1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OOPS_METHODDATA_HPP 26 #define SHARE_OOPS_METHODDATA_HPP 27 28 #include "interpreter/bytecodes.hpp" 29 #include "interpreter/invocationCounter.hpp" 30 #include "oops/metadata.hpp" 31 #include "oops/method.hpp" 32 #include "runtime/atomic.hpp" 33 #include "runtime/deoptimization.hpp" 34 #include "runtime/mutex.hpp" 35 #include "utilities/align.hpp" 36 #include "utilities/copy.hpp" 37 38 class BytecodeStream; 39 40 // The MethodData object collects counts and other profile information 41 // during zeroth-tier (interpreter) and third-tier (C1 with full profiling) 42 // execution. 43 // 44 // The profile is used later by compilation heuristics. Some heuristics 45 // enable use of aggressive (or "heroic") optimizations. An aggressive 46 // optimization often has a down-side, a corner case that it handles 47 // poorly, but which is thought to be rare. The profile provides 48 // evidence of this rarity for a given method or even BCI. It allows 49 // the compiler to back out of the optimization at places where it 50 // has historically been a poor choice. Other heuristics try to use 51 // specific information gathered about types observed at a given site. 52 // 53 // All data in the profile is approximate. It is expected to be accurate 54 // on the whole, but the system expects occasional inaccuraces, due to 55 // counter overflow, multiprocessor races during data collection, space 56 // limitations, missing MDO blocks, etc. Bad or missing data will degrade 57 // optimization quality but will not affect correctness. Also, each MDO 58 // can be checked for its "maturity" by calling is_mature(). 59 // 60 // Short (<32-bit) counters are designed to overflow to a known "saturated" 61 // state. Also, certain recorded per-BCI events are given one-bit counters 62 // which overflow to a saturated state which applied to all counters at 63 // that BCI. In other words, there is a small lattice which approximates 64 // the ideal of an infinite-precision counter for each event at each BCI, 65 // and the lattice quickly "bottoms out" in a state where all counters 66 // are taken to be indefinitely large. 67 // 68 // The reader will find many data races in profile gathering code, starting 69 // with invocation counter incrementation. None of these races harm correct 70 // execution of the compiled code. 71 72 // forward decl 73 class ProfileData; 74 75 // DataLayout 76 // 77 // Overlay for generic profiling data. 78 class DataLayout { 79 friend class VMStructs; 80 friend class JVMCIVMStructs; 81 82 private: 83 // Every data layout begins with a header. This header 84 // contains a tag, which is used to indicate the size/layout 85 // of the data, 8 bits of flags, which can be used in any way, 86 // 32 bits of trap history (none/one reason/many reasons), 87 // and a bci, which is used to tie this piece of data to a 88 // specific bci in the bytecodes. 89 union { 90 u8 _bits; 91 struct { 92 u1 _tag; 93 u1 _flags; 94 u2 _bci; 95 u4 _traps; 96 } _struct; 97 } _header; 98 99 // The data layout has an arbitrary number of cells, each sized 100 // to accommodate a pointer or an integer. 101 intptr_t _cells[1]; 102 103 // Some types of data layouts need a length field. 104 static bool needs_array_len(u1 tag); 105 106 public: 107 enum { 108 counter_increment = 1 109 }; 110 111 enum { 112 cell_size = sizeof(intptr_t) 113 }; 114 115 // Tag values 116 enum : u1 { 117 no_tag, 118 bit_data_tag, 119 counter_data_tag, 120 jump_data_tag, 121 receiver_type_data_tag, 122 virtual_call_data_tag, 123 ret_data_tag, 124 branch_data_tag, 125 multi_branch_data_tag, 126 arg_info_data_tag, 127 call_type_data_tag, 128 virtual_call_type_data_tag, 129 parameters_type_data_tag, 130 speculative_trap_data_tag 131 }; 132 133 enum { 134 // The trap state breaks down as [recompile:1 | reason:31]. 135 // This further breakdown is defined in deoptimization.cpp. 136 // See Deoptimization::trap_state_reason for an assert that 137 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. 138 // 139 // The trap_state is collected only if ProfileTraps is true. 140 trap_bits = 1+31, // 31: enough to distinguish [0..Reason_RECORDED_LIMIT]. 141 trap_mask = -1, 142 first_flag = 0 143 }; 144 145 // Size computation 146 static int header_size_in_bytes() { 147 return header_size_in_cells() * cell_size; 148 } 149 static int header_size_in_cells() { 150 return LP64_ONLY(1) NOT_LP64(2); 151 } 152 153 static int compute_size_in_bytes(int cell_count) { 154 return header_size_in_bytes() + cell_count * cell_size; 155 } 156 157 // Initialization 158 void initialize(u1 tag, u2 bci, int cell_count); 159 160 // Accessors 161 u1 tag() { 162 return _header._struct._tag; 163 } 164 165 // Return 32 bits of trap state. 166 // The state tells if traps with zero, one, or many reasons have occurred. 167 // It also tells whether zero or many recompilations have occurred. 168 // The associated trap histogram in the MDO itself tells whether 169 // traps are common or not. If a BCI shows that a trap X has 170 // occurred, and the MDO shows N occurrences of X, we make the 171 // simplifying assumption that all N occurrences can be blamed 172 // on that BCI. 173 uint trap_state() const { 174 return _header._struct._traps; 175 } 176 177 void set_trap_state(uint new_state) { 178 assert(ProfileTraps, "used only under +ProfileTraps"); 179 uint old_flags = _header._struct._traps; 180 _header._struct._traps = new_state | old_flags; 181 } 182 183 u1 flags() const { 184 return Atomic::load_acquire(&_header._struct._flags); 185 } 186 187 u2 bci() const { 188 return _header._struct._bci; 189 } 190 191 void set_header(u8 value) { 192 _header._bits = value; 193 } 194 u8 header() { 195 return _header._bits; 196 } 197 void set_cell_at(int index, intptr_t value) { 198 _cells[index] = value; 199 } 200 void release_set_cell_at(int index, intptr_t value); 201 intptr_t cell_at(int index) const { 202 return _cells[index]; 203 } 204 intptr_t* cell_at_adr(int index) const { 205 return const_cast<intptr_t*>(&_cells[index]); 206 } 207 208 bool set_flag_at(u1 flag_number) { 209 const u1 bit = 1 << flag_number; 210 u1 compare_value; 211 do { 212 compare_value = _header._struct._flags; 213 if ((compare_value & bit) == bit) { 214 // already set. 215 return false; 216 } 217 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, static_cast<u1>(compare_value | bit))); 218 return true; 219 } 220 221 bool clear_flag_at(u1 flag_number) { 222 const u1 bit = 1 << flag_number; 223 u1 compare_value; 224 u1 exchange_value; 225 do { 226 compare_value = _header._struct._flags; 227 if ((compare_value & bit) == 0) { 228 // already cleaed. 229 return false; 230 } 231 exchange_value = compare_value & ~bit; 232 } while (compare_value != Atomic::cmpxchg(&_header._struct._flags, compare_value, exchange_value)); 233 return true; 234 } 235 236 bool flag_at(u1 flag_number) const { 237 return (flags() & (1 << flag_number)) != 0; 238 } 239 240 // Low-level support for code generation. 241 static ByteSize header_offset() { 242 return byte_offset_of(DataLayout, _header); 243 } 244 static ByteSize tag_offset() { 245 return byte_offset_of(DataLayout, _header._struct._tag); 246 } 247 static ByteSize flags_offset() { 248 return byte_offset_of(DataLayout, _header._struct._flags); 249 } 250 static ByteSize bci_offset() { 251 return byte_offset_of(DataLayout, _header._struct._bci); 252 } 253 static ByteSize cell_offset(int index) { 254 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size); 255 } 256 // Return a value which, when or-ed as a byte into _flags, sets the flag. 257 static u1 flag_number_to_constant(u1 flag_number) { 258 DataLayout temp; temp.set_header(0); 259 temp.set_flag_at(flag_number); 260 return temp._header._struct._flags; 261 } 262 // Return a value which, when or-ed as a word into _header, sets the flag. 263 static u8 flag_mask_to_header_mask(u1 byte_constant) { 264 DataLayout temp; temp.set_header(0); 265 temp._header._struct._flags = byte_constant; 266 return temp._header._bits; 267 } 268 269 ProfileData* data_in(); 270 271 int size_in_bytes() { 272 int cells = cell_count(); 273 assert(cells >= 0, "invalid number of cells"); 274 return DataLayout::compute_size_in_bytes(cells); 275 } 276 int cell_count(); 277 278 // GC support 279 void clean_weak_klass_links(bool always_clean); 280 }; 281 282 283 // ProfileData class hierarchy 284 class ProfileData; 285 class BitData; 286 class CounterData; 287 class ReceiverTypeData; 288 class VirtualCallData; 289 class VirtualCallTypeData; 290 class RetData; 291 class CallTypeData; 292 class JumpData; 293 class BranchData; 294 class ArrayData; 295 class MultiBranchData; 296 class ArgInfoData; 297 class ParametersTypeData; 298 class SpeculativeTrapData; 299 300 // ProfileData 301 // 302 // A ProfileData object is created to refer to a section of profiling 303 // data in a structured way. 304 class ProfileData : public ResourceObj { 305 friend class TypeEntries; 306 friend class ReturnTypeEntry; 307 friend class TypeStackSlotEntries; 308 private: 309 enum { 310 tab_width_one = 16, 311 tab_width_two = 36 312 }; 313 314 // This is a pointer to a section of profiling data. 315 DataLayout* _data; 316 317 char* print_data_on_helper(const MethodData* md) const; 318 319 protected: 320 DataLayout* data() { return _data; } 321 const DataLayout* data() const { return _data; } 322 323 enum { 324 cell_size = DataLayout::cell_size 325 }; 326 327 public: 328 // How many cells are in this? 329 virtual int cell_count() const { 330 ShouldNotReachHere(); 331 return -1; 332 } 333 334 // Return the size of this data. 335 int size_in_bytes() { 336 return DataLayout::compute_size_in_bytes(cell_count()); 337 } 338 339 protected: 340 // Low-level accessors for underlying data 341 void set_intptr_at(int index, intptr_t value) { 342 assert(0 <= index && index < cell_count(), "oob"); 343 data()->set_cell_at(index, value); 344 } 345 void release_set_intptr_at(int index, intptr_t value); 346 intptr_t intptr_at(int index) const { 347 assert(0 <= index && index < cell_count(), "oob"); 348 return data()->cell_at(index); 349 } 350 intptr_t* intptr_at_adr(int index) const { 351 assert(0 <= index && index < cell_count(), "oob"); 352 return data()->cell_at_adr(index); 353 } 354 void set_uint_at(int index, uint value) { 355 set_intptr_at(index, (intptr_t) value); 356 } 357 void release_set_uint_at(int index, uint value); 358 uint uint_at(int index) const { 359 return (uint)intptr_at(index); 360 } 361 void set_int_at(int index, int value) { 362 set_intptr_at(index, (intptr_t) value); 363 } 364 void release_set_int_at(int index, int value); 365 int int_at(int index) const { 366 return (int)intptr_at(index); 367 } 368 int int_at_unchecked(int index) const { 369 return (int)data()->cell_at(index); 370 } 371 372 void set_flag_at(u1 flag_number) { 373 data()->set_flag_at(flag_number); 374 } 375 bool flag_at(u1 flag_number) const { 376 return data()->flag_at(flag_number); 377 } 378 379 // two convenient imports for use by subclasses: 380 static ByteSize cell_offset(int index) { 381 return DataLayout::cell_offset(index); 382 } 383 static u1 flag_number_to_constant(u1 flag_number) { 384 return DataLayout::flag_number_to_constant(flag_number); 385 } 386 387 ProfileData(DataLayout* data) { 388 _data = data; 389 } 390 391 public: 392 // Constructor for invalid ProfileData. 393 ProfileData(); 394 395 u2 bci() const { 396 return data()->bci(); 397 } 398 399 address dp() { 400 return (address)_data; 401 } 402 403 int trap_state() const { 404 return data()->trap_state(); 405 } 406 void set_trap_state(int new_state) { 407 data()->set_trap_state(new_state); 408 } 409 410 // Type checking 411 virtual bool is_BitData() const { return false; } 412 virtual bool is_CounterData() const { return false; } 413 virtual bool is_JumpData() const { return false; } 414 virtual bool is_ReceiverTypeData()const { return false; } 415 virtual bool is_VirtualCallData() const { return false; } 416 virtual bool is_RetData() const { return false; } 417 virtual bool is_BranchData() const { return false; } 418 virtual bool is_ArrayData() const { return false; } 419 virtual bool is_MultiBranchData() const { return false; } 420 virtual bool is_ArgInfoData() const { return false; } 421 virtual bool is_CallTypeData() const { return false; } 422 virtual bool is_VirtualCallTypeData()const { return false; } 423 virtual bool is_ParametersTypeData() const { return false; } 424 virtual bool is_SpeculativeTrapData()const { return false; } 425 426 427 BitData* as_BitData() const { 428 assert(is_BitData(), "wrong type"); 429 return is_BitData() ? (BitData*) this : nullptr; 430 } 431 CounterData* as_CounterData() const { 432 assert(is_CounterData(), "wrong type"); 433 return is_CounterData() ? (CounterData*) this : nullptr; 434 } 435 JumpData* as_JumpData() const { 436 assert(is_JumpData(), "wrong type"); 437 return is_JumpData() ? (JumpData*) this : nullptr; 438 } 439 ReceiverTypeData* as_ReceiverTypeData() const { 440 assert(is_ReceiverTypeData(), "wrong type"); 441 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : nullptr; 442 } 443 VirtualCallData* as_VirtualCallData() const { 444 assert(is_VirtualCallData(), "wrong type"); 445 return is_VirtualCallData() ? (VirtualCallData*)this : nullptr; 446 } 447 RetData* as_RetData() const { 448 assert(is_RetData(), "wrong type"); 449 return is_RetData() ? (RetData*) this : nullptr; 450 } 451 BranchData* as_BranchData() const { 452 assert(is_BranchData(), "wrong type"); 453 return is_BranchData() ? (BranchData*) this : nullptr; 454 } 455 ArrayData* as_ArrayData() const { 456 assert(is_ArrayData(), "wrong type"); 457 return is_ArrayData() ? (ArrayData*) this : nullptr; 458 } 459 MultiBranchData* as_MultiBranchData() const { 460 assert(is_MultiBranchData(), "wrong type"); 461 return is_MultiBranchData() ? (MultiBranchData*)this : nullptr; 462 } 463 ArgInfoData* as_ArgInfoData() const { 464 assert(is_ArgInfoData(), "wrong type"); 465 return is_ArgInfoData() ? (ArgInfoData*)this : nullptr; 466 } 467 CallTypeData* as_CallTypeData() const { 468 assert(is_CallTypeData(), "wrong type"); 469 return is_CallTypeData() ? (CallTypeData*)this : nullptr; 470 } 471 VirtualCallTypeData* as_VirtualCallTypeData() const { 472 assert(is_VirtualCallTypeData(), "wrong type"); 473 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : nullptr; 474 } 475 ParametersTypeData* as_ParametersTypeData() const { 476 assert(is_ParametersTypeData(), "wrong type"); 477 return is_ParametersTypeData() ? (ParametersTypeData*)this : nullptr; 478 } 479 SpeculativeTrapData* as_SpeculativeTrapData() const { 480 assert(is_SpeculativeTrapData(), "wrong type"); 481 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : nullptr; 482 } 483 484 485 // Subclass specific initialization 486 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {} 487 488 // GC support 489 virtual void clean_weak_klass_links(bool always_clean) {} 490 491 // CDS support 492 virtual void metaspace_pointers_do(MetaspaceClosure* it) {} 493 494 // CI translation: ProfileData can represent both MethodDataOop data 495 // as well as CIMethodData data. This function is provided for translating 496 // an oop in a ProfileData to the ci equivalent. Generally speaking, 497 // most ProfileData don't require any translation, so we provide the null 498 // translation here, and the required translators are in the ci subclasses. 499 virtual void translate_from(const ProfileData* data) {} 500 501 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const { 502 ShouldNotReachHere(); 503 } 504 505 void print_data_on(outputStream* st, const MethodData* md) const; 506 507 void print_shared(outputStream* st, const char* name, const char* extra) const; 508 void tab(outputStream* st, bool first = false) const; 509 }; 510 511 // BitData 512 // 513 // A BitData holds a flag or two in its header. 514 class BitData : public ProfileData { 515 friend class VMStructs; 516 friend class JVMCIVMStructs; 517 protected: 518 enum : u1 { 519 // null_seen: 520 // saw a null operand (cast/aastore/instanceof) 521 null_seen_flag = DataLayout::first_flag + 0, 522 exception_handler_entered_flag = null_seen_flag + 1, 523 deprecated_method_callsite_flag = exception_handler_entered_flag + 1 524 #if INCLUDE_JVMCI 525 // bytecode threw any exception 526 , exception_seen_flag = deprecated_method_callsite_flag + 1 527 #endif 528 }; 529 enum { bit_cell_count = 0 }; // no additional data fields needed. 530 public: 531 BitData(DataLayout* layout) : ProfileData(layout) { 532 } 533 534 virtual bool is_BitData() const { return true; } 535 536 static int static_cell_count() { 537 return bit_cell_count; 538 } 539 540 virtual int cell_count() const { 541 return static_cell_count(); 542 } 543 544 // Accessor 545 546 // The null_seen flag bit is specially known to the interpreter. 547 // Consulting it allows the compiler to avoid setting up null_check traps. 548 bool null_seen() { return flag_at(null_seen_flag); } 549 void set_null_seen() { set_flag_at(null_seen_flag); } 550 bool deprecated_method_call_site() const { return flag_at(deprecated_method_callsite_flag); } 551 bool set_deprecated_method_call_site() { return data()->set_flag_at(deprecated_method_callsite_flag); } 552 bool clear_deprecated_method_call_site() { return data()->clear_flag_at(deprecated_method_callsite_flag); } 553 554 #if INCLUDE_JVMCI 555 // true if an exception was thrown at the specific BCI 556 bool exception_seen() { return flag_at(exception_seen_flag); } 557 void set_exception_seen() { set_flag_at(exception_seen_flag); } 558 #endif 559 560 // true if a ex handler block at this bci was entered 561 bool exception_handler_entered() { return flag_at(exception_handler_entered_flag); } 562 void set_exception_handler_entered() { set_flag_at(exception_handler_entered_flag); } 563 564 // Code generation support 565 static u1 null_seen_byte_constant() { 566 return flag_number_to_constant(null_seen_flag); 567 } 568 569 static ByteSize bit_data_size() { 570 return cell_offset(bit_cell_count); 571 } 572 573 void print_data_on(outputStream* st, const char* extra = nullptr) const; 574 }; 575 576 // CounterData 577 // 578 // A CounterData corresponds to a simple counter. 579 class CounterData : public BitData { 580 friend class VMStructs; 581 friend class JVMCIVMStructs; 582 protected: 583 enum { 584 count_off, 585 counter_cell_count 586 }; 587 public: 588 CounterData(DataLayout* layout) : BitData(layout) {} 589 590 virtual bool is_CounterData() const { return true; } 591 592 static int static_cell_count() { 593 return counter_cell_count; 594 } 595 596 virtual int cell_count() const { 597 return static_cell_count(); 598 } 599 600 // Direct accessor 601 int count() const { 602 intptr_t raw_data = intptr_at(count_off); 603 if (raw_data > max_jint) { 604 raw_data = max_jint; 605 } else if (raw_data < min_jint) { 606 raw_data = min_jint; 607 } 608 return int(raw_data); 609 } 610 611 // Code generation support 612 static ByteSize count_offset() { 613 return cell_offset(count_off); 614 } 615 static ByteSize counter_data_size() { 616 return cell_offset(counter_cell_count); 617 } 618 619 void set_count(int count) { 620 set_int_at(count_off, count); 621 } 622 623 void print_data_on(outputStream* st, const char* extra = nullptr) const; 624 }; 625 626 // JumpData 627 // 628 // A JumpData is used to access profiling information for a direct 629 // branch. It is a counter, used for counting the number of branches, 630 // plus a data displacement, used for realigning the data pointer to 631 // the corresponding target bci. 632 class JumpData : public ProfileData { 633 friend class VMStructs; 634 friend class JVMCIVMStructs; 635 protected: 636 enum { 637 taken_off_set, 638 displacement_off_set, 639 jump_cell_count 640 }; 641 642 void set_displacement(int displacement) { 643 set_int_at(displacement_off_set, displacement); 644 } 645 646 public: 647 JumpData(DataLayout* layout) : ProfileData(layout) { 648 assert(layout->tag() == DataLayout::jump_data_tag || 649 layout->tag() == DataLayout::branch_data_tag, "wrong type"); 650 } 651 652 virtual bool is_JumpData() const { return true; } 653 654 static int static_cell_count() { 655 return jump_cell_count; 656 } 657 658 virtual int cell_count() const { 659 return static_cell_count(); 660 } 661 662 // Direct accessor 663 uint taken() const { 664 return uint_at(taken_off_set); 665 } 666 667 void set_taken(uint cnt) { 668 set_uint_at(taken_off_set, cnt); 669 } 670 671 // Saturating counter 672 uint inc_taken() { 673 uint cnt = taken() + 1; 674 // Did we wrap? Will compiler screw us?? 675 if (cnt == 0) cnt--; 676 set_uint_at(taken_off_set, cnt); 677 return cnt; 678 } 679 680 int displacement() const { 681 return int_at(displacement_off_set); 682 } 683 684 // Code generation support 685 static ByteSize taken_offset() { 686 return cell_offset(taken_off_set); 687 } 688 689 static ByteSize displacement_offset() { 690 return cell_offset(displacement_off_set); 691 } 692 693 // Specific initialization. 694 void post_initialize(BytecodeStream* stream, MethodData* mdo); 695 696 void print_data_on(outputStream* st, const char* extra = nullptr) const; 697 }; 698 699 // Entries in a ProfileData object to record types: it can either be 700 // none (no profile), unknown (conflicting profile data) or a klass if 701 // a single one is seen. Whether a null reference was seen is also 702 // recorded. No counter is associated with the type and a single type 703 // is tracked (unlike VirtualCallData). 704 class TypeEntries { 705 706 public: 707 708 // A single cell is used to record information for a type: 709 // - the cell is initialized to 0 710 // - when a type is discovered it is stored in the cell 711 // - bit zero of the cell is used to record whether a null reference 712 // was encountered or not 713 // - bit 1 is set to record a conflict in the type information 714 715 enum { 716 null_seen = 1, 717 type_mask = ~null_seen, 718 type_unknown = 2, 719 status_bits = null_seen | type_unknown, 720 type_klass_mask = ~status_bits 721 }; 722 723 // what to initialize a cell to 724 static intptr_t type_none() { 725 return 0; 726 } 727 728 // null seen = bit 0 set? 729 static bool was_null_seen(intptr_t v) { 730 return (v & null_seen) != 0; 731 } 732 733 // conflicting type information = bit 1 set? 734 static bool is_type_unknown(intptr_t v) { 735 return (v & type_unknown) != 0; 736 } 737 738 // not type information yet = all bits cleared, ignoring bit 0? 739 static bool is_type_none(intptr_t v) { 740 return (v & type_mask) == 0; 741 } 742 743 // recorded type: cell without bit 0 and 1 744 static intptr_t klass_part(intptr_t v) { 745 intptr_t r = v & type_klass_mask; 746 return r; 747 } 748 749 // type recorded 750 static Klass* valid_klass(intptr_t k) { 751 if (!is_type_none(k) && 752 !is_type_unknown(k)) { 753 Klass* res = (Klass*)klass_part(k); 754 assert(res != nullptr, "invalid"); 755 return res; 756 } else { 757 return nullptr; 758 } 759 } 760 761 static intptr_t with_status(intptr_t k, intptr_t in) { 762 return k | (in & status_bits); 763 } 764 765 static intptr_t with_status(Klass* k, intptr_t in) { 766 return with_status((intptr_t)k, in); 767 } 768 769 static void print_klass(outputStream* st, intptr_t k); 770 771 protected: 772 // ProfileData object these entries are part of 773 ProfileData* _pd; 774 // offset within the ProfileData object where the entries start 775 const int _base_off; 776 777 TypeEntries(int base_off) 778 : _pd(nullptr), _base_off(base_off) {} 779 780 void set_intptr_at(int index, intptr_t value) { 781 _pd->set_intptr_at(index, value); 782 } 783 784 intptr_t intptr_at(int index) const { 785 return _pd->intptr_at(index); 786 } 787 788 public: 789 void set_profile_data(ProfileData* pd) { 790 _pd = pd; 791 } 792 }; 793 794 // Type entries used for arguments passed at a call and parameters on 795 // method entry. 2 cells per entry: one for the type encoded as in 796 // TypeEntries and one initialized with the stack slot where the 797 // profiled object is to be found so that the interpreter can locate 798 // it quickly. 799 class TypeStackSlotEntries : public TypeEntries { 800 801 private: 802 enum { 803 stack_slot_entry, 804 type_entry, 805 per_arg_cell_count 806 }; 807 808 // offset of cell for stack slot for entry i within ProfileData object 809 int stack_slot_offset(int i) const { 810 return _base_off + stack_slot_local_offset(i); 811 } 812 813 const int _number_of_entries; 814 815 // offset of cell for type for entry i within ProfileData object 816 int type_offset_in_cells(int i) const { 817 return _base_off + type_local_offset(i); 818 } 819 820 public: 821 822 TypeStackSlotEntries(int base_off, int nb_entries) 823 : TypeEntries(base_off), _number_of_entries(nb_entries) {} 824 825 static int compute_cell_count(Symbol* signature, bool include_receiver, int max); 826 827 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver); 828 829 int number_of_entries() const { return _number_of_entries; } 830 831 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries 832 static int stack_slot_local_offset(int i) { 833 return i * per_arg_cell_count + stack_slot_entry; 834 } 835 836 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries 837 static int type_local_offset(int i) { 838 return i * per_arg_cell_count + type_entry; 839 } 840 841 // stack slot for entry i 842 uint stack_slot(int i) const { 843 assert(i >= 0 && i < _number_of_entries, "oob"); 844 return _pd->uint_at(stack_slot_offset(i)); 845 } 846 847 // set stack slot for entry i 848 void set_stack_slot(int i, uint num) { 849 assert(i >= 0 && i < _number_of_entries, "oob"); 850 _pd->set_uint_at(stack_slot_offset(i), num); 851 } 852 853 // type for entry i 854 intptr_t type(int i) const { 855 assert(i >= 0 && i < _number_of_entries, "oob"); 856 return _pd->intptr_at(type_offset_in_cells(i)); 857 } 858 859 intptr_t* type_adr(int i) const { 860 assert(i >= 0 && i < _number_of_entries, "oob"); 861 return _pd->intptr_at_adr(type_offset_in_cells(i)); 862 } 863 864 // set type for entry i 865 void set_type(int i, intptr_t k) { 866 assert(i >= 0 && i < _number_of_entries, "oob"); 867 _pd->set_intptr_at(type_offset_in_cells(i), k); 868 } 869 870 static ByteSize per_arg_size() { 871 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size); 872 } 873 874 static int per_arg_count() { 875 return per_arg_cell_count; 876 } 877 878 ByteSize type_offset(int i) const { 879 return DataLayout::cell_offset(type_offset_in_cells(i)); 880 } 881 882 // GC support 883 void clean_weak_klass_links(bool always_clean); 884 885 // CDS support 886 virtual void metaspace_pointers_do(MetaspaceClosure* it); 887 888 void print_data_on(outputStream* st) const; 889 }; 890 891 // Type entry used for return from a call. A single cell to record the 892 // type. 893 class ReturnTypeEntry : public TypeEntries { 894 895 private: 896 enum { 897 cell_count = 1 898 }; 899 900 public: 901 ReturnTypeEntry(int base_off) 902 : TypeEntries(base_off) {} 903 904 void post_initialize() { 905 set_type(type_none()); 906 } 907 908 intptr_t type() const { 909 return _pd->intptr_at(_base_off); 910 } 911 912 intptr_t* type_adr() const { 913 return _pd->intptr_at_adr(_base_off); 914 } 915 916 void set_type(intptr_t k) { 917 _pd->set_intptr_at(_base_off, k); 918 } 919 920 static int static_cell_count() { 921 return cell_count; 922 } 923 924 static ByteSize size() { 925 return in_ByteSize(cell_count * DataLayout::cell_size); 926 } 927 928 ByteSize type_offset() { 929 return DataLayout::cell_offset(_base_off); 930 } 931 932 // GC support 933 void clean_weak_klass_links(bool always_clean); 934 935 // CDS support 936 virtual void metaspace_pointers_do(MetaspaceClosure* it); 937 938 void print_data_on(outputStream* st) const; 939 }; 940 941 // Entries to collect type information at a call: contains arguments 942 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a 943 // number of cells. Because the number of cells for the return type is 944 // smaller than the number of cells for the type of an arguments, the 945 // number of cells is used to tell how many arguments are profiled and 946 // whether a return value is profiled. See has_arguments() and 947 // has_return(). 948 class TypeEntriesAtCall { 949 private: 950 static int stack_slot_local_offset(int i) { 951 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i); 952 } 953 954 static int argument_type_local_offset(int i) { 955 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i); 956 } 957 958 public: 959 960 static int header_cell_count() { 961 return 1; 962 } 963 964 static int cell_count_local_offset() { 965 return 0; 966 } 967 968 static int compute_cell_count(BytecodeStream* stream); 969 970 static void initialize(DataLayout* dl, int base, int cell_count) { 971 int off = base + cell_count_local_offset(); 972 dl->set_cell_at(off, cell_count - base - header_cell_count()); 973 } 974 975 static bool arguments_profiling_enabled(); 976 static bool return_profiling_enabled(); 977 978 // Code generation support 979 static ByteSize cell_count_offset() { 980 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size); 981 } 982 983 static ByteSize args_data_offset() { 984 return in_ByteSize(header_cell_count() * DataLayout::cell_size); 985 } 986 987 static ByteSize stack_slot_offset(int i) { 988 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size); 989 } 990 991 static ByteSize argument_type_offset(int i) { 992 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size); 993 } 994 995 static ByteSize return_only_size() { 996 return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size); 997 } 998 999 }; 1000 1001 // CallTypeData 1002 // 1003 // A CallTypeData is used to access profiling information about a non 1004 // virtual call for which we collect type information about arguments 1005 // and return value. 1006 class CallTypeData : public CounterData { 1007 private: 1008 // entries for arguments if any 1009 TypeStackSlotEntries _args; 1010 // entry for return type if any 1011 ReturnTypeEntry _ret; 1012 1013 int cell_count_global_offset() const { 1014 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1015 } 1016 1017 // number of cells not counting the header 1018 int cell_count_no_header() const { 1019 return uint_at(cell_count_global_offset()); 1020 } 1021 1022 void check_number_of_arguments(int total) { 1023 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1024 } 1025 1026 public: 1027 CallTypeData(DataLayout* layout) : 1028 CounterData(layout), 1029 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1030 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1031 { 1032 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type"); 1033 // Some compilers (VC++) don't want this passed in member initialization list 1034 _args.set_profile_data(this); 1035 _ret.set_profile_data(this); 1036 } 1037 1038 const TypeStackSlotEntries* args() const { 1039 assert(has_arguments(), "no profiling of arguments"); 1040 return &_args; 1041 } 1042 1043 const ReturnTypeEntry* ret() const { 1044 assert(has_return(), "no profiling of return value"); 1045 return &_ret; 1046 } 1047 1048 virtual bool is_CallTypeData() const { return true; } 1049 1050 static int static_cell_count() { 1051 return -1; 1052 } 1053 1054 static int compute_cell_count(BytecodeStream* stream) { 1055 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1056 } 1057 1058 static void initialize(DataLayout* dl, int cell_count) { 1059 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count); 1060 } 1061 1062 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1063 1064 virtual int cell_count() const { 1065 return CounterData::static_cell_count() + 1066 TypeEntriesAtCall::header_cell_count() + 1067 int_at_unchecked(cell_count_global_offset()); 1068 } 1069 1070 int number_of_arguments() const { 1071 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1072 } 1073 1074 void set_argument_type(int i, Klass* k) { 1075 assert(has_arguments(), "no arguments!"); 1076 intptr_t current = _args.type(i); 1077 _args.set_type(i, TypeEntries::with_status(k, current)); 1078 } 1079 1080 void set_return_type(Klass* k) { 1081 assert(has_return(), "no return!"); 1082 intptr_t current = _ret.type(); 1083 _ret.set_type(TypeEntries::with_status(k, current)); 1084 } 1085 1086 // An entry for a return value takes less space than an entry for an 1087 // argument so if the number of cells exceeds the number of cells 1088 // needed for an argument, this object contains type information for 1089 // at least one argument. 1090 bool has_arguments() const { 1091 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1092 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1093 return res; 1094 } 1095 1096 // An entry for a return value takes less space than an entry for an 1097 // argument, so if the remainder of the number of cells divided by 1098 // the number of cells for an argument is not null, a return value 1099 // is profiled in this object. 1100 bool has_return() const { 1101 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1102 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1103 return res; 1104 } 1105 1106 // Code generation support 1107 static ByteSize args_data_offset() { 1108 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1109 } 1110 1111 ByteSize argument_type_offset(int i) { 1112 return _args.type_offset(i); 1113 } 1114 1115 ByteSize return_type_offset() { 1116 return _ret.type_offset(); 1117 } 1118 1119 // GC support 1120 virtual void clean_weak_klass_links(bool always_clean) { 1121 if (has_arguments()) { 1122 _args.clean_weak_klass_links(always_clean); 1123 } 1124 if (has_return()) { 1125 _ret.clean_weak_klass_links(always_clean); 1126 } 1127 } 1128 1129 // CDS support 1130 virtual void metaspace_pointers_do(MetaspaceClosure* it) { 1131 if (has_arguments()) { 1132 _args.metaspace_pointers_do(it); 1133 } 1134 if (has_return()) { 1135 _ret.metaspace_pointers_do(it); 1136 } 1137 } 1138 1139 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1140 }; 1141 1142 // ReceiverTypeData 1143 // 1144 // A ReceiverTypeData is used to access profiling information about a 1145 // dynamic type check. It consists of a series of (Klass*, count) 1146 // pairs which are used to store a type profile for the receiver of 1147 // the check, the associated count is incremented every time the type 1148 // is seen. A per ReceiverTypeData counter is incremented on type 1149 // overflow (when there's no more room for a not yet profiled Klass*). 1150 // 1151 class ReceiverTypeData : public CounterData { 1152 friend class VMStructs; 1153 friend class JVMCIVMStructs; 1154 protected: 1155 enum { 1156 receiver0_offset = counter_cell_count, 1157 count0_offset, 1158 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset 1159 }; 1160 1161 public: 1162 ReceiverTypeData(DataLayout* layout) : CounterData(layout) { 1163 assert(layout->tag() == DataLayout::receiver_type_data_tag || 1164 layout->tag() == DataLayout::virtual_call_data_tag || 1165 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1166 } 1167 1168 virtual bool is_ReceiverTypeData() const { return true; } 1169 1170 static int static_cell_count() { 1171 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count; 1172 } 1173 1174 virtual int cell_count() const { 1175 return static_cell_count(); 1176 } 1177 1178 // Direct accessors 1179 static uint row_limit() { 1180 return (uint) TypeProfileWidth; 1181 } 1182 static int receiver_cell_index(uint row) { 1183 return receiver0_offset + row * receiver_type_row_cell_count; 1184 } 1185 static int receiver_count_cell_index(uint row) { 1186 return count0_offset + row * receiver_type_row_cell_count; 1187 } 1188 1189 Klass* receiver(uint row) const { 1190 assert(row < row_limit(), "oob"); 1191 1192 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row)); 1193 assert(recv == nullptr || recv->is_klass(), "wrong type"); 1194 return recv; 1195 } 1196 1197 void set_receiver(uint row, Klass* k) { 1198 assert((uint)row < row_limit(), "oob"); 1199 set_intptr_at(receiver_cell_index(row), (uintptr_t)k); 1200 } 1201 1202 uint receiver_count(uint row) const { 1203 assert(row < row_limit(), "oob"); 1204 return uint_at(receiver_count_cell_index(row)); 1205 } 1206 1207 void set_receiver_count(uint row, uint count) { 1208 assert(row < row_limit(), "oob"); 1209 set_uint_at(receiver_count_cell_index(row), count); 1210 } 1211 1212 void clear_row(uint row) { 1213 assert(row < row_limit(), "oob"); 1214 // Clear total count - indicator of polymorphic call site. 1215 // The site may look like as monomorphic after that but 1216 // it allow to have more accurate profiling information because 1217 // there was execution phase change since klasses were unloaded. 1218 // If the site is still polymorphic then MDO will be updated 1219 // to reflect it. But it could be the case that the site becomes 1220 // only bimorphic. Then keeping total count not 0 will be wrong. 1221 // Even if we use monomorphic (when it is not) for compilation 1222 // we will only have trap, deoptimization and recompile again 1223 // with updated MDO after executing method in Interpreter. 1224 // An additional receiver will be recorded in the cleaned row 1225 // during next call execution. 1226 // 1227 // Note: our profiling logic works with empty rows in any slot. 1228 // We do sorting a profiling info (ciCallProfile) for compilation. 1229 // 1230 set_count(0); 1231 set_receiver(row, nullptr); 1232 set_receiver_count(row, 0); 1233 } 1234 1235 // Code generation support 1236 static ByteSize receiver_offset(uint row) { 1237 return cell_offset(receiver_cell_index(row)); 1238 } 1239 static ByteSize receiver_count_offset(uint row) { 1240 return cell_offset(receiver_count_cell_index(row)); 1241 } 1242 static ByteSize receiver_type_data_size() { 1243 return cell_offset(static_cell_count()); 1244 } 1245 1246 // GC support 1247 virtual void clean_weak_klass_links(bool always_clean); 1248 1249 // CDS support 1250 virtual void metaspace_pointers_do(MetaspaceClosure* it); 1251 1252 void print_receiver_data_on(outputStream* st) const; 1253 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1254 }; 1255 1256 // VirtualCallData 1257 // 1258 // A VirtualCallData is used to access profiling information about a 1259 // virtual call. For now, it has nothing more than a ReceiverTypeData. 1260 class VirtualCallData : public ReceiverTypeData { 1261 public: 1262 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { 1263 assert(layout->tag() == DataLayout::virtual_call_data_tag || 1264 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1265 } 1266 1267 virtual bool is_VirtualCallData() const { return true; } 1268 1269 static int static_cell_count() { 1270 // At this point we could add more profile state, e.g., for arguments. 1271 // But for now it's the same size as the base record type. 1272 return ReceiverTypeData::static_cell_count(); 1273 } 1274 1275 virtual int cell_count() const { 1276 return static_cell_count(); 1277 } 1278 1279 // Direct accessors 1280 static ByteSize virtual_call_data_size() { 1281 return cell_offset(static_cell_count()); 1282 } 1283 1284 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN; 1285 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1286 }; 1287 1288 // VirtualCallTypeData 1289 // 1290 // A VirtualCallTypeData is used to access profiling information about 1291 // a virtual call for which we collect type information about 1292 // arguments and return value. 1293 class VirtualCallTypeData : public VirtualCallData { 1294 private: 1295 // entries for arguments if any 1296 TypeStackSlotEntries _args; 1297 // entry for return type if any 1298 ReturnTypeEntry _ret; 1299 1300 int cell_count_global_offset() const { 1301 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset(); 1302 } 1303 1304 // number of cells not counting the header 1305 int cell_count_no_header() const { 1306 return uint_at(cell_count_global_offset()); 1307 } 1308 1309 void check_number_of_arguments(int total) { 1310 assert(number_of_arguments() == total, "should be set in DataLayout::initialize"); 1311 } 1312 1313 public: 1314 VirtualCallTypeData(DataLayout* layout) : 1315 VirtualCallData(layout), 1316 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()), 1317 _ret(cell_count() - ReturnTypeEntry::static_cell_count()) 1318 { 1319 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type"); 1320 // Some compilers (VC++) don't want this passed in member initialization list 1321 _args.set_profile_data(this); 1322 _ret.set_profile_data(this); 1323 } 1324 1325 const TypeStackSlotEntries* args() const { 1326 assert(has_arguments(), "no profiling of arguments"); 1327 return &_args; 1328 } 1329 1330 const ReturnTypeEntry* ret() const { 1331 assert(has_return(), "no profiling of return value"); 1332 return &_ret; 1333 } 1334 1335 virtual bool is_VirtualCallTypeData() const { return true; } 1336 1337 static int static_cell_count() { 1338 return -1; 1339 } 1340 1341 static int compute_cell_count(BytecodeStream* stream) { 1342 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream); 1343 } 1344 1345 static void initialize(DataLayout* dl, int cell_count) { 1346 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count); 1347 } 1348 1349 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1350 1351 virtual int cell_count() const { 1352 return VirtualCallData::static_cell_count() + 1353 TypeEntriesAtCall::header_cell_count() + 1354 int_at_unchecked(cell_count_global_offset()); 1355 } 1356 1357 int number_of_arguments() const { 1358 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count(); 1359 } 1360 1361 void set_argument_type(int i, Klass* k) { 1362 assert(has_arguments(), "no arguments!"); 1363 intptr_t current = _args.type(i); 1364 _args.set_type(i, TypeEntries::with_status(k, current)); 1365 } 1366 1367 void set_return_type(Klass* k) { 1368 assert(has_return(), "no return!"); 1369 intptr_t current = _ret.type(); 1370 _ret.set_type(TypeEntries::with_status(k, current)); 1371 } 1372 1373 // An entry for a return value takes less space than an entry for an 1374 // argument, so if the remainder of the number of cells divided by 1375 // the number of cells for an argument is not null, a return value 1376 // is profiled in this object. 1377 bool has_return() const { 1378 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0; 1379 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values"); 1380 return res; 1381 } 1382 1383 // An entry for a return value takes less space than an entry for an 1384 // argument so if the number of cells exceeds the number of cells 1385 // needed for an argument, this object contains type information for 1386 // at least one argument. 1387 bool has_arguments() const { 1388 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count(); 1389 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments"); 1390 return res; 1391 } 1392 1393 // Code generation support 1394 static ByteSize args_data_offset() { 1395 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset(); 1396 } 1397 1398 ByteSize argument_type_offset(int i) { 1399 return _args.type_offset(i); 1400 } 1401 1402 ByteSize return_type_offset() { 1403 return _ret.type_offset(); 1404 } 1405 1406 // GC support 1407 virtual void clean_weak_klass_links(bool always_clean) { 1408 ReceiverTypeData::clean_weak_klass_links(always_clean); 1409 if (has_arguments()) { 1410 _args.clean_weak_klass_links(always_clean); 1411 } 1412 if (has_return()) { 1413 _ret.clean_weak_klass_links(always_clean); 1414 } 1415 } 1416 1417 // CDS support 1418 virtual void metaspace_pointers_do(MetaspaceClosure* it) { 1419 ReceiverTypeData::metaspace_pointers_do(it); 1420 if (has_arguments()) { 1421 _args.metaspace_pointers_do(it); 1422 } 1423 if (has_return()) { 1424 _ret.metaspace_pointers_do(it); 1425 } 1426 } 1427 1428 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1429 }; 1430 1431 // RetData 1432 // 1433 // A RetData is used to access profiling information for a ret bytecode. 1434 // It is composed of a count of the number of times that the ret has 1435 // been executed, followed by a series of triples of the form 1436 // (bci, count, di) which count the number of times that some bci was the 1437 // target of the ret and cache a corresponding data displacement. 1438 class RetData : public CounterData { 1439 protected: 1440 enum { 1441 bci0_offset = counter_cell_count, 1442 count0_offset, 1443 displacement0_offset, 1444 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset 1445 }; 1446 1447 void set_bci(uint row, int bci) { 1448 assert((uint)row < row_limit(), "oob"); 1449 set_int_at(bci0_offset + row * ret_row_cell_count, bci); 1450 } 1451 void release_set_bci(uint row, int bci); 1452 void set_bci_count(uint row, uint count) { 1453 assert((uint)row < row_limit(), "oob"); 1454 set_uint_at(count0_offset + row * ret_row_cell_count, count); 1455 } 1456 void set_bci_displacement(uint row, int disp) { 1457 set_int_at(displacement0_offset + row * ret_row_cell_count, disp); 1458 } 1459 1460 public: 1461 RetData(DataLayout* layout) : CounterData(layout) { 1462 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); 1463 } 1464 1465 virtual bool is_RetData() const { return true; } 1466 1467 enum { 1468 no_bci = -1 // value of bci when bci1/2 are not in use. 1469 }; 1470 1471 static int static_cell_count() { 1472 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; 1473 } 1474 1475 virtual int cell_count() const { 1476 return static_cell_count(); 1477 } 1478 1479 static uint row_limit() { 1480 return (uint) BciProfileWidth; 1481 } 1482 static int bci_cell_index(uint row) { 1483 return bci0_offset + row * ret_row_cell_count; 1484 } 1485 static int bci_count_cell_index(uint row) { 1486 return count0_offset + row * ret_row_cell_count; 1487 } 1488 static int bci_displacement_cell_index(uint row) { 1489 return displacement0_offset + row * ret_row_cell_count; 1490 } 1491 1492 // Direct accessors 1493 int bci(uint row) const { 1494 return int_at(bci_cell_index(row)); 1495 } 1496 uint bci_count(uint row) const { 1497 return uint_at(bci_count_cell_index(row)); 1498 } 1499 int bci_displacement(uint row) const { 1500 return int_at(bci_displacement_cell_index(row)); 1501 } 1502 1503 // Interpreter Runtime support 1504 address fixup_ret(int return_bci, MethodData* mdo); 1505 1506 // Code generation support 1507 static ByteSize bci_offset(uint row) { 1508 return cell_offset(bci_cell_index(row)); 1509 } 1510 static ByteSize bci_count_offset(uint row) { 1511 return cell_offset(bci_count_cell_index(row)); 1512 } 1513 static ByteSize bci_displacement_offset(uint row) { 1514 return cell_offset(bci_displacement_cell_index(row)); 1515 } 1516 1517 // Specific initialization. 1518 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1519 1520 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1521 }; 1522 1523 // BranchData 1524 // 1525 // A BranchData is used to access profiling data for a two-way branch. 1526 // It consists of taken and not_taken counts as well as a data displacement 1527 // for the taken case. 1528 class BranchData : public JumpData { 1529 friend class VMStructs; 1530 friend class JVMCIVMStructs; 1531 protected: 1532 enum { 1533 not_taken_off_set = jump_cell_count, 1534 branch_cell_count 1535 }; 1536 1537 void set_displacement(int displacement) { 1538 set_int_at(displacement_off_set, displacement); 1539 } 1540 1541 public: 1542 BranchData(DataLayout* layout) : JumpData(layout) { 1543 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type"); 1544 } 1545 1546 virtual bool is_BranchData() const { return true; } 1547 1548 static int static_cell_count() { 1549 return branch_cell_count; 1550 } 1551 1552 virtual int cell_count() const { 1553 return static_cell_count(); 1554 } 1555 1556 // Direct accessor 1557 uint not_taken() const { 1558 return uint_at(not_taken_off_set); 1559 } 1560 1561 void set_not_taken(uint cnt) { 1562 set_uint_at(not_taken_off_set, cnt); 1563 } 1564 1565 uint inc_not_taken() { 1566 uint cnt = not_taken() + 1; 1567 // Did we wrap? Will compiler screw us?? 1568 if (cnt == 0) cnt--; 1569 set_uint_at(not_taken_off_set, cnt); 1570 return cnt; 1571 } 1572 1573 // Code generation support 1574 static ByteSize not_taken_offset() { 1575 return cell_offset(not_taken_off_set); 1576 } 1577 static ByteSize branch_data_size() { 1578 return cell_offset(branch_cell_count); 1579 } 1580 1581 // Specific initialization. 1582 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1583 1584 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1585 }; 1586 1587 // ArrayData 1588 // 1589 // A ArrayData is a base class for accessing profiling data which does 1590 // not have a statically known size. It consists of an array length 1591 // and an array start. 1592 class ArrayData : public ProfileData { 1593 friend class VMStructs; 1594 friend class JVMCIVMStructs; 1595 protected: 1596 friend class DataLayout; 1597 1598 enum { 1599 array_len_off_set, 1600 array_start_off_set 1601 }; 1602 1603 uint array_uint_at(int index) const { 1604 int aindex = index + array_start_off_set; 1605 return uint_at(aindex); 1606 } 1607 int array_int_at(int index) const { 1608 int aindex = index + array_start_off_set; 1609 return int_at(aindex); 1610 } 1611 void array_set_int_at(int index, int value) { 1612 int aindex = index + array_start_off_set; 1613 set_int_at(aindex, value); 1614 } 1615 1616 // Code generation support for subclasses. 1617 static ByteSize array_element_offset(int index) { 1618 return cell_offset(array_start_off_set + index); 1619 } 1620 1621 public: 1622 ArrayData(DataLayout* layout) : ProfileData(layout) {} 1623 1624 virtual bool is_ArrayData() const { return true; } 1625 1626 static int static_cell_count() { 1627 return -1; 1628 } 1629 1630 int array_len() const { 1631 return int_at_unchecked(array_len_off_set); 1632 } 1633 1634 virtual int cell_count() const { 1635 return array_len() + 1; 1636 } 1637 1638 // Code generation support 1639 static ByteSize array_len_offset() { 1640 return cell_offset(array_len_off_set); 1641 } 1642 static ByteSize array_start_offset() { 1643 return cell_offset(array_start_off_set); 1644 } 1645 }; 1646 1647 // MultiBranchData 1648 // 1649 // A MultiBranchData is used to access profiling information for 1650 // a multi-way branch (*switch bytecodes). It consists of a series 1651 // of (count, displacement) pairs, which count the number of times each 1652 // case was taken and specify the data displacement for each branch target. 1653 class MultiBranchData : public ArrayData { 1654 friend class VMStructs; 1655 friend class JVMCIVMStructs; 1656 protected: 1657 enum { 1658 default_count_off_set, 1659 default_disaplacement_off_set, 1660 case_array_start 1661 }; 1662 enum { 1663 relative_count_off_set, 1664 relative_displacement_off_set, 1665 per_case_cell_count 1666 }; 1667 1668 void set_default_displacement(int displacement) { 1669 array_set_int_at(default_disaplacement_off_set, displacement); 1670 } 1671 void set_displacement_at(int index, int displacement) { 1672 array_set_int_at(case_array_start + 1673 index * per_case_cell_count + 1674 relative_displacement_off_set, 1675 displacement); 1676 } 1677 1678 public: 1679 MultiBranchData(DataLayout* layout) : ArrayData(layout) { 1680 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); 1681 } 1682 1683 virtual bool is_MultiBranchData() const { return true; } 1684 1685 static int compute_cell_count(BytecodeStream* stream); 1686 1687 int number_of_cases() const { 1688 int alen = array_len() - 2; // get rid of default case here. 1689 assert(alen % per_case_cell_count == 0, "must be even"); 1690 return (alen / per_case_cell_count); 1691 } 1692 1693 uint default_count() const { 1694 return array_uint_at(default_count_off_set); 1695 } 1696 int default_displacement() const { 1697 return array_int_at(default_disaplacement_off_set); 1698 } 1699 1700 uint count_at(int index) const { 1701 return array_uint_at(case_array_start + 1702 index * per_case_cell_count + 1703 relative_count_off_set); 1704 } 1705 int displacement_at(int index) const { 1706 return array_int_at(case_array_start + 1707 index * per_case_cell_count + 1708 relative_displacement_off_set); 1709 } 1710 1711 // Code generation support 1712 static ByteSize default_count_offset() { 1713 return array_element_offset(default_count_off_set); 1714 } 1715 static ByteSize default_displacement_offset() { 1716 return array_element_offset(default_disaplacement_off_set); 1717 } 1718 static ByteSize case_count_offset(int index) { 1719 return case_array_offset() + 1720 (per_case_size() * index) + 1721 relative_count_offset(); 1722 } 1723 static ByteSize case_array_offset() { 1724 return array_element_offset(case_array_start); 1725 } 1726 static ByteSize per_case_size() { 1727 return in_ByteSize(per_case_cell_count) * cell_size; 1728 } 1729 static ByteSize relative_count_offset() { 1730 return in_ByteSize(relative_count_off_set) * cell_size; 1731 } 1732 static ByteSize relative_displacement_offset() { 1733 return in_ByteSize(relative_displacement_off_set) * cell_size; 1734 } 1735 1736 // Specific initialization. 1737 void post_initialize(BytecodeStream* stream, MethodData* mdo); 1738 1739 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1740 }; 1741 1742 class ArgInfoData : public ArrayData { 1743 1744 public: 1745 ArgInfoData(DataLayout* layout) : ArrayData(layout) { 1746 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); 1747 } 1748 1749 virtual bool is_ArgInfoData() const { return true; } 1750 1751 1752 int number_of_args() const { 1753 return array_len(); 1754 } 1755 1756 uint arg_modified(int arg) const { 1757 return array_uint_at(arg); 1758 } 1759 1760 void set_arg_modified(int arg, uint val) { 1761 array_set_int_at(arg, val); 1762 } 1763 1764 void print_data_on(outputStream* st, const char* extra = nullptr) const; 1765 }; 1766 1767 // ParametersTypeData 1768 // 1769 // A ParametersTypeData is used to access profiling information about 1770 // types of parameters to a method 1771 class ParametersTypeData : public ArrayData { 1772 1773 private: 1774 TypeStackSlotEntries _parameters; 1775 1776 static int stack_slot_local_offset(int i) { 1777 assert_profiling_enabled(); 1778 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i); 1779 } 1780 1781 static int type_local_offset(int i) { 1782 assert_profiling_enabled(); 1783 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i); 1784 } 1785 1786 static bool profiling_enabled(); 1787 static void assert_profiling_enabled() { 1788 assert(profiling_enabled(), "method parameters profiling should be on"); 1789 } 1790 1791 public: 1792 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) { 1793 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type"); 1794 // Some compilers (VC++) don't want this passed in member initialization list 1795 _parameters.set_profile_data(this); 1796 } 1797 1798 static int compute_cell_count(Method* m); 1799 1800 virtual bool is_ParametersTypeData() const { return true; } 1801 1802 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo); 1803 1804 int number_of_parameters() const { 1805 return array_len() / TypeStackSlotEntries::per_arg_count(); 1806 } 1807 1808 const TypeStackSlotEntries* parameters() const { return &_parameters; } 1809 1810 uint stack_slot(int i) const { 1811 return _parameters.stack_slot(i); 1812 } 1813 1814 void set_type(int i, Klass* k) { 1815 intptr_t current = _parameters.type(i); 1816 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current)); 1817 } 1818 1819 virtual void clean_weak_klass_links(bool always_clean) { 1820 _parameters.clean_weak_klass_links(always_clean); 1821 } 1822 1823 // CDS support 1824 virtual void metaspace_pointers_do(MetaspaceClosure* it) { 1825 _parameters.metaspace_pointers_do(it); 1826 } 1827 1828 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1829 1830 static ByteSize stack_slot_offset(int i) { 1831 return cell_offset(stack_slot_local_offset(i)); 1832 } 1833 1834 static ByteSize type_offset(int i) { 1835 return cell_offset(type_local_offset(i)); 1836 } 1837 }; 1838 1839 // SpeculativeTrapData 1840 // 1841 // A SpeculativeTrapData is used to record traps due to type 1842 // speculation. It records the root of the compilation: that type 1843 // speculation is wrong in the context of one compilation (for 1844 // method1) doesn't mean it's wrong in the context of another one (for 1845 // method2). Type speculation could have more/different data in the 1846 // context of the compilation of method2 and it's worthwhile to try an 1847 // optimization that failed for compilation of method1 in the context 1848 // of compilation of method2. 1849 // Space for SpeculativeTrapData entries is allocated from the extra 1850 // data space in the MDO. If we run out of space, the trap data for 1851 // the ProfileData at that bci is updated. 1852 class SpeculativeTrapData : public ProfileData { 1853 protected: 1854 enum { 1855 speculative_trap_method, 1856 #ifndef _LP64 1857 // The size of the area for traps is a multiple of the header 1858 // size, 2 cells on 32 bits. Packed at the end of this area are 1859 // argument info entries (with tag 1860 // DataLayout::arg_info_data_tag). The logic in 1861 // MethodData::bci_to_extra_data() that guarantees traps don't 1862 // overflow over argument info entries assumes the size of a 1863 // SpeculativeTrapData is twice the header size. On 32 bits, a 1864 // SpeculativeTrapData must be 4 cells. 1865 padding, 1866 #endif 1867 speculative_trap_cell_count 1868 }; 1869 public: 1870 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) { 1871 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type"); 1872 } 1873 1874 virtual bool is_SpeculativeTrapData() const { return true; } 1875 1876 static int static_cell_count() { 1877 return speculative_trap_cell_count; 1878 } 1879 1880 virtual int cell_count() const { 1881 return static_cell_count(); 1882 } 1883 1884 // Direct accessor 1885 Method* method() const { 1886 return (Method*)intptr_at(speculative_trap_method); 1887 } 1888 1889 void set_method(Method* m) { 1890 assert(!m->is_old(), "cannot add old methods"); 1891 set_intptr_at(speculative_trap_method, (intptr_t)m); 1892 } 1893 1894 static ByteSize method_offset() { 1895 return cell_offset(speculative_trap_method); 1896 } 1897 1898 // CDS support 1899 virtual void metaspace_pointers_do(MetaspaceClosure* it); 1900 1901 virtual void print_data_on(outputStream* st, const char* extra = nullptr) const; 1902 }; 1903 1904 // MethodData* 1905 // 1906 // A MethodData* holds information which has been collected about 1907 // a method. Its layout looks like this: 1908 // 1909 // ----------------------------- 1910 // | header | 1911 // | klass | 1912 // ----------------------------- 1913 // | method | 1914 // | size of the MethodData* | 1915 // ----------------------------- 1916 // | Data entries... | 1917 // | (variable size) | 1918 // | | 1919 // . . 1920 // . . 1921 // . . 1922 // | | 1923 // ----------------------------- 1924 // 1925 // The data entry area is a heterogeneous array of DataLayouts. Each 1926 // DataLayout in the array corresponds to a specific bytecode in the 1927 // method. The entries in the array are sorted by the corresponding 1928 // bytecode. Access to the data is via resource-allocated ProfileData, 1929 // which point to the underlying blocks of DataLayout structures. 1930 // 1931 // During interpretation, if profiling in enabled, the interpreter 1932 // maintains a method data pointer (mdp), which points at the entry 1933 // in the array corresponding to the current bci. In the course of 1934 // interpretation, when a bytecode is encountered that has profile data 1935 // associated with it, the entry pointed to by mdp is updated, then the 1936 // mdp is adjusted to point to the next appropriate DataLayout. If mdp 1937 // is null to begin with, the interpreter assumes that the current method 1938 // is not (yet) being profiled. 1939 // 1940 // In MethodData* parlance, "dp" is a "data pointer", the actual address 1941 // of a DataLayout element. A "di" is a "data index", the offset in bytes 1942 // from the base of the data entry array. A "displacement" is the byte offset 1943 // in certain ProfileData objects that indicate the amount the mdp must be 1944 // adjusted in the event of a change in control flow. 1945 // 1946 1947 class CleanExtraDataClosure : public StackObj { 1948 public: 1949 virtual bool is_live(Method* m) = 0; 1950 }; 1951 1952 1953 #if INCLUDE_JVMCI 1954 // Encapsulates an encoded speculation reason. These are linked together in 1955 // a list that is atomically appended to during deoptimization. Entries are 1956 // never removed from the list. 1957 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding 1958 class FailedSpeculation: public CHeapObj<mtCompiler> { 1959 private: 1960 // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself 1961 // is an array embedded at the end of this object. 1962 int _data_len; 1963 1964 // Next entry in a linked list. 1965 FailedSpeculation* _next; 1966 1967 FailedSpeculation(address data, int data_len); 1968 1969 FailedSpeculation** next_adr() { return &_next; } 1970 1971 // Placement new operator for inlining the speculation data into 1972 // the FailedSpeculation object. 1973 void* operator new(size_t size, size_t fs_size) throw(); 1974 1975 public: 1976 char* data() { return (char*)(((address) this) + sizeof(FailedSpeculation)); } 1977 int data_len() const { return _data_len; } 1978 FailedSpeculation* next() const { return _next; } 1979 1980 // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address). 1981 // Returns false if the FailedSpeculation object could not be allocated. 1982 static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len); 1983 1984 // Frees all entries in the linked list whose head is at (*failed_speculations_address). 1985 static void free_failed_speculations(FailedSpeculation** failed_speculations_address); 1986 }; 1987 #endif 1988 1989 class ciMethodData; 1990 1991 class MethodData : public Metadata { 1992 friend class VMStructs; 1993 friend class JVMCIVMStructs; 1994 friend class ProfileData; 1995 friend class TypeEntriesAtCall; 1996 friend class ciMethodData; 1997 friend class VM_ReinitializeMDO; 1998 1999 // If you add a new field that points to any metaspace object, you 2000 // must add this field to MethodData::metaspace_pointers_do(). 2001 2002 // Back pointer to the Method* 2003 Method* _method; 2004 2005 // Size of this oop in bytes 2006 int _size; 2007 2008 // Cached hint for bci_to_dp and bci_to_data 2009 int _hint_di; 2010 2011 Mutex* volatile _extra_data_lock; // FIXME: CDS support 2012 2013 MethodData(const methodHandle& method); 2014 2015 void initialize(); 2016 2017 public: 2018 MethodData(); 2019 2020 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS); 2021 2022 virtual bool is_methodData() const { return true; } 2023 2024 // Safely reinitialize the data in the MDO. This is intended as a testing facility as the 2025 // reinitialization is performed at a safepoint so it's isn't cheap and it doesn't ensure that all 2026 // readers will see consistent profile data. 2027 void reinitialize(); 2028 2029 // Whole-method sticky bits and flags 2030 enum { 2031 _trap_hist_limit = Deoptimization::Reason_TRAP_HISTORY_LENGTH, 2032 _trap_hist_mask = max_jubyte, 2033 _extra_data_count = 4 // extra DataLayout headers, for trap history 2034 }; // Public flag values 2035 2036 // Compiler-related counters. 2037 class CompilerCounters { 2038 friend class VMStructs; 2039 friend class JVMCIVMStructs; 2040 2041 uint _nof_decompiles; // count of all nmethod removals 2042 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits 2043 uint _nof_overflow_traps; // trap count, excluding _trap_hist 2044 union { 2045 intptr_t _align; 2046 // JVMCI separates trap history for OSR compilations from normal compilations 2047 u1 _array[JVMCI_ONLY(2 *) MethodData::_trap_hist_limit]; 2048 } _trap_hist; 2049 2050 public: 2051 CompilerCounters() : _nof_decompiles(0), _nof_overflow_recompiles(0), _nof_overflow_traps(0) { 2052 #ifndef ZERO 2053 // Some Zero platforms do not have expected alignment, and do not use 2054 // this code. static_assert would still fire and fail for them. 2055 static_assert(sizeof(_trap_hist) % HeapWordSize == 0, "align"); 2056 #endif 2057 uint size_in_words = sizeof(_trap_hist) / HeapWordSize; 2058 Copy::zero_to_words((HeapWord*) &_trap_hist, size_in_words); 2059 } 2060 2061 // Return (uint)-1 for overflow. 2062 uint trap_count(int reason) const { 2063 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2064 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; 2065 } 2066 2067 uint inc_trap_count(int reason) { 2068 // Count another trap, anywhere in this method. 2069 assert(reason >= 0, "must be single trap"); 2070 assert((uint)reason < ARRAY_SIZE(_trap_hist._array), "oob"); 2071 uint cnt1 = 1 + _trap_hist._array[reason]; 2072 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... 2073 _trap_hist._array[reason] = (u1)cnt1; 2074 return cnt1; 2075 } else { 2076 return _trap_hist_mask + (++_nof_overflow_traps); 2077 } 2078 } 2079 2080 uint overflow_trap_count() const { 2081 return _nof_overflow_traps; 2082 } 2083 uint overflow_recompile_count() const { 2084 return _nof_overflow_recompiles; 2085 } 2086 uint inc_overflow_recompile_count() { 2087 return ++_nof_overflow_recompiles; 2088 } 2089 uint decompile_count() const { 2090 return _nof_decompiles; 2091 } 2092 uint inc_decompile_count() { 2093 return ++_nof_decompiles; 2094 } 2095 2096 // Support for code generation 2097 static ByteSize trap_history_offset() { 2098 return byte_offset_of(CompilerCounters, _trap_hist._array); 2099 } 2100 }; 2101 2102 private: 2103 CompilerCounters _compiler_counters; 2104 2105 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2106 intx _eflags; // flags on escape information 2107 intx _arg_local; // bit set of non-escaping arguments 2108 intx _arg_stack; // bit set of stack-allocatable arguments 2109 intx _arg_returned; // bit set of returned arguments 2110 2111 // How many invocations has this MDO seen? 2112 // These counters are used to determine the exact age of MDO. 2113 // We need those because in tiered a method can be concurrently 2114 // executed at different levels. 2115 InvocationCounter _invocation_counter; 2116 // Same for backedges. 2117 InvocationCounter _backedge_counter; 2118 // Counter values at the time profiling started. 2119 int _invocation_counter_start; 2120 int _backedge_counter_start; 2121 uint _tenure_traps; 2122 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog 2123 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog 2124 2125 // Number of loops and blocks is computed when compiling the first 2126 // time with C1. It is used to determine if method is trivial. 2127 short _num_loops; 2128 short _num_blocks; 2129 // Does this method contain anything worth profiling? 2130 enum WouldProfile {unknown, no_profile, profile}; 2131 WouldProfile _would_profile; 2132 2133 #if INCLUDE_JVMCI 2134 // Support for HotSpotMethodData.setCompiledIRSize(int) 2135 FailedSpeculation* _failed_speculations; 2136 int _jvmci_ir_size; 2137 #endif 2138 2139 // Size of _data array in bytes. (Excludes header and extra_data fields.) 2140 int _data_size; 2141 2142 // data index for the area dedicated to parameters. -1 if no 2143 // parameter profiling. 2144 enum { no_parameters = -2, parameters_uninitialized = -1 }; 2145 int _parameters_type_data_di; 2146 2147 // data index of exception handler profiling data 2148 int _exception_handler_data_di; 2149 2150 // Beginning of the data entries 2151 // See comment in ciMethodData::load_data 2152 intptr_t _data[1]; 2153 2154 // Helper for size computation 2155 static int compute_data_size(BytecodeStream* stream); 2156 static int bytecode_cell_count(Bytecodes::Code code); 2157 static bool is_speculative_trap_bytecode(Bytecodes::Code code); 2158 enum { no_profile_data = -1, variable_cell_count = -2 }; 2159 2160 // Helper for initialization 2161 DataLayout* data_layout_at(int data_index) const { 2162 assert(data_index % sizeof(intptr_t) == 0, "unaligned"); 2163 return (DataLayout*) (((address)_data) + data_index); 2164 } 2165 2166 static int single_exception_handler_data_cell_count() { 2167 return BitData::static_cell_count(); 2168 } 2169 2170 static int single_exception_handler_data_size() { 2171 return DataLayout::compute_size_in_bytes(single_exception_handler_data_cell_count()); 2172 } 2173 2174 DataLayout* exception_handler_data_at(int exception_handler_index) const { 2175 return data_layout_at(_exception_handler_data_di + (exception_handler_index * single_exception_handler_data_size())); 2176 } 2177 2178 int num_exception_handler_data() const { 2179 return exception_handlers_data_size() / single_exception_handler_data_size(); 2180 } 2181 2182 // Initialize an individual data segment. Returns the size of 2183 // the segment in bytes. 2184 int initialize_data(BytecodeStream* stream, int data_index); 2185 2186 // Helper for data_at 2187 DataLayout* limit_data_position() const { 2188 return data_layout_at(_data_size); 2189 } 2190 bool out_of_bounds(int data_index) const { 2191 return data_index >= data_size(); 2192 } 2193 2194 // Give each of the data entries a chance to perform specific 2195 // data initialization. 2196 void post_initialize(BytecodeStream* stream); 2197 2198 // hint accessors 2199 int hint_di() const { return _hint_di; } 2200 void set_hint_di(int di) { 2201 assert(!out_of_bounds(di), "hint_di out of bounds"); 2202 _hint_di = di; 2203 } 2204 2205 DataLayout* data_layout_before(int bci) { 2206 // avoid SEGV on this edge case 2207 if (data_size() == 0) 2208 return nullptr; 2209 DataLayout* layout = data_layout_at(hint_di()); 2210 if (layout->bci() <= bci) 2211 return layout; 2212 return data_layout_at(first_di()); 2213 } 2214 2215 // What is the index of the first data entry? 2216 int first_di() const { return 0; } 2217 2218 ProfileData* bci_to_extra_data_find(int bci, Method* m, DataLayout*& dp); 2219 // Find or create an extra ProfileData: 2220 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing); 2221 2222 // return the argument info cell 2223 ArgInfoData *arg_info(); 2224 2225 enum { 2226 no_type_profile = 0, 2227 type_profile_jsr292 = 1, 2228 type_profile_all = 2 2229 }; 2230 2231 static bool profile_jsr292(const methodHandle& m, int bci); 2232 static bool profile_unsafe(const methodHandle& m, int bci); 2233 static bool profile_memory_access(const methodHandle& m, int bci); 2234 static int profile_arguments_flag(); 2235 static bool profile_all_arguments(); 2236 static bool profile_arguments_for_invoke(const methodHandle& m, int bci); 2237 static int profile_return_flag(); 2238 static bool profile_all_return(); 2239 static bool profile_return_for_invoke(const methodHandle& m, int bci); 2240 static int profile_parameters_flag(); 2241 static bool profile_parameters_jsr292_only(); 2242 static bool profile_all_parameters(); 2243 2244 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false); 2245 void verify_extra_data_clean(CleanExtraDataClosure* cl); 2246 2247 DataLayout* exception_handler_bci_to_data_helper(int bci); 2248 2249 public: 2250 void clean_extra_data(CleanExtraDataClosure* cl); 2251 2252 static int header_size() { 2253 return sizeof(MethodData)/wordSize; 2254 } 2255 2256 // Compute the size of a MethodData* before it is created. 2257 static int compute_allocation_size_in_bytes(const methodHandle& method); 2258 static int compute_allocation_size_in_words(const methodHandle& method); 2259 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps); 2260 2261 // Determine if a given bytecode can have profile information. 2262 static bool bytecode_has_profile(Bytecodes::Code code) { 2263 return bytecode_cell_count(code) != no_profile_data; 2264 } 2265 2266 // reset into original state 2267 void init(); 2268 2269 // My size 2270 int size_in_bytes() const { return _size; } 2271 int size() const { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); } 2272 2273 int invocation_count() { 2274 if (invocation_counter()->carry()) { 2275 return InvocationCounter::count_limit; 2276 } 2277 return invocation_counter()->count(); 2278 } 2279 int backedge_count() { 2280 if (backedge_counter()->carry()) { 2281 return InvocationCounter::count_limit; 2282 } 2283 return backedge_counter()->count(); 2284 } 2285 2286 int invocation_count_start() { 2287 if (invocation_counter()->carry()) { 2288 return 0; 2289 } 2290 return _invocation_counter_start; 2291 } 2292 2293 int backedge_count_start() { 2294 if (backedge_counter()->carry()) { 2295 return 0; 2296 } 2297 return _backedge_counter_start; 2298 } 2299 2300 int invocation_count_delta() { return invocation_count() - invocation_count_start(); } 2301 int backedge_count_delta() { return backedge_count() - backedge_count_start(); } 2302 2303 void reset_start_counters() { 2304 _invocation_counter_start = invocation_count(); 2305 _backedge_counter_start = backedge_count(); 2306 } 2307 2308 InvocationCounter* invocation_counter() { return &_invocation_counter; } 2309 InvocationCounter* backedge_counter() { return &_backedge_counter; } 2310 2311 #if INCLUDE_JVMCI 2312 FailedSpeculation** get_failed_speculations_address() { 2313 return &_failed_speculations; 2314 } 2315 #endif 2316 2317 #if INCLUDE_CDS 2318 void remove_unshareable_info(); 2319 void restore_unshareable_info(TRAPS); 2320 #endif 2321 2322 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; } 2323 bool would_profile() const { return _would_profile != no_profile; } 2324 2325 int num_loops() const { return _num_loops; } 2326 void set_num_loops(short n) { _num_loops = n; } 2327 int num_blocks() const { return _num_blocks; } 2328 void set_num_blocks(short n) { _num_blocks = n; } 2329 2330 bool is_mature() const; 2331 2332 // Support for interprocedural escape analysis, from Thomas Kotzmann. 2333 enum EscapeFlag { 2334 estimated = 1 << 0, 2335 return_local = 1 << 1, 2336 return_allocated = 1 << 2, 2337 allocated_escapes = 1 << 3, 2338 unknown_modified = 1 << 4 2339 }; 2340 2341 intx eflags() { return _eflags; } 2342 intx arg_local() { return _arg_local; } 2343 intx arg_stack() { return _arg_stack; } 2344 intx arg_returned() { return _arg_returned; } 2345 uint arg_modified(int a); 2346 void set_eflags(intx v) { _eflags = v; } 2347 void set_arg_local(intx v) { _arg_local = v; } 2348 void set_arg_stack(intx v) { _arg_stack = v; } 2349 void set_arg_returned(intx v) { _arg_returned = v; } 2350 void set_arg_modified(int a, uint v); 2351 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } 2352 2353 // Location and size of data area 2354 address data_base() const { 2355 return (address) _data; 2356 } 2357 int data_size() const { 2358 return _data_size; 2359 } 2360 2361 int parameters_size_in_bytes() const { 2362 return pointer_delta_as_int((address) parameters_data_limit(), (address) parameters_data_base()); 2363 } 2364 2365 int exception_handlers_data_size() const { 2366 return pointer_delta_as_int((address) exception_handler_data_limit(), (address) exception_handler_data_base()); 2367 } 2368 2369 // Accessors 2370 Method* method() const { return _method; } 2371 2372 // Get the data at an arbitrary (sort of) data index. 2373 ProfileData* data_at(int data_index) const; 2374 2375 // Walk through the data in order. 2376 ProfileData* first_data() const { return data_at(first_di()); } 2377 ProfileData* next_data(ProfileData* current) const; 2378 DataLayout* next_data_layout(DataLayout* current) const; 2379 bool is_valid(ProfileData* current) const { return current != nullptr; } 2380 bool is_valid(DataLayout* current) const { return current != nullptr; } 2381 2382 // Convert a dp (data pointer) to a di (data index). 2383 int dp_to_di(address dp) const { 2384 return (int)(dp - ((address)_data)); 2385 } 2386 2387 // bci to di/dp conversion. 2388 address bci_to_dp(int bci); 2389 int bci_to_di(int bci) { 2390 return dp_to_di(bci_to_dp(bci)); 2391 } 2392 2393 // Get the data at an arbitrary bci, or null if there is none. 2394 ProfileData* bci_to_data(int bci); 2395 2396 // Same, but try to create an extra_data record if one is needed: 2397 ProfileData* allocate_bci_to_data(int bci, Method* m) { 2398 check_extra_data_locked(); 2399 2400 ProfileData* data = nullptr; 2401 // If m not null, try to allocate a SpeculativeTrapData entry 2402 if (m == nullptr) { 2403 data = bci_to_data(bci); 2404 } 2405 if (data != nullptr) { 2406 return data; 2407 } 2408 data = bci_to_extra_data(bci, m, true); 2409 if (data != nullptr) { 2410 return data; 2411 } 2412 // If SpeculativeTrapData allocation fails try to allocate a 2413 // regular entry 2414 data = bci_to_data(bci); 2415 if (data != nullptr) { 2416 return data; 2417 } 2418 return bci_to_extra_data(bci, nullptr, true); 2419 } 2420 2421 BitData* exception_handler_bci_to_data_or_null(int bci); 2422 BitData exception_handler_bci_to_data(int bci); 2423 2424 // Add a handful of extra data records, for trap tracking. 2425 // Only valid after 'set_size' is called at the end of MethodData::initialize 2426 DataLayout* extra_data_base() const { 2427 check_extra_data_locked(); 2428 return limit_data_position(); 2429 } 2430 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); } 2431 // pointers to sections in extra data 2432 DataLayout* args_data_limit() const { return parameters_data_base(); } 2433 DataLayout* parameters_data_base() const { 2434 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2435 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di) : parameters_data_limit(); 2436 } 2437 DataLayout* parameters_data_limit() const { 2438 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2439 return exception_handler_data_base(); 2440 } 2441 DataLayout* exception_handler_data_base() const { return data_layout_at(_exception_handler_data_di); } 2442 DataLayout* exception_handler_data_limit() const { return extra_data_limit(); } 2443 2444 int extra_data_size() const { return (int)((address)extra_data_limit() - (address)limit_data_position()); } 2445 static DataLayout* next_extra(DataLayout* dp); 2446 2447 // Return (uint)-1 for overflow. 2448 uint trap_count(int reason) const { 2449 return _compiler_counters.trap_count(reason); 2450 } 2451 // For loops: 2452 static uint trap_reason_limit() { return _trap_hist_limit; } 2453 static uint trap_count_limit() { return _trap_hist_mask; } 2454 uint inc_trap_count(int reason) { 2455 return _compiler_counters.inc_trap_count(reason); 2456 } 2457 2458 uint overflow_trap_count() const { 2459 return _compiler_counters.overflow_trap_count(); 2460 } 2461 uint overflow_recompile_count() const { 2462 return _compiler_counters.overflow_recompile_count(); 2463 } 2464 uint inc_overflow_recompile_count() { 2465 return _compiler_counters.inc_overflow_recompile_count(); 2466 } 2467 uint decompile_count() const { 2468 return _compiler_counters.decompile_count(); 2469 } 2470 uint inc_decompile_count() { 2471 uint dec_count = _compiler_counters.inc_decompile_count(); 2472 if (dec_count > (uint)PerMethodRecompilationCutoff) { 2473 method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization); 2474 } 2475 return dec_count; 2476 } 2477 uint tenure_traps() const { 2478 return _tenure_traps; 2479 } 2480 void inc_tenure_traps() { 2481 _tenure_traps += 1; 2482 } 2483 2484 // Return pointer to area dedicated to parameters in MDO 2485 ParametersTypeData* parameters_type_data() const { 2486 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2487 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : nullptr; 2488 } 2489 2490 int parameters_type_data_di() const { 2491 assert(_parameters_type_data_di != parameters_uninitialized, "called too early"); 2492 return _parameters_type_data_di != no_parameters ? _parameters_type_data_di : exception_handlers_data_di(); 2493 } 2494 2495 int exception_handlers_data_di() const { 2496 return _exception_handler_data_di; 2497 } 2498 2499 // Support for code generation 2500 static ByteSize data_offset() { 2501 return byte_offset_of(MethodData, _data[0]); 2502 } 2503 2504 static ByteSize trap_history_offset() { 2505 return byte_offset_of(MethodData, _compiler_counters) + CompilerCounters::trap_history_offset(); 2506 } 2507 2508 static ByteSize invocation_counter_offset() { 2509 return byte_offset_of(MethodData, _invocation_counter); 2510 } 2511 2512 static ByteSize backedge_counter_offset() { 2513 return byte_offset_of(MethodData, _backedge_counter); 2514 } 2515 2516 static ByteSize invoke_mask_offset() { 2517 return byte_offset_of(MethodData, _invoke_mask); 2518 } 2519 2520 static ByteSize backedge_mask_offset() { 2521 return byte_offset_of(MethodData, _backedge_mask); 2522 } 2523 2524 static ByteSize parameters_type_data_di_offset() { 2525 return byte_offset_of(MethodData, _parameters_type_data_di); 2526 } 2527 2528 virtual void metaspace_pointers_do(MetaspaceClosure* iter); 2529 virtual MetaspaceObj::Type type() const { return MethodDataType; } 2530 2531 // Deallocation support 2532 void deallocate_contents(ClassLoaderData* loader_data); 2533 void release_C_heap_structures(); 2534 2535 // GC support 2536 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; } 2537 2538 // Printing 2539 void print_on (outputStream* st) const; 2540 void print_value_on(outputStream* st) const; 2541 2542 // printing support for method data 2543 void print_data_on(outputStream* st) const; 2544 2545 const char* internal_name() const { return "{method data}"; } 2546 2547 // verification 2548 void verify_on(outputStream* st); 2549 void verify_data_on(outputStream* st); 2550 2551 static bool profile_parameters_for_method(const methodHandle& m); 2552 static bool profile_arguments(); 2553 static bool profile_arguments_jsr292_only(); 2554 static bool profile_return(); 2555 static bool profile_parameters(); 2556 static bool profile_return_jsr292_only(); 2557 2558 void clean_method_data(bool always_clean); 2559 void clean_weak_method_links(); 2560 Mutex* extra_data_lock(); 2561 void check_extra_data_locked() const NOT_DEBUG_RETURN; 2562 }; 2563 2564 #endif // SHARE_OOPS_METHODDATA_HPP