1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerEvent.hpp" 34 #include "compiler/cHeapStringHolder.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 #include "utilities/vmEnums.hpp" 49 #include "opto/printinlining.hpp" 50 51 class AbstractLockNode; 52 class AddPNode; 53 class Block; 54 class Bundle; 55 class CallGenerator; 56 class CallStaticJavaNode; 57 class CloneMap; 58 class CompilationFailureInfo; 59 class ConnectionGraph; 60 class IdealGraphPrinter; 61 class InlineTree; 62 class Matcher; 63 class MachConstantNode; 64 class MachConstantBaseNode; 65 class MachNode; 66 class MachOper; 67 class MachSafePointNode; 68 class Node; 69 class Node_Array; 70 class Node_List; 71 class Node_Notes; 72 class NodeHash; 73 class NodeCloneInfo; 74 class OpaqueTemplateAssertionPredicateNode; 75 class OptoReg; 76 class ParsePredicateNode; 77 class PhaseCFG; 78 class PhaseGVN; 79 class PhaseIterGVN; 80 class PhaseRegAlloc; 81 class PhaseCCP; 82 class PhaseOutput; 83 class RootNode; 84 class relocInfo; 85 class StartNode; 86 class SafePointNode; 87 class JVMState; 88 class Type; 89 class TypeInt; 90 class TypeInteger; 91 class TypeKlassPtr; 92 class TypePtr; 93 class TypeOopPtr; 94 class TypeFunc; 95 class TypeVect; 96 class Type_Array; 97 class Unique_Node_List; 98 class UnstableIfTrap; 99 class nmethod; 100 class Node_Stack; 101 struct Final_Reshape_Counts; 102 class VerifyMeetResult; 103 104 enum LoopOptsMode { 105 LoopOptsDefault, 106 LoopOptsNone, 107 LoopOptsMaxUnroll, 108 LoopOptsShenandoahExpand, 109 LoopOptsShenandoahPostExpand, 110 LoopOptsSkipSplitIf, 111 LoopOptsVerify 112 }; 113 114 // The type of all node counts and indexes. 115 // It must hold at least 16 bits, but must also be fast to load and store. 116 // This type, if less than 32 bits, could limit the number of possible nodes. 117 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 118 typedef unsigned int node_idx_t; 119 120 class NodeCloneInfo { 121 private: 122 uint64_t _idx_clone_orig; 123 public: 124 125 void set_idx(node_idx_t idx) { 126 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 127 } 128 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 129 130 void set_gen(int generation) { 131 uint64_t g = (uint64_t)generation << 32; 132 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 133 } 134 int gen() const { return (int)(_idx_clone_orig >> 32); } 135 136 void set(uint64_t x) { _idx_clone_orig = x; } 137 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 138 uint64_t get() const { return _idx_clone_orig; } 139 140 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 141 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 142 143 void dump_on(outputStream* st) const; 144 }; 145 146 class CloneMap { 147 friend class Compile; 148 private: 149 bool _debug; 150 Dict* _dict; 151 int _clone_idx; // current cloning iteration/generation in loop unroll 152 public: 153 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 154 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 155 Dict* dict() const { return _dict; } 156 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == nullptr, "key existed"); _dict->Insert(_2p(key), (void*)val); } 157 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 158 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 159 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 160 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 161 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 162 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 163 int max_gen() const; 164 void clone(Node* old, Node* nnn, int gen); 165 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 166 void dump(node_idx_t key, outputStream* st) const; 167 168 int clone_idx() const { return _clone_idx; } 169 void set_clone_idx(int x) { _clone_idx = x; } 170 bool is_debug() const { return _debug; } 171 void set_debug(bool debug) { _debug = debug; } 172 173 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 174 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 175 }; 176 177 class Options { 178 friend class Compile; 179 private: 180 const bool _subsume_loads; // Load can be matched as part of a larger op. 181 const bool _do_escape_analysis; // Do escape analysis. 182 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 183 const bool _do_reduce_allocation_merges; // Do try to reduce allocation merges. 184 const bool _eliminate_boxing; // Do boxing elimination. 185 const bool _do_locks_coarsening; // Do locks coarsening 186 const bool _do_superword; // Do SuperWord 187 const bool _install_code; // Install the code that was compiled 188 public: 189 Options(bool subsume_loads, 190 bool do_escape_analysis, 191 bool do_iterative_escape_analysis, 192 bool do_reduce_allocation_merges, 193 bool eliminate_boxing, 194 bool do_locks_coarsening, 195 bool do_superword, 196 bool install_code) : 197 _subsume_loads(subsume_loads), 198 _do_escape_analysis(do_escape_analysis), 199 _do_iterative_escape_analysis(do_iterative_escape_analysis), 200 _do_reduce_allocation_merges(do_reduce_allocation_merges), 201 _eliminate_boxing(eliminate_boxing), 202 _do_locks_coarsening(do_locks_coarsening), 203 _do_superword(do_superword), 204 _install_code(install_code) { 205 } 206 207 static Options for_runtime_stub() { 208 return Options( 209 /* subsume_loads = */ true, 210 /* do_escape_analysis = */ false, 211 /* do_iterative_escape_analysis = */ false, 212 /* do_reduce_allocation_merges = */ false, 213 /* eliminate_boxing = */ false, 214 /* do_lock_coarsening = */ false, 215 /* do_superword = */ true, 216 /* install_code = */ true 217 ); 218 } 219 }; 220 221 //------------------------------Compile---------------------------------------- 222 // This class defines a top-level Compiler invocation. 223 224 class Compile : public Phase { 225 226 public: 227 // Fixed alias indexes. (See also MergeMemNode.) 228 enum { 229 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 230 AliasIdxBot = 2, // pseudo-index, aliases to everything 231 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 232 }; 233 234 // Variant of TraceTime(nullptr, &_t_accumulator, CITime); 235 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 236 // then brackets are put into the log, with time stamps and node counts. 237 // (The time collection itself is always conditionalized on CITime.) 238 class TracePhase : public TraceTime { 239 private: 240 Compile* const _compile; 241 CompileLog* _log; 242 const bool _dolog; 243 public: 244 TracePhase(PhaseTraceId phaseTraceId); 245 TracePhase(const char* name, PhaseTraceId phaseTraceId); 246 ~TracePhase(); 247 const char* phase_name() const { return title(); } 248 }; 249 250 // Information per category of alias (memory slice) 251 class AliasType { 252 private: 253 friend class Compile; 254 255 int _index; // unique index, used with MergeMemNode 256 const TypePtr* _adr_type; // normalized address type 257 ciField* _field; // relevant instance field, or null if none 258 const Type* _element; // relevant array element type, or null if none 259 bool _is_rewritable; // false if the memory is write-once only 260 int _general_index; // if this is type is an instance, the general 261 // type that this is an instance of 262 263 void Init(int i, const TypePtr* at); 264 265 public: 266 int index() const { return _index; } 267 const TypePtr* adr_type() const { return _adr_type; } 268 ciField* field() const { return _field; } 269 const Type* element() const { return _element; } 270 bool is_rewritable() const { return _is_rewritable; } 271 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 272 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 273 274 void set_rewritable(bool z) { _is_rewritable = z; } 275 void set_field(ciField* f) { 276 assert(!_field,""); 277 _field = f; 278 if (f->is_final() || f->is_stable()) { 279 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 280 _is_rewritable = false; 281 } 282 } 283 void set_element(const Type* e) { 284 assert(_element == nullptr, ""); 285 _element = e; 286 } 287 288 BasicType basic_type() const; 289 290 void print_on(outputStream* st) PRODUCT_RETURN; 291 }; 292 293 enum { 294 logAliasCacheSize = 6, 295 AliasCacheSize = (1<<logAliasCacheSize) 296 }; 297 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 298 enum { 299 trapHistLength = MethodData::_trap_hist_limit 300 }; 301 302 private: 303 // Fixed parameters to this compilation. 304 const int _compile_id; 305 const Options _options; // Compilation options 306 ciMethod* _method; // The method being compiled. 307 int _entry_bci; // entry bci for osr methods. 308 const TypeFunc* _tf; // My kind of signature 309 InlineTree* _ilt; // Ditto (temporary). 310 address _stub_function; // VM entry for stub being compiled, or null 311 const char* _stub_name; // Name of stub or adapter being compiled, or null 312 address _stub_entry_point; // Compile code entry for generated stub, or null 313 314 // Control of this compilation. 315 int _max_inline_size; // Max inline size for this compilation 316 int _freq_inline_size; // Max hot method inline size for this compilation 317 int _fixed_slots; // count of frame slots not allocated by the register 318 // allocator i.e. locks, original deopt pc, etc. 319 uintx _max_node_limit; // Max unique node count during a single compilation. 320 321 bool _post_loop_opts_phase; // Loop opts are finished. 322 bool _merge_stores_phase; // Phase for merging stores, after post loop opts phase. 323 bool _allow_macro_nodes; // True if we allow creation of macro nodes. 324 325 int _major_progress; // Count of something big happening 326 bool _inlining_progress; // progress doing incremental inlining? 327 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 328 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 329 bool _has_loops; // True if the method _may_ have some loops 330 bool _has_split_ifs; // True if the method _may_ have some split-if 331 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 332 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 333 bool _has_boxed_value; // True if a boxed object is allocated 334 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 335 uint _max_vector_size; // Maximum size of generated vectors 336 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 337 uint _trap_hist[trapHistLength]; // Cumulative traps 338 bool _trap_can_recompile; // Have we emitted a recompiling trap? 339 uint _decompile_count; // Cumulative decompilation counts. 340 bool _do_inlining; // True if we intend to do inlining 341 bool _do_scheduling; // True if we intend to do scheduling 342 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 343 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 344 bool _use_cmove; // True if CMove should be used without profitability analysis 345 bool _do_aliasing; // True if we intend to do aliasing 346 bool _print_assembly; // True if we should dump assembly code for this compilation 347 bool _print_inlining; // True if we should print inlining for this compilation 348 bool _print_intrinsics; // True if we should print intrinsics for this compilation 349 #ifndef PRODUCT 350 uint _igv_idx; // Counter for IGV node identifiers 351 uint _igv_phase_iter[PHASE_NUM_TYPES]; // Counters for IGV phase iterations 352 bool _trace_opto_output; 353 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 354 #endif 355 bool _has_irreducible_loop; // Found irreducible loops 356 // JSR 292 357 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 358 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 359 bool _has_scoped_access; // For shared scope closure 360 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 361 int _loop_opts_cnt; // loop opts round 362 uint _stress_seed; // Seed for stress testing 363 364 // Compilation environment. 365 Arena _comp_arena; // Arena with lifetime equivalent to Compile 366 void* _barrier_set_state; // Potential GC barrier state for Compile 367 ciEnv* _env; // CI interface 368 DirectiveSet* _directive; // Compiler directive 369 CompileLog* _log; // from CompilerThread 370 CHeapStringHolder _failure_reason; // for record_failure/failing pattern 371 CompilationFailureInfo* _first_failure_details; // Details for the first failure happening during compilation 372 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 373 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 374 GrowableArray<ParsePredicateNode*> _parse_predicates; // List of Parse Predicates. 375 // List of OpaqueTemplateAssertionPredicateNode nodes for Template Assertion Predicates which can be seen as list 376 // of Template Assertion Predicates themselves. 377 GrowableArray<OpaqueTemplateAssertionPredicateNode*> _template_assertion_predicate_opaques; 378 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 379 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 380 GrowableArray<Node*> _for_merge_stores_igvn; // List of nodes for IGVN merge stores 381 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 382 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 383 ConnectionGraph* _congraph; 384 #ifndef PRODUCT 385 IdealGraphPrinter* _igv_printer; 386 static IdealGraphPrinter* _debug_file_printer; 387 static IdealGraphPrinter* _debug_network_printer; 388 #endif 389 390 391 // Node management 392 uint _unique; // Counter for unique Node indices 393 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 394 // So use this to keep count and make the call O(1). 395 VectorSet _dead_node_list; // Set of dead nodes 396 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 397 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 398 399 DEBUG_ONLY(bool _phase_verify_ideal_loop;) // Are we in PhaseIdealLoop verification? 400 401 // Arenas for new-space and old-space nodes. 402 // Swapped between using _node_arena. 403 // The lifetime of the old-space nodes is during xform. 404 Arena _node_arena_one; 405 Arena _node_arena_two; 406 Arena* _node_arena; 407 public: 408 Arena* swap_old_and_new() { 409 Arena* filled_arena_ptr = _node_arena; 410 Arena* old_arena_ptr = old_arena(); 411 old_arena_ptr->destruct_contents(); 412 _node_arena = old_arena_ptr; 413 return filled_arena_ptr; 414 } 415 private: 416 RootNode* _root; // Unique root of compilation, or null after bail-out. 417 Node* _top; // Unique top node. (Reset by various phases.) 418 419 Node* _immutable_memory; // Initial memory state 420 421 Node* _recent_alloc_obj; 422 Node* _recent_alloc_ctl; 423 424 // Constant table 425 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 426 427 428 // Blocked array of debugging and profiling information, 429 // tracked per node. 430 enum { _log2_node_notes_block_size = 8, 431 _node_notes_block_size = (1<<_log2_node_notes_block_size) 432 }; 433 GrowableArray<Node_Notes*>* _node_note_array; 434 Node_Notes* _default_node_notes; // default notes for new nodes 435 436 // After parsing and every bulk phase we hang onto the Root instruction. 437 // The RootNode instruction is where the whole program begins. It produces 438 // the initial Control and BOTTOM for everybody else. 439 440 // Type management 441 Arena _Compile_types; // Arena for all types 442 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 443 Dict* _type_dict; // Intern table 444 CloneMap _clone_map; // used for recording history of cloned nodes 445 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 446 ciMethod* _last_tf_m; // Cache for 447 const TypeFunc* _last_tf; // TypeFunc::make 448 AliasType** _alias_types; // List of alias types seen so far. 449 int _num_alias_types; // Logical length of _alias_types 450 int _max_alias_types; // Physical length of _alias_types 451 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 452 453 // Parsing, optimization 454 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 455 456 // Shared worklist for all IGVN rounds. Nodes can be pushed to it at any time. 457 // If pushed outside IGVN, the Node is processed in the next IGVN round. 458 Unique_Node_List* _igvn_worklist; 459 460 // Shared type array for GVN, IGVN and CCP. It maps node idx -> Type*. 461 Type_Array* _types; 462 463 // Shared node hash table for GVN, IGVN and CCP. 464 NodeHash* _node_hash; 465 466 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 467 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 468 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 469 470 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 471 472 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 473 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 474 475 // "MemLimit" directive was specified and the memory limit was hit during compilation 476 bool _oom; 477 478 // Only keep nodes in the expensive node list that need to be optimized 479 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 480 // Use for sorting expensive nodes to bring similar nodes together 481 static int cmp_expensive_nodes(Node** n1, Node** n2); 482 // Expensive nodes list already sorted? 483 bool expensive_nodes_sorted() const; 484 // Remove the speculative part of types and clean up the graph 485 void remove_speculative_types(PhaseIterGVN &igvn); 486 487 void* _replay_inline_data; // Pointer to data loaded from file 488 489 void log_late_inline_failure(CallGenerator* cg, const char* msg); 490 DEBUG_ONLY(bool _exception_backedge;) 491 492 void record_method_not_compilable_oom(); 493 494 InlinePrinter _inline_printer; 495 496 public: 497 void* barrier_set_state() const { return _barrier_set_state; } 498 499 InlinePrinter* inline_printer() { return &_inline_printer; } 500 501 #ifndef PRODUCT 502 IdealGraphPrinter* igv_printer() { return _igv_printer; } 503 void reset_igv_phase_iter(CompilerPhaseType cpt) { _igv_phase_iter[cpt] = 0; } 504 #endif 505 506 void log_late_inline(CallGenerator* cg); 507 void log_inline_id(CallGenerator* cg); 508 void log_inline_failure(const char* msg); 509 510 void* replay_inline_data() const { return _replay_inline_data; } 511 512 // Dump inlining replay data to the stream. 513 void dump_inline_data(outputStream* out); 514 void dump_inline_data_reduced(outputStream* out); 515 516 private: 517 // Matching, CFG layout, allocation, code generation 518 PhaseCFG* _cfg; // Results of CFG finding 519 int _java_calls; // Number of java calls in the method 520 int _inner_loops; // Number of inner loops in the method 521 Matcher* _matcher; // Engine to map ideal to machine instructions 522 PhaseRegAlloc* _regalloc; // Results of register allocation. 523 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 524 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 525 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 526 int _interpreter_frame_size; 527 528 PhaseOutput* _output; 529 530 public: 531 // Accessors 532 533 // The Compile instance currently active in this (compiler) thread. 534 static Compile* current() { 535 return (Compile*) ciEnv::current()->compiler_data(); 536 } 537 538 int interpreter_frame_size() const { return _interpreter_frame_size; } 539 540 PhaseOutput* output() const { return _output; } 541 void set_output(PhaseOutput* o) { _output = o; } 542 543 // ID for this compilation. Useful for setting breakpoints in the debugger. 544 int compile_id() const { return _compile_id; } 545 DirectiveSet* directive() const { return _directive; } 546 547 // Does this compilation allow instructions to subsume loads? User 548 // instructions that subsume a load may result in an unschedulable 549 // instruction sequence. 550 bool subsume_loads() const { return _options._subsume_loads; } 551 /** Do escape analysis. */ 552 bool do_escape_analysis() const { return _options._do_escape_analysis; } 553 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 554 bool do_reduce_allocation_merges() const { return _options._do_reduce_allocation_merges; } 555 /** Do boxing elimination. */ 556 bool eliminate_boxing() const { return _options._eliminate_boxing; } 557 /** Do aggressive boxing elimination. */ 558 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 559 bool should_install_code() const { return _options._install_code; } 560 /** Do locks coarsening. */ 561 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 562 bool do_superword() const { return _options._do_superword; } 563 564 // Other fixed compilation parameters. 565 ciMethod* method() const { return _method; } 566 int entry_bci() const { return _entry_bci; } 567 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 568 bool is_method_compilation() const { return (_method != nullptr && !_method->flags().is_native()); } 569 const TypeFunc* tf() const { assert(_tf!=nullptr, ""); return _tf; } 570 void init_tf(const TypeFunc* tf) { assert(_tf==nullptr, ""); _tf = tf; } 571 InlineTree* ilt() const { return _ilt; } 572 address stub_function() const { return _stub_function; } 573 const char* stub_name() const { return _stub_name; } 574 address stub_entry_point() const { return _stub_entry_point; } 575 void set_stub_entry_point(address z) { _stub_entry_point = z; } 576 577 // Control of this compilation. 578 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 579 void set_fixed_slots(int n) { _fixed_slots = n; } 580 int major_progress() const { return _major_progress; } 581 void set_inlining_progress(bool z) { _inlining_progress = z; } 582 int inlining_progress() const { return _inlining_progress; } 583 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 584 int inlining_incrementally() const { return _inlining_incrementally; } 585 void set_do_cleanup(bool z) { _do_cleanup = z; } 586 int do_cleanup() const { return _do_cleanup; } 587 void set_major_progress() { _major_progress++; } 588 void restore_major_progress(int progress) { _major_progress += progress; } 589 void clear_major_progress() { _major_progress = 0; } 590 int max_inline_size() const { return _max_inline_size; } 591 void set_freq_inline_size(int n) { _freq_inline_size = n; } 592 int freq_inline_size() const { return _freq_inline_size; } 593 void set_max_inline_size(int n) { _max_inline_size = n; } 594 bool has_loops() const { return _has_loops; } 595 void set_has_loops(bool z) { _has_loops = z; } 596 bool has_split_ifs() const { return _has_split_ifs; } 597 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 598 bool has_unsafe_access() const { return _has_unsafe_access; } 599 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 600 bool has_stringbuilder() const { return _has_stringbuilder; } 601 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 602 bool has_boxed_value() const { return _has_boxed_value; } 603 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 604 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 605 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 606 uint max_vector_size() const { return _max_vector_size; } 607 void set_max_vector_size(uint s) { _max_vector_size = s; } 608 bool clear_upper_avx() const { return _clear_upper_avx; } 609 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 610 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 611 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 612 bool trap_can_recompile() const { return _trap_can_recompile; } 613 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 614 uint decompile_count() const { return _decompile_count; } 615 void set_decompile_count(uint c) { _decompile_count = c; } 616 bool allow_range_check_smearing() const; 617 bool do_inlining() const { return _do_inlining; } 618 void set_do_inlining(bool z) { _do_inlining = z; } 619 bool do_scheduling() const { return _do_scheduling; } 620 void set_do_scheduling(bool z) { _do_scheduling = z; } 621 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 622 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 623 bool do_vector_loop() const { return _do_vector_loop; } 624 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 625 bool use_cmove() const { return _use_cmove; } 626 void set_use_cmove(bool z) { _use_cmove = z; } 627 bool do_aliasing() const { return _do_aliasing; } 628 bool print_assembly() const { return _print_assembly; } 629 void set_print_assembly(bool z) { _print_assembly = z; } 630 bool print_inlining() const { return _print_inlining; } 631 void set_print_inlining(bool z) { _print_inlining = z; } 632 bool print_intrinsics() const { return _print_intrinsics; } 633 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 634 uint max_node_limit() const { return (uint)_max_node_limit; } 635 void set_max_node_limit(uint n) { _max_node_limit = n; } 636 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 637 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 638 bool has_monitors() const { return _has_monitors; } 639 void set_has_monitors(bool v) { _has_monitors = v; } 640 bool has_scoped_access() const { return _has_scoped_access; } 641 void set_has_scoped_access(bool v) { _has_scoped_access = v; } 642 643 // check the CompilerOracle for special behaviours for this compile 644 bool method_has_option(CompileCommandEnum option) { 645 return method() != nullptr && method()->has_option(option); 646 } 647 648 #ifndef PRODUCT 649 uint next_igv_idx() { return _igv_idx++; } 650 bool trace_opto_output() const { return _trace_opto_output; } 651 void print_ideal_ir(const char* phase_name); 652 bool should_print_ideal() const { return _directive->PrintIdealOption; } 653 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 654 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 655 int _in_dump_cnt; // Required for dumping ir nodes. 656 #endif 657 bool has_irreducible_loop() const { return _has_irreducible_loop; } 658 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 659 660 // JSR 292 661 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 662 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 663 664 Ticks _latest_stage_start_counter; 665 666 void begin_method(); 667 void end_method(); 668 bool should_print_igv(int level); 669 bool should_print_phase(CompilerPhaseType cpt); 670 671 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 672 673 #ifndef PRODUCT 674 void init_igv(); 675 void dump_igv(const char* graph_name, int level = 3) { 676 if (should_print_igv(level)) { 677 _igv_printer->print_graph(graph_name); 678 } 679 } 680 681 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 682 void igv_print_method_to_network(const char* phase_name = "Debug"); 683 void igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes); 684 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 685 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 686 #endif 687 688 const GrowableArray<ParsePredicateNode*>& parse_predicates() const { 689 return _parse_predicates; 690 } 691 692 const GrowableArray<OpaqueTemplateAssertionPredicateNode*>& template_assertion_predicate_opaques() const { 693 return _template_assertion_predicate_opaques; 694 } 695 696 int macro_count() const { return _macro_nodes.length(); } 697 int parse_predicate_count() const { return _parse_predicates.length(); } 698 int template_assertion_predicate_count() const { return _template_assertion_predicate_opaques.length(); } 699 int expensive_count() const { return _expensive_nodes.length(); } 700 int coarsened_count() const { return _coarsened_locks.length(); } 701 702 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 703 704 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 705 706 ConnectionGraph* congraph() { return _congraph;} 707 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 708 void add_macro_node(Node * n) { 709 //assert(n->is_macro(), "must be a macro node"); 710 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 711 _macro_nodes.append(n); 712 } 713 void remove_macro_node(Node* n) { 714 // this function may be called twice for a node so we can only remove it 715 // if it's still existing. 716 _macro_nodes.remove_if_existing(n); 717 // Remove from coarsened locks list if present 718 if (coarsened_count() > 0) { 719 remove_coarsened_lock(n); 720 } 721 } 722 void add_expensive_node(Node* n); 723 void remove_expensive_node(Node* n) { 724 _expensive_nodes.remove_if_existing(n); 725 } 726 727 void add_parse_predicate(ParsePredicateNode* n) { 728 assert(!_parse_predicates.contains(n), "duplicate entry in Parse Predicate list"); 729 _parse_predicates.append(n); 730 } 731 732 void remove_parse_predicate(ParsePredicateNode* n) { 733 if (parse_predicate_count() > 0) { 734 _parse_predicates.remove_if_existing(n); 735 } 736 } 737 738 void add_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) { 739 assert(!_template_assertion_predicate_opaques.contains(n), 740 "Duplicate entry in Template Assertion Predicate OpaqueTemplateAssertionPredicate list"); 741 _template_assertion_predicate_opaques.append(n); 742 } 743 744 void remove_template_assertion_predicate_opaque(OpaqueTemplateAssertionPredicateNode* n) { 745 if (template_assertion_predicate_count() > 0) { 746 _template_assertion_predicate_opaques.remove_if_existing(n); 747 } 748 } 749 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 750 void remove_coarsened_lock(Node* n); 751 bool coarsened_locks_consistent(); 752 void mark_unbalanced_boxes() const; 753 754 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 755 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 756 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 757 758 #ifdef ASSERT 759 bool phase_verify_ideal_loop() const { return _phase_verify_ideal_loop; } 760 void set_phase_verify_ideal_loop() { _phase_verify_ideal_loop = true; } 761 void reset_phase_verify_ideal_loop() { _phase_verify_ideal_loop = false; } 762 #endif 763 764 bool allow_macro_nodes() { return _allow_macro_nodes; } 765 void reset_allow_macro_nodes() { _allow_macro_nodes = false; } 766 767 void record_for_post_loop_opts_igvn(Node* n); 768 void remove_from_post_loop_opts_igvn(Node* n); 769 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 770 771 void record_unstable_if_trap(UnstableIfTrap* trap); 772 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 773 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 774 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 775 776 bool merge_stores_phase() { return _merge_stores_phase; } 777 void set_merge_stores_phase() { _merge_stores_phase = true; } 778 void record_for_merge_stores_igvn(Node* n); 779 void remove_from_merge_stores_igvn(Node* n); 780 void process_for_merge_stores_igvn(PhaseIterGVN& igvn); 781 782 void shuffle_macro_nodes(); 783 void sort_macro_nodes(); 784 785 void mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn); 786 787 // Are there candidate expensive nodes for optimization? 788 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 789 // Check whether n1 and n2 are similar 790 static int cmp_expensive_nodes(Node* n1, Node* n2); 791 // Sort expensive nodes to locate similar expensive nodes 792 void sort_expensive_nodes(); 793 794 // Compilation environment. 795 Arena* comp_arena() { return &_comp_arena; } 796 ciEnv* env() const { return _env; } 797 CompileLog* log() const { return _log; } 798 799 bool failing_internal() const { 800 return _env->failing() || 801 _failure_reason.get() != nullptr; 802 } 803 804 const char* failure_reason() const { 805 return _env->failing() ? _env->failure_reason() 806 : _failure_reason.get(); 807 } 808 809 const CompilationFailureInfo* first_failure_details() const { return _first_failure_details; } 810 811 bool failing() { 812 if (failing_internal()) { 813 return true; 814 } 815 #ifdef ASSERT 816 // Disable stress code for PhaseIdealLoop verification (would have cascading effects). 817 if (phase_verify_ideal_loop()) { 818 return false; 819 } 820 if (StressBailout) { 821 return fail_randomly(); 822 } 823 #endif 824 return false; 825 } 826 827 #ifdef ASSERT 828 bool fail_randomly(); 829 bool failure_is_artificial(); 830 #endif 831 832 bool failure_reason_is(const char* r) const { 833 return (r == _failure_reason.get()) || 834 (r != nullptr && 835 _failure_reason.get() != nullptr && 836 strcmp(r, _failure_reason.get()) == 0); 837 } 838 839 void record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)); 840 void record_method_not_compilable(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures = false)) { 841 env()->record_method_not_compilable(reason); 842 // Record failure reason. 843 record_failure(reason DEBUG_ONLY(COMMA allow_multiple_failures)); 844 } 845 bool check_node_count(uint margin, const char* reason) { 846 if (oom()) { 847 record_method_not_compilable_oom(); 848 return true; 849 } 850 if (live_nodes() + margin > max_node_limit()) { 851 record_method_not_compilable(reason); 852 return true; 853 } else { 854 return false; 855 } 856 } 857 bool oom() const { return _oom; } 858 void set_oom() { _oom = true; } 859 860 // Node management 861 uint unique() const { return _unique; } 862 uint next_unique() { return _unique++; } 863 void set_unique(uint i) { _unique = i; } 864 Arena* node_arena() { return _node_arena; } 865 Arena* old_arena() { return (&_node_arena_one == _node_arena) ? &_node_arena_two : &_node_arena_one; } 866 RootNode* root() const { return _root; } 867 void set_root(RootNode* r) { _root = r; } 868 StartNode* start() const; // (Derived from root.) 869 void verify_start(StartNode* s) const NOT_DEBUG_RETURN; 870 Node* immutable_memory(); 871 872 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 873 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 874 void set_recent_alloc(Node* ctl, Node* obj) { 875 _recent_alloc_ctl = ctl; 876 _recent_alloc_obj = obj; 877 } 878 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 879 _dead_node_count++; 880 } 881 void reset_dead_node_list() { _dead_node_list.reset(); 882 _dead_node_count = 0; 883 } 884 uint live_nodes() const { 885 int val = _unique - _dead_node_count; 886 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 887 return (uint) val; 888 } 889 #ifdef ASSERT 890 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 891 bool phase_optimize_finished() const { return _phase_optimize_finished; } 892 uint count_live_nodes_by_graph_walk(); 893 void print_missing_nodes(); 894 #endif 895 896 // Record modified nodes to check that they are put on IGVN worklist 897 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 898 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 899 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 900 901 MachConstantBaseNode* mach_constant_base_node(); 902 bool has_mach_constant_base_node() const { return _mach_constant_base_node != nullptr; } 903 // Generated by adlc, true if CallNode requires MachConstantBase. 904 bool needs_deep_clone_jvms(); 905 906 // Handy undefined Node 907 Node* top() const { return _top; } 908 909 // these are used by guys who need to know about creation and transformation of top: 910 Node* cached_top_node() { return _top; } 911 void set_cached_top_node(Node* tn); 912 913 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 914 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 915 Node_Notes* default_node_notes() const { return _default_node_notes; } 916 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 917 918 Node_Notes* node_notes_at(int idx); 919 920 inline bool set_node_notes_at(int idx, Node_Notes* value); 921 // Copy notes from source to dest, if they exist. 922 // Overwrite dest only if source provides something. 923 // Return true if information was moved. 924 bool copy_node_notes_to(Node* dest, Node* source); 925 926 // Workhorse function to sort out the blocked Node_Notes array: 927 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 928 int idx, bool can_grow = false); 929 930 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 931 932 // Type management 933 Arena* type_arena() { return _type_arena; } 934 Dict* type_dict() { return _type_dict; } 935 size_t type_last_size() { return _type_last_size; } 936 int num_alias_types() { return _num_alias_types; } 937 938 void init_type_arena() { _type_arena = &_Compile_types; } 939 void set_type_arena(Arena* a) { _type_arena = a; } 940 void set_type_dict(Dict* d) { _type_dict = d; } 941 void set_type_last_size(size_t sz) { _type_last_size = sz; } 942 943 const TypeFunc* last_tf(ciMethod* m) { 944 return (m == _last_tf_m) ? _last_tf : nullptr; 945 } 946 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 947 assert(m != nullptr || tf == nullptr, ""); 948 _last_tf_m = m; 949 _last_tf = tf; 950 } 951 952 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 953 AliasType* alias_type(const TypePtr* adr_type, ciField* field = nullptr) { return find_alias_type(adr_type, false, field); } 954 bool have_alias_type(const TypePtr* adr_type); 955 AliasType* alias_type(ciField* field); 956 957 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 958 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 959 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 960 961 // Building nodes 962 void rethrow_exceptions(JVMState* jvms); 963 void return_values(JVMState* jvms); 964 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 965 966 // Decide how to build a call. 967 // The profile factor is a discount to apply to this site's interp. profile. 968 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 969 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = nullptr, 970 bool allow_intrinsics = true); 971 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 972 return should_delay_string_inlining(call_method, jvms) || 973 should_delay_boxing_inlining(call_method, jvms) || 974 should_delay_vector_inlining(call_method, jvms); 975 } 976 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 977 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 978 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 979 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 980 981 // Helper functions to identify inlining potential at call-site 982 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 983 ciKlass* holder, ciMethod* callee, 984 const TypeOopPtr* receiver_type, bool is_virtual, 985 bool &call_does_dispatch, int &vtable_index, 986 bool check_access = true); 987 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 988 ciMethod* callee, const TypeOopPtr* receiver_type, 989 bool check_access = true); 990 991 // Report if there were too many traps at a current method and bci. 992 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 993 // If there is no MDO at all, report no trap unless told to assume it. 994 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 995 // This version, unspecific to a particular bci, asks if 996 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 997 bool too_many_traps(Deoptimization::DeoptReason reason, 998 // Privately used parameter for logging: 999 ciMethodData* logmd = nullptr); 1000 // Report if there were too many recompiles at a method and bci. 1001 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 1002 // Report if there were too many traps or recompiles at a method and bci. 1003 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 1004 return too_many_traps(method, bci, reason) || 1005 too_many_recompiles(method, bci, reason); 1006 } 1007 // Return a bitset with the reasons where deoptimization is allowed, 1008 // i.e., where there were not too many uncommon traps. 1009 int _allowed_reasons; 1010 int allowed_deopt_reasons() { return _allowed_reasons; } 1011 void set_allowed_deopt_reasons(); 1012 1013 // Parsing, optimization 1014 PhaseGVN* initial_gvn() { return _initial_gvn; } 1015 Unique_Node_List* igvn_worklist() { 1016 assert(_igvn_worklist != nullptr, "must be created in Compile::Compile"); 1017 return _igvn_worklist; 1018 } 1019 Type_Array* types() { 1020 assert(_types != nullptr, "must be created in Compile::Compile"); 1021 return _types; 1022 } 1023 NodeHash* node_hash() { 1024 assert(_node_hash != nullptr, "must be created in Compile::Compile"); 1025 return _node_hash; 1026 } 1027 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1028 inline void remove_for_igvn(Node* n); // Body is after class Unique_Node_List in node.hpp. 1029 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 1030 1031 // Replace n by nn using initial_gvn, calling hash_delete and 1032 // record_for_igvn as needed. 1033 void gvn_replace_by(Node* n, Node* nn); 1034 1035 1036 void identify_useful_nodes(Unique_Node_List &useful); 1037 void update_dead_node_list(Unique_Node_List &useful); 1038 void disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints = nullptr); 1039 1040 void remove_useless_node(Node* dead); 1041 1042 // Record this CallGenerator for inlining at the end of parsing. 1043 void add_late_inline(CallGenerator* cg) { 1044 _late_inlines.insert_before(_late_inlines_pos, cg); 1045 _late_inlines_pos++; 1046 } 1047 1048 void prepend_late_inline(CallGenerator* cg) { 1049 _late_inlines.insert_before(0, cg); 1050 } 1051 1052 void add_string_late_inline(CallGenerator* cg) { 1053 _string_late_inlines.push(cg); 1054 } 1055 1056 void add_boxing_late_inline(CallGenerator* cg) { 1057 _boxing_late_inlines.push(cg); 1058 } 1059 1060 void add_vector_reboxing_late_inline(CallGenerator* cg) { 1061 _vector_reboxing_late_inlines.push(cg); 1062 } 1063 1064 template<typename N, ENABLE_IF(std::is_base_of<Node, N>::value)> 1065 void remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful); 1066 1067 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 1068 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 1069 1070 void remove_useless_coarsened_locks(Unique_Node_List& useful); 1071 1072 void dump_print_inlining(); 1073 1074 bool over_inlining_cutoff() const { 1075 if (!inlining_incrementally()) { 1076 return unique() > (uint)NodeCountInliningCutoff; 1077 } else { 1078 // Give some room for incremental inlining algorithm to "breathe" 1079 // and avoid thrashing when live node count is close to the limit. 1080 // Keep in mind that live_nodes() isn't accurate during inlining until 1081 // dead node elimination step happens (see Compile::inline_incrementally). 1082 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 1083 } 1084 } 1085 1086 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1087 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1088 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1089 1090 bool inline_incrementally_one(); 1091 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1092 void inline_incrementally(PhaseIterGVN& igvn); 1093 bool should_delay_inlining() { return AlwaysIncrementalInline || (StressIncrementalInlining && (random() % 2) == 0); } 1094 void inline_string_calls(bool parse_time); 1095 void inline_boxing_calls(PhaseIterGVN& igvn); 1096 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1097 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1098 1099 void inline_vector_reboxing_calls(); 1100 bool has_vbox_nodes(); 1101 1102 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1103 1104 // Matching, CFG layout, allocation, code generation 1105 PhaseCFG* cfg() { return _cfg; } 1106 bool has_java_calls() const { return _java_calls > 0; } 1107 int java_calls() const { return _java_calls; } 1108 int inner_loops() const { return _inner_loops; } 1109 Matcher* matcher() { return _matcher; } 1110 PhaseRegAlloc* regalloc() { return _regalloc; } 1111 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1112 Arena* indexSet_arena() { return _indexSet_arena; } 1113 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1114 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1115 1116 void update_interpreter_frame_size(int size) { 1117 if (_interpreter_frame_size < size) { 1118 _interpreter_frame_size = size; 1119 } 1120 } 1121 1122 void set_matcher(Matcher* m) { _matcher = m; } 1123 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1124 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1125 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1126 1127 void set_java_calls(int z) { _java_calls = z; } 1128 void set_inner_loops(int z) { _inner_loops = z; } 1129 1130 Dependencies* dependencies() { return env()->dependencies(); } 1131 1132 // Major entry point. Given a Scope, compile the associated method. 1133 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1134 // replacement, entry_bci indicates the bytecode for which to compile a 1135 // continuation. 1136 Compile(ciEnv* ci_env, ciMethod* target, 1137 int entry_bci, Options options, DirectiveSet* directive); 1138 1139 // Second major entry point. From the TypeFunc signature, generate code 1140 // to pass arguments from the Java calling convention to the C calling 1141 // convention. 1142 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1143 address stub_function, const char *stub_name, 1144 int is_fancy_jump, bool pass_tls, 1145 bool return_pc, DirectiveSet* directive); 1146 1147 ~Compile(); 1148 1149 // Are we compiling a method? 1150 bool has_method() { return method() != nullptr; } 1151 1152 // Maybe print some information about this compile. 1153 void print_compile_messages(); 1154 1155 // Final graph reshaping, a post-pass after the regular optimizer is done. 1156 bool final_graph_reshaping(); 1157 1158 // returns true if adr is completely contained in the given alias category 1159 bool must_alias(const TypePtr* adr, int alias_idx); 1160 1161 // returns true if adr overlaps with the given alias category 1162 bool can_alias(const TypePtr* adr, int alias_idx); 1163 1164 // Stack slots that may be unused by the calling convention but must 1165 // otherwise be preserved. On Intel this includes the return address. 1166 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1167 uint in_preserve_stack_slots() { 1168 return SharedRuntime::in_preserve_stack_slots(); 1169 } 1170 1171 // "Top of Stack" slots that may be unused by the calling convention but must 1172 // otherwise be preserved. 1173 // On Intel these are not necessary and the value can be zero. 1174 static uint out_preserve_stack_slots() { 1175 return SharedRuntime::out_preserve_stack_slots(); 1176 } 1177 1178 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1179 // for calls to C. Supports the var-args backing area for register parms. 1180 uint varargs_C_out_slots_killed() const; 1181 1182 // Number of Stack Slots consumed by a synchronization entry 1183 int sync_stack_slots() const; 1184 1185 // Compute the name of old_SP. See <arch>.ad for frame layout. 1186 OptoReg::Name compute_old_SP(); 1187 1188 private: 1189 // Phase control: 1190 void Init(bool aliasing); // Prepare for a single compilation 1191 void Optimize(); // Given a graph, optimize it 1192 void Code_Gen(); // Generate code from a graph 1193 1194 // Management of the AliasType table. 1195 void grow_alias_types(); 1196 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1197 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1198 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1199 1200 void verify_top(Node*) const PRODUCT_RETURN; 1201 1202 // Intrinsic setup. 1203 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1204 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1205 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1206 void register_intrinsic(CallGenerator* cg); // update fn 1207 1208 #ifndef PRODUCT 1209 static juint _intrinsic_hist_count[]; 1210 static jubyte _intrinsic_hist_flags[]; 1211 #endif 1212 // Function calls made by the public function final_graph_reshaping. 1213 // No need to be made public as they are not called elsewhere. 1214 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1215 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1216 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1217 void handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned); 1218 1219 // Logic cone optimization. 1220 void optimize_logic_cones(PhaseIterGVN &igvn); 1221 void collect_logic_cone_roots(Unique_Node_List& list); 1222 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1223 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1224 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1225 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1226 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1227 void check_no_dead_use() const NOT_DEBUG_RETURN; 1228 1229 public: 1230 1231 // Note: Histogram array size is about 1 Kb. 1232 enum { // flag bits: 1233 _intrinsic_worked = 1, // succeeded at least once 1234 _intrinsic_failed = 2, // tried it but it failed 1235 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1236 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1237 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1238 }; 1239 // Update histogram. Return boolean if this is a first-time occurrence. 1240 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1241 bool is_virtual, int flags) PRODUCT_RETURN0; 1242 static void print_intrinsic_statistics() PRODUCT_RETURN; 1243 1244 // Graph verification code 1245 // Walk the node list, verifying that there is a one-to-one correspondence 1246 // between Use-Def edges and Def-Use edges. The option no_dead_code enables 1247 // stronger checks that the graph is strongly connected from starting points 1248 // in both directions. 1249 // root_and_safepoints is used to give the starting points for the traversal. 1250 // If not supplied, only root is used. When this check is called after CCP, 1251 // we need to start traversal from Root and safepoints, just like CCP does its 1252 // own traversal (see PhaseCCP::transform for reasons). 1253 // 1254 // To call this function, there are 2 ways to go: 1255 // - give root_and_safepoints to start traversal everywhere needed (like after CCP) 1256 // - if the whole graph is assumed to be reachable from Root's input, 1257 // root_and_safepoints is not needed (like in PhaseRemoveUseless). 1258 // 1259 // Failure to specify root_and_safepoints in case the graph is not fully 1260 // reachable from Root's input make this check unsound (can miss inconsistencies) 1261 // and even incomplete (can make up non-existing problems) if no_dead_code is 1262 // true. 1263 void verify_graph_edges(bool no_dead_code = false, const Unique_Node_List* root_and_safepoints = nullptr) const PRODUCT_RETURN; 1264 1265 // Verify bi-directional correspondence of edges 1266 void verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints = nullptr) const; 1267 1268 // End-of-run dumps. 1269 static void print_statistics() PRODUCT_RETURN; 1270 1271 // Verify ADLC assumptions during startup 1272 static void adlc_verification() PRODUCT_RETURN; 1273 1274 // Definitions of pd methods 1275 static void pd_compiler2_init(); 1276 1277 // Static parse-time type checking logic for gen_subtype_check: 1278 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1279 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1280 1281 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1282 // Optional control dependency (for example, on range check) 1283 Node* ctrl = nullptr); 1284 1285 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1286 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1287 1288 // Auxiliary methods for randomized fuzzing/stressing 1289 int random(); 1290 bool randomized_select(int count); 1291 1292 // seed random number generation and log the seed for repeatability. 1293 void initialize_stress_seed(const DirectiveSet* directive); 1294 1295 // supporting clone_map 1296 CloneMap& clone_map(); 1297 void set_clone_map(Dict* d); 1298 1299 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1300 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1301 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1302 1303 #ifdef IA32 1304 private: 1305 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1306 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1307 1308 // Remember if this compilation changes hardware mode to 24-bit precision. 1309 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1310 _select_24_bit_instr = selection; 1311 _in_24_bit_fp_mode = mode; 1312 } 1313 1314 public: 1315 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1316 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1317 #endif // IA32 1318 #ifdef ASSERT 1319 VerifyMeetResult* _type_verify; 1320 void set_exception_backedge() { _exception_backedge = true; } 1321 bool has_exception_backedge() const { return _exception_backedge; } 1322 #endif 1323 1324 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1325 BasicType out_bt, BasicType in_bt); 1326 1327 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1328 }; 1329 1330 #endif // SHARE_OPTO_COMPILE_HPP