1 /* 2 * Copyright (c) 2020, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_CDS_ARCHIVEBUILDER_HPP 26 #define SHARE_CDS_ARCHIVEBUILDER_HPP 27 28 #include "cds/archiveUtils.hpp" 29 #include "cds/dumpAllocStats.hpp" 30 #include "memory/metaspace.hpp" 31 #include "memory/metaspaceClosure.hpp" 32 #include "memory/reservedSpace.hpp" 33 #include "memory/virtualspace.hpp" 34 #include "oops/array.hpp" 35 #include "oops/klass.hpp" 36 #include "runtime/os.hpp" 37 #include "utilities/bitMap.hpp" 38 #include "utilities/growableArray.hpp" 39 #include "utilities/resizeableResourceHash.hpp" 40 #include "utilities/resourceHash.hpp" 41 42 class ArchiveHeapInfo; 43 class CHeapBitMap; 44 class FileMapInfo; 45 class Klass; 46 class MemRegion; 47 class Symbol; 48 49 // The minimum alignment for non-Klass objects inside the CDS archive. Klass objects need 50 // to follow CompressedKlassPointers::klass_alignment_in_bytes(). 51 constexpr size_t SharedSpaceObjectAlignment = Metaspace::min_allocation_alignment_bytes; 52 53 // Overview of CDS archive creation (for both static and dynamic dump): 54 // 55 // [1] Load all classes (static dump: from the classlist, dynamic dump: as part of app execution) 56 // [2] Allocate "output buffer" 57 // [3] Copy contents of the 2 "core" regions (rw/ro) into the output buffer. 58 // - allocate the cpp vtables in rw (static dump only) 59 // - memcpy the MetaspaceObjs into rw/ro: 60 // dump_rw_region(); 61 // dump_ro_region(); 62 // - fix all the pointers in the MetaspaceObjs to point to the copies 63 // relocate_metaspaceobj_embedded_pointers() 64 // [4] Copy symbol table, dictionary, etc, into the ro region 65 // [5] Relocate all the pointers in rw/ro, so that the archive can be mapped to 66 // the "requested" location without runtime relocation. See relocate_to_requested() 67 // 68 // "source" vs "buffered" vs "requested" 69 // 70 // The ArchiveBuilder deals with three types of addresses. 71 // 72 // "source": These are the addresses of objects created in step [1] above. They are the actual 73 // InstanceKlass*, Method*, etc, of the Java classes that are loaded for executing 74 // Java bytecodes in the JVM process that's dumping the CDS archive. 75 // 76 // It may be necessary to contiue Java execution after ArchiveBuilder is finished. 77 // Therefore, we don't modify any of the "source" objects. 78 // 79 // "buffered": The "source" objects that are deemed archivable are copied into a temporary buffer. 80 // Objects in the buffer are modified in steps [2, 3, 4] (e.g., unshareable info is 81 // removed, pointers are relocated, etc) to prepare them to be loaded at runtime. 82 // 83 // "requested": These are the addreses where the "buffered" objects should be loaded at runtime. 84 // When the "buffered" objects are written into the archive file, their addresses 85 // are adjusted in step [5] such that the lowest of these objects would be mapped 86 // at SharedBaseAddress. 87 // 88 // Translation between "source" and "buffered" addresses is done with two hashtables: 89 // _src_obj_table : "source" -> "buffered" 90 // _buffered_to_src_table : "buffered" -> "source" 91 // 92 // Translation between "buffered" and "requested" addresses is done with a simple shift: 93 // buffered_address + _buffer_to_requested_delta == requested_address 94 // 95 class ArchiveBuilder : public StackObj { 96 protected: 97 DumpRegion* _current_dump_region; 98 address _buffer_bottom; // for writing the contents of rw/ro regions 99 100 // These are the addresses where we will request the static and dynamic archives to be 101 // mapped at run time. If the request fails (due to ASLR), we will map the archives at 102 // os-selected addresses. 103 address _requested_static_archive_bottom; // This is determined solely by the value of 104 // SharedBaseAddress during -Xshare:dump. 105 address _requested_static_archive_top; 106 address _requested_dynamic_archive_bottom; // Used only during dynamic dump. It's placed 107 // immediately above _requested_static_archive_top. 108 address _requested_dynamic_archive_top; 109 110 // (Used only during dynamic dump) where the static archive is actually mapped. This 111 // may be different than _requested_static_archive_{bottom,top} due to ASLR 112 address _mapped_static_archive_bottom; 113 address _mapped_static_archive_top; 114 115 intx _buffer_to_requested_delta; 116 117 DumpRegion* current_dump_region() const { return _current_dump_region; } 118 119 public: 120 enum FollowMode { 121 make_a_copy, point_to_it, set_to_null 122 }; 123 124 private: 125 class SourceObjInfo { 126 uintx _ptrmap_start; // The bit-offset of the start of this object (inclusive) 127 uintx _ptrmap_end; // The bit-offset of the end of this object (exclusive) 128 bool _read_only; 129 bool _has_embedded_pointer; 130 FollowMode _follow_mode; 131 int _size_in_bytes; 132 int _id; // Each object has a unique serial ID, starting from zero. The ID is assigned 133 // when the object is added into _source_objs. 134 MetaspaceObj::Type _msotype; 135 address _source_addr; // The source object to be copied. 136 address _buffered_addr; // The copy of this object insider the buffer. 137 public: 138 SourceObjInfo(MetaspaceClosure::Ref* ref, bool read_only, FollowMode follow_mode) : 139 _ptrmap_start(0), _ptrmap_end(0), _read_only(read_only), _has_embedded_pointer(false), _follow_mode(follow_mode), 140 _size_in_bytes(ref->size() * BytesPerWord), _id(0), _msotype(ref->msotype()), 141 _source_addr(ref->obj()) { 142 if (follow_mode == point_to_it) { 143 _buffered_addr = ref->obj(); 144 } else { 145 _buffered_addr = nullptr; 146 } 147 } 148 149 // This constructor is only used for regenerated objects (created by LambdaFormInvokers, etc). 150 // src = address of a Method or InstanceKlass that has been regenerated. 151 // renegerated_obj_info = info for the regenerated version of src. 152 SourceObjInfo(address src, SourceObjInfo* renegerated_obj_info) : 153 _ptrmap_start(0), _ptrmap_end(0), _read_only(false), 154 _follow_mode(renegerated_obj_info->_follow_mode), 155 _size_in_bytes(0), _msotype(renegerated_obj_info->_msotype), 156 _source_addr(src), _buffered_addr(renegerated_obj_info->_buffered_addr) {} 157 158 bool should_copy() const { return _follow_mode == make_a_copy; } 159 void set_buffered_addr(address addr) { 160 assert(should_copy(), "must be"); 161 assert(_buffered_addr == nullptr, "cannot be copied twice"); 162 assert(addr != nullptr, "must be a valid copy"); 163 _buffered_addr = addr; 164 } 165 void set_ptrmap_start(uintx v) { _ptrmap_start = v; } 166 void set_ptrmap_end(uintx v) { _ptrmap_end = v; } 167 uintx ptrmap_start() const { return _ptrmap_start; } // inclusive 168 uintx ptrmap_end() const { return _ptrmap_end; } // exclusive 169 bool read_only() const { return _read_only; } 170 bool has_embedded_pointer() const { return _has_embedded_pointer; } 171 void set_has_embedded_pointer() { _has_embedded_pointer = true; } 172 int size_in_bytes() const { return _size_in_bytes; } 173 int id() const { return _id; } 174 void set_id(int i) { _id = i; } 175 address source_addr() const { return _source_addr; } 176 address buffered_addr() const { 177 if (_follow_mode != set_to_null) { 178 assert(_buffered_addr != nullptr, "must be initialized"); 179 } 180 return _buffered_addr; 181 } 182 MetaspaceObj::Type msotype() const { return _msotype; } 183 }; 184 185 class SourceObjList { 186 uintx _total_bytes; 187 GrowableArray<SourceObjInfo*>* _objs; // Source objects to be archived 188 CHeapBitMap _ptrmap; // Marks the addresses of the pointer fields 189 // in the source objects 190 public: 191 SourceObjList(); 192 ~SourceObjList(); 193 194 GrowableArray<SourceObjInfo*>* objs() const { return _objs; } 195 196 void append(SourceObjInfo* src_info); 197 void remember_embedded_pointer(SourceObjInfo* pointing_obj, MetaspaceClosure::Ref* ref); 198 void relocate(int i, ArchiveBuilder* builder); 199 200 // convenience accessor 201 SourceObjInfo* at(int i) const { return objs()->at(i); } 202 }; 203 204 class CDSMapLogger; 205 206 static const int INITIAL_TABLE_SIZE = 15889; 207 static const int MAX_TABLE_SIZE = 1000000; 208 209 ReservedSpace _shared_rs; 210 VirtualSpace _shared_vs; 211 212 // The "pz" region is used only during static dumps to reserve an unused space between SharedBaseAddress and 213 // the bottom of the rw region. During runtime, this space will be filled with a reserved area that disallows 214 // read/write/exec, so we can track for bad CompressedKlassPointers encoding. 215 // Note: this region does NOT exist in the cds archive. 216 DumpRegion _pz_region; 217 218 DumpRegion _rw_region; 219 DumpRegion _ro_region; 220 221 // Combined bitmap to track pointers in both RW and RO regions. This is updated 222 // as objects are copied into RW and RO. 223 CHeapBitMap _ptrmap; 224 225 // _ptrmap is split into these two bitmaps which are written into the archive. 226 CHeapBitMap _rw_ptrmap; // marks pointers in the RW region 227 CHeapBitMap _ro_ptrmap; // marks pointers in the RO region 228 229 SourceObjList _rw_src_objs; // objs to put in rw region 230 SourceObjList _ro_src_objs; // objs to put in ro region 231 ResizeableResourceHashtable<address, SourceObjInfo, AnyObj::C_HEAP, mtClassShared> _src_obj_table; 232 ResizeableResourceHashtable<address, address, AnyObj::C_HEAP, mtClassShared> _buffered_to_src_table; 233 GrowableArray<Klass*>* _klasses; 234 GrowableArray<Symbol*>* _symbols; 235 unsigned int _entropy_seed; 236 237 // statistics 238 DumpAllocStats _alloc_stats; 239 size_t _total_heap_region_size; 240 241 void print_region_stats(FileMapInfo *map_info, ArchiveHeapInfo* heap_info); 242 void print_bitmap_region_stats(size_t size, size_t total_size); 243 void print_heap_region_stats(ArchiveHeapInfo* heap_info, size_t total_size); 244 245 // For global access. 246 static ArchiveBuilder* _current; 247 248 public: 249 // Use this when you allocate space outside of ArchiveBuilder::dump_{rw,ro}_region. 250 // These are usually for misc tables that are allocated in the RO space. 251 class OtherROAllocMark { 252 char* _oldtop; 253 public: 254 OtherROAllocMark() { 255 _oldtop = _current->_ro_region.top(); 256 } 257 ~OtherROAllocMark(); 258 }; 259 260 private: 261 FollowMode get_follow_mode(MetaspaceClosure::Ref *ref); 262 263 void iterate_sorted_roots(MetaspaceClosure* it); 264 void sort_klasses(); 265 static int compare_symbols_by_address(Symbol** a, Symbol** b); 266 static int compare_klass_by_name(Klass** a, Klass** b); 267 268 void make_shallow_copies(DumpRegion *dump_region, const SourceObjList* src_objs); 269 void make_shallow_copy(DumpRegion *dump_region, SourceObjInfo* src_info); 270 271 void relocate_embedded_pointers(SourceObjList* src_objs); 272 273 bool is_excluded(Klass* k); 274 void clean_up_src_obj_table(); 275 276 protected: 277 virtual void iterate_roots(MetaspaceClosure* it) = 0; 278 void start_dump_region(DumpRegion* next); 279 280 public: 281 address reserve_buffer(); 282 283 address buffer_bottom() const { return _buffer_bottom; } 284 address buffer_top() const { return (address)current_dump_region()->top(); } 285 address requested_static_archive_bottom() const { return _requested_static_archive_bottom; } 286 address mapped_static_archive_bottom() const { return _mapped_static_archive_bottom; } 287 intx buffer_to_requested_delta() const { return _buffer_to_requested_delta; } 288 289 bool is_in_buffer_space(address p) const { 290 return (buffer_bottom() != nullptr && buffer_bottom() <= p && p < buffer_top()); 291 } 292 293 template <typename T> bool is_in_requested_static_archive(T p) const { 294 return _requested_static_archive_bottom <= (address)p && (address)p < _requested_static_archive_top; 295 } 296 297 template <typename T> bool is_in_mapped_static_archive(T p) const { 298 return _mapped_static_archive_bottom <= (address)p && (address)p < _mapped_static_archive_top; 299 } 300 301 template <typename T> bool is_in_buffer_space(T obj) const { 302 return is_in_buffer_space(address(obj)); 303 } 304 305 template <typename T> T to_requested(T obj) const { 306 assert(is_in_buffer_space(obj), "must be"); 307 return (T)(address(obj) + _buffer_to_requested_delta); 308 } 309 310 static intx get_buffer_to_requested_delta() { 311 return current()->buffer_to_requested_delta(); 312 } 313 314 inline static u4 to_offset_u4(uintx offset) { 315 guarantee(offset <= MAX_SHARED_DELTA, "must be 32-bit offset " INTPTR_FORMAT, offset); 316 return (u4)offset; 317 } 318 319 public: 320 static const uintx MAX_SHARED_DELTA = ArchiveUtils::MAX_SHARED_DELTA;; 321 322 // The address p points to an object inside the output buffer. When the archive is mapped 323 // at the requested address, what's the offset of this object from _requested_static_archive_bottom? 324 uintx buffer_to_offset(address p) const; 325 326 // Same as buffer_to_offset, except that the address p points to either (a) an object 327 // inside the output buffer, or (b), an object in the currently mapped static archive. 328 uintx any_to_offset(address p) const; 329 330 // The reverse of buffer_to_offset() 331 address offset_to_buffered_address(u4 offset) const; 332 333 template <typename T> 334 u4 buffer_to_offset_u4(T p) const { 335 uintx offset = buffer_to_offset((address)p); 336 return to_offset_u4(offset); 337 } 338 339 template <typename T> 340 u4 any_to_offset_u4(T p) const { 341 assert(p != nullptr, "must not be null"); 342 uintx offset = any_to_offset((address)p); 343 return to_offset_u4(offset); 344 } 345 346 template <typename T> 347 u4 any_or_null_to_offset_u4(T p) const { 348 if (p == nullptr) { 349 return 0; 350 } else { 351 return any_to_offset_u4<T>(p); 352 } 353 } 354 355 template <typename T> 356 T offset_to_buffered(u4 offset) const { 357 return (T)offset_to_buffered_address(offset); 358 } 359 360 public: 361 ArchiveBuilder(); 362 ~ArchiveBuilder(); 363 364 int entropy(); 365 void gather_klasses_and_symbols(); 366 void gather_source_objs(); 367 bool gather_klass_and_symbol(MetaspaceClosure::Ref* ref, bool read_only); 368 bool gather_one_source_obj(MetaspaceClosure::Ref* ref, bool read_only); 369 void remember_embedded_pointer_in_enclosing_obj(MetaspaceClosure::Ref* ref); 370 static void serialize_dynamic_archivable_items(SerializeClosure* soc); 371 372 DumpRegion* pz_region() { return &_pz_region; } 373 DumpRegion* rw_region() { return &_rw_region; } 374 DumpRegion* ro_region() { return &_ro_region; } 375 376 static char* rw_region_alloc(size_t num_bytes) { 377 return current()->rw_region()->allocate(num_bytes); 378 } 379 static char* ro_region_alloc(size_t num_bytes) { 380 return current()->ro_region()->allocate(num_bytes); 381 } 382 383 template <typename T> 384 static Array<T>* new_ro_array(int length) { 385 size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T)); 386 Array<T>* array = (Array<T>*)ro_region_alloc(byte_size); 387 array->initialize(length); 388 return array; 389 } 390 391 template <typename T> 392 static Array<T>* new_rw_array(int length) { 393 size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T)); 394 Array<T>* array = (Array<T>*)rw_region_alloc(byte_size); 395 array->initialize(length); 396 return array; 397 } 398 399 template <typename T> 400 static size_t ro_array_bytesize(int length) { 401 size_t byte_size = Array<T>::byte_sizeof(length, sizeof(T)); 402 return align_up(byte_size, SharedSpaceObjectAlignment); 403 } 404 405 char* ro_strdup(const char* s); 406 407 static int compare_src_objs(SourceObjInfo** a, SourceObjInfo** b); 408 void sort_metadata_objs(); 409 void dump_rw_metadata(); 410 void dump_ro_metadata(); 411 void relocate_metaspaceobj_embedded_pointers(); 412 void record_regenerated_object(address orig_src_obj, address regen_src_obj); 413 void make_klasses_shareable(); 414 void relocate_to_requested(); 415 void write_archive(FileMapInfo* mapinfo, ArchiveHeapInfo* heap_info); 416 void write_region(FileMapInfo* mapinfo, int region_idx, DumpRegion* dump_region, 417 bool read_only, bool allow_exec); 418 419 void write_pointer_in_buffer(address* ptr_location, address src_addr); 420 template <typename T> void write_pointer_in_buffer(T* ptr_location, T src_addr) { 421 write_pointer_in_buffer((address*)ptr_location, (address)src_addr); 422 } 423 424 void mark_and_relocate_to_buffered_addr(address* ptr_location); 425 template <typename T> void mark_and_relocate_to_buffered_addr(T ptr_location) { 426 mark_and_relocate_to_buffered_addr((address*)ptr_location); 427 } 428 429 bool has_been_buffered(address src_addr) const; 430 template <typename T> bool has_been_buffered(T src_addr) const { 431 return has_been_buffered((address)src_addr); 432 } 433 434 address get_buffered_addr(address src_addr) const; 435 template <typename T> T get_buffered_addr(T src_addr) const { 436 return (T)get_buffered_addr((address)src_addr); 437 } 438 439 address get_source_addr(address buffered_addr) const; 440 template <typename T> T get_source_addr(T buffered_addr) const { 441 return (T)get_source_addr((address)buffered_addr); 442 } 443 444 // All klasses and symbols that will be copied into the archive 445 GrowableArray<Klass*>* klasses() const { return _klasses; } 446 GrowableArray<Symbol*>* symbols() const { return _symbols; } 447 448 static bool is_active() { 449 return (_current != nullptr); 450 } 451 452 static ArchiveBuilder* current() { 453 assert(_current != nullptr, "ArchiveBuilder must be active"); 454 return _current; 455 } 456 457 static DumpAllocStats* alloc_stats() { 458 return &(current()->_alloc_stats); 459 } 460 461 static CompactHashtableStats* symbol_stats() { 462 return alloc_stats()->symbol_stats(); 463 } 464 465 static CompactHashtableStats* string_stats() { 466 return alloc_stats()->string_stats(); 467 } 468 469 narrowKlass get_requested_narrow_klass(Klass* k); 470 471 static Klass* get_buffered_klass(Klass* src_klass) { 472 Klass* klass = (Klass*)current()->get_buffered_addr((address)src_klass); 473 assert(klass != nullptr && klass->is_klass(), "must be"); 474 return klass; 475 } 476 477 static Symbol* get_buffered_symbol(Symbol* src_symbol) { 478 return (Symbol*)current()->get_buffered_addr((address)src_symbol); 479 } 480 481 void print_stats(); 482 void report_out_of_space(const char* name, size_t needed_bytes); 483 484 #ifdef _LP64 485 // The CDS archive contains pre-computed narrow Klass IDs. It carries them in the headers of 486 // archived heap objects. With +UseCompactObjectHeaders, it also carries them in prototypes 487 // in Klass. 488 // When generating the archive, these narrow Klass IDs are computed using the following scheme: 489 // 1) The future encoding base is assumed to point to the first address of the generated mapping. 490 // That means that at runtime, the narrow Klass encoding must be set up with base pointing to 491 // the start address of the mapped CDS metadata archive (wherever that may be). This precludes 492 // zero-based encoding. 493 // 2) The shift must be large enough to result in an encoding range that covers the future assumed 494 // runtime Klass range. That future Klass range will contain both the CDS metadata archive and 495 // the future runtime class space. Since we do not know the size of the future class space, we 496 // need to chose an encoding base/shift combination that will result in a "large enough" size. 497 // The details depend on whether we use compact object headers or legacy object headers. 498 // In Legacy Mode, a narrow Klass ID is 32 bit. This gives us an encoding range size of 4G even 499 // with shift = 0, which is all we need. Therefore, we use a shift=0 for pre-calculating the 500 // narrow Klass IDs. 501 // TinyClassPointer Mode: 502 // We use the highest possible shift value to maximize the encoding range size. 503 static int precomputed_narrow_klass_shift(); 504 #endif // _LP64 505 506 }; 507 508 #endif // SHARE_CDS_ARCHIVEBUILDER_HPP