldNotReachHere(); 1624 } 1625 1626 } else { 1627 Label skip; 1628 __ jccb(acond, skip); 1629 if (opr2->is_cpu_register()) { 1630 reg2reg(opr2, result); 1631 } else if (opr2->is_stack()) { 1632 stack2reg(opr2, result, result->type()); 1633 } else if (opr2->is_constant()) { 1634 const2reg(opr2, result, lir_patch_none, nullptr); 1635 } else { 1636 ShouldNotReachHere(); 1637 } 1638 __ bind(skip); 1639 } 1640 } 1641 1642 1643 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1644 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1645 1646 if (left->is_single_cpu()) { 1647 assert(left == dest, "left and dest must be equal"); 1648 Register lreg = left->as_register(); 1649 1650 if (right->is_single_cpu()) { 1651 // cpu register - cpu register 1652 Register rreg = right->as_register(); 1653 switch (code) { 1654 case lir_add: __ addl (lreg, rreg); break; 1655 case lir_sub: __ subl (lreg, rreg); break; 1656 case lir_mul: __ imull(lreg, rreg); break; 1657 default: ShouldNotReachHere(); 1658 } 1659 1660 } else if (right->is_stack()) { 1661 // cpu register - stack 1662 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1663 switch (code) { 1664 case lir_add: __ addl(lreg, raddr); break; 1665 case lir_sub: __ subl(lreg, raddr); break; 1666 default: ShouldNotReachHere(); 1667 } 1668 1669 } else if (right->is_constant()) { 1670 // cpu register - constant 1671 jint c = right->as_constant_ptr()->as_jint(); 1672 switch (code) { 1673 case lir_add: { 1674 __ incrementl(lreg, c); 1675 break; 1676 } 1677 case lir_sub: { 1678 __ decrementl(lreg, c); 1679 break; 1680 } 1681 default: ShouldNotReachHere(); 1682 } 1683 1684 } else { 1685 ShouldNotReachHere(); 1686 } 1687 1688 } else if (left->is_double_cpu()) { 1689 assert(left == dest, "left and dest must be equal"); 1690 Register lreg_lo = left->as_register_lo(); 1691 Register lreg_hi = left->as_register_hi(); 1692 1693 if (right->is_double_cpu()) { 1694 // cpu register - cpu register 1695 Register rreg_lo = right->as_register_lo(); 1696 Register rreg_hi = right->as_register_hi(); 1697 assert_different_registers(lreg_lo, rreg_lo); 1698 switch (code) { 1699 case lir_add: 1700 __ addptr(lreg_lo, rreg_lo); 1701 break; 1702 case lir_sub: 1703 __ subptr(lreg_lo, rreg_lo); 1704 break; 1705 case lir_mul: 1706 __ imulq(lreg_lo, rreg_lo); 1707 break; 1708 default: 1709 ShouldNotReachHere(); 1710 } 1711 1712 } else if (right->is_constant()) { 1713 // cpu register - constant 1714 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1715 __ movptr(r10, (intptr_t) c); 1716 switch (code) { 1717 case lir_add: 1718 __ addptr(lreg_lo, r10); 1719 break; 1720 case lir_sub: 1721 __ subptr(lreg_lo, r10); 1722 break; 1723 default: 1724 ShouldNotReachHere(); 1725 } 1726 1727 } else { 1728 ShouldNotReachHere(); 1729 } 1730 1731 } else if (left->is_single_xmm()) { 1732 assert(left == dest, "left and dest must be equal"); 1733 XMMRegister lreg = left->as_xmm_float_reg(); 1734 1735 if (right->is_single_xmm()) { 1736 XMMRegister rreg = right->as_xmm_float_reg(); 1737 switch (code) { 1738 case lir_add: __ addss(lreg, rreg); break; 1739 case lir_sub: __ subss(lreg, rreg); break; 1740 case lir_mul: __ mulss(lreg, rreg); break; 1741 case lir_div: __ divss(lreg, rreg); break; 1742 default: ShouldNotReachHere(); 1743 } 1744 } else { 1745 Address raddr; 1746 if (right->is_single_stack()) { 1747 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1748 } else if (right->is_constant()) { 1749 // hack for now 1750 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 1751 } else { 1752 ShouldNotReachHere(); 1753 } 1754 switch (code) { 1755 case lir_add: __ addss(lreg, raddr); break; 1756 case lir_sub: __ subss(lreg, raddr); break; 1757 case lir_mul: __ mulss(lreg, raddr); break; 1758 case lir_div: __ divss(lreg, raddr); break; 1759 default: ShouldNotReachHere(); 1760 } 1761 } 1762 1763 } else if (left->is_double_xmm()) { 1764 assert(left == dest, "left and dest must be equal"); 1765 1766 XMMRegister lreg = left->as_xmm_double_reg(); 1767 if (right->is_double_xmm()) { 1768 XMMRegister rreg = right->as_xmm_double_reg(); 1769 switch (code) { 1770 case lir_add: __ addsd(lreg, rreg); break; 1771 case lir_sub: __ subsd(lreg, rreg); break; 1772 case lir_mul: __ mulsd(lreg, rreg); break; 1773 case lir_div: __ divsd(lreg, rreg); break; 1774 default: ShouldNotReachHere(); 1775 } 1776 } else { 1777 Address raddr; 1778 if (right->is_double_stack()) { 1779 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1780 } else if (right->is_constant()) { 1781 // hack for now 1782 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 1783 } else { 1784 ShouldNotReachHere(); 1785 } 1786 switch (code) { 1787 case lir_add: __ addsd(lreg, raddr); break; 1788 case lir_sub: __ subsd(lreg, raddr); break; 1789 case lir_mul: __ mulsd(lreg, raddr); break; 1790 case lir_div: __ divsd(lreg, raddr); break; 1791 default: ShouldNotReachHere(); 1792 } 1793 } 1794 1795 } else if (left->is_single_stack() || left->is_address()) { 1796 assert(left == dest, "left and dest must be equal"); 1797 1798 Address laddr; 1799 if (left->is_single_stack()) { 1800 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 1801 } else if (left->is_address()) { 1802 laddr = as_Address(left->as_address_ptr()); 1803 } else { 1804 ShouldNotReachHere(); 1805 } 1806 1807 if (right->is_single_cpu()) { 1808 Register rreg = right->as_register(); 1809 switch (code) { 1810 case lir_add: __ addl(laddr, rreg); break; 1811 case lir_sub: __ subl(laddr, rreg); break; 1812 default: ShouldNotReachHere(); 1813 } 1814 } else if (right->is_constant()) { 1815 jint c = right->as_constant_ptr()->as_jint(); 1816 switch (code) { 1817 case lir_add: { 1818 __ incrementl(laddr, c); 1819 break; 1820 } 1821 case lir_sub: { 1822 __ decrementl(laddr, c); 1823 break; 1824 } 1825 default: ShouldNotReachHere(); 1826 } 1827 } else { 1828 ShouldNotReachHere(); 1829 } 1830 1831 } else { 1832 ShouldNotReachHere(); 1833 } 1834 } 1835 1836 1837 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1838 if (value->is_double_xmm()) { 1839 switch(code) { 1840 case lir_abs : 1841 { 1842 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 1843 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 1844 } 1845 assert(!tmp->is_valid(), "do not need temporary"); 1846 __ andpd(dest->as_xmm_double_reg(), 1847 ExternalAddress(LIR_Assembler::double_signmask_pool), 1848 rscratch1); 1849 } 1850 break; 1851 1852 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 1853 // all other intrinsics are not available in the SSE instruction set, so FPU is used 1854 default : ShouldNotReachHere(); 1855 } 1856 1857 } else if (code == lir_f2hf) { 1858 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 1859 } else if (code == lir_hf2f) { 1860 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 1861 } else { 1862 Unimplemented(); 1863 } 1864 } 1865 1866 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1867 // assert(left->destroys_register(), "check"); 1868 if (left->is_single_cpu()) { 1869 Register reg = left->as_register(); 1870 if (right->is_constant()) { 1871 int val = right->as_constant_ptr()->as_jint(); 1872 switch (code) { 1873 case lir_logic_and: __ andl (reg, val); break; 1874 case lir_logic_or: __ orl (reg, val); break; 1875 case lir_logic_xor: __ xorl (reg, val); break; 1876 default: ShouldNotReachHere(); 1877 } 1878 } else if (right->is_stack()) { 1879 // added support for stack operands 1880 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1881 switch (code) { 1882 case lir_logic_and: __ andl (reg, raddr); break; 1883 case lir_logic_or: __ orl (reg, raddr); break; 1884 case lir_logic_xor: __ xorl (reg, raddr); break; 1885 default: ShouldNotReachHere(); 1886 } 1887 } else { 1888 Register rright = right->as_register(); 1889 switch (code) { 1890 case lir_logic_and: __ andptr (reg, rright); break; 1891 case lir_logic_or : __ orptr (reg, rright); break; 1892 case lir_logic_xor: __ xorptr (reg, rright); break; 1893 default: ShouldNotReachHere(); 1894 } 1895 } 1896 move_regs(reg, dst->as_register()); 1897 } else { 1898 Register l_lo = left->as_register_lo(); 1899 Register l_hi = left->as_register_hi(); 1900 if (right->is_constant()) { 1901 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 1902 switch (code) { 1903 case lir_logic_and: 1904 __ andq(l_lo, rscratch1); 1905 break; 1906 case lir_logic_or: 1907 __ orq(l_lo, rscratch1); 1908 break; 1909 case lir_logic_xor: 1910 __ xorq(l_lo, rscratch1); 1911 break; 1912 default: ShouldNotReachHere(); 1913 } 1914 } else { 1915 Register r_lo; 1916 if (is_reference_type(right->type())) { 1917 r_lo = right->as_register(); 1918 } else { 1919 r_lo = right->as_register_lo(); 1920 } 1921 switch (code) { 1922 case lir_logic_and: 1923 __ andptr(l_lo, r_lo); 1924 break; 1925 case lir_logic_or: 1926 __ orptr(l_lo, r_lo); 1927 break; 1928 case lir_logic_xor: 1929 __ xorptr(l_lo, r_lo); 1930 break; 1931 default: ShouldNotReachHere(); 1932 } 1933 } 1934 1935 Register dst_lo = dst->as_register_lo(); 1936 Register dst_hi = dst->as_register_hi(); 1937 1938 move_regs(l_lo, dst_lo); 1939 } 1940 } 1941 1942 1943 // we assume that rax, and rdx can be overwritten 1944 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1945 1946 assert(left->is_single_cpu(), "left must be register"); 1947 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1948 assert(result->is_single_cpu(), "result must be register"); 1949 1950 // assert(left->destroys_register(), "check"); 1951 // assert(right->destroys_register(), "check"); 1952 1953 Register lreg = left->as_register(); 1954 Register dreg = result->as_register(); 1955 1956 if (right->is_constant()) { 1957 jint divisor = right->as_constant_ptr()->as_jint(); 1958 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 1959 if (code == lir_idiv) { 1960 assert(lreg == rax, "must be rax,"); 1961 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1962 __ cdql(); // sign extend into rdx:rax 1963 if (divisor == 2) { 1964 __ subl(lreg, rdx); 1965 } else { 1966 __ andl(rdx, divisor - 1); 1967 __ addl(lreg, rdx); 1968 } 1969 __ sarl(lreg, log2i_exact(divisor)); 1970 move_regs(lreg, dreg); 1971 } else if (code == lir_irem) { 1972 Label done; 1973 __ mov(dreg, lreg); 1974 __ andl(dreg, 0x80000000 | (divisor - 1)); 1975 __ jcc(Assembler::positive, done); 1976 __ decrement(dreg); 1977 __ orl(dreg, ~(divisor - 1)); 1978 __ increment(dreg); 1979 __ bind(done); 1980 } else { 1981 ShouldNotReachHere(); 1982 } 1983 } else { 1984 Register rreg = right->as_register(); 1985 assert(lreg == rax, "left register must be rax,"); 1986 assert(rreg != rdx, "right register must not be rdx"); 1987 assert(temp->as_register() == rdx, "tmp register must be rdx"); 1988 1989 move_regs(lreg, rax); 1990 1991 int idivl_offset = __ corrected_idivl(rreg); 1992 if (ImplicitDiv0Checks) { 1993 add_debug_info_for_div0(idivl_offset, info); 1994 } 1995 if (code == lir_irem) { 1996 move_regs(rdx, dreg); // result is in rdx 1997 } else { 1998 move_regs(rax, dreg); 1999 } 2000 } 2001 } 2002 2003 2004 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2005 if (opr1->is_single_cpu()) { 2006 Register reg1 = opr1->as_register(); 2007 if (opr2->is_single_cpu()) { 2008 // cpu register - cpu register 2009 if (is_reference_type(opr1->type())) { 2010 __ cmpoop(reg1, opr2->as_register()); 2011 } else { 2012 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2013 __ cmpl(reg1, opr2->as_register()); 2014 } 2015 } else if (opr2->is_stack()) { 2016 // cpu register - stack 2017 if (is_reference_type(opr1->type())) { 2018 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2019 } else { 2020 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2021 } 2022 } else if (opr2->is_constant()) { 2023 // cpu register - constant 2024 LIR_Const* c = opr2->as_constant_ptr(); 2025 if (c->type() == T_INT) { 2026 jint i = c->as_jint(); 2027 if (i == 0) { 2028 __ testl(reg1, reg1); 2029 } else { 2030 __ cmpl(reg1, i); 2031 } 2032 } else if (c->type() == T_METADATA) { 2033 // All we need for now is a comparison with null for equality. 2034 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2035 Metadata* m = c->as_metadata(); 2036 if (m == nullptr) { 2037 __ testptr(reg1, reg1); 2038 } else { 2039 ShouldNotReachHere(); 2040 } 2041 } else if (is_reference_type(c->type())) { 2042 // In 64bit oops are single register 2043 jobject o = c->as_jobject(); 2044 if (o == nullptr) { 2045 __ testptr(reg1, reg1); 2046 } else { 2047 __ cmpoop(reg1, o, rscratch1); 2048 } 2049 } else { 2050 fatal("unexpected type: %s", basictype_to_str(c->type())); 2051 } 2052 // cpu register - address 2053 } else if (opr2->is_address()) { 2054 if (op->info() != nullptr) { 2055 add_debug_info_for_null_check_here(op->info()); 2056 } 2057 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2058 } else { 2059 ShouldNotReachHere(); 2060 } 2061 2062 } else if(opr1->is_double_cpu()) { 2063 Register xlo = opr1->as_register_lo(); 2064 Register xhi = opr1->as_register_hi(); 2065 if (opr2->is_double_cpu()) { 2066 __ cmpptr(xlo, opr2->as_register_lo()); 2067 } else if (opr2->is_constant()) { 2068 // cpu register - constant 0 2069 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2070 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2071 } else { 2072 ShouldNotReachHere(); 2073 } 2074 2075 } else if (opr1->is_single_xmm()) { 2076 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2077 if (opr2->is_single_xmm()) { 2078 // xmm register - xmm register 2079 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2080 } else if (opr2->is_stack()) { 2081 // xmm register - stack 2082 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2083 } else if (opr2->is_constant()) { 2084 // xmm register - constant 2085 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2086 } else if (opr2->is_address()) { 2087 // xmm register - address 2088 if (op->info() != nullptr) { 2089 add_debug_info_for_null_check_here(op->info()); 2090 } 2091 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2092 } else { 2093 ShouldNotReachHere(); 2094 } 2095 2096 } else if (opr1->is_double_xmm()) { 2097 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2098 if (opr2->is_double_xmm()) { 2099 // xmm register - xmm register 2100 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2101 } else if (opr2->is_stack()) { 2102 // xmm register - stack 2103 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2104 } else if (opr2->is_constant()) { 2105 // xmm register - constant 2106 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2107 } else if (opr2->is_address()) { 2108 // xmm register - address 2109 if (op->info() != nullptr) { 2110 add_debug_info_for_null_check_here(op->info()); 2111 } 2112 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2113 } else { 2114 ShouldNotReachHere(); 2115 } 2116 2117 } else if (opr1->is_address() && opr2->is_constant()) { 2118 LIR_Const* c = opr2->as_constant_ptr(); 2119 if (is_reference_type(c->type())) { 2120 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2121 __ movoop(rscratch1, c->as_jobject()); 2122 } 2123 if (op->info() != nullptr) { 2124 add_debug_info_for_null_check_here(op->info()); 2125 } 2126 // special case: address - constant 2127 LIR_Address* addr = opr1->as_address_ptr(); 2128 if (c->type() == T_INT) { 2129 __ cmpl(as_Address(addr), c->as_jint()); 2130 } else if (is_reference_type(c->type())) { 2131 // %%% Make this explode if addr isn't reachable until we figure out a 2132 // better strategy by giving noreg as the temp for as_Address 2133 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2134 } else { 2135 ShouldNotReachHere(); 2136 } 2137 2138 } else { 2139 ShouldNotReachHere(); 2140 } 2141 } 2142 2143 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2144 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2145 if (left->is_single_xmm()) { 2146 assert(right->is_single_xmm(), "must match"); 2147 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2148 } else if (left->is_double_xmm()) { 2149 assert(right->is_double_xmm(), "must match"); 2150 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2151 2152 } else { 2153 ShouldNotReachHere(); 2154 } 2155 } else { 2156 assert(code == lir_cmp_l2i, "check"); 2157 Label done; 2158 Register dest = dst->as_register(); 2159 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2160 __ movl(dest, -1); 2161 __ jccb(Assembler::less, done); 2162 __ setb(Assembler::notZero, dest); 2163 __ movzbl(dest, dest); 2164 __ bind(done); 2165 } 2166 } 2167 2168 2169 void LIR_Assembler::align_call(LIR_Code code) { 2170 // make sure that the displacement word of the call ends up word aligned 2171 int offset = __ offset(); 2172 switch (code) { 2173 case lir_static_call: 2174 case lir_optvirtual_call: 2175 case lir_dynamic_call: 2176 offset += NativeCall::displacement_offset; 2177 break; 2178 case lir_icvirtual_call: 2179 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2180 break; 2181 default: ShouldNotReachHere(); 2182 } 2183 __ align(BytesPerWord, offset); 2184 } 2185 2186 2187 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2188 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2189 "must be aligned"); 2190 __ call(AddressLiteral(op->addr(), rtype)); 2191 add_call_info(code_offset(), op->info()); 2192 __ post_call_nop(); 2193 } 2194 2195 2196 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2197 __ ic_call(op->addr()); 2198 add_call_info(code_offset(), op->info()); 2199 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2200 "must be aligned"); 2201 __ post_call_nop(); 2202 } 2203 2204 2205 void LIR_Assembler::emit_static_call_stub() { 2206 address call_pc = __ pc(); 2207 address stub = __ start_a_stub(call_stub_size()); 2208 if (stub == nullptr) { 2209 bailout("static call stub overflow"); 2210 return; 2211 } 2212 2213 int start = __ offset(); 2214 2215 // make sure that the displacement word of the call ends up word aligned 2216 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2217 __ relocate(static_stub_Relocation::spec(call_pc)); 2218 __ mov_metadata(rbx, (Metadata*)nullptr); 2219 // must be set to -1 at code generation time 2220 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2221 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2222 __ jump(RuntimeAddress(__ pc())); 2223 2224 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2225 __ end_a_stub(); 2226 } 2227 2228 2229 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2230 assert(exceptionOop->as_register() == rax, "must match"); 2231 assert(exceptionPC->as_register() == rdx, "must match"); 2232 2233 // exception object is not added to oop map by LinearScan 2234 // (LinearScan assumes that no oops are in fixed registers) 2235 info->add_register_oop(exceptionOop); 2236 C1StubId unwind_id; 2237 2238 // get current pc information 2239 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2240 int pc_for_athrow_offset = __ offset(); 2241 InternalAddress pc_for_athrow(__ pc()); 2242 __ lea(exceptionPC->as_register(), pc_for_athrow); 2243 add_call_info(pc_for_athrow_offset, info); // for exception handler 2244 2245 __ verify_not_null_oop(rax); 2246 // search an exception handler (rax: exception oop, rdx: throwing pc) 2247 if (compilation()->has_fpu_code()) { 2248 unwind_id = C1StubId::handle_exception_id; 2249 } else { 2250 unwind_id = C1StubId::handle_exception_nofpu_id; 2251 } 2252 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2253 2254 // enough room for two byte trap 2255 __ nop(); 2256 } 2257 2258 2259 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2260 assert(exceptionOop->as_register() == rax, "must match"); 2261 2262 __ jmp(_unwind_handler_entry); 2263 } 2264 2265 2266 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2267 2268 // optimized version for linear scan: 2269 // * count must be already in ECX (guaranteed by LinearScan) 2270 // * left and dest must be equal 2271 // * tmp must be unused 2272 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2273 assert(left == dest, "left and dest must be equal"); 2274 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2275 2276 if (left->is_single_cpu()) { 2277 Register value = left->as_register(); 2278 assert(value != SHIFT_count, "left cannot be ECX"); 2279 2280 switch (code) { 2281 case lir_shl: __ shll(value); break; 2282 case lir_shr: __ sarl(value); break; 2283 case lir_ushr: __ shrl(value); break; 2284 default: ShouldNotReachHere(); 2285 } 2286 } else if (left->is_double_cpu()) { 2287 Register lo = left->as_register_lo(); 2288 Register hi = left->as_register_hi(); 2289 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2290 switch (code) { 2291 case lir_shl: __ shlptr(lo); break; 2292 case lir_shr: __ sarptr(lo); break; 2293 case lir_ushr: __ shrptr(lo); break; 2294 default: ShouldNotReachHere(); 2295 } 2296 } else { 2297 ShouldNotReachHere(); 2298 } 2299 } 2300 2301 2302 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2303 if (dest->is_single_cpu()) { 2304 // first move left into dest so that left is not destroyed by the shift 2305 Register value = dest->as_register(); 2306 count = count & 0x1F; // Java spec 2307 2308 move_regs(left->as_register(), value); 2309 switch (code) { 2310 case lir_shl: __ shll(value, count); break; 2311 case lir_shr: __ sarl(value, count); break; 2312 case lir_ushr: __ shrl(value, count); break; 2313 default: ShouldNotReachHere(); 2314 } 2315 } else if (dest->is_double_cpu()) { 2316 // first move left into dest so that left is not destroyed by the shift 2317 Register value = dest->as_register_lo(); 2318 count = count & 0x1F; // Java spec 2319 2320 move_regs(left->as_register_lo(), value); 2321 switch (code) { 2322 case lir_shl: __ shlptr(value, count); break; 2323 case lir_shr: __ sarptr(value, count); break; 2324 case lir_ushr: __ shrptr(value, count); break; 2325 default: ShouldNotReachHere(); 2326 } 2327 } else { 2328 ShouldNotReachHere(); 2329 } 2330 } 2331 2332 2333 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2334 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2335 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2336 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2337 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 2338 } 2339 2340 2341 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2342 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2343 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2344 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2345 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 2346 } 2347 2348 2349 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2350 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2351 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2352 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2353 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 2354 } 2355 2356 2357 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 2358 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2359 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2360 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2361 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 2362 } 2363 2364 2365 // This code replaces a call to arraycopy; no exception may 2366 // be thrown in this code, they must be thrown in the System.arraycopy 2367 // activation frame; we could save some checks if this would not be the case 2368 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2369 ciArrayKlass* default_type = op->expected_type(); 2370 Register src = op->src()->as_register(); 2371 Register dst = op->dst()->as_register(); 2372 Register src_pos = op->src_pos()->as_register(); 2373 Register dst_pos = op->dst_pos()->as_register(); 2374 Register length = op->length()->as_register(); 2375 Register tmp = op->tmp()->as_register(); 2376 Register tmp_load_klass = rscratch1; 2377 Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg; 2378 2379 CodeStub* stub = op->stub(); 2380 int flags = op->flags(); 2381 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2382 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2383 2384 // if we don't know anything, just go through the generic arraycopy 2385 if (default_type == nullptr) { 2386 // save outgoing arguments on stack in case call to System.arraycopy is needed 2387 // HACK ALERT. This code used to push the parameters in a hardwired fashion 2388 // for interpreter calling conventions. Now we have to do it in new style conventions. 2389 // For the moment until C1 gets the new register allocator I just force all the 2390 // args to the right place (except the register args) and then on the back side 2391 // reload the register args properly if we go slow path. Yuck 2392 2393 // These are proper for the calling convention 2394 store_parameter(length, 2); 2395 store_parameter(dst_pos, 1); 2396 store_parameter(dst, 0); 2397 2398 // these are just temporary placements until we need to reload 2399 store_parameter(src_pos, 3); 2400 store_parameter(src, 4); 2401 2402 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2403 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2404 2405 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 2406 // The arguments are in java calling convention so we can trivially shift them to C 2407 // convention 2408 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2409 __ mov(c_rarg0, j_rarg0); 2410 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2411 __ mov(c_rarg1, j_rarg1); 2412 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2413 __ mov(c_rarg2, j_rarg2); 2414 assert_different_registers(c_rarg3, j_rarg4); 2415 __ mov(c_rarg3, j_rarg3); 2416 #ifdef _WIN64 2417 // Allocate abi space for args but be sure to keep stack aligned 2418 __ subptr(rsp, 6*wordSize); 2419 store_parameter(j_rarg4, 4); 2420 #ifndef PRODUCT 2421 if (PrintC1Statistics) { 2422 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2423 } 2424 #endif 2425 __ call(RuntimeAddress(copyfunc_addr)); 2426 __ addptr(rsp, 6*wordSize); 2427 #else 2428 __ mov(c_rarg4, j_rarg4); 2429 #ifndef PRODUCT 2430 if (PrintC1Statistics) { 2431 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 2432 } 2433 #endif 2434 __ call(RuntimeAddress(copyfunc_addr)); 2435 #endif // _WIN64 2436 2437 __ testl(rax, rax); 2438 __ jcc(Assembler::equal, *stub->continuation()); 2439 2440 __ mov(tmp, rax); 2441 __ xorl(tmp, -1); 2442 2443 // Reload values from the stack so they are where the stub 2444 // expects them. 2445 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2446 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2447 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2448 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2449 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2450 2451 __ subl(length, tmp); 2452 __ addl(src_pos, tmp); 2453 __ addl(dst_pos, tmp); 2454 __ jmp(*stub->entry()); 2455 2456 __ bind(*stub->continuation()); 2457 return; 2458 } 2459 2460 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2461 2462 int elem_size = type2aelembytes(basic_type); 2463 Address::ScaleFactor scale; 2464 2465 switch (elem_size) { 2466 case 1 : 2467 scale = Address::times_1; 2468 break; 2469 case 2 : 2470 scale = Address::times_2; 2471 break; 2472 case 4 : 2473 scale = Address::times_4; 2474 break; 2475 case 8 : 2476 scale = Address::times_8; 2477 break; 2478 default: 2479 scale = Address::no_scale; 2480 ShouldNotReachHere(); 2481 } 2482 2483 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2484 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2485 2486 // length and pos's are all sign extended at this point on 64bit 2487 2488 // test for null 2489 if (flags & LIR_OpArrayCopy::src_null_check) { 2490 __ testptr(src, src); 2491 __ jcc(Assembler::zero, *stub->entry()); 2492 } 2493 if (flags & LIR_OpArrayCopy::dst_null_check) { 2494 __ testptr(dst, dst); 2495 __ jcc(Assembler::zero, *stub->entry()); 2496 } 2497 2498 // If the compiler was not able to prove that exact type of the source or the destination 2499 // of the arraycopy is an array type, check at runtime if the source or the destination is 2500 // an instance type. 2501 if (flags & LIR_OpArrayCopy::type_check) { 2502 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2503 __ load_klass(tmp, dst, tmp_load_klass); 2504 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2505 __ jcc(Assembler::greaterEqual, *stub->entry()); 2506 } 2507 2508 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2509 __ load_klass(tmp, src, tmp_load_klass); 2510 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 2511 __ jcc(Assembler::greaterEqual, *stub->entry()); 2512 } 2513 } 2514 2515 // check if negative 2516 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2517 __ testl(src_pos, src_pos); 2518 __ jcc(Assembler::less, *stub->entry()); 2519 } 2520 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2521 __ testl(dst_pos, dst_pos); 2522 __ jcc(Assembler::less, *stub->entry()); 2523 } 2524 2525 if (flags & LIR_OpArrayCopy::src_range_check) { 2526 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 2527 __ cmpl(tmp, src_length_addr); 2528 __ jcc(Assembler::above, *stub->entry()); 2529 } 2530 if (flags & LIR_OpArrayCopy::dst_range_check) { 2531 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 2532 __ cmpl(tmp, dst_length_addr); 2533 __ jcc(Assembler::above, *stub->entry()); 2534 } 2535 2536 if (flags & LIR_OpArrayCopy::length_positive_check) { 2537 __ testl(length, length); 2538 __ jcc(Assembler::less, *stub->entry()); 2539 } 2540 2541 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 2542 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 2543 2544 if (flags & LIR_OpArrayCopy::type_check) { 2545 // We don't know the array types are compatible 2546 if (basic_type != T_OBJECT) { 2547 // Simple test for basic type arrays 2548 __ cmp_klasses_from_objects(src, dst, tmp, tmp2); 2549 __ jcc(Assembler::notEqual, *stub->entry()); 2550 } else { 2551 // For object arrays, if src is a sub class of dst then we can 2552 // safely do the copy. 2553 Label cont, slow; 2554 2555 __ push(src); 2556 __ push(dst); 2557 2558 __ load_klass(src, src, tmp_load_klass); 2559 __ load_klass(dst, dst, tmp_load_klass); 2560 2561 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2562 2563 __ push(src); 2564 __ push(dst); 2565 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2566 __ pop(dst); 2567 __ pop(src); 2568 2569 __ testl(src, src); 2570 __ jcc(Assembler::notEqual, cont); 2571 2572 __ bind(slow); 2573 __ pop(dst); 2574 __ pop(src); 2575 2576 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2577 if (copyfunc_addr != nullptr) { // use stub if available 2578 // src is not a sub class of dst so we have to do a 2579 // per-element check. 2580 2581 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2582 if ((flags & mask) != mask) { 2583 // Check that at least both of them object arrays. 2584 assert(flags & mask, "one of the two should be known to be an object array"); 2585 2586 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2587 __ load_klass(tmp, src, tmp_load_klass); 2588 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2589 __ load_klass(tmp, dst, tmp_load_klass); 2590 } 2591 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2592 Address klass_lh_addr(tmp, lh_offset); 2593 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2594 __ cmpl(klass_lh_addr, objArray_lh); 2595 __ jcc(Assembler::notEqual, *stub->entry()); 2596 } 2597 2598 // Spill because stubs can use any register they like and it's 2599 // easier to restore just those that we care about. 2600 store_parameter(dst, 0); 2601 store_parameter(dst_pos, 1); 2602 store_parameter(length, 2); 2603 store_parameter(src_pos, 3); 2604 store_parameter(src, 4); 2605 2606 __ movl2ptr(length, length); //higher 32bits must be null 2607 2608 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2609 assert_different_registers(c_rarg0, dst, dst_pos, length); 2610 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2611 assert_different_registers(c_rarg1, dst, length); 2612 2613 __ mov(c_rarg2, length); 2614 assert_different_registers(c_rarg2, dst); 2615 2616 #ifdef _WIN64 2617 // Allocate abi space for args but be sure to keep stack aligned 2618 __ subptr(rsp, 6*wordSize); 2619 __ load_klass(c_rarg3, dst, tmp_load_klass); 2620 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 2621 store_parameter(c_rarg3, 4); 2622 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 2623 __ call(RuntimeAddress(copyfunc_addr)); 2624 __ addptr(rsp, 6*wordSize); 2625 #else 2626 __ load_klass(c_rarg4, dst, tmp_load_klass); 2627 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2628 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2629 __ call(RuntimeAddress(copyfunc_addr)); 2630 #endif 2631 2632 #ifndef PRODUCT 2633 if (PrintC1Statistics) { 2634 Label failed; 2635 __ testl(rax, rax); 2636 __ jcc(Assembler::notZero, failed); 2637 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 2638 __ bind(failed); 2639 } 2640 #endif 2641 2642 __ testl(rax, rax); 2643 __ jcc(Assembler::zero, *stub->continuation()); 2644 2645 #ifndef PRODUCT 2646 if (PrintC1Statistics) { 2647 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 2648 } 2649 #endif 2650 2651 __ mov(tmp, rax); 2652 2653 __ xorl(tmp, -1); 2654 2655 // Restore previously spilled arguments 2656 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 2657 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 2658 __ movptr (length, Address(rsp, 2*BytesPerWord)); 2659 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 2660 __ movptr (src, Address(rsp, 4*BytesPerWord)); 2661 2662 2663 __ subl(length, tmp); 2664 __ addl(src_pos, tmp); 2665 __ addl(dst_pos, tmp); 2666 } 2667 2668 __ jmp(*stub->entry()); 2669 2670 __ bind(cont); 2671 __ pop(dst); 2672 __ pop(src); 2673 } 2674 } 2675 2676 #ifdef ASSERT 2677 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2678 // Sanity check the known type with the incoming class. For the 2679 // primitive case the types must match exactly with src.klass and 2680 // dst.klass each exactly matching the default type. For the 2681 // object array case, if no type check is needed then either the 2682 // dst type is exactly the expected type and the src type is a 2683 // subtype which we can't check or src is the same array as dst 2684 // but not necessarily exactly of type default_type. 2685 Label known_ok, halt; 2686 __ mov_metadata(tmp, default_type->constant_encoding()); 2687 if (UseCompressedClassPointers) { 2688 __ encode_klass_not_null(tmp, rscratch1); 2689 } 2690 2691 if (basic_type != T_OBJECT) { 2692 __ cmp_klass(tmp, dst, tmp2); 2693 __ jcc(Assembler::notEqual, halt); 2694 __ cmp_klass(tmp, src, tmp2); 2695 __ jcc(Assembler::equal, known_ok); 2696 } else { 2697 __ cmp_klass(tmp, dst, tmp2); 2698 __ jcc(Assembler::equal, known_ok); 2699 __ cmpptr(src, dst); 2700 __ jcc(Assembler::equal, known_ok); 2701 } 2702 __ bind(halt); 2703 __ stop("incorrect type information in arraycopy"); 2704 __ bind(known_ok); 2705 } 2706 #endif 2707 2708 #ifndef PRODUCT 2709 if (PrintC1Statistics) { 2710 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 2711 } 2712 #endif 2713 2714 assert_different_registers(c_rarg0, dst, dst_pos, length); 2715 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2716 assert_different_registers(c_rarg1, length); 2717 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 2718 __ mov(c_rarg2, length); 2719 2720 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2721 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2722 const char *name; 2723 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2724 __ call_VM_leaf(entry, 0); 2725 2726 if (stub != nullptr) { 2727 __ bind(*stub->continuation()); 2728 } 2729 } 2730 2731 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2732 assert(op->crc()->is_single_cpu(), "crc must be register"); 2733 assert(op->val()->is_single_cpu(), "byte value must be register"); 2734 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2735 Register crc = op->crc()->as_register(); 2736 Register val = op->val()->as_register(); 2737 Register res = op->result_opr()->as_register(); 2738 2739 assert_different_registers(val, crc, res); 2740 2741 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 2742 __ notl(crc); // ~crc 2743 __ update_byte_crc32(crc, val, res); 2744 __ notl(crc); // ~crc 2745 __ mov(res, crc); 2746 } 2747 2748 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2749 Register obj = op->obj_opr()->as_register(); // may not be an oop 2750 Register hdr = op->hdr_opr()->as_register(); 2751 Register lock = op->lock_opr()->as_register(); 2752 if (LockingMode == LM_MONITOR) { 2753 if (op->info() != nullptr) { 2754 add_debug_info_for_null_check_here(op->info()); 2755 __ null_check(obj); 2756 } 2757 __ jmp(*op->stub()->entry()); 2758 } else if (op->code() == lir_lock) { 2759 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2760 Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg; 2761 // add debug info for NullPointerException only if one is possible 2762 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2763 if (op->info() != nullptr) { 2764 add_debug_info_for_null_check(null_check_offset, op->info()); 2765 } 2766 // done 2767 } else if (op->code() == lir_unlock) { 2768 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2769 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2770 } else { 2771 Unimplemented(); 2772 } 2773 __ bind(*op->stub()->continuation()); 2774 } 2775 2776 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2777 Register obj = op->obj()->as_pointer_register(); 2778 Register result = op->result_opr()->as_pointer_register(); 2779 2780 CodeEmitInfo* info = op->info(); 2781 if (info != nullptr) { 2782 add_debug_info_for_null_check_here(info); 2783 } 2784 2785 __ load_klass(result, obj, rscratch1); 2786 } 2787 2788 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2789 ciMethod* method = op->profiled_method(); 2790 int bci = op->profiled_bci(); 2791 ciMethod* callee = op->profiled_callee(); 2792 Register tmp_load_klass = rscratch1; 2793 2794 // Update counter for all call types 2795 ciMethodData* md = method->method_data_or_null(); 2796 assert(md != nullptr, "Sanity"); 2797 ciProfileData* data = md->bci_to_data(bci); 2798 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2799 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2800 Register mdo = op->mdo()->as_register(); 2801 __ mov_metadata(mdo, md->constant_encoding()); 2802 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2803 // Perform additional virtual call profiling for invokevirtual and 2804 // invokeinterface bytecodes 2805 if (op->should_profile_receiver_type()) { 2806 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2807 Register recv = op->recv()->as_register(); 2808 assert_different_registers(mdo, recv); 2809 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2810 ciKlass* known_klass = op->known_holder(); 2811 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2812 // We know the type that will be seen at this call site; we can 2813 // statically update the MethodData* rather than needing to do 2814 // dynamic tests on the receiver type 2815 2816 // NOTE: we should probably put a lock around this search to 2817 // avoid collisions by concurrent compilations 2818 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2819 uint i; 2820 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2821 ciKlass* receiver = vc_data->receiver(i); 2822 if (known_klass->equals(receiver)) { 2823 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2824 __ addptr(data_addr, DataLayout::counter_increment); 2825 return; 2826 } 2827 } 2828 2829 // Receiver type not found in profile data; select an empty slot 2830 2831 // Note that this is less efficient than it should be because it 2832 // always does a write to the receiver part of the 2833 // VirtualCallData rather than just the first time 2834 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2835 ciKlass* receiver = vc_data->receiver(i); 2836 if (receiver == nullptr) { 2837 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2838 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 2839 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2840 __ addptr(data_addr, DataLayout::counter_increment); 2841 return; 2842 } 2843 } 2844 } else { 2845 __ load_klass(recv, recv, tmp_load_klass); 2846 Label update_done; 2847 type_profile_helper(mdo, md, data, recv, &update_done); 2848 // Receiver did not match any saved receiver and there is no empty row for it. 2849 // Increment total counter to indicate polymorphic case. 2850 __ addptr(counter_addr, DataLayout::counter_increment); 2851 2852 __ bind(update_done); 2853 } 2854 } else { 2855 // Static call 2856 __ addptr(counter_addr, DataLayout::counter_increment); 2857 } 2858 } 2859 2860 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2861 Register obj = op->obj()->as_register(); 2862 Register tmp = op->tmp()->as_pointer_register(); 2863 Register tmp_load_klass = rscratch1; 2864 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2865 ciKlass* exact_klass = op->exact_klass(); 2866 intptr_t current_klass = op->current_klass(); 2867 bool not_null = op->not_null(); 2868 bool no_conflict = op->no_conflict(); 2869 2870 Label update, next, none; 2871 2872 bool do_null = !not_null; 2873 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2874 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2875 2876 assert(do_null || do_update, "why are we here?"); 2877 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2878 2879 __ verify_oop(obj); 2880 2881 #ifdef ASSERT 2882 if (obj == tmp) { 2883 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 2884 } else { 2885 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 2886 } 2887 #endif 2888 if (do_null) { 2889 __ testptr(obj, obj); 2890 __ jccb(Assembler::notZero, update); 2891 if (!TypeEntries::was_null_seen(current_klass)) { 2892 __ testptr(mdo_addr, TypeEntries::null_seen); 2893 #ifndef ASSERT 2894 __ jccb(Assembler::notZero, next); // already set 2895 #else 2896 __ jcc(Assembler::notZero, next); // already set 2897 #endif 2898 // atomic update to prevent overwriting Klass* with 0 2899 __ lock(); 2900 __ orptr(mdo_addr, TypeEntries::null_seen); 2901 } 2902 if (do_update) { 2903 #ifndef ASSERT 2904 __ jmpb(next); 2905 } 2906 #else 2907 __ jmp(next); 2908 } 2909 } else { 2910 __ testptr(obj, obj); 2911 __ jcc(Assembler::notZero, update); 2912 __ stop("unexpected null obj"); 2913 #endif 2914 } 2915 2916 __ bind(update); 2917 2918 if (do_update) { 2919 #ifdef ASSERT 2920 if (exact_klass != nullptr) { 2921 Label ok; 2922 __ load_klass(tmp, obj, tmp_load_klass); 2923 __ push(tmp); 2924 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2925 __ cmpptr(tmp, Address(rsp, 0)); 2926 __ jcc(Assembler::equal, ok); 2927 __ stop("exact klass and actual klass differ"); 2928 __ bind(ok); 2929 __ pop(tmp); 2930 } 2931 #endif 2932 if (!no_conflict) { 2933 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2934 if (exact_klass != nullptr) { 2935 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2936 } else { 2937 __ load_klass(tmp, obj, tmp_load_klass); 2938 } 2939 __ mov(rscratch1, tmp); // save original value before XOR 2940 __ xorptr(tmp, mdo_addr); 2941 __ testptr(tmp, TypeEntries::type_klass_mask); 2942 // klass seen before, nothing to do. The unknown bit may have been 2943 // set already but no need to check. 2944 __ jccb(Assembler::zero, next); 2945 2946 __ testptr(tmp, TypeEntries::type_unknown); 2947 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2948 2949 if (TypeEntries::is_type_none(current_klass)) { 2950 __ testptr(mdo_addr, TypeEntries::type_mask); 2951 __ jccb(Assembler::zero, none); 2952 // There is a chance that the checks above (re-reading profiling 2953 // data from memory) fail if another thread has just set the 2954 // profiling to this obj's klass 2955 __ mov(tmp, rscratch1); // get back original value before XOR 2956 __ xorptr(tmp, mdo_addr); 2957 __ testptr(tmp, TypeEntries::type_klass_mask); 2958 __ jccb(Assembler::zero, next); 2959 } 2960 } else { 2961 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2962 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2963 2964 __ testptr(mdo_addr, TypeEntries::type_unknown); 2965 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 2966 } 2967 2968 // different than before. Cannot keep accurate profile. 2969 __ orptr(mdo_addr, TypeEntries::type_unknown); 2970 2971 if (TypeEntries::is_type_none(current_klass)) { 2972 __ jmpb(next); 2973 2974 __ bind(none); 2975 // first time here. Set profile type. 2976 __ movptr(mdo_addr, tmp); 2977 #ifdef ASSERT 2978 __ andptr(tmp, TypeEntries::type_klass_mask); 2979 __ verify_klass_ptr(tmp); 2980 #endif 2981 } 2982 } else { 2983 // There's a single possible klass at this profile point 2984 assert(exact_klass != nullptr, "should be"); 2985 if (TypeEntries::is_type_none(current_klass)) { 2986 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2987 __ xorptr(tmp, mdo_addr); 2988 __ testptr(tmp, TypeEntries::type_klass_mask); 2989 #ifdef ASSERT 2990 __ jcc(Assembler::zero, next); 2991 2992 { 2993 Label ok; 2994 __ push(tmp); 2995 __ testptr(mdo_addr, TypeEntries::type_mask); 2996 __ jcc(Assembler::zero, ok); 2997 // may have been set by another thread 2998 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2999 __ xorptr(tmp, mdo_addr); 3000 __ testptr(tmp, TypeEntries::type_mask); 3001 __ jcc(Assembler::zero, ok); 3002 3003 __ stop("unexpected profiling mismatch"); 3004 __ bind(ok); 3005 __ pop(tmp); 3006 } 3007 #else 3008 __ jccb(Assembler::zero, next); 3009 #endif 3010 // first time here. Set profile type. 3011 __ movptr(mdo_addr, tmp); 3012 #ifdef ASSERT 3013 __ andptr(tmp, TypeEntries::type_klass_mask); 3014 __ verify_klass_ptr(tmp); 3015 #endif 3016 } else { 3017 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3018 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3019 3020 __ testptr(mdo_addr, TypeEntries::type_unknown); 3021 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3022 3023 __ orptr(mdo_addr, TypeEntries::type_unknown); 3024 } 3025 } 3026 } 3027 __ bind(next); 3028 } 3029 3030 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3031 Unimplemented(); 3032 } 3033 3034 3035 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3036 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3037 } 3038 3039 3040 void LIR_Assembler::align_backward_branch_target() { 3041 __ align(BytesPerWord); 3042 } 3043 3044 3045 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3046 if (left->is_single_cpu()) { 3047 __ negl(left->as_register()); 3048 move_regs(left->as_register(), dest->as_register()); 3049 3050 } else if (left->is_double_cpu()) { 3051 Register lo = left->as_register_lo(); 3052 Register dst = dest->as_register_lo(); 3053 __ movptr(dst, lo); 3054 __ negptr(dst); 3055 3056 } else if (dest->is_single_xmm()) { 3057 assert(!tmp->is_valid(), "do not need temporary"); 3058 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3059 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3060 } 3061 __ xorps(dest->as_xmm_float_reg(), 3062 ExternalAddress((address)float_signflip_pool), 3063 rscratch1); 3064 } else if (dest->is_double_xmm()) { 3065 assert(!tmp->is_valid(), "do not need temporary"); 3066 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3067 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3068 } 3069 __ xorpd(dest->as_xmm_double_reg(), 3070 ExternalAddress((address)double_signflip_pool), 3071 rscratch1); 3072 } else { 3073 ShouldNotReachHere(); 3074 } 3075 } 3076 3077 3078 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3079 assert(src->is_address(), "must be an address"); 3080 assert(dest->is_register(), "must be a register"); 3081 3082 PatchingStub* patch = nullptr; 3083 if (patch_code != lir_patch_none) { 3084 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3085 } 3086 3087 Register reg = dest->as_pointer_register(); 3088 LIR_Address* addr = src->as_address_ptr(); 3089 __ lea(reg, as_Address(addr)); 3090 3091 if (patch != nullptr) { 3092 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3093 } 3094 } 3095 3096 3097 3098 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3099 assert(!tmp->is_valid(), "don't need temporary"); 3100 __ call(RuntimeAddress(dest)); 3101 if (info != nullptr) { 3102 add_call_info_here(info); 3103 } 3104 __ post_call_nop(); 3105 } 3106 3107 3108 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3109 assert(type == T_LONG, "only for volatile long fields"); 3110 3111 if (info != nullptr) { 3112 add_debug_info_for_null_check_here(info); 3113 } 3114 3115 if (src->is_double_xmm()) { 3116 if (dest->is_double_cpu()) { 3117 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3118 } else if (dest->is_double_stack()) { 3119 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3120 } else if (dest->is_address()) { 3121 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3122 } else { 3123 ShouldNotReachHere(); 3124 } 3125 3126 } else if (dest->is_double_xmm()) { 3127 if (src->is_double_stack()) { 3128 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3129 } else if (src->is_address()) { 3130 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3131 } else { 3132 ShouldNotReachHere(); 3133 } 3134 3135 } else { 3136 ShouldNotReachHere(); 3137 } 3138 } 3139 3140 #ifdef ASSERT 3141 // emit run-time assertion 3142 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3143 assert(op->code() == lir_assert, "must be"); 3144 3145 if (op->in_opr1()->is_valid()) { 3146 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3147 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3148 } else { 3149 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3150 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3151 } 3152 3153 Label ok; 3154 if (op->condition() != lir_cond_always) { 3155 Assembler::Condition acond = Assembler::zero; 3156 switch (op->condition()) { 3157 case lir_cond_equal: acond = Assembler::equal; break; 3158 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3159 case lir_cond_less: acond = Assembler::less; break; 3160 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3161 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3162 case lir_cond_greater: acond = Assembler::greater; break; 3163 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3164 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3165 default: ShouldNotReachHere(); 3166 } 3167 __ jcc(acond, ok); 3168 } 3169 if (op->halt()) { 3170 const char* str = __ code_string(op->msg()); 3171 __ stop(str); 3172 } else { 3173 breakpoint(); 3174 } 3175 __ bind(ok); 3176 } 3177 #endif 3178 3179 void LIR_Assembler::membar() { 3180 // QQQ sparc TSO uses this, 3181 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3182 } 3183 3184 void LIR_Assembler::membar_acquire() { 3185 // No x86 machines currently require load fences 3186 } 3187 3188 void LIR_Assembler::membar_release() { 3189 // No x86 machines currently require store fences 3190 } 3191 3192 void LIR_Assembler::membar_loadload() { 3193 // no-op 3194 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3195 } 3196 3197 void LIR_Assembler::membar_storestore() { 3198 // no-op 3199 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3200 } 3201 3202 void LIR_Assembler::membar_loadstore() { 3203 // no-op 3204 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 3205 } 3206 3207 void LIR_Assembler::membar_storeload() { 3208 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3209 } 3210 3211 void LIR_Assembler::on_spin_wait() { 3212 __ pause (); 3213 } 3214 3215 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3216 assert(result_reg->is_register(), "check"); 3217 __ mov(result_reg->as_register(), r15_thread); 3218 } 3219 3220 3221 void LIR_Assembler::peephole(LIR_List*) { 3222 // do nothing for now 3223 } 3224 3225 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3226 assert(data == dest, "xchg/xadd uses only 2 operands"); 3227 3228 if (data->type() == T_INT) { 3229 if (code == lir_xadd) { 3230 __ lock(); 3231 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 3232 } else { 3233 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 3234 } 3235 } else if (data->is_oop()) { 3236 assert (code == lir_xchg, "xadd for oops"); 3237 Register obj = data->as_register(); 3238 if (UseCompressedOops) { 3239 __ encode_heap_oop(obj); 3240 __ xchgl(obj, as_Address(src->as_address_ptr())); 3241 __ decode_heap_oop(obj); 3242 } else { 3243 __ xchgptr(obj, as_Address(src->as_address_ptr())); 3244 } 3245 } else if (data->type() == T_LONG) { 3246 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 3247 if (code == lir_xadd) { 3248 __ lock(); 3249 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 3250 } else { 3251 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 3252 } 3253 } else { 3254 ShouldNotReachHere(); 3255 } 3256 } 3257 3258 #undef __