1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/aotLinkedClassBulkLoader.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "classfile/javaClasses.inline.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "classfile/vmSymbols.hpp" 32 #include "code/codeCache.hpp" 33 #include "code/codeHeapState.hpp" 34 #include "code/dependencyContext.hpp" 35 #include "code/SCCache.hpp" 36 #include "compiler/compilationLog.hpp" 37 #include "compiler/compilationMemoryStatistic.hpp" 38 #include "compiler/compilationPolicy.hpp" 39 #include "compiler/compileBroker.hpp" 40 #include "compiler/compilerDefinitions.inline.hpp" 41 #include "compiler/compileLog.hpp" 42 #include "compiler/compilerEvent.hpp" 43 #include "compiler/compilerOracle.hpp" 44 #include "compiler/directivesParser.hpp" 45 #include "compiler/recompilationPolicy.hpp" 46 #include "gc/shared/memAllocator.hpp" 47 #include "interpreter/linkResolver.hpp" 48 #include "jvm.h" 49 #include "jfr/jfrEvents.hpp" 50 #include "logging/log.hpp" 51 #include "logging/logStream.hpp" 52 #include "memory/allocation.inline.hpp" 53 #include "memory/resourceArea.hpp" 54 #include "memory/universe.hpp" 55 #include "oops/methodData.hpp" 56 #include "oops/method.inline.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "prims/jvmtiExport.hpp" 59 #include "prims/nativeLookup.hpp" 60 #include "prims/whitebox.hpp" 61 #include "runtime/atomic.hpp" 62 #include "runtime/escapeBarrier.hpp" 63 #include "runtime/globals_extension.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/init.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/java.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/jniHandles.inline.hpp" 70 #include "runtime/os.hpp" 71 #include "runtime/perfData.hpp" 72 #include "runtime/safepointVerifiers.hpp" 73 #include "runtime/sharedRuntime.hpp" 74 #include "runtime/threads.hpp" 75 #include "runtime/threadSMR.inline.hpp" 76 #include "runtime/timerTrace.hpp" 77 #include "runtime/vframe.inline.hpp" 78 #include "services/management.hpp" 79 #include "utilities/debug.hpp" 80 #include "utilities/dtrace.hpp" 81 #include "utilities/events.hpp" 82 #include "utilities/formatBuffer.hpp" 83 #include "utilities/macros.hpp" 84 #include "utilities/nonblockingQueue.inline.hpp" 85 #ifdef COMPILER1 86 #include "c1/c1_Compiler.hpp" 87 #endif 88 #ifdef COMPILER2 89 #include "opto/c2compiler.hpp" 90 #endif 91 #if INCLUDE_JVMCI 92 #include "jvmci/jvmciEnv.hpp" 93 #include "jvmci/jvmciRuntime.hpp" 94 #endif 95 96 #ifdef DTRACE_ENABLED 97 98 // Only bother with this argument setup if dtrace is available 99 100 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \ 101 { \ 102 Symbol* klass_name = (method)->klass_name(); \ 103 Symbol* name = (method)->name(); \ 104 Symbol* signature = (method)->signature(); \ 105 HOTSPOT_METHOD_COMPILE_BEGIN( \ 106 (char *) comp_name, strlen(comp_name), \ 107 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 108 (char *) name->bytes(), name->utf8_length(), \ 109 (char *) signature->bytes(), signature->utf8_length()); \ 110 } 111 112 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \ 113 { \ 114 Symbol* klass_name = (method)->klass_name(); \ 115 Symbol* name = (method)->name(); \ 116 Symbol* signature = (method)->signature(); \ 117 HOTSPOT_METHOD_COMPILE_END( \ 118 (char *) comp_name, strlen(comp_name), \ 119 (char *) klass_name->bytes(), klass_name->utf8_length(), \ 120 (char *) name->bytes(), name->utf8_length(), \ 121 (char *) signature->bytes(), signature->utf8_length(), (success)); \ 122 } 123 124 #else // ndef DTRACE_ENABLED 125 126 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) 127 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) 128 129 #endif // ndef DTRACE_ENABLED 130 131 bool CompileBroker::_initialized = false; 132 bool CompileBroker::_replay_initialized = false; 133 volatile bool CompileBroker::_should_block = false; 134 volatile int CompileBroker::_print_compilation_warning = 0; 135 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation; 136 137 // The installed compiler(s) 138 AbstractCompiler* CompileBroker::_compilers[3]; 139 140 // The maximum numbers of compiler threads to be determined during startup. 141 int CompileBroker::_c1_count = 0; 142 int CompileBroker::_c2_count = 0; 143 int CompileBroker::_c3_count = 0; 144 int CompileBroker::_sc_count = 0; 145 146 // An array of compiler names as Java String objects 147 jobject* CompileBroker::_compiler1_objects = nullptr; 148 jobject* CompileBroker::_compiler2_objects = nullptr; 149 jobject* CompileBroker::_compiler3_objects = nullptr; 150 jobject* CompileBroker::_sc_objects = nullptr; 151 152 CompileLog** CompileBroker::_compiler1_logs = nullptr; 153 CompileLog** CompileBroker::_compiler2_logs = nullptr; 154 CompileLog** CompileBroker::_compiler3_logs = nullptr; 155 CompileLog** CompileBroker::_sc_logs = nullptr; 156 157 // These counters are used to assign an unique ID to each compilation. 158 volatile jint CompileBroker::_compilation_id = 0; 159 volatile jint CompileBroker::_osr_compilation_id = 0; 160 volatile jint CompileBroker::_native_compilation_id = 0; 161 162 // Performance counters 163 PerfCounter* CompileBroker::_perf_total_compilation = nullptr; 164 PerfCounter* CompileBroker::_perf_osr_compilation = nullptr; 165 PerfCounter* CompileBroker::_perf_standard_compilation = nullptr; 166 167 PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr; 168 PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr; 169 PerfCounter* CompileBroker::_perf_total_compile_count = nullptr; 170 PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr; 171 PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr; 172 173 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr; 174 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr; 175 PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr; 176 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr; 177 178 PerfStringVariable* CompileBroker::_perf_last_method = nullptr; 179 PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr; 180 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr; 181 PerfVariable* CompileBroker::_perf_last_compile_type = nullptr; 182 PerfVariable* CompileBroker::_perf_last_compile_size = nullptr; 183 PerfVariable* CompileBroker::_perf_last_failed_type = nullptr; 184 PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr; 185 186 // Timers and counters for generating statistics 187 elapsedTimer CompileBroker::_t_total_compilation; 188 elapsedTimer CompileBroker::_t_osr_compilation; 189 elapsedTimer CompileBroker::_t_standard_compilation; 190 elapsedTimer CompileBroker::_t_invalidated_compilation; 191 elapsedTimer CompileBroker::_t_bailedout_compilation; 192 193 uint CompileBroker::_total_bailout_count = 0; 194 uint CompileBroker::_total_invalidated_count = 0; 195 uint CompileBroker::_total_not_entrant_count = 0; 196 uint CompileBroker::_total_compile_count = 0; 197 uint CompileBroker::_total_osr_compile_count = 0; 198 uint CompileBroker::_total_standard_compile_count = 0; 199 uint CompileBroker::_total_compiler_stopped_count = 0; 200 uint CompileBroker::_total_compiler_restarted_count = 0; 201 202 uint CompileBroker::_sum_osr_bytes_compiled = 0; 203 uint CompileBroker::_sum_standard_bytes_compiled = 0; 204 uint CompileBroker::_sum_nmethod_size = 0; 205 uint CompileBroker::_sum_nmethod_code_size = 0; 206 207 jlong CompileBroker::_peak_compilation_time = 0; 208 209 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization]; 210 CompilerStatistics CompileBroker::_scc_stats; 211 CompilerStatistics CompileBroker::_scc_stats_per_level[CompLevel_full_optimization + 1]; 212 213 CompileQueue* CompileBroker::_c3_compile_queue = nullptr; 214 CompileQueue* CompileBroker::_c2_compile_queue = nullptr; 215 CompileQueue* CompileBroker::_c1_compile_queue = nullptr; 216 CompileQueue* CompileBroker::_sc1_compile_queue = nullptr; 217 CompileQueue* CompileBroker::_sc2_compile_queue = nullptr; 218 219 bool compileBroker_init() { 220 if (LogEvents) { 221 CompilationLog::init(); 222 } 223 224 // init directives stack, adding default directive 225 DirectivesStack::init(); 226 227 if (DirectivesParser::has_file()) { 228 return DirectivesParser::parse_from_flag(); 229 } else if (CompilerDirectivesPrint) { 230 // Print default directive even when no other was added 231 DirectivesStack::print(tty); 232 } 233 234 return true; 235 } 236 237 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) { 238 CompilerThread* thread = CompilerThread::current(); 239 thread->set_task(task); 240 CompileLog* log = thread->log(); 241 if (log != nullptr && !task->is_unloaded()) task->log_task_start(log); 242 } 243 244 CompileTaskWrapper::~CompileTaskWrapper() { 245 CompilerThread* thread = CompilerThread::current(); 246 CompileTask* task = thread->task(); 247 CompileLog* log = thread->log(); 248 AbstractCompiler* comp = thread->compiler(); 249 if (log != nullptr && !task->is_unloaded()) task->log_task_done(log); 250 thread->set_task(nullptr); 251 thread->set_env(nullptr); 252 if (task->is_blocking()) { 253 bool free_task = false; 254 { 255 MutexLocker notifier(thread, task->lock()); 256 task->mark_complete(); 257 #if INCLUDE_JVMCI 258 if (comp->is_jvmci()) { 259 if (!task->has_waiter()) { 260 // The waiting thread timed out and thus did not free the task. 261 free_task = true; 262 } 263 task->set_blocking_jvmci_compile_state(nullptr); 264 } 265 #endif 266 if (!free_task) { 267 // Notify the waiting thread that the compilation has completed 268 // so that it can free the task. 269 task->lock()->notify_all(); 270 } 271 } 272 if (free_task) { 273 // The task can only be freed once the task lock is released. 274 CompileTask::free(task); 275 } 276 } else { 277 task->mark_complete(); 278 279 // By convention, the compiling thread is responsible for 280 // recycling a non-blocking CompileTask. 281 CompileTask::free(task); 282 } 283 } 284 285 /** 286 * Check if a CompilerThread can be removed and update count if requested. 287 */ 288 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) { 289 assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here"); 290 if (!ReduceNumberOfCompilerThreads) return false; 291 292 if (RecompilationPolicy::have_recompilation_work()) return false; 293 294 AbstractCompiler *compiler = ct->compiler(); 295 int compiler_count = compiler->num_compiler_threads(); 296 bool c1 = compiler->is_c1(); 297 298 // Keep at least 1 compiler thread of each type. 299 if (compiler_count < 2) return false; 300 301 // Keep thread alive for at least some time. 302 if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false; 303 304 #if INCLUDE_JVMCI 305 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 306 // Handles for JVMCI thread objects may get released concurrently. 307 if (do_it) { 308 assert(CompileThread_lock->owner() == ct, "must be holding lock"); 309 } else { 310 // Skip check if it's the last thread and let caller check again. 311 return true; 312 } 313 } 314 #endif 315 316 // We only allow the last compiler thread of each type to get removed. 317 jobject last_compiler = c1 ? compiler1_object(compiler_count - 1) 318 : compiler2_object(compiler_count - 1); 319 if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) { 320 if (do_it) { 321 assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent. 322 compiler->set_num_compiler_threads(compiler_count - 1); 323 #if INCLUDE_JVMCI 324 if (compiler->is_jvmci() && !UseJVMCINativeLibrary) { 325 // Old j.l.Thread object can die when no longer referenced elsewhere. 326 JNIHandles::destroy_global(compiler2_object(compiler_count - 1)); 327 _compiler2_objects[compiler_count - 1] = nullptr; 328 } 329 #endif 330 } 331 return true; 332 } 333 return false; 334 } 335 336 /** 337 * Add a CompileTask to a CompileQueue. 338 */ 339 void CompileQueue::add(CompileTask* task) { 340 assert(_lock->owned_by_self(), "must own lock"); 341 342 task->set_next(nullptr); 343 task->set_prev(nullptr); 344 345 if (_last == nullptr) { 346 // The compile queue is empty. 347 assert(_first == nullptr, "queue is empty"); 348 _first = task; 349 _last = task; 350 } else { 351 // Append the task to the queue. 352 assert(_last->next() == nullptr, "not last"); 353 _last->set_next(task); 354 task->set_prev(_last); 355 _last = task; 356 } 357 ++_size; 358 ++_total_added; 359 if (_size > _peak_size) { 360 _peak_size = _size; 361 } 362 363 // Mark the method as being in the compile queue. 364 task->method()->set_queued_for_compilation(); 365 366 task->mark_queued(os::elapsed_counter()); 367 368 if (CIPrintCompileQueue) { 369 print_tty(); 370 } 371 372 if (LogCompilation && xtty != nullptr) { 373 task->log_task_queued(); 374 } 375 376 if (TrainingData::need_data() && 377 !CDSConfig::is_dumping_final_static_archive()) { // FIXME: !!! MetaspaceShared::preload_and_dump() temporarily enables RecordTraining !!! 378 CompileTrainingData* tdata = CompileTrainingData::make(task); 379 if (tdata != nullptr) { 380 task->set_training_data(tdata); 381 } 382 } 383 384 // Notify CompilerThreads that a task is available. 385 _lock->notify_all(); 386 } 387 388 void CompileQueue::add_pending(CompileTask* task) { 389 assert(_lock->owned_by_self() == false, "must NOT own lock"); 390 assert(UseLockFreeCompileQueues, ""); 391 task->method()->set_queued_for_compilation(); 392 _queue.push(*task); 393 // FIXME: additional coordination needed? e.g., is it possible for compiler thread to block w/o processing pending tasks? 394 if (is_empty()) { 395 MutexLocker ml(_lock); 396 _lock->notify_all(); 397 } 398 } 399 400 static bool process_pending(CompileTask* task) { 401 // guarantee(task->method()->queued_for_compilation(), ""); 402 if (task->is_unloaded()) { 403 return true; // unloaded 404 } 405 task->method()->set_queued_for_compilation(); // FIXME 406 if (task->method()->pending_queue_processed()) { 407 return true; // already queued 408 } 409 // Mark the method as being in the compile queue. 410 task->method()->set_pending_queue_processed(); 411 if (CompileBroker::compilation_is_complete(task->method(), task->osr_bci(), task->comp_level(), 412 task->requires_online_compilation(), task->compile_reason())) { 413 return true; // already compiled 414 } 415 return false; // active 416 } 417 418 void CompileQueue::transfer_pending() { 419 assert(_lock->owned_by_self(), "must own lock"); 420 while (!_queue.empty()) { 421 CompileTask* task = _queue.pop(); 422 bool is_stale = process_pending(task); 423 if (is_stale) { 424 task->set_next(_first_stale); 425 task->set_prev(nullptr); 426 _first_stale = task; 427 } else { 428 add(task); 429 } 430 } 431 } 432 433 /** 434 * Empties compilation queue by putting all compilation tasks onto 435 * a freelist. Furthermore, the method wakes up all threads that are 436 * waiting on a compilation task to finish. This can happen if background 437 * compilation is disabled. 438 */ 439 void CompileQueue::free_all() { 440 MutexLocker mu(_lock); 441 transfer_pending(); 442 443 CompileTask* next = _first; 444 445 // Iterate over all tasks in the compile queue 446 while (next != nullptr) { 447 CompileTask* current = next; 448 next = current->next(); 449 { 450 // Wake up thread that blocks on the compile task. 451 MutexLocker ct_lock(current->lock()); 452 current->lock()->notify(); 453 } 454 // Put the task back on the freelist. 455 CompileTask::free(current); 456 } 457 _first = nullptr; 458 _last = nullptr; 459 460 // Wake up all threads that block on the queue. 461 _lock->notify_all(); 462 } 463 464 /** 465 * Get the next CompileTask from a CompileQueue 466 */ 467 CompileTask* CompileQueue::get(CompilerThread* thread) { 468 // save methods from RedefineClasses across safepoint 469 // across compile queue lock below. 470 methodHandle save_method; 471 methodHandle save_hot_method; 472 473 MonitorLocker locker(_lock); 474 transfer_pending(); 475 476 RecompilationPolicy::sample_load_average(); 477 478 // If _first is null we have no more compile jobs. There are two reasons for 479 // having no compile jobs: First, we compiled everything we wanted. Second, 480 // we ran out of code cache so compilation has been disabled. In the latter 481 // case we perform code cache sweeps to free memory such that we can re-enable 482 // compilation. 483 while (_first == nullptr) { 484 // Exit loop if compilation is disabled forever 485 if (CompileBroker::is_compilation_disabled_forever()) { 486 return nullptr; 487 } 488 489 AbstractCompiler* compiler = thread->compiler(); 490 guarantee(compiler != nullptr, "Compiler object must exist"); 491 compiler->on_empty_queue(this, thread); 492 if (_first != nullptr) { 493 // The call to on_empty_queue may have temporarily unlocked the MCQ lock 494 // so check again whether any tasks were added to the queue. 495 break; 496 } 497 498 // If there are no compilation tasks and we can compile new jobs 499 // (i.e., there is enough free space in the code cache) there is 500 // no need to invoke the GC. 501 // We need a timed wait here, since compiler threads can exit if compilation 502 // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads 503 // is not critical and we do not want idle compiler threads to wake up too often. 504 locker.wait(5*1000); 505 506 transfer_pending(); // reacquired lock 507 508 if (RecompilationPolicy::have_recompilation_work()) return nullptr; 509 510 if (UseDynamicNumberOfCompilerThreads && _first == nullptr) { 511 // Still nothing to compile. Give caller a chance to stop this thread. 512 if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr; 513 } 514 } 515 516 if (CompileBroker::is_compilation_disabled_forever()) { 517 return nullptr; 518 } 519 520 CompileTask* task; 521 { 522 NoSafepointVerifier nsv; 523 task = CompilationPolicy::select_task(this, thread); 524 if (task != nullptr) { 525 task = task->select_for_compilation(); 526 } 527 } 528 529 if (task != nullptr) { 530 // Save method pointers across unlock safepoint. The task is removed from 531 // the compilation queue, which is walked during RedefineClasses. 532 Thread* thread = Thread::current(); 533 save_method = methodHandle(thread, task->method()); 534 save_hot_method = methodHandle(thread, task->hot_method()); 535 536 remove(task); 537 } 538 purge_stale_tasks(); // may temporarily release MCQ lock 539 return task; 540 } 541 542 // Clean & deallocate stale compile tasks. 543 // Temporarily releases MethodCompileQueue lock. 544 void CompileQueue::purge_stale_tasks() { 545 assert(_lock->owned_by_self(), "must own lock"); 546 if (_first_stale != nullptr) { 547 // Stale tasks are purged when MCQ lock is released, 548 // but _first_stale updates are protected by MCQ lock. 549 // Once task processing starts and MCQ lock is released, 550 // other compiler threads can reuse _first_stale. 551 CompileTask* head = _first_stale; 552 _first_stale = nullptr; 553 { 554 MutexUnlocker ul(_lock); 555 for (CompileTask* task = head; task != nullptr; ) { 556 CompileTask* next_task = task->next(); 557 CompileTaskWrapper ctw(task); // Frees the task 558 task->set_failure_reason("stale task"); 559 task = next_task; 560 } 561 } 562 transfer_pending(); // transfer pending after reacquiring MCQ lock 563 } 564 } 565 566 void CompileQueue::remove(CompileTask* task) { 567 assert(_lock->owned_by_self(), "must own lock"); 568 if (task->prev() != nullptr) { 569 task->prev()->set_next(task->next()); 570 } else { 571 // max is the first element 572 assert(task == _first, "Sanity"); 573 _first = task->next(); 574 } 575 576 if (task->next() != nullptr) { 577 task->next()->set_prev(task->prev()); 578 } else { 579 // max is the last element 580 assert(task == _last, "Sanity"); 581 _last = task->prev(); 582 } 583 --_size; 584 ++_total_removed; 585 } 586 587 void CompileQueue::remove_and_mark_stale(CompileTask* task) { 588 assert(_lock->owned_by_self(), "must own lock"); 589 remove(task); 590 591 // Enqueue the task for reclamation (should be done outside MCQ lock) 592 task->set_next(_first_stale); 593 task->set_prev(nullptr); 594 _first_stale = task; 595 } 596 597 // methods in the compile queue need to be marked as used on the stack 598 // so that they don't get reclaimed by Redefine Classes 599 void CompileQueue::mark_on_stack() { 600 for (CompileTask* task = _first; task != nullptr; task = task->next()) { 601 task->mark_on_stack(); 602 } 603 for (CompileTask* task = _queue.first(); !_queue.is_end(task); task = task->next()) { 604 assert(task != nullptr, ""); 605 task->mark_on_stack(); 606 } 607 } 608 609 610 CompileQueue* CompileBroker::compile_queue(int comp_level, bool is_scc) { 611 if (is_c2_compile(comp_level)) return ((is_scc && (_sc_count > 0)) ? _sc2_compile_queue : _c2_compile_queue); 612 if (is_c1_compile(comp_level)) return ((is_scc && (_sc_count > 0)) ? _sc1_compile_queue : _c1_compile_queue); 613 return nullptr; 614 } 615 616 CompileQueue* CompileBroker::c1_compile_queue() { 617 return _c1_compile_queue; 618 } 619 620 CompileQueue* CompileBroker::c2_compile_queue() { 621 return _c2_compile_queue; 622 } 623 624 void CompileBroker::print_compile_queues(outputStream* st) { 625 st->print_cr("Current compiles: "); 626 627 char buf[2000]; 628 int buflen = sizeof(buf); 629 Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true); 630 631 st->cr(); 632 if (_c1_compile_queue != nullptr) { 633 _c1_compile_queue->print(st); 634 } 635 if (_c2_compile_queue != nullptr) { 636 _c2_compile_queue->print(st); 637 } 638 if (_c3_compile_queue != nullptr) { 639 _c3_compile_queue->print(st); 640 } 641 if (_sc1_compile_queue != nullptr) { 642 _sc1_compile_queue->print(st); 643 } 644 if (_sc2_compile_queue != nullptr) { 645 _sc2_compile_queue->print(st); 646 } 647 } 648 649 void CompileQueue::print(outputStream* st) { 650 assert_locked_or_safepoint(_lock); 651 st->print_cr("%s:", name()); 652 CompileTask* task = _first; 653 if (task == nullptr) { 654 st->print_cr("Empty"); 655 } else { 656 while (task != nullptr) { 657 task->print(st, nullptr, true, true); 658 task = task->next(); 659 } 660 } 661 st->cr(); 662 } 663 664 void CompileQueue::print_tty() { 665 stringStream ss; 666 // Dump the compile queue into a buffer before locking the tty 667 print(&ss); 668 { 669 ttyLocker ttyl; 670 tty->print("%s", ss.freeze()); 671 } 672 } 673 674 CompilerCounters::CompilerCounters() { 675 _current_method[0] = '\0'; 676 _compile_type = CompileBroker::no_compile; 677 } 678 679 #if INCLUDE_JFR && COMPILER2_OR_JVMCI 680 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping 681 // in compiler/compilerEvent.cpp) and registers it with its serializer. 682 // 683 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp, 684 // so if c2 is used, it should be always registered first. 685 // This function is called during vm initialization. 686 static void register_jfr_phasetype_serializer(CompilerType compiler_type) { 687 ResourceMark rm; 688 static bool first_registration = true; 689 if (compiler_type == compiler_jvmci) { 690 CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false); 691 first_registration = false; 692 #ifdef COMPILER2 693 } else if (compiler_type == compiler_c2) { 694 assert(first_registration, "invariant"); // c2 must be registered first. 695 for (int i = 0; i < PHASE_NUM_TYPES; i++) { 696 const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i); 697 CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false); 698 } 699 first_registration = false; 700 #endif // COMPILER2 701 } 702 } 703 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI 704 705 // ------------------------------------------------------------------ 706 // CompileBroker::compilation_init 707 // 708 // Initialize the Compilation object 709 void CompileBroker::compilation_init(JavaThread* THREAD) { 710 // No need to initialize compilation system if we do not use it. 711 if (!UseCompiler) { 712 return; 713 } 714 // Set the interface to the current compiler(s). 715 _c1_count = CompilationPolicy::c1_count(); 716 _c2_count = CompilationPolicy::c2_count(); 717 _c3_count = CompilationPolicy::c3_count(); 718 _sc_count = CompilationPolicy::sc_count(); 719 720 #if INCLUDE_JVMCI 721 if (EnableJVMCI) { 722 // This is creating a JVMCICompiler singleton. 723 JVMCICompiler* jvmci = new JVMCICompiler(); 724 725 if (UseJVMCICompiler) { 726 _compilers[1] = jvmci; 727 if (FLAG_IS_DEFAULT(JVMCIThreads)) { 728 if (BootstrapJVMCI) { 729 // JVMCI will bootstrap so give it more threads 730 _c2_count = MIN2(32, os::active_processor_count()); 731 } 732 } else { 733 _c2_count = JVMCIThreads; 734 } 735 if (FLAG_IS_DEFAULT(JVMCIHostThreads)) { 736 } else { 737 #ifdef COMPILER1 738 _c1_count = JVMCIHostThreads; 739 #endif // COMPILER1 740 } 741 #ifdef COMPILER2 742 if (SCCache::is_on() && (_c3_count > 0)) { 743 _compilers[2] = new C2Compiler(); 744 } 745 #endif 746 } 747 } 748 #endif // INCLUDE_JVMCI 749 750 #ifdef COMPILER1 751 if (_c1_count > 0) { 752 _compilers[0] = new Compiler(); 753 } 754 #endif // COMPILER1 755 756 #ifdef COMPILER2 757 if (true JVMCI_ONLY( && !UseJVMCICompiler)) { 758 if (_c2_count > 0) { 759 _compilers[1] = new C2Compiler(); 760 // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit. 761 // idToPhase mapping for c2 is in opto/phasetype.hpp 762 JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);) 763 } 764 } 765 #endif // COMPILER2 766 767 #if INCLUDE_JVMCI 768 // Register after c2 registration. 769 // JVMCI CompilerPhaseType idToPhase mapping is dynamic. 770 if (EnableJVMCI) { 771 JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);) 772 } 773 #endif // INCLUDE_JVMCI 774 775 if (CompilerOracle::should_collect_memstat()) { 776 CompilationMemoryStatistic::initialize(); 777 } 778 779 // Start the compiler thread(s) 780 init_compiler_threads(); 781 // totalTime performance counter is always created as it is required 782 // by the implementation of java.lang.management.CompilationMXBean. 783 { 784 // Ensure OOM leads to vm_exit_during_initialization. 785 EXCEPTION_MARK; 786 _perf_total_compilation = 787 PerfDataManager::create_counter(JAVA_CI, "totalTime", 788 PerfData::U_Ticks, CHECK); 789 } 790 791 if (UsePerfData) { 792 793 EXCEPTION_MARK; 794 795 // create the jvmstat performance counters 796 _perf_osr_compilation = 797 PerfDataManager::create_counter(SUN_CI, "osrTime", 798 PerfData::U_Ticks, CHECK); 799 800 _perf_standard_compilation = 801 PerfDataManager::create_counter(SUN_CI, "standardTime", 802 PerfData::U_Ticks, CHECK); 803 804 _perf_total_bailout_count = 805 PerfDataManager::create_counter(SUN_CI, "totalBailouts", 806 PerfData::U_Events, CHECK); 807 808 _perf_total_invalidated_count = 809 PerfDataManager::create_counter(SUN_CI, "totalInvalidates", 810 PerfData::U_Events, CHECK); 811 812 _perf_total_compile_count = 813 PerfDataManager::create_counter(SUN_CI, "totalCompiles", 814 PerfData::U_Events, CHECK); 815 _perf_total_osr_compile_count = 816 PerfDataManager::create_counter(SUN_CI, "osrCompiles", 817 PerfData::U_Events, CHECK); 818 819 _perf_total_standard_compile_count = 820 PerfDataManager::create_counter(SUN_CI, "standardCompiles", 821 PerfData::U_Events, CHECK); 822 823 _perf_sum_osr_bytes_compiled = 824 PerfDataManager::create_counter(SUN_CI, "osrBytes", 825 PerfData::U_Bytes, CHECK); 826 827 _perf_sum_standard_bytes_compiled = 828 PerfDataManager::create_counter(SUN_CI, "standardBytes", 829 PerfData::U_Bytes, CHECK); 830 831 _perf_sum_nmethod_size = 832 PerfDataManager::create_counter(SUN_CI, "nmethodSize", 833 PerfData::U_Bytes, CHECK); 834 835 _perf_sum_nmethod_code_size = 836 PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize", 837 PerfData::U_Bytes, CHECK); 838 839 _perf_last_method = 840 PerfDataManager::create_string_variable(SUN_CI, "lastMethod", 841 CompilerCounters::cmname_buffer_length, 842 "", CHECK); 843 844 _perf_last_failed_method = 845 PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod", 846 CompilerCounters::cmname_buffer_length, 847 "", CHECK); 848 849 _perf_last_invalidated_method = 850 PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod", 851 CompilerCounters::cmname_buffer_length, 852 "", CHECK); 853 854 _perf_last_compile_type = 855 PerfDataManager::create_variable(SUN_CI, "lastType", 856 PerfData::U_None, 857 (jlong)CompileBroker::no_compile, 858 CHECK); 859 860 _perf_last_compile_size = 861 PerfDataManager::create_variable(SUN_CI, "lastSize", 862 PerfData::U_Bytes, 863 (jlong)CompileBroker::no_compile, 864 CHECK); 865 866 867 _perf_last_failed_type = 868 PerfDataManager::create_variable(SUN_CI, "lastFailedType", 869 PerfData::U_None, 870 (jlong)CompileBroker::no_compile, 871 CHECK); 872 873 _perf_last_invalidated_type = 874 PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType", 875 PerfData::U_None, 876 (jlong)CompileBroker::no_compile, 877 CHECK); 878 } 879 880 log_info(scc, init)("CompileBroker is initialized"); 881 _initialized = true; 882 } 883 884 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) { 885 Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK_NH); 886 return thread_oop; 887 } 888 889 void TrainingReplayThread::training_replay_thread_entry(JavaThread* thread, TRAPS) { 890 CompilationPolicy::replay_training_at_init_loop(thread); 891 } 892 893 #if defined(ASSERT) && COMPILER2_OR_JVMCI 894 // Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to 895 // the running java application. Configured with vm options DeoptimizeObjectsALot*. 896 class DeoptimizeObjectsALotThread : public JavaThread { 897 898 static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS); 899 void deoptimize_objects_alot_loop_single(); 900 void deoptimize_objects_alot_loop_all(); 901 902 public: 903 DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { } 904 905 bool is_hidden_from_external_view() const { return true; } 906 }; 907 908 // Entry for DeoptimizeObjectsALotThread. The threads are started in 909 // CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled 910 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) { 911 DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread); 912 bool enter_single_loop; 913 { 914 MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag); 915 static int single_thread_count = 0; 916 enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle; 917 } 918 if (enter_single_loop) { 919 dt->deoptimize_objects_alot_loop_single(); 920 } else { 921 dt->deoptimize_objects_alot_loop_all(); 922 } 923 } 924 925 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 926 // barrier targets a single thread which is selected round robin. 927 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() { 928 HandleMark hm(this); 929 while (true) { 930 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) { 931 { // Begin new scope for escape barrier 932 HandleMarkCleaner hmc(this); 933 ResourceMark rm(this); 934 EscapeBarrier eb(true, this, deoptee_thread); 935 eb.deoptimize_objects(100); 936 } 937 // Now sleep after the escape barriers destructor resumed deoptee_thread. 938 sleep(DeoptimizeObjectsALotInterval); 939 } 940 } 941 } 942 943 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each 944 // barrier targets all java threads in the vm at once. 945 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() { 946 HandleMark hm(this); 947 while (true) { 948 { // Begin new scope for escape barrier 949 HandleMarkCleaner hmc(this); 950 ResourceMark rm(this); 951 EscapeBarrier eb(true, this); 952 eb.deoptimize_objects_all_threads(); 953 } 954 // Now sleep after the escape barriers destructor resumed the java threads. 955 sleep(DeoptimizeObjectsALotInterval); 956 } 957 } 958 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 959 960 961 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) { 962 Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle)); 963 964 if (java_lang_Thread::thread(thread_oop()) != nullptr) { 965 assert(type == compiler_t, "should only happen with reused compiler threads"); 966 // The compiler thread hasn't actually exited yet so don't try to reuse it 967 return nullptr; 968 } 969 970 JavaThread* new_thread = nullptr; 971 switch (type) { 972 case compiler_t: 973 assert(comp != nullptr, "Compiler instance missing."); 974 if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) { 975 CompilerCounters* counters = new CompilerCounters(); 976 new_thread = new CompilerThread(queue, counters); 977 } 978 break; 979 #if defined(ASSERT) && COMPILER2_OR_JVMCI 980 case deoptimizer_t: 981 new_thread = new DeoptimizeObjectsALotThread(); 982 break; 983 #endif // ASSERT 984 case training_replay_t: 985 new_thread = new TrainingReplayThread(); 986 break; 987 default: 988 ShouldNotReachHere(); 989 } 990 991 // At this point the new CompilerThread data-races with this startup 992 // thread (which is the main thread and NOT the VM thread). 993 // This means Java bytecodes being executed at startup can 994 // queue compile jobs which will run at whatever default priority the 995 // newly created CompilerThread runs at. 996 997 998 // At this point it may be possible that no osthread was created for the 999 // JavaThread due to lack of resources. We will handle that failure below. 1000 // Also check new_thread so that static analysis is happy. 1001 if (new_thread != nullptr && new_thread->osthread() != nullptr) { 1002 1003 if (type == compiler_t) { 1004 CompilerThread::cast(new_thread)->set_compiler(comp); 1005 } 1006 1007 // Note that we cannot call os::set_priority because it expects Java 1008 // priorities and we are *explicitly* using OS priorities so that it's 1009 // possible to set the compiler thread priority higher than any Java 1010 // thread. 1011 1012 int native_prio = CompilerThreadPriority; 1013 if (native_prio == -1) { 1014 if (UseCriticalCompilerThreadPriority) { 1015 native_prio = os::java_to_os_priority[CriticalPriority]; 1016 } else { 1017 native_prio = os::java_to_os_priority[NearMaxPriority]; 1018 } 1019 } 1020 os::set_native_priority(new_thread, native_prio); 1021 1022 // Note that this only sets the JavaThread _priority field, which by 1023 // definition is limited to Java priorities and not OS priorities. 1024 JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority); 1025 1026 } else { // osthread initialization failure 1027 if (UseDynamicNumberOfCompilerThreads && type == compiler_t 1028 && comp->num_compiler_threads() > 0) { 1029 // The new thread is not known to Thread-SMR yet so we can just delete. 1030 delete new_thread; 1031 return nullptr; 1032 } else { 1033 vm_exit_during_initialization("java.lang.OutOfMemoryError", 1034 os::native_thread_creation_failed_msg()); 1035 } 1036 } 1037 1038 os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS) 1039 1040 return new_thread; 1041 } 1042 1043 static bool trace_compiler_threads() { 1044 LogTarget(Debug, jit, thread) lt; 1045 return TraceCompilerThreads || lt.is_enabled(); 1046 } 1047 1048 static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) { 1049 char name_buffer[256]; 1050 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i); 1051 Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL); 1052 return JNIHandles::make_global(thread_oop); 1053 } 1054 1055 static void print_compiler_threads(stringStream& msg) { 1056 if (TraceCompilerThreads) { 1057 tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string()); 1058 } 1059 LogTarget(Debug, jit, thread) lt; 1060 if (lt.is_enabled()) { 1061 LogStream ls(lt); 1062 ls.print_cr("%s", msg.as_string()); 1063 } 1064 } 1065 1066 static void print_compiler_thread(JavaThread *ct) { 1067 if (trace_compiler_threads()) { 1068 ResourceMark rm; 1069 ThreadsListHandle tlh; // name() depends on the TLH. 1070 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1071 stringStream msg; 1072 msg.print("Added initial compiler thread %s", ct->name()); 1073 print_compiler_threads(msg); 1074 } 1075 } 1076 1077 void CompileBroker::init_compiler_threads() { 1078 // Ensure any exceptions lead to vm_exit_during_initialization. 1079 EXCEPTION_MARK; 1080 #if !defined(ZERO) 1081 assert(_c2_count > 0 || _c1_count > 0, "No compilers?"); 1082 #endif // !ZERO 1083 // Initialize the compilation queue 1084 if (_c2_count > 0) { 1085 const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue"; 1086 _c2_compile_queue = new CompileQueue(name, MethodCompileQueueC2_lock); 1087 _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler); 1088 _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler); 1089 } 1090 if (_c1_count > 0) { 1091 _c1_compile_queue = new CompileQueue("C1 compile queue", MethodCompileQueueC1_lock); 1092 _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler); 1093 _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler); 1094 } 1095 1096 if (_c3_count > 0) { 1097 const char* name = "C2 compile queue"; 1098 _c3_compile_queue = new CompileQueue(name, MethodCompileQueueC3_lock); 1099 _compiler3_objects = NEW_C_HEAP_ARRAY(jobject, _c3_count, mtCompiler); 1100 _compiler3_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c3_count, mtCompiler); 1101 } 1102 if (_sc_count > 0) { 1103 if (_c1_count > 0) { // C1 is present 1104 _sc1_compile_queue = new CompileQueue("C1 SC compile queue", MethodCompileQueueSC1_lock); 1105 } 1106 if (_c2_count > 0) { // C2 is present 1107 _sc2_compile_queue = new CompileQueue("C2 SC compile queue", MethodCompileQueueSC2_lock); 1108 } 1109 _sc_objects = NEW_C_HEAP_ARRAY(jobject, _sc_count, mtCompiler); 1110 _sc_logs = NEW_C_HEAP_ARRAY(CompileLog*, _sc_count, mtCompiler); 1111 } 1112 char name_buffer[256]; 1113 1114 for (int i = 0; i < _c2_count; i++) { 1115 // Create a name for our thread. 1116 jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK); 1117 _compiler2_objects[i] = thread_handle; 1118 _compiler2_logs[i] = nullptr; 1119 1120 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1121 JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD); 1122 assert(ct != nullptr, "should have been handled for initial thread"); 1123 _compilers[1]->set_num_compiler_threads(i + 1); 1124 print_compiler_thread(ct); 1125 } 1126 } 1127 1128 for (int i = 0; i < _c1_count; i++) { 1129 // Create a name for our thread. 1130 jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK); 1131 _compiler1_objects[i] = thread_handle; 1132 _compiler1_logs[i] = nullptr; 1133 1134 if (!UseDynamicNumberOfCompilerThreads || i == 0) { 1135 JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD); 1136 assert(ct != nullptr, "should have been handled for initial thread"); 1137 _compilers[0]->set_num_compiler_threads(i + 1); 1138 print_compiler_thread(ct); 1139 } 1140 } 1141 1142 for (int i = 0; i < _c3_count; i++) { 1143 // Create a name for our thread. 1144 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C2 CompilerThread%d", i); 1145 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1146 jobject thread_handle = JNIHandles::make_global(thread_oop); 1147 _compiler3_objects[i] = thread_handle; 1148 _compiler3_logs[i] = nullptr; 1149 1150 JavaThread *ct = make_thread(compiler_t, thread_handle, _c3_compile_queue, _compilers[2], THREAD); 1151 assert(ct != nullptr, "should have been handled for initial thread"); 1152 _compilers[2]->set_num_compiler_threads(i + 1); 1153 print_compiler_thread(ct); 1154 } 1155 1156 if (_sc_count > 0) { 1157 int i = 0; 1158 if (_c1_count > 0) { // C1 is present 1159 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d SC CompilerThread", 1); 1160 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1161 jobject thread_handle = JNIHandles::make_global(thread_oop); 1162 _sc_objects[i] = thread_handle; 1163 _sc_logs[i] = nullptr; 1164 i++; 1165 1166 JavaThread *ct = make_thread(compiler_t, thread_handle, _sc1_compile_queue, _compilers[0], THREAD); 1167 assert(ct != nullptr, "should have been handled for initial thread"); 1168 print_compiler_thread(ct); 1169 } 1170 if (_c2_count > 0) { // C2 is present 1171 os::snprintf_checked(name_buffer, sizeof(name_buffer), "C%d SC CompilerThread", 2); 1172 Handle thread_oop = create_thread_oop(name_buffer, CHECK); 1173 jobject thread_handle = JNIHandles::make_global(thread_oop); 1174 _sc_objects[i] = thread_handle; 1175 _sc_logs[i] = nullptr; 1176 1177 JavaThread *ct = make_thread(compiler_t, thread_handle, _sc2_compile_queue, _compilers[1], THREAD); 1178 assert(ct != nullptr, "should have been handled for initial thread"); 1179 print_compiler_thread(ct); 1180 } 1181 } 1182 1183 if (UsePerfData) { 1184 PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count + _c3_count, CHECK); 1185 } 1186 1187 #if defined(ASSERT) && COMPILER2_OR_JVMCI 1188 if (DeoptimizeObjectsALot) { 1189 // Initialize and start the object deoptimizer threads 1190 const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll; 1191 for (int count = 0; count < total_count; count++) { 1192 Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK); 1193 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1194 make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD); 1195 } 1196 } 1197 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI 1198 } 1199 1200 void CompileBroker::init_training_replay() { 1201 // Ensure any exceptions lead to vm_exit_during_initialization. 1202 EXCEPTION_MARK; 1203 if (TrainingData::have_data()) { 1204 if (UseConcurrentTrainingReplay) { 1205 Handle thread_oop = create_thread_oop("Training replay thread", CHECK); 1206 jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop()); 1207 make_thread(training_replay_t, thread_handle, nullptr, nullptr, THREAD); 1208 } 1209 _replay_initialized = true; 1210 } 1211 } 1212 1213 void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) { 1214 1215 int old_c2_count = 0, new_c2_count = 0, old_c1_count = 0, new_c1_count = 0; 1216 const int c2_tasks_per_thread = 2, c1_tasks_per_thread = 4; 1217 1218 // Quick check if we already have enough compiler threads without taking the lock. 1219 // Numbers may change concurrently, so we read them again after we have the lock. 1220 if (_c2_compile_queue != nullptr) { 1221 old_c2_count = get_c2_thread_count(); 1222 new_c2_count = MIN2(_c2_count, _c2_compile_queue->size() / c2_tasks_per_thread); 1223 } 1224 if (_c1_compile_queue != nullptr) { 1225 old_c1_count = get_c1_thread_count(); 1226 new_c1_count = MIN2(_c1_count, _c1_compile_queue->size() / c1_tasks_per_thread); 1227 } 1228 if (new_c2_count <= old_c2_count && new_c1_count <= old_c1_count) return; 1229 1230 // Now, we do the more expensive operations. 1231 julong free_memory = os::free_memory(); 1232 // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All). 1233 size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled), 1234 available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled); 1235 1236 // Only attempt to start additional threads if the lock is free. 1237 if (!CompileThread_lock->try_lock()) return; 1238 1239 if (_c2_compile_queue != nullptr) { 1240 old_c2_count = get_c2_thread_count(); 1241 new_c2_count = MIN4(_c2_count, 1242 _c2_compile_queue->size() / c2_tasks_per_thread, 1243 (int)(free_memory / (200*M)), 1244 (int)(available_cc_np / (128*K))); 1245 1246 for (int i = old_c2_count; i < new_c2_count; i++) { 1247 #if INCLUDE_JVMCI 1248 if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) { 1249 // Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their 1250 // existence is completely hidden from the rest of the VM (and those compiler threads can't 1251 // call Java code to do the creation anyway). 1252 // 1253 // For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we 1254 // can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For 1255 // native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary 1256 // coupling with Java. 1257 if (!THREAD->can_call_java()) break; 1258 char name_buffer[256]; 1259 os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i); 1260 Handle thread_oop; 1261 { 1262 // We have to give up the lock temporarily for the Java calls. 1263 MutexUnlocker mu(CompileThread_lock); 1264 thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD); 1265 } 1266 if (HAS_PENDING_EXCEPTION) { 1267 if (trace_compiler_threads()) { 1268 ResourceMark rm; 1269 stringStream msg; 1270 msg.print_cr("JVMCI compiler thread creation failed:"); 1271 PENDING_EXCEPTION->print_on(&msg); 1272 print_compiler_threads(msg); 1273 } 1274 CLEAR_PENDING_EXCEPTION; 1275 break; 1276 } 1277 // Check if another thread has beaten us during the Java calls. 1278 if (get_c2_thread_count() != i) break; 1279 jobject thread_handle = JNIHandles::make_global(thread_oop); 1280 assert(compiler2_object(i) == nullptr, "Old one must be released!"); 1281 _compiler2_objects[i] = thread_handle; 1282 } 1283 #endif 1284 guarantee(compiler2_object(i) != nullptr, "Thread oop must exist"); 1285 JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD); 1286 if (ct == nullptr) break; 1287 _compilers[1]->set_num_compiler_threads(i + 1); 1288 if (trace_compiler_threads()) { 1289 ResourceMark rm; 1290 ThreadsListHandle tlh; // name() depends on the TLH. 1291 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1292 stringStream msg; 1293 msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)", 1294 ct->name(), (int)(free_memory/M), (int)(available_cc_np/M)); 1295 print_compiler_threads(msg); 1296 } 1297 } 1298 } 1299 1300 if (_c1_compile_queue != nullptr) { 1301 old_c1_count = get_c1_thread_count(); 1302 new_c1_count = MIN4(_c1_count, 1303 _c1_compile_queue->size() / c1_tasks_per_thread, 1304 (int)(free_memory / (100*M)), 1305 (int)(available_cc_p / (128*K))); 1306 1307 for (int i = old_c1_count; i < new_c1_count; i++) { 1308 JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD); 1309 if (ct == nullptr) break; 1310 _compilers[0]->set_num_compiler_threads(i + 1); 1311 if (trace_compiler_threads()) { 1312 ResourceMark rm; 1313 ThreadsListHandle tlh; // name() depends on the TLH. 1314 assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct)); 1315 stringStream msg; 1316 msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)", 1317 ct->name(), (int)(free_memory/M), (int)(available_cc_p/M)); 1318 print_compiler_threads(msg); 1319 } 1320 } 1321 } 1322 1323 CompileThread_lock->unlock(); 1324 } 1325 1326 1327 /** 1328 * Set the methods on the stack as on_stack so that redefine classes doesn't 1329 * reclaim them. This method is executed at a safepoint. 1330 */ 1331 void CompileBroker::mark_on_stack() { 1332 assert(SafepointSynchronize::is_at_safepoint(), "sanity check"); 1333 // Since we are at a safepoint, we do not need a lock to access 1334 // the compile queues. 1335 if (_c3_compile_queue != nullptr) { 1336 _c3_compile_queue->mark_on_stack(); 1337 } 1338 if (_c2_compile_queue != nullptr) { 1339 _c2_compile_queue->mark_on_stack(); 1340 } 1341 if (_c1_compile_queue != nullptr) { 1342 _c1_compile_queue->mark_on_stack(); 1343 } 1344 if (_sc1_compile_queue != nullptr) { 1345 _sc1_compile_queue->mark_on_stack(); 1346 } 1347 if (_sc2_compile_queue != nullptr) { 1348 _sc2_compile_queue->mark_on_stack(); 1349 } 1350 } 1351 1352 // ------------------------------------------------------------------ 1353 // CompileBroker::compile_method 1354 // 1355 // Request compilation of a method. 1356 void CompileBroker::compile_method_base(const methodHandle& method, 1357 int osr_bci, 1358 int comp_level, 1359 const methodHandle& hot_method, 1360 int hot_count, 1361 CompileTask::CompileReason compile_reason, 1362 bool requires_online_compilation, 1363 bool blocking, 1364 Thread* thread) { 1365 guarantee(!method->is_abstract(), "cannot compile abstract methods"); 1366 assert(method->method_holder()->is_instance_klass(), 1367 "sanity check"); 1368 assert(!method->method_holder()->is_not_initialized() || 1369 compile_reason == CompileTask::Reason_Preload || 1370 compile_reason == CompileTask::Reason_Precompile || 1371 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized"); 1372 assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys"); 1373 1374 if (CIPrintRequests) { 1375 tty->print("request: "); 1376 method->print_short_name(tty); 1377 if (osr_bci != InvocationEntryBci) { 1378 tty->print(" osr_bci: %d", osr_bci); 1379 } 1380 tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count); 1381 if (!hot_method.is_null()) { 1382 tty->print(" hot: "); 1383 if (hot_method() != method()) { 1384 hot_method->print_short_name(tty); 1385 } else { 1386 tty->print("yes"); 1387 } 1388 } 1389 tty->cr(); 1390 } 1391 1392 // A request has been made for compilation. Before we do any 1393 // real work, check to see if the method has been compiled 1394 // in the meantime with a definitive result. 1395 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1396 return; 1397 } 1398 1399 #ifndef PRODUCT 1400 if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) { 1401 if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) { 1402 // Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI. 1403 return; 1404 } 1405 } 1406 #endif 1407 1408 // If this method is already in the compile queue, then 1409 // we do not block the current thread. 1410 if (compilation_is_in_queue(method)) { 1411 // We may want to decay our counter a bit here to prevent 1412 // multiple denied requests for compilation. This is an 1413 // open compilation policy issue. Note: The other possibility, 1414 // in the case that this is a blocking compile request, is to have 1415 // all subsequent blocking requesters wait for completion of 1416 // ongoing compiles. Note that in this case we'll need a protocol 1417 // for freeing the associated compile tasks. [Or we could have 1418 // a single static monitor on which all these waiters sleep.] 1419 return; 1420 } 1421 1422 // Tiered policy requires MethodCounters to exist before adding a method to 1423 // the queue. Create if we don't have them yet. 1424 if (compile_reason != CompileTask::Reason_Preload) { 1425 method->get_method_counters(thread); 1426 } 1427 1428 SCCEntry* scc_entry = find_scc_entry(method, osr_bci, comp_level, compile_reason, requires_online_compilation); 1429 bool is_scc = (scc_entry != nullptr); 1430 1431 // Outputs from the following MutexLocker block: 1432 CompileTask* task = nullptr; 1433 CompileQueue* queue; 1434 #if INCLUDE_JVMCI 1435 if (is_c2_compile(comp_level) && compiler2()->is_jvmci() && compiler3() != nullptr && 1436 ((JVMCICompiler*)compiler2())->force_comp_at_level_simple(method)) { 1437 assert(_c3_compile_queue != nullptr, "sanity"); 1438 queue = _c3_compile_queue; // JVMCI compiler's methods compilation 1439 } else 1440 #endif 1441 queue = compile_queue(comp_level, is_scc); 1442 1443 // Acquire our lock. 1444 { 1445 ConditionalMutexLocker locker(thread, queue->lock(), !UseLockFreeCompileQueues); 1446 1447 // Make sure the method has not slipped into the queues since 1448 // last we checked; note that those checks were "fast bail-outs". 1449 // Here we need to be more careful, see 14012000 below. 1450 if (compilation_is_in_queue(method)) { 1451 return; 1452 } 1453 1454 // We need to check again to see if the compilation has 1455 // completed. A previous compilation may have registered 1456 // some result. 1457 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1458 return; 1459 } 1460 1461 // We now know that this compilation is not pending, complete, 1462 // or prohibited. Assign a compile_id to this compilation 1463 // and check to see if it is in our [Start..Stop) range. 1464 int compile_id = assign_compile_id(method, osr_bci); 1465 if (compile_id == 0) { 1466 // The compilation falls outside the allowed range. 1467 return; 1468 } 1469 1470 #if INCLUDE_JVMCI 1471 if (UseJVMCICompiler && blocking) { 1472 // Don't allow blocking compiles for requests triggered by JVMCI. 1473 if (thread->is_Compiler_thread()) { 1474 blocking = false; 1475 } 1476 1477 // In libjvmci, JVMCI initialization should not deadlock with other threads 1478 if (!UseJVMCINativeLibrary) { 1479 // Don't allow blocking compiles if inside a class initializer or while performing class loading 1480 vframeStream vfst(JavaThread::cast(thread)); 1481 for (; !vfst.at_end(); vfst.next()) { 1482 if (vfst.method()->is_static_initializer() || 1483 (vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) && 1484 vfst.method()->name() == vmSymbols::loadClass_name())) { 1485 blocking = false; 1486 break; 1487 } 1488 } 1489 1490 // Don't allow blocking compilation requests to JVMCI 1491 // if JVMCI itself is not yet initialized 1492 if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) { 1493 blocking = false; 1494 } 1495 } 1496 1497 // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown 1498 // to avoid deadlock between compiler thread(s) and threads run at shutdown 1499 // such as the DestroyJavaVM thread. 1500 if (JVMCI::in_shutdown()) { 1501 blocking = false; 1502 } 1503 } 1504 #endif // INCLUDE_JVMCI 1505 1506 // We will enter the compilation in the queue. 1507 // 14012000: Note that this sets the queued_for_compile bits in 1508 // the target method. We can now reason that a method cannot be 1509 // queued for compilation more than once, as follows: 1510 // Before a thread queues a task for compilation, it first acquires 1511 // the compile queue lock, then checks if the method's queued bits 1512 // are set or it has already been compiled. Thus there can not be two 1513 // instances of a compilation task for the same method on the 1514 // compilation queue. Consider now the case where the compilation 1515 // thread has already removed a task for that method from the queue 1516 // and is in the midst of compiling it. In this case, the 1517 // queued_for_compile bits must be set in the method (and these 1518 // will be visible to the current thread, since the bits were set 1519 // under protection of the compile queue lock, which we hold now. 1520 // When the compilation completes, the compiler thread first sets 1521 // the compilation result and then clears the queued_for_compile 1522 // bits. Neither of these actions are protected by a barrier (or done 1523 // under the protection of a lock), so the only guarantee we have 1524 // (on machines with TSO (Total Store Order)) is that these values 1525 // will update in that order. As a result, the only combinations of 1526 // these bits that the current thread will see are, in temporal order: 1527 // <RESULT, QUEUE> : 1528 // <0, 1> : in compile queue, but not yet compiled 1529 // <1, 1> : compiled but queue bit not cleared 1530 // <1, 0> : compiled and queue bit cleared 1531 // Because we first check the queue bits then check the result bits, 1532 // we are assured that we cannot introduce a duplicate task. 1533 // Note that if we did the tests in the reverse order (i.e. check 1534 // result then check queued bit), we could get the result bit before 1535 // the compilation completed, and the queue bit after the compilation 1536 // completed, and end up introducing a "duplicate" (redundant) task. 1537 // In that case, the compiler thread should first check if a method 1538 // has already been compiled before trying to compile it. 1539 // NOTE: in the event that there are multiple compiler threads and 1540 // there is de-optimization/recompilation, things will get hairy, 1541 // and in that case it's best to protect both the testing (here) of 1542 // these bits, and their updating (here and elsewhere) under a 1543 // common lock. 1544 task = create_compile_task(queue, 1545 compile_id, method, 1546 osr_bci, comp_level, 1547 hot_method, hot_count, scc_entry, compile_reason, 1548 requires_online_compilation, blocking); 1549 1550 if (task->is_scc() && (_sc_count > 0)) { 1551 // Put it on SC queue 1552 queue = is_c1_compile(comp_level) ? _sc1_compile_queue : _sc2_compile_queue; 1553 } 1554 1555 if (UseLockFreeCompileQueues) { 1556 assert(queue->lock()->owned_by_self() == false, ""); 1557 queue->add_pending(task); 1558 } else { 1559 queue->add(task); 1560 } 1561 } 1562 1563 if (blocking) { 1564 wait_for_completion(task); 1565 } 1566 } 1567 1568 SCCEntry* CompileBroker::find_scc_entry(const methodHandle& method, int osr_bci, int comp_level, 1569 CompileTask::CompileReason compile_reason, 1570 bool requires_online_compilation) { 1571 SCCEntry* scc_entry = nullptr; 1572 if (osr_bci == InvocationEntryBci && !requires_online_compilation && SCCache::is_on_for_read()) { 1573 // Check for cached code. 1574 if (compile_reason == CompileTask::Reason_Preload) { 1575 scc_entry = method->scc_entry(); 1576 assert(scc_entry != nullptr && scc_entry->for_preload(), "sanity"); 1577 } else { 1578 scc_entry = SCCache::find_code_entry(method, comp_level); 1579 } 1580 } 1581 return scc_entry; 1582 } 1583 1584 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1585 int comp_level, 1586 const methodHandle& hot_method, int hot_count, 1587 bool requires_online_compilation, 1588 CompileTask::CompileReason compile_reason, 1589 TRAPS) { 1590 // Do nothing if compilebroker is not initialized or compiles are submitted on level none 1591 if (!_initialized || comp_level == CompLevel_none) { 1592 return nullptr; 1593 } 1594 1595 #if INCLUDE_JVMCI 1596 if (EnableJVMCI && UseJVMCICompiler && 1597 comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) { 1598 return nullptr; 1599 } 1600 #endif 1601 1602 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 1603 assert(comp != nullptr, "Ensure we have a compiler"); 1604 1605 #if INCLUDE_JVMCI 1606 if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) { 1607 // JVMCI compilation is not yet initializable. 1608 return nullptr; 1609 } 1610 #endif 1611 1612 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp); 1613 // CompileBroker::compile_method can trap and can have pending async exception. 1614 nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, requires_online_compilation, compile_reason, directive, THREAD); 1615 DirectivesStack::release(directive); 1616 return nm; 1617 } 1618 1619 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci, 1620 int comp_level, 1621 const methodHandle& hot_method, int hot_count, 1622 bool requires_online_compilation, 1623 CompileTask::CompileReason compile_reason, 1624 DirectiveSet* directive, 1625 TRAPS) { 1626 1627 // make sure arguments make sense 1628 assert(method->method_holder()->is_instance_klass(), "not an instance method"); 1629 assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range"); 1630 assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods"); 1631 assert(!method->method_holder()->is_not_initialized() || 1632 compile_reason == CompileTask::Reason_Preload || 1633 compile_reason == CompileTask::Reason_Precompile || 1634 compile_reason == CompileTask::Reason_PrecompileForPreload, "method holder must be initialized"); 1635 // return quickly if possible 1636 1637 if (PrecompileOnlyAndExit && !CompileTask::reason_is_precompiled(compile_reason)) { 1638 return nullptr; 1639 } 1640 1641 // lock, make sure that the compilation 1642 // isn't prohibited in a straightforward way. 1643 AbstractCompiler* comp = CompileBroker::compiler(comp_level); 1644 if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) { 1645 return nullptr; 1646 } 1647 1648 if (osr_bci == InvocationEntryBci) { 1649 // standard compilation 1650 nmethod* method_code = method->code(); 1651 if (method_code != nullptr) { 1652 if (compilation_is_complete(method(), osr_bci, comp_level, requires_online_compilation, compile_reason)) { 1653 return method_code; 1654 } 1655 } 1656 if (method->is_not_compilable(comp_level)) { 1657 return nullptr; 1658 } 1659 } else { 1660 // osr compilation 1661 // We accept a higher level osr method 1662 nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1663 if (nm != nullptr) return nm; 1664 if (method->is_not_osr_compilable(comp_level)) return nullptr; 1665 } 1666 1667 assert(!HAS_PENDING_EXCEPTION, "No exception should be present"); 1668 // some prerequisites that are compiler specific 1669 if (compile_reason != CompileTask::Reason_Preload && (comp->is_c2() || comp->is_jvmci())) { 1670 InternalOOMEMark iom(THREAD); 1671 method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL); 1672 // Resolve all classes seen in the signature of the method 1673 // we are compiling. 1674 Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL); 1675 } 1676 1677 // If the method is native, do the lookup in the thread requesting 1678 // the compilation. Native lookups can load code, which is not 1679 // permitted during compilation. 1680 // 1681 // Note: A native method implies non-osr compilation which is 1682 // checked with an assertion at the entry of this method. 1683 if (method->is_native() && !method->is_method_handle_intrinsic()) { 1684 address adr = NativeLookup::lookup(method, THREAD); 1685 if (HAS_PENDING_EXCEPTION) { 1686 // In case of an exception looking up the method, we just forget 1687 // about it. The interpreter will kick-in and throw the exception. 1688 method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable() 1689 CLEAR_PENDING_EXCEPTION; 1690 return nullptr; 1691 } 1692 assert(method->has_native_function(), "must have native code by now"); 1693 } 1694 1695 // RedefineClasses() has replaced this method; just return 1696 if (method->is_old()) { 1697 return nullptr; 1698 } 1699 1700 // JVMTI -- post_compile_event requires jmethod_id() that may require 1701 // a lock the compiling thread can not acquire. Prefetch it here. 1702 if (JvmtiExport::should_post_compiled_method_load()) { 1703 method->jmethod_id(); 1704 } 1705 1706 // do the compilation 1707 if (method->is_native()) { 1708 if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) { 1709 #if defined(X86) && !defined(ZERO) 1710 // The following native methods: 1711 // 1712 // java.lang.Float.intBitsToFloat 1713 // java.lang.Float.floatToRawIntBits 1714 // java.lang.Double.longBitsToDouble 1715 // java.lang.Double.doubleToRawLongBits 1716 // 1717 // are called through the interpreter even if interpreter native stubs 1718 // are not preferred (i.e., calling through adapter handlers is preferred). 1719 // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved 1720 // if the version of the methods from the native libraries is called. 1721 // As the interpreter and the C2-intrinsified version of the methods preserves 1722 // sNaNs, that would result in an inconsistent way of handling of sNaNs. 1723 if ((UseSSE >= 1 && 1724 (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat || 1725 method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) || 1726 (UseSSE >= 2 && 1727 (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble || 1728 method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) { 1729 return nullptr; 1730 } 1731 #endif // X86 && !ZERO 1732 1733 // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that 1734 // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime). 1735 // 1736 // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter 1737 // in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls. 1738 AdapterHandlerLibrary::create_native_wrapper(method); 1739 } else { 1740 return nullptr; 1741 } 1742 } else { 1743 // If the compiler is shut off due to code cache getting full 1744 // fail out now so blocking compiles dont hang the java thread 1745 if (!should_compile_new_jobs()) { 1746 return nullptr; 1747 } 1748 bool is_blocking = ReplayCompiles || 1749 !directive->BackgroundCompilationOption || 1750 (compile_reason == CompileTask::Reason_Precompile) || 1751 (compile_reason == CompileTask::Reason_PrecompileForPreload); 1752 compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, requires_online_compilation, is_blocking, THREAD); 1753 } 1754 1755 // return requested nmethod 1756 // We accept a higher level osr method 1757 if (osr_bci == InvocationEntryBci) { 1758 return method->code(); 1759 } 1760 return method->lookup_osr_nmethod_for(osr_bci, comp_level, false); 1761 } 1762 1763 1764 // ------------------------------------------------------------------ 1765 // CompileBroker::compilation_is_complete 1766 // 1767 // See if compilation of this method is already complete. 1768 bool CompileBroker::compilation_is_complete(Method* method, 1769 int osr_bci, 1770 int comp_level, 1771 bool online_only, 1772 CompileTask::CompileReason compile_reason) { 1773 if (compile_reason == CompileTask::Reason_Precompile || 1774 compile_reason == CompileTask::Reason_PrecompileForPreload) { 1775 return false; // FIXME: any restrictions? 1776 } 1777 bool is_osr = (osr_bci != standard_entry_bci); 1778 if (is_osr) { 1779 if (method->is_not_osr_compilable(comp_level)) { 1780 return true; 1781 } else { 1782 nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true); 1783 return (result != nullptr); 1784 } 1785 } else { 1786 if (method->is_not_compilable(comp_level)) { 1787 return true; 1788 } else { 1789 nmethod* result = method->code(); 1790 if (result == nullptr) { 1791 return false; 1792 } 1793 if (online_only && result->is_scc()) { 1794 return false; 1795 } 1796 bool same_level = (comp_level == result->comp_level()); 1797 if (result->has_clinit_barriers()) { 1798 return !same_level; // Allow replace preloaded code with new code of the same level 1799 } 1800 return same_level; 1801 } 1802 } 1803 } 1804 1805 1806 /** 1807 * See if this compilation is already requested. 1808 * 1809 * Implementation note: there is only a single "is in queue" bit 1810 * for each method. This means that the check below is overly 1811 * conservative in the sense that an osr compilation in the queue 1812 * will block a normal compilation from entering the queue (and vice 1813 * versa). This can be remedied by a full queue search to disambiguate 1814 * cases. If it is deemed profitable, this may be done. 1815 */ 1816 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) { 1817 return method->queued_for_compilation(); 1818 } 1819 1820 // ------------------------------------------------------------------ 1821 // CompileBroker::compilation_is_prohibited 1822 // 1823 // See if this compilation is not allowed. 1824 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) { 1825 bool is_native = method->is_native(); 1826 // Some compilers may not support the compilation of natives. 1827 AbstractCompiler *comp = compiler(comp_level); 1828 if (is_native && (!CICompileNatives || comp == nullptr)) { 1829 method->set_not_compilable_quietly("native methods not supported", comp_level); 1830 return true; 1831 } 1832 1833 bool is_osr = (osr_bci != standard_entry_bci); 1834 // Some compilers may not support on stack replacement. 1835 if (is_osr && (!CICompileOSR || comp == nullptr)) { 1836 method->set_not_osr_compilable("OSR not supported", comp_level); 1837 return true; 1838 } 1839 1840 // The method may be explicitly excluded by the user. 1841 double scale; 1842 if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) { 1843 bool quietly = CompilerOracle::be_quiet(); 1844 if (PrintCompilation && !quietly) { 1845 // This does not happen quietly... 1846 ResourceMark rm; 1847 tty->print("### Excluding %s:%s", 1848 method->is_native() ? "generation of native wrapper" : "compile", 1849 (method->is_static() ? " static" : "")); 1850 method->print_short_name(tty); 1851 tty->cr(); 1852 } 1853 method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly); 1854 } 1855 1856 return false; 1857 } 1858 1859 /** 1860 * Generate serialized IDs for compilation requests. If certain debugging flags are used 1861 * and the ID is not within the specified range, the method is not compiled and 0 is returned. 1862 * The function also allows to generate separate compilation IDs for OSR compilations. 1863 */ 1864 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) { 1865 #ifdef ASSERT 1866 bool is_osr = (osr_bci != standard_entry_bci); 1867 int id; 1868 if (method->is_native()) { 1869 assert(!is_osr, "can't be osr"); 1870 // Adapters, native wrappers and method handle intrinsics 1871 // should be generated always. 1872 return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1); 1873 } else if (CICountOSR && is_osr) { 1874 id = Atomic::add(&_osr_compilation_id, 1); 1875 if (CIStartOSR <= id && id < CIStopOSR) { 1876 return id; 1877 } 1878 } else { 1879 id = Atomic::add(&_compilation_id, 1); 1880 if (CIStart <= id && id < CIStop) { 1881 return id; 1882 } 1883 } 1884 1885 // Method was not in the appropriate compilation range. 1886 method->set_not_compilable_quietly("Not in requested compile id range"); 1887 return 0; 1888 #else 1889 // CICountOSR is a develop flag and set to 'false' by default. In a product built, 1890 // only _compilation_id is incremented. 1891 return Atomic::add(&_compilation_id, 1); 1892 #endif 1893 } 1894 1895 // ------------------------------------------------------------------ 1896 // CompileBroker::assign_compile_id_unlocked 1897 // 1898 // Public wrapper for assign_compile_id that acquires the needed locks 1899 int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) { 1900 return assign_compile_id(method, osr_bci); 1901 } 1902 1903 // ------------------------------------------------------------------ 1904 // CompileBroker::create_compile_task 1905 // 1906 // Create a CompileTask object representing the current request for 1907 // compilation. Add this task to the queue. 1908 CompileTask* CompileBroker::create_compile_task(CompileQueue* queue, 1909 int compile_id, 1910 const methodHandle& method, 1911 int osr_bci, 1912 int comp_level, 1913 const methodHandle& hot_method, 1914 int hot_count, 1915 SCCEntry* scc_entry, 1916 CompileTask::CompileReason compile_reason, 1917 bool requires_online_compilation, 1918 bool blocking) { 1919 CompileTask* new_task = CompileTask::allocate(); 1920 new_task->initialize(compile_id, method, osr_bci, comp_level, 1921 hot_method, hot_count, scc_entry, compile_reason, queue, 1922 requires_online_compilation, blocking); 1923 return new_task; 1924 } 1925 1926 #if INCLUDE_JVMCI 1927 // The number of milliseconds to wait before checking if 1928 // JVMCI compilation has made progress. 1929 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000; 1930 1931 // The number of JVMCI compilation progress checks that must fail 1932 // before unblocking a thread waiting for a blocking compilation. 1933 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10; 1934 1935 /** 1936 * Waits for a JVMCI compiler to complete a given task. This thread 1937 * waits until either the task completes or it sees no JVMCI compilation 1938 * progress for N consecutive milliseconds where N is 1939 * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE * 1940 * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS. 1941 * 1942 * @return true if this thread needs to free/recycle the task 1943 */ 1944 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) { 1945 assert(UseJVMCICompiler, "sanity"); 1946 MonitorLocker ml(thread, task->lock()); 1947 int progress_wait_attempts = 0; 1948 jint thread_jvmci_compilation_ticks = 0; 1949 jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks(); 1950 while (!task->is_complete() && !is_compilation_disabled_forever() && 1951 ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) { 1952 JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state(); 1953 1954 bool progress; 1955 if (jvmci_compile_state != nullptr) { 1956 jint ticks = jvmci_compile_state->compilation_ticks(); 1957 progress = (ticks - thread_jvmci_compilation_ticks) != 0; 1958 JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks); 1959 thread_jvmci_compilation_ticks = ticks; 1960 } else { 1961 // Still waiting on JVMCI compiler queue. This thread may be holding a lock 1962 // that all JVMCI compiler threads are blocked on. We use the global JVMCI 1963 // compilation ticks to determine whether JVMCI compilation 1964 // is still making progress through the JVMCI compiler queue. 1965 jint ticks = jvmci->global_compilation_ticks(); 1966 progress = (ticks - global_jvmci_compilation_ticks) != 0; 1967 JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks); 1968 global_jvmci_compilation_ticks = ticks; 1969 } 1970 1971 if (!progress) { 1972 if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) { 1973 if (PrintCompilation) { 1974 task->print(tty, "wait for blocking compilation timed out"); 1975 } 1976 JVMCI_event_1("waiting on compilation %d timed out", task->compile_id()); 1977 break; 1978 } 1979 } else { 1980 progress_wait_attempts = 0; 1981 } 1982 } 1983 task->clear_waiter(); 1984 return task->is_complete(); 1985 } 1986 #endif 1987 1988 /** 1989 * Wait for the compilation task to complete. 1990 */ 1991 void CompileBroker::wait_for_completion(CompileTask* task) { 1992 if (CIPrintCompileQueue) { 1993 ttyLocker ttyl; 1994 tty->print_cr("BLOCKING FOR COMPILE"); 1995 } 1996 1997 assert(task->is_blocking(), "can only wait on blocking task"); 1998 1999 JavaThread* thread = JavaThread::current(); 2000 2001 methodHandle method(thread, task->method()); 2002 bool free_task; 2003 #if INCLUDE_JVMCI 2004 AbstractCompiler* comp = compiler(task->comp_level()); 2005 if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) { 2006 // It may return before compilation is completed. 2007 // Note that libjvmci should not pre-emptively unblock 2008 // a thread waiting for a compilation as it does not call 2009 // Java code and so is not deadlock prone like jarjvmci. 2010 free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread); 2011 } else 2012 #endif 2013 { 2014 MonitorLocker ml(thread, task->lock()); 2015 free_task = true; 2016 while (!task->is_complete() && !is_compilation_disabled_forever()) { 2017 ml.wait(); 2018 } 2019 } 2020 2021 if (free_task) { 2022 if (is_compilation_disabled_forever()) { 2023 CompileTask::free(task); 2024 return; 2025 } 2026 2027 // It is harmless to check this status without the lock, because 2028 // completion is a stable property (until the task object is recycled). 2029 assert(task->is_complete(), "Compilation should have completed"); 2030 2031 // By convention, the waiter is responsible for recycling a 2032 // blocking CompileTask. Since there is only one waiter ever 2033 // waiting on a CompileTask, we know that no one else will 2034 // be using this CompileTask; we can free it. 2035 CompileTask::free(task); 2036 } 2037 } 2038 2039 /** 2040 * Initialize compiler thread(s) + compiler object(s). The postcondition 2041 * of this function is that the compiler runtimes are initialized and that 2042 * compiler threads can start compiling. 2043 */ 2044 bool CompileBroker::init_compiler_runtime() { 2045 CompilerThread* thread = CompilerThread::current(); 2046 AbstractCompiler* comp = thread->compiler(); 2047 // Final sanity check - the compiler object must exist 2048 guarantee(comp != nullptr, "Compiler object must exist"); 2049 2050 { 2051 // Must switch to native to allocate ci_env 2052 ThreadToNativeFromVM ttn(thread); 2053 ciEnv ci_env((CompileTask*)nullptr); 2054 // Cache Jvmti state 2055 ci_env.cache_jvmti_state(); 2056 // Cache DTrace flags 2057 ci_env.cache_dtrace_flags(); 2058 2059 // Switch back to VM state to do compiler initialization 2060 ThreadInVMfromNative tv(thread); 2061 2062 // Perform per-thread and global initializations 2063 { 2064 MutexLocker only_one (thread, CompileThread_lock); 2065 SCCache::init_table(); 2066 } 2067 comp->initialize(); 2068 } 2069 2070 if (comp->is_failed()) { 2071 disable_compilation_forever(); 2072 // If compiler initialization failed, no compiler thread that is specific to a 2073 // particular compiler runtime will ever start to compile methods. 2074 shutdown_compiler_runtime(comp, thread); 2075 return false; 2076 } 2077 2078 // C1 specific check 2079 if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) { 2080 warning("Initialization of %s thread failed (no space to run compilers)", thread->name()); 2081 return false; 2082 } 2083 2084 return true; 2085 } 2086 2087 void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) { 2088 BufferBlob* blob = thread->get_buffer_blob(); 2089 if (blob != nullptr) { 2090 blob->purge(); 2091 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2092 CodeCache::free(blob); 2093 } 2094 } 2095 2096 /** 2097 * If C1 and/or C2 initialization failed, we shut down all compilation. 2098 * We do this to keep things simple. This can be changed if it ever turns 2099 * out to be a problem. 2100 */ 2101 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) { 2102 free_buffer_blob_if_allocated(thread); 2103 2104 log_info(compilation)("shutdown_compiler_runtime: " INTPTR_FORMAT, p2i(thread)); 2105 2106 if (comp->should_perform_shutdown()) { 2107 // There are two reasons for shutting down the compiler 2108 // 1) compiler runtime initialization failed 2109 // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing 2110 warning("%s initialization failed. Shutting down all compilers", comp->name()); 2111 2112 // Only one thread per compiler runtime object enters here 2113 // Set state to shut down 2114 comp->set_shut_down(); 2115 2116 // Delete all queued compilation tasks to make compiler threads exit faster. 2117 if (_c1_compile_queue != nullptr) { 2118 _c1_compile_queue->free_all(); 2119 } 2120 2121 if (_c2_compile_queue != nullptr) { 2122 _c2_compile_queue->free_all(); 2123 } 2124 2125 if (_c3_compile_queue != nullptr) { 2126 _c3_compile_queue->free_all(); 2127 } 2128 2129 // Set flags so that we continue execution with using interpreter only. 2130 UseCompiler = false; 2131 UseInterpreter = true; 2132 2133 // We could delete compiler runtimes also. However, there are references to 2134 // the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then 2135 // fail. This can be done later if necessary. 2136 } 2137 } 2138 2139 /** 2140 * Helper function to create new or reuse old CompileLog. 2141 */ 2142 CompileLog* CompileBroker::get_log(CompilerThread* ct) { 2143 if (!LogCompilation) return nullptr; 2144 2145 AbstractCompiler *compiler = ct->compiler(); 2146 bool jvmci = JVMCI_ONLY( compiler->is_jvmci() ||) false; 2147 bool c1 = compiler->is_c1(); 2148 jobject* compiler_objects = c1 ? _compiler1_objects : (_c3_count == 0 ? _compiler2_objects : (jvmci ? _compiler2_objects : _compiler3_objects)); 2149 assert(compiler_objects != nullptr, "must be initialized at this point"); 2150 CompileLog** logs = c1 ? _compiler1_logs : (_c3_count == 0 ? _compiler2_logs : (jvmci ? _compiler2_logs : _compiler3_logs)); 2151 assert(logs != nullptr, "must be initialized at this point"); 2152 int count = c1 ? _c1_count : (_c3_count == 0 ? _c2_count : (jvmci ? _c2_count : _c3_count)); 2153 2154 if (ct->queue() == _sc1_compile_queue || ct->queue() == _sc2_compile_queue) { 2155 compiler_objects = _sc_objects; 2156 logs = _sc_logs; 2157 count = _sc_count; 2158 } 2159 // Find Compiler number by its threadObj. 2160 oop compiler_obj = ct->threadObj(); 2161 int compiler_number = 0; 2162 bool found = false; 2163 for (; compiler_number < count; compiler_number++) { 2164 if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) { 2165 found = true; 2166 break; 2167 } 2168 } 2169 assert(found, "Compiler must exist at this point"); 2170 2171 // Determine pointer for this thread's log. 2172 CompileLog** log_ptr = &logs[compiler_number]; 2173 2174 // Return old one if it exists. 2175 CompileLog* log = *log_ptr; 2176 if (log != nullptr) { 2177 ct->init_log(log); 2178 return log; 2179 } 2180 2181 // Create a new one and remember it. 2182 init_compiler_thread_log(); 2183 log = ct->log(); 2184 *log_ptr = log; 2185 return log; 2186 } 2187 2188 // ------------------------------------------------------------------ 2189 // CompileBroker::compiler_thread_loop 2190 // 2191 // The main loop run by a CompilerThread. 2192 void CompileBroker::compiler_thread_loop() { 2193 CompilerThread* thread = CompilerThread::current(); 2194 CompileQueue* queue = thread->queue(); 2195 // For the thread that initializes the ciObjectFactory 2196 // this resource mark holds all the shared objects 2197 ResourceMark rm; 2198 2199 // First thread to get here will initialize the compiler interface 2200 2201 { 2202 ASSERT_IN_VM; 2203 MutexLocker only_one (thread, CompileThread_lock); 2204 if (!ciObjectFactory::is_initialized()) { 2205 ciObjectFactory::initialize(); 2206 } 2207 } 2208 2209 // Open a log. 2210 CompileLog* log = get_log(thread); 2211 if (log != nullptr) { 2212 log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'", 2213 thread->name(), 2214 os::current_thread_id(), 2215 os::current_process_id()); 2216 log->stamp(); 2217 log->end_elem(); 2218 } 2219 2220 // If compiler thread/runtime initialization fails, exit the compiler thread 2221 if (!init_compiler_runtime()) { 2222 return; 2223 } 2224 2225 thread->start_idle_timer(); 2226 2227 // Poll for new compilation tasks as long as the JVM runs. Compilation 2228 // should only be disabled if something went wrong while initializing the 2229 // compiler runtimes. This, in turn, should not happen. The only known case 2230 // when compiler runtime initialization fails is if there is not enough free 2231 // space in the code cache to generate the necessary stubs, etc. 2232 while (!is_compilation_disabled_forever()) { 2233 // We need this HandleMark to avoid leaking VM handles. 2234 HandleMark hm(thread); 2235 2236 RecompilationPolicy::recompilation_step(RecompilationWorkUnitSize, thread); 2237 2238 CompileTask* task = queue->get(thread); 2239 2240 if (task == nullptr) { 2241 if (UseDynamicNumberOfCompilerThreads) { 2242 // Access compiler_count under lock to enforce consistency. 2243 MutexLocker only_one(CompileThread_lock); 2244 if (can_remove(thread, true)) { 2245 if (trace_compiler_threads()) { 2246 ResourceMark rm; 2247 stringStream msg; 2248 msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time", 2249 thread->name(), thread->idle_time_millis()); 2250 print_compiler_threads(msg); 2251 } 2252 2253 // Notify compiler that the compiler thread is about to stop 2254 thread->compiler()->stopping_compiler_thread(thread); 2255 2256 free_buffer_blob_if_allocated(thread); 2257 return; // Stop this thread. 2258 } 2259 } 2260 } else { 2261 // Assign the task to the current thread. Mark this compilation 2262 // thread as active for the profiler. 2263 // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition 2264 // occurs after fetching the compile task off the queue. 2265 CompileTaskWrapper ctw(task); 2266 methodHandle method(thread, task->method()); 2267 2268 // Never compile a method if breakpoints are present in it 2269 if (method()->number_of_breakpoints() == 0) { 2270 // Compile the method. 2271 if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { 2272 invoke_compiler_on_method(task); 2273 thread->start_idle_timer(); 2274 } else { 2275 // After compilation is disabled, remove remaining methods from queue 2276 method->clear_queued_for_compilation(); 2277 method->set_pending_queue_processed(false); 2278 task->set_failure_reason("compilation is disabled"); 2279 } 2280 } else { 2281 task->set_failure_reason("breakpoints are present"); 2282 } 2283 2284 if (UseDynamicNumberOfCompilerThreads) { 2285 possibly_add_compiler_threads(thread); 2286 assert(!thread->has_pending_exception(), "should have been handled"); 2287 } 2288 } 2289 } 2290 2291 // Shut down compiler runtime 2292 shutdown_compiler_runtime(thread->compiler(), thread); 2293 } 2294 2295 // ------------------------------------------------------------------ 2296 // CompileBroker::init_compiler_thread_log 2297 // 2298 // Set up state required by +LogCompilation. 2299 void CompileBroker::init_compiler_thread_log() { 2300 CompilerThread* thread = CompilerThread::current(); 2301 char file_name[4*K]; 2302 FILE* fp = nullptr; 2303 intx thread_id = os::current_thread_id(); 2304 for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) { 2305 const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr); 2306 if (dir == nullptr) { 2307 jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log", 2308 thread_id, os::current_process_id()); 2309 } else { 2310 jio_snprintf(file_name, sizeof(file_name), 2311 "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir, 2312 os::file_separator(), thread_id, os::current_process_id()); 2313 } 2314 2315 fp = os::fopen(file_name, "wt"); 2316 if (fp != nullptr) { 2317 if (LogCompilation && Verbose) { 2318 tty->print_cr("Opening compilation log %s", file_name); 2319 } 2320 CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id); 2321 if (log == nullptr) { 2322 fclose(fp); 2323 return; 2324 } 2325 thread->init_log(log); 2326 2327 if (xtty != nullptr) { 2328 ttyLocker ttyl; 2329 // Record any per thread log files 2330 xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name); 2331 } 2332 return; 2333 } 2334 } 2335 warning("Cannot open log file: %s", file_name); 2336 } 2337 2338 void CompileBroker::log_metaspace_failure() { 2339 const char* message = "some methods may not be compiled because metaspace " 2340 "is out of memory"; 2341 if (CompilationLog::log() != nullptr) { 2342 CompilationLog::log()->log_metaspace_failure(message); 2343 } 2344 if (PrintCompilation) { 2345 tty->print_cr("COMPILE PROFILING SKIPPED: %s", message); 2346 } 2347 } 2348 2349 2350 // ------------------------------------------------------------------ 2351 // CompileBroker::set_should_block 2352 // 2353 // Set _should_block. 2354 // Call this from the VM, with Threads_lock held and a safepoint requested. 2355 void CompileBroker::set_should_block() { 2356 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2357 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already"); 2358 #ifndef PRODUCT 2359 if (PrintCompilation && (Verbose || WizardMode)) 2360 tty->print_cr("notifying compiler thread pool to block"); 2361 #endif 2362 _should_block = true; 2363 } 2364 2365 // ------------------------------------------------------------------ 2366 // CompileBroker::maybe_block 2367 // 2368 // Call this from the compiler at convenient points, to poll for _should_block. 2369 void CompileBroker::maybe_block() { 2370 if (_should_block) { 2371 #ifndef PRODUCT 2372 if (PrintCompilation && (Verbose || WizardMode)) 2373 tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current())); 2374 #endif 2375 ThreadInVMfromNative tivfn(JavaThread::current()); 2376 } 2377 } 2378 2379 // wrapper for CodeCache::print_summary() 2380 static void codecache_print(bool detailed) 2381 { 2382 stringStream s; 2383 // Dump code cache into a buffer before locking the tty, 2384 { 2385 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2386 CodeCache::print_summary(&s, detailed); 2387 } 2388 ttyLocker ttyl; 2389 tty->print("%s", s.freeze()); 2390 } 2391 2392 // wrapper for CodeCache::print_summary() using outputStream 2393 static void codecache_print(outputStream* out, bool detailed) { 2394 stringStream s; 2395 2396 // Dump code cache into a buffer 2397 { 2398 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2399 CodeCache::print_summary(&s, detailed); 2400 } 2401 2402 char* remaining_log = s.as_string(); 2403 while (*remaining_log != '\0') { 2404 char* eol = strchr(remaining_log, '\n'); 2405 if (eol == nullptr) { 2406 out->print_cr("%s", remaining_log); 2407 remaining_log = remaining_log + strlen(remaining_log); 2408 } else { 2409 *eol = '\0'; 2410 out->print_cr("%s", remaining_log); 2411 remaining_log = eol + 1; 2412 } 2413 } 2414 } 2415 2416 void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env, 2417 int compilable, const char* failure_reason) { 2418 if (!AbortVMOnCompilationFailure) { 2419 return; 2420 } 2421 if (compilable == ciEnv::MethodCompilable_not_at_tier) { 2422 fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason); 2423 } 2424 if (compilable == ciEnv::MethodCompilable_never) { 2425 fatal("Never compilable: %s", failure_reason); 2426 } 2427 } 2428 2429 static void post_compilation_event(EventCompilation& event, CompileTask* task) { 2430 assert(task != nullptr, "invariant"); 2431 CompilerEvent::CompilationEvent::post(event, 2432 task->compile_id(), 2433 task->compiler()->type(), 2434 task->method(), 2435 task->comp_level(), 2436 task->is_success(), 2437 task->osr_bci() != CompileBroker::standard_entry_bci, 2438 task->nm_total_size(), 2439 task->num_inlined_bytecodes(), 2440 task->arena_bytes()); 2441 } 2442 2443 int DirectivesStack::_depth = 0; 2444 CompilerDirectives* DirectivesStack::_top = nullptr; 2445 CompilerDirectives* DirectivesStack::_bottom = nullptr; 2446 2447 // Acquires Compilation_lock and waits for it to be notified 2448 // as long as WhiteBox::compilation_locked is true. 2449 static void whitebox_lock_compilation() { 2450 MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag); 2451 while (WhiteBox::compilation_locked) { 2452 locker.wait(); 2453 } 2454 } 2455 2456 // ------------------------------------------------------------------ 2457 // CompileBroker::invoke_compiler_on_method 2458 // 2459 // Compile a method. 2460 // 2461 void CompileBroker::invoke_compiler_on_method(CompileTask* task) { 2462 task->print_ul(); 2463 elapsedTimer time; 2464 2465 DirectiveSet* directive = task->directive(); 2466 if (directive->PrintCompilationOption) { 2467 ResourceMark rm; 2468 task->print_tty(); 2469 } 2470 2471 CompilerThread* thread = CompilerThread::current(); 2472 ResourceMark rm(thread); 2473 2474 if (CompilationLog::log() != nullptr) { 2475 CompilationLog::log()->log_compile(thread, task); 2476 } 2477 2478 // Common flags. 2479 int compile_id = task->compile_id(); 2480 int osr_bci = task->osr_bci(); 2481 bool is_osr = (osr_bci != standard_entry_bci); 2482 bool should_log = (thread->log() != nullptr); 2483 bool should_break = false; 2484 const int task_level = task->comp_level(); 2485 AbstractCompiler* comp = task->compiler(); 2486 { 2487 // create the handle inside it's own block so it can't 2488 // accidentally be referenced once the thread transitions to 2489 // native. The NoHandleMark before the transition should catch 2490 // any cases where this occurs in the future. 2491 methodHandle method(thread, task->method()); 2492 2493 assert(!method->is_native(), "no longer compile natives"); 2494 2495 // Update compile information when using perfdata. 2496 if (UsePerfData) { 2497 update_compile_perf_data(thread, method, is_osr); 2498 } 2499 2500 DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level)); 2501 } 2502 2503 should_break = directive->BreakAtCompileOption || task->check_break_at_flags(); 2504 if (should_log && !directive->LogOption) { 2505 should_log = false; 2506 } 2507 2508 // Allocate a new set of JNI handles. 2509 JNIHandleMark jhm(thread); 2510 Method* target_handle = task->method(); 2511 int compilable = ciEnv::MethodCompilable; 2512 const char* failure_reason = nullptr; 2513 bool failure_reason_on_C_heap = false; 2514 const char* retry_message = nullptr; 2515 2516 #if INCLUDE_JVMCI 2517 if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) { 2518 JVMCICompiler* jvmci = (JVMCICompiler*) comp; 2519 2520 TraceTime t1("compilation", &time); 2521 EventCompilation event; 2522 JVMCICompileState compile_state(task, jvmci); 2523 JVMCIRuntime *runtime = nullptr; 2524 2525 if (JVMCI::in_shutdown()) { 2526 failure_reason = "in JVMCI shutdown"; 2527 retry_message = "not retryable"; 2528 compilable = ciEnv::MethodCompilable_never; 2529 } else if (compile_state.target_method_is_old()) { 2530 // Skip redefined methods 2531 failure_reason = "redefined method"; 2532 retry_message = "not retryable"; 2533 compilable = ciEnv::MethodCompilable_never; 2534 } else { 2535 JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__); 2536 if (env.init_error() != JNI_OK) { 2537 const char* msg = env.init_error_msg(); 2538 failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)", 2539 env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI); 2540 bool reason_on_C_heap = true; 2541 // In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it 2542 // might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime. 2543 bool retryable = env.init_error() == JNI_ENOMEM; 2544 compile_state.set_failure(retryable, failure_reason, reason_on_C_heap); 2545 } 2546 if (failure_reason == nullptr) { 2547 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2548 // Must switch to native to block 2549 ThreadToNativeFromVM ttn(thread); 2550 whitebox_lock_compilation(); 2551 } 2552 methodHandle method(thread, target_handle); 2553 runtime = env.runtime(); 2554 runtime->compile_method(&env, jvmci, method, osr_bci); 2555 2556 failure_reason = compile_state.failure_reason(); 2557 failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap(); 2558 if (!compile_state.retryable()) { 2559 retry_message = "not retryable"; 2560 compilable = ciEnv::MethodCompilable_not_at_tier; 2561 } 2562 if (!task->is_success()) { 2563 assert(failure_reason != nullptr, "must specify failure_reason"); 2564 } 2565 } 2566 } 2567 if (!task->is_success() && !JVMCI::in_shutdown()) { 2568 handle_compile_error(thread, task, nullptr, compilable, failure_reason); 2569 } 2570 if (event.should_commit()) { 2571 post_compilation_event(event, task); 2572 } 2573 2574 if (runtime != nullptr) { 2575 runtime->post_compile(thread); 2576 } 2577 } else 2578 #endif // INCLUDE_JVMCI 2579 { 2580 NoHandleMark nhm; 2581 ThreadToNativeFromVM ttn(thread); 2582 2583 ciEnv ci_env(task); 2584 if (should_break) { 2585 ci_env.set_break_at_compile(true); 2586 } 2587 if (should_log) { 2588 ci_env.set_log(thread->log()); 2589 } 2590 assert(thread->env() == &ci_env, "set by ci_env"); 2591 // The thread-env() field is cleared in ~CompileTaskWrapper. 2592 2593 // Cache Jvmti state 2594 bool method_is_old = ci_env.cache_jvmti_state(); 2595 2596 // Skip redefined methods 2597 if (method_is_old) { 2598 ci_env.record_method_not_compilable("redefined method", true); 2599 } 2600 2601 // Cache DTrace flags 2602 ci_env.cache_dtrace_flags(); 2603 2604 ciMethod* target = ci_env.get_method_from_handle(target_handle); 2605 2606 TraceTime t1("compilation", &time); 2607 EventCompilation event; 2608 2609 bool install_code = true; 2610 if (comp == nullptr) { 2611 ci_env.record_method_not_compilable("no compiler"); 2612 } else if (!ci_env.failing()) { 2613 if (WhiteBoxAPI && WhiteBox::compilation_locked) { 2614 whitebox_lock_compilation(); 2615 } 2616 if (StoreCachedCode && task->is_precompiled()) { 2617 install_code = false; // not suitable in the current context 2618 } 2619 comp->compile_method(&ci_env, target, osr_bci, install_code, directive); 2620 2621 /* Repeat compilation without installing code for profiling purposes */ 2622 int repeat_compilation_count = directive->RepeatCompilationOption; 2623 while (repeat_compilation_count > 0) { 2624 ResourceMark rm(thread); 2625 task->print_ul("NO CODE INSTALLED"); 2626 comp->compile_method(&ci_env, target, osr_bci, false, directive); 2627 repeat_compilation_count--; 2628 } 2629 } 2630 2631 DirectivesStack::release(directive); 2632 2633 if (!ci_env.failing() && !task->is_success() && install_code) { 2634 assert(ci_env.failure_reason() != nullptr, "expect failure reason"); 2635 assert(false, "compiler should always document failure: %s", ci_env.failure_reason()); 2636 // The compiler elected, without comment, not to register a result. 2637 // Do not attempt further compilations of this method. 2638 ci_env.record_method_not_compilable("compile failed"); 2639 } 2640 2641 // Copy this bit to the enclosing block: 2642 compilable = ci_env.compilable(); 2643 2644 if (ci_env.failing()) { 2645 // Duplicate the failure reason string, so that it outlives ciEnv 2646 failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler); 2647 failure_reason_on_C_heap = true; 2648 retry_message = ci_env.retry_message(); 2649 ci_env.report_failure(failure_reason); 2650 } 2651 2652 if (ci_env.failing()) { 2653 handle_compile_error(thread, task, &ci_env, compilable, failure_reason); 2654 } 2655 if (event.should_commit()) { 2656 post_compilation_event(event, task); 2657 } 2658 } 2659 2660 if (failure_reason != nullptr) { 2661 task->set_failure_reason(failure_reason, failure_reason_on_C_heap); 2662 if (CompilationLog::log() != nullptr) { 2663 CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message); 2664 } 2665 if (PrintCompilation) { 2666 FormatBufferResource msg = retry_message != nullptr ? 2667 FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) : 2668 FormatBufferResource("COMPILE SKIPPED: %s", failure_reason); 2669 task->print(tty, msg); 2670 } 2671 } 2672 2673 task->mark_finished(os::elapsed_counter()); 2674 2675 methodHandle method(thread, task->method()); 2676 2677 DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success()); 2678 2679 collect_statistics(thread, time, task); 2680 2681 if (PrintCompilation && PrintCompilation2) { 2682 tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp 2683 tty->print("%4d ", compile_id); // print compilation number 2684 tty->print("%s ", (is_osr ? "%" : (task->is_scc() ? "A" : " "))); 2685 if (task->is_success()) { 2686 tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size()); 2687 } 2688 tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes()); 2689 } 2690 2691 Log(compilation, codecache) log; 2692 if (log.is_debug()) { 2693 LogStream ls(log.debug()); 2694 codecache_print(&ls, /* detailed= */ false); 2695 } 2696 if (PrintCodeCacheOnCompilation) { 2697 codecache_print(/* detailed= */ false); 2698 } 2699 // Disable compilation, if required. 2700 switch (compilable) { 2701 case ciEnv::MethodCompilable_never: 2702 if (is_osr) 2703 method->set_not_osr_compilable_quietly("MethodCompilable_never"); 2704 else 2705 method->set_not_compilable_quietly("MethodCompilable_never"); 2706 break; 2707 case ciEnv::MethodCompilable_not_at_tier: 2708 if (is_osr) 2709 method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2710 else 2711 method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level); 2712 break; 2713 } 2714 2715 // Note that the queued_for_compilation bits are cleared without 2716 // protection of a mutex. [They were set by the requester thread, 2717 // when adding the task to the compile queue -- at which time the 2718 // compile queue lock was held. Subsequently, we acquired the compile 2719 // queue lock to get this task off the compile queue; thus (to belabour 2720 // the point somewhat) our clearing of the bits must be occurring 2721 // only after the setting of the bits. See also 14012000 above. 2722 method->clear_queued_for_compilation(); 2723 method->set_pending_queue_processed(false); 2724 2725 if (PrintCompilation) { 2726 ResourceMark rm; 2727 task->print_tty(); 2728 } 2729 } 2730 2731 /** 2732 * The CodeCache is full. Print warning and disable compilation. 2733 * Schedule code cache cleaning so compilation can continue later. 2734 * This function needs to be called only from CodeCache::allocate(), 2735 * since we currently handle a full code cache uniformly. 2736 */ 2737 void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) { 2738 UseInterpreter = true; 2739 if (UseCompiler || AlwaysCompileLoopMethods ) { 2740 if (xtty != nullptr) { 2741 stringStream s; 2742 // Dump code cache state into a buffer before locking the tty, 2743 // because log_state() will use locks causing lock conflicts. 2744 CodeCache::log_state(&s); 2745 // Lock to prevent tearing 2746 ttyLocker ttyl; 2747 xtty->begin_elem("code_cache_full"); 2748 xtty->print("%s", s.freeze()); 2749 xtty->stamp(); 2750 xtty->end_elem(); 2751 } 2752 2753 #ifndef PRODUCT 2754 if (ExitOnFullCodeCache) { 2755 codecache_print(/* detailed= */ true); 2756 before_exit(JavaThread::current()); 2757 exit_globals(); // will delete tty 2758 vm_direct_exit(1); 2759 } 2760 #endif 2761 if (UseCodeCacheFlushing) { 2762 // Since code cache is full, immediately stop new compiles 2763 if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) { 2764 log_info(codecache)("Code cache is full - disabling compilation"); 2765 } 2766 } else { 2767 disable_compilation_forever(); 2768 } 2769 2770 CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning()); 2771 } 2772 } 2773 2774 // ------------------------------------------------------------------ 2775 // CompileBroker::update_compile_perf_data 2776 // 2777 // Record this compilation for debugging purposes. 2778 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) { 2779 ResourceMark rm; 2780 char* method_name = method->name()->as_C_string(); 2781 char current_method[CompilerCounters::cmname_buffer_length]; 2782 size_t maxLen = CompilerCounters::cmname_buffer_length; 2783 2784 const char* class_name = method->method_holder()->name()->as_C_string(); 2785 2786 size_t s1len = strlen(class_name); 2787 size_t s2len = strlen(method_name); 2788 2789 // check if we need to truncate the string 2790 if (s1len + s2len + 2 > maxLen) { 2791 2792 // the strategy is to lop off the leading characters of the 2793 // class name and the trailing characters of the method name. 2794 2795 if (s2len + 2 > maxLen) { 2796 // lop of the entire class name string, let snprintf handle 2797 // truncation of the method name. 2798 class_name += s1len; // null string 2799 } 2800 else { 2801 // lop off the extra characters from the front of the class name 2802 class_name += ((s1len + s2len + 2) - maxLen); 2803 } 2804 } 2805 2806 jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name); 2807 2808 int last_compile_type = normal_compile; 2809 if (CICountOSR && is_osr) { 2810 last_compile_type = osr_compile; 2811 } else if (CICountNative && method->is_native()) { 2812 last_compile_type = native_compile; 2813 } 2814 2815 CompilerCounters* counters = thread->counters(); 2816 counters->set_current_method(current_method); 2817 counters->set_compile_type((jlong) last_compile_type); 2818 } 2819 2820 // ------------------------------------------------------------------ 2821 // CompileBroker::collect_statistics 2822 // 2823 // Collect statistics about the compilation. 2824 2825 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) { 2826 bool success = task->is_success(); 2827 methodHandle method (thread, task->method()); 2828 int compile_id = task->compile_id(); 2829 bool is_osr = (task->osr_bci() != standard_entry_bci); 2830 const int comp_level = task->comp_level(); 2831 CompilerCounters* counters = thread->counters(); 2832 2833 MutexLocker locker(CompileStatistics_lock); 2834 2835 // _perf variables are production performance counters which are 2836 // updated regardless of the setting of the CITime and CITimeEach flags 2837 // 2838 2839 // account all time, including bailouts and failures in this counter; 2840 // C1 and C2 counters are counting both successful and unsuccessful compiles 2841 _t_total_compilation.add(&time); 2842 2843 if (!success) { 2844 _total_bailout_count++; 2845 if (UsePerfData) { 2846 _perf_last_failed_method->set_value(counters->current_method()); 2847 _perf_last_failed_type->set_value(counters->compile_type()); 2848 _perf_total_bailout_count->inc(); 2849 } 2850 _t_bailedout_compilation.add(&time); 2851 2852 if (CITime || log_is_enabled(Info, init)) { 2853 CompilerStatistics* stats = nullptr; 2854 if (task->is_scc()) { 2855 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2856 stats = &_scc_stats_per_level[level]; 2857 } else { 2858 stats = &_stats_per_level[comp_level-1]; 2859 } 2860 stats->_bailout.update(time, 0); 2861 } 2862 } else if (!task->is_success()) { 2863 if (UsePerfData) { 2864 _perf_last_invalidated_method->set_value(counters->current_method()); 2865 _perf_last_invalidated_type->set_value(counters->compile_type()); 2866 _perf_total_invalidated_count->inc(); 2867 } 2868 _total_invalidated_count++; 2869 _t_invalidated_compilation.add(&time); 2870 2871 if (CITime || log_is_enabled(Info, init)) { 2872 CompilerStatistics* stats = nullptr; 2873 if (task->is_scc()) { 2874 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2875 stats = &_scc_stats_per_level[level]; 2876 } else { 2877 stats = &_stats_per_level[comp_level-1]; 2878 } 2879 stats->_invalidated.update(time, 0); 2880 } 2881 } else { 2882 // Compilation succeeded 2883 2884 // update compilation ticks - used by the implementation of 2885 // java.lang.management.CompilationMXBean 2886 _perf_total_compilation->inc(time.ticks()); 2887 _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time; 2888 2889 if (CITime || log_is_enabled(Info, init)) { 2890 int bytes_compiled = method->code_size() + task->num_inlined_bytecodes(); 2891 if (is_osr) { 2892 _t_osr_compilation.add(&time); 2893 _sum_osr_bytes_compiled += bytes_compiled; 2894 } else { 2895 _t_standard_compilation.add(&time); 2896 _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes(); 2897 } 2898 2899 // Collect statistic per compilation level 2900 if (task->is_scc()) { 2901 _scc_stats._standard.update(time, bytes_compiled); 2902 _scc_stats._nmethods_size += task->nm_total_size(); 2903 _scc_stats._nmethods_code_size += task->nm_insts_size(); 2904 int level = task->preload() ? CompLevel_full_optimization : (comp_level - 1); 2905 CompilerStatistics* stats = &_scc_stats_per_level[level]; 2906 stats->_standard.update(time, bytes_compiled); 2907 stats->_nmethods_size += task->nm_total_size(); 2908 stats->_nmethods_code_size += task->nm_insts_size(); 2909 } else if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) { 2910 CompilerStatistics* stats = &_stats_per_level[comp_level-1]; 2911 if (is_osr) { 2912 stats->_osr.update(time, bytes_compiled); 2913 } else { 2914 stats->_standard.update(time, bytes_compiled); 2915 } 2916 stats->_nmethods_size += task->nm_total_size(); 2917 stats->_nmethods_code_size += task->nm_insts_size(); 2918 } else { 2919 assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level); 2920 } 2921 2922 // Collect statistic per compiler 2923 AbstractCompiler* comp = task->compiler(); 2924 if (comp && !task->is_scc()) { 2925 CompilerStatistics* stats = comp->stats(); 2926 if (is_osr) { 2927 stats->_osr.update(time, bytes_compiled); 2928 } else { 2929 stats->_standard.update(time, bytes_compiled); 2930 } 2931 stats->_nmethods_size += task->nm_total_size(); 2932 stats->_nmethods_code_size += task->nm_insts_size(); 2933 } else if (!task->is_scc()) { // if (!comp) 2934 assert(false, "Compiler object must exist"); 2935 } 2936 } 2937 2938 if (UsePerfData) { 2939 // save the name of the last method compiled 2940 _perf_last_method->set_value(counters->current_method()); 2941 _perf_last_compile_type->set_value(counters->compile_type()); 2942 _perf_last_compile_size->set_value(method->code_size() + 2943 task->num_inlined_bytecodes()); 2944 if (is_osr) { 2945 _perf_osr_compilation->inc(time.ticks()); 2946 _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2947 } else { 2948 _perf_standard_compilation->inc(time.ticks()); 2949 _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes()); 2950 } 2951 } 2952 2953 if (CITimeEach) { 2954 double compile_time = time.seconds(); 2955 double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time; 2956 tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)", 2957 compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes()); 2958 } 2959 2960 // Collect counts of successful compilations 2961 _sum_nmethod_size += task->nm_total_size(); 2962 _sum_nmethod_code_size += task->nm_insts_size(); 2963 _total_compile_count++; 2964 2965 if (UsePerfData) { 2966 _perf_sum_nmethod_size->inc( task->nm_total_size()); 2967 _perf_sum_nmethod_code_size->inc(task->nm_insts_size()); 2968 _perf_total_compile_count->inc(); 2969 } 2970 2971 if (is_osr) { 2972 if (UsePerfData) _perf_total_osr_compile_count->inc(); 2973 _total_osr_compile_count++; 2974 } else { 2975 if (UsePerfData) _perf_total_standard_compile_count->inc(); 2976 _total_standard_compile_count++; 2977 } 2978 } 2979 // set the current method for the thread to null 2980 if (UsePerfData) counters->set_current_method(""); 2981 } 2982 2983 const char* CompileBroker::compiler_name(int comp_level) { 2984 AbstractCompiler *comp = CompileBroker::compiler(comp_level); 2985 if (comp == nullptr) { 2986 return "no compiler"; 2987 } else { 2988 return (comp->name()); 2989 } 2990 } 2991 2992 jlong CompileBroker::total_compilation_ticks() { 2993 return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0; 2994 } 2995 2996 void CompileBroker::log_not_entrant(nmethod* nm) { 2997 _total_not_entrant_count++; 2998 if (CITime || log_is_enabled(Info, init)) { 2999 CompilerStatistics* stats = nullptr; 3000 int level = nm->comp_level(); 3001 if (nm->is_scc()) { 3002 if (nm->preloaded()) { 3003 assert(level == CompLevel_full_optimization, "%d", level); 3004 level = CompLevel_full_optimization + 1; 3005 } 3006 stats = &_scc_stats_per_level[level - 1]; 3007 } else { 3008 stats = &_stats_per_level[level - 1]; 3009 } 3010 stats->_made_not_entrant._count++; 3011 } 3012 } 3013 3014 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) { 3015 tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}", 3016 name, stats->bytes_per_second(), 3017 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count, 3018 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count, 3019 stats->_nmethods_size, stats->_nmethods_code_size); 3020 } 3021 3022 static void print_helper(outputStream* st, const char* name, CompilerStatistics::Data data, bool print_time = true) { 3023 if (data._count > 0) { 3024 st->print("; %s: %4u methods", name, data._count); 3025 if (print_time) { 3026 st->print(" (in %.3fs)", data._time.seconds()); 3027 } 3028 } 3029 } 3030 3031 static void print_tier_helper(outputStream* st, const char* prefix, int tier, CompilerStatistics* stats) { 3032 st->print(" %s%d: %5u methods", prefix, tier, stats->_standard._count); 3033 if (stats->_standard._count > 0) { 3034 st->print(" (in %.3fs)", stats->_standard._time.seconds()); 3035 } 3036 print_helper(st, "osr", stats->_osr); 3037 print_helper(st, "bailout", stats->_bailout); 3038 print_helper(st, "invalid", stats->_invalidated); 3039 print_helper(st, "not_entrant", stats->_made_not_entrant, false); 3040 st->cr(); 3041 } 3042 3043 static void print_queue_info(outputStream* st, CompileQueue* queue) { 3044 if (queue != nullptr) { 3045 MutexLocker ml(queue->lock()); 3046 3047 uint total_cnt = 0; 3048 uint active_cnt = 0; 3049 for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) { 3050 guarantee(jt != nullptr, ""); 3051 if (jt->is_Compiler_thread()) { 3052 CompilerThread* ct = (CompilerThread*)jt; 3053 3054 guarantee(ct != nullptr, ""); 3055 if (ct->queue() == queue) { 3056 ++total_cnt; 3057 CompileTask* task = ct->task(); 3058 if (task != nullptr) { 3059 ++active_cnt; 3060 } 3061 } 3062 } 3063 } 3064 3065 st->print(" %s (%d active / %d total threads): %u tasks", 3066 queue->name(), active_cnt, total_cnt, queue->size()); 3067 if (queue->size() > 0) { 3068 uint counts[] = {0, 0, 0, 0, 0}; // T1 ... T5 3069 for (CompileTask* task = queue->first(); task != nullptr; task = task->next()) { 3070 int tier = task->comp_level(); 3071 if (task->is_scc() && task->preload()) { 3072 assert(tier == CompLevel_full_optimization, "%d", tier); 3073 tier = CompLevel_full_optimization + 1; 3074 } 3075 counts[tier-1]++; 3076 } 3077 st->print(":"); 3078 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3079 uint cnt = counts[tier-1]; 3080 if (cnt > 0) { 3081 st->print(" T%d: %u tasks;", tier, cnt); 3082 } 3083 } 3084 } 3085 st->cr(); 3086 3087 // for (JavaThread* jt : *ThreadsSMRSupport::get_java_thread_list()) { 3088 // guarantee(jt != nullptr, ""); 3089 // if (jt->is_Compiler_thread()) { 3090 // CompilerThread* ct = (CompilerThread*)jt; 3091 // 3092 // guarantee(ct != nullptr, ""); 3093 // if (ct->queue() == queue) { 3094 // ResourceMark rm; 3095 // CompileTask* task = ct->task(); 3096 // st->print(" %s: ", ct->name_raw()); 3097 // if (task != nullptr) { 3098 // task->print(st, nullptr, true /*short_form*/, false /*cr*/); 3099 // } 3100 // st->cr(); 3101 // } 3102 // } 3103 // } 3104 } 3105 } 3106 void CompileBroker::print_statistics_on(outputStream* st) { 3107 st->print_cr(" Total: %u methods; %u bailouts, %u invalidated, %u non_entrant", 3108 _total_compile_count, _total_bailout_count, _total_invalidated_count, _total_not_entrant_count); 3109 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 3110 print_tier_helper(st, "Tier", tier, &_stats_per_level[tier-1]); 3111 } 3112 st->cr(); 3113 3114 if (LoadCachedCode || StoreCachedCode) { 3115 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3116 if (tier != CompLevel_full_profile) { 3117 print_tier_helper(st, "SC T", tier, &_scc_stats_per_level[tier - 1]); 3118 } 3119 } 3120 st->cr(); 3121 } 3122 3123 print_queue_info(st, _c1_compile_queue); 3124 print_queue_info(st, _c2_compile_queue); 3125 print_queue_info(st, _c3_compile_queue); 3126 print_queue_info(st, _sc1_compile_queue); 3127 print_queue_info(st, _sc2_compile_queue); 3128 } 3129 3130 void CompileBroker::print_times(bool per_compiler, bool aggregate) { 3131 if (per_compiler) { 3132 if (aggregate) { 3133 tty->cr(); 3134 tty->print_cr("[%dms] Individual compiler times (for compiled methods only)", (int)tty->time_stamp().milliseconds()); 3135 tty->print_cr("------------------------------------------------"); 3136 tty->cr(); 3137 } 3138 for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) { 3139 AbstractCompiler* comp = _compilers[i]; 3140 if (comp != nullptr) { 3141 print_times(comp->name(), comp->stats()); 3142 } 3143 } 3144 if (_scc_stats._standard._count > 0) { 3145 print_times("SC", &_scc_stats); 3146 } 3147 if (aggregate) { 3148 tty->cr(); 3149 tty->print_cr("Individual compilation Tier times (for compiled methods only)"); 3150 tty->print_cr("------------------------------------------------"); 3151 tty->cr(); 3152 } 3153 char tier_name[256]; 3154 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) { 3155 CompilerStatistics* stats = &_stats_per_level[tier-1]; 3156 os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier); 3157 print_times(tier_name, stats); 3158 } 3159 for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level() + 1; tier++) { 3160 CompilerStatistics* stats = &_scc_stats_per_level[tier-1]; 3161 if (stats->_standard._bytes > 0) { 3162 os::snprintf_checked(tier_name, sizeof(tier_name), "SC T%d", tier); 3163 print_times(tier_name, stats); 3164 } 3165 } 3166 } 3167 3168 if (!aggregate) { 3169 return; 3170 } 3171 3172 elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation; 3173 elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation; 3174 elapsedTimer total_compilation = CompileBroker::_t_total_compilation; 3175 3176 uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled; 3177 uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled; 3178 3179 uint standard_compile_count = CompileBroker::_total_standard_compile_count; 3180 uint osr_compile_count = CompileBroker::_total_osr_compile_count; 3181 uint total_compile_count = CompileBroker::_total_compile_count; 3182 uint total_bailout_count = CompileBroker::_total_bailout_count; 3183 uint total_invalidated_count = CompileBroker::_total_invalidated_count; 3184 3185 uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size; 3186 uint nmethods_size = CompileBroker::_sum_nmethod_size; 3187 3188 tty->cr(); 3189 tty->print_cr("Accumulated compiler times"); 3190 tty->print_cr("----------------------------------------------------------"); 3191 //0000000000111111111122222222223333333333444444444455555555556666666666 3192 //0123456789012345678901234567890123456789012345678901234567890123456789 3193 tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds()); 3194 tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s", 3195 standard_compilation.seconds(), 3196 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count); 3197 tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s", 3198 CompileBroker::_t_bailedout_compilation.seconds(), 3199 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count); 3200 tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s", 3201 osr_compilation.seconds(), 3202 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count); 3203 tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s", 3204 CompileBroker::_t_invalidated_compilation.seconds(), 3205 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count); 3206 3207 if (StoreCachedCode || LoadCachedCode) { // Check flags because SC cache could be closed already 3208 tty->cr(); 3209 SCCache::print_timers_on(tty); 3210 } 3211 AbstractCompiler *comp = compiler(CompLevel_simple); 3212 if (comp != nullptr) { 3213 tty->cr(); 3214 comp->print_timers(); 3215 } 3216 comp = compiler(CompLevel_full_optimization); 3217 if (comp != nullptr) { 3218 tty->cr(); 3219 comp->print_timers(); 3220 } 3221 comp = _compilers[2]; 3222 if (comp != nullptr) { 3223 tty->cr(); 3224 comp->print_timers(); 3225 } 3226 #if INCLUDE_JVMCI 3227 if (EnableJVMCI) { 3228 JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null()); 3229 if (jvmci_comp != nullptr && jvmci_comp != comp) { 3230 tty->cr(); 3231 jvmci_comp->print_timers(); 3232 } 3233 } 3234 #endif 3235 3236 tty->cr(); 3237 tty->print_cr(" Total compiled methods : %8u methods", total_compile_count); 3238 tty->print_cr(" Standard compilation : %8u methods", standard_compile_count); 3239 tty->print_cr(" On stack replacement : %8u methods", osr_compile_count); 3240 uint tcb = osr_bytes_compiled + standard_bytes_compiled; 3241 tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb); 3242 tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled); 3243 tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled); 3244 double tcs = total_compilation.seconds(); 3245 uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs); 3246 tty->print_cr(" Average compilation speed : %8u bytes/s", bps); 3247 tty->cr(); 3248 tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size); 3249 tty->print_cr(" nmethod total size : %8u bytes", nmethods_size); 3250 } 3251 3252 // Print general/accumulated JIT information. 3253 void CompileBroker::print_info(outputStream *out) { 3254 if (out == nullptr) out = tty; 3255 out->cr(); 3256 out->print_cr("======================"); 3257 out->print_cr(" General JIT info "); 3258 out->print_cr("======================"); 3259 out->cr(); 3260 out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off"); 3261 out->print_cr(" Compiler threads : %7d", (int)CICompilerCount); 3262 out->cr(); 3263 out->print_cr("CodeCache overview"); 3264 out->print_cr("--------------------------------------------------------"); 3265 out->cr(); 3266 out->print_cr(" Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K); 3267 out->print_cr(" Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K); 3268 out->print_cr(" Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K); 3269 out->cr(); 3270 } 3271 3272 // Note: tty_lock must not be held upon entry to this function. 3273 // Print functions called from herein do "micro-locking" on tty_lock. 3274 // That's a tradeoff which keeps together important blocks of output. 3275 // At the same time, continuous tty_lock hold time is kept in check, 3276 // preventing concurrently printing threads from stalling a long time. 3277 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) { 3278 TimeStamp ts_total; 3279 TimeStamp ts_global; 3280 TimeStamp ts; 3281 3282 bool allFun = !strcmp(function, "all"); 3283 bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun; 3284 bool usedSpace = !strcmp(function, "UsedSpace") || allFun; 3285 bool freeSpace = !strcmp(function, "FreeSpace") || allFun; 3286 bool methodCount = !strcmp(function, "MethodCount") || allFun; 3287 bool methodSpace = !strcmp(function, "MethodSpace") || allFun; 3288 bool methodAge = !strcmp(function, "MethodAge") || allFun; 3289 bool methodNames = !strcmp(function, "MethodNames") || allFun; 3290 bool discard = !strcmp(function, "discard") || allFun; 3291 3292 if (out == nullptr) { 3293 out = tty; 3294 } 3295 3296 if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) { 3297 out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function); 3298 out->cr(); 3299 return; 3300 } 3301 3302 ts_total.update(); // record starting point 3303 3304 if (aggregate) { 3305 print_info(out); 3306 } 3307 3308 // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function. 3309 // That prevents other threads from destroying (making inconsistent) our view on the CodeHeap. 3310 // When we request individual parts of the analysis via the jcmd interface, it is possible 3311 // that in between another thread (another jcmd user or the vm running into CodeCache OOM) 3312 // updated the aggregated data. We will then see a modified, but again consistent, view 3313 // on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold 3314 // a lock across user interaction. 3315 3316 // We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock. 3317 // CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time, 3318 // leading to an unnecessarily long hold time of the other locks we acquired before. 3319 ts.update(); // record starting point 3320 MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag); 3321 out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds()); 3322 3323 // Holding the CodeCache_lock protects from concurrent alterations of the CodeCache. 3324 // Unfortunately, such protection is not sufficient: 3325 // When a new nmethod is created via ciEnv::register_method(), the 3326 // Compile_lock is taken first. After some initializations, 3327 // nmethod::new_nmethod() takes over, grabbing the CodeCache_lock 3328 // immediately (after finalizing the oop references). To lock out concurrent 3329 // modifiers, we have to grab both locks as well in the described sequence. 3330 // 3331 // If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock 3332 // for the entire duration of aggregation and printing. That makes sure we see 3333 // a consistent picture and do not run into issues caused by concurrent alterations. 3334 bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() && 3335 !Compile_lock->owned_by_self(); 3336 bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() && 3337 !CodeCache_lock->owned_by_self(); 3338 bool take_global_lock_1 = allFun && should_take_Compile_lock; 3339 bool take_global_lock_2 = allFun && should_take_CodeCache_lock; 3340 bool take_function_lock_1 = !allFun && should_take_Compile_lock; 3341 bool take_function_lock_2 = !allFun && should_take_CodeCache_lock; 3342 bool take_global_locks = take_global_lock_1 || take_global_lock_2; 3343 bool take_function_locks = take_function_lock_1 || take_function_lock_2; 3344 3345 ts_global.update(); // record starting point 3346 3347 ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag); 3348 ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag); 3349 if (take_global_locks) { 3350 out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds()); 3351 ts_global.update(); // record starting point 3352 } 3353 3354 if (aggregate) { 3355 ts.update(); // record starting point 3356 ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag); 3357 ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag); 3358 if (take_function_locks) { 3359 out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds()); 3360 } 3361 3362 ts.update(); // record starting point 3363 CodeCache::aggregate(out, granularity); 3364 if (take_function_locks) { 3365 out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds()); 3366 } 3367 } 3368 3369 if (usedSpace) CodeCache::print_usedSpace(out); 3370 if (freeSpace) CodeCache::print_freeSpace(out); 3371 if (methodCount) CodeCache::print_count(out); 3372 if (methodSpace) CodeCache::print_space(out); 3373 if (methodAge) CodeCache::print_age(out); 3374 if (methodNames) { 3375 if (allFun) { 3376 // print_names() can only be used safely if the locks have been continuously held 3377 // since aggregation begin. That is true only for function "all". 3378 CodeCache::print_names(out); 3379 } else { 3380 out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'"); 3381 } 3382 } 3383 if (discard) CodeCache::discard(out); 3384 3385 if (take_global_locks) { 3386 out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds()); 3387 } 3388 out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds()); 3389 }