1 /* 2 * Copyright (c) 2010, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/aotLinkedClassBulkLoader.hpp" 27 #include "code/scopeDesc.hpp" 28 #include "code/SCCache.hpp" 29 #include "compiler/compilationPolicy.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compilerDefinitions.inline.hpp" 32 #include "compiler/compilerOracle.hpp" 33 #include "compiler/recompilationPolicy.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/methodData.hpp" 36 #include "oops/method.inline.hpp" 37 #include "oops/oop.inline.hpp" 38 #include "oops/trainingData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/deoptimization.hpp" 42 #include "runtime/frame.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/globals_extension.hpp" 45 #include "runtime/handles.inline.hpp" 46 #include "runtime/safepoint.hpp" 47 #include "runtime/safepointVerifiers.hpp" 48 #ifdef COMPILER1 49 #include "c1/c1_Compiler.hpp" 50 #endif 51 #ifdef COMPILER2 52 #include "opto/c2compiler.hpp" 53 #endif 54 #if INCLUDE_JVMCI 55 #include "jvmci/jvmci.hpp" 56 #endif 57 58 int64_t CompilationPolicy::_start_time = 0; 59 int CompilationPolicy::_c1_count = 0; 60 int CompilationPolicy::_c2_count = 0; 61 int CompilationPolicy::_c3_count = 0; 62 int CompilationPolicy::_sc_count = 0; 63 double CompilationPolicy::_increase_threshold_at_ratio = 0; 64 65 CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue; 66 67 void compilationPolicy_init() { 68 CompilationPolicy::initialize(); 69 } 70 71 int CompilationPolicy::compiler_count(CompLevel comp_level) { 72 if (is_c1_compile(comp_level)) { 73 return c1_count(); 74 } else if (is_c2_compile(comp_level)) { 75 return c2_count(); 76 } 77 return 0; 78 } 79 80 // Returns true if m must be compiled before executing it 81 // This is intended to force compiles for methods (usually for 82 // debugging) that would otherwise be interpreted for some reason. 83 bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) { 84 // Don't allow Xcomp to cause compiles in replay mode 85 if (ReplayCompiles) return false; 86 87 if (m->has_compiled_code()) return false; // already compiled 88 if (!can_be_compiled(m, comp_level)) return false; 89 90 return !UseInterpreter || // must compile all methods 91 (AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods 92 } 93 94 void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) { 95 if (m->method_holder()->is_not_initialized()) { 96 // 'is_not_initialized' means not only '!is_initialized', but also that 97 // initialization has not been started yet ('!being_initialized') 98 // Do not force compilation of methods in uninitialized classes. 99 return; 100 } 101 if (!m->is_native() && MethodTrainingData::have_data()) { 102 MethodTrainingData* mtd = MethodTrainingData::find(m); 103 if (mtd == nullptr) { 104 return; // there is no training data recorded for m 105 } 106 bool recompile = m->code_has_clinit_barriers(); 107 CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level()); 108 CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD); 109 if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) { 110 bool requires_online_compilation = false; 111 CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level); 112 if (ctd != nullptr) { 113 requires_online_compilation = (ctd->init_deps_left() > 0); 114 } 115 if (requires_online_compilation && recompile) { 116 return; 117 } 118 if (PrintTieredEvents) { 119 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level); 120 } 121 CompileBroker::compile_method(m, InvocationEntryBci, next_level, methodHandle(), 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD); 122 if (HAS_PENDING_EXCEPTION) { 123 CLEAR_PENDING_EXCEPTION; 124 } 125 } 126 } 127 } 128 129 void CompilationPolicy::maybe_compile_early_after_init(const methodHandle& m, TRAPS) { 130 assert(m->method_holder()->is_initialized(), "Should be called after class initialization"); 131 maybe_compile_early(m, THREAD); 132 } 133 134 void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) { 135 if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) { 136 // don't force compilation, resolve was on behalf of compiler 137 return; 138 } 139 if (m->method_holder()->is_not_initialized()) { 140 // 'is_not_initialized' means not only '!is_initialized', but also that 141 // initialization has not been started yet ('!being_initialized') 142 // Do not force compilation of methods in uninitialized classes. 143 // Note that doing this would throw an assert later, 144 // in CompileBroker::compile_method. 145 // We sometimes use the link resolver to do reflective lookups 146 // even before classes are initialized. 147 return; 148 } 149 150 if (must_be_compiled(m)) { 151 // This path is unusual, mostly used by the '-Xcomp' stress test mode. 152 CompLevel level = initial_compile_level(m); 153 if (PrintTieredEvents) { 154 print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level); 155 } 156 CompileBroker::compile_method(m, InvocationEntryBci, level, methodHandle(), 0, false, CompileTask::Reason_MustBeCompiled, THREAD); 157 } 158 } 159 160 void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) { 161 if (!klass->has_init_deps_processed()) { 162 ResourceMark rm; 163 log_debug(training)("Replay training: %s", klass->external_name()); 164 165 KlassTrainingData* ktd = KlassTrainingData::find(klass); 166 if (ktd != nullptr) { 167 guarantee(ktd->has_holder(), ""); 168 ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit 169 assert(klass->has_init_deps_processed(), ""); 170 171 ktd->iterate_all_comp_deps([&](CompileTrainingData* ctd) { 172 if (ctd->init_deps_left() == 0) { 173 MethodTrainingData* mtd = ctd->method(); 174 if (mtd->has_holder()) { 175 const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder())); 176 CompilationPolicy::maybe_compile_early(mh, THREAD); 177 } 178 } 179 }); 180 } 181 Array<Method*>* methods = klass->methods(); 182 for (int i = 0; i < methods->length(); i++) { 183 const methodHandle mh(THREAD, methods->at(i)); 184 CompilationPolicy::maybe_compile_early_after_init(mh, THREAD); 185 } 186 } 187 } 188 189 void CompilationPolicy::replay_training_at_init(bool is_on_shutdown, TRAPS) { 190 // Drain pending queue when no concurrent processing thread is present. 191 if (UseConcurrentTrainingReplay) { 192 if (VerifyTrainingData) { 193 MonitorLocker locker(THREAD, TrainingReplayQueue_lock); 194 while (!_training_replay_queue.is_empty_unlocked()) { 195 locker.wait(); // let the replay training thread drain the queue 196 } 197 } 198 } else { 199 do { 200 InstanceKlass* pending = _training_replay_queue.try_pop(TrainingReplayQueue_lock, THREAD); 201 if (pending == nullptr) { 202 break; // drained the queue 203 } 204 if (is_on_shutdown) { 205 LogStreamHandle(Warning, training) log; 206 if (log.is_enabled()) { 207 ResourceMark rm; 208 log.print("pending training replay request: %s%s", 209 pending->external_name(), (pending->has_aot_initialized_mirror() ? " (preinitialized)" : "")); 210 } 211 } 212 replay_training_at_init_impl(pending, THREAD); 213 } while (true); 214 } 215 216 if (VerifyTrainingData) { 217 TrainingData::verify(); 218 } 219 } 220 221 void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) { 222 assert(klass->is_initialized(), ""); 223 if (TrainingData::have_data() && klass->is_shared() && 224 (CompileBroker::replay_initialized() || !klass->has_aot_initialized_mirror())) { // ignore preloaded classes during early startup 225 if (UseConcurrentTrainingReplay || !CompileBroker::replay_initialized()) { 226 _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD); 227 } else { 228 replay_training_at_init_impl(klass, THREAD); 229 } 230 assert(!HAS_PENDING_EXCEPTION, ""); 231 } 232 } 233 234 // For TrainingReplayQueue 235 template<> 236 void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) { 237 int pos = 0; 238 for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) { 239 ResourceMark rm; 240 InstanceKlass* ik = cur->value(); 241 st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name()); 242 } 243 } 244 245 void CompilationPolicy::replay_training_at_init_loop(TRAPS) { 246 precond(UseConcurrentTrainingReplay); 247 248 while (!CompileBroker::is_compilation_disabled_forever() || VerifyTrainingData) { 249 InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD); 250 replay_training_at_init_impl(ik, THREAD); 251 } 252 } 253 254 static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) { 255 if (comp_level == CompLevel_any) { 256 if (CompilerConfig::is_c1_only()) { 257 comp_level = CompLevel_simple; 258 } else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) { 259 comp_level = CompLevel_full_optimization; 260 } 261 } 262 return comp_level; 263 } 264 265 // Returns true if m is allowed to be compiled 266 bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) { 267 // allow any levels for WhiteBox 268 assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level); 269 270 if (m->is_abstract()) return false; 271 if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; 272 273 // Math intrinsics should never be compiled as this can lead to 274 // monotonicity problems because the interpreter will prefer the 275 // compiled code to the intrinsic version. This can't happen in 276 // production because the invocation counter can't be incremented 277 // but we shouldn't expose the system to this problem in testing 278 // modes. 279 if (!AbstractInterpreter::can_be_compiled(m)) { 280 return false; 281 } 282 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 283 if (comp_level == CompLevel_any || is_compile(comp_level)) { 284 return !m->is_not_compilable(comp_level); 285 } 286 return false; 287 } 288 289 // Returns true if m is allowed to be osr compiled 290 bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) { 291 bool result = false; 292 comp_level = adjust_level_for_compilability_query((CompLevel) comp_level); 293 if (comp_level == CompLevel_any || is_compile(comp_level)) { 294 result = !m->is_not_osr_compilable(comp_level); 295 } 296 return (result && can_be_compiled(m, comp_level)); 297 } 298 299 bool CompilationPolicy::is_compilation_enabled() { 300 // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler 301 return CompileBroker::should_compile_new_jobs(); 302 } 303 304 CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) { 305 // Remove unloaded methods from the queue 306 for (CompileTask* task = compile_queue->first(); task != nullptr; ) { 307 CompileTask* next = task->next(); 308 if (task->is_unloaded()) { 309 compile_queue->remove_and_mark_stale(task); 310 } 311 task = next; 312 } 313 #if INCLUDE_JVMCI 314 if (UseJVMCICompiler && !BackgroundCompilation) { 315 /* 316 * In blocking compilation mode, the CompileBroker will make 317 * compilations submitted by a JVMCI compiler thread non-blocking. These 318 * compilations should be scheduled after all blocking compilations 319 * to service non-compiler related compilations sooner and reduce the 320 * chance of such compilations timing out. 321 */ 322 for (CompileTask* task = compile_queue->first(); task != nullptr; task = task->next()) { 323 if (task->is_blocking()) { 324 return task; 325 } 326 } 327 } 328 #endif 329 return compile_queue->first(); 330 } 331 332 // Simple methods are as good being compiled with C1 as C2. 333 // Determine if a given method is such a case. 334 bool CompilationPolicy::is_trivial(const methodHandle& method) { 335 if (method->is_accessor() || 336 method->is_constant_getter()) { 337 return true; 338 } 339 return false; 340 } 341 342 bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) { 343 if (CompilationModeFlag::quick_internal()) { 344 #if INCLUDE_JVMCI 345 if (UseJVMCICompiler) { 346 AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); 347 if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { 348 return !SCCache::is_C3_on(); 349 } 350 } 351 #endif 352 } 353 return false; 354 } 355 356 CompLevel CompilationPolicy::comp_level(Method* method) { 357 nmethod *nm = method->code(); 358 if (nm != nullptr && nm->is_in_use()) { 359 return (CompLevel)nm->comp_level(); 360 } 361 return CompLevel_none; 362 } 363 364 // Call and loop predicates determine whether a transition to a higher 365 // compilation level should be performed (pointers to predicate functions 366 // are passed to common()). 367 // Tier?LoadFeedback is basically a coefficient that determines of 368 // how many methods per compiler thread can be in the queue before 369 // the threshold values double. 370 class LoopPredicate : AllStatic { 371 public: 372 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 373 double threshold_scaling; 374 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 375 scale *= threshold_scaling; 376 } 377 switch(cur_level) { 378 case CompLevel_none: 379 case CompLevel_limited_profile: 380 return b >= Tier3BackEdgeThreshold * scale; 381 case CompLevel_full_profile: 382 return b >= Tier4BackEdgeThreshold * scale; 383 default: 384 return true; 385 } 386 } 387 388 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 389 double k = 1; 390 switch(cur_level) { 391 case CompLevel_none: 392 // Fall through 393 case CompLevel_limited_profile: { 394 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 395 break; 396 } 397 case CompLevel_full_profile: { 398 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 399 break; 400 } 401 default: 402 return true; 403 } 404 return apply_scaled(method, cur_level, i, b, k); 405 } 406 }; 407 408 class CallPredicate : AllStatic { 409 public: 410 static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) { 411 double threshold_scaling; 412 if (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, threshold_scaling)) { 413 scale *= threshold_scaling; 414 } 415 switch(cur_level) { 416 case CompLevel_none: 417 case CompLevel_limited_profile: 418 return (i >= Tier3InvocationThreshold * scale) || 419 (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); 420 case CompLevel_full_profile: 421 return (i >= Tier4InvocationThreshold * scale) || 422 (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); 423 default: 424 return true; 425 } 426 } 427 428 static bool apply(const methodHandle& method, CompLevel cur_level, int i, int b) { 429 double k = 1; 430 switch(cur_level) { 431 case CompLevel_none: 432 case CompLevel_limited_profile: { 433 k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); 434 break; 435 } 436 case CompLevel_full_profile: { 437 k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); 438 break; 439 } 440 default: 441 return true; 442 } 443 return apply_scaled(method, cur_level, i, b, k); 444 } 445 }; 446 447 double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) { 448 int comp_count = compiler_count(level); 449 if (comp_count > 0) { 450 double queue_size = CompileBroker::queue_size(level); 451 double k = (double)queue_size / ((double)feedback_k * (double)comp_count) + 1; 452 453 // Increase C1 compile threshold when the code cache is filled more 454 // than specified by IncreaseFirstTierCompileThresholdAt percentage. 455 // The main intention is to keep enough free space for C2 compiled code 456 // to achieve peak performance if the code cache is under stress. 457 if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) { 458 double current_reverse_free_ratio = CodeCache::reverse_free_ratio(); 459 if (current_reverse_free_ratio > _increase_threshold_at_ratio) { 460 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); 461 } 462 } 463 return k; 464 } 465 return 1; 466 } 467 468 void CompilationPolicy::print_counters(const char* prefix, Method* m) { 469 int invocation_count = m->invocation_count(); 470 int backedge_count = m->backedge_count(); 471 MethodData* mdh = m->method_data(); 472 int mdo_invocations = 0, mdo_backedges = 0; 473 int mdo_invocations_start = 0, mdo_backedges_start = 0; 474 if (mdh != nullptr) { 475 mdo_invocations = mdh->invocation_count(); 476 mdo_backedges = mdh->backedge_count(); 477 mdo_invocations_start = mdh->invocation_count_start(); 478 mdo_backedges_start = mdh->backedge_count_start(); 479 } 480 tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix, 481 invocation_count, backedge_count, prefix, 482 mdo_invocations, mdo_invocations_start, 483 mdo_backedges, mdo_backedges_start); 484 tty->print(" %smax levels=%d,%d", prefix, 485 m->highest_comp_level(), m->highest_osr_comp_level()); 486 } 487 488 void CompilationPolicy::print_training_data(const char* prefix, Method* method) { 489 methodHandle m(Thread::current(), method); 490 tty->print(" %smtd: ", prefix); 491 MethodTrainingData* mtd = MethodTrainingData::find(m); 492 if (mtd == nullptr) { 493 tty->print("null"); 494 } else { 495 MethodData* md = mtd->final_profile(); 496 tty->print("mdo="); 497 if (md == nullptr) { 498 tty->print("null"); 499 } else { 500 int mdo_invocations = md->invocation_count(); 501 int mdo_backedges = md->backedge_count(); 502 int mdo_invocations_start = md->invocation_count_start(); 503 int mdo_backedges_start = md->backedge_count_start(); 504 tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start); 505 } 506 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 507 tty->print(", deps="); 508 if (ctd == nullptr) { 509 tty->print("null"); 510 } else { 511 tty->print("%d", ctd->init_deps_left()); 512 } 513 } 514 } 515 516 // Print an event. 517 void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) { 518 bool inlinee_event = m != im; 519 520 ttyLocker tty_lock; 521 tty->print("%lf: [", os::elapsedTime()); 522 523 switch(type) { 524 case CALL: 525 tty->print("call"); 526 break; 527 case LOOP: 528 tty->print("loop"); 529 break; 530 case COMPILE: 531 tty->print("compile"); 532 break; 533 case FORCE_COMPILE: 534 tty->print("force-compile"); 535 break; 536 case FORCE_RECOMPILE: 537 tty->print("force-recompile"); 538 break; 539 case REMOVE_FROM_QUEUE: 540 tty->print("remove-from-queue"); 541 break; 542 case UPDATE_IN_QUEUE: 543 tty->print("update-in-queue"); 544 break; 545 case REPROFILE: 546 tty->print("reprofile"); 547 break; 548 case MAKE_NOT_ENTRANT: 549 tty->print("make-not-entrant"); 550 break; 551 default: 552 tty->print("unknown"); 553 } 554 555 tty->print(" level=%d ", level); 556 557 ResourceMark rm; 558 char *method_name = m->name_and_sig_as_C_string(); 559 tty->print("[%s", method_name); 560 if (inlinee_event) { 561 char *inlinee_name = im->name_and_sig_as_C_string(); 562 tty->print(" [%s]] ", inlinee_name); 563 } 564 else tty->print("] "); 565 tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile), 566 CompileBroker::queue_size(CompLevel_full_optimization)); 567 568 tty->print(" rate="); 569 if (m->prev_time() == 0) tty->print("n/a"); 570 else tty->print("%f", m->rate()); 571 572 RecompilationPolicy::print_load_average(); 573 574 tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), 575 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); 576 577 if (type != COMPILE) { 578 print_counters("", m); 579 if (inlinee_event) { 580 print_counters("inlinee ", im); 581 } 582 tty->print(" compilable="); 583 bool need_comma = false; 584 if (!m->is_not_compilable(CompLevel_full_profile)) { 585 tty->print("c1"); 586 need_comma = true; 587 } 588 if (!m->is_not_osr_compilable(CompLevel_full_profile)) { 589 if (need_comma) tty->print(","); 590 tty->print("c1-osr"); 591 need_comma = true; 592 } 593 if (!m->is_not_compilable(CompLevel_full_optimization)) { 594 if (need_comma) tty->print(","); 595 tty->print("c2"); 596 need_comma = true; 597 } 598 if (!m->is_not_osr_compilable(CompLevel_full_optimization)) { 599 if (need_comma) tty->print(","); 600 tty->print("c2-osr"); 601 } 602 tty->print(" status="); 603 if (m->queued_for_compilation()) { 604 tty->print("in-queue"); 605 } else tty->print("idle"); 606 print_training_data("", m); 607 if (inlinee_event) { 608 print_training_data("inlinee ", im); 609 } 610 } 611 tty->print_cr("]"); 612 } 613 614 void CompilationPolicy::initialize() { 615 if (!CompilerConfig::is_interpreter_only()) { 616 int count = CICompilerCount; 617 bool c1_only = CompilerConfig::is_c1_only(); 618 bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only(); 619 620 #ifdef _LP64 621 // Turn on ergonomic compiler count selection 622 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { 623 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); 624 } 625 if (CICompilerCountPerCPU) { 626 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n 627 int log_cpu = log2i(os::active_processor_count()); 628 int loglog_cpu = log2i(MAX2(log_cpu, 1)); 629 count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2); 630 // Make sure there is enough space in the code cache to hold all the compiler buffers 631 size_t c1_size = 0; 632 #ifdef COMPILER1 633 c1_size = Compiler::code_buffer_size(); 634 #endif 635 size_t c2_size = 0; 636 #ifdef COMPILER2 637 c2_size = C2Compiler::initial_code_buffer_size(); 638 #endif 639 size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3); 640 int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size; 641 if (count > max_count) { 642 // Lower the compiler count such that all buffers fit into the code cache 643 count = MAX2(max_count, c1_only ? 1 : 2); 644 } 645 FLAG_SET_ERGO(CICompilerCount, count); 646 } 647 #else 648 // On 32-bit systems, the number of compiler threads is limited to 3. 649 // On these systems, the virtual address space available to the JVM 650 // is usually limited to 2-4 GB (the exact value depends on the platform). 651 // As the compilers (especially C2) can consume a large amount of 652 // memory, scaling the number of compiler threads with the number of 653 // available cores can result in the exhaustion of the address space 654 /// available to the VM and thus cause the VM to crash. 655 if (FLAG_IS_DEFAULT(CICompilerCount)) { 656 count = 3; 657 FLAG_SET_ERGO(CICompilerCount, count); 658 } 659 #endif 660 661 if (c1_only) { 662 // No C2 compiler thread required 663 set_c1_count(count); 664 } else if (c2_only) { 665 set_c2_count(count); 666 } else { 667 #if INCLUDE_JVMCI 668 if (UseJVMCICompiler && UseJVMCINativeLibrary) { 669 int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1); 670 int c1_count = MAX2(count - libjvmci_count, 1); 671 set_c2_count(libjvmci_count); 672 set_c1_count(c1_count); 673 } else if (SCCache::is_C3_on()) { 674 set_c1_count(MAX2(count / 3, 1)); 675 set_c2_count(MAX2(count - c1_count(), 1)); 676 set_c3_count(1); 677 } else 678 #endif 679 { 680 set_c1_count(MAX2(count / 3, 1)); 681 set_c2_count(MAX2(count - c1_count(), 1)); 682 } 683 } 684 if (SCCache::is_code_load_thread_on()) { 685 set_sc_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 cached code in parallel 686 } 687 assert(count == c1_count() + c2_count(), "inconsistent compiler thread count"); 688 set_increase_threshold_at_ratio(); 689 } 690 691 set_start_time(nanos_to_millis(os::javaTimeNanos())); 692 } 693 694 695 696 697 #ifdef ASSERT 698 bool CompilationPolicy::verify_level(CompLevel level) { 699 if (TieredCompilation && level > TieredStopAtLevel) { 700 return false; 701 } 702 // Check if there is a compiler to process the requested level 703 if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) { 704 return false; 705 } 706 if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) { 707 return false; 708 } 709 710 // Interpreter level is always valid. 711 if (level == CompLevel_none) { 712 return true; 713 } 714 if (CompilationModeFlag::normal()) { 715 return true; 716 } else if (CompilationModeFlag::quick_only()) { 717 return level == CompLevel_simple; 718 } else if (CompilationModeFlag::high_only()) { 719 return level == CompLevel_full_optimization; 720 } else if (CompilationModeFlag::high_only_quick_internal()) { 721 return level == CompLevel_full_optimization || level == CompLevel_simple; 722 } 723 return false; 724 } 725 #endif 726 727 728 CompLevel CompilationPolicy::highest_compile_level() { 729 CompLevel level = CompLevel_none; 730 // Setup the maximum level available for the current compiler configuration. 731 if (!CompilerConfig::is_interpreter_only()) { 732 if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) { 733 level = CompLevel_full_optimization; 734 } else if (CompilerConfig::is_c1_enabled()) { 735 if (CompilerConfig::is_c1_simple_only()) { 736 level = CompLevel_simple; 737 } else { 738 level = CompLevel_full_profile; 739 } 740 } 741 } 742 // Clamp the maximum level with TieredStopAtLevel. 743 if (TieredCompilation) { 744 level = MIN2(level, (CompLevel) TieredStopAtLevel); 745 } 746 747 // Fix it up if after the clamping it has become invalid. 748 // Bring it monotonically down depending on the next available level for 749 // the compilation mode. 750 if (!CompilationModeFlag::normal()) { 751 // a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid; 752 // b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid; 753 // c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid. 754 if (CompilationModeFlag::quick_only()) { 755 if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) { 756 level = CompLevel_simple; 757 } 758 } else if (CompilationModeFlag::high_only()) { 759 if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) { 760 level = CompLevel_none; 761 } 762 } else if (CompilationModeFlag::high_only_quick_internal()) { 763 if (level == CompLevel_limited_profile || level == CompLevel_full_profile) { 764 level = CompLevel_simple; 765 } 766 } 767 } 768 769 assert(verify_level(level), "Invalid highest compilation level: %d", level); 770 return level; 771 } 772 773 CompLevel CompilationPolicy::limit_level(CompLevel level) { 774 level = MIN2(level, highest_compile_level()); 775 assert(verify_level(level), "Invalid compilation level: %d", level); 776 return level; 777 } 778 779 CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) { 780 CompLevel level = CompLevel_any; 781 if (CompilationModeFlag::normal()) { 782 level = CompLevel_full_profile; 783 } else if (CompilationModeFlag::quick_only()) { 784 level = CompLevel_simple; 785 } else if (CompilationModeFlag::high_only()) { 786 level = CompLevel_full_optimization; 787 } else if (CompilationModeFlag::high_only_quick_internal()) { 788 if (force_comp_at_level_simple(method)) { 789 level = CompLevel_simple; 790 } else { 791 level = CompLevel_full_optimization; 792 } 793 } 794 assert(level != CompLevel_any, "Unhandled compilation mode"); 795 return limit_level(level); 796 } 797 798 // Set carry flags on the counters if necessary 799 void CompilationPolicy::handle_counter_overflow(const methodHandle& method) { 800 MethodCounters *mcs = method->method_counters(); 801 if (mcs != nullptr) { 802 mcs->invocation_counter()->set_carry_on_overflow(); 803 mcs->backedge_counter()->set_carry_on_overflow(); 804 } 805 MethodData* mdo = method->method_data(); 806 if (mdo != nullptr) { 807 mdo->invocation_counter()->set_carry_on_overflow(); 808 mdo->backedge_counter()->set_carry_on_overflow(); 809 } 810 } 811 812 // Called with the queue locked and with at least one element 813 CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) { 814 CompileTask *max_blocking_task = nullptr; 815 CompileTask *max_task = nullptr; 816 Method* max_method = nullptr; 817 818 int64_t t = nanos_to_millis(os::javaTimeNanos()); 819 // Iterate through the queue and find a method with a maximum rate. 820 for (CompileTask* task = compile_queue->first(); task != nullptr;) { 821 CompileTask* next_task = task->next(); 822 // If a method was unloaded or has been stale for some time, remove it from the queue. 823 // Blocking tasks and tasks submitted from whitebox API don't become stale 824 if (task->is_unloaded()) { 825 compile_queue->remove_and_mark_stale(task); 826 task = next_task; 827 continue; 828 } 829 if (task->is_scc()) { 830 // SCC tasks are on separate queue, and they should load fast. There is no need to walk 831 // the rest of the queue, just take the task and go. 832 return task; 833 } 834 Method* method = task->method(); 835 methodHandle mh(THREAD, method); 836 if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) { 837 if (PrintTieredEvents) { 838 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); 839 } 840 method->clear_queued_for_compilation(); 841 method->set_pending_queue_processed(false); 842 compile_queue->remove_and_mark_stale(task); 843 task = next_task; 844 continue; 845 } 846 update_rate(t, mh); 847 if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) { 848 // Select a method with the highest rate 849 max_task = task; 850 max_method = method; 851 } 852 853 if (task->is_blocking()) { 854 if (max_blocking_task == nullptr || compare_methods(method, max_blocking_task->method())) { 855 max_blocking_task = task; 856 } 857 } 858 859 task = next_task; 860 } 861 862 if (max_blocking_task != nullptr) { 863 // In blocking compilation mode, the CompileBroker will make 864 // compilations submitted by a JVMCI compiler thread non-blocking. These 865 // compilations should be scheduled after all blocking compilations 866 // to service non-compiler related compilations sooner and reduce the 867 // chance of such compilations timing out. 868 max_task = max_blocking_task; 869 max_method = max_task->method(); 870 } 871 872 methodHandle max_method_h(THREAD, max_method); 873 874 if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile && 875 max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) { 876 max_task->set_comp_level(CompLevel_limited_profile); 877 878 if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile, 879 false /* requires_online_compilation */, 880 CompileTask::Reason_None)) { 881 if (PrintTieredEvents) { 882 print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 883 } 884 compile_queue->remove_and_mark_stale(max_task); 885 max_method->clear_queued_for_compilation(); 886 return nullptr; 887 } 888 889 if (PrintTieredEvents) { 890 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); 891 } 892 } 893 return max_task; 894 } 895 896 void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { 897 for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { 898 if (PrintTieredEvents) { 899 print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none); 900 } 901 MethodData* mdo = sd->method()->method_data(); 902 if (mdo != nullptr) { 903 mdo->reset_start_counters(); 904 } 905 if (sd->is_top()) break; 906 } 907 } 908 909 nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee, 910 int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) { 911 if (PrintTieredEvents) { 912 print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level); 913 } 914 915 #if INCLUDE_JVMCI 916 if (EnableJVMCI && UseJVMCICompiler && 917 comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 918 return nullptr; 919 } 920 #endif 921 922 if (comp_level == CompLevel_none && 923 JvmtiExport::can_post_interpreter_events() && 924 THREAD->is_interp_only_mode()) { 925 return nullptr; 926 } 927 if (ReplayCompiles) { 928 // Don't trigger other compiles in testing mode 929 return nullptr; 930 } 931 932 handle_counter_overflow(method); 933 if (method() != inlinee()) { 934 handle_counter_overflow(inlinee); 935 } 936 937 if (bci == InvocationEntryBci) { 938 method_invocation_event(method, inlinee, comp_level, nm, THREAD); 939 } else { 940 // method == inlinee if the event originated in the main method 941 method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD); 942 // Check if event led to a higher level OSR compilation 943 CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1)); 944 if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) { 945 // It's not possible to reach the expected level so fall back to simple. 946 expected_comp_level = CompLevel_simple; 947 } 948 CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level()); 949 if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario 950 nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); 951 assert(osr_nm == nullptr || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken"); 952 if (osr_nm != nullptr && osr_nm->comp_level() != comp_level) { 953 // Perform OSR with new nmethod 954 return osr_nm; 955 } 956 } 957 } 958 return nullptr; 959 } 960 961 // Check if the method can be compiled, change level if necessary 962 void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) { 963 assert(verify_level(level), "Invalid compilation level requested: %d", level); 964 965 if (level == CompLevel_none) { 966 if (mh->has_compiled_code()) { 967 // Happens when we switch to interpreter to profile. 968 MutexLocker ml(Compile_lock); 969 NoSafepointVerifier nsv; 970 if (mh->has_compiled_code()) { 971 mh->code()->make_not_used(); 972 } 973 // Deoptimize immediately (we don't have to wait for a compile). 974 JavaThread* jt = THREAD; 975 RegisterMap map(jt, 976 RegisterMap::UpdateMap::skip, 977 RegisterMap::ProcessFrames::include, 978 RegisterMap::WalkContinuation::skip); 979 frame fr = jt->last_frame().sender(&map); 980 Deoptimization::deoptimize_frame(jt, fr.id()); 981 } 982 return; 983 } 984 985 if (!CompilationModeFlag::disable_intermediate()) { 986 // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling 987 // in the interpreter and then compile with C2 (the transition function will request that, 988 // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with 989 // pure C1. 990 if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { 991 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { 992 compile(mh, bci, CompLevel_simple, THREAD); 993 } 994 return; 995 } 996 if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { 997 if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { 998 nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); 999 if (osr_nm != nullptr && osr_nm->comp_level() > CompLevel_simple) { 1000 // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. 1001 osr_nm->make_not_entrant(); 1002 } 1003 compile(mh, bci, CompLevel_simple, THREAD); 1004 } 1005 return; 1006 } 1007 } 1008 if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { 1009 return; 1010 } 1011 if (!CompileBroker::compilation_is_in_queue(mh)) { 1012 if (PrintTieredEvents) { 1013 print_event(COMPILE, mh(), mh(), bci, level); 1014 } 1015 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); 1016 update_rate(nanos_to_millis(os::javaTimeNanos()), mh); 1017 bool requires_online_compilation = false; 1018 if (TrainingData::have_data()) { 1019 MethodTrainingData* mtd = MethodTrainingData::find(mh); 1020 if (mtd != nullptr) { 1021 CompileTrainingData* ctd = mtd->last_toplevel_compile(level); 1022 if (ctd != nullptr) { 1023 requires_online_compilation = (ctd->init_deps_left() > 0); 1024 } 1025 } 1026 } 1027 CompileBroker::compile_method(mh, bci, level, mh, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD); 1028 } 1029 } 1030 1031 // update_rate() is called from select_task() while holding a compile queue lock. 1032 void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) { 1033 // Skip update if counters are absent. 1034 // Can't allocate them since we are holding compile queue lock. 1035 if (method->method_counters() == nullptr) return; 1036 1037 if (is_old(method)) { 1038 // We don't remove old methods from the queue, 1039 // so we can just zero the rate. 1040 method->set_rate(0); 1041 return; 1042 } 1043 1044 // We don't update the rate if we've just came out of a safepoint. 1045 // delta_s is the time since last safepoint in milliseconds. 1046 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1047 int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement 1048 // How many events were there since the last time? 1049 int event_count = method->invocation_count() + method->backedge_count(); 1050 int delta_e = event_count - method->prev_event_count(); 1051 1052 // We should be running for at least 1ms. 1053 if (delta_s >= TieredRateUpdateMinTime) { 1054 // And we must've taken the previous point at least 1ms before. 1055 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { 1056 method->set_prev_time(t); 1057 method->set_prev_event_count(event_count); 1058 method->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond 1059 } else { 1060 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { 1061 // If nothing happened for 25ms, zero the rate. Don't modify prev values. 1062 method->set_rate(0); 1063 } 1064 } 1065 } 1066 } 1067 1068 // Check if this method has been stale for a given number of milliseconds. 1069 // See select_task(). 1070 bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) { 1071 int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms(); 1072 int64_t delta_t = t - method->prev_time(); 1073 if (delta_t > timeout && delta_s > timeout) { 1074 int event_count = method->invocation_count() + method->backedge_count(); 1075 int delta_e = event_count - method->prev_event_count(); 1076 // Return true if there were no events. 1077 return delta_e == 0; 1078 } 1079 return false; 1080 } 1081 1082 // We don't remove old methods from the compile queue even if they have 1083 // very low activity. See select_task(). 1084 bool CompilationPolicy::is_old(const methodHandle& method) { 1085 int i = method->invocation_count(); 1086 int b = method->backedge_count(); 1087 double k = TieredOldPercentage / 100.0; 1088 1089 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1090 } 1091 1092 double CompilationPolicy::weight(Method* method) { 1093 return (double)(method->rate() + 1) * (method->invocation_count() + 1) * (method->backedge_count() + 1); 1094 } 1095 1096 // Apply heuristics and return true if x should be compiled before y 1097 bool CompilationPolicy::compare_methods(Method* x, Method* y) { 1098 if (x->highest_comp_level() > y->highest_comp_level()) { 1099 // recompilation after deopt 1100 return true; 1101 } else 1102 if (x->highest_comp_level() == y->highest_comp_level()) { 1103 if (weight(x) > weight(y)) { 1104 return true; 1105 } 1106 } 1107 return false; 1108 } 1109 1110 bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) { 1111 assert(!x->is_scc() && !y->is_scc(), "SC tasks are not expected here"); 1112 if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) { 1113 return true; 1114 } 1115 return false; 1116 } 1117 1118 // Is method profiled enough? 1119 bool CompilationPolicy::is_method_profiled(const methodHandle& method) { 1120 MethodData* mdo = method->method_data(); 1121 if (mdo != nullptr) { 1122 int i = mdo->invocation_count_delta(); 1123 int b = mdo->backedge_count_delta(); 1124 return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1); 1125 } 1126 return false; 1127 } 1128 1129 1130 // Determine is a method is mature. 1131 bool CompilationPolicy::is_mature(MethodData* mdo) { 1132 if (Arguments::is_compiler_only()) { 1133 // Always report profiles as immature with -Xcomp 1134 return false; 1135 } 1136 methodHandle mh(Thread::current(), mdo->method()); 1137 if (mdo != nullptr) { 1138 int i = mdo->invocation_count(); 1139 int b = mdo->backedge_count(); 1140 double k = ProfileMaturityPercentage / 100.0; 1141 return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k); 1142 } 1143 return false; 1144 } 1145 1146 // If a method is old enough and is still in the interpreter we would want to 1147 // start profiling without waiting for the compiled method to arrive. 1148 // We also take the load on compilers into the account. 1149 bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) { 1150 if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) { 1151 return false; 1152 } 1153 1154 if (TrainingData::have_data()) { 1155 MethodTrainingData* mtd = MethodTrainingData::find(method); 1156 if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) { 1157 return true; 1158 } 1159 return false; 1160 } 1161 1162 if (is_old(method)) { 1163 return true; 1164 } 1165 1166 int i = method->invocation_count(); 1167 int b = method->backedge_count(); 1168 double k = Tier0ProfilingStartPercentage / 100.0; 1169 1170 // If the top level compiler is not keeping up, delay profiling. 1171 if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) { 1172 return CallPredicate::apply_scaled(method, CompLevel_none, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_none, i, b, k); 1173 } 1174 return false; 1175 } 1176 1177 // Inlining control: if we're compiling a profiled method with C1 and the callee 1178 // is known to have OSRed in a C2 version, don't inline it. 1179 bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { 1180 CompLevel comp_level = (CompLevel)env->comp_level(); 1181 if (comp_level == CompLevel_full_profile || 1182 comp_level == CompLevel_limited_profile) { 1183 return callee->highest_osr_comp_level() == CompLevel_full_optimization; 1184 } 1185 return false; 1186 } 1187 1188 // Create MDO if necessary. 1189 void CompilationPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { 1190 if (mh->is_native() || 1191 mh->is_abstract() || 1192 mh->is_accessor() || 1193 mh->is_constant_getter()) { 1194 return; 1195 } 1196 if (mh->method_data() == nullptr) { 1197 Method::build_profiling_method_data(mh, CHECK_AND_CLEAR); 1198 } 1199 if (ProfileInterpreter && THREAD->has_last_Java_frame()) { 1200 MethodData* mdo = mh->method_data(); 1201 if (mdo != nullptr) { 1202 frame last_frame = THREAD->last_frame(); 1203 if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) { 1204 int bci = last_frame.interpreter_frame_bci(); 1205 address dp = mdo->bci_to_dp(bci); 1206 last_frame.interpreter_frame_set_mdp(dp); 1207 } 1208 } 1209 } 1210 } 1211 1212 CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1213 precond(mtd != nullptr); 1214 precond(cur_level == CompLevel_none); 1215 1216 if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) { 1217 return CompLevel_none; 1218 } 1219 1220 bool training_has_profile = (mtd->final_profile() != nullptr); 1221 if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) { 1222 return CompLevel_full_profile; 1223 } 1224 1225 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1226 switch (highest_training_level) { 1227 case CompLevel_limited_profile: 1228 case CompLevel_full_profile: 1229 return CompLevel_limited_profile; 1230 case CompLevel_simple: 1231 return CompLevel_simple; 1232 case CompLevel_none: 1233 return CompLevel_none; 1234 default: 1235 break; 1236 } 1237 1238 // Now handle the case of level 4. 1239 assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level); 1240 if (!training_has_profile) { 1241 // The method was a part of a level 4 compile, but don't have a stored profile, 1242 // we need to profile it. 1243 return CompLevel_full_profile; 1244 } 1245 const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization); 1246 // If we deopted, then we reprofile 1247 if (deopt && !is_method_profiled(method)) { 1248 return CompLevel_full_profile; 1249 } 1250 1251 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1252 assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization"); 1253 // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately 1254 if (SkipTier2IfPossible && ctd->init_deps_left() == 0) { 1255 if (method->method_data() == nullptr) { 1256 create_mdo(method, THREAD); 1257 } 1258 return CompLevel_full_optimization; 1259 } 1260 1261 // Otherwise go to level 2 1262 return CompLevel_limited_profile; 1263 } 1264 1265 1266 CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1267 precond(mtd != nullptr); 1268 precond(cur_level == CompLevel_limited_profile); 1269 1270 // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready. 1271 1272 // But first, check if we have a saved profile 1273 bool training_has_profile = (mtd->final_profile() != nullptr); 1274 if (!training_has_profile) { 1275 return CompLevel_full_profile; 1276 } 1277 1278 1279 assert(training_has_profile, "Have to have a profile to be here"); 1280 // Check if the method is ready 1281 CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization); 1282 if (ctd != nullptr && ctd->init_deps_left() == 0) { 1283 if (method->method_data() == nullptr) { 1284 create_mdo(method, THREAD); 1285 } 1286 return CompLevel_full_optimization; 1287 } 1288 1289 // Otherwise stay at the current level 1290 return CompLevel_limited_profile; 1291 } 1292 1293 1294 CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1295 precond(mtd != nullptr); 1296 precond(cur_level == CompLevel_full_profile); 1297 1298 CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level()); 1299 // We have method at the full profile level and we also know that it's possibly an important method. 1300 if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) { 1301 // Check if it is adequately profiled 1302 if (is_method_profiled(method)) { 1303 return CompLevel_full_optimization; 1304 } 1305 } 1306 1307 // Otherwise stay at the current level 1308 return CompLevel_full_profile; 1309 } 1310 1311 CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) { 1312 precond(MethodTrainingData::have_data()); 1313 1314 // If there is no training data recorded for this method, bail out. 1315 if (mtd == nullptr) { 1316 return cur_level; 1317 } 1318 1319 CompLevel next_level = cur_level; 1320 switch(cur_level) { 1321 default: break; 1322 case CompLevel_none: 1323 next_level = trained_transition_from_none(method, cur_level, mtd, THREAD); 1324 break; 1325 case CompLevel_limited_profile: 1326 next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD); 1327 break; 1328 case CompLevel_full_profile: 1329 next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD); 1330 break; 1331 } 1332 1333 // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now. 1334 if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) { 1335 return CompLevel_none; 1336 } 1337 if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) { 1338 return CompLevel_none; 1339 } 1340 return (cur_level != next_level) ? limit_level(next_level) : cur_level; 1341 } 1342 1343 /* 1344 * Method states: 1345 * 0 - interpreter (CompLevel_none) 1346 * 1 - pure C1 (CompLevel_simple) 1347 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) 1348 * 3 - C1 with full profiling (CompLevel_full_profile) 1349 * 4 - C2 or Graal (CompLevel_full_optimization) 1350 * 1351 * Common state transition patterns: 1352 * a. 0 -> 3 -> 4. 1353 * The most common path. But note that even in this straightforward case 1354 * profiling can start at level 0 and finish at level 3. 1355 * 1356 * b. 0 -> 2 -> 3 -> 4. 1357 * This case occurs when the load on C2 is deemed too high. So, instead of transitioning 1358 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to 1359 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. 1360 * 1361 * c. 0 -> (3->2) -> 4. 1362 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough 1363 * to enable the profiling to fully occur at level 0. In this case we change the compilation level 1364 * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster 1365 * without full profiling while c2 is compiling. 1366 * 1367 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. 1368 * After a method was once compiled with C1 it can be identified as trivial and be compiled to 1369 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. 1370 * 1371 * e. 0 -> 4. 1372 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) 1373 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because 1374 * the compiled version already exists). 1375 * 1376 * Note that since state 0 can be reached from any other state via deoptimization different loops 1377 * are possible. 1378 * 1379 */ 1380 1381 // Common transition function. Given a predicate determines if a method should transition to another level. 1382 template<typename Predicate> 1383 CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) { 1384 CompLevel next_level = cur_level; 1385 int i = method->invocation_count(); 1386 int b = method->backedge_count(); 1387 1388 if (force_comp_at_level_simple(method)) { 1389 next_level = CompLevel_simple; 1390 } else { 1391 if (MethodTrainingData::have_data()) { 1392 MethodTrainingData* mtd = MethodTrainingData::find(method); 1393 if (mtd == nullptr) { 1394 // We haven't see compilations of this method in training. It's either very cold or the behavior changed. 1395 // Feed it to the standard TF with no profiling delay. 1396 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1397 } else { 1398 next_level = trained_transition(method, cur_level, mtd, THREAD); 1399 if (cur_level == next_level) { 1400 // trained_transtion() is going to return the same level if no startup/warmup optimizations apply. 1401 // In order to catch possible pathologies due to behavior change we feed the event to the regular 1402 // TF but with profiling delay. 1403 next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback); 1404 } 1405 } 1406 } else if (is_trivial(method) || method->is_native()) { 1407 next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple; 1408 } else { 1409 next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback); 1410 } 1411 } 1412 return (next_level != cur_level) ? limit_level(next_level) : next_level; 1413 } 1414 1415 1416 template<typename Predicate> 1417 CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1418 CompLevel next_level = cur_level; 1419 switch(cur_level) { 1420 default: break; 1421 case CompLevel_none: 1422 next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1423 break; 1424 case CompLevel_limited_profile: 1425 next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback); 1426 break; 1427 case CompLevel_full_profile: 1428 next_level = transition_from_full_profile<Predicate>(method, cur_level); 1429 break; 1430 } 1431 return next_level; 1432 } 1433 1434 template<typename Predicate> 1435 CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1436 precond(cur_level == CompLevel_none); 1437 CompLevel next_level = cur_level; 1438 int i = method->invocation_count(); 1439 int b = method->backedge_count(); 1440 double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0; 1441 // If we were at full profile level, would we switch to full opt? 1442 if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) { 1443 next_level = CompLevel_full_optimization; 1444 } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) { 1445 // C1-generated fully profiled code is about 30% slower than the limited profile 1446 // code that has only invocation and backedge counters. The observation is that 1447 // if C2 queue is large enough we can spend too much time in the fully profiled code 1448 // while waiting for C2 to pick the method from the queue. To alleviate this problem 1449 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long 1450 // we choose to compile a limited profiled version and then recompile with full profiling 1451 // when the load on C2 goes down. 1452 if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) { 1453 next_level = CompLevel_limited_profile; 1454 } else { 1455 next_level = CompLevel_full_profile; 1456 } 1457 } 1458 return next_level; 1459 } 1460 1461 template<typename Predicate> 1462 CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) { 1463 precond(cur_level == CompLevel_full_profile); 1464 CompLevel next_level = cur_level; 1465 MethodData* mdo = method->method_data(); 1466 if (mdo != nullptr) { 1467 if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) { 1468 int mdo_i = mdo->invocation_count_delta(); 1469 int mdo_b = mdo->backedge_count_delta(); 1470 if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) { 1471 next_level = CompLevel_full_optimization; 1472 } 1473 } else { 1474 next_level = CompLevel_full_optimization; 1475 } 1476 } 1477 return next_level; 1478 } 1479 1480 template<typename Predicate> 1481 CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) { 1482 precond(cur_level == CompLevel_limited_profile); 1483 CompLevel next_level = cur_level; 1484 int i = method->invocation_count(); 1485 int b = method->backedge_count(); 1486 double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0; 1487 MethodData* mdo = method->method_data(); 1488 if (mdo != nullptr) { 1489 if (mdo->would_profile()) { 1490 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1491 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1492 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1493 next_level = CompLevel_full_profile; 1494 } 1495 } else { 1496 next_level = CompLevel_full_optimization; 1497 } 1498 } else { 1499 // If there is no MDO we need to profile 1500 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= 1501 Tier3DelayOff * compiler_count(CompLevel_full_optimization) && 1502 Predicate::apply_scaled(method, cur_level, i, b, scale))) { 1503 next_level = CompLevel_full_profile; 1504 } 1505 } 1506 if (next_level == CompLevel_full_profile && is_method_profiled(method)) { 1507 next_level = CompLevel_full_optimization; 1508 } 1509 return next_level; 1510 } 1511 1512 1513 // Determine if a method should be compiled with a normal entry point at a different level. 1514 CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1515 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true)); 1516 CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method)); 1517 1518 // If OSR method level is greater than the regular method level, the levels should be 1519 // equalized by raising the regular method level in order to avoid OSRs during each 1520 // invocation of the method. 1521 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { 1522 MethodData* mdo = method->method_data(); 1523 guarantee(mdo != nullptr, "MDO should not be nullptr"); 1524 if (mdo->invocation_count() >= 1) { 1525 next_level = CompLevel_full_optimization; 1526 } 1527 } else { 1528 next_level = MAX2(osr_level, next_level); 1529 } 1530 #if INCLUDE_JVMCI 1531 if (EnableJVMCI && UseJVMCICompiler && 1532 next_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 1533 next_level = cur_level; 1534 } 1535 #endif 1536 return next_level; 1537 } 1538 1539 // Determine if we should do an OSR compilation of a given method. 1540 CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) { 1541 CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true); 1542 if (cur_level == CompLevel_none) { 1543 // If there is a live OSR method that means that we deopted to the interpreter 1544 // for the transition. 1545 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); 1546 if (osr_level > CompLevel_none) { 1547 return osr_level; 1548 } 1549 } 1550 return next_level; 1551 } 1552 1553 // Handle the invocation event. 1554 void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, 1555 CompLevel level, nmethod* nm, TRAPS) { 1556 if (should_create_mdo(mh, level)) { 1557 create_mdo(mh, THREAD); 1558 } 1559 CompLevel next_level = call_event(mh, level, THREAD); 1560 if (next_level != level) { 1561 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { 1562 compile(mh, InvocationEntryBci, next_level, THREAD); 1563 } 1564 } 1565 } 1566 1567 // Handle the back branch event. Notice that we can compile the method 1568 // with a regular entry from here. 1569 void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, 1570 int bci, CompLevel level, nmethod* nm, TRAPS) { 1571 if (should_create_mdo(mh, level)) { 1572 create_mdo(mh, THREAD); 1573 } 1574 // Check if MDO should be created for the inlined method 1575 if (should_create_mdo(imh, level)) { 1576 create_mdo(imh, THREAD); 1577 } 1578 1579 if (is_compilation_enabled()) { 1580 CompLevel next_osr_level = loop_event(imh, level, THREAD); 1581 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); 1582 // At the very least compile the OSR version 1583 if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { 1584 compile(imh, bci, next_osr_level, CHECK); 1585 } 1586 1587 // Use loop event as an opportunity to also check if there's been 1588 // enough calls. 1589 CompLevel cur_level, next_level; 1590 if (mh() != imh()) { // If there is an enclosing method 1591 { 1592 guarantee(nm != nullptr, "Should have nmethod here"); 1593 cur_level = comp_level(mh()); 1594 next_level = call_event(mh, cur_level, THREAD); 1595 1596 if (max_osr_level == CompLevel_full_optimization) { 1597 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts 1598 bool make_not_entrant = false; 1599 if (nm->is_osr_method()) { 1600 // This is an osr method, just make it not entrant and recompile later if needed 1601 make_not_entrant = true; 1602 } else { 1603 if (next_level != CompLevel_full_optimization) { 1604 // next_level is not full opt, so we need to recompile the 1605 // enclosing method without the inlinee 1606 cur_level = CompLevel_none; 1607 make_not_entrant = true; 1608 } 1609 } 1610 if (make_not_entrant) { 1611 if (PrintTieredEvents) { 1612 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; 1613 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); 1614 } 1615 nm->make_not_entrant(); 1616 } 1617 } 1618 // Fix up next_level if necessary to avoid deopts 1619 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { 1620 next_level = CompLevel_full_profile; 1621 } 1622 if (cur_level != next_level) { 1623 if (!CompileBroker::compilation_is_in_queue(mh)) { 1624 compile(mh, InvocationEntryBci, next_level, THREAD); 1625 } 1626 } 1627 } 1628 } else { 1629 cur_level = comp_level(mh()); 1630 next_level = call_event(mh, cur_level, THREAD); 1631 if (next_level != cur_level) { 1632 if (!CompileBroker::compilation_is_in_queue(mh)) { 1633 compile(mh, InvocationEntryBci, next_level, THREAD); 1634 } 1635 } 1636 } 1637 } 1638 } 1639