1 /*
   2  * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/powerOfTwo.hpp"
  43 #include "utilities/stringUtils.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = nullptr;
  51 
  52 // Array which maps compiler types to Basic Types
  53 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  54   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  55   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  56   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  57   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  58   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  59   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  60   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  61   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  62   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  63   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  64 
  65 #if defined(PPC64)
  66   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  67   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  68   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  69   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  70   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  71   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  72   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  73 #elif defined(S390)
  74   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  75   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  76   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  77   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  78   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  79   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  80   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  81 #else // all other
  82   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  83   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  84   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  85   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  86   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  87   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  88   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  89 #endif
  90   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  91   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  92   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  93   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  94   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  95   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  96   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  97   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  98   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  99   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 100   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 101   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 102   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 103   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 104   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 105   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 106   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 107   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 108 };
 109 
 110 // Map ideal registers (machine types) to ideal types
 111 const Type *Type::mreg2type[_last_machine_leaf];
 112 
 113 // Map basic types to canonical Type* pointers.
 114 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 115 
 116 // Map basic types to constant-zero Types.
 117 const Type* Type::            _zero_type[T_CONFLICT+1];
 118 
 119 // Map basic types to array-body alias types.
 120 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 121 
 122 //=============================================================================
 123 // Convenience common pre-built types.
 124 const Type *Type::ABIO;         // State-of-machine only
 125 const Type *Type::BOTTOM;       // All values
 126 const Type *Type::CONTROL;      // Control only
 127 const Type *Type::DOUBLE;       // All doubles
 128 const Type *Type::FLOAT;        // All floats
 129 const Type *Type::HALF;         // Placeholder half of doublewide type
 130 const Type *Type::MEMORY;       // Abstract store only
 131 const Type *Type::RETURN_ADDRESS;
 132 const Type *Type::TOP;          // No values in set
 133 
 134 //------------------------------get_const_type---------------------------
 135 const Type* Type::get_const_type(ciType* type) {
 136   if (type == nullptr) {
 137     return nullptr;
 138   } else if (type->is_primitive_type()) {
 139     return get_const_basic_type(type->basic_type());
 140   } else {
 141     return TypeOopPtr::make_from_klass(type->as_klass());
 142   }
 143 }
 144 
 145 //---------------------------array_element_basic_type---------------------------------
 146 // Mapping to the array element's basic type.
 147 BasicType Type::array_element_basic_type() const {
 148   BasicType bt = basic_type();
 149   if (bt == T_INT) {
 150     if (this == TypeInt::INT)   return T_INT;
 151     if (this == TypeInt::CHAR)  return T_CHAR;
 152     if (this == TypeInt::BYTE)  return T_BYTE;
 153     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 154     if (this == TypeInt::SHORT) return T_SHORT;
 155     return T_VOID;
 156   }
 157   return bt;
 158 }
 159 
 160 // For two instance arrays of same dimension, return the base element types.
 161 // Otherwise or if the arrays have different dimensions, return null.
 162 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 163                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 164 
 165   if (e1) *e1 = nullptr;
 166   if (e2) *e2 = nullptr;
 167   const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
 168   const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
 169 
 170   if (a1tap != nullptr && a2tap != nullptr) {
 171     // Handle multidimensional arrays
 172     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 173     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 174     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 175       a1tap = a1tp->is_aryptr();
 176       a2tap = a2tp->is_aryptr();
 177       a1tp = a1tap->elem()->make_ptr();
 178       a2tp = a2tap->elem()->make_ptr();
 179     }
 180     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 181       if (e1) *e1 = a1tp->is_instptr();
 182       if (e2) *e2 = a2tp->is_instptr();
 183     }
 184   }
 185 }
 186 
 187 //---------------------------get_typeflow_type---------------------------------
 188 // Import a type produced by ciTypeFlow.
 189 const Type* Type::get_typeflow_type(ciType* type) {
 190   switch (type->basic_type()) {
 191 
 192   case ciTypeFlow::StateVector::T_BOTTOM:
 193     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 194     return Type::BOTTOM;
 195 
 196   case ciTypeFlow::StateVector::T_TOP:
 197     assert(type == ciTypeFlow::StateVector::top_type(), "");
 198     return Type::TOP;
 199 
 200   case ciTypeFlow::StateVector::T_NULL:
 201     assert(type == ciTypeFlow::StateVector::null_type(), "");
 202     return TypePtr::NULL_PTR;
 203 
 204   case ciTypeFlow::StateVector::T_LONG2:
 205     // The ciTypeFlow pass pushes a long, then the half.
 206     // We do the same.
 207     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 208     return TypeInt::TOP;
 209 
 210   case ciTypeFlow::StateVector::T_DOUBLE2:
 211     // The ciTypeFlow pass pushes double, then the half.
 212     // Our convention is the same.
 213     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 214     return Type::TOP;
 215 
 216   case T_ADDRESS:
 217     assert(type->is_return_address(), "");
 218     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 219 
 220   default:
 221     // make sure we did not mix up the cases:
 222     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 223     assert(type != ciTypeFlow::StateVector::top_type(), "");
 224     assert(type != ciTypeFlow::StateVector::null_type(), "");
 225     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 226     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 227     assert(!type->is_return_address(), "");
 228 
 229     return Type::get_const_type(type);
 230   }
 231 }
 232 
 233 
 234 //-----------------------make_from_constant------------------------------------
 235 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 236                                      int stable_dimension, bool is_narrow_oop,
 237                                      bool is_autobox_cache) {
 238   switch (constant.basic_type()) {
 239     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 240     case T_CHAR:     return TypeInt::make(constant.as_char());
 241     case T_BYTE:     return TypeInt::make(constant.as_byte());
 242     case T_SHORT:    return TypeInt::make(constant.as_short());
 243     case T_INT:      return TypeInt::make(constant.as_int());
 244     case T_LONG:     return TypeLong::make(constant.as_long());
 245     case T_FLOAT:    return TypeF::make(constant.as_float());
 246     case T_DOUBLE:   return TypeD::make(constant.as_double());
 247     case T_ARRAY:
 248     case T_OBJECT: {
 249         const Type* con_type = nullptr;
 250         ciObject* oop_constant = constant.as_object();
 251         if (oop_constant->is_null_object()) {
 252           con_type = Type::get_zero_type(T_OBJECT);
 253         } else {
 254           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 255           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 256           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 257             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 258           }
 259           if (stable_dimension > 0) {
 260             assert(FoldStableValues, "sanity");
 261             assert(!con_type->is_zero_type(), "default value for stable field");
 262             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 263           }
 264         }
 265         if (is_narrow_oop) {
 266           con_type = con_type->make_narrowoop();
 267         }
 268         return con_type;
 269       }
 270     case T_ILLEGAL:
 271       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 272       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 273       return nullptr;
 274     default:
 275       // Fall through to failure
 276       return nullptr;
 277   }
 278 }
 279 
 280 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 281   BasicType conbt = con.basic_type();
 282   switch (conbt) {
 283     case T_BOOLEAN: conbt = T_BYTE;   break;
 284     case T_ARRAY:   conbt = T_OBJECT; break;
 285     default:                          break;
 286   }
 287   switch (loadbt) {
 288     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 289     case T_NARROWOOP: loadbt = T_OBJECT; break;
 290     case T_ARRAY:     loadbt = T_OBJECT; break;
 291     case T_ADDRESS:   loadbt = T_OBJECT; break;
 292     default:                             break;
 293   }
 294   if (conbt == loadbt) {
 295     if (is_unsigned && conbt == T_BYTE) {
 296       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 297       return ciConstant(T_INT, con.as_int() & 0xFF);
 298     } else {
 299       return con;
 300     }
 301   }
 302   if (conbt == T_SHORT && loadbt == T_CHAR) {
 303     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 304     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 305   }
 306   return ciConstant(); // T_ILLEGAL
 307 }
 308 
 309 // Try to constant-fold a stable array element.
 310 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 311                                                    BasicType loadbt, bool is_unsigned_load) {
 312   // Decode the results of GraphKit::array_element_address.
 313   ciConstant element_value = array->element_value_by_offset(off);
 314   if (element_value.basic_type() == T_ILLEGAL) {
 315     return nullptr; // wrong offset
 316   }
 317   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 318 
 319   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 320          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 321 
 322   if (con.is_valid() &&          // not a mismatched access
 323       !con.is_null_or_zero()) {  // not a default value
 324     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 325     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 326   }
 327   return nullptr;
 328 }
 329 
 330 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 331   ciField* field;
 332   ciType* type = holder->java_mirror_type();
 333   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 334     // Static field
 335     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 336   } else {
 337     // Instance field
 338     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 339   }
 340   if (field == nullptr) {
 341     return nullptr; // Wrong offset
 342   }
 343   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 344 }
 345 
 346 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 347                                            BasicType loadbt, bool is_unsigned_load) {
 348   if (!field->is_constant()) {
 349     return nullptr; // Non-constant field
 350   }
 351   ciConstant field_value;
 352   if (field->is_static()) {
 353     // final static field
 354     field_value = field->constant_value();
 355   } else if (holder != nullptr) {
 356     // final or stable non-static field
 357     // Treat final non-static fields of trusted classes (classes in
 358     // java.lang.invoke and sun.invoke packages and subpackages) as
 359     // compile time constants.
 360     field_value = field->constant_value_of(holder);
 361   }
 362   if (!field_value.is_valid()) {
 363     return nullptr; // Not a constant
 364   }
 365 
 366   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 367 
 368   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 369          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 370 
 371   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 372   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 373   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 374 
 375   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 376                                             stable_dimension, is_narrow_oop,
 377                                             field->is_autobox_cache());
 378   if (con_type != nullptr && field->is_call_site_target()) {
 379     ciCallSite* call_site = holder->as_call_site();
 380     if (!call_site->is_fully_initialized_constant_call_site()) {
 381       ciMethodHandle* target = con.as_object()->as_method_handle();
 382       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 383     }
 384   }
 385   return con_type;
 386 }
 387 
 388 //------------------------------make-------------------------------------------
 389 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 390 // and look for an existing copy in the type dictionary.
 391 const Type *Type::make( enum TYPES t ) {
 392   return (new Type(t))->hashcons();
 393 }
 394 
 395 //------------------------------cmp--------------------------------------------
 396 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 397   if( t1->_base != t2->_base )
 398     return 1;                   // Missed badly
 399   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 400   return !t1->eq(t2);           // Return ZERO if equal
 401 }
 402 
 403 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 404   if (!include_speculative) {
 405     return remove_speculative();
 406   }
 407   return this;
 408 }
 409 
 410 //------------------------------hash-------------------------------------------
 411 int Type::uhash( const Type *const t ) {
 412   return t->hash();
 413 }
 414 
 415 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 416 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 417 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 418 
 419 //--------------------------Initialize_shared----------------------------------
 420 void Type::Initialize_shared(Compile* current) {
 421   // This method does not need to be locked because the first system
 422   // compilations (stub compilations) occur serially.  If they are
 423   // changed to proceed in parallel, then this section will need
 424   // locking.
 425 
 426   Arena* save = current->type_arena();
 427   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 428 
 429   current->set_type_arena(shared_type_arena);
 430   _shared_type_dict =
 431     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 432                                   shared_type_arena, 128 );
 433   current->set_type_dict(_shared_type_dict);
 434 
 435   // Make shared pre-built types.
 436   CONTROL = make(Control);      // Control only
 437   TOP     = make(Top);          // No values in set
 438   MEMORY  = make(Memory);       // Abstract store only
 439   ABIO    = make(Abio);         // State-of-machine only
 440   RETURN_ADDRESS=make(Return_Address);
 441   FLOAT   = make(FloatBot);     // All floats
 442   DOUBLE  = make(DoubleBot);    // All doubles
 443   BOTTOM  = make(Bottom);       // Everything
 444   HALF    = make(Half);         // Placeholder half of doublewide type
 445 
 446   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 447   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 448   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 449   TypeF::ONE  = TypeF::make(1.0); // Float 1
 450   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 451   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 452 
 453   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 454   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 455   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 456   TypeD::ONE  = TypeD::make(1.0); // Double 1
 457   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 458   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 459 
 460   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 461   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 462   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 463   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 464   TypeInt::ONE     = TypeInt::make( 1);  //  1
 465   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 466   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 467   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 468   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 469   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 470   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 471   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 472   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 473   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 474   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 475   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 476   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 477   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 478   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 479   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 480   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 481   // CmpL is overloaded both as the bytecode computation returning
 482   // a trinary (-1,0,+1) integer result AND as an efficient long
 483   // compare returning optimizer ideal-type flags.
 484   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 485   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 486   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 487   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 488   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 489 
 490   TypeLong::MAX = TypeLong::make(max_jlong);  // Long MAX
 491   TypeLong::MIN = TypeLong::make(min_jlong);  // Long MIN
 492   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 493   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 494   TypeLong::ONE     = TypeLong::make( 1);        //  1
 495   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 496   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 497   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 498   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 499   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 500 
 501   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 502   fboth[0] = Type::CONTROL;
 503   fboth[1] = Type::CONTROL;
 504   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 505 
 506   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 507   ffalse[0] = Type::CONTROL;
 508   ffalse[1] = Type::TOP;
 509   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 510 
 511   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 512   fneither[0] = Type::TOP;
 513   fneither[1] = Type::TOP;
 514   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 515 
 516   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 517   ftrue[0] = Type::TOP;
 518   ftrue[1] = Type::CONTROL;
 519   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 520 
 521   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 522   floop[0] = Type::CONTROL;
 523   floop[1] = TypeInt::INT;
 524   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 525 
 526   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 527   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 528   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 529 
 530   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 531   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 532 
 533   const Type **fmembar = TypeTuple::fields(0);
 534   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 535 
 536   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 537   fsc[0] = TypeInt::CC;
 538   fsc[1] = Type::MEMORY;
 539   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 540 
 541   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 542   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 543   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 544   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 545                                            false, 0, oopDesc::mark_offset_in_bytes());
 546   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 547                                            false, 0, oopDesc::klass_offset_in_bytes());
 548   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 549 
 550   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 551 
 552   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 553   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 554 
 555   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 556 
 557   mreg2type[Op_Node] = Type::BOTTOM;
 558   mreg2type[Op_Set ] = 0;
 559   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 560   mreg2type[Op_RegI] = TypeInt::INT;
 561   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 562   mreg2type[Op_RegF] = Type::FLOAT;
 563   mreg2type[Op_RegD] = Type::DOUBLE;
 564   mreg2type[Op_RegL] = TypeLong::LONG;
 565   mreg2type[Op_RegFlags] = TypeInt::CC;
 566 
 567   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 568 
 569   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 570 
 571 #ifdef _LP64
 572   if (UseCompressedOops) {
 573     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 574     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 575   } else
 576 #endif
 577   {
 578     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 579     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 580   }
 581   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 582   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 583   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 584   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 585   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 586   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 587   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 588 
 589   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 590   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 591   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 592   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 593   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 594   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 595   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 596   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 597   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 598   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 599   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 600   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 601 
 602   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 603   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 604 
 605   const Type **fi2c = TypeTuple::fields(2);
 606   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 607   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 608   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 609 
 610   const Type **intpair = TypeTuple::fields(2);
 611   intpair[0] = TypeInt::INT;
 612   intpair[1] = TypeInt::INT;
 613   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 614 
 615   const Type **longpair = TypeTuple::fields(2);
 616   longpair[0] = TypeLong::LONG;
 617   longpair[1] = TypeLong::LONG;
 618   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 619 
 620   const Type **intccpair = TypeTuple::fields(2);
 621   intccpair[0] = TypeInt::INT;
 622   intccpair[1] = TypeInt::CC;
 623   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 624 
 625   const Type **longccpair = TypeTuple::fields(2);
 626   longccpair[0] = TypeLong::LONG;
 627   longccpair[1] = TypeInt::CC;
 628   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 629 
 630   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 631   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 632   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 633   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 634   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 635   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 636   _const_basic_type[T_INT]         = TypeInt::INT;
 637   _const_basic_type[T_LONG]        = TypeLong::LONG;
 638   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 639   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 640   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 641   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 642   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 643   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 644   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 645 
 646   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 647   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 648   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 649   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 650   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 651   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 652   _zero_type[T_INT]         = TypeInt::ZERO;
 653   _zero_type[T_LONG]        = TypeLong::ZERO;
 654   _zero_type[T_FLOAT]       = TypeF::ZERO;
 655   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 656   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 657   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 658   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 659   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 660 
 661   // get_zero_type() should not happen for T_CONFLICT
 662   _zero_type[T_CONFLICT]= nullptr;
 663 
 664   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 665   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 666 
 667   if (Matcher::supports_scalable_vector()) {
 668     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 669   }
 670 
 671   // Vector predefined types, it needs initialized _const_basic_type[].
 672   if (Matcher::vector_size_supported(T_BYTE,4)) {
 673     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 674   }
 675   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 676     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 677   }
 678   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 679     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 680   }
 681   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 682     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 683   }
 684   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 685     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 686   }
 687 
 688   mreg2type[Op_VecA] = TypeVect::VECTA;
 689   mreg2type[Op_VecS] = TypeVect::VECTS;
 690   mreg2type[Op_VecD] = TypeVect::VECTD;
 691   mreg2type[Op_VecX] = TypeVect::VECTX;
 692   mreg2type[Op_VecY] = TypeVect::VECTY;
 693   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 694 
 695   // Restore working type arena.
 696   current->set_type_arena(save);
 697   current->set_type_dict(nullptr);
 698 }
 699 
 700 //------------------------------Initialize-------------------------------------
 701 void Type::Initialize(Compile* current) {
 702   assert(current->type_arena() != nullptr, "must have created type arena");
 703 
 704   if (_shared_type_dict == nullptr) {
 705     Initialize_shared(current);
 706   }
 707 
 708   Arena* type_arena = current->type_arena();
 709 
 710   // Create the hash-cons'ing dictionary with top-level storage allocation
 711   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
 712   current->set_type_dict(tdic);
 713 }
 714 
 715 //------------------------------hashcons---------------------------------------
 716 // Do the hash-cons trick.  If the Type already exists in the type table,
 717 // delete the current Type and return the existing Type.  Otherwise stick the
 718 // current Type in the Type table.
 719 const Type *Type::hashcons(void) {
 720   debug_only(base());           // Check the assertion in Type::base().
 721   // Look up the Type in the Type dictionary
 722   Dict *tdic = type_dict();
 723   Type* old = (Type*)(tdic->Insert(this, this, false));
 724   if( old ) {                   // Pre-existing Type?
 725     if( old != this )           // Yes, this guy is not the pre-existing?
 726       delete this;              // Yes, Nuke this guy
 727     assert( old->_dual, "" );
 728     return old;                 // Return pre-existing
 729   }
 730 
 731   // Every type has a dual (to make my lattice symmetric).
 732   // Since we just discovered a new Type, compute its dual right now.
 733   assert( !_dual, "" );         // No dual yet
 734   _dual = xdual();              // Compute the dual
 735   if (cmp(this, _dual) == 0) {  // Handle self-symmetric
 736     if (_dual != this) {
 737       delete _dual;
 738       _dual = this;
 739     }
 740     return this;
 741   }
 742   assert( !_dual->_dual, "" );  // No reverse dual yet
 743   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 744   // New Type, insert into Type table
 745   tdic->Insert((void*)_dual,(void*)_dual);
 746   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 747 #ifdef ASSERT
 748   Type *dual_dual = (Type*)_dual->xdual();
 749   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 750   delete dual_dual;
 751 #endif
 752   return this;                  // Return new Type
 753 }
 754 
 755 //------------------------------eq---------------------------------------------
 756 // Structural equality check for Type representations
 757 bool Type::eq( const Type * ) const {
 758   return true;                  // Nothing else can go wrong
 759 }
 760 
 761 //------------------------------hash-------------------------------------------
 762 // Type-specific hashing function.
 763 int Type::hash(void) const {
 764   return _base;
 765 }
 766 
 767 //------------------------------is_finite--------------------------------------
 768 // Has a finite value
 769 bool Type::is_finite() const {
 770   return false;
 771 }
 772 
 773 //------------------------------is_nan-----------------------------------------
 774 // Is not a number (NaN)
 775 bool Type::is_nan()    const {
 776   return false;
 777 }
 778 
 779 //----------------------interface_vs_oop---------------------------------------
 780 #ifdef ASSERT
 781 bool Type::interface_vs_oop_helper(const Type *t) const {
 782   bool result = false;
 783 
 784   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 785   const TypePtr*    t_ptr =    t->make_ptr();
 786   if( this_ptr == nullptr || t_ptr == nullptr )
 787     return result;
 788 
 789   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 790   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 791   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 792     bool this_interface = this_inst->klass()->is_interface();
 793     bool    t_interface =    t_inst->klass()->is_interface();
 794     result = this_interface ^ t_interface;
 795   }
 796 
 797   return result;
 798 }
 799 
 800 bool Type::interface_vs_oop(const Type *t) const {
 801   if (interface_vs_oop_helper(t)) {
 802     return true;
 803   }
 804   // Now check the speculative parts as well
 805   const TypePtr* this_spec = isa_ptr() != nullptr ? is_ptr()->speculative() : nullptr;
 806   const TypePtr* t_spec = t->isa_ptr() != nullptr ? t->is_ptr()->speculative() : nullptr;
 807   if (this_spec != nullptr && t_spec != nullptr) {
 808     if (this_spec->interface_vs_oop_helper(t_spec)) {
 809       return true;
 810     }
 811     return false;
 812   }
 813   if (this_spec != nullptr && this_spec->interface_vs_oop_helper(t)) {
 814     return true;
 815   }
 816   if (t_spec != nullptr && interface_vs_oop_helper(t_spec)) {
 817     return true;
 818   }
 819   return false;
 820 }
 821 
 822 #endif
 823 
 824 void Type::check_symmetrical(const Type* t, const Type* mt) const {
 825 #ifdef ASSERT
 826   const Type* mt2 = t->xmeet(this);
 827   if (mt != mt2) {
 828     tty->print_cr("=== Meet Not Commutative ===");
 829     tty->print("t           = ");   t->dump(); tty->cr();
 830     tty->print("this        = ");      dump(); tty->cr();
 831     tty->print("t meet this = "); mt2->dump(); tty->cr();
 832     tty->print("this meet t = ");  mt->dump(); tty->cr();
 833     fatal("meet not commutative");
 834   }
 835   const Type* dual_join = mt->_dual;
 836   const Type* t2t    = dual_join->xmeet(t->_dual);
 837   const Type* t2this = dual_join->xmeet(this->_dual);
 838 
 839   // Interface meet Oop is Not Symmetric:
 840   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 841   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 842 
 843   if (!interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual)) {
 844     tty->print_cr("=== Meet Not Symmetric ===");
 845     tty->print("t   =                   ");              t->dump(); tty->cr();
 846     tty->print("this=                   ");                 dump(); tty->cr();
 847     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 848 
 849     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 850     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 851     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 852 
 853     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 854     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 855 
 856     fatal("meet not symmetric");
 857   }
 858 #endif
 859 }
 860 
 861 //------------------------------meet-------------------------------------------
 862 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 863 // commutative and the lattice is symmetric.
 864 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 865   if (isa_narrowoop() && t->isa_narrowoop()) {
 866     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 867     return result->make_narrowoop();
 868   }
 869   if (isa_narrowklass() && t->isa_narrowklass()) {
 870     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 871     return result->make_narrowklass();
 872   }
 873 
 874   const Type *this_t = maybe_remove_speculative(include_speculative);
 875   t = t->maybe_remove_speculative(include_speculative);
 876 
 877   const Type *mt = this_t->xmeet(t);
 878 #ifdef ASSERT
 879   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 880   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 881   Compile* C = Compile::current();
 882   if (!C->_type_verify_symmetry) {
 883     return mt;
 884   }
 885   this_t->check_symmetrical(t, mt);
 886   // In the case of an array, computing the meet above, caused the
 887   // computation of the meet of the elements which at verification
 888   // time caused the computation of the meet of the dual of the
 889   // elements. Computing the meet of the dual of the arrays here
 890   // causes the meet of the dual of the elements to be computed which
 891   // would cause the meet of the dual of the dual of the elements,
 892   // that is the meet of the elements already computed above to be
 893   // computed. Avoid redundant computations by requesting no
 894   // verification.
 895   C->_type_verify_symmetry = false;
 896   const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
 897   this_t->_dual->check_symmetrical(t->_dual, mt_dual);
 898   assert(!C->_type_verify_symmetry, "shouldn't have changed");
 899   C->_type_verify_symmetry = true;
 900 #endif
 901   return mt;
 902 }
 903 
 904 //------------------------------xmeet------------------------------------------
 905 // Compute the MEET of two types.  It returns a new Type object.
 906 const Type *Type::xmeet( const Type *t ) const {
 907   // Perform a fast test for common case; meeting the same types together.
 908   if( this == t ) return this;  // Meeting same type-rep?
 909 
 910   // Meeting TOP with anything?
 911   if( _base == Top ) return t;
 912 
 913   // Meeting BOTTOM with anything?
 914   if( _base == Bottom ) return BOTTOM;
 915 
 916   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 917   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 918   switch (t->base()) {  // Switch on original type
 919 
 920   // Cut in half the number of cases I must handle.  Only need cases for when
 921   // the given enum "t->type" is less than or equal to the local enum "type".
 922   case FloatCon:
 923   case DoubleCon:
 924   case Int:
 925   case Long:
 926     return t->xmeet(this);
 927 
 928   case OopPtr:
 929     return t->xmeet(this);
 930 
 931   case InstPtr:
 932     return t->xmeet(this);
 933 
 934   case MetadataPtr:
 935   case KlassPtr:
 936     return t->xmeet(this);
 937 
 938   case AryPtr:
 939     return t->xmeet(this);
 940 
 941   case NarrowOop:
 942     return t->xmeet(this);
 943 
 944   case NarrowKlass:
 945     return t->xmeet(this);
 946 
 947   case Bad:                     // Type check
 948   default:                      // Bogus type not in lattice
 949     typerr(t);
 950     return Type::BOTTOM;
 951 
 952   case Bottom:                  // Ye Olde Default
 953     return t;
 954 
 955   case FloatTop:
 956     if( _base == FloatTop ) return this;
 957   case FloatBot:                // Float
 958     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 959     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 960     typerr(t);
 961     return Type::BOTTOM;
 962 
 963   case DoubleTop:
 964     if( _base == DoubleTop ) return this;
 965   case DoubleBot:               // Double
 966     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 967     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 968     typerr(t);
 969     return Type::BOTTOM;
 970 
 971   // These next few cases must match exactly or it is a compile-time error.
 972   case Control:                 // Control of code
 973   case Abio:                    // State of world outside of program
 974   case Memory:
 975     if( _base == t->_base )  return this;
 976     typerr(t);
 977     return Type::BOTTOM;
 978 
 979   case Top:                     // Top of the lattice
 980     return this;
 981   }
 982 
 983   // The type is unchanged
 984   return this;
 985 }
 986 
 987 //-----------------------------filter------------------------------------------
 988 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 989   const Type* ft = join_helper(kills, include_speculative);
 990   if (ft->empty())
 991     return Type::TOP;           // Canonical empty value
 992   return ft;
 993 }
 994 
 995 //------------------------------xdual------------------------------------------
 996 
 997 const Type *Type::xdual() const {
 998   // Note: the base() accessor asserts the sanity of _base.
 999   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1000   return new Type(_type_info[_base].dual_type);
1001 }
1002 
1003 //------------------------------has_memory-------------------------------------
1004 bool Type::has_memory() const {
1005   Type::TYPES tx = base();
1006   if (tx == Memory) return true;
1007   if (tx == Tuple) {
1008     const TypeTuple *t = is_tuple();
1009     for (uint i=0; i < t->cnt(); i++) {
1010       tx = t->field_at(i)->base();
1011       if (tx == Memory)  return true;
1012     }
1013   }
1014   return false;
1015 }
1016 
1017 #ifndef PRODUCT
1018 //------------------------------dump2------------------------------------------
1019 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1020   st->print("%s", _type_info[_base].msg);
1021 }
1022 
1023 //------------------------------dump-------------------------------------------
1024 void Type::dump_on(outputStream *st) const {
1025   ResourceMark rm;
1026   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1027   dump2(d,1, st);
1028   if (is_ptr_to_narrowoop()) {
1029     st->print(" [narrow]");
1030   } else if (is_ptr_to_narrowklass()) {
1031     st->print(" [narrowklass]");
1032   }
1033 }
1034 
1035 //-----------------------------------------------------------------------------
1036 const char* Type::str(const Type* t) {
1037   stringStream ss;
1038   t->dump_on(&ss);
1039   return ss.as_string();
1040 }
1041 #endif
1042 
1043 //------------------------------singleton--------------------------------------
1044 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1045 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1046 bool Type::singleton(void) const {
1047   return _base == Top || _base == Half;
1048 }
1049 
1050 //------------------------------empty------------------------------------------
1051 // TRUE if Type is a type with no values, FALSE otherwise.
1052 bool Type::empty(void) const {
1053   switch (_base) {
1054   case DoubleTop:
1055   case FloatTop:
1056   case Top:
1057     return true;
1058 
1059   case Half:
1060   case Abio:
1061   case Return_Address:
1062   case Memory:
1063   case Bottom:
1064   case FloatBot:
1065   case DoubleBot:
1066     return false;  // never a singleton, therefore never empty
1067 
1068   default:
1069     ShouldNotReachHere();
1070     return false;
1071   }
1072 }
1073 
1074 //------------------------------dump_stats-------------------------------------
1075 // Dump collected statistics to stderr
1076 #ifndef PRODUCT
1077 void Type::dump_stats() {
1078   tty->print("Types made: %d\n", type_dict()->Size());
1079 }
1080 #endif
1081 
1082 //------------------------------category---------------------------------------
1083 #ifndef PRODUCT
1084 Type::Category Type::category() const {
1085   const TypeTuple* tuple;
1086   switch (base()) {
1087     case Type::Int:
1088     case Type::Long:
1089     case Type::Half:
1090     case Type::NarrowOop:
1091     case Type::NarrowKlass:
1092     case Type::Array:
1093     case Type::VectorA:
1094     case Type::VectorS:
1095     case Type::VectorD:
1096     case Type::VectorX:
1097     case Type::VectorY:
1098     case Type::VectorZ:
1099     case Type::VectorMask:
1100     case Type::AnyPtr:
1101     case Type::RawPtr:
1102     case Type::OopPtr:
1103     case Type::InstPtr:
1104     case Type::AryPtr:
1105     case Type::MetadataPtr:
1106     case Type::KlassPtr:
1107     case Type::Function:
1108     case Type::Return_Address:
1109     case Type::FloatTop:
1110     case Type::FloatCon:
1111     case Type::FloatBot:
1112     case Type::DoubleTop:
1113     case Type::DoubleCon:
1114     case Type::DoubleBot:
1115       return Category::Data;
1116     case Type::Memory:
1117       return Category::Memory;
1118     case Type::Control:
1119       return Category::Control;
1120     case Type::Top:
1121     case Type::Abio:
1122     case Type::Bottom:
1123       return Category::Other;
1124     case Type::Bad:
1125     case Type::lastype:
1126       return Category::Undef;
1127     case Type::Tuple:
1128       // Recursive case. Return CatMixed if the tuple contains types of
1129       // different categories (e.g. CallStaticJavaNode's type), or the specific
1130       // category if all types are of the same category (e.g. IfNode's type).
1131       tuple = is_tuple();
1132       if (tuple->cnt() == 0) {
1133         return Category::Undef;
1134       } else {
1135         Category first = tuple->field_at(0)->category();
1136         for (uint i = 1; i < tuple->cnt(); i++) {
1137           if (tuple->field_at(i)->category() != first) {
1138             return Category::Mixed;
1139           }
1140         }
1141         return first;
1142       }
1143     default:
1144       assert(false, "unmatched base type: all base types must be categorized");
1145   }
1146   return Category::Undef;
1147 }
1148 #endif
1149 
1150 //------------------------------typerr-----------------------------------------
1151 void Type::typerr( const Type *t ) const {
1152 #ifndef PRODUCT
1153   tty->print("\nError mixing types: ");
1154   dump();
1155   tty->print(" and ");
1156   t->dump();
1157   tty->print("\n");
1158 #endif
1159   ShouldNotReachHere();
1160 }
1161 
1162 
1163 //=============================================================================
1164 // Convenience common pre-built types.
1165 const TypeF *TypeF::MAX;        // Floating point max
1166 const TypeF *TypeF::MIN;        // Floating point min
1167 const TypeF *TypeF::ZERO;       // Floating point zero
1168 const TypeF *TypeF::ONE;        // Floating point one
1169 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1170 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1171 
1172 //------------------------------make-------------------------------------------
1173 // Create a float constant
1174 const TypeF *TypeF::make(float f) {
1175   return (TypeF*)(new TypeF(f))->hashcons();
1176 }
1177 
1178 //------------------------------meet-------------------------------------------
1179 // Compute the MEET of two types.  It returns a new Type object.
1180 const Type *TypeF::xmeet( const Type *t ) const {
1181   // Perform a fast test for common case; meeting the same types together.
1182   if( this == t ) return this;  // Meeting same type-rep?
1183 
1184   // Current "this->_base" is FloatCon
1185   switch (t->base()) {          // Switch on original type
1186   case AnyPtr:                  // Mixing with oops happens when javac
1187   case RawPtr:                  // reuses local variables
1188   case OopPtr:
1189   case InstPtr:
1190   case AryPtr:
1191   case MetadataPtr:
1192   case KlassPtr:
1193   case NarrowOop:
1194   case NarrowKlass:
1195   case Int:
1196   case Long:
1197   case DoubleTop:
1198   case DoubleCon:
1199   case DoubleBot:
1200   case Bottom:                  // Ye Olde Default
1201     return Type::BOTTOM;
1202 
1203   case FloatBot:
1204     return t;
1205 
1206   default:                      // All else is a mistake
1207     typerr(t);
1208 
1209   case FloatCon:                // Float-constant vs Float-constant?
1210     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1211                                 // must compare bitwise as positive zero, negative zero and NaN have
1212                                 // all the same representation in C++
1213       return FLOAT;             // Return generic float
1214                                 // Equal constants
1215   case Top:
1216   case FloatTop:
1217     break;                      // Return the float constant
1218   }
1219   return this;                  // Return the float constant
1220 }
1221 
1222 //------------------------------xdual------------------------------------------
1223 // Dual: symmetric
1224 const Type *TypeF::xdual() const {
1225   return this;
1226 }
1227 
1228 //------------------------------eq---------------------------------------------
1229 // Structural equality check for Type representations
1230 bool TypeF::eq(const Type *t) const {
1231   // Bitwise comparison to distinguish between +/-0. These values must be treated
1232   // as different to be consistent with C1 and the interpreter.
1233   return (jint_cast(_f) == jint_cast(t->getf()));
1234 }
1235 
1236 //------------------------------hash-------------------------------------------
1237 // Type-specific hashing function.
1238 int TypeF::hash(void) const {
1239   return *(int*)(&_f);
1240 }
1241 
1242 //------------------------------is_finite--------------------------------------
1243 // Has a finite value
1244 bool TypeF::is_finite() const {
1245   return g_isfinite(getf()) != 0;
1246 }
1247 
1248 //------------------------------is_nan-----------------------------------------
1249 // Is not a number (NaN)
1250 bool TypeF::is_nan()    const {
1251   return g_isnan(getf()) != 0;
1252 }
1253 
1254 //------------------------------dump2------------------------------------------
1255 // Dump float constant Type
1256 #ifndef PRODUCT
1257 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1258   Type::dump2(d,depth, st);
1259   st->print("%f", _f);
1260 }
1261 #endif
1262 
1263 //------------------------------singleton--------------------------------------
1264 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1265 // constants (Ldi nodes).  Singletons are integer, float or double constants
1266 // or a single symbol.
1267 bool TypeF::singleton(void) const {
1268   return true;                  // Always a singleton
1269 }
1270 
1271 bool TypeF::empty(void) const {
1272   return false;                 // always exactly a singleton
1273 }
1274 
1275 //=============================================================================
1276 // Convenience common pre-built types.
1277 const TypeD *TypeD::MAX;        // Floating point max
1278 const TypeD *TypeD::MIN;        // Floating point min
1279 const TypeD *TypeD::ZERO;       // Floating point zero
1280 const TypeD *TypeD::ONE;        // Floating point one
1281 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1282 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1283 
1284 //------------------------------make-------------------------------------------
1285 const TypeD *TypeD::make(double d) {
1286   return (TypeD*)(new TypeD(d))->hashcons();
1287 }
1288 
1289 //------------------------------meet-------------------------------------------
1290 // Compute the MEET of two types.  It returns a new Type object.
1291 const Type *TypeD::xmeet( const Type *t ) const {
1292   // Perform a fast test for common case; meeting the same types together.
1293   if( this == t ) return this;  // Meeting same type-rep?
1294 
1295   // Current "this->_base" is DoubleCon
1296   switch (t->base()) {          // Switch on original type
1297   case AnyPtr:                  // Mixing with oops happens when javac
1298   case RawPtr:                  // reuses local variables
1299   case OopPtr:
1300   case InstPtr:
1301   case AryPtr:
1302   case MetadataPtr:
1303   case KlassPtr:
1304   case NarrowOop:
1305   case NarrowKlass:
1306   case Int:
1307   case Long:
1308   case FloatTop:
1309   case FloatCon:
1310   case FloatBot:
1311   case Bottom:                  // Ye Olde Default
1312     return Type::BOTTOM;
1313 
1314   case DoubleBot:
1315     return t;
1316 
1317   default:                      // All else is a mistake
1318     typerr(t);
1319 
1320   case DoubleCon:               // Double-constant vs Double-constant?
1321     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1322       return DOUBLE;            // Return generic double
1323   case Top:
1324   case DoubleTop:
1325     break;
1326   }
1327   return this;                  // Return the double constant
1328 }
1329 
1330 //------------------------------xdual------------------------------------------
1331 // Dual: symmetric
1332 const Type *TypeD::xdual() const {
1333   return this;
1334 }
1335 
1336 //------------------------------eq---------------------------------------------
1337 // Structural equality check for Type representations
1338 bool TypeD::eq(const Type *t) const {
1339   // Bitwise comparison to distinguish between +/-0. These values must be treated
1340   // as different to be consistent with C1 and the interpreter.
1341   return (jlong_cast(_d) == jlong_cast(t->getd()));
1342 }
1343 
1344 //------------------------------hash-------------------------------------------
1345 // Type-specific hashing function.
1346 int TypeD::hash(void) const {
1347   return *(int*)(&_d);
1348 }
1349 
1350 //------------------------------is_finite--------------------------------------
1351 // Has a finite value
1352 bool TypeD::is_finite() const {
1353   return g_isfinite(getd()) != 0;
1354 }
1355 
1356 //------------------------------is_nan-----------------------------------------
1357 // Is not a number (NaN)
1358 bool TypeD::is_nan()    const {
1359   return g_isnan(getd()) != 0;
1360 }
1361 
1362 //------------------------------dump2------------------------------------------
1363 // Dump double constant Type
1364 #ifndef PRODUCT
1365 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1366   Type::dump2(d,depth,st);
1367   st->print("%f", _d);
1368 }
1369 #endif
1370 
1371 //------------------------------singleton--------------------------------------
1372 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1373 // constants (Ldi nodes).  Singletons are integer, float or double constants
1374 // or a single symbol.
1375 bool TypeD::singleton(void) const {
1376   return true;                  // Always a singleton
1377 }
1378 
1379 bool TypeD::empty(void) const {
1380   return false;                 // always exactly a singleton
1381 }
1382 
1383 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1384   if (bt == T_INT) {
1385     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1386   }
1387   assert(bt == T_LONG, "basic type not an int or long");
1388   return TypeLong::make(lo, hi, w);
1389 }
1390 
1391 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1392   if (bt == T_INT) {
1393     return is_int()->get_con();
1394   }
1395   assert(bt == T_LONG, "basic type not an int or long");
1396   return is_long()->get_con();
1397 }
1398 
1399 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1400   if (bt == T_INT) {
1401     return TypeInt::INT;
1402   }
1403   assert(bt == T_LONG, "basic type not an int or long");
1404   return TypeLong::LONG;
1405 }
1406 
1407 //=============================================================================
1408 // Convience common pre-built types.
1409 const TypeInt *TypeInt::MAX;    // INT_MAX
1410 const TypeInt *TypeInt::MIN;    // INT_MIN
1411 const TypeInt *TypeInt::MINUS_1;// -1
1412 const TypeInt *TypeInt::ZERO;   // 0
1413 const TypeInt *TypeInt::ONE;    // 1
1414 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1415 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1416 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1417 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1418 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1419 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1420 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1421 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1422 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1423 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1424 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1425 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1426 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1427 const TypeInt *TypeInt::INT;    // 32-bit integers
1428 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1429 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1430 
1431 //------------------------------TypeInt----------------------------------------
1432 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int), _lo(lo), _hi(hi), _widen(w) {
1433 }
1434 
1435 //------------------------------make-------------------------------------------
1436 const TypeInt *TypeInt::make( jint lo ) {
1437   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1438 }
1439 
1440 static int normalize_int_widen( jint lo, jint hi, int w ) {
1441   // Certain normalizations keep us sane when comparing types.
1442   // The 'SMALLINT' covers constants and also CC and its relatives.
1443   if (lo <= hi) {
1444     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1445     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1446   } else {
1447     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1448     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1449   }
1450   return w;
1451 }
1452 
1453 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1454   w = normalize_int_widen(lo, hi, w);
1455   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1456 }
1457 
1458 //------------------------------meet-------------------------------------------
1459 // Compute the MEET of two types.  It returns a new Type representation object
1460 // with reference count equal to the number of Types pointing at it.
1461 // Caller should wrap a Types around it.
1462 const Type *TypeInt::xmeet( const Type *t ) const {
1463   // Perform a fast test for common case; meeting the same types together.
1464   if( this == t ) return this;  // Meeting same type?
1465 
1466   // Currently "this->_base" is a TypeInt
1467   switch (t->base()) {          // Switch on original type
1468   case AnyPtr:                  // Mixing with oops happens when javac
1469   case RawPtr:                  // reuses local variables
1470   case OopPtr:
1471   case InstPtr:
1472   case AryPtr:
1473   case MetadataPtr:
1474   case KlassPtr:
1475   case NarrowOop:
1476   case NarrowKlass:
1477   case Long:
1478   case FloatTop:
1479   case FloatCon:
1480   case FloatBot:
1481   case DoubleTop:
1482   case DoubleCon:
1483   case DoubleBot:
1484   case Bottom:                  // Ye Olde Default
1485     return Type::BOTTOM;
1486   default:                      // All else is a mistake
1487     typerr(t);
1488   case Top:                     // No change
1489     return this;
1490   case Int:                     // Int vs Int?
1491     break;
1492   }
1493 
1494   // Expand covered set
1495   const TypeInt *r = t->is_int();
1496   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1497 }
1498 
1499 //------------------------------xdual------------------------------------------
1500 // Dual: reverse hi & lo; flip widen
1501 const Type *TypeInt::xdual() const {
1502   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1503   return new TypeInt(_hi,_lo,w);
1504 }
1505 
1506 //------------------------------widen------------------------------------------
1507 // Only happens for optimistic top-down optimizations.
1508 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1509   // Coming from TOP or such; no widening
1510   if( old->base() != Int ) return this;
1511   const TypeInt *ot = old->is_int();
1512 
1513   // If new guy is equal to old guy, no widening
1514   if( _lo == ot->_lo && _hi == ot->_hi )
1515     return old;
1516 
1517   // If new guy contains old, then we widened
1518   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1519     // New contains old
1520     // If new guy is already wider than old, no widening
1521     if( _widen > ot->_widen ) return this;
1522     // If old guy was a constant, do not bother
1523     if (ot->_lo == ot->_hi)  return this;
1524     // Now widen new guy.
1525     // Check for widening too far
1526     if (_widen == WidenMax) {
1527       int max = max_jint;
1528       int min = min_jint;
1529       if (limit->isa_int()) {
1530         max = limit->is_int()->_hi;
1531         min = limit->is_int()->_lo;
1532       }
1533       if (min < _lo && _hi < max) {
1534         // If neither endpoint is extremal yet, push out the endpoint
1535         // which is closer to its respective limit.
1536         if (_lo >= 0 ||                 // easy common case
1537             (juint)(_lo - min) >= (juint)(max - _hi)) {
1538           // Try to widen to an unsigned range type of 31 bits:
1539           return make(_lo, max, WidenMax);
1540         } else {
1541           return make(min, _hi, WidenMax);
1542         }
1543       }
1544       return TypeInt::INT;
1545     }
1546     // Returned widened new guy
1547     return make(_lo,_hi,_widen+1);
1548   }
1549 
1550   // If old guy contains new, then we probably widened too far & dropped to
1551   // bottom.  Return the wider fellow.
1552   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1553     return old;
1554 
1555   //fatal("Integer value range is not subset");
1556   //return this;
1557   return TypeInt::INT;
1558 }
1559 
1560 //------------------------------narrow---------------------------------------
1561 // Only happens for pessimistic optimizations.
1562 const Type *TypeInt::narrow( const Type *old ) const {
1563   if (_lo >= _hi)  return this;   // already narrow enough
1564   if (old == nullptr)  return this;
1565   const TypeInt* ot = old->isa_int();
1566   if (ot == nullptr)  return this;
1567   jint olo = ot->_lo;
1568   jint ohi = ot->_hi;
1569 
1570   // If new guy is equal to old guy, no narrowing
1571   if (_lo == olo && _hi == ohi)  return old;
1572 
1573   // If old guy was maximum range, allow the narrowing
1574   if (olo == min_jint && ohi == max_jint)  return this;
1575 
1576   if (_lo < olo || _hi > ohi)
1577     return this;                // doesn't narrow; pretty wierd
1578 
1579   // The new type narrows the old type, so look for a "death march".
1580   // See comments on PhaseTransform::saturate.
1581   juint nrange = (juint)_hi - _lo;
1582   juint orange = (juint)ohi - olo;
1583   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1584     // Use the new type only if the range shrinks a lot.
1585     // We do not want the optimizer computing 2^31 point by point.
1586     return old;
1587   }
1588 
1589   return this;
1590 }
1591 
1592 //-----------------------------filter------------------------------------------
1593 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1594   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1595   if (ft == nullptr || ft->empty())
1596     return Type::TOP;           // Canonical empty value
1597   if (ft->_widen < this->_widen) {
1598     // Do not allow the value of kill->_widen to affect the outcome.
1599     // The widen bits must be allowed to run freely through the graph.
1600     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1601   }
1602   return ft;
1603 }
1604 
1605 //------------------------------eq---------------------------------------------
1606 // Structural equality check for Type representations
1607 bool TypeInt::eq( const Type *t ) const {
1608   const TypeInt *r = t->is_int(); // Handy access
1609   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1610 }
1611 
1612 //------------------------------hash-------------------------------------------
1613 // Type-specific hashing function.
1614 int TypeInt::hash(void) const {
1615   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1616 }
1617 
1618 //------------------------------is_finite--------------------------------------
1619 // Has a finite value
1620 bool TypeInt::is_finite() const {
1621   return true;
1622 }
1623 
1624 //------------------------------dump2------------------------------------------
1625 // Dump TypeInt
1626 #ifndef PRODUCT
1627 static const char* intname(char* buf, jint n) {
1628   if (n == min_jint)
1629     return "min";
1630   else if (n < min_jint + 10000)
1631     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1632   else if (n == max_jint)
1633     return "max";
1634   else if (n > max_jint - 10000)
1635     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1636   else
1637     sprintf(buf, INT32_FORMAT, n);
1638   return buf;
1639 }
1640 
1641 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1642   char buf[40], buf2[40];
1643   if (_lo == min_jint && _hi == max_jint)
1644     st->print("int");
1645   else if (is_con())
1646     st->print("int:%s", intname(buf, get_con()));
1647   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1648     st->print("bool");
1649   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1650     st->print("byte");
1651   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1652     st->print("char");
1653   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1654     st->print("short");
1655   else if (_hi == max_jint)
1656     st->print("int:>=%s", intname(buf, _lo));
1657   else if (_lo == min_jint)
1658     st->print("int:<=%s", intname(buf, _hi));
1659   else
1660     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1661 
1662   if (_widen != 0 && this != TypeInt::INT)
1663     st->print(":%.*s", _widen, "wwww");
1664 }
1665 #endif
1666 
1667 //------------------------------singleton--------------------------------------
1668 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1669 // constants.
1670 bool TypeInt::singleton(void) const {
1671   return _lo >= _hi;
1672 }
1673 
1674 bool TypeInt::empty(void) const {
1675   return _lo > _hi;
1676 }
1677 
1678 //=============================================================================
1679 // Convenience common pre-built types.
1680 const TypeLong *TypeLong::MAX;
1681 const TypeLong *TypeLong::MIN;
1682 const TypeLong *TypeLong::MINUS_1;// -1
1683 const TypeLong *TypeLong::ZERO; // 0
1684 const TypeLong *TypeLong::ONE;  // 1
1685 const TypeLong *TypeLong::POS;  // >=0
1686 const TypeLong *TypeLong::LONG; // 64-bit integers
1687 const TypeLong *TypeLong::INT;  // 32-bit subrange
1688 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1689 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1690 
1691 //------------------------------TypeLong---------------------------------------
1692 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long), _lo(lo), _hi(hi), _widen(w) {
1693 }
1694 
1695 //------------------------------make-------------------------------------------
1696 const TypeLong *TypeLong::make( jlong lo ) {
1697   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1698 }
1699 
1700 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1701   // Certain normalizations keep us sane when comparing types.
1702   // The 'SMALLINT' covers constants.
1703   if (lo <= hi) {
1704     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1705     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1706   } else {
1707     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1708     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1709   }
1710   return w;
1711 }
1712 
1713 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1714   w = normalize_long_widen(lo, hi, w);
1715   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1716 }
1717 
1718 
1719 //------------------------------meet-------------------------------------------
1720 // Compute the MEET of two types.  It returns a new Type representation object
1721 // with reference count equal to the number of Types pointing at it.
1722 // Caller should wrap a Types around it.
1723 const Type *TypeLong::xmeet( const Type *t ) const {
1724   // Perform a fast test for common case; meeting the same types together.
1725   if( this == t ) return this;  // Meeting same type?
1726 
1727   // Currently "this->_base" is a TypeLong
1728   switch (t->base()) {          // Switch on original type
1729   case AnyPtr:                  // Mixing with oops happens when javac
1730   case RawPtr:                  // reuses local variables
1731   case OopPtr:
1732   case InstPtr:
1733   case AryPtr:
1734   case MetadataPtr:
1735   case KlassPtr:
1736   case NarrowOop:
1737   case NarrowKlass:
1738   case Int:
1739   case FloatTop:
1740   case FloatCon:
1741   case FloatBot:
1742   case DoubleTop:
1743   case DoubleCon:
1744   case DoubleBot:
1745   case Bottom:                  // Ye Olde Default
1746     return Type::BOTTOM;
1747   default:                      // All else is a mistake
1748     typerr(t);
1749   case Top:                     // No change
1750     return this;
1751   case Long:                    // Long vs Long?
1752     break;
1753   }
1754 
1755   // Expand covered set
1756   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1757   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1758 }
1759 
1760 //------------------------------xdual------------------------------------------
1761 // Dual: reverse hi & lo; flip widen
1762 const Type *TypeLong::xdual() const {
1763   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1764   return new TypeLong(_hi,_lo,w);
1765 }
1766 
1767 //------------------------------widen------------------------------------------
1768 // Only happens for optimistic top-down optimizations.
1769 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1770   // Coming from TOP or such; no widening
1771   if( old->base() != Long ) return this;
1772   const TypeLong *ot = old->is_long();
1773 
1774   // If new guy is equal to old guy, no widening
1775   if( _lo == ot->_lo && _hi == ot->_hi )
1776     return old;
1777 
1778   // If new guy contains old, then we widened
1779   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1780     // New contains old
1781     // If new guy is already wider than old, no widening
1782     if( _widen > ot->_widen ) return this;
1783     // If old guy was a constant, do not bother
1784     if (ot->_lo == ot->_hi)  return this;
1785     // Now widen new guy.
1786     // Check for widening too far
1787     if (_widen == WidenMax) {
1788       jlong max = max_jlong;
1789       jlong min = min_jlong;
1790       if (limit->isa_long()) {
1791         max = limit->is_long()->_hi;
1792         min = limit->is_long()->_lo;
1793       }
1794       if (min < _lo && _hi < max) {
1795         // If neither endpoint is extremal yet, push out the endpoint
1796         // which is closer to its respective limit.
1797         if (_lo >= 0 ||                 // easy common case
1798             ((julong)_lo - min) >= ((julong)max - _hi)) {
1799           // Try to widen to an unsigned range type of 32/63 bits:
1800           if (max >= max_juint && _hi < max_juint)
1801             return make(_lo, max_juint, WidenMax);
1802           else
1803             return make(_lo, max, WidenMax);
1804         } else {
1805           return make(min, _hi, WidenMax);
1806         }
1807       }
1808       return TypeLong::LONG;
1809     }
1810     // Returned widened new guy
1811     return make(_lo,_hi,_widen+1);
1812   }
1813 
1814   // If old guy contains new, then we probably widened too far & dropped to
1815   // bottom.  Return the wider fellow.
1816   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1817     return old;
1818 
1819   //  fatal("Long value range is not subset");
1820   // return this;
1821   return TypeLong::LONG;
1822 }
1823 
1824 //------------------------------narrow----------------------------------------
1825 // Only happens for pessimistic optimizations.
1826 const Type *TypeLong::narrow( const Type *old ) const {
1827   if (_lo >= _hi)  return this;   // already narrow enough
1828   if (old == nullptr)  return this;
1829   const TypeLong* ot = old->isa_long();
1830   if (ot == nullptr)  return this;
1831   jlong olo = ot->_lo;
1832   jlong ohi = ot->_hi;
1833 
1834   // If new guy is equal to old guy, no narrowing
1835   if (_lo == olo && _hi == ohi)  return old;
1836 
1837   // If old guy was maximum range, allow the narrowing
1838   if (olo == min_jlong && ohi == max_jlong)  return this;
1839 
1840   if (_lo < olo || _hi > ohi)
1841     return this;                // doesn't narrow; pretty wierd
1842 
1843   // The new type narrows the old type, so look for a "death march".
1844   // See comments on PhaseTransform::saturate.
1845   julong nrange = _hi - _lo;
1846   julong orange = ohi - olo;
1847   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1848     // Use the new type only if the range shrinks a lot.
1849     // We do not want the optimizer computing 2^31 point by point.
1850     return old;
1851   }
1852 
1853   return this;
1854 }
1855 
1856 //-----------------------------filter------------------------------------------
1857 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1858   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1859   if (ft == nullptr || ft->empty())
1860     return Type::TOP;           // Canonical empty value
1861   if (ft->_widen < this->_widen) {
1862     // Do not allow the value of kill->_widen to affect the outcome.
1863     // The widen bits must be allowed to run freely through the graph.
1864     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1865   }
1866   return ft;
1867 }
1868 
1869 //------------------------------eq---------------------------------------------
1870 // Structural equality check for Type representations
1871 bool TypeLong::eq( const Type *t ) const {
1872   const TypeLong *r = t->is_long(); // Handy access
1873   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1874 }
1875 
1876 //------------------------------hash-------------------------------------------
1877 // Type-specific hashing function.
1878 int TypeLong::hash(void) const {
1879   return (int)(_lo+_hi+_widen+(int)Type::Long);
1880 }
1881 
1882 //------------------------------is_finite--------------------------------------
1883 // Has a finite value
1884 bool TypeLong::is_finite() const {
1885   return true;
1886 }
1887 
1888 //------------------------------dump2------------------------------------------
1889 // Dump TypeLong
1890 #ifndef PRODUCT
1891 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1892   if (n > x) {
1893     if (n >= x + 10000)  return nullptr;
1894     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1895   } else if (n < x) {
1896     if (n <= x - 10000)  return nullptr;
1897     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1898   } else {
1899     return xname;
1900   }
1901   return buf;
1902 }
1903 
1904 static const char* longname(char* buf, jlong n) {
1905   const char* str;
1906   if (n == min_jlong)
1907     return "min";
1908   else if (n < min_jlong + 10000)
1909     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1910   else if (n == max_jlong)
1911     return "max";
1912   else if (n > max_jlong - 10000)
1913     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1914   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != nullptr)
1915     return str;
1916   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != nullptr)
1917     return str;
1918   else if ((str = longnamenear(min_jint, "minint", buf, n)) != nullptr)
1919     return str;
1920   else
1921     sprintf(buf, JLONG_FORMAT, n);
1922   return buf;
1923 }
1924 
1925 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1926   char buf[80], buf2[80];
1927   if (_lo == min_jlong && _hi == max_jlong)
1928     st->print("long");
1929   else if (is_con())
1930     st->print("long:%s", longname(buf, get_con()));
1931   else if (_hi == max_jlong)
1932     st->print("long:>=%s", longname(buf, _lo));
1933   else if (_lo == min_jlong)
1934     st->print("long:<=%s", longname(buf, _hi));
1935   else
1936     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1937 
1938   if (_widen != 0 && this != TypeLong::LONG)
1939     st->print(":%.*s", _widen, "wwww");
1940 }
1941 #endif
1942 
1943 //------------------------------singleton--------------------------------------
1944 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1945 // constants
1946 bool TypeLong::singleton(void) const {
1947   return _lo >= _hi;
1948 }
1949 
1950 bool TypeLong::empty(void) const {
1951   return _lo > _hi;
1952 }
1953 
1954 //=============================================================================
1955 // Convenience common pre-built types.
1956 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1957 const TypeTuple *TypeTuple::IFFALSE;
1958 const TypeTuple *TypeTuple::IFTRUE;
1959 const TypeTuple *TypeTuple::IFNEITHER;
1960 const TypeTuple *TypeTuple::LOOPBODY;
1961 const TypeTuple *TypeTuple::MEMBAR;
1962 const TypeTuple *TypeTuple::STORECONDITIONAL;
1963 const TypeTuple *TypeTuple::START_I2C;
1964 const TypeTuple *TypeTuple::INT_PAIR;
1965 const TypeTuple *TypeTuple::LONG_PAIR;
1966 const TypeTuple *TypeTuple::INT_CC_PAIR;
1967 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1968 
1969 //------------------------------make-------------------------------------------
1970 // Make a TypeTuple from the range of a method signature
1971 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1972   ciType* return_type = sig->return_type();
1973   uint arg_cnt = return_type->size();
1974   const Type **field_array = fields(arg_cnt);
1975   switch (return_type->basic_type()) {
1976   case T_LONG:
1977     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1978     field_array[TypeFunc::Parms+1] = Type::HALF;
1979     break;
1980   case T_DOUBLE:
1981     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1982     field_array[TypeFunc::Parms+1] = Type::HALF;
1983     break;
1984   case T_OBJECT:
1985   case T_ARRAY:
1986   case T_BOOLEAN:
1987   case T_CHAR:
1988   case T_FLOAT:
1989   case T_BYTE:
1990   case T_SHORT:
1991   case T_INT:
1992     field_array[TypeFunc::Parms] = get_const_type(return_type);
1993     break;
1994   case T_VOID:
1995     break;
1996   default:
1997     ShouldNotReachHere();
1998   }
1999   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2000 }
2001 
2002 // Make a TypeTuple from the domain of a method signature
2003 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
2004   uint arg_cnt = sig->size();
2005 
2006   uint pos = TypeFunc::Parms;
2007   const Type **field_array;
2008   if (recv != nullptr) {
2009     arg_cnt++;
2010     field_array = fields(arg_cnt);
2011     // Use get_const_type here because it respects UseUniqueSubclasses:
2012     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2013   } else {
2014     field_array = fields(arg_cnt);
2015   }
2016 
2017   int i = 0;
2018   while (pos < TypeFunc::Parms + arg_cnt) {
2019     ciType* type = sig->type_at(i);
2020 
2021     switch (type->basic_type()) {
2022     case T_LONG:
2023       field_array[pos++] = TypeLong::LONG;
2024       field_array[pos++] = Type::HALF;
2025       break;
2026     case T_DOUBLE:
2027       field_array[pos++] = Type::DOUBLE;
2028       field_array[pos++] = Type::HALF;
2029       break;
2030     case T_OBJECT:
2031     case T_ARRAY:
2032     case T_FLOAT:
2033     case T_INT:
2034       field_array[pos++] = get_const_type(type);
2035       break;
2036     case T_BOOLEAN:
2037     case T_CHAR:
2038     case T_BYTE:
2039     case T_SHORT:
2040       field_array[pos++] = TypeInt::INT;
2041       break;
2042     default:
2043       ShouldNotReachHere();
2044     }
2045     i++;
2046   }
2047 
2048   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2049 }
2050 
2051 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2052   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2053 }
2054 
2055 //------------------------------fields-----------------------------------------
2056 // Subroutine call type with space allocated for argument types
2057 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2058 const Type **TypeTuple::fields( uint arg_cnt ) {
2059   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2060   flds[TypeFunc::Control  ] = Type::CONTROL;
2061   flds[TypeFunc::I_O      ] = Type::ABIO;
2062   flds[TypeFunc::Memory   ] = Type::MEMORY;
2063   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2064   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2065 
2066   return flds;
2067 }
2068 
2069 //------------------------------meet-------------------------------------------
2070 // Compute the MEET of two types.  It returns a new Type object.
2071 const Type *TypeTuple::xmeet( const Type *t ) const {
2072   // Perform a fast test for common case; meeting the same types together.
2073   if( this == t ) return this;  // Meeting same type-rep?
2074 
2075   // Current "this->_base" is Tuple
2076   switch (t->base()) {          // switch on original type
2077 
2078   case Bottom:                  // Ye Olde Default
2079     return t;
2080 
2081   default:                      // All else is a mistake
2082     typerr(t);
2083 
2084   case Tuple: {                 // Meeting 2 signatures?
2085     const TypeTuple *x = t->is_tuple();
2086     assert( _cnt == x->_cnt, "" );
2087     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2088     for( uint i=0; i<_cnt; i++ )
2089       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2090     return TypeTuple::make(_cnt,fields);
2091   }
2092   case Top:
2093     break;
2094   }
2095   return this;                  // Return the double constant
2096 }
2097 
2098 //------------------------------xdual------------------------------------------
2099 // Dual: compute field-by-field dual
2100 const Type *TypeTuple::xdual() const {
2101   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2102   for( uint i=0; i<_cnt; i++ )
2103     fields[i] = _fields[i]->dual();
2104   return new TypeTuple(_cnt,fields);
2105 }
2106 
2107 //------------------------------eq---------------------------------------------
2108 // Structural equality check for Type representations
2109 bool TypeTuple::eq( const Type *t ) const {
2110   const TypeTuple *s = (const TypeTuple *)t;
2111   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2112   for (uint i = 0; i < _cnt; i++)
2113     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2114       return false;             // Missed
2115   return true;
2116 }
2117 
2118 //------------------------------hash-------------------------------------------
2119 // Type-specific hashing function.
2120 int TypeTuple::hash(void) const {
2121   intptr_t sum = _cnt;
2122   for( uint i=0; i<_cnt; i++ )
2123     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2124   return sum;
2125 }
2126 
2127 //------------------------------dump2------------------------------------------
2128 // Dump signature Type
2129 #ifndef PRODUCT
2130 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2131   st->print("{");
2132   if( !depth || d[this] ) {     // Check for recursive print
2133     st->print("...}");
2134     return;
2135   }
2136   d.Insert((void*)this, (void*)this);   // Stop recursion
2137   if( _cnt ) {
2138     uint i;
2139     for( i=0; i<_cnt-1; i++ ) {
2140       st->print("%d:", i);
2141       _fields[i]->dump2(d, depth-1, st);
2142       st->print(", ");
2143     }
2144     st->print("%d:", i);
2145     _fields[i]->dump2(d, depth-1, st);
2146   }
2147   st->print("}");
2148 }
2149 #endif
2150 
2151 //------------------------------singleton--------------------------------------
2152 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2153 // constants (Ldi nodes).  Singletons are integer, float or double constants
2154 // or a single symbol.
2155 bool TypeTuple::singleton(void) const {
2156   return false;                 // Never a singleton
2157 }
2158 
2159 bool TypeTuple::empty(void) const {
2160   for( uint i=0; i<_cnt; i++ ) {
2161     if (_fields[i]->empty())  return true;
2162   }
2163   return false;
2164 }
2165 
2166 //=============================================================================
2167 // Convenience common pre-built types.
2168 
2169 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2170   // Certain normalizations keep us sane when comparing types.
2171   // We do not want arrayOop variables to differ only by the wideness
2172   // of their index types.  Pick minimum wideness, since that is the
2173   // forced wideness of small ranges anyway.
2174   if (size->_widen != Type::WidenMin)
2175     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2176   else
2177     return size;
2178 }
2179 
2180 //------------------------------make-------------------------------------------
2181 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2182   if (UseCompressedOops && elem->isa_oopptr()) {
2183     elem = elem->make_narrowoop();
2184   }
2185   size = normalize_array_size(size);
2186   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2187 }
2188 
2189 //------------------------------meet-------------------------------------------
2190 // Compute the MEET of two types.  It returns a new Type object.
2191 const Type *TypeAry::xmeet( const Type *t ) const {
2192   // Perform a fast test for common case; meeting the same types together.
2193   if( this == t ) return this;  // Meeting same type-rep?
2194 
2195   // Current "this->_base" is Ary
2196   switch (t->base()) {          // switch on original type
2197 
2198   case Bottom:                  // Ye Olde Default
2199     return t;
2200 
2201   default:                      // All else is a mistake
2202     typerr(t);
2203 
2204   case Array: {                 // Meeting 2 arrays?
2205     const TypeAry *a = t->is_ary();
2206     return TypeAry::make(_elem->meet_speculative(a->_elem),
2207                          _size->xmeet(a->_size)->is_int(),
2208                          _stable && a->_stable);
2209   }
2210   case Top:
2211     break;
2212   }
2213   return this;                  // Return the double constant
2214 }
2215 
2216 //------------------------------xdual------------------------------------------
2217 // Dual: compute field-by-field dual
2218 const Type *TypeAry::xdual() const {
2219   const TypeInt* size_dual = _size->dual()->is_int();
2220   size_dual = normalize_array_size(size_dual);
2221   return new TypeAry(_elem->dual(), size_dual, !_stable);
2222 }
2223 
2224 //------------------------------eq---------------------------------------------
2225 // Structural equality check for Type representations
2226 bool TypeAry::eq( const Type *t ) const {
2227   const TypeAry *a = (const TypeAry*)t;
2228   return _elem == a->_elem &&
2229     _stable == a->_stable &&
2230     _size == a->_size;
2231 }
2232 
2233 //------------------------------hash-------------------------------------------
2234 // Type-specific hashing function.
2235 int TypeAry::hash(void) const {
2236   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2237 }
2238 
2239 /**
2240  * Return same type without a speculative part in the element
2241  */
2242 const Type* TypeAry::remove_speculative() const {
2243   return make(_elem->remove_speculative(), _size, _stable);
2244 }
2245 
2246 /**
2247  * Return same type with cleaned up speculative part of element
2248  */
2249 const Type* TypeAry::cleanup_speculative() const {
2250   return make(_elem->cleanup_speculative(), _size, _stable);
2251 }
2252 
2253 /**
2254  * Return same type but with a different inline depth (used for speculation)
2255  *
2256  * @param depth  depth to meet with
2257  */
2258 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2259   if (!UseInlineDepthForSpeculativeTypes) {
2260     return this;
2261   }
2262   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2263 }
2264 
2265 //----------------------interface_vs_oop---------------------------------------
2266 #ifdef ASSERT
2267 bool TypeAry::interface_vs_oop(const Type *t) const {
2268   const TypeAry* t_ary = t->is_ary();
2269   if (t_ary) {
2270     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2271     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2272     if(this_ptr != nullptr && t_ptr != NULL) {
2273       return this_ptr->interface_vs_oop(t_ptr);
2274     }
2275   }
2276   return false;
2277 }
2278 #endif
2279 
2280 //------------------------------dump2------------------------------------------
2281 #ifndef PRODUCT
2282 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2283   if (_stable)  st->print("stable:");
2284   _elem->dump2(d, depth, st);
2285   st->print("[");
2286   _size->dump2(d, depth, st);
2287   st->print("]");
2288 }
2289 #endif
2290 
2291 //------------------------------singleton--------------------------------------
2292 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2293 // constants (Ldi nodes).  Singletons are integer, float or double constants
2294 // or a single symbol.
2295 bool TypeAry::singleton(void) const {
2296   return false;                 // Never a singleton
2297 }
2298 
2299 bool TypeAry::empty(void) const {
2300   return _elem->empty() || _size->empty();
2301 }
2302 
2303 //--------------------------ary_must_be_exact----------------------------------
2304 bool TypeAry::ary_must_be_exact() const {
2305   // This logic looks at the element type of an array, and returns true
2306   // if the element type is either a primitive or a final instance class.
2307   // In such cases, an array built on this ary must have no subclasses.
2308   if (_elem == BOTTOM)      return false;  // general array not exact
2309   if (_elem == TOP   )      return false;  // inverted general array not exact
2310   const TypeOopPtr*  toop = nullptr;
2311   if (UseCompressedOops && _elem->isa_narrowoop()) {
2312     toop = _elem->make_ptr()->isa_oopptr();
2313   } else {
2314     toop = _elem->isa_oopptr();
2315   }
2316   if (!toop)                return true;   // a primitive type, like int
2317   ciKlass* tklass = toop->klass();
2318   if (tklass == NULL)       return false;  // unloaded class
2319   if (!tklass->is_loaded()) return false;  // unloaded class
2320   const TypeInstPtr* tinst;
2321   if (_elem->isa_narrowoop())
2322     tinst = _elem->make_ptr()->isa_instptr();
2323   else
2324     tinst = _elem->isa_instptr();
2325   if (tinst)
2326     return tklass->as_instance_klass()->is_final();
2327   const TypeAryPtr*  tap;
2328   if (_elem->isa_narrowoop())
2329     tap = _elem->make_ptr()->isa_aryptr();
2330   else
2331     tap = _elem->isa_aryptr();
2332   if (tap)
2333     return tap->ary()->ary_must_be_exact();
2334   return false;
2335 }
2336 
2337 //==============================TypeVect=======================================
2338 // Convenience common pre-built types.
2339 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2340 const TypeVect *TypeVect::VECTS = nullptr; //  32-bit vectors
2341 const TypeVect *TypeVect::VECTD = nullptr; //  64-bit vectors
2342 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2343 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2344 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2345 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2346 
2347 //------------------------------make-------------------------------------------
2348 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2349   BasicType elem_bt = elem->array_element_basic_type();
2350   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2351   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2352   int size = length * type2aelembytes(elem_bt);
2353   switch (Matcher::vector_ideal_reg(size)) {
2354   case Op_VecA:
2355     return (TypeVect*)(new TypeVectA(elem, length))->hashcons();
2356   case Op_VecS:
2357     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2358   case Op_RegL:
2359   case Op_VecD:
2360   case Op_RegD:
2361     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2362   case Op_VecX:
2363     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2364   case Op_VecY:
2365     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2366   case Op_VecZ:
2367     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2368   }
2369  ShouldNotReachHere();
2370   return nullptr;
2371 }
2372 
2373 const TypeVect *TypeVect::makemask(const Type* elem, uint length) {
2374   if (Matcher::has_predicated_vectors()) {
2375     const TypeVect* mtype = Matcher::predicate_reg_type(elem, length);
2376     return (TypeVect*)(const_cast<TypeVect*>(mtype))->hashcons();
2377   } else {
2378     return make(elem, length);
2379   }
2380 }
2381 
2382 //------------------------------meet-------------------------------------------
2383 // Compute the MEET of two types.  It returns a new Type object.
2384 const Type *TypeVect::xmeet( const Type *t ) const {
2385   // Perform a fast test for common case; meeting the same types together.
2386   if( this == t ) return this;  // Meeting same type-rep?
2387 
2388   // Current "this->_base" is Vector
2389   switch (t->base()) {          // switch on original type
2390 
2391   case Bottom:                  // Ye Olde Default
2392     return t;
2393 
2394   default:                      // All else is a mistake
2395     typerr(t);
2396   case VectorMask: {
2397     const TypeVectMask* v = t->is_vectmask();
2398     assert(  base() == v->base(), "");
2399     assert(length() == v->length(), "");
2400     assert(element_basic_type() == v->element_basic_type(), "");
2401     return TypeVect::makemask(_elem->xmeet(v->_elem), _length);
2402   }
2403   case VectorA:
2404   case VectorS:
2405   case VectorD:
2406   case VectorX:
2407   case VectorY:
2408   case VectorZ: {                // Meeting 2 vectors?
2409     const TypeVect* v = t->is_vect();
2410     assert(  base() == v->base(), "");
2411     assert(length() == v->length(), "");
2412     assert(element_basic_type() == v->element_basic_type(), "");
2413     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2414   }
2415   case Top:
2416     break;
2417   }
2418   return this;
2419 }
2420 
2421 //------------------------------xdual------------------------------------------
2422 // Dual: compute field-by-field dual
2423 const Type *TypeVect::xdual() const {
2424   return new TypeVect(base(), _elem->dual(), _length);
2425 }
2426 
2427 //------------------------------eq---------------------------------------------
2428 // Structural equality check for Type representations
2429 bool TypeVect::eq(const Type *t) const {
2430   const TypeVect *v = t->is_vect();
2431   return (_elem == v->_elem) && (_length == v->_length);
2432 }
2433 
2434 //------------------------------hash-------------------------------------------
2435 // Type-specific hashing function.
2436 int TypeVect::hash(void) const {
2437   return (intptr_t)_elem + (intptr_t)_length;
2438 }
2439 
2440 //------------------------------singleton--------------------------------------
2441 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2442 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2443 // constant value (when vector is created with Replicate code).
2444 bool TypeVect::singleton(void) const {
2445 // There is no Con node for vectors yet.
2446 //  return _elem->singleton();
2447   return false;
2448 }
2449 
2450 bool TypeVect::empty(void) const {
2451   return _elem->empty();
2452 }
2453 
2454 //------------------------------dump2------------------------------------------
2455 #ifndef PRODUCT
2456 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2457   switch (base()) {
2458   case VectorA:
2459     st->print("vectora["); break;
2460   case VectorS:
2461     st->print("vectors["); break;
2462   case VectorD:
2463     st->print("vectord["); break;
2464   case VectorX:
2465     st->print("vectorx["); break;
2466   case VectorY:
2467     st->print("vectory["); break;
2468   case VectorZ:
2469     st->print("vectorz["); break;
2470   case VectorMask:
2471     st->print("vectormask["); break;
2472   default:
2473     ShouldNotReachHere();
2474   }
2475   st->print("%d]:{", _length);
2476   _elem->dump2(d, depth, st);
2477   st->print("}");
2478 }
2479 #endif
2480 
2481 bool TypeVectMask::eq(const Type *t) const {
2482   const TypeVectMask *v = t->is_vectmask();
2483   return (element_type() == v->element_type()) && (length() == v->length());
2484 }
2485 
2486 const Type *TypeVectMask::xdual() const {
2487   return new TypeVectMask(element_type()->dual(), length());
2488 }
2489 
2490 //=============================================================================
2491 // Convenience common pre-built types.
2492 const TypePtr *TypePtr::NULL_PTR;
2493 const TypePtr *TypePtr::NOTNULL;
2494 const TypePtr *TypePtr::BOTTOM;
2495 
2496 //------------------------------meet-------------------------------------------
2497 // Meet over the PTR enum
2498 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2499   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2500   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2501   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2502   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2503   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2504   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2505   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2506 };
2507 
2508 //------------------------------make-------------------------------------------
2509 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2510   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2511 }
2512 
2513 //------------------------------cast_to_ptr_type-------------------------------
2514 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2515   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2516   if( ptr == _ptr ) return this;
2517   return make(_base, ptr, _offset, _speculative, _inline_depth);
2518 }
2519 
2520 //------------------------------get_con----------------------------------------
2521 intptr_t TypePtr::get_con() const {
2522   assert( _ptr == Null, "" );
2523   return _offset;
2524 }
2525 
2526 //------------------------------meet-------------------------------------------
2527 // Compute the MEET of two types.  It returns a new Type object.
2528 const Type *TypePtr::xmeet(const Type *t) const {
2529   const Type* res = xmeet_helper(t);
2530   if (res->isa_ptr() == nullptr) {
2531     return res;
2532   }
2533 
2534   const TypePtr* res_ptr = res->is_ptr();
2535   if (res_ptr->speculative() != nullptr) {
2536     // type->speculative() is null means that speculation is no better
2537     // than type, i.e. type->speculative() == type. So there are 2
2538     // ways to represent the fact that we have no useful speculative
2539     // data and we should use a single one to be able to test for
2540     // equality between types. Check whether type->speculative() ==
2541     // type and set speculative to null if it is the case.
2542     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2543       return res_ptr->remove_speculative();
2544     }
2545   }
2546 
2547   return res;
2548 }
2549 
2550 const Type *TypePtr::xmeet_helper(const Type *t) const {
2551   // Perform a fast test for common case; meeting the same types together.
2552   if( this == t ) return this;  // Meeting same type-rep?
2553 
2554   // Current "this->_base" is AnyPtr
2555   switch (t->base()) {          // switch on original type
2556   case Int:                     // Mixing ints & oops happens when javac
2557   case Long:                    // reuses local variables
2558   case FloatTop:
2559   case FloatCon:
2560   case FloatBot:
2561   case DoubleTop:
2562   case DoubleCon:
2563   case DoubleBot:
2564   case NarrowOop:
2565   case NarrowKlass:
2566   case Bottom:                  // Ye Olde Default
2567     return Type::BOTTOM;
2568   case Top:
2569     return this;
2570 
2571   case AnyPtr: {                // Meeting to AnyPtrs
2572     const TypePtr *tp = t->is_ptr();
2573     const TypePtr* speculative = xmeet_speculative(tp);
2574     int depth = meet_inline_depth(tp->inline_depth());
2575     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2576   }
2577   case RawPtr:                  // For these, flip the call around to cut down
2578   case OopPtr:
2579   case InstPtr:                 // on the cases I have to handle.
2580   case AryPtr:
2581   case MetadataPtr:
2582   case KlassPtr:
2583     return t->xmeet(this);      // Call in reverse direction
2584   default:                      // All else is a mistake
2585     typerr(t);
2586 
2587   }
2588   return this;
2589 }
2590 
2591 //------------------------------meet_offset------------------------------------
2592 int TypePtr::meet_offset( int offset ) const {
2593   // Either is 'TOP' offset?  Return the other offset!
2594   if( _offset == OffsetTop ) return offset;
2595   if( offset == OffsetTop ) return _offset;
2596   // If either is different, return 'BOTTOM' offset
2597   if( _offset != offset ) return OffsetBot;
2598   return _offset;
2599 }
2600 
2601 //------------------------------dual_offset------------------------------------
2602 int TypePtr::dual_offset( ) const {
2603   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2604   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2605   return _offset;               // Map everything else into self
2606 }
2607 
2608 //------------------------------xdual------------------------------------------
2609 // Dual: compute field-by-field dual
2610 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2611   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2612 };
2613 const Type *TypePtr::xdual() const {
2614   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2615 }
2616 
2617 //------------------------------xadd_offset------------------------------------
2618 int TypePtr::xadd_offset( intptr_t offset ) const {
2619   // Adding to 'TOP' offset?  Return 'TOP'!
2620   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2621   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2622   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2623   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2624   offset += (intptr_t)_offset;
2625   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2626 
2627   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2628   // It is possible to construct a negative offset during PhaseCCP
2629 
2630   return (int)offset;        // Sum valid offsets
2631 }
2632 
2633 //------------------------------add_offset-------------------------------------
2634 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2635   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2636 }
2637 
2638 //------------------------------eq---------------------------------------------
2639 // Structural equality check for Type representations
2640 bool TypePtr::eq( const Type *t ) const {
2641   const TypePtr *a = (const TypePtr*)t;
2642   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2643 }
2644 
2645 //------------------------------hash-------------------------------------------
2646 // Type-specific hashing function.
2647 int TypePtr::hash(void) const {
2648   return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2649 ;
2650 }
2651 
2652 /**
2653  * Return same type without a speculative part
2654  */
2655 const Type* TypePtr::remove_speculative() const {
2656   if (_speculative == nullptr) {
2657     return this;
2658   }
2659   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2660   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2661 }
2662 
2663 /**
2664  * Return same type but drop speculative part if we know we won't use
2665  * it
2666  */
2667 const Type* TypePtr::cleanup_speculative() const {
2668   if (speculative() == nullptr) {
2669     return this;
2670   }
2671   const Type* no_spec = remove_speculative();
2672   // If this is NULL_PTR then we don't need the speculative type
2673   // (with_inline_depth in case the current type inline depth is
2674   // InlineDepthTop)
2675   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2676     return no_spec;
2677   }
2678   if (above_centerline(speculative()->ptr())) {
2679     return no_spec;
2680   }
2681   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2682   // If the speculative may be null and is an inexact klass then it
2683   // doesn't help
2684   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2685       (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
2686     return no_spec;
2687   }
2688   return this;
2689 }
2690 
2691 /**
2692  * dual of the speculative part of the type
2693  */
2694 const TypePtr* TypePtr::dual_speculative() const {
2695   if (_speculative == nullptr) {
2696     return nullptr;
2697   }
2698   return _speculative->dual()->is_ptr();
2699 }
2700 
2701 /**
2702  * meet of the speculative parts of 2 types
2703  *
2704  * @param other  type to meet with
2705  */
2706 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2707   bool this_has_spec = (_speculative != nullptr);
2708   bool other_has_spec = (other->speculative() != nullptr);
2709 
2710   if (!this_has_spec && !other_has_spec) {
2711     return nullptr;
2712   }
2713 
2714   // If we are at a point where control flow meets and one branch has
2715   // a speculative type and the other has not, we meet the speculative
2716   // type of one branch with the actual type of the other. If the
2717   // actual type is exact and the speculative is as well, then the
2718   // result is a speculative type which is exact and we can continue
2719   // speculation further.
2720   const TypePtr* this_spec = _speculative;
2721   const TypePtr* other_spec = other->speculative();
2722 
2723   if (!this_has_spec) {
2724     this_spec = this;
2725   }
2726 
2727   if (!other_has_spec) {
2728     other_spec = other;
2729   }
2730 
2731   return this_spec->meet(other_spec)->is_ptr();
2732 }
2733 
2734 /**
2735  * dual of the inline depth for this type (used for speculation)
2736  */
2737 int TypePtr::dual_inline_depth() const {
2738   return -inline_depth();
2739 }
2740 
2741 /**
2742  * meet of 2 inline depths (used for speculation)
2743  *
2744  * @param depth  depth to meet with
2745  */
2746 int TypePtr::meet_inline_depth(int depth) const {
2747   return MAX2(inline_depth(), depth);
2748 }
2749 
2750 /**
2751  * Are the speculative parts of 2 types equal?
2752  *
2753  * @param other  type to compare this one to
2754  */
2755 bool TypePtr::eq_speculative(const TypePtr* other) const {
2756   if (_speculative == nullptr || other->speculative() == nullptr) {
2757     return _speculative == other->speculative();
2758   }
2759 
2760   if (_speculative->base() != other->speculative()->base()) {
2761     return false;
2762   }
2763 
2764   return _speculative->eq(other->speculative());
2765 }
2766 
2767 /**
2768  * Hash of the speculative part of the type
2769  */
2770 int TypePtr::hash_speculative() const {
2771   if (_speculative == nullptr) {
2772     return 0;
2773   }
2774 
2775   return _speculative->hash();
2776 }
2777 
2778 /**
2779  * add offset to the speculative part of the type
2780  *
2781  * @param offset  offset to add
2782  */
2783 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2784   if (_speculative == nullptr) {
2785     return nullptr;
2786   }
2787   return _speculative->add_offset(offset)->is_ptr();
2788 }
2789 
2790 /**
2791  * return exact klass from the speculative type if there's one
2792  */
2793 ciKlass* TypePtr::speculative_type() const {
2794   if (_speculative != nullptr && _speculative->isa_oopptr()) {
2795     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2796     if (speculative->klass_is_exact()) {
2797       return speculative->klass();
2798     }
2799   }
2800   return nullptr;
2801 }
2802 
2803 /**
2804  * return true if speculative type may be null
2805  */
2806 bool TypePtr::speculative_maybe_null() const {
2807   if (_speculative != nullptr) {
2808     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2809     return speculative->maybe_null();
2810   }
2811   return true;
2812 }
2813 
2814 bool TypePtr::speculative_always_null() const {
2815   if (_speculative != nullptr) {
2816     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2817     return speculative == TypePtr::NULL_PTR;
2818   }
2819   return false;
2820 }
2821 
2822 /**
2823  * Same as TypePtr::speculative_type() but return the klass only if
2824  * the speculative tells us is not null
2825  */
2826 ciKlass* TypePtr::speculative_type_not_null() const {
2827   if (speculative_maybe_null()) {
2828     return nullptr;
2829   }
2830   return speculative_type();
2831 }
2832 
2833 /**
2834  * Check whether new profiling would improve speculative type
2835  *
2836  * @param   exact_kls    class from profiling
2837  * @param   inline_depth inlining depth of profile point
2838  *
2839  * @return  true if type profile is valuable
2840  */
2841 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2842   // no profiling?
2843   if (exact_kls == nullptr) {
2844     return false;
2845   }
2846   if (speculative() == TypePtr::NULL_PTR) {
2847     return false;
2848   }
2849   // no speculative type or non exact speculative type?
2850   if (speculative_type() == nullptr) {
2851     return true;
2852   }
2853   // If the node already has an exact speculative type keep it,
2854   // unless it was provided by profiling that is at a deeper
2855   // inlining level. Profiling at a higher inlining depth is
2856   // expected to be less accurate.
2857   if (_speculative->inline_depth() == InlineDepthBottom) {
2858     return false;
2859   }
2860   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2861   return inline_depth < _speculative->inline_depth();
2862 }
2863 
2864 /**
2865  * Check whether new profiling would improve ptr (= tells us it is non
2866  * null)
2867  *
2868  * @param   ptr_kind always null or not null?
2869  *
2870  * @return  true if ptr profile is valuable
2871  */
2872 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2873   // profiling doesn't tell us anything useful
2874   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2875     return false;
2876   }
2877   // We already know this is not null
2878   if (!this->maybe_null()) {
2879     return false;
2880   }
2881   // We already know the speculative type cannot be null
2882   if (!speculative_maybe_null()) {
2883     return false;
2884   }
2885   // We already know this is always null
2886   if (this == TypePtr::NULL_PTR) {
2887     return false;
2888   }
2889   // We already know the speculative type is always null
2890   if (speculative_always_null()) {
2891     return false;
2892   }
2893   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2894     return false;
2895   }
2896   return true;
2897 }
2898 
2899 //------------------------------dump2------------------------------------------
2900 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2901   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
2902 };
2903 
2904 #ifndef PRODUCT
2905 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2906   if( _ptr == Null ) st->print("null");
2907   else st->print("%s *", ptr_msg[_ptr]);
2908   if( _offset == OffsetTop ) st->print("+top");
2909   else if( _offset == OffsetBot ) st->print("+bot");
2910   else if( _offset ) st->print("+%d", _offset);
2911   dump_inline_depth(st);
2912   dump_speculative(st);
2913 }
2914 
2915 /**
2916  *dump the speculative part of the type
2917  */
2918 void TypePtr::dump_speculative(outputStream *st) const {
2919   if (_speculative != nullptr) {
2920     st->print(" (speculative=");
2921     _speculative->dump_on(st);
2922     st->print(")");
2923   }
2924 }
2925 
2926 /**
2927  *dump the inline depth of the type
2928  */
2929 void TypePtr::dump_inline_depth(outputStream *st) const {
2930   if (_inline_depth != InlineDepthBottom) {
2931     if (_inline_depth == InlineDepthTop) {
2932       st->print(" (inline_depth=InlineDepthTop)");
2933     } else {
2934       st->print(" (inline_depth=%d)", _inline_depth);
2935     }
2936   }
2937 }
2938 #endif
2939 
2940 //------------------------------singleton--------------------------------------
2941 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2942 // constants
2943 bool TypePtr::singleton(void) const {
2944   // TopPTR, Null, AnyNull, Constant are all singletons
2945   return (_offset != OffsetBot) && !below_centerline(_ptr);
2946 }
2947 
2948 bool TypePtr::empty(void) const {
2949   return (_offset == OffsetTop) || above_centerline(_ptr);
2950 }
2951 
2952 //=============================================================================
2953 // Convenience common pre-built types.
2954 const TypeRawPtr *TypeRawPtr::BOTTOM;
2955 const TypeRawPtr *TypeRawPtr::NOTNULL;
2956 
2957 //------------------------------make-------------------------------------------
2958 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2959   assert( ptr != Constant, "what is the constant?" );
2960   assert( ptr != Null, "Use TypePtr for null" );
2961   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2962 }
2963 
2964 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2965   assert( bits, "Use TypePtr for null" );
2966   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2967 }
2968 
2969 //------------------------------cast_to_ptr_type-------------------------------
2970 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2971   assert( ptr != Constant, "what is the constant?" );
2972   assert( ptr != Null, "Use TypePtr for null" );
2973   assert( _bits==0, "Why cast a constant address?");
2974   if( ptr == _ptr ) return this;
2975   return make(ptr);
2976 }
2977 
2978 //------------------------------get_con----------------------------------------
2979 intptr_t TypeRawPtr::get_con() const {
2980   assert( _ptr == Null || _ptr == Constant, "" );
2981   return (intptr_t)_bits;
2982 }
2983 
2984 //------------------------------meet-------------------------------------------
2985 // Compute the MEET of two types.  It returns a new Type object.
2986 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2987   // Perform a fast test for common case; meeting the same types together.
2988   if( this == t ) return this;  // Meeting same type-rep?
2989 
2990   // Current "this->_base" is RawPtr
2991   switch( t->base() ) {         // switch on original type
2992   case Bottom:                  // Ye Olde Default
2993     return t;
2994   case Top:
2995     return this;
2996   case AnyPtr:                  // Meeting to AnyPtrs
2997     break;
2998   case RawPtr: {                // might be top, bot, any/not or constant
2999     enum PTR tptr = t->is_ptr()->ptr();
3000     enum PTR ptr = meet_ptr( tptr );
3001     if( ptr == Constant ) {     // Cannot be equal constants, so...
3002       if( tptr == Constant && _ptr != Constant)  return t;
3003       if( _ptr == Constant && tptr != Constant)  return this;
3004       ptr = NotNull;            // Fall down in lattice
3005     }
3006     return make( ptr );
3007   }
3008 
3009   case OopPtr:
3010   case InstPtr:
3011   case AryPtr:
3012   case MetadataPtr:
3013   case KlassPtr:
3014     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3015   default:                      // All else is a mistake
3016     typerr(t);
3017   }
3018 
3019   // Found an AnyPtr type vs self-RawPtr type
3020   const TypePtr *tp = t->is_ptr();
3021   switch (tp->ptr()) {
3022   case TypePtr::TopPTR:  return this;
3023   case TypePtr::BotPTR:  return t;
3024   case TypePtr::Null:
3025     if( _ptr == TypePtr::TopPTR ) return t;
3026     return TypeRawPtr::BOTTOM;
3027   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3028   case TypePtr::AnyNull:
3029     if( _ptr == TypePtr::Constant) return this;
3030     return make( meet_ptr(TypePtr::AnyNull) );
3031   default: ShouldNotReachHere();
3032   }
3033   return this;
3034 }
3035 
3036 //------------------------------xdual------------------------------------------
3037 // Dual: compute field-by-field dual
3038 const Type *TypeRawPtr::xdual() const {
3039   return new TypeRawPtr( dual_ptr(), _bits );
3040 }
3041 
3042 //------------------------------add_offset-------------------------------------
3043 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3044   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3045   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3046   if( offset == 0 ) return this; // No change
3047   switch (_ptr) {
3048   case TypePtr::TopPTR:
3049   case TypePtr::BotPTR:
3050   case TypePtr::NotNull:
3051     return this;
3052   case TypePtr::Null:
3053   case TypePtr::Constant: {
3054     address bits = _bits+offset;
3055     if ( bits == 0 ) return TypePtr::NULL_PTR;
3056     return make( bits );
3057   }
3058   default:  ShouldNotReachHere();
3059   }
3060   return nullptr;                  // Lint noise
3061 }
3062 
3063 //------------------------------eq---------------------------------------------
3064 // Structural equality check for Type representations
3065 bool TypeRawPtr::eq( const Type *t ) const {
3066   const TypeRawPtr *a = (const TypeRawPtr*)t;
3067   return _bits == a->_bits && TypePtr::eq(t);
3068 }
3069 
3070 //------------------------------hash-------------------------------------------
3071 // Type-specific hashing function.
3072 int TypeRawPtr::hash(void) const {
3073   return (intptr_t)_bits + TypePtr::hash();
3074 }
3075 
3076 //------------------------------dump2------------------------------------------
3077 #ifndef PRODUCT
3078 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3079   if( _ptr == Constant )
3080     st->print(INTPTR_FORMAT, p2i(_bits));
3081   else
3082     st->print("rawptr:%s", ptr_msg[_ptr]);
3083 }
3084 #endif
3085 
3086 //=============================================================================
3087 // Convenience common pre-built type.
3088 const TypeOopPtr *TypeOopPtr::BOTTOM;
3089 
3090 //------------------------------TypeOopPtr-------------------------------------
3091 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
3092                        int instance_id, const TypePtr* speculative, int inline_depth)
3093   : TypePtr(t, ptr, offset, speculative, inline_depth),
3094     _const_oop(o), _klass(k),
3095     _klass_is_exact(xk),
3096     _is_ptr_to_narrowoop(false),
3097     _is_ptr_to_narrowklass(false),
3098     _is_ptr_to_boxed_value(false),
3099     _instance_id(instance_id) {
3100   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3101       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3102     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3103   }
3104 #ifdef _LP64
3105   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3106     if (_offset == oopDesc::klass_offset_in_bytes()) {
3107       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3108     } else if (klass() == nullptr) {
3109       // Array with unknown body type
3110       assert(this->isa_aryptr(), "only arrays without klass");
3111       _is_ptr_to_narrowoop = UseCompressedOops;
3112     } else if (this->isa_aryptr()) {
3113       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3114                              _offset != arrayOopDesc::length_offset_in_bytes());
3115     } else if (klass()->is_instance_klass()) {
3116       ciInstanceKlass* ik = klass()->as_instance_klass();
3117       ciField* field = NULL;
3118       if (this->isa_klassptr()) {
3119         // Perm objects don't use compressed references
3120       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3121         // unsafe access
3122         _is_ptr_to_narrowoop = UseCompressedOops;
3123       } else {
3124         assert(this->isa_instptr(), "must be an instance ptr.");
3125 
3126         if (klass() == ciEnv::current()->Class_klass() &&
3127             (_offset == java_lang_Class::klass_offset() ||
3128              _offset == java_lang_Class::array_klass_offset())) {
3129           // Special hidden fields from the Class.
3130           assert(this->isa_instptr(), "must be an instance ptr.");
3131           _is_ptr_to_narrowoop = false;
3132         } else if (klass() == ciEnv::current()->Class_klass() &&
3133                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3134           // Static fields
3135           ciField* field = nullptr;
3136           if (const_oop() != nullptr) {
3137             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3138             field = k->get_field_by_offset(_offset, true);
3139           }
3140           if (field != nullptr) {
3141             BasicType basic_elem_type = field->layout_type();
3142             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3143           } else {
3144             // unsafe access
3145             _is_ptr_to_narrowoop = UseCompressedOops;
3146           }
3147         } else {
3148           // Instance fields which contains a compressed oop references.
3149           field = ik->get_field_by_offset(_offset, false);
3150           if (field != nullptr) {
3151             BasicType basic_elem_type = field->layout_type();
3152             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3153           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3154             // Compile::find_alias_type() cast exactness on all types to verify
3155             // that it does not affect alias type.
3156             _is_ptr_to_narrowoop = UseCompressedOops;
3157           } else {
3158             // Type for the copy start in LibraryCallKit::inline_native_clone().
3159             _is_ptr_to_narrowoop = UseCompressedOops;
3160           }
3161         }
3162       }
3163     }
3164   }
3165 #endif
3166 }
3167 
3168 //------------------------------make-------------------------------------------
3169 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3170                                      const TypePtr* speculative, int inline_depth) {
3171   assert(ptr != Constant, "no constant generic pointers");
3172   ciKlass*  k = Compile::current()->env()->Object_klass();
3173   bool      xk = false;
3174   ciObject* o = nullptr;
3175   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3176 }
3177 
3178 
3179 //------------------------------cast_to_ptr_type-------------------------------
3180 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3181   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3182   if( ptr == _ptr ) return this;
3183   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3184 }
3185 
3186 //-----------------------------cast_to_instance_id----------------------------
3187 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3188   // There are no instances of a general oop.
3189   // Return self unchanged.
3190   return this;
3191 }
3192 
3193 //-----------------------------cast_to_exactness-------------------------------
3194 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3195   // There is no such thing as an exact general oop.
3196   // Return self unchanged.
3197   return this;
3198 }
3199 
3200 
3201 //------------------------------as_klass_type----------------------------------
3202 // Return the klass type corresponding to this instance or array type.
3203 // It is the type that is loaded from an object of this type.
3204 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3205   ciKlass* k = klass();
3206   bool    xk = klass_is_exact();
3207   if (k == nullptr)
3208     return TypeKlassPtr::OBJECT;
3209   else
3210     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3211 }
3212 
3213 //------------------------------meet-------------------------------------------
3214 // Compute the MEET of two types.  It returns a new Type object.
3215 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3216   // Perform a fast test for common case; meeting the same types together.
3217   if( this == t ) return this;  // Meeting same type-rep?
3218 
3219   // Current "this->_base" is OopPtr
3220   switch (t->base()) {          // switch on original type
3221 
3222   case Int:                     // Mixing ints & oops happens when javac
3223   case Long:                    // reuses local variables
3224   case FloatTop:
3225   case FloatCon:
3226   case FloatBot:
3227   case DoubleTop:
3228   case DoubleCon:
3229   case DoubleBot:
3230   case NarrowOop:
3231   case NarrowKlass:
3232   case Bottom:                  // Ye Olde Default
3233     return Type::BOTTOM;
3234   case Top:
3235     return this;
3236 
3237   default:                      // All else is a mistake
3238     typerr(t);
3239 
3240   case RawPtr:
3241   case MetadataPtr:
3242   case KlassPtr:
3243     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3244 
3245   case AnyPtr: {
3246     // Found an AnyPtr type vs self-OopPtr type
3247     const TypePtr *tp = t->is_ptr();
3248     int offset = meet_offset(tp->offset());
3249     PTR ptr = meet_ptr(tp->ptr());
3250     const TypePtr* speculative = xmeet_speculative(tp);
3251     int depth = meet_inline_depth(tp->inline_depth());
3252     switch (tp->ptr()) {
3253     case Null:
3254       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3255       // else fall through:
3256     case TopPTR:
3257     case AnyNull: {
3258       int instance_id = meet_instance_id(InstanceTop);
3259       return make(ptr, offset, instance_id, speculative, depth);
3260     }
3261     case BotPTR:
3262     case NotNull:
3263       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3264     default: typerr(t);
3265     }
3266   }
3267 
3268   case OopPtr: {                 // Meeting to other OopPtrs
3269     const TypeOopPtr *tp = t->is_oopptr();
3270     int instance_id = meet_instance_id(tp->instance_id());
3271     const TypePtr* speculative = xmeet_speculative(tp);
3272     int depth = meet_inline_depth(tp->inline_depth());
3273     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3274   }
3275 
3276   case InstPtr:                  // For these, flip the call around to cut down
3277   case AryPtr:
3278     return t->xmeet(this);      // Call in reverse direction
3279 
3280   } // End of switch
3281   return this;                  // Return the double constant
3282 }
3283 
3284 
3285 //------------------------------xdual------------------------------------------
3286 // Dual of a pure heap pointer.  No relevant klass or oop information.
3287 const Type *TypeOopPtr::xdual() const {
3288   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3289   assert(const_oop() == nullptr,             "no constants here");
3290   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3291 }
3292 
3293 //--------------------------make_from_klass_common-----------------------------
3294 // Computes the element-type given a klass.
3295 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3296   if (klass->is_instance_klass()) {
3297     Compile* C = Compile::current();
3298     Dependencies* deps = C->dependencies();
3299     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3300     // Element is an instance
3301     bool klass_is_exact = false;
3302     if (klass->is_loaded()) {
3303       // Try to set klass_is_exact.
3304       ciInstanceKlass* ik = klass->as_instance_klass();
3305       klass_is_exact = ik->is_final();
3306       if (!klass_is_exact && klass_change
3307           && deps != nullptr && UseUniqueSubclasses) {
3308         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3309         if (sub != nullptr) {
3310           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3311           klass = ik = sub;
3312           klass_is_exact = sub->is_final();
3313         }
3314       }
3315       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3316           !ik->is_interface() && !ik->has_subklass()) {
3317         // Add a dependence; if concrete subclass added we need to recompile
3318         deps->assert_leaf_type(ik);
3319         klass_is_exact = true;
3320       }
3321     }
3322     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, nullptr, 0);
3323   } else if (klass->is_obj_array_klass()) {
3324     // Element is an object array. Recursively call ourself.
3325     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3326     bool xk = etype->klass_is_exact();
3327     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3328     // We used to pass NotNull in here, asserting that the sub-arrays
3329     // are all not-null.  This is not true in generally, as code can
3330     // slam nulls down in the subarrays.
3331     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3332     return arr;
3333   } else if (klass->is_type_array_klass()) {
3334     // Element is an typeArray
3335     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3336     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3337     // We used to pass NotNull in here, asserting that the array pointer
3338     // is not-null. That was not true in general.
3339     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3340     return arr;
3341   } else {
3342     ShouldNotReachHere();
3343     return nullptr;
3344   }
3345 }
3346 
3347 //------------------------------make_from_constant-----------------------------
3348 // Make a java pointer from an oop constant
3349 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3350   assert(!o->is_null_object(), "null object not yet handled here.");
3351 
3352   const bool make_constant = require_constant || o->should_be_constant();
3353 
3354   ciKlass* klass = o->klass();
3355   if (klass->is_instance_klass()) {
3356     // Element is an instance
3357     if (make_constant) {
3358       return TypeInstPtr::make(o);
3359     } else {
3360       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3361     }
3362   } else if (klass->is_obj_array_klass()) {
3363     // Element is an object array. Recursively call ourself.
3364     const TypeOopPtr *etype =
3365       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3366     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3367     // We used to pass NotNull in here, asserting that the sub-arrays
3368     // are all not-null.  This is not true in generally, as code can
3369     // slam nulls down in the subarrays.
3370     if (make_constant) {
3371       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3372     } else {
3373       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3374     }
3375   } else if (klass->is_type_array_klass()) {
3376     // Element is an typeArray
3377     const Type* etype =
3378       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3379     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3380     // We used to pass NotNull in here, asserting that the array pointer
3381     // is not-null. That was not true in general.
3382     if (make_constant) {
3383       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3384     } else {
3385       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3386     }
3387   }
3388 
3389   fatal("unhandled object type");
3390   return nullptr;
3391 }
3392 
3393 //------------------------------get_con----------------------------------------
3394 intptr_t TypeOopPtr::get_con() const {
3395   assert( _ptr == Null || _ptr == Constant, "" );
3396   assert( _offset >= 0, "" );
3397 
3398   if (_offset != 0) {
3399     // After being ported to the compiler interface, the compiler no longer
3400     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3401     // to a handle at compile time.  This handle is embedded in the generated
3402     // code and dereferenced at the time the nmethod is made.  Until that time,
3403     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3404     // have access to the addresses!).  This does not seem to currently happen,
3405     // but this assertion here is to help prevent its occurence.
3406     tty->print_cr("Found oop constant with non-zero offset");
3407     ShouldNotReachHere();
3408   }
3409 
3410   return (intptr_t)const_oop()->constant_encoding();
3411 }
3412 
3413 
3414 //-----------------------------filter------------------------------------------
3415 // Do not allow interface-vs.-noninterface joins to collapse to top.
3416 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3417 
3418   const Type* ft = join_helper(kills, include_speculative);
3419   const TypeInstPtr* ftip = ft->isa_instptr();
3420   const TypeInstPtr* ktip = kills->isa_instptr();
3421 
3422   if (ft->empty()) {
3423     // Check for evil case of 'this' being a class and 'kills' expecting an
3424     // interface.  This can happen because the bytecodes do not contain
3425     // enough type info to distinguish a Java-level interface variable
3426     // from a Java-level object variable.  If we meet 2 classes which
3427     // both implement interface I, but their meet is at 'j/l/O' which
3428     // doesn't implement I, we have no way to tell if the result should
3429     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3430     // into a Phi which "knows" it's an Interface type we'll have to
3431     // uplift the type.
3432     if (!empty()) {
3433       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3434         return kills;           // Uplift to interface
3435       }
3436       // Also check for evil cases of 'this' being a class array
3437       // and 'kills' expecting an array of interfaces.
3438       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3439       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3440         return kills;           // Uplift to array of interface
3441       }
3442     }
3443 
3444     return Type::TOP;           // Canonical empty value
3445   }
3446 
3447   // If we have an interface-typed Phi or cast and we narrow to a class type,
3448   // the join should report back the class.  However, if we have a J/L/Object
3449   // class-typed Phi and an interface flows in, it's possible that the meet &
3450   // join report an interface back out.  This isn't possible but happens
3451   // because the type system doesn't interact well with interfaces.
3452   if (ftip != NULL && ktip != NULL &&
3453       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3454       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3455     assert(!ftip->klass_is_exact(), "interface could not be exact");
3456     return ktip->cast_to_ptr_type(ftip->ptr());
3457   }
3458 
3459   return ft;
3460 }
3461 
3462 //------------------------------eq---------------------------------------------
3463 // Structural equality check for Type representations
3464 bool TypeOopPtr::eq( const Type *t ) const {
3465   const TypeOopPtr *a = (const TypeOopPtr*)t;
3466   if (_klass_is_exact != a->_klass_is_exact ||
3467       _instance_id != a->_instance_id)  return false;
3468   ciObject* one = const_oop();
3469   ciObject* two = a->const_oop();
3470   if (one == nullptr || two == nullptr) {
3471     return (one == two) && TypePtr::eq(t);
3472   } else {
3473     return one->equals(two) && TypePtr::eq(t);
3474   }
3475 }
3476 
3477 //------------------------------hash-------------------------------------------
3478 // Type-specific hashing function.
3479 int TypeOopPtr::hash(void) const {
3480   return
3481     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3482              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3483 }
3484 
3485 //------------------------------dump2------------------------------------------
3486 #ifndef PRODUCT
3487 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3488   st->print("oopptr:%s", ptr_msg[_ptr]);
3489   if( _klass_is_exact ) st->print(":exact");
3490   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3491   switch( _offset ) {
3492   case OffsetTop: st->print("+top"); break;
3493   case OffsetBot: st->print("+any"); break;
3494   case         0: break;
3495   default:        st->print("+%d",_offset); break;
3496   }
3497   if (_instance_id == InstanceTop)
3498     st->print(",iid=top");
3499   else if (_instance_id != InstanceBot)
3500     st->print(",iid=%d",_instance_id);
3501 
3502   dump_inline_depth(st);
3503   dump_speculative(st);
3504 }
3505 #endif
3506 
3507 //------------------------------singleton--------------------------------------
3508 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3509 // constants
3510 bool TypeOopPtr::singleton(void) const {
3511   // detune optimizer to not generate constant oop + constant offset as a constant!
3512   // TopPTR, Null, AnyNull, Constant are all singletons
3513   return (_offset == 0) && !below_centerline(_ptr);
3514 }
3515 
3516 //------------------------------add_offset-------------------------------------
3517 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3518   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3519 }
3520 
3521 /**
3522  * Return same type without a speculative part
3523  */
3524 const Type* TypeOopPtr::remove_speculative() const {
3525   if (_speculative == nullptr) {
3526     return this;
3527   }
3528   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3529   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3530 }
3531 
3532 /**
3533  * Return same type but drop speculative part if we know we won't use
3534  * it
3535  */
3536 const Type* TypeOopPtr::cleanup_speculative() const {
3537   // If the klass is exact and the ptr is not null then there's
3538   // nothing that the speculative type can help us with
3539   if (klass_is_exact() && !maybe_null()) {
3540     return remove_speculative();
3541   }
3542   return TypePtr::cleanup_speculative();
3543 }
3544 
3545 /**
3546  * Return same type but with a different inline depth (used for speculation)
3547  *
3548  * @param depth  depth to meet with
3549  */
3550 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3551   if (!UseInlineDepthForSpeculativeTypes) {
3552     return this;
3553   }
3554   return make(_ptr, _offset, _instance_id, _speculative, depth);
3555 }
3556 
3557 //------------------------------with_instance_id--------------------------------
3558 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3559   assert(_instance_id != -1, "should be known");
3560   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3561 }
3562 
3563 //------------------------------meet_instance_id--------------------------------
3564 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3565   // Either is 'TOP' instance?  Return the other instance!
3566   if( _instance_id == InstanceTop ) return  instance_id;
3567   if(  instance_id == InstanceTop ) return _instance_id;
3568   // If either is different, return 'BOTTOM' instance
3569   if( _instance_id != instance_id ) return InstanceBot;
3570   return _instance_id;
3571 }
3572 
3573 //------------------------------dual_instance_id--------------------------------
3574 int TypeOopPtr::dual_instance_id( ) const {
3575   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3576   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3577   return _instance_id;              // Map everything else into self
3578 }
3579 
3580 /**
3581  * Check whether new profiling would improve speculative type
3582  *
3583  * @param   exact_kls    class from profiling
3584  * @param   inline_depth inlining depth of profile point
3585  *
3586  * @return  true if type profile is valuable
3587  */
3588 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3589   // no way to improve an already exact type
3590   if (klass_is_exact()) {
3591     return false;
3592   }
3593   return TypePtr::would_improve_type(exact_kls, inline_depth);
3594 }
3595 
3596 //=============================================================================
3597 // Convenience common pre-built types.
3598 const TypeInstPtr *TypeInstPtr::NOTNULL;
3599 const TypeInstPtr *TypeInstPtr::BOTTOM;
3600 const TypeInstPtr *TypeInstPtr::MIRROR;
3601 const TypeInstPtr *TypeInstPtr::MARK;
3602 const TypeInstPtr *TypeInstPtr::KLASS;
3603 
3604 //------------------------------TypeInstPtr-------------------------------------
3605 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3606                          int instance_id, const TypePtr* speculative, int inline_depth)
3607   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3608     _name(k->name()) {
3609    assert(k != nullptr &&
3610           (k->is_loaded() || o == nullptr),
3611           "cannot have constants with non-loaded klass");
3612 };
3613 
3614 //------------------------------make-------------------------------------------
3615 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3616                                      ciKlass* k,
3617                                      bool xk,
3618                                      ciObject* o,
3619                                      int offset,
3620                                      int instance_id,
3621                                      const TypePtr* speculative,
3622                                      int inline_depth) {
3623   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3624   // Either const_oop() is null or else ptr is Constant
3625   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3626           "constant pointers must have a value supplied" );
3627   // Ptr is never Null
3628   assert( ptr != Null, "null pointers are not typed" );
3629 
3630   assert(instance_id <= 0 || xk, "instances are always exactly typed");
3631   if (ptr == Constant) {
3632     // Note:  This case includes meta-object constants, such as methods.
3633     xk = true;
3634   } else if (k->is_loaded()) {
3635     ciInstanceKlass* ik = k->as_instance_klass();
3636     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3637     if (xk && ik->is_interface())  xk = false;  // no exact interface
3638   }
3639 
3640   // Now hash this baby
3641   TypeInstPtr *result =
3642     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3643 
3644   return result;
3645 }
3646 
3647 /**
3648  *  Create constant type for a constant boxed value
3649  */
3650 const Type* TypeInstPtr::get_const_boxed_value() const {
3651   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3652   assert((const_oop() != nullptr), "should be called only for constant object");
3653   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3654   BasicType bt = constant.basic_type();
3655   switch (bt) {
3656     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3657     case T_INT:      return TypeInt::make(constant.as_int());
3658     case T_CHAR:     return TypeInt::make(constant.as_char());
3659     case T_BYTE:     return TypeInt::make(constant.as_byte());
3660     case T_SHORT:    return TypeInt::make(constant.as_short());
3661     case T_FLOAT:    return TypeF::make(constant.as_float());
3662     case T_DOUBLE:   return TypeD::make(constant.as_double());
3663     case T_LONG:     return TypeLong::make(constant.as_long());
3664     default:         break;
3665   }
3666   fatal("Invalid boxed value type '%s'", type2name(bt));
3667   return nullptr;
3668 }
3669 
3670 //------------------------------cast_to_ptr_type-------------------------------
3671 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3672   if( ptr == _ptr ) return this;
3673   // Reconstruct _sig info here since not a problem with later lazy
3674   // construction, _sig will show up on demand.
3675   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3676 }
3677 
3678 
3679 //-----------------------------cast_to_exactness-------------------------------
3680 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3681   if( klass_is_exact == _klass_is_exact ) return this;
3682   if (!_klass->is_loaded())  return this;
3683   ciInstanceKlass* ik = _klass->as_instance_klass();
3684   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3685   if( ik->is_interface() )              return this;  // cannot set xk
3686   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3687 }
3688 
3689 //-----------------------------cast_to_instance_id----------------------------
3690 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3691   if( instance_id == _instance_id ) return this;
3692   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3693 }
3694 
3695 //------------------------------xmeet_unloaded---------------------------------
3696 // Compute the MEET of two InstPtrs when at least one is unloaded.
3697 // Assume classes are different since called after check for same name/class-loader
3698 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3699     int off = meet_offset(tinst->offset());
3700     PTR ptr = meet_ptr(tinst->ptr());
3701     int instance_id = meet_instance_id(tinst->instance_id());
3702     const TypePtr* speculative = xmeet_speculative(tinst);
3703     int depth = meet_inline_depth(tinst->inline_depth());
3704 
3705     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3706     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3707     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3708       //
3709       // Meet unloaded class with java/lang/Object
3710       //
3711       // Meet
3712       //          |                     Unloaded Class
3713       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3714       //  ===================================================================
3715       //   TOP    | ..........................Unloaded......................|
3716       //  AnyNull |  U-AN    |................Unloaded......................|
3717       // Constant | ... O-NN .................................. |   O-BOT   |
3718       //  NotNull | ... O-NN .................................. |   O-BOT   |
3719       //  BOTTOM  | ........................Object-BOTTOM ..................|
3720       //
3721       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3722       //
3723       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3724       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, nullptr, off, instance_id, speculative, depth); }
3725       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3726       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3727         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3728         else                                      { return TypeInstPtr::NOTNULL; }
3729       }
3730       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3731 
3732       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3733     }
3734 
3735     // Both are unloaded, not the same class, not Object
3736     // Or meet unloaded with a different loaded class, not java/lang/Object
3737     if( ptr != TypePtr::BotPTR ) {
3738       return TypeInstPtr::NOTNULL;
3739     }
3740     return TypeInstPtr::BOTTOM;
3741 }
3742 
3743 
3744 //------------------------------meet-------------------------------------------
3745 // Compute the MEET of two types.  It returns a new Type object.
3746 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3747   // Perform a fast test for common case; meeting the same types together.
3748   if( this == t ) return this;  // Meeting same type-rep?
3749 
3750   // Current "this->_base" is Pointer
3751   switch (t->base()) {          // switch on original type
3752 
3753   case Int:                     // Mixing ints & oops happens when javac
3754   case Long:                    // reuses local variables
3755   case FloatTop:
3756   case FloatCon:
3757   case FloatBot:
3758   case DoubleTop:
3759   case DoubleCon:
3760   case DoubleBot:
3761   case NarrowOop:
3762   case NarrowKlass:
3763   case Bottom:                  // Ye Olde Default
3764     return Type::BOTTOM;
3765   case Top:
3766     return this;
3767 
3768   default:                      // All else is a mistake
3769     typerr(t);
3770 
3771   case MetadataPtr:
3772   case KlassPtr:
3773   case RawPtr: return TypePtr::BOTTOM;
3774 
3775   case AryPtr: {                // All arrays inherit from Object class
3776     // Call in reverse direction to avoid duplication
3777     return t->is_aryptr()->xmeet_helper(this);
3778   }
3779 
3780   case OopPtr: {                // Meeting to OopPtrs
3781     // Found a OopPtr type vs self-InstPtr type
3782     const TypeOopPtr *tp = t->is_oopptr();
3783     int offset = meet_offset(tp->offset());
3784     PTR ptr = meet_ptr(tp->ptr());
3785     switch (tp->ptr()) {
3786     case TopPTR:
3787     case AnyNull: {
3788       int instance_id = meet_instance_id(InstanceTop);
3789       const TypePtr* speculative = xmeet_speculative(tp);
3790       int depth = meet_inline_depth(tp->inline_depth());
3791       return make(ptr, klass(), klass_is_exact(),
3792                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
3793     }
3794     case NotNull:
3795     case BotPTR: {
3796       int instance_id = meet_instance_id(tp->instance_id());
3797       const TypePtr* speculative = xmeet_speculative(tp);
3798       int depth = meet_inline_depth(tp->inline_depth());
3799       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3800     }
3801     default: typerr(t);
3802     }
3803   }
3804 
3805   case AnyPtr: {                // Meeting to AnyPtrs
3806     // Found an AnyPtr type vs self-InstPtr type
3807     const TypePtr *tp = t->is_ptr();
3808     int offset = meet_offset(tp->offset());
3809     PTR ptr = meet_ptr(tp->ptr());
3810     int instance_id = meet_instance_id(InstanceTop);
3811     const TypePtr* speculative = xmeet_speculative(tp);
3812     int depth = meet_inline_depth(tp->inline_depth());
3813     switch (tp->ptr()) {
3814     case Null:
3815       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3816       // else fall through to AnyNull
3817     case TopPTR:
3818     case AnyNull: {
3819       return make(ptr, klass(), klass_is_exact(),
3820                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
3821     }
3822     case NotNull:
3823     case BotPTR:
3824       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3825     default: typerr(t);
3826     }
3827   }
3828 
3829   /*
3830                  A-top         }
3831                /   |   \       }  Tops
3832            B-top A-any C-top   }
3833               | /  |  \ |      }  Any-nulls
3834            B-any   |   C-any   }
3835               |    |    |
3836            B-con A-con C-con   } constants; not comparable across classes
3837               |    |    |
3838            B-not   |   C-not   }
3839               | \  |  / |      }  not-nulls
3840            B-bot A-not C-bot   }
3841                \   |   /       }  Bottoms
3842                  A-bot         }
3843   */
3844 
3845   case InstPtr: {                // Meeting 2 Oops?
3846     // Found an InstPtr sub-type vs self-InstPtr type
3847     const TypeInstPtr *tinst = t->is_instptr();
3848     int off = meet_offset( tinst->offset() );
3849     PTR ptr = meet_ptr( tinst->ptr() );
3850     int instance_id = meet_instance_id(tinst->instance_id());
3851     const TypePtr* speculative = xmeet_speculative(tinst);
3852     int depth = meet_inline_depth(tinst->inline_depth());
3853 
3854     // Check for easy case; klasses are equal (and perhaps not loaded!)
3855     // If we have constants, then we created oops so classes are loaded
3856     // and we can handle the constants further down.  This case handles
3857     // both-not-loaded or both-loaded classes
3858     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3859       return make(ptr, klass(), klass_is_exact(), nullptr, off, instance_id, speculative, depth);
3860     }
3861 
3862     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3863     ciKlass* tinst_klass = tinst->klass();
3864     ciKlass* this_klass  = this->klass();
3865     bool tinst_xk = tinst->klass_is_exact();
3866     bool this_xk  = this->klass_is_exact();
3867     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3868       // One of these classes has not been loaded
3869       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3870 #ifndef PRODUCT
3871       if( PrintOpto && Verbose ) {
3872         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3873         tty->print("  this == "); this->dump(); tty->cr();
3874         tty->print(" tinst == "); tinst->dump(); tty->cr();
3875       }
3876 #endif
3877       return unloaded_meet;
3878     }
3879 
3880     // Handle mixing oops and interfaces first.
3881     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3882                                         tinst_klass == ciEnv::current()->Object_klass())) {
3883       ciKlass *tmp = tinst_klass; // Swap interface around
3884       tinst_klass = this_klass;
3885       this_klass = tmp;
3886       bool tmp2 = tinst_xk;
3887       tinst_xk = this_xk;
3888       this_xk = tmp2;
3889     }
3890     if (tinst_klass->is_interface() &&
3891         !(this_klass->is_interface() ||
3892           // Treat java/lang/Object as an honorary interface,
3893           // because we need a bottom for the interface hierarchy.
3894           this_klass == ciEnv::current()->Object_klass())) {
3895       // Oop meets interface!
3896 
3897       // See if the oop subtypes (implements) interface.
3898       ciKlass *k;
3899       bool xk;
3900       if( this_klass->is_subtype_of( tinst_klass ) ) {
3901         // Oop indeed subtypes.  Now keep oop or interface depending
3902         // on whether we are both above the centerline or either is
3903         // below the centerline.  If we are on the centerline
3904         // (e.g., Constant vs. AnyNull interface), use the constant.
3905         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3906         // If we are keeping this_klass, keep its exactness too.
3907         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3908       } else {                  // Does not implement, fall to Object
3909         // Oop does not implement interface, so mixing falls to Object
3910         // just like the verifier does (if both are above the
3911         // centerline fall to interface)
3912         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3913         xk = above_centerline(ptr) ? tinst_xk : false;
3914         // Watch out for Constant vs. AnyNull interface.
3915         if (ptr == Constant) {
3916           ptr = NotNull;  // forget it was a constant
3917         }
3918         if (instance_id > 0) {
3919           instance_id = InstanceBot;
3920         }
3921       }
3922       ciObject* o = nullptr;  // the Constant value, if any
3923       if (ptr == Constant) {
3924         // Find out which constant.
3925         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3926       }
3927       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3928     }
3929 
3930     // Either oop vs oop or interface vs interface or interface vs Object
3931 
3932     // !!! Here's how the symmetry requirement breaks down into invariants:
3933     // If we split one up & one down AND they subtype, take the down man.
3934     // If we split one up & one down AND they do NOT subtype, "fall hard".
3935     // If both are up and they subtype, take the subtype class.
3936     // If both are up and they do NOT subtype, "fall hard".
3937     // If both are down and they subtype, take the supertype class.
3938     // If both are down and they do NOT subtype, "fall hard".
3939     // Constants treated as down.
3940 
3941     // Now, reorder the above list; observe that both-down+subtype is also
3942     // "fall hard"; "fall hard" becomes the default case:
3943     // If we split one up & one down AND they subtype, take the down man.
3944     // If both are up and they subtype, take the subtype class.
3945 
3946     // If both are down and they subtype, "fall hard".
3947     // If both are down and they do NOT subtype, "fall hard".
3948     // If both are up and they do NOT subtype, "fall hard".
3949     // If we split one up & one down AND they do NOT subtype, "fall hard".
3950 
3951     // If a proper subtype is exact, and we return it, we return it exactly.
3952     // If a proper supertype is exact, there can be no subtyping relationship!
3953     // If both types are equal to the subtype, exactness is and-ed below the
3954     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3955 
3956     // Check for subtyping:
3957     ciKlass *subtype = nullptr;
3958     bool subtype_exact = false;
3959     if( tinst_klass->equals(this_klass) ) {
3960       subtype = this_klass;
3961       subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
3962     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3963       subtype = this_klass;     // Pick subtyping class
3964       subtype_exact = this_xk;
3965     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3966       subtype = tinst_klass;    // Pick subtyping class
3967       subtype_exact = tinst_xk;
3968     }
3969 
3970     if( subtype ) {
3971       if( above_centerline(ptr) ) { // both are up?
3972         this_klass = tinst_klass = subtype;
3973         this_xk = tinst_xk = subtype_exact;
3974       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3975         this_klass = tinst_klass; // tinst is down; keep down man
3976         this_xk = tinst_xk;
3977       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3978         tinst_klass = this_klass; // this is down; keep down man
3979         tinst_xk = this_xk;
3980       } else {
3981         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3982       }
3983     }
3984 
3985     // Check for classes now being equal
3986     if (tinst_klass->equals(this_klass)) {
3987       // If the klasses are equal, the constants may still differ.  Fall to
3988       // NotNull if they do (neither constant is null; that is a special case
3989       // handled elsewhere).
3990       ciObject* o = nullptr;             // Assume not constant when done
3991       ciObject* this_oop  = const_oop();
3992       ciObject* tinst_oop = tinst->const_oop();
3993       if( ptr == Constant ) {
3994         if (this_oop != nullptr && tinst_oop != nullptr &&
3995             this_oop->equals(tinst_oop) )
3996           o = this_oop;
3997         else if (above_centerline(this ->_ptr))
3998           o = tinst_oop;
3999         else if (above_centerline(tinst ->_ptr))
4000           o = this_oop;
4001         else
4002           ptr = NotNull;
4003       }
4004       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4005     } // Else classes are not equal
4006 
4007     // Since klasses are different, we require a LCA in the Java
4008     // class hierarchy - which means we have to fall to at least NotNull.
4009     if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4010       ptr = NotNull;
4011     }
4012     instance_id = InstanceBot;
4013 
4014     // Now we find the LCA of Java classes
4015     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4016     return make(ptr, k, false, nullptr, off, instance_id, speculative, depth);
4017   } // End of case InstPtr
4018 
4019   } // End of switch
4020   return this;                  // Return the double constant
4021 }
4022 
4023 
4024 //------------------------java_mirror_type--------------------------------------
4025 ciType* TypeInstPtr::java_mirror_type() const {
4026   // must be a singleton type
4027   if( const_oop() == nullptr )  return nullptr;
4028 
4029   // must be of type java.lang.Class
4030   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4031 
4032   return const_oop()->as_instance()->java_mirror_type();
4033 }
4034 
4035 
4036 //------------------------------xdual------------------------------------------
4037 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4038 // inheritance mechanism.
4039 const Type *TypeInstPtr::xdual() const {
4040   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4041 }
4042 
4043 //------------------------------eq---------------------------------------------
4044 // Structural equality check for Type representations
4045 bool TypeInstPtr::eq( const Type *t ) const {
4046   const TypeInstPtr *p = t->is_instptr();
4047   return
4048     klass()->equals(p->klass()) &&
4049     TypeOopPtr::eq(p);          // Check sub-type stuff
4050 }
4051 
4052 //------------------------------hash-------------------------------------------
4053 // Type-specific hashing function.
4054 int TypeInstPtr::hash(void) const {
4055   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4056   return hash;
4057 }
4058 
4059 //------------------------------dump2------------------------------------------
4060 // Dump oop Type
4061 #ifndef PRODUCT
4062 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4063   // Print the name of the klass.
4064   klass()->print_name_on(st);
4065 
4066   switch( _ptr ) {
4067   case Constant:
4068     if (WizardMode || Verbose) {
4069       ResourceMark rm;
4070       stringStream ss;
4071 
4072       st->print(" ");
4073       const_oop()->print_oop(&ss);
4074       // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4075       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4076       char* buf = ss.as_string(/* c_heap= */false);
4077       StringUtils::replace_no_expand(buf, "\n", "");
4078       st->print_raw(buf);
4079     }
4080   case BotPTR:
4081     if (!WizardMode && !Verbose) {
4082       if( _klass_is_exact ) st->print(":exact");
4083       break;
4084     }
4085   case TopPTR:
4086   case AnyNull:
4087   case NotNull:
4088     st->print(":%s", ptr_msg[_ptr]);
4089     if( _klass_is_exact ) st->print(":exact");
4090     break;
4091   default:
4092     break;
4093   }
4094 
4095   if( _offset ) {               // Dump offset, if any
4096     if( _offset == OffsetBot )      st->print("+any");
4097     else if( _offset == OffsetTop ) st->print("+unknown");
4098     else st->print("+%d", _offset);
4099   }
4100 
4101   st->print(" *");
4102   if (_instance_id == InstanceTop)
4103     st->print(",iid=top");
4104   else if (_instance_id != InstanceBot)
4105     st->print(",iid=%d",_instance_id);
4106 
4107   dump_inline_depth(st);
4108   dump_speculative(st);
4109 }
4110 #endif
4111 
4112 //------------------------------add_offset-------------------------------------
4113 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4114   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4115               _instance_id, add_offset_speculative(offset), _inline_depth);
4116 }
4117 
4118 const Type *TypeInstPtr::remove_speculative() const {
4119   if (_speculative == nullptr) {
4120     return this;
4121   }
4122   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4123   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4124               _instance_id, nullptr, _inline_depth);
4125 }
4126 
4127 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4128   if (!UseInlineDepthForSpeculativeTypes) {
4129     return this;
4130   }
4131   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4132 }
4133 
4134 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4135   assert(is_known_instance(), "should be known");
4136   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4137 }
4138 
4139 //=============================================================================
4140 // Convenience common pre-built types.
4141 const TypeAryPtr *TypeAryPtr::RANGE;
4142 const TypeAryPtr *TypeAryPtr::OOPS;
4143 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4144 const TypeAryPtr *TypeAryPtr::BYTES;
4145 const TypeAryPtr *TypeAryPtr::SHORTS;
4146 const TypeAryPtr *TypeAryPtr::CHARS;
4147 const TypeAryPtr *TypeAryPtr::INTS;
4148 const TypeAryPtr *TypeAryPtr::LONGS;
4149 const TypeAryPtr *TypeAryPtr::FLOATS;
4150 const TypeAryPtr *TypeAryPtr::DOUBLES;
4151 
4152 //------------------------------make-------------------------------------------
4153 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4154                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4155   assert(!(k == nullptr && ary->_elem->isa_int()),
4156          "integral arrays must be pre-equipped with a class");
4157   if (!xk)  xk = ary->ary_must_be_exact();
4158   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4159   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4160 }
4161 
4162 //------------------------------make-------------------------------------------
4163 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4164                                    int instance_id, const TypePtr* speculative, int inline_depth,
4165                                    bool is_autobox_cache) {
4166   assert(!(k == nullptr && ary->_elem->isa_int()),
4167          "integral arrays must be pre-equipped with a class");
4168   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4169   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4170   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4171   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4172 }
4173 
4174 //------------------------------cast_to_ptr_type-------------------------------
4175 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4176   if( ptr == _ptr ) return this;
4177   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4178 }
4179 
4180 
4181 //-----------------------------cast_to_exactness-------------------------------
4182 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4183   if( klass_is_exact == _klass_is_exact ) return this;
4184   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4185   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4186 }
4187 
4188 //-----------------------------cast_to_instance_id----------------------------
4189 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4190   if( instance_id == _instance_id ) return this;
4191   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4192 }
4193 
4194 
4195 //-----------------------------max_array_length-------------------------------
4196 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4197 jint TypeAryPtr::max_array_length(BasicType etype) {
4198   if (!is_java_primitive(etype) && !is_reference_type(etype)) {
4199     if (etype == T_NARROWOOP) {
4200       etype = T_OBJECT;
4201     } else if (etype == T_ILLEGAL) { // bottom[]
4202       etype = T_BYTE; // will produce conservatively high value
4203     } else {
4204       fatal("not an element type: %s", type2name(etype));
4205     }
4206   }
4207   return arrayOopDesc::max_array_length(etype);
4208 }
4209 
4210 //-----------------------------narrow_size_type-------------------------------
4211 // Narrow the given size type to the index range for the given array base type.
4212 // Return null if the resulting int type becomes empty.
4213 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4214   jint hi = size->_hi;
4215   jint lo = size->_lo;
4216   jint min_lo = 0;
4217   jint max_hi = max_array_length(elem()->array_element_basic_type());
4218   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4219   bool chg = false;
4220   if (lo < min_lo) {
4221     lo = min_lo;
4222     if (size->is_con()) {
4223       hi = lo;
4224     }
4225     chg = true;
4226   }
4227   if (hi > max_hi) {
4228     hi = max_hi;
4229     if (size->is_con()) {
4230       lo = hi;
4231     }
4232     chg = true;
4233   }
4234   // Negative length arrays will produce weird intermediate dead fast-path code
4235   if (lo > hi)
4236     return TypeInt::ZERO;
4237   if (!chg)
4238     return size;
4239   return TypeInt::make(lo, hi, Type::WidenMin);
4240 }
4241 
4242 //-------------------------------cast_to_size----------------------------------
4243 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4244   assert(new_size != nullptr, "");
4245   new_size = narrow_size_type(new_size);
4246   if (new_size == size())  return this;
4247   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4248   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4249 }
4250 
4251 //------------------------------cast_to_stable---------------------------------
4252 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4253   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4254     return this;
4255 
4256   const Type* elem = this->elem();
4257   const TypePtr* elem_ptr = elem->make_ptr();
4258 
4259   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4260     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4261     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4262   }
4263 
4264   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4265 
4266   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4267 }
4268 
4269 //-----------------------------stable_dimension--------------------------------
4270 int TypeAryPtr::stable_dimension() const {
4271   if (!is_stable())  return 0;
4272   int dim = 1;
4273   const TypePtr* elem_ptr = elem()->make_ptr();
4274   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4275     dim += elem_ptr->is_aryptr()->stable_dimension();
4276   return dim;
4277 }
4278 
4279 //----------------------cast_to_autobox_cache-----------------------------------
4280 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4281   if (is_autobox_cache())  return this;
4282   const TypeOopPtr* etype = elem()->make_oopptr();
4283   if (etype == nullptr)  return this;
4284   // The pointers in the autobox arrays are always non-null.
4285   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4286   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4287   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4288 }
4289 
4290 //------------------------------eq---------------------------------------------
4291 // Structural equality check for Type representations
4292 bool TypeAryPtr::eq( const Type *t ) const {
4293   const TypeAryPtr *p = t->is_aryptr();
4294   return
4295     _ary == p->_ary &&  // Check array
4296     TypeOopPtr::eq(p);  // Check sub-parts
4297 }
4298 
4299 //------------------------------hash-------------------------------------------
4300 // Type-specific hashing function.
4301 int TypeAryPtr::hash(void) const {
4302   return (intptr_t)_ary + TypeOopPtr::hash();
4303 }
4304 
4305 //------------------------------meet-------------------------------------------
4306 // Compute the MEET of two types.  It returns a new Type object.
4307 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4308   // Perform a fast test for common case; meeting the same types together.
4309   if( this == t ) return this;  // Meeting same type-rep?
4310   // Current "this->_base" is Pointer
4311   switch (t->base()) {          // switch on original type
4312 
4313   // Mixing ints & oops happens when javac reuses local variables
4314   case Int:
4315   case Long:
4316   case FloatTop:
4317   case FloatCon:
4318   case FloatBot:
4319   case DoubleTop:
4320   case DoubleCon:
4321   case DoubleBot:
4322   case NarrowOop:
4323   case NarrowKlass:
4324   case Bottom:                  // Ye Olde Default
4325     return Type::BOTTOM;
4326   case Top:
4327     return this;
4328 
4329   default:                      // All else is a mistake
4330     typerr(t);
4331 
4332   case OopPtr: {                // Meeting to OopPtrs
4333     // Found a OopPtr type vs self-AryPtr type
4334     const TypeOopPtr *tp = t->is_oopptr();
4335     int offset = meet_offset(tp->offset());
4336     PTR ptr = meet_ptr(tp->ptr());
4337     int depth = meet_inline_depth(tp->inline_depth());
4338     const TypePtr* speculative = xmeet_speculative(tp);
4339     switch (tp->ptr()) {
4340     case TopPTR:
4341     case AnyNull: {
4342       int instance_id = meet_instance_id(InstanceTop);
4343       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4344                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4345     }
4346     case BotPTR:
4347     case NotNull: {
4348       int instance_id = meet_instance_id(tp->instance_id());
4349       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4350     }
4351     default: ShouldNotReachHere();
4352     }
4353   }
4354 
4355   case AnyPtr: {                // Meeting two AnyPtrs
4356     // Found an AnyPtr type vs self-AryPtr type
4357     const TypePtr *tp = t->is_ptr();
4358     int offset = meet_offset(tp->offset());
4359     PTR ptr = meet_ptr(tp->ptr());
4360     const TypePtr* speculative = xmeet_speculative(tp);
4361     int depth = meet_inline_depth(tp->inline_depth());
4362     switch (tp->ptr()) {
4363     case TopPTR:
4364       return this;
4365     case BotPTR:
4366     case NotNull:
4367       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4368     case Null:
4369       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4370       // else fall through to AnyNull
4371     case AnyNull: {
4372       int instance_id = meet_instance_id(InstanceTop);
4373       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4374                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4375     }
4376     default: ShouldNotReachHere();
4377     }
4378   }
4379 
4380   case MetadataPtr:
4381   case KlassPtr:
4382   case RawPtr: return TypePtr::BOTTOM;
4383 
4384   case AryPtr: {                // Meeting 2 references?
4385     const TypeAryPtr *tap = t->is_aryptr();
4386     int off = meet_offset(tap->offset());
4387     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4388     PTR ptr = meet_ptr(tap->ptr());
4389     int instance_id = meet_instance_id(tap->instance_id());
4390     const TypePtr* speculative = xmeet_speculative(tap);
4391     int depth = meet_inline_depth(tap->inline_depth());
4392     ciKlass* lazy_klass = nullptr;
4393     if (tary->_elem->isa_int()) {
4394       // Integral array element types have irrelevant lattice relations.
4395       // It is the klass that determines array layout, not the element type.
4396       if (_klass == nullptr)
4397         lazy_klass = tap->_klass;
4398       else if (tap->_klass == nullptr || tap->_klass == _klass) {
4399         lazy_klass = _klass;
4400       } else {
4401         // Something like byte[int+] meets char[int+].
4402         // This must fall to bottom, not (int[-128..65535])[int+].
4403         instance_id = InstanceBot;
4404         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4405       }
4406     } else // Non integral arrays.
4407       // Must fall to bottom if exact klasses in upper lattice
4408       // are not equal or super klass is exact.
4409       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4410           // meet with top[] and bottom[] are processed further down:
4411           tap->_klass != nullptr  && this->_klass != nullptr   &&
4412           // both are exact and not equal:
4413           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4414            // 'tap'  is exact and super or unrelated:
4415            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4416            // 'this' is exact and super or unrelated:
4417            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4418       if (above_centerline(ptr) || (tary->_elem->make_ptr() && above_centerline(tary->_elem->make_ptr()->_ptr))) {
4419         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4420       }
4421       return make(NotNull, nullptr, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4422     }
4423 
4424     bool xk = false;
4425     switch (tap->ptr()) {
4426     case AnyNull:
4427     case TopPTR:
4428       // Compute new klass on demand, do not use tap->_klass
4429       if (below_centerline(this->_ptr)) {
4430         xk = this->_klass_is_exact;
4431       } else {
4432         xk = (tap->_klass_is_exact || this->_klass_is_exact);
4433       }
4434       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4435     case Constant: {
4436       ciObject* o = const_oop();
4437       if( _ptr == Constant ) {
4438         if( tap->const_oop() != nullptr && !o->equals(tap->const_oop()) ) {
4439           xk = (klass() == tap->klass());
4440           ptr = NotNull;
4441           o = nullptr;
4442           instance_id = InstanceBot;
4443         } else {
4444           xk = true;
4445         }
4446       } else if(above_centerline(_ptr)) {
4447         o = tap->const_oop();
4448         xk = true;
4449       } else {
4450         // Only precise for identical arrays
4451         xk = this->_klass_is_exact && (klass() == tap->klass());
4452       }
4453       return make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4454     }
4455     case NotNull:
4456     case BotPTR:
4457       // Compute new klass on demand, do not use tap->_klass
4458       if (above_centerline(this->_ptr)) {
4459         xk = tap->_klass_is_exact;
4460       } else {
4461         xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4462              (klass() == tap->klass()); // Only precise for identical arrays
4463       }
4464       return make(ptr, nullptr, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4465     default: ShouldNotReachHere();
4466     }
4467   }
4468 
4469   // All arrays inherit from Object class
4470   case InstPtr: {
4471     const TypeInstPtr *tp = t->is_instptr();
4472     int offset = meet_offset(tp->offset());
4473     PTR ptr = meet_ptr(tp->ptr());
4474     int instance_id = meet_instance_id(tp->instance_id());
4475     const TypePtr* speculative = xmeet_speculative(tp);
4476     int depth = meet_inline_depth(tp->inline_depth());
4477     switch (ptr) {
4478     case TopPTR:
4479     case AnyNull:                // Fall 'down' to dual of object klass
4480       // For instances when a subclass meets a superclass we fall
4481       // below the centerline when the superclass is exact. We need to
4482       // do the same here.
4483       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4484         return make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4485       } else {
4486         // cannot subclass, so the meet has to fall badly below the centerline
4487         ptr = NotNull;
4488         instance_id = InstanceBot;
4489         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, nullptr,offset, instance_id, speculative, depth);
4490       }
4491     case Constant:
4492     case NotNull:
4493     case BotPTR:                // Fall down to object klass
4494       // LCA is object_klass, but if we subclass from the top we can do better
4495       if (above_centerline(tp->ptr())) {
4496         // If 'tp'  is above the centerline and it is Object class
4497         // then we can subclass in the Java class hierarchy.
4498         // For instances when a subclass meets a superclass we fall
4499         // below the centerline when the superclass is exact. We need
4500         // to do the same here.
4501         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4502           // that is, my array type is a subtype of 'tp' klass
4503           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4504                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4505         }
4506       }
4507       // The other case cannot happen, since t cannot be a subtype of an array.
4508       // The meet falls down to Object class below centerline.
4509       if (ptr == Constant) {
4510          ptr = NotNull;
4511       }
4512       if (instance_id > 0) {
4513         instance_id = InstanceBot;
4514       }
4515       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, nullptr, offset, instance_id, speculative, depth);
4516     default: typerr(t);
4517     }
4518   }
4519   }
4520   return this;                  // Lint noise
4521 }
4522 
4523 //------------------------------xdual------------------------------------------
4524 // Dual: compute field-by-field dual
4525 const Type *TypeAryPtr::xdual() const {
4526   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4527 }
4528 
4529 //----------------------interface_vs_oop---------------------------------------
4530 #ifdef ASSERT
4531 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4532   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4533   if (t_aryptr) {
4534     return _ary->interface_vs_oop(t_aryptr->_ary);
4535   }
4536   return false;
4537 }
4538 #endif
4539 
4540 //------------------------------dump2------------------------------------------
4541 #ifndef PRODUCT
4542 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4543   _ary->dump2(d,depth,st);
4544   switch( _ptr ) {
4545   case Constant:
4546     const_oop()->print(st);
4547     break;
4548   case BotPTR:
4549     if (!WizardMode && !Verbose) {
4550       if( _klass_is_exact ) st->print(":exact");
4551       break;
4552     }
4553   case TopPTR:
4554   case AnyNull:
4555   case NotNull:
4556     st->print(":%s", ptr_msg[_ptr]);
4557     if( _klass_is_exact ) st->print(":exact");
4558     break;
4559   default:
4560     break;
4561   }
4562 
4563   if( _offset != 0 ) {
4564     BasicType basic_elem_type = elem()->basic_type();
4565     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4566     if( _offset == OffsetTop )       st->print("+undefined");
4567     else if( _offset == OffsetBot )  st->print("+any");
4568     else if( _offset < header_size ) st->print("+%d", _offset);
4569     else {
4570       BasicType basic_elem_type = elem()->basic_type();
4571       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4572       int elem_size = type2aelembytes(basic_elem_type);
4573       st->print("[%d]", (_offset - array_base)/elem_size);
4574     }
4575   }
4576   st->print(" *");
4577   if (_instance_id == InstanceTop)
4578     st->print(",iid=top");
4579   else if (_instance_id != InstanceBot)
4580     st->print(",iid=%d",_instance_id);
4581 
4582   dump_inline_depth(st);
4583   dump_speculative(st);
4584 }
4585 #endif
4586 
4587 bool TypeAryPtr::empty(void) const {
4588   if (_ary->empty())       return true;
4589   return TypeOopPtr::empty();
4590 }
4591 
4592 //------------------------------add_offset-------------------------------------
4593 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4594   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4595 }
4596 
4597 const Type *TypeAryPtr::remove_speculative() const {
4598   if (_speculative == nullptr) {
4599     return this;
4600   }
4601   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4602   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);
4603 }
4604 
4605 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4606   if (!UseInlineDepthForSpeculativeTypes) {
4607     return this;
4608   }
4609   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4610 }
4611 
4612 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4613   assert(is_known_instance(), "should be known");
4614   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4615 }
4616 
4617 //=============================================================================
4618 
4619 //------------------------------hash-------------------------------------------
4620 // Type-specific hashing function.
4621 int TypeNarrowPtr::hash(void) const {
4622   return _ptrtype->hash() + 7;
4623 }
4624 
4625 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4626   return _ptrtype->singleton();
4627 }
4628 
4629 bool TypeNarrowPtr::empty(void) const {
4630   return _ptrtype->empty();
4631 }
4632 
4633 intptr_t TypeNarrowPtr::get_con() const {
4634   return _ptrtype->get_con();
4635 }
4636 
4637 bool TypeNarrowPtr::eq( const Type *t ) const {
4638   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4639   if (tc != nullptr) {
4640     if (_ptrtype->base() != tc->_ptrtype->base()) {
4641       return false;
4642     }
4643     return tc->_ptrtype->eq(_ptrtype);
4644   }
4645   return false;
4646 }
4647 
4648 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4649   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4650   return make_same_narrowptr(odual);
4651 }
4652 
4653 
4654 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4655   if (isa_same_narrowptr(kills)) {
4656     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4657     if (ft->empty())
4658       return Type::TOP;           // Canonical empty value
4659     if (ft->isa_ptr()) {
4660       return make_hash_same_narrowptr(ft->isa_ptr());
4661     }
4662     return ft;
4663   } else if (kills->isa_ptr()) {
4664     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4665     if (ft->empty())
4666       return Type::TOP;           // Canonical empty value
4667     return ft;
4668   } else {
4669     return Type::TOP;
4670   }
4671 }
4672 
4673 //------------------------------xmeet------------------------------------------
4674 // Compute the MEET of two types.  It returns a new Type object.
4675 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4676   // Perform a fast test for common case; meeting the same types together.
4677   if( this == t ) return this;  // Meeting same type-rep?
4678 
4679   if (t->base() == base()) {
4680     const Type* result = _ptrtype->xmeet(t->make_ptr());
4681     if (result->isa_ptr()) {
4682       return make_hash_same_narrowptr(result->is_ptr());
4683     }
4684     return result;
4685   }
4686 
4687   // Current "this->_base" is NarrowKlass or NarrowOop
4688   switch (t->base()) {          // switch on original type
4689 
4690   case Int:                     // Mixing ints & oops happens when javac
4691   case Long:                    // reuses local variables
4692   case FloatTop:
4693   case FloatCon:
4694   case FloatBot:
4695   case DoubleTop:
4696   case DoubleCon:
4697   case DoubleBot:
4698   case AnyPtr:
4699   case RawPtr:
4700   case OopPtr:
4701   case InstPtr:
4702   case AryPtr:
4703   case MetadataPtr:
4704   case KlassPtr:
4705   case NarrowOop:
4706   case NarrowKlass:
4707 
4708   case Bottom:                  // Ye Olde Default
4709     return Type::BOTTOM;
4710   case Top:
4711     return this;
4712 
4713   default:                      // All else is a mistake
4714     typerr(t);
4715 
4716   } // End of switch
4717 
4718   return this;
4719 }
4720 
4721 #ifndef PRODUCT
4722 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4723   _ptrtype->dump2(d, depth, st);
4724 }
4725 #endif
4726 
4727 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4728 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4729 
4730 
4731 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4732   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4733 }
4734 
4735 const Type* TypeNarrowOop::remove_speculative() const {
4736   return make(_ptrtype->remove_speculative()->is_ptr());
4737 }
4738 
4739 const Type* TypeNarrowOop::cleanup_speculative() const {
4740   return make(_ptrtype->cleanup_speculative()->is_ptr());
4741 }
4742 
4743 #ifndef PRODUCT
4744 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4745   st->print("narrowoop: ");
4746   TypeNarrowPtr::dump2(d, depth, st);
4747 }
4748 #endif
4749 
4750 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4751 
4752 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4753   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4754 }
4755 
4756 #ifndef PRODUCT
4757 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4758   st->print("narrowklass: ");
4759   TypeNarrowPtr::dump2(d, depth, st);
4760 }
4761 #endif
4762 
4763 
4764 //------------------------------eq---------------------------------------------
4765 // Structural equality check for Type representations
4766 bool TypeMetadataPtr::eq( const Type *t ) const {
4767   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4768   ciMetadata* one = metadata();
4769   ciMetadata* two = a->metadata();
4770   if (one == nullptr || two == nullptr) {
4771     return (one == two) && TypePtr::eq(t);
4772   } else {
4773     return one->equals(two) && TypePtr::eq(t);
4774   }
4775 }
4776 
4777 //------------------------------hash-------------------------------------------
4778 // Type-specific hashing function.
4779 int TypeMetadataPtr::hash(void) const {
4780   return
4781     (metadata() ? metadata()->hash() : 0) +
4782     TypePtr::hash();
4783 }
4784 
4785 //------------------------------singleton--------------------------------------
4786 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4787 // constants
4788 bool TypeMetadataPtr::singleton(void) const {
4789   // detune optimizer to not generate constant metadata + constant offset as a constant!
4790   // TopPTR, Null, AnyNull, Constant are all singletons
4791   return (_offset == 0) && !below_centerline(_ptr);
4792 }
4793 
4794 //------------------------------add_offset-------------------------------------
4795 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4796   return make( _ptr, _metadata, xadd_offset(offset));
4797 }
4798 
4799 //-----------------------------filter------------------------------------------
4800 // Do not allow interface-vs.-noninterface joins to collapse to top.
4801 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4802   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4803   if (ft == nullptr || ft->empty())
4804     return Type::TOP;           // Canonical empty value
4805   return ft;
4806 }
4807 
4808  //------------------------------get_con----------------------------------------
4809 intptr_t TypeMetadataPtr::get_con() const {
4810   assert( _ptr == Null || _ptr == Constant, "" );
4811   assert( _offset >= 0, "" );
4812 
4813   if (_offset != 0) {
4814     // After being ported to the compiler interface, the compiler no longer
4815     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4816     // to a handle at compile time.  This handle is embedded in the generated
4817     // code and dereferenced at the time the nmethod is made.  Until that time,
4818     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4819     // have access to the addresses!).  This does not seem to currently happen,
4820     // but this assertion here is to help prevent its occurence.
4821     tty->print_cr("Found oop constant with non-zero offset");
4822     ShouldNotReachHere();
4823   }
4824 
4825   return (intptr_t)metadata()->constant_encoding();
4826 }
4827 
4828 //------------------------------cast_to_ptr_type-------------------------------
4829 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4830   if( ptr == _ptr ) return this;
4831   return make(ptr, metadata(), _offset);
4832 }
4833 
4834 //------------------------------meet-------------------------------------------
4835 // Compute the MEET of two types.  It returns a new Type object.
4836 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4837   // Perform a fast test for common case; meeting the same types together.
4838   if( this == t ) return this;  // Meeting same type-rep?
4839 
4840   // Current "this->_base" is OopPtr
4841   switch (t->base()) {          // switch on original type
4842 
4843   case Int:                     // Mixing ints & oops happens when javac
4844   case Long:                    // reuses local variables
4845   case FloatTop:
4846   case FloatCon:
4847   case FloatBot:
4848   case DoubleTop:
4849   case DoubleCon:
4850   case DoubleBot:
4851   case NarrowOop:
4852   case NarrowKlass:
4853   case Bottom:                  // Ye Olde Default
4854     return Type::BOTTOM;
4855   case Top:
4856     return this;
4857 
4858   default:                      // All else is a mistake
4859     typerr(t);
4860 
4861   case AnyPtr: {
4862     // Found an AnyPtr type vs self-OopPtr type
4863     const TypePtr *tp = t->is_ptr();
4864     int offset = meet_offset(tp->offset());
4865     PTR ptr = meet_ptr(tp->ptr());
4866     switch (tp->ptr()) {
4867     case Null:
4868       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4869       // else fall through:
4870     case TopPTR:
4871     case AnyNull: {
4872       return make(ptr, _metadata, offset);
4873     }
4874     case BotPTR:
4875     case NotNull:
4876       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4877     default: typerr(t);
4878     }
4879   }
4880 
4881   case RawPtr:
4882   case KlassPtr:
4883   case OopPtr:
4884   case InstPtr:
4885   case AryPtr:
4886     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4887 
4888   case MetadataPtr: {
4889     const TypeMetadataPtr *tp = t->is_metadataptr();
4890     int offset = meet_offset(tp->offset());
4891     PTR tptr = tp->ptr();
4892     PTR ptr = meet_ptr(tptr);
4893     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4894     if (tptr == TopPTR || _ptr == TopPTR ||
4895         metadata()->equals(tp->metadata())) {
4896       return make(ptr, md, offset);
4897     }
4898     // metadata is different
4899     if( ptr == Constant ) {  // Cannot be equal constants, so...
4900       if( tptr == Constant && _ptr != Constant)  return t;
4901       if( _ptr == Constant && tptr != Constant)  return this;
4902       ptr = NotNull;            // Fall down in lattice
4903     }
4904     return make(ptr, nullptr, offset);
4905     break;
4906   }
4907   } // End of switch
4908   return this;                  // Return the double constant
4909 }
4910 
4911 
4912 //------------------------------xdual------------------------------------------
4913 // Dual of a pure metadata pointer.
4914 const Type *TypeMetadataPtr::xdual() const {
4915   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4916 }
4917 
4918 //------------------------------dump2------------------------------------------
4919 #ifndef PRODUCT
4920 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4921   st->print("metadataptr:%s", ptr_msg[_ptr]);
4922   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4923   switch( _offset ) {
4924   case OffsetTop: st->print("+top"); break;
4925   case OffsetBot: st->print("+any"); break;
4926   case         0: break;
4927   default:        st->print("+%d",_offset); break;
4928   }
4929 }
4930 #endif
4931 
4932 
4933 //=============================================================================
4934 // Convenience common pre-built type.
4935 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4936 
4937 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4938   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4939 }
4940 
4941 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4942   return make(Constant, m, 0);
4943 }
4944 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4945   return make(Constant, m, 0);
4946 }
4947 
4948 //------------------------------make-------------------------------------------
4949 // Create a meta data constant
4950 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4951   assert(m == nullptr || !m->is_klass(), "wrong type");
4952   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4953 }
4954 
4955 
4956 //=============================================================================
4957 // Convenience common pre-built types.
4958 
4959 // Not-null object klass or below
4960 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4961 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4962 
4963 //------------------------------TypeKlassPtr-----------------------------------
4964 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4965   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4966 }
4967 
4968 //------------------------------make-------------------------------------------
4969 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4970 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4971   assert( k != nullptr, "Expect a non-nullptr klass");
4972   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4973   TypeKlassPtr *r =
4974     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4975 
4976   return r;
4977 }
4978 
4979 //------------------------------eq---------------------------------------------
4980 // Structural equality check for Type representations
4981 bool TypeKlassPtr::eq( const Type *t ) const {
4982   const TypeKlassPtr *p = t->is_klassptr();
4983   return
4984     klass()->equals(p->klass()) &&
4985     TypePtr::eq(p);
4986 }
4987 
4988 //------------------------------hash-------------------------------------------
4989 // Type-specific hashing function.
4990 int TypeKlassPtr::hash(void) const {
4991   return java_add((jint)klass()->hash(), (jint)TypePtr::hash());
4992 }
4993 
4994 //------------------------------singleton--------------------------------------
4995 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4996 // constants
4997 bool TypeKlassPtr::singleton(void) const {
4998   // detune optimizer to not generate constant klass + constant offset as a constant!
4999   // TopPTR, Null, AnyNull, Constant are all singletons
5000   return (_offset == 0) && !below_centerline(_ptr);
5001 }
5002 
5003 // Do not allow interface-vs.-noninterface joins to collapse to top.
5004 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5005   // logic here mirrors the one from TypeOopPtr::filter. See comments
5006   // there.
5007   const Type* ft = join_helper(kills, include_speculative);
5008   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5009   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5010 
5011   if (ft->empty()) {
5012     if (!empty() && ktkp != nullptr && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
5013       return kills;             // Uplift to interface
5014 
5015     return Type::TOP;           // Canonical empty value
5016   }
5017 
5018   // Interface klass type could be exact in opposite to interface type,
5019   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5020   if (ftkp != nullptr && ktkp != nullptr &&
5021       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5022       !ftkp->klass_is_exact() && // Keep exact interface klass
5023       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5024     return ktkp->cast_to_ptr_type(ftkp->ptr());
5025   }
5026 
5027   return ft;
5028 }
5029 
5030 //----------------------compute_klass------------------------------------------
5031 // Compute the defining klass for this class
5032 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5033   // Compute _klass based on element type.
5034   ciKlass* k_ary = nullptr;
5035   const TypeInstPtr *tinst;
5036   const TypeAryPtr *tary;
5037   const Type* el = elem();
5038   if (el->isa_narrowoop()) {
5039     el = el->make_ptr();
5040   }
5041 
5042   // Get element klass
5043   if ((tinst = el->isa_instptr()) != nullptr) {
5044     // Compute array klass from element klass
5045     k_ary = ciObjArrayKlass::make(tinst->klass());
5046   } else if ((tary = el->isa_aryptr()) != nullptr) {
5047     // Compute array klass from element klass
5048     ciKlass* k_elem = tary->klass();
5049     // If element type is something like bottom[], k_elem will be null.
5050     if (k_elem != nullptr)
5051       k_ary = ciObjArrayKlass::make(k_elem);
5052   } else if ((el->base() == Type::Top) ||
5053              (el->base() == Type::Bottom)) {
5054     // element type of Bottom occurs from meet of basic type
5055     // and object; Top occurs when doing join on Bottom.
5056     // Leave k_ary at null.
5057   } else {
5058     // Cannot compute array klass directly from basic type,
5059     // since subtypes of TypeInt all have basic type T_INT.
5060 #ifdef ASSERT
5061     if (verify && el->isa_int()) {
5062       // Check simple cases when verifying klass.
5063       BasicType bt = T_ILLEGAL;
5064       if (el == TypeInt::BYTE) {
5065         bt = T_BYTE;
5066       } else if (el == TypeInt::SHORT) {
5067         bt = T_SHORT;
5068       } else if (el == TypeInt::CHAR) {
5069         bt = T_CHAR;
5070       } else if (el == TypeInt::INT) {
5071         bt = T_INT;
5072       } else {
5073         return _klass; // just return specified klass
5074       }
5075       return ciTypeArrayKlass::make(bt);
5076     }
5077 #endif
5078     assert(!el->isa_int(),
5079            "integral arrays must be pre-equipped with a class");
5080     // Compute array klass directly from basic type
5081     k_ary = ciTypeArrayKlass::make(el->basic_type());
5082   }
5083   return k_ary;
5084 }
5085 
5086 //------------------------------klass------------------------------------------
5087 // Return the defining klass for this class
5088 ciKlass* TypeAryPtr::klass() const {
5089   if( _klass ) return _klass;   // Return cached value, if possible
5090 
5091   // Oops, need to compute _klass and cache it
5092   ciKlass* k_ary = compute_klass();
5093 
5094   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5095     // The _klass field acts as a cache of the underlying
5096     // ciKlass for this array type.  In order to set the field,
5097     // we need to cast away const-ness.
5098     //
5099     // IMPORTANT NOTE: we *never* set the _klass field for the
5100     // type TypeAryPtr::OOPS.  This Type is shared between all
5101     // active compilations.  However, the ciKlass which represents
5102     // this Type is *not* shared between compilations, so caching
5103     // this value would result in fetching a dangling pointer.
5104     //
5105     // Recomputing the underlying ciKlass for each request is
5106     // a bit less efficient than caching, but calls to
5107     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5108     ((TypeAryPtr*)this)->_klass = k_ary;
5109     if (UseCompressedOops && k_ary != nullptr && k_ary->is_obj_array_klass() &&
5110         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5111       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5112     }
5113   }
5114   return k_ary;
5115 }
5116 
5117 
5118 //------------------------------add_offset-------------------------------------
5119 // Access internals of klass object
5120 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5121   return make( _ptr, klass(), xadd_offset(offset) );
5122 }
5123 
5124 //------------------------------cast_to_ptr_type-------------------------------
5125 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5126   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5127   if( ptr == _ptr ) return this;
5128   return make(ptr, _klass, _offset);
5129 }
5130 
5131 
5132 //-----------------------------cast_to_exactness-------------------------------
5133 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5134   if( klass_is_exact == _klass_is_exact ) return this;
5135   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5136 }
5137 
5138 
5139 //-----------------------------as_instance_type--------------------------------
5140 // Corresponding type for an instance of the given class.
5141 // It will be NotNull, and exact if and only if the klass type is exact.
5142 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5143   ciKlass* k = klass();
5144   bool    xk = klass_is_exact();
5145   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, nullptr, 0);
5146   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5147   guarantee(toop != nullptr, "need type for given klass");
5148   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5149   return toop->cast_to_exactness(xk)->is_oopptr();
5150 }
5151 
5152 
5153 //------------------------------xmeet------------------------------------------
5154 // Compute the MEET of two types, return a new Type object.
5155 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5156   // Perform a fast test for common case; meeting the same types together.
5157   if( this == t ) return this;  // Meeting same type-rep?
5158 
5159   // Current "this->_base" is Pointer
5160   switch (t->base()) {          // switch on original type
5161 
5162   case Int:                     // Mixing ints & oops happens when javac
5163   case Long:                    // reuses local variables
5164   case FloatTop:
5165   case FloatCon:
5166   case FloatBot:
5167   case DoubleTop:
5168   case DoubleCon:
5169   case DoubleBot:
5170   case NarrowOop:
5171   case NarrowKlass:
5172   case Bottom:                  // Ye Olde Default
5173     return Type::BOTTOM;
5174   case Top:
5175     return this;
5176 
5177   default:                      // All else is a mistake
5178     typerr(t);
5179 
5180   case AnyPtr: {                // Meeting to AnyPtrs
5181     // Found an AnyPtr type vs self-KlassPtr type
5182     const TypePtr *tp = t->is_ptr();
5183     int offset = meet_offset(tp->offset());
5184     PTR ptr = meet_ptr(tp->ptr());
5185     switch (tp->ptr()) {
5186     case TopPTR:
5187       return this;
5188     case Null:
5189       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5190     case AnyNull:
5191       return make( ptr, klass(), offset );
5192     case BotPTR:
5193     case NotNull:
5194       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5195     default: typerr(t);
5196     }
5197   }
5198 
5199   case RawPtr:
5200   case MetadataPtr:
5201   case OopPtr:
5202   case AryPtr:                  // Meet with AryPtr
5203   case InstPtr:                 // Meet with InstPtr
5204     return TypePtr::BOTTOM;
5205 
5206   //
5207   //             A-top         }
5208   //           /   |   \       }  Tops
5209   //       B-top A-any C-top   }
5210   //          | /  |  \ |      }  Any-nulls
5211   //       B-any   |   C-any   }
5212   //          |    |    |
5213   //       B-con A-con C-con   } constants; not comparable across classes
5214   //          |    |    |
5215   //       B-not   |   C-not   }
5216   //          | \  |  / |      }  not-nulls
5217   //       B-bot A-not C-bot   }
5218   //           \   |   /       }  Bottoms
5219   //             A-bot         }
5220   //
5221 
5222   case KlassPtr: {  // Meet two KlassPtr types
5223     const TypeKlassPtr *tkls = t->is_klassptr();
5224     int  off     = meet_offset(tkls->offset());
5225     PTR  ptr     = meet_ptr(tkls->ptr());
5226 
5227     // Check for easy case; klasses are equal (and perhaps not loaded!)
5228     // If we have constants, then we created oops so classes are loaded
5229     // and we can handle the constants further down.  This case handles
5230     // not-loaded classes
5231     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5232       return make( ptr, klass(), off );
5233     }
5234 
5235     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5236     ciKlass* tkls_klass = tkls->klass();
5237     ciKlass* this_klass = this->klass();
5238     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5239     assert( this_klass->is_loaded(), "This class should have been loaded.");
5240 
5241     // If 'this' type is above the centerline and is a superclass of the
5242     // other, we can treat 'this' as having the same type as the other.
5243     if ((above_centerline(this->ptr())) &&
5244         tkls_klass->is_subtype_of(this_klass)) {
5245       this_klass = tkls_klass;
5246     }
5247     // If 'tinst' type is above the centerline and is a superclass of the
5248     // other, we can treat 'tinst' as having the same type as the other.
5249     if ((above_centerline(tkls->ptr())) &&
5250         this_klass->is_subtype_of(tkls_klass)) {
5251       tkls_klass = this_klass;
5252     }
5253 
5254     // Check for classes now being equal
5255     if (tkls_klass->equals(this_klass)) {
5256       // If the klasses are equal, the constants may still differ.  Fall to
5257       // NotNull if they do (neither constant is null; that is a special case
5258       // handled elsewhere).
5259       if( ptr == Constant ) {
5260         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5261             this->klass()->equals(tkls->klass()));
5262         else if (above_centerline(this->ptr()));
5263         else if (above_centerline(tkls->ptr()));
5264         else
5265           ptr = NotNull;
5266       }
5267       return make( ptr, this_klass, off );
5268     } // Else classes are not equal
5269 
5270     // Since klasses are different, we require the LCA in the Java
5271     // class hierarchy - which means we have to fall to at least NotNull.
5272     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5273       ptr = NotNull;
5274     // Now we find the LCA of Java classes
5275     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5276     return   make( ptr, k, off );
5277   } // End of case KlassPtr
5278 
5279   } // End of switch
5280   return this;                  // Return the double constant
5281 }
5282 
5283 //------------------------------xdual------------------------------------------
5284 // Dual: compute field-by-field dual
5285 const Type    *TypeKlassPtr::xdual() const {
5286   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5287 }
5288 
5289 //------------------------------get_con----------------------------------------
5290 intptr_t TypeKlassPtr::get_con() const {
5291   assert( _ptr == Null || _ptr == Constant, "" );
5292   assert( _offset >= 0, "" );
5293 
5294   if (_offset != 0) {
5295     // After being ported to the compiler interface, the compiler no longer
5296     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5297     // to a handle at compile time.  This handle is embedded in the generated
5298     // code and dereferenced at the time the nmethod is made.  Until that time,
5299     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5300     // have access to the addresses!).  This does not seem to currently happen,
5301     // but this assertion here is to help prevent its occurence.
5302     tty->print_cr("Found oop constant with non-zero offset");
5303     ShouldNotReachHere();
5304   }
5305 
5306   return (intptr_t)klass()->constant_encoding();
5307 }
5308 //------------------------------dump2------------------------------------------
5309 // Dump Klass Type
5310 #ifndef PRODUCT
5311 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5312   switch( _ptr ) {
5313   case Constant:
5314     st->print("precise ");
5315   case NotNull:
5316     {
5317       const char *name = klass()->name()->as_utf8();
5318       if( name ) {
5319         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5320       } else {
5321         ShouldNotReachHere();
5322       }
5323     }
5324   case BotPTR:
5325     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5326   case TopPTR:
5327   case AnyNull:
5328     st->print(":%s", ptr_msg[_ptr]);
5329     if( _klass_is_exact ) st->print(":exact");
5330     break;
5331   default:
5332     break;
5333   }
5334 
5335   if( _offset ) {               // Dump offset, if any
5336     if( _offset == OffsetBot )      { st->print("+any"); }
5337     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5338     else                            { st->print("+%d", _offset); }
5339   }
5340 
5341   st->print(" *");
5342 }
5343 #endif
5344 
5345 
5346 
5347 //=============================================================================
5348 // Convenience common pre-built types.
5349 
5350 //------------------------------make-------------------------------------------
5351 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5352   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5353 }
5354 
5355 //------------------------------make-------------------------------------------
5356 const TypeFunc *TypeFunc::make(ciMethod* method) {
5357   Compile* C = Compile::current();
5358   const TypeFunc* tf = C->last_tf(method); // check cache
5359   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
5360   const TypeTuple *domain;
5361   if (method->is_static()) {
5362     domain = TypeTuple::make_domain(nullptr, method->signature());
5363   } else {
5364     domain = TypeTuple::make_domain(method->holder(), method->signature());
5365   }
5366   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5367   tf = TypeFunc::make(domain, range);
5368   C->set_last_tf(method, tf);  // fill cache
5369   return tf;
5370 }
5371 
5372 //------------------------------meet-------------------------------------------
5373 // Compute the MEET of two types.  It returns a new Type object.
5374 const Type *TypeFunc::xmeet( const Type *t ) const {
5375   // Perform a fast test for common case; meeting the same types together.
5376   if( this == t ) return this;  // Meeting same type-rep?
5377 
5378   // Current "this->_base" is Func
5379   switch (t->base()) {          // switch on original type
5380 
5381   case Bottom:                  // Ye Olde Default
5382     return t;
5383 
5384   default:                      // All else is a mistake
5385     typerr(t);
5386 
5387   case Top:
5388     break;
5389   }
5390   return this;                  // Return the double constant
5391 }
5392 
5393 //------------------------------xdual------------------------------------------
5394 // Dual: compute field-by-field dual
5395 const Type *TypeFunc::xdual() const {
5396   return this;
5397 }
5398 
5399 //------------------------------eq---------------------------------------------
5400 // Structural equality check for Type representations
5401 bool TypeFunc::eq( const Type *t ) const {
5402   const TypeFunc *a = (const TypeFunc*)t;
5403   return _domain == a->_domain &&
5404     _range == a->_range;
5405 }
5406 
5407 //------------------------------hash-------------------------------------------
5408 // Type-specific hashing function.
5409 int TypeFunc::hash(void) const {
5410   return (intptr_t)_domain + (intptr_t)_range;
5411 }
5412 
5413 //------------------------------dump2------------------------------------------
5414 // Dump Function Type
5415 #ifndef PRODUCT
5416 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5417   if( _range->cnt() <= Parms )
5418     st->print("void");
5419   else {
5420     uint i;
5421     for (i = Parms; i < _range->cnt()-1; i++) {
5422       _range->field_at(i)->dump2(d,depth,st);
5423       st->print("/");
5424     }
5425     _range->field_at(i)->dump2(d,depth,st);
5426   }
5427   st->print(" ");
5428   st->print("( ");
5429   if( !depth || d[this] ) {     // Check for recursive dump
5430     st->print("...)");
5431     return;
5432   }
5433   d.Insert((void*)this,(void*)this);    // Stop recursion
5434   if (Parms < _domain->cnt())
5435     _domain->field_at(Parms)->dump2(d,depth-1,st);
5436   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5437     st->print(", ");
5438     _domain->field_at(i)->dump2(d,depth-1,st);
5439   }
5440   st->print(" )");
5441 }
5442 #endif
5443 
5444 //------------------------------singleton--------------------------------------
5445 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5446 // constants (Ldi nodes).  Singletons are integer, float or double constants
5447 // or a single symbol.
5448 bool TypeFunc::singleton(void) const {
5449   return false;                 // Never a singleton
5450 }
5451 
5452 bool TypeFunc::empty(void) const {
5453   return false;                 // Never empty
5454 }
5455 
5456 
5457 BasicType TypeFunc::return_type() const{
5458   if (range()->cnt() == TypeFunc::Parms) {
5459     return T_VOID;
5460   }
5461   return range()->field_at(TypeFunc::Parms)->basic_type();
5462 }