1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OOPS_METHODDATA_HPP
  26 #define SHARE_OOPS_METHODDATA_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "interpreter/invocationCounter.hpp"
  30 #include "oops/metadata.hpp"
  31 #include "oops/method.hpp"
  32 #include "runtime/atomic.hpp"
  33 #include "runtime/deoptimization.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "utilities/align.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 class BytecodeStream;
  39 
  40 // The MethodData object collects counts and other profile information
  41 // during zeroth-tier (interpreter) and third-tier (C1 with full profiling)
  42 // execution.
  43 //
  44 // The profile is used later by compilation heuristics.  Some heuristics
  45 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  46 // optimization often has a down-side, a corner case that it handles
  47 // poorly, but which is thought to be rare.  The profile provides
  48 // evidence of this rarity for a given method or even BCI.  It allows
  49 // the compiler to back out of the optimization at places where it
  50 // has historically been a poor choice.  Other heuristics try to use
  51 // specific information gathered about types observed at a given site.
  52 //
  53 // All data in the profile is approximate.  It is expected to be accurate
  54 // on the whole, but the system expects occasional inaccuraces, due to
  55 // counter overflow, multiprocessor races during data collection, space
  56 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  57 // optimization quality but will not affect correctness.  Also, each MDO
  58 // can be checked for its "maturity" by calling is_mature().
  59 //
  60 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  61 // state.  Also, certain recorded per-BCI events are given one-bit counters
  62 // which overflow to a saturated state which applied to all counters at
  63 // that BCI.  In other words, there is a small lattice which approximates
  64 // the ideal of an infinite-precision counter for each event at each BCI,
  65 // and the lattice quickly "bottoms out" in a state where all counters
  66 // are taken to be indefinitely large.
  67 //
  68 // The reader will find many data races in profile gathering code, starting
  69 // with invocation counter incrementation.  None of these races harm correct
  70 // execution of the compiled code.
  71 
  72 // forward decl
  73 class ProfileData;
  74 
  75 // DataLayout
  76 //
  77 // Overlay for generic profiling data.
  78 class DataLayout {
  79   friend class VMStructs;
  80   friend class JVMCIVMStructs;
  81 
  82 private:
  83   // Every data layout begins with a header.  This header
  84   // contains a tag, which is used to indicate the size/layout
  85   // of the data, 8 bits of flags, which can be used in any way,
  86   // 32 bits of trap history (none/one reason/many reasons),
  87   // and a bci, which is used to tie this piece of data to a
  88   // specific bci in the bytecodes.
  89   union {
  90     u8 _bits;
  91     struct {
  92       u1 _tag;
  93       u1 _flags;
  94       u2 _bci;
  95       u4 _traps;
  96     } _struct;
  97   } _header;
  98 
  99   // The data layout has an arbitrary number of cells, each sized
 100   // to accommodate a pointer or an integer.
 101   intptr_t _cells[1];
 102 
 103   // Some types of data layouts need a length field.
 104   static bool needs_array_len(u1 tag);
 105 
 106 public:
 107   enum {
 108     counter_increment = 1
 109   };
 110 
 111   enum {
 112     cell_size = sizeof(intptr_t)
 113   };
 114 
 115   // Tag values
 116   enum : u1 {
 117     no_tag,
 118     bit_data_tag,
 119     counter_data_tag,
 120     jump_data_tag,
 121     receiver_type_data_tag,
 122     virtual_call_data_tag,
 123     ret_data_tag,
 124     branch_data_tag,
 125     multi_branch_data_tag,
 126     arg_info_data_tag,
 127     call_type_data_tag,
 128     virtual_call_type_data_tag,
 129     parameters_type_data_tag,
 130     speculative_trap_data_tag
 131   };
 132 
 133   enum {
 134     // The trap state breaks down as [recompile:1 | reason:31].
 135     // This further breakdown is defined in deoptimization.cpp.
 136     // See Deoptimization::trap_state_reason for an assert that
 137     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 138     //
 139     // The trap_state is collected only if ProfileTraps is true.
 140     trap_bits = 1+31,  // 31: enough to distinguish [0..Reason_RECORDED_LIMIT].
 141     trap_mask = -1,
 142     first_flag = 0
 143   };
 144 
 145   // Size computation
 146   static int header_size_in_bytes() {
 147     return header_size_in_cells() * cell_size;
 148   }
 149   static int header_size_in_cells() {
 150     return LP64_ONLY(1) NOT_LP64(2);
 151   }
 152 
 153   static int compute_size_in_bytes(int cell_count) {
 154     return header_size_in_bytes() + cell_count * cell_size;
 155   }
 156 
 157   // Initialization
 158   void initialize(u1 tag, u2 bci, int cell_count);
 159 
 160   // Accessors
 161   u1 tag() {
 162     return _header._struct._tag;
 163   }
 164 
 165   // Return 32 bits of trap state.
 166   // The state tells if traps with zero, one, or many reasons have occurred.
 167   // It also tells whether zero or many recompilations have occurred.
 168   // The associated trap histogram in the MDO itself tells whether
 169   // traps are common or not.  If a BCI shows that a trap X has
 170   // occurred, and the MDO shows N occurrences of X, we make the
 171   // simplifying assumption that all N occurrences can be blamed
 172   // on that BCI.
 173   uint trap_state() const {
 174     return _header._struct._traps;
 175   }
 176 
 177   void set_trap_state(uint new_state) {
 178     assert(ProfileTraps, "used only under +ProfileTraps");
 179     uint old_flags = _header._struct._traps;
 180     _header._struct._traps = new_state | old_flags;
 181   }
 182 
 183   u1 flags() const {
 184     return Atomic::load_acquire(&_header._struct._flags);
 185   }
 186 
 187   u2 bci() const {
 188     return _header._struct._bci;
 189   }
 190 
 191   void set_header(u8 value) {
 192     _header._bits = value;
 193   }
 194   u8 header() {
 195     return _header._bits;
 196   }
 197   void set_cell_at(int index, intptr_t value) {
 198     _cells[index] = value;
 199   }
 200   void release_set_cell_at(int index, intptr_t value);
 201   intptr_t cell_at(int index) const {
 202     return _cells[index];
 203   }
 204   intptr_t* cell_at_adr(int index) const {
 205     return const_cast<intptr_t*>(&_cells[index]);
 206   }
 207 
 208   bool set_flag_at(u1 flag_number) {
 209     const u1 bit = 1 << flag_number;
 210     u1 compare_value;
 211     do {
 212       compare_value = _header._struct._flags;
 213       if ((compare_value & bit) == bit) {
 214         // already set.
 215         return false;
 216       }
 217     } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, static_cast<u1>(compare_value | bit)));
 218     return true;
 219   }
 220 
 221   bool clear_flag_at(u1 flag_number) {
 222     const u1 bit = 1 << flag_number;
 223     u1 compare_value;
 224     u1 exchange_value;
 225     do {
 226       compare_value = _header._struct._flags;
 227       if ((compare_value & bit) == 0) {
 228         // already cleaed.
 229         return false;
 230       }
 231       exchange_value = compare_value & ~bit;
 232     } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, exchange_value));
 233     return true;
 234   }
 235 
 236   bool flag_at(u1 flag_number) const {
 237     return (flags() & (1 << flag_number)) != 0;
 238   }
 239 
 240   // Low-level support for code generation.
 241   static ByteSize header_offset() {
 242     return byte_offset_of(DataLayout, _header);
 243   }
 244   static ByteSize tag_offset() {
 245     return byte_offset_of(DataLayout, _header._struct._tag);
 246   }
 247   static ByteSize flags_offset() {
 248     return byte_offset_of(DataLayout, _header._struct._flags);
 249   }
 250   static ByteSize bci_offset() {
 251     return byte_offset_of(DataLayout, _header._struct._bci);
 252   }
 253   static ByteSize cell_offset(int index) {
 254     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 255   }
 256   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 257   static u1 flag_number_to_constant(u1 flag_number) {
 258     DataLayout temp; temp.set_header(0);
 259     temp.set_flag_at(flag_number);
 260     return temp._header._struct._flags;
 261   }
 262   // Return a value which, when or-ed as a word into _header, sets the flag.
 263   static u8 flag_mask_to_header_mask(u1 byte_constant) {
 264     DataLayout temp; temp.set_header(0);
 265     temp._header._struct._flags = byte_constant;
 266     return temp._header._bits;
 267   }
 268 
 269   ProfileData* data_in();
 270 
 271   int size_in_bytes() {
 272     int cells = cell_count();
 273     assert(cells >= 0, "invalid number of cells");
 274     return DataLayout::compute_size_in_bytes(cells);
 275   }
 276   int cell_count();
 277 
 278   // GC support
 279   void clean_weak_klass_links(bool always_clean);
 280 };
 281 
 282 
 283 // ProfileData class hierarchy
 284 class ProfileData;
 285 class   BitData;
 286 class     CounterData;
 287 class       ReceiverTypeData;
 288 class         VirtualCallData;
 289 class           VirtualCallTypeData;
 290 class       RetData;
 291 class       CallTypeData;
 292 class   JumpData;
 293 class     BranchData;
 294 class   ArrayData;
 295 class     MultiBranchData;
 296 class     ArgInfoData;
 297 class     ParametersTypeData;
 298 class   SpeculativeTrapData;
 299 
 300 // ProfileData
 301 //
 302 // A ProfileData object is created to refer to a section of profiling
 303 // data in a structured way.
 304 class ProfileData : public ResourceObj {
 305   friend class TypeEntries;
 306   friend class ReturnTypeEntry;
 307   friend class TypeStackSlotEntries;
 308 private:
 309   enum {
 310     tab_width_one = 16,
 311     tab_width_two = 36
 312   };
 313 
 314   // This is a pointer to a section of profiling data.
 315   DataLayout* _data;
 316 
 317   char* print_data_on_helper(const MethodData* md) const;
 318 
 319 protected:
 320   DataLayout* data() { return _data; }
 321   const DataLayout* data() const { return _data; }
 322 
 323   enum {
 324     cell_size = DataLayout::cell_size
 325   };
 326 
 327 public:
 328   // How many cells are in this?
 329   virtual int cell_count() const {
 330     ShouldNotReachHere();
 331     return -1;
 332   }
 333 
 334   // Return the size of this data.
 335   int size_in_bytes() {
 336     return DataLayout::compute_size_in_bytes(cell_count());
 337   }
 338 
 339 protected:
 340   // Low-level accessors for underlying data
 341   void set_intptr_at(int index, intptr_t value) {
 342     assert(0 <= index && index < cell_count(), "oob");
 343     data()->set_cell_at(index, value);
 344   }
 345   void release_set_intptr_at(int index, intptr_t value);
 346   intptr_t intptr_at(int index) const {
 347     assert(0 <= index && index < cell_count(), "oob");
 348     return data()->cell_at(index);
 349   }
 350   intptr_t* intptr_at_adr(int index) const {
 351     assert(0 <= index && index < cell_count(), "oob");
 352     return data()->cell_at_adr(index);
 353   }
 354   void set_uint_at(int index, uint value) {
 355     set_intptr_at(index, (intptr_t) value);
 356   }
 357   void release_set_uint_at(int index, uint value);
 358   uint uint_at(int index) const {
 359     return (uint)intptr_at(index);
 360   }
 361   void set_int_at(int index, int value) {
 362     set_intptr_at(index, (intptr_t) value);
 363   }
 364   void release_set_int_at(int index, int value);
 365   int int_at(int index) const {
 366     return (int)intptr_at(index);
 367   }
 368   int int_at_unchecked(int index) const {
 369     return (int)data()->cell_at(index);
 370   }
 371 
 372   void set_flag_at(u1 flag_number) {
 373     data()->set_flag_at(flag_number);
 374   }
 375   bool flag_at(u1 flag_number) const {
 376     return data()->flag_at(flag_number);
 377   }
 378 
 379   // two convenient imports for use by subclasses:
 380   static ByteSize cell_offset(int index) {
 381     return DataLayout::cell_offset(index);
 382   }
 383   static u1 flag_number_to_constant(u1 flag_number) {
 384     return DataLayout::flag_number_to_constant(flag_number);
 385   }
 386 
 387   ProfileData(DataLayout* data) {
 388     _data = data;
 389   }
 390 
 391 public:
 392   // Constructor for invalid ProfileData.
 393   ProfileData();
 394 
 395   u2 bci() const {
 396     return data()->bci();
 397   }
 398 
 399   address dp() {
 400     return (address)_data;
 401   }
 402 
 403   int trap_state() const {
 404     return data()->trap_state();
 405   }
 406   void set_trap_state(int new_state) {
 407     data()->set_trap_state(new_state);
 408   }
 409 
 410   // Type checking
 411   virtual bool is_BitData()         const { return false; }
 412   virtual bool is_CounterData()     const { return false; }
 413   virtual bool is_JumpData()        const { return false; }
 414   virtual bool is_ReceiverTypeData()const { return false; }
 415   virtual bool is_VirtualCallData() const { return false; }
 416   virtual bool is_RetData()         const { return false; }
 417   virtual bool is_BranchData()      const { return false; }
 418   virtual bool is_ArrayData()       const { return false; }
 419   virtual bool is_MultiBranchData() const { return false; }
 420   virtual bool is_ArgInfoData()     const { return false; }
 421   virtual bool is_CallTypeData()    const { return false; }
 422   virtual bool is_VirtualCallTypeData()const { return false; }
 423   virtual bool is_ParametersTypeData() const { return false; }
 424   virtual bool is_SpeculativeTrapData()const { return false; }
 425 
 426 
 427   BitData* as_BitData() const {
 428     assert(is_BitData(), "wrong type");
 429     return is_BitData()         ? (BitData*)        this : nullptr;
 430   }
 431   CounterData* as_CounterData() const {
 432     assert(is_CounterData(), "wrong type");
 433     return is_CounterData()     ? (CounterData*)    this : nullptr;
 434   }
 435   JumpData* as_JumpData() const {
 436     assert(is_JumpData(), "wrong type");
 437     return is_JumpData()        ? (JumpData*)       this : nullptr;
 438   }
 439   ReceiverTypeData* as_ReceiverTypeData() const {
 440     assert(is_ReceiverTypeData(), "wrong type");
 441     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : nullptr;
 442   }
 443   VirtualCallData* as_VirtualCallData() const {
 444     assert(is_VirtualCallData(), "wrong type");
 445     return is_VirtualCallData() ? (VirtualCallData*)this : nullptr;
 446   }
 447   RetData* as_RetData() const {
 448     assert(is_RetData(), "wrong type");
 449     return is_RetData()         ? (RetData*)        this : nullptr;
 450   }
 451   BranchData* as_BranchData() const {
 452     assert(is_BranchData(), "wrong type");
 453     return is_BranchData()      ? (BranchData*)     this : nullptr;
 454   }
 455   ArrayData* as_ArrayData() const {
 456     assert(is_ArrayData(), "wrong type");
 457     return is_ArrayData()       ? (ArrayData*)      this : nullptr;
 458   }
 459   MultiBranchData* as_MultiBranchData() const {
 460     assert(is_MultiBranchData(), "wrong type");
 461     return is_MultiBranchData() ? (MultiBranchData*)this : nullptr;
 462   }
 463   ArgInfoData* as_ArgInfoData() const {
 464     assert(is_ArgInfoData(), "wrong type");
 465     return is_ArgInfoData() ? (ArgInfoData*)this : nullptr;
 466   }
 467   CallTypeData* as_CallTypeData() const {
 468     assert(is_CallTypeData(), "wrong type");
 469     return is_CallTypeData() ? (CallTypeData*)this : nullptr;
 470   }
 471   VirtualCallTypeData* as_VirtualCallTypeData() const {
 472     assert(is_VirtualCallTypeData(), "wrong type");
 473     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : nullptr;
 474   }
 475   ParametersTypeData* as_ParametersTypeData() const {
 476     assert(is_ParametersTypeData(), "wrong type");
 477     return is_ParametersTypeData() ? (ParametersTypeData*)this : nullptr;
 478   }
 479   SpeculativeTrapData* as_SpeculativeTrapData() const {
 480     assert(is_SpeculativeTrapData(), "wrong type");
 481     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : nullptr;
 482   }
 483 
 484 
 485   // Subclass specific initialization
 486   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 487 
 488   // GC support
 489   virtual void clean_weak_klass_links(bool always_clean) {}
 490 
 491   // CDS support
 492   virtual void metaspace_pointers_do(MetaspaceClosure* it) {}
 493 
 494     // CI translation: ProfileData can represent both MethodDataOop data
 495   // as well as CIMethodData data. This function is provided for translating
 496   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 497   // most ProfileData don't require any translation, so we provide the null
 498   // translation here, and the required translators are in the ci subclasses.
 499   virtual void translate_from(const ProfileData* data) {}
 500 
 501   virtual void print_data_on(outputStream* st, const char* extra = nullptr) const {
 502     ShouldNotReachHere();
 503   }
 504 
 505   void print_data_on(outputStream* st, const MethodData* md) const;
 506 
 507   void print_shared(outputStream* st, const char* name, const char* extra) const;
 508   void tab(outputStream* st, bool first = false) const;
 509 };
 510 
 511 // BitData
 512 //
 513 // A BitData holds a flag or two in its header.
 514 class BitData : public ProfileData {
 515   friend class VMStructs;
 516   friend class JVMCIVMStructs;
 517 protected:
 518   enum : u1 {
 519     // null_seen:
 520     //  saw a null operand (cast/aastore/instanceof)
 521       null_seen_flag                  = DataLayout::first_flag + 0,
 522       exception_handler_entered_flag  = null_seen_flag + 1,
 523       deprecated_method_callsite_flag = exception_handler_entered_flag + 1
 524 #if INCLUDE_JVMCI
 525     // bytecode threw any exception
 526     , exception_seen_flag             = deprecated_method_callsite_flag + 1
 527 #endif
 528   };
 529   enum { bit_cell_count = 0 };  // no additional data fields needed.
 530 public:
 531   BitData(DataLayout* layout) : ProfileData(layout) {
 532   }
 533 
 534   virtual bool is_BitData() const { return true; }
 535 
 536   static int static_cell_count() {
 537     return bit_cell_count;
 538   }
 539 
 540   virtual int cell_count() const {
 541     return static_cell_count();
 542   }
 543 
 544   // Accessor
 545 
 546   // The null_seen flag bit is specially known to the interpreter.
 547   // Consulting it allows the compiler to avoid setting up null_check traps.
 548   bool null_seen()     { return flag_at(null_seen_flag); }
 549   void set_null_seen()    { set_flag_at(null_seen_flag); }
 550   bool deprecated_method_call_site() const { return flag_at(deprecated_method_callsite_flag); }
 551   bool set_deprecated_method_call_site() { return data()->set_flag_at(deprecated_method_callsite_flag); }
 552   bool clear_deprecated_method_call_site() { return data()->clear_flag_at(deprecated_method_callsite_flag); }
 553 
 554 #if INCLUDE_JVMCI
 555   // true if an exception was thrown at the specific BCI
 556   bool exception_seen() { return flag_at(exception_seen_flag); }
 557   void set_exception_seen() { set_flag_at(exception_seen_flag); }
 558 #endif
 559 
 560   // true if a ex handler block at this bci was entered
 561   bool exception_handler_entered() { return flag_at(exception_handler_entered_flag); }
 562   void set_exception_handler_entered() { set_flag_at(exception_handler_entered_flag); }
 563 
 564   // Code generation support
 565   static u1 null_seen_byte_constant() {
 566     return flag_number_to_constant(null_seen_flag);
 567   }
 568 
 569   static ByteSize bit_data_size() {
 570     return cell_offset(bit_cell_count);
 571   }
 572 
 573   void print_data_on(outputStream* st, const char* extra = nullptr) const;
 574 };
 575 
 576 // CounterData
 577 //
 578 // A CounterData corresponds to a simple counter.
 579 class CounterData : public BitData {
 580   friend class VMStructs;
 581   friend class JVMCIVMStructs;
 582 protected:
 583   enum {
 584     count_off,
 585     counter_cell_count
 586   };
 587 public:
 588   CounterData(DataLayout* layout) : BitData(layout) {}
 589 
 590   virtual bool is_CounterData() const { return true; }
 591 
 592   static int static_cell_count() {
 593     return counter_cell_count;
 594   }
 595 
 596   virtual int cell_count() const {
 597     return static_cell_count();
 598   }
 599 
 600   // Direct accessor
 601   int count() const {
 602     intptr_t raw_data = intptr_at(count_off);
 603     if (raw_data > max_jint) {
 604       raw_data = max_jint;
 605     } else if (raw_data < min_jint) {
 606       raw_data = min_jint;
 607     }
 608     return int(raw_data);
 609   }
 610 
 611   // Code generation support
 612   static ByteSize count_offset() {
 613     return cell_offset(count_off);
 614   }
 615   static ByteSize counter_data_size() {
 616     return cell_offset(counter_cell_count);
 617   }
 618 
 619   void set_count(int count) {
 620     set_int_at(count_off, count);
 621   }
 622 
 623   void print_data_on(outputStream* st, const char* extra = nullptr) const;
 624 };
 625 
 626 // JumpData
 627 //
 628 // A JumpData is used to access profiling information for a direct
 629 // branch.  It is a counter, used for counting the number of branches,
 630 // plus a data displacement, used for realigning the data pointer to
 631 // the corresponding target bci.
 632 class JumpData : public ProfileData {
 633   friend class VMStructs;
 634   friend class JVMCIVMStructs;
 635 protected:
 636   enum {
 637     taken_off_set,
 638     displacement_off_set,
 639     jump_cell_count
 640   };
 641 
 642   void set_displacement(int displacement) {
 643     set_int_at(displacement_off_set, displacement);
 644   }
 645 
 646 public:
 647   JumpData(DataLayout* layout) : ProfileData(layout) {
 648     assert(layout->tag() == DataLayout::jump_data_tag ||
 649       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 650   }
 651 
 652   virtual bool is_JumpData() const { return true; }
 653 
 654   static int static_cell_count() {
 655     return jump_cell_count;
 656   }
 657 
 658   virtual int cell_count() const {
 659     return static_cell_count();
 660   }
 661 
 662   // Direct accessor
 663   uint taken() const {
 664     return uint_at(taken_off_set);
 665   }
 666 
 667   void set_taken(uint cnt) {
 668     set_uint_at(taken_off_set, cnt);
 669   }
 670 
 671   // Saturating counter
 672   uint inc_taken() {
 673     uint cnt = taken() + 1;
 674     // Did we wrap? Will compiler screw us??
 675     if (cnt == 0) cnt--;
 676     set_uint_at(taken_off_set, cnt);
 677     return cnt;
 678   }
 679 
 680   int displacement() const {
 681     return int_at(displacement_off_set);
 682   }
 683 
 684   // Code generation support
 685   static ByteSize taken_offset() {
 686     return cell_offset(taken_off_set);
 687   }
 688 
 689   static ByteSize displacement_offset() {
 690     return cell_offset(displacement_off_set);
 691   }
 692 
 693   // Specific initialization.
 694   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 695 
 696   void print_data_on(outputStream* st, const char* extra = nullptr) const;
 697 };
 698 
 699 // Entries in a ProfileData object to record types: it can either be
 700 // none (no profile), unknown (conflicting profile data) or a klass if
 701 // a single one is seen. Whether a null reference was seen is also
 702 // recorded. No counter is associated with the type and a single type
 703 // is tracked (unlike VirtualCallData).
 704 class TypeEntries {
 705 
 706 public:
 707 
 708   // A single cell is used to record information for a type:
 709   // - the cell is initialized to 0
 710   // - when a type is discovered it is stored in the cell
 711   // - bit zero of the cell is used to record whether a null reference
 712   // was encountered or not
 713   // - bit 1 is set to record a conflict in the type information
 714 
 715   enum {
 716     null_seen = 1,
 717     type_mask = ~null_seen,
 718     type_unknown = 2,
 719     status_bits = null_seen | type_unknown,
 720     type_klass_mask = ~status_bits
 721   };
 722 
 723   // what to initialize a cell to
 724   static intptr_t type_none() {
 725     return 0;
 726   }
 727 
 728   // null seen = bit 0 set?
 729   static bool was_null_seen(intptr_t v) {
 730     return (v & null_seen) != 0;
 731   }
 732 
 733   // conflicting type information = bit 1 set?
 734   static bool is_type_unknown(intptr_t v) {
 735     return (v & type_unknown) != 0;
 736   }
 737 
 738   // not type information yet = all bits cleared, ignoring bit 0?
 739   static bool is_type_none(intptr_t v) {
 740     return (v & type_mask) == 0;
 741   }
 742 
 743   // recorded type: cell without bit 0 and 1
 744   static intptr_t klass_part(intptr_t v) {
 745     intptr_t r = v & type_klass_mask;
 746     return r;
 747   }
 748 
 749   // type recorded
 750   static Klass* valid_klass(intptr_t k) {
 751     if (!is_type_none(k) &&
 752         !is_type_unknown(k)) {
 753       Klass* res = (Klass*)klass_part(k);
 754       assert(res != nullptr, "invalid");
 755       return res;
 756     } else {
 757       return nullptr;
 758     }
 759   }
 760 
 761   static intptr_t with_status(intptr_t k, intptr_t in) {
 762     return k | (in & status_bits);
 763   }
 764 
 765   static intptr_t with_status(Klass* k, intptr_t in) {
 766     return with_status((intptr_t)k, in);
 767   }
 768 
 769   static void print_klass(outputStream* st, intptr_t k);
 770 
 771 protected:
 772   // ProfileData object these entries are part of
 773   ProfileData* _pd;
 774   // offset within the ProfileData object where the entries start
 775   const int _base_off;
 776 
 777   TypeEntries(int base_off)
 778     : _pd(nullptr), _base_off(base_off) {}
 779 
 780   void set_intptr_at(int index, intptr_t value) {
 781     _pd->set_intptr_at(index, value);
 782   }
 783 
 784   intptr_t intptr_at(int index) const {
 785     return _pd->intptr_at(index);
 786   }
 787 
 788 public:
 789   void set_profile_data(ProfileData* pd) {
 790     _pd = pd;
 791   }
 792 };
 793 
 794 // Type entries used for arguments passed at a call and parameters on
 795 // method entry. 2 cells per entry: one for the type encoded as in
 796 // TypeEntries and one initialized with the stack slot where the
 797 // profiled object is to be found so that the interpreter can locate
 798 // it quickly.
 799 class TypeStackSlotEntries : public TypeEntries {
 800 
 801 private:
 802   enum {
 803     stack_slot_entry,
 804     type_entry,
 805     per_arg_cell_count
 806   };
 807 
 808   // offset of cell for stack slot for entry i within ProfileData object
 809   int stack_slot_offset(int i) const {
 810     return _base_off + stack_slot_local_offset(i);
 811   }
 812 
 813   const int _number_of_entries;
 814 
 815   // offset of cell for type for entry i within ProfileData object
 816   int type_offset_in_cells(int i) const {
 817     return _base_off + type_local_offset(i);
 818   }
 819 
 820 public:
 821 
 822   TypeStackSlotEntries(int base_off, int nb_entries)
 823     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 824 
 825   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 826 
 827   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 828 
 829   int number_of_entries() const { return _number_of_entries; }
 830 
 831   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 832   static int stack_slot_local_offset(int i) {
 833     return i * per_arg_cell_count + stack_slot_entry;
 834   }
 835 
 836   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 837   static int type_local_offset(int i) {
 838     return i * per_arg_cell_count + type_entry;
 839   }
 840 
 841   // stack slot for entry i
 842   uint stack_slot(int i) const {
 843     assert(i >= 0 && i < _number_of_entries, "oob");
 844     return _pd->uint_at(stack_slot_offset(i));
 845   }
 846 
 847   // set stack slot for entry i
 848   void set_stack_slot(int i, uint num) {
 849     assert(i >= 0 && i < _number_of_entries, "oob");
 850     _pd->set_uint_at(stack_slot_offset(i), num);
 851   }
 852 
 853   // type for entry i
 854   intptr_t type(int i) const {
 855     assert(i >= 0 && i < _number_of_entries, "oob");
 856     return _pd->intptr_at(type_offset_in_cells(i));
 857   }
 858 
 859   intptr_t* type_adr(int i) const {
 860     assert(i >= 0 && i < _number_of_entries, "oob");
 861     return _pd->intptr_at_adr(type_offset_in_cells(i));
 862   }
 863 
 864   // set type for entry i
 865   void set_type(int i, intptr_t k) {
 866     assert(i >= 0 && i < _number_of_entries, "oob");
 867     _pd->set_intptr_at(type_offset_in_cells(i), k);
 868   }
 869 
 870   static ByteSize per_arg_size() {
 871     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 872   }
 873 
 874   static int per_arg_count() {
 875     return per_arg_cell_count;
 876   }
 877 
 878   ByteSize type_offset(int i) const {
 879     return DataLayout::cell_offset(type_offset_in_cells(i));
 880   }
 881 
 882   // GC support
 883   void clean_weak_klass_links(bool always_clean);
 884 
 885   // CDS support
 886   virtual void metaspace_pointers_do(MetaspaceClosure* it);
 887 
 888   void print_data_on(outputStream* st) const;
 889 };
 890 
 891 // Type entry used for return from a call. A single cell to record the
 892 // type.
 893 class ReturnTypeEntry : public TypeEntries {
 894 
 895 private:
 896   enum {
 897     cell_count = 1
 898   };
 899 
 900 public:
 901   ReturnTypeEntry(int base_off)
 902     : TypeEntries(base_off) {}
 903 
 904   void post_initialize() {
 905     set_type(type_none());
 906   }
 907 
 908   intptr_t type() const {
 909     return _pd->intptr_at(_base_off);
 910   }
 911 
 912   intptr_t* type_adr() const {
 913     return _pd->intptr_at_adr(_base_off);
 914   }
 915 
 916   void set_type(intptr_t k) {
 917     _pd->set_intptr_at(_base_off, k);
 918   }
 919 
 920   static int static_cell_count() {
 921     return cell_count;
 922   }
 923 
 924   static ByteSize size() {
 925     return in_ByteSize(cell_count * DataLayout::cell_size);
 926   }
 927 
 928   ByteSize type_offset() {
 929     return DataLayout::cell_offset(_base_off);
 930   }
 931 
 932   // GC support
 933   void clean_weak_klass_links(bool always_clean);
 934 
 935   // CDS support
 936   virtual void metaspace_pointers_do(MetaspaceClosure* it);
 937 
 938   void print_data_on(outputStream* st) const;
 939 };
 940 
 941 // Entries to collect type information at a call: contains arguments
 942 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 943 // number of cells. Because the number of cells for the return type is
 944 // smaller than the number of cells for the type of an arguments, the
 945 // number of cells is used to tell how many arguments are profiled and
 946 // whether a return value is profiled. See has_arguments() and
 947 // has_return().
 948 class TypeEntriesAtCall {
 949 private:
 950   static int stack_slot_local_offset(int i) {
 951     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 952   }
 953 
 954   static int argument_type_local_offset(int i) {
 955     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
 956   }
 957 
 958 public:
 959 
 960   static int header_cell_count() {
 961     return 1;
 962   }
 963 
 964   static int cell_count_local_offset() {
 965     return 0;
 966   }
 967 
 968   static int compute_cell_count(BytecodeStream* stream);
 969 
 970   static void initialize(DataLayout* dl, int base, int cell_count) {
 971     int off = base + cell_count_local_offset();
 972     dl->set_cell_at(off, cell_count - base - header_cell_count());
 973   }
 974 
 975   static bool arguments_profiling_enabled();
 976   static bool return_profiling_enabled();
 977 
 978   // Code generation support
 979   static ByteSize cell_count_offset() {
 980     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
 981   }
 982 
 983   static ByteSize args_data_offset() {
 984     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
 985   }
 986 
 987   static ByteSize stack_slot_offset(int i) {
 988     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
 989   }
 990 
 991   static ByteSize argument_type_offset(int i) {
 992     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
 993   }
 994 
 995   static ByteSize return_only_size() {
 996     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
 997   }
 998 
 999 };
1000 
1001 // CallTypeData
1002 //
1003 // A CallTypeData is used to access profiling information about a non
1004 // virtual call for which we collect type information about arguments
1005 // and return value.
1006 class CallTypeData : public CounterData {
1007 private:
1008   // entries for arguments if any
1009   TypeStackSlotEntries _args;
1010   // entry for return type if any
1011   ReturnTypeEntry _ret;
1012 
1013   int cell_count_global_offset() const {
1014     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1015   }
1016 
1017   // number of cells not counting the header
1018   int cell_count_no_header() const {
1019     return uint_at(cell_count_global_offset());
1020   }
1021 
1022   void check_number_of_arguments(int total) {
1023     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1024   }
1025 
1026 public:
1027   CallTypeData(DataLayout* layout) :
1028     CounterData(layout),
1029     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1030     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1031   {
1032     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1033     // Some compilers (VC++) don't want this passed in member initialization list
1034     _args.set_profile_data(this);
1035     _ret.set_profile_data(this);
1036   }
1037 
1038   const TypeStackSlotEntries* args() const {
1039     assert(has_arguments(), "no profiling of arguments");
1040     return &_args;
1041   }
1042 
1043   const ReturnTypeEntry* ret() const {
1044     assert(has_return(), "no profiling of return value");
1045     return &_ret;
1046   }
1047 
1048   virtual bool is_CallTypeData() const { return true; }
1049 
1050   static int static_cell_count() {
1051     return -1;
1052   }
1053 
1054   static int compute_cell_count(BytecodeStream* stream) {
1055     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1056   }
1057 
1058   static void initialize(DataLayout* dl, int cell_count) {
1059     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1060   }
1061 
1062   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1063 
1064   virtual int cell_count() const {
1065     return CounterData::static_cell_count() +
1066       TypeEntriesAtCall::header_cell_count() +
1067       int_at_unchecked(cell_count_global_offset());
1068   }
1069 
1070   int number_of_arguments() const {
1071     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1072   }
1073 
1074   void set_argument_type(int i, Klass* k) {
1075     assert(has_arguments(), "no arguments!");
1076     intptr_t current = _args.type(i);
1077     _args.set_type(i, TypeEntries::with_status(k, current));
1078   }
1079 
1080   void set_return_type(Klass* k) {
1081     assert(has_return(), "no return!");
1082     intptr_t current = _ret.type();
1083     _ret.set_type(TypeEntries::with_status(k, current));
1084   }
1085 
1086   // An entry for a return value takes less space than an entry for an
1087   // argument so if the number of cells exceeds the number of cells
1088   // needed for an argument, this object contains type information for
1089   // at least one argument.
1090   bool has_arguments() const {
1091     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1092     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1093     return res;
1094   }
1095 
1096   // An entry for a return value takes less space than an entry for an
1097   // argument, so if the remainder of the number of cells divided by
1098   // the number of cells for an argument is not null, a return value
1099   // is profiled in this object.
1100   bool has_return() const {
1101     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1102     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1103     return res;
1104   }
1105 
1106   // Code generation support
1107   static ByteSize args_data_offset() {
1108     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1109   }
1110 
1111   ByteSize argument_type_offset(int i) {
1112     return _args.type_offset(i);
1113   }
1114 
1115   ByteSize return_type_offset() {
1116     return _ret.type_offset();
1117   }
1118 
1119   // GC support
1120   virtual void clean_weak_klass_links(bool always_clean) {
1121     if (has_arguments()) {
1122       _args.clean_weak_klass_links(always_clean);
1123     }
1124     if (has_return()) {
1125       _ret.clean_weak_klass_links(always_clean);
1126     }
1127   }
1128 
1129   // CDS support
1130   virtual void metaspace_pointers_do(MetaspaceClosure* it) {
1131     if (has_arguments()) {
1132       _args.metaspace_pointers_do(it);
1133     }
1134     if (has_return()) {
1135       _ret.metaspace_pointers_do(it);
1136     }
1137   }
1138 
1139   virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1140 };
1141 
1142 // ReceiverTypeData
1143 //
1144 // A ReceiverTypeData is used to access profiling information about a
1145 // dynamic type check.  It consists of a series of (Klass*, count)
1146 // pairs which are used to store a type profile for the receiver of
1147 // the check, the associated count is incremented every time the type
1148 // is seen. A per ReceiverTypeData counter is incremented on type
1149 // overflow (when there's no more room for a not yet profiled Klass*).
1150 //
1151 class ReceiverTypeData : public CounterData {
1152   friend class VMStructs;
1153   friend class JVMCIVMStructs;
1154 protected:
1155   enum {
1156     receiver0_offset = counter_cell_count,
1157     count0_offset,
1158     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1159   };
1160 
1161 public:
1162   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1163     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1164            layout->tag() == DataLayout::virtual_call_data_tag ||
1165            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1166   }
1167 
1168   virtual bool is_ReceiverTypeData() const { return true; }
1169 
1170   static int static_cell_count() {
1171     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1172   }
1173 
1174   virtual int cell_count() const {
1175     return static_cell_count();
1176   }
1177 
1178   // Direct accessors
1179   static uint row_limit() {
1180     return (uint) TypeProfileWidth;
1181   }
1182   static int receiver_cell_index(uint row) {
1183     return receiver0_offset + row * receiver_type_row_cell_count;
1184   }
1185   static int receiver_count_cell_index(uint row) {
1186     return count0_offset + row * receiver_type_row_cell_count;
1187   }
1188 
1189   Klass* receiver(uint row) const {
1190     assert(row < row_limit(), "oob");
1191 
1192     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1193     assert(recv == nullptr || recv->is_klass(), "wrong type");
1194     return recv;
1195   }
1196 
1197   void set_receiver(uint row, Klass* k) {
1198     assert((uint)row < row_limit(), "oob");
1199     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1200   }
1201 
1202   uint receiver_count(uint row) const {
1203     assert(row < row_limit(), "oob");
1204     return uint_at(receiver_count_cell_index(row));
1205   }
1206 
1207   void set_receiver_count(uint row, uint count) {
1208     assert(row < row_limit(), "oob");
1209     set_uint_at(receiver_count_cell_index(row), count);
1210   }
1211 
1212   void clear_row(uint row) {
1213     assert(row < row_limit(), "oob");
1214     // Clear total count - indicator of polymorphic call site.
1215     // The site may look like as monomorphic after that but
1216     // it allow to have more accurate profiling information because
1217     // there was execution phase change since klasses were unloaded.
1218     // If the site is still polymorphic then MDO will be updated
1219     // to reflect it. But it could be the case that the site becomes
1220     // only bimorphic. Then keeping total count not 0 will be wrong.
1221     // Even if we use monomorphic (when it is not) for compilation
1222     // we will only have trap, deoptimization and recompile again
1223     // with updated MDO after executing method in Interpreter.
1224     // An additional receiver will be recorded in the cleaned row
1225     // during next call execution.
1226     //
1227     // Note: our profiling logic works with empty rows in any slot.
1228     // We do sorting a profiling info (ciCallProfile) for compilation.
1229     //
1230     set_count(0);
1231     set_receiver(row, nullptr);
1232     set_receiver_count(row, 0);
1233   }
1234 
1235   // Code generation support
1236   static ByteSize receiver_offset(uint row) {
1237     return cell_offset(receiver_cell_index(row));
1238   }
1239   static ByteSize receiver_count_offset(uint row) {
1240     return cell_offset(receiver_count_cell_index(row));
1241   }
1242   static ByteSize receiver_type_data_size() {
1243     return cell_offset(static_cell_count());
1244   }
1245 
1246   // GC support
1247   virtual void clean_weak_klass_links(bool always_clean);
1248 
1249   // CDS support
1250   virtual void metaspace_pointers_do(MetaspaceClosure* it);
1251 
1252   void print_receiver_data_on(outputStream* st) const;
1253   void print_data_on(outputStream* st, const char* extra = nullptr) const;
1254 };
1255 
1256 // VirtualCallData
1257 //
1258 // A VirtualCallData is used to access profiling information about a
1259 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1260 class VirtualCallData : public ReceiverTypeData {
1261 public:
1262   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1263     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1264            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1265   }
1266 
1267   virtual bool is_VirtualCallData() const { return true; }
1268 
1269   static int static_cell_count() {
1270     // At this point we could add more profile state, e.g., for arguments.
1271     // But for now it's the same size as the base record type.
1272     return ReceiverTypeData::static_cell_count();
1273   }
1274 
1275   virtual int cell_count() const {
1276     return static_cell_count();
1277   }
1278 
1279   // Direct accessors
1280   static ByteSize virtual_call_data_size() {
1281     return cell_offset(static_cell_count());
1282   }
1283 
1284   void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN;
1285   void print_data_on(outputStream* st, const char* extra = nullptr) const;
1286 };
1287 
1288 // VirtualCallTypeData
1289 //
1290 // A VirtualCallTypeData is used to access profiling information about
1291 // a virtual call for which we collect type information about
1292 // arguments and return value.
1293 class VirtualCallTypeData : public VirtualCallData {
1294 private:
1295   // entries for arguments if any
1296   TypeStackSlotEntries _args;
1297   // entry for return type if any
1298   ReturnTypeEntry _ret;
1299 
1300   int cell_count_global_offset() const {
1301     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1302   }
1303 
1304   // number of cells not counting the header
1305   int cell_count_no_header() const {
1306     return uint_at(cell_count_global_offset());
1307   }
1308 
1309   void check_number_of_arguments(int total) {
1310     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1311   }
1312 
1313 public:
1314   VirtualCallTypeData(DataLayout* layout) :
1315     VirtualCallData(layout),
1316     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1317     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1318   {
1319     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1320     // Some compilers (VC++) don't want this passed in member initialization list
1321     _args.set_profile_data(this);
1322     _ret.set_profile_data(this);
1323   }
1324 
1325   const TypeStackSlotEntries* args() const {
1326     assert(has_arguments(), "no profiling of arguments");
1327     return &_args;
1328   }
1329 
1330   const ReturnTypeEntry* ret() const {
1331     assert(has_return(), "no profiling of return value");
1332     return &_ret;
1333   }
1334 
1335   virtual bool is_VirtualCallTypeData() const { return true; }
1336 
1337   static int static_cell_count() {
1338     return -1;
1339   }
1340 
1341   static int compute_cell_count(BytecodeStream* stream) {
1342     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1343   }
1344 
1345   static void initialize(DataLayout* dl, int cell_count) {
1346     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1347   }
1348 
1349   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1350 
1351   virtual int cell_count() const {
1352     return VirtualCallData::static_cell_count() +
1353       TypeEntriesAtCall::header_cell_count() +
1354       int_at_unchecked(cell_count_global_offset());
1355   }
1356 
1357   int number_of_arguments() const {
1358     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1359   }
1360 
1361   void set_argument_type(int i, Klass* k) {
1362     assert(has_arguments(), "no arguments!");
1363     intptr_t current = _args.type(i);
1364     _args.set_type(i, TypeEntries::with_status(k, current));
1365   }
1366 
1367   void set_return_type(Klass* k) {
1368     assert(has_return(), "no return!");
1369     intptr_t current = _ret.type();
1370     _ret.set_type(TypeEntries::with_status(k, current));
1371   }
1372 
1373   // An entry for a return value takes less space than an entry for an
1374   // argument, so if the remainder of the number of cells divided by
1375   // the number of cells for an argument is not null, a return value
1376   // is profiled in this object.
1377   bool has_return() const {
1378     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1379     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1380     return res;
1381   }
1382 
1383   // An entry for a return value takes less space than an entry for an
1384   // argument so if the number of cells exceeds the number of cells
1385   // needed for an argument, this object contains type information for
1386   // at least one argument.
1387   bool has_arguments() const {
1388     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1389     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1390     return res;
1391   }
1392 
1393   // Code generation support
1394   static ByteSize args_data_offset() {
1395     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1396   }
1397 
1398   ByteSize argument_type_offset(int i) {
1399     return _args.type_offset(i);
1400   }
1401 
1402   ByteSize return_type_offset() {
1403     return _ret.type_offset();
1404   }
1405 
1406   // GC support
1407   virtual void clean_weak_klass_links(bool always_clean) {
1408     ReceiverTypeData::clean_weak_klass_links(always_clean);
1409     if (has_arguments()) {
1410       _args.clean_weak_klass_links(always_clean);
1411     }
1412     if (has_return()) {
1413       _ret.clean_weak_klass_links(always_clean);
1414     }
1415   }
1416 
1417   // CDS support
1418   virtual void metaspace_pointers_do(MetaspaceClosure* it) {
1419     ReceiverTypeData::metaspace_pointers_do(it);
1420     if (has_arguments()) {
1421       _args.metaspace_pointers_do(it);
1422     }
1423     if (has_return()) {
1424       _ret.metaspace_pointers_do(it);
1425     }
1426   }
1427 
1428   virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1429 };
1430 
1431 // RetData
1432 //
1433 // A RetData is used to access profiling information for a ret bytecode.
1434 // It is composed of a count of the number of times that the ret has
1435 // been executed, followed by a series of triples of the form
1436 // (bci, count, di) which count the number of times that some bci was the
1437 // target of the ret and cache a corresponding data displacement.
1438 class RetData : public CounterData {
1439 protected:
1440   enum {
1441     bci0_offset = counter_cell_count,
1442     count0_offset,
1443     displacement0_offset,
1444     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1445   };
1446 
1447   void set_bci(uint row, int bci) {
1448     assert((uint)row < row_limit(), "oob");
1449     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1450   }
1451   void release_set_bci(uint row, int bci);
1452   void set_bci_count(uint row, uint count) {
1453     assert((uint)row < row_limit(), "oob");
1454     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1455   }
1456   void set_bci_displacement(uint row, int disp) {
1457     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1458   }
1459 
1460 public:
1461   RetData(DataLayout* layout) : CounterData(layout) {
1462     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1463   }
1464 
1465   virtual bool is_RetData() const { return true; }
1466 
1467   enum {
1468     no_bci = -1 // value of bci when bci1/2 are not in use.
1469   };
1470 
1471   static int static_cell_count() {
1472     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1473   }
1474 
1475   virtual int cell_count() const {
1476     return static_cell_count();
1477   }
1478 
1479   static uint row_limit() {
1480     return (uint) BciProfileWidth;
1481   }
1482   static int bci_cell_index(uint row) {
1483     return bci0_offset + row * ret_row_cell_count;
1484   }
1485   static int bci_count_cell_index(uint row) {
1486     return count0_offset + row * ret_row_cell_count;
1487   }
1488   static int bci_displacement_cell_index(uint row) {
1489     return displacement0_offset + row * ret_row_cell_count;
1490   }
1491 
1492   // Direct accessors
1493   int bci(uint row) const {
1494     return int_at(bci_cell_index(row));
1495   }
1496   uint bci_count(uint row) const {
1497     return uint_at(bci_count_cell_index(row));
1498   }
1499   int bci_displacement(uint row) const {
1500     return int_at(bci_displacement_cell_index(row));
1501   }
1502 
1503   // Interpreter Runtime support
1504   address fixup_ret(int return_bci, MethodData* mdo);
1505 
1506   // Code generation support
1507   static ByteSize bci_offset(uint row) {
1508     return cell_offset(bci_cell_index(row));
1509   }
1510   static ByteSize bci_count_offset(uint row) {
1511     return cell_offset(bci_count_cell_index(row));
1512   }
1513   static ByteSize bci_displacement_offset(uint row) {
1514     return cell_offset(bci_displacement_cell_index(row));
1515   }
1516 
1517   // Specific initialization.
1518   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1519 
1520   void print_data_on(outputStream* st, const char* extra = nullptr) const;
1521 };
1522 
1523 // BranchData
1524 //
1525 // A BranchData is used to access profiling data for a two-way branch.
1526 // It consists of taken and not_taken counts as well as a data displacement
1527 // for the taken case.
1528 class BranchData : public JumpData {
1529   friend class VMStructs;
1530   friend class JVMCIVMStructs;
1531 protected:
1532   enum {
1533     not_taken_off_set = jump_cell_count,
1534     branch_cell_count
1535   };
1536 
1537   void set_displacement(int displacement) {
1538     set_int_at(displacement_off_set, displacement);
1539   }
1540 
1541 public:
1542   BranchData(DataLayout* layout) : JumpData(layout) {
1543     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1544   }
1545 
1546   virtual bool is_BranchData() const { return true; }
1547 
1548   static int static_cell_count() {
1549     return branch_cell_count;
1550   }
1551 
1552   virtual int cell_count() const {
1553     return static_cell_count();
1554   }
1555 
1556   // Direct accessor
1557   uint not_taken() const {
1558     return uint_at(not_taken_off_set);
1559   }
1560 
1561   void set_not_taken(uint cnt) {
1562     set_uint_at(not_taken_off_set, cnt);
1563   }
1564 
1565   uint inc_not_taken() {
1566     uint cnt = not_taken() + 1;
1567     // Did we wrap? Will compiler screw us??
1568     if (cnt == 0) cnt--;
1569     set_uint_at(not_taken_off_set, cnt);
1570     return cnt;
1571   }
1572 
1573   // Code generation support
1574   static ByteSize not_taken_offset() {
1575     return cell_offset(not_taken_off_set);
1576   }
1577   static ByteSize branch_data_size() {
1578     return cell_offset(branch_cell_count);
1579   }
1580 
1581   // Specific initialization.
1582   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1583 
1584   void print_data_on(outputStream* st, const char* extra = nullptr) const;
1585 };
1586 
1587 // ArrayData
1588 //
1589 // A ArrayData is a base class for accessing profiling data which does
1590 // not have a statically known size.  It consists of an array length
1591 // and an array start.
1592 class ArrayData : public ProfileData {
1593   friend class VMStructs;
1594   friend class JVMCIVMStructs;
1595 protected:
1596   friend class DataLayout;
1597 
1598   enum {
1599     array_len_off_set,
1600     array_start_off_set
1601   };
1602 
1603   uint array_uint_at(int index) const {
1604     int aindex = index + array_start_off_set;
1605     return uint_at(aindex);
1606   }
1607   int array_int_at(int index) const {
1608     int aindex = index + array_start_off_set;
1609     return int_at(aindex);
1610   }
1611   void array_set_int_at(int index, int value) {
1612     int aindex = index + array_start_off_set;
1613     set_int_at(aindex, value);
1614   }
1615 
1616   // Code generation support for subclasses.
1617   static ByteSize array_element_offset(int index) {
1618     return cell_offset(array_start_off_set + index);
1619   }
1620 
1621 public:
1622   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1623 
1624   virtual bool is_ArrayData() const { return true; }
1625 
1626   static int static_cell_count() {
1627     return -1;
1628   }
1629 
1630   int array_len() const {
1631     return int_at_unchecked(array_len_off_set);
1632   }
1633 
1634   virtual int cell_count() const {
1635     return array_len() + 1;
1636   }
1637 
1638   // Code generation support
1639   static ByteSize array_len_offset() {
1640     return cell_offset(array_len_off_set);
1641   }
1642   static ByteSize array_start_offset() {
1643     return cell_offset(array_start_off_set);
1644   }
1645 };
1646 
1647 // MultiBranchData
1648 //
1649 // A MultiBranchData is used to access profiling information for
1650 // a multi-way branch (*switch bytecodes).  It consists of a series
1651 // of (count, displacement) pairs, which count the number of times each
1652 // case was taken and specify the data displacement for each branch target.
1653 class MultiBranchData : public ArrayData {
1654   friend class VMStructs;
1655   friend class JVMCIVMStructs;
1656 protected:
1657   enum {
1658     default_count_off_set,
1659     default_disaplacement_off_set,
1660     case_array_start
1661   };
1662   enum {
1663     relative_count_off_set,
1664     relative_displacement_off_set,
1665     per_case_cell_count
1666   };
1667 
1668   void set_default_displacement(int displacement) {
1669     array_set_int_at(default_disaplacement_off_set, displacement);
1670   }
1671   void set_displacement_at(int index, int displacement) {
1672     array_set_int_at(case_array_start +
1673                      index * per_case_cell_count +
1674                      relative_displacement_off_set,
1675                      displacement);
1676   }
1677 
1678 public:
1679   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1680     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1681   }
1682 
1683   virtual bool is_MultiBranchData() const { return true; }
1684 
1685   static int compute_cell_count(BytecodeStream* stream);
1686 
1687   int number_of_cases() const {
1688     int alen = array_len() - 2; // get rid of default case here.
1689     assert(alen % per_case_cell_count == 0, "must be even");
1690     return (alen / per_case_cell_count);
1691   }
1692 
1693   uint default_count() const {
1694     return array_uint_at(default_count_off_set);
1695   }
1696   int default_displacement() const {
1697     return array_int_at(default_disaplacement_off_set);
1698   }
1699 
1700   uint count_at(int index) const {
1701     return array_uint_at(case_array_start +
1702                          index * per_case_cell_count +
1703                          relative_count_off_set);
1704   }
1705   int displacement_at(int index) const {
1706     return array_int_at(case_array_start +
1707                         index * per_case_cell_count +
1708                         relative_displacement_off_set);
1709   }
1710 
1711   // Code generation support
1712   static ByteSize default_count_offset() {
1713     return array_element_offset(default_count_off_set);
1714   }
1715   static ByteSize default_displacement_offset() {
1716     return array_element_offset(default_disaplacement_off_set);
1717   }
1718   static ByteSize case_count_offset(int index) {
1719     return case_array_offset() +
1720            (per_case_size() * index) +
1721            relative_count_offset();
1722   }
1723   static ByteSize case_array_offset() {
1724     return array_element_offset(case_array_start);
1725   }
1726   static ByteSize per_case_size() {
1727     return in_ByteSize(per_case_cell_count) * cell_size;
1728   }
1729   static ByteSize relative_count_offset() {
1730     return in_ByteSize(relative_count_off_set) * cell_size;
1731   }
1732   static ByteSize relative_displacement_offset() {
1733     return in_ByteSize(relative_displacement_off_set) * cell_size;
1734   }
1735 
1736   // Specific initialization.
1737   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1738 
1739   void print_data_on(outputStream* st, const char* extra = nullptr) const;
1740 };
1741 
1742 class ArgInfoData : public ArrayData {
1743 
1744 public:
1745   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1746     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1747   }
1748 
1749   virtual bool is_ArgInfoData() const { return true; }
1750 
1751 
1752   int number_of_args() const {
1753     return array_len();
1754   }
1755 
1756   uint arg_modified(int arg) const {
1757     return array_uint_at(arg);
1758   }
1759 
1760   void set_arg_modified(int arg, uint val) {
1761     array_set_int_at(arg, val);
1762   }
1763 
1764   void print_data_on(outputStream* st, const char* extra = nullptr) const;
1765 };
1766 
1767 // ParametersTypeData
1768 //
1769 // A ParametersTypeData is used to access profiling information about
1770 // types of parameters to a method
1771 class ParametersTypeData : public ArrayData {
1772 
1773 private:
1774   TypeStackSlotEntries _parameters;
1775 
1776   static int stack_slot_local_offset(int i) {
1777     assert_profiling_enabled();
1778     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1779   }
1780 
1781   static int type_local_offset(int i) {
1782     assert_profiling_enabled();
1783     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1784   }
1785 
1786   static bool profiling_enabled();
1787   static void assert_profiling_enabled() {
1788     assert(profiling_enabled(), "method parameters profiling should be on");
1789   }
1790 
1791 public:
1792   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1793     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1794     // Some compilers (VC++) don't want this passed in member initialization list
1795     _parameters.set_profile_data(this);
1796   }
1797 
1798   static int compute_cell_count(Method* m);
1799 
1800   virtual bool is_ParametersTypeData() const { return true; }
1801 
1802   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1803 
1804   int number_of_parameters() const {
1805     return array_len() / TypeStackSlotEntries::per_arg_count();
1806   }
1807 
1808   const TypeStackSlotEntries* parameters() const { return &_parameters; }
1809 
1810   uint stack_slot(int i) const {
1811     return _parameters.stack_slot(i);
1812   }
1813 
1814   void set_type(int i, Klass* k) {
1815     intptr_t current = _parameters.type(i);
1816     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1817   }
1818 
1819   virtual void clean_weak_klass_links(bool always_clean) {
1820     _parameters.clean_weak_klass_links(always_clean);
1821   }
1822 
1823   // CDS support
1824   virtual void metaspace_pointers_do(MetaspaceClosure* it) {
1825     _parameters.metaspace_pointers_do(it);
1826   }
1827 
1828   virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1829 
1830   static ByteSize stack_slot_offset(int i) {
1831     return cell_offset(stack_slot_local_offset(i));
1832   }
1833 
1834   static ByteSize type_offset(int i) {
1835     return cell_offset(type_local_offset(i));
1836   }
1837 };
1838 
1839 // SpeculativeTrapData
1840 //
1841 // A SpeculativeTrapData is used to record traps due to type
1842 // speculation. It records the root of the compilation: that type
1843 // speculation is wrong in the context of one compilation (for
1844 // method1) doesn't mean it's wrong in the context of another one (for
1845 // method2). Type speculation could have more/different data in the
1846 // context of the compilation of method2 and it's worthwhile to try an
1847 // optimization that failed for compilation of method1 in the context
1848 // of compilation of method2.
1849 // Space for SpeculativeTrapData entries is allocated from the extra
1850 // data space in the MDO. If we run out of space, the trap data for
1851 // the ProfileData at that bci is updated.
1852 class SpeculativeTrapData : public ProfileData {
1853 protected:
1854   enum {
1855     speculative_trap_method,
1856 #ifndef _LP64
1857     // The size of the area for traps is a multiple of the header
1858     // size, 2 cells on 32 bits. Packed at the end of this area are
1859     // argument info entries (with tag
1860     // DataLayout::arg_info_data_tag). The logic in
1861     // MethodData::bci_to_extra_data() that guarantees traps don't
1862     // overflow over argument info entries assumes the size of a
1863     // SpeculativeTrapData is twice the header size. On 32 bits, a
1864     // SpeculativeTrapData must be 4 cells.
1865     padding,
1866 #endif
1867     speculative_trap_cell_count
1868   };
1869 public:
1870   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1871     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1872   }
1873 
1874   virtual bool is_SpeculativeTrapData() const { return true; }
1875 
1876   static int static_cell_count() {
1877     return speculative_trap_cell_count;
1878   }
1879 
1880   virtual int cell_count() const {
1881     return static_cell_count();
1882   }
1883 
1884   // Direct accessor
1885   Method* method() const {
1886     return (Method*)intptr_at(speculative_trap_method);
1887   }
1888 
1889   void set_method(Method* m) {
1890     assert(!m->is_old(), "cannot add old methods");
1891     set_intptr_at(speculative_trap_method, (intptr_t)m);
1892   }
1893 
1894   static ByteSize method_offset() {
1895     return cell_offset(speculative_trap_method);
1896   }
1897 
1898   // CDS support
1899   virtual void metaspace_pointers_do(MetaspaceClosure* it);
1900 
1901   virtual void print_data_on(outputStream* st, const char* extra = nullptr) const;
1902 };
1903 
1904 // MethodData*
1905 //
1906 // A MethodData* holds information which has been collected about
1907 // a method.  Its layout looks like this:
1908 //
1909 // -----------------------------
1910 // | header                    |
1911 // | klass                     |
1912 // -----------------------------
1913 // | method                    |
1914 // | size of the MethodData* |
1915 // -----------------------------
1916 // | Data entries...           |
1917 // |   (variable size)         |
1918 // |                           |
1919 // .                           .
1920 // .                           .
1921 // .                           .
1922 // |                           |
1923 // -----------------------------
1924 //
1925 // The data entry area is a heterogeneous array of DataLayouts. Each
1926 // DataLayout in the array corresponds to a specific bytecode in the
1927 // method.  The entries in the array are sorted by the corresponding
1928 // bytecode.  Access to the data is via resource-allocated ProfileData,
1929 // which point to the underlying blocks of DataLayout structures.
1930 //
1931 // During interpretation, if profiling in enabled, the interpreter
1932 // maintains a method data pointer (mdp), which points at the entry
1933 // in the array corresponding to the current bci.  In the course of
1934 // interpretation, when a bytecode is encountered that has profile data
1935 // associated with it, the entry pointed to by mdp is updated, then the
1936 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1937 // is null to begin with, the interpreter assumes that the current method
1938 // is not (yet) being profiled.
1939 //
1940 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1941 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1942 // from the base of the data entry array.  A "displacement" is the byte offset
1943 // in certain ProfileData objects that indicate the amount the mdp must be
1944 // adjusted in the event of a change in control flow.
1945 //
1946 
1947 class CleanExtraDataClosure : public StackObj {
1948 public:
1949   virtual bool is_live(Method* m) = 0;
1950 };
1951 
1952 
1953 #if INCLUDE_JVMCI
1954 // Encapsulates an encoded speculation reason. These are linked together in
1955 // a list that is atomically appended to during deoptimization. Entries are
1956 // never removed from the list.
1957 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding
1958 class FailedSpeculation: public CHeapObj<mtCompiler> {
1959  private:
1960   // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself
1961   // is an array embedded at the end of this object.
1962   int   _data_len;
1963 
1964   // Next entry in a linked list.
1965   FailedSpeculation* _next;
1966 
1967   FailedSpeculation(address data, int data_len);
1968 
1969   FailedSpeculation** next_adr() { return &_next; }
1970 
1971   // Placement new operator for inlining the speculation data into
1972   // the FailedSpeculation object.
1973   void* operator new(size_t size, size_t fs_size) throw();
1974 
1975  public:
1976   char* data()         { return (char*)(((address) this) + sizeof(FailedSpeculation)); }
1977   int data_len() const { return _data_len; }
1978   FailedSpeculation* next() const { return _next; }
1979 
1980   // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address).
1981   // Returns false if the FailedSpeculation object could not be allocated.
1982   static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len);
1983 
1984   // Frees all entries in the linked list whose head is at (*failed_speculations_address).
1985   static void free_failed_speculations(FailedSpeculation** failed_speculations_address);
1986 };
1987 #endif
1988 
1989 class ciMethodData;
1990 
1991 class MethodData : public Metadata {
1992   friend class VMStructs;
1993   friend class JVMCIVMStructs;
1994   friend class ProfileData;
1995   friend class TypeEntriesAtCall;
1996   friend class ciMethodData;
1997   friend class VM_ReinitializeMDO;
1998 
1999   // If you add a new field that points to any metaspace object, you
2000   // must add this field to MethodData::metaspace_pointers_do().
2001 
2002   // Back pointer to the Method*
2003   Method* _method;
2004 
2005   // Size of this oop in bytes
2006   int _size;
2007 
2008   // Cached hint for bci_to_dp and bci_to_data
2009   int _hint_di;
2010 
2011   Mutex* volatile _extra_data_lock; // FIXME: CDS support
2012 
2013   MethodData(const methodHandle& method);
2014 
2015   void initialize();
2016 
2017 public:
2018   MethodData();
2019 
2020   static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS);
2021 
2022   virtual bool is_methodData() const { return true; }
2023 
2024   // Safely reinitialize the data in the MDO.  This is intended as a testing facility as the
2025   // reinitialization is performed at a safepoint so it's isn't cheap and it doesn't ensure that all
2026   // readers will see consistent profile data.
2027   void reinitialize();
2028 
2029   // Whole-method sticky bits and flags
2030   enum {
2031     _trap_hist_limit    = Deoptimization::Reason_TRAP_HISTORY_LENGTH,
2032     _trap_hist_mask     = max_jubyte,
2033     _extra_data_count   = 4     // extra DataLayout headers, for trap history
2034   }; // Public flag values
2035 
2036   // Compiler-related counters.
2037   class CompilerCounters {
2038     friend class VMStructs;
2039     friend class JVMCIVMStructs;
2040 
2041     uint _nof_decompiles;             // count of all nmethod removals
2042     uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2043     uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2044     union {
2045       intptr_t _align;
2046       // JVMCI separates trap history for OSR compilations from normal compilations
2047       u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit];
2048     } _trap_hist;
2049 
2050   public:
2051     CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0) {
2052 #ifndef ZERO
2053       // Some Zero platforms do not have expected alignment, and do not use
2054       // this code. static_assert would still fire and fail for them.
2055       static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align");
2056 #endif
2057       uint size_in_words = sizeof(_trap_hist) / HeapWordSize;
2058       Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words);
2059     }
2060 
2061     // Return (uint)-1 for overflow.
2062     uint trap_count(int reason) const {
2063       assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob");
2064       return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2065     }
2066 
2067     uint inc_trap_count(int reason) {
2068       // Count another trap, anywhere in this method.
2069       assert(reason >= 0, "must be single trap");
2070       assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob");
2071       uint cnt1 = 1 + _trap_hist._array[reason];
2072       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2073         _trap_hist._array[reason] = (u1)cnt1;
2074         return cnt1;
2075       } else {
2076         return _trap_hist_mask + (++_nof_overflow_traps);
2077       }
2078     }
2079 
2080     uint overflow_trap_count() const {
2081       return _nof_overflow_traps;
2082     }
2083     uint overflow_recompile_count() const {
2084       return _nof_overflow_recompiles;
2085     }
2086     uint inc_overflow_recompile_count() {
2087       return ++_nof_overflow_recompiles;
2088     }
2089     uint decompile_count() const {
2090       return _nof_decompiles;
2091     }
2092     uint inc_decompile_count() {
2093       return ++_nof_decompiles;
2094     }
2095 
2096     // Support for code generation
2097     static ByteSize trap_history_offset() {
2098       return byte_offset_of(CompilerCounters, _trap_hist._array);
2099     }
2100   };
2101 
2102 private:
2103   CompilerCounters _compiler_counters;
2104 
2105   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2106   intx              _eflags;          // flags on escape information
2107   intx              _arg_local;       // bit set of non-escaping arguments
2108   intx              _arg_stack;       // bit set of stack-allocatable arguments
2109   intx              _arg_returned;    // bit set of returned arguments
2110 
2111   // How many invocations has this MDO seen?
2112   // These counters are used to determine the exact age of MDO.
2113   // We need those because in tiered a method can be concurrently
2114   // executed at different levels.
2115   InvocationCounter _invocation_counter;
2116   // Same for backedges.
2117   InvocationCounter _backedge_counter;
2118   // Counter values at the time profiling started.
2119   int               _invocation_counter_start;
2120   int               _backedge_counter_start;
2121   uint              _tenure_traps;
2122   int               _invoke_mask;      // per-method Tier0InvokeNotifyFreqLog
2123   int               _backedge_mask;    // per-method Tier0BackedgeNotifyFreqLog
2124 
2125   // Number of loops and blocks is computed when compiling the first
2126   // time with C1. It is used to determine if method is trivial.
2127   short             _num_loops;
2128   short             _num_blocks;
2129   // Does this method contain anything worth profiling?
2130   enum WouldProfile {unknown, no_profile, profile};
2131   WouldProfile      _would_profile;
2132 
2133 #if INCLUDE_JVMCI
2134   // Support for HotSpotMethodData.setCompiledIRSize(int)
2135   FailedSpeculation* _failed_speculations;
2136   int                _jvmci_ir_size;
2137 #endif
2138 
2139   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2140   int _data_size;
2141 
2142   // data index for the area dedicated to parameters. -1 if no
2143   // parameter profiling.
2144   enum { no_parameters = -2, parameters_uninitialized = -1 };
2145   int _parameters_type_data_di;
2146 
2147   // data index of exception handler profiling data
2148   int _exception_handler_data_di;
2149 
2150   // Beginning of the data entries
2151   // See comment in ciMethodData::load_data
2152   intptr_t _data[1];
2153 
2154   // Helper for size computation
2155   static int compute_data_size(BytecodeStream* stream);
2156   static int bytecode_cell_count(Bytecodes::Code code);
2157   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2158   enum { no_profile_data = -1, variable_cell_count = -2 };
2159 
2160   // Helper for initialization
2161   DataLayout* data_layout_at(int data_index) const {
2162     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2163     return (DataLayout*) (((address)_data) + data_index);
2164   }
2165 
2166   static int single_exception_handler_data_cell_count() {
2167     return BitData::static_cell_count();
2168   }
2169 
2170   static int single_exception_handler_data_size() {
2171     return DataLayout::compute_size_in_bytes(single_exception_handler_data_cell_count());
2172   }
2173 
2174   DataLayout* exception_handler_data_at(int exception_handler_index) const {
2175     return data_layout_at(_exception_handler_data_di + (exception_handler_index * single_exception_handler_data_size()));
2176   }
2177 
2178   int num_exception_handler_data() const {
2179     return exception_handlers_data_size() / single_exception_handler_data_size();
2180   }
2181 
2182   // Initialize an individual data segment.  Returns the size of
2183   // the segment in bytes.
2184   int initialize_data(BytecodeStream* stream, int data_index);
2185 
2186   // Helper for data_at
2187   DataLayout* limit_data_position() const {
2188     return data_layout_at(_data_size);
2189   }
2190   bool out_of_bounds(int data_index) const {
2191     return data_index >= data_size();
2192   }
2193 
2194   // Give each of the data entries a chance to perform specific
2195   // data initialization.
2196   void post_initialize(BytecodeStream* stream);
2197 
2198   // hint accessors
2199   int      hint_di() const  { return _hint_di; }
2200   void set_hint_di(int di)  {
2201     assert(!out_of_bounds(di), "hint_di out of bounds");
2202     _hint_di = di;
2203   }
2204 
2205   DataLayout* data_layout_before(int bci) {
2206     // avoid SEGV on this edge case
2207     if (data_size() == 0)
2208       return nullptr;
2209     DataLayout* layout = data_layout_at(hint_di());
2210     if (layout->bci() <= bci)
2211       return layout;
2212     return data_layout_at(first_di());
2213   }
2214 
2215   // What is the index of the first data entry?
2216   int first_di() const { return 0; }
2217 
2218   ProfileData* bci_to_extra_data_find(int bci, Method* m, DataLayout*& dp);
2219   // Find or create an extra ProfileData:
2220   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2221 
2222   // return the argument info cell
2223   ArgInfoData *arg_info();
2224 
2225   enum {
2226     no_type_profile = 0,
2227     type_profile_jsr292 = 1,
2228     type_profile_all = 2
2229   };
2230 
2231   static bool profile_jsr292(const methodHandle& m, int bci);
2232   static bool profile_unsafe(const methodHandle& m, int bci);
2233   static bool profile_memory_access(const methodHandle& m, int bci);
2234   static int profile_arguments_flag();
2235   static bool profile_all_arguments();
2236   static bool profile_arguments_for_invoke(const methodHandle& m, int bci);
2237   static int profile_return_flag();
2238   static bool profile_all_return();
2239   static bool profile_return_for_invoke(const methodHandle& m, int bci);
2240   static int profile_parameters_flag();
2241   static bool profile_parameters_jsr292_only();
2242   static bool profile_all_parameters();
2243 
2244   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2245   void verify_extra_data_clean(CleanExtraDataClosure* cl);
2246 
2247   DataLayout* exception_handler_bci_to_data_helper(int bci);
2248 
2249 public:
2250   void clean_extra_data(CleanExtraDataClosure* cl);
2251 
2252   static int header_size() {
2253     return sizeof(MethodData)/wordSize;
2254   }
2255 
2256   // Compute the size of a MethodData* before it is created.
2257   static int compute_allocation_size_in_bytes(const methodHandle& method);
2258   static int compute_allocation_size_in_words(const methodHandle& method);
2259   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2260 
2261   // Determine if a given bytecode can have profile information.
2262   static bool bytecode_has_profile(Bytecodes::Code code) {
2263     return bytecode_cell_count(code) != no_profile_data;
2264   }
2265 
2266   // reset into original state
2267   void init();
2268 
2269   // My size
2270   int size_in_bytes() const { return _size; }
2271   int size() const    { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); }
2272 
2273   int invocation_count() {
2274     if (invocation_counter()->carry()) {
2275       return InvocationCounter::count_limit;
2276     }
2277     return invocation_counter()->count();
2278   }
2279   int backedge_count() {
2280     if (backedge_counter()->carry()) {
2281       return InvocationCounter::count_limit;
2282     }
2283     return backedge_counter()->count();
2284   }
2285 
2286   int invocation_count_start() {
2287     if (invocation_counter()->carry()) {
2288       return 0;
2289     }
2290     return _invocation_counter_start;
2291   }
2292 
2293   int backedge_count_start() {
2294     if (backedge_counter()->carry()) {
2295       return 0;
2296     }
2297     return _backedge_counter_start;
2298   }
2299 
2300   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2301   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2302 
2303   void reset_start_counters() {
2304     _invocation_counter_start = invocation_count();
2305     _backedge_counter_start = backedge_count();
2306   }
2307 
2308   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2309   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2310 
2311 #if INCLUDE_JVMCI
2312   FailedSpeculation** get_failed_speculations_address() {
2313     return &_failed_speculations;
2314   }
2315 #endif
2316 
2317 #if INCLUDE_CDS
2318   void remove_unshareable_info();
2319   void restore_unshareable_info(TRAPS);
2320 #endif
2321 
2322   void set_would_profile(bool p)              { _would_profile = p ? profile : no_profile; }
2323   bool would_profile() const                  { return _would_profile != no_profile; }
2324 
2325   int num_loops() const                       { return _num_loops;  }
2326   void set_num_loops(short n)                 { _num_loops = n;     }
2327   int num_blocks() const                      { return _num_blocks; }
2328   void set_num_blocks(short n)                { _num_blocks = n;    }
2329 
2330   bool is_mature() const;
2331 
2332   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2333   enum EscapeFlag {
2334     estimated    = 1 << 0,
2335     return_local = 1 << 1,
2336     return_allocated = 1 << 2,
2337     allocated_escapes = 1 << 3,
2338     unknown_modified = 1 << 4
2339   };
2340 
2341   intx eflags()                                  { return _eflags; }
2342   intx arg_local()                               { return _arg_local; }
2343   intx arg_stack()                               { return _arg_stack; }
2344   intx arg_returned()                            { return _arg_returned; }
2345   uint arg_modified(int a);
2346   void set_eflags(intx v)                        { _eflags = v; }
2347   void set_arg_local(intx v)                     { _arg_local = v; }
2348   void set_arg_stack(intx v)                     { _arg_stack = v; }
2349   void set_arg_returned(intx v)                  { _arg_returned = v; }
2350   void set_arg_modified(int a, uint v);
2351   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2352 
2353   // Location and size of data area
2354   address data_base() const {
2355     return (address) _data;
2356   }
2357   int data_size() const {
2358     return _data_size;
2359   }
2360 
2361   int parameters_size_in_bytes() const {
2362     return pointer_delta_as_int((address) parameters_data_limit(), (address) parameters_data_base());
2363   }
2364 
2365   int exception_handlers_data_size() const {
2366     return pointer_delta_as_int((address) exception_handler_data_limit(), (address) exception_handler_data_base());
2367   }
2368 
2369   // Accessors
2370   Method* method() const { return _method; }
2371 
2372   // Get the data at an arbitrary (sort of) data index.
2373   ProfileData* data_at(int data_index) const;
2374 
2375   // Walk through the data in order.
2376   ProfileData* first_data() const { return data_at(first_di()); }
2377   ProfileData* next_data(ProfileData* current) const;
2378   DataLayout*  next_data_layout(DataLayout* current) const;
2379   bool is_valid(ProfileData* current) const { return current != nullptr; }
2380   bool is_valid(DataLayout*  current) const { return current != nullptr; }
2381 
2382   // Convert a dp (data pointer) to a di (data index).
2383   int dp_to_di(address dp) const {
2384     return (int)(dp - ((address)_data));
2385   }
2386 
2387   // bci to di/dp conversion.
2388   address bci_to_dp(int bci);
2389   int bci_to_di(int bci) {
2390     return dp_to_di(bci_to_dp(bci));
2391   }
2392 
2393   // Get the data at an arbitrary bci, or null if there is none.
2394   ProfileData* bci_to_data(int bci);
2395 
2396   // Same, but try to create an extra_data record if one is needed:
2397   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2398     check_extra_data_locked();
2399 
2400     ProfileData* data = nullptr;
2401     // If m not null, try to allocate a SpeculativeTrapData entry
2402     if (m == nullptr) {
2403       data = bci_to_data(bci);
2404     }
2405     if (data != nullptr) {
2406       return data;
2407     }
2408     data = bci_to_extra_data(bci, m, true);
2409     if (data != nullptr) {
2410       return data;
2411     }
2412     // If SpeculativeTrapData allocation fails try to allocate a
2413     // regular entry
2414     data = bci_to_data(bci);
2415     if (data != nullptr) {
2416       return data;
2417     }
2418     return bci_to_extra_data(bci, nullptr, true);
2419   }
2420 
2421   BitData* exception_handler_bci_to_data_or_null(int bci);
2422   BitData exception_handler_bci_to_data(int bci);
2423 
2424   // Add a handful of extra data records, for trap tracking.
2425   // Only valid after 'set_size' is called at the end of MethodData::initialize
2426   DataLayout* extra_data_base() const  {
2427     check_extra_data_locked();
2428     return limit_data_position();
2429   }
2430   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2431   // pointers to sections in extra data
2432   DataLayout* args_data_limit() const  { return parameters_data_base(); }
2433   DataLayout* parameters_data_base() const {
2434     assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2435     return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di) : parameters_data_limit();
2436   }
2437   DataLayout* parameters_data_limit() const {
2438     assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2439     return exception_handler_data_base();
2440   }
2441   DataLayout* exception_handler_data_base() const { return data_layout_at(_exception_handler_data_di); }
2442   DataLayout* exception_handler_data_limit() const { return extra_data_limit(); }
2443 
2444   int extra_data_size() const          { return (int)((address)extra_data_limit() - (address)limit_data_position()); }
2445   static DataLayout* next_extra(DataLayout* dp);
2446 
2447   // Return (uint)-1 for overflow.
2448   uint trap_count(int reason) const {
2449     return _compiler_counters.trap_count(reason);
2450   }
2451   // For loops:
2452   static uint trap_reason_limit() { return _trap_hist_limit; }
2453   static uint trap_count_limit()  { return _trap_hist_mask; }
2454   uint inc_trap_count(int reason) {
2455     return _compiler_counters.inc_trap_count(reason);
2456   }
2457 
2458   uint overflow_trap_count() const {
2459     return _compiler_counters.overflow_trap_count();
2460   }
2461   uint overflow_recompile_count() const {
2462     return _compiler_counters.overflow_recompile_count();
2463   }
2464   uint inc_overflow_recompile_count() {
2465     return _compiler_counters.inc_overflow_recompile_count();
2466   }
2467   uint decompile_count() const {
2468     return _compiler_counters.decompile_count();
2469   }
2470   uint inc_decompile_count() {
2471     uint dec_count = _compiler_counters.inc_decompile_count();
2472     if (dec_count > (uint)PerMethodRecompilationCutoff) {
2473       method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization);
2474     }
2475     return dec_count;
2476   }
2477   uint tenure_traps() const {
2478     return _tenure_traps;
2479   }
2480   void inc_tenure_traps() {
2481     _tenure_traps += 1;
2482   }
2483 
2484   // Return pointer to area dedicated to parameters in MDO
2485   ParametersTypeData* parameters_type_data() const {
2486     assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2487     return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : nullptr;
2488   }
2489 
2490   int parameters_type_data_di() const {
2491     assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2492     return _parameters_type_data_di != no_parameters ? _parameters_type_data_di : exception_handlers_data_di();
2493   }
2494 
2495   int exception_handlers_data_di() const {
2496     return _exception_handler_data_di;
2497   }
2498 
2499   // Support for code generation
2500   static ByteSize data_offset() {
2501     return byte_offset_of(MethodData, _data[0]);
2502   }
2503 
2504   static ByteSize trap_history_offset() {
2505     return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset();
2506   }
2507 
2508   static ByteSize invocation_counter_offset() {
2509     return byte_offset_of(MethodData, _invocation_counter);
2510   }
2511 
2512   static ByteSize backedge_counter_offset() {
2513     return byte_offset_of(MethodData, _backedge_counter);
2514   }
2515 
2516   static ByteSize invoke_mask_offset() {
2517     return byte_offset_of(MethodData, _invoke_mask);
2518   }
2519 
2520   static ByteSize backedge_mask_offset() {
2521     return byte_offset_of(MethodData, _backedge_mask);
2522   }
2523 
2524   static ByteSize parameters_type_data_di_offset() {
2525     return byte_offset_of(MethodData, _parameters_type_data_di);
2526   }
2527 
2528   virtual void metaspace_pointers_do(MetaspaceClosure* iter);
2529   virtual MetaspaceObj::Type type() const { return MethodDataType; }
2530 
2531   // Deallocation support
2532   void deallocate_contents(ClassLoaderData* loader_data);
2533   void release_C_heap_structures();
2534 
2535   // GC support
2536   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2537 
2538   // Printing
2539   void print_on      (outputStream* st) const;
2540   void print_value_on(outputStream* st) const;
2541 
2542   // printing support for method data
2543   void print_data_on(outputStream* st) const;
2544 
2545   const char* internal_name() const { return "{method data}"; }
2546 
2547   // verification
2548   void verify_on(outputStream* st);
2549   void verify_data_on(outputStream* st);
2550 
2551   static bool profile_parameters_for_method(const methodHandle& m);
2552   static bool profile_arguments();
2553   static bool profile_arguments_jsr292_only();
2554   static bool profile_return();
2555   static bool profile_parameters();
2556   static bool profile_return_jsr292_only();
2557 
2558   void clean_method_data(bool always_clean);
2559   void clean_weak_method_links();
2560   Mutex* extra_data_lock();
2561   void check_extra_data_locked() const NOT_DEBUG_RETURN;
2562 };
2563 
2564 #endif // SHARE_OOPS_METHODDATA_HPP