1 // 2 // Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 // Copyright (c) 2014, 2024, Red Hat, Inc. All rights reserved. 4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 // 6 // This code is free software; you can redistribute it and/or modify it 7 // under the terms of the GNU General Public License version 2 only, as 8 // published by the Free Software Foundation. 9 // 10 // This code is distributed in the hope that it will be useful, but WITHOUT 11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 // version 2 for more details (a copy is included in the LICENSE file that 14 // accompanied this code). 15 // 16 // You should have received a copy of the GNU General Public License version 17 // 2 along with this work; if not, write to the Free Software Foundation, 18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 // 20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 // or visit www.oracle.com if you need additional information or have any 22 // questions. 23 // 24 // 25 26 // AArch64 Architecture Description File 27 28 //----------REGISTER DEFINITION BLOCK------------------------------------------ 29 // This information is used by the matcher and the register allocator to 30 // describe individual registers and classes of registers within the target 31 // architecture. 32 33 register %{ 34 //----------Architecture Description Register Definitions---------------------- 35 // General Registers 36 // "reg_def" name ( register save type, C convention save type, 37 // ideal register type, encoding ); 38 // Register Save Types: 39 // 40 // NS = No-Save: The register allocator assumes that these registers 41 // can be used without saving upon entry to the method, & 42 // that they do not need to be saved at call sites. 43 // 44 // SOC = Save-On-Call: The register allocator assumes that these registers 45 // can be used without saving upon entry to the method, 46 // but that they must be saved at call sites. 47 // 48 // SOE = Save-On-Entry: The register allocator assumes that these registers 49 // must be saved before using them upon entry to the 50 // method, but they do not need to be saved at call 51 // sites. 52 // 53 // AS = Always-Save: The register allocator assumes that these registers 54 // must be saved before using them upon entry to the 55 // method, & that they must be saved at call sites. 56 // 57 // Ideal Register Type is used to determine how to save & restore a 58 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get 59 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI. 60 // 61 // The encoding number is the actual bit-pattern placed into the opcodes. 62 63 // We must define the 64 bit int registers in two 32 bit halves, the 64 // real lower register and a virtual upper half register. upper halves 65 // are used by the register allocator but are not actually supplied as 66 // operands to memory ops. 67 // 68 // follow the C1 compiler in making registers 69 // 70 // r0-r7,r10-r26 volatile (caller save) 71 // r27-r32 system (no save, no allocate) 72 // r8-r9 non-allocatable (so we can use them as scratch regs) 73 // 74 // as regards Java usage. we don't use any callee save registers 75 // because this makes it difficult to de-optimise a frame (see comment 76 // in x86 implementation of Deoptimization::unwind_callee_save_values) 77 // 78 79 // General Registers 80 81 reg_def R0 ( SOC, SOC, Op_RegI, 0, r0->as_VMReg() ); 82 reg_def R0_H ( SOC, SOC, Op_RegI, 0, r0->as_VMReg()->next() ); 83 reg_def R1 ( SOC, SOC, Op_RegI, 1, r1->as_VMReg() ); 84 reg_def R1_H ( SOC, SOC, Op_RegI, 1, r1->as_VMReg()->next() ); 85 reg_def R2 ( SOC, SOC, Op_RegI, 2, r2->as_VMReg() ); 86 reg_def R2_H ( SOC, SOC, Op_RegI, 2, r2->as_VMReg()->next() ); 87 reg_def R3 ( SOC, SOC, Op_RegI, 3, r3->as_VMReg() ); 88 reg_def R3_H ( SOC, SOC, Op_RegI, 3, r3->as_VMReg()->next() ); 89 reg_def R4 ( SOC, SOC, Op_RegI, 4, r4->as_VMReg() ); 90 reg_def R4_H ( SOC, SOC, Op_RegI, 4, r4->as_VMReg()->next() ); 91 reg_def R5 ( SOC, SOC, Op_RegI, 5, r5->as_VMReg() ); 92 reg_def R5_H ( SOC, SOC, Op_RegI, 5, r5->as_VMReg()->next() ); 93 reg_def R6 ( SOC, SOC, Op_RegI, 6, r6->as_VMReg() ); 94 reg_def R6_H ( SOC, SOC, Op_RegI, 6, r6->as_VMReg()->next() ); 95 reg_def R7 ( SOC, SOC, Op_RegI, 7, r7->as_VMReg() ); 96 reg_def R7_H ( SOC, SOC, Op_RegI, 7, r7->as_VMReg()->next() ); 97 reg_def R8 ( NS, SOC, Op_RegI, 8, r8->as_VMReg() ); // rscratch1, non-allocatable 98 reg_def R8_H ( NS, SOC, Op_RegI, 8, r8->as_VMReg()->next() ); 99 reg_def R9 ( NS, SOC, Op_RegI, 9, r9->as_VMReg() ); // rscratch2, non-allocatable 100 reg_def R9_H ( NS, SOC, Op_RegI, 9, r9->as_VMReg()->next() ); 101 reg_def R10 ( SOC, SOC, Op_RegI, 10, r10->as_VMReg() ); 102 reg_def R10_H ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next()); 103 reg_def R11 ( SOC, SOC, Op_RegI, 11, r11->as_VMReg() ); 104 reg_def R11_H ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next()); 105 reg_def R12 ( SOC, SOC, Op_RegI, 12, r12->as_VMReg() ); 106 reg_def R12_H ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()->next()); 107 reg_def R13 ( SOC, SOC, Op_RegI, 13, r13->as_VMReg() ); 108 reg_def R13_H ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()->next()); 109 reg_def R14 ( SOC, SOC, Op_RegI, 14, r14->as_VMReg() ); 110 reg_def R14_H ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()->next()); 111 reg_def R15 ( SOC, SOC, Op_RegI, 15, r15->as_VMReg() ); 112 reg_def R15_H ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()->next()); 113 reg_def R16 ( SOC, SOC, Op_RegI, 16, r16->as_VMReg() ); 114 reg_def R16_H ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()->next()); 115 reg_def R17 ( SOC, SOC, Op_RegI, 17, r17->as_VMReg() ); 116 reg_def R17_H ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()->next()); 117 reg_def R18 ( SOC, SOC, Op_RegI, 18, r18_tls->as_VMReg() ); 118 reg_def R18_H ( SOC, SOC, Op_RegI, 18, r18_tls->as_VMReg()->next()); 119 reg_def R19 ( SOC, SOE, Op_RegI, 19, r19->as_VMReg() ); 120 reg_def R19_H ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()->next()); 121 reg_def R20 ( SOC, SOE, Op_RegI, 20, r20->as_VMReg() ); // caller esp 122 reg_def R20_H ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()->next()); 123 reg_def R21 ( SOC, SOE, Op_RegI, 21, r21->as_VMReg() ); 124 reg_def R21_H ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()->next()); 125 reg_def R22 ( SOC, SOE, Op_RegI, 22, r22->as_VMReg() ); 126 reg_def R22_H ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()->next()); 127 reg_def R23 ( SOC, SOE, Op_RegI, 23, r23->as_VMReg() ); 128 reg_def R23_H ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()->next()); 129 reg_def R24 ( SOC, SOE, Op_RegI, 24, r24->as_VMReg() ); 130 reg_def R24_H ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()->next()); 131 reg_def R25 ( SOC, SOE, Op_RegI, 25, r25->as_VMReg() ); 132 reg_def R25_H ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()->next()); 133 reg_def R26 ( SOC, SOE, Op_RegI, 26, r26->as_VMReg() ); 134 reg_def R26_H ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()->next()); 135 reg_def R27 ( SOC, SOE, Op_RegI, 27, r27->as_VMReg() ); // heapbase 136 reg_def R27_H ( SOC, SOE, Op_RegI, 27, r27->as_VMReg()->next()); 137 reg_def R28 ( NS, SOE, Op_RegI, 28, r28->as_VMReg() ); // thread 138 reg_def R28_H ( NS, SOE, Op_RegI, 28, r28->as_VMReg()->next()); 139 reg_def R29 ( NS, NS, Op_RegI, 29, r29->as_VMReg() ); // fp 140 reg_def R29_H ( NS, NS, Op_RegI, 29, r29->as_VMReg()->next()); 141 reg_def R30 ( NS, NS, Op_RegI, 30, r30->as_VMReg() ); // lr 142 reg_def R30_H ( NS, NS, Op_RegI, 30, r30->as_VMReg()->next()); 143 reg_def R31 ( NS, NS, Op_RegI, 31, r31_sp->as_VMReg() ); // sp 144 reg_def R31_H ( NS, NS, Op_RegI, 31, r31_sp->as_VMReg()->next()); 145 146 // ---------------------------- 147 // Float/Double/Vector Registers 148 // ---------------------------- 149 150 // Double Registers 151 152 // The rules of ADL require that double registers be defined in pairs. 153 // Each pair must be two 32-bit values, but not necessarily a pair of 154 // single float registers. In each pair, ADLC-assigned register numbers 155 // must be adjacent, with the lower number even. Finally, when the 156 // CPU stores such a register pair to memory, the word associated with 157 // the lower ADLC-assigned number must be stored to the lower address. 158 159 // AArch64 has 32 floating-point registers. Each can store a vector of 160 // single or double precision floating-point values up to 8 * 32 161 // floats, 4 * 64 bit floats or 2 * 128 bit floats. We currently only 162 // use the first float or double element of the vector. 163 164 // for Java use float registers v0-v15 are always save on call whereas 165 // the platform ABI treats v8-v15 as callee save). float registers 166 // v16-v31 are SOC as per the platform spec 167 168 // For SVE vector registers, we simply extend vector register size to 8 169 // 'logical' slots. This is nominally 256 bits but it actually covers 170 // all possible 'physical' SVE vector register lengths from 128 ~ 2048 171 // bits. The 'physical' SVE vector register length is detected during 172 // startup, so the register allocator is able to identify the correct 173 // number of bytes needed for an SVE spill/unspill. 174 // Note that a vector register with 4 slots denotes a 128-bit NEON 175 // register allowing it to be distinguished from the corresponding SVE 176 // vector register when the SVE vector length is 128 bits. 177 178 reg_def V0 ( SOC, SOC, Op_RegF, 0, v0->as_VMReg() ); 179 reg_def V0_H ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next() ); 180 reg_def V0_J ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(2) ); 181 reg_def V0_K ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(3) ); 182 183 reg_def V1 ( SOC, SOC, Op_RegF, 1, v1->as_VMReg() ); 184 reg_def V1_H ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next() ); 185 reg_def V1_J ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(2) ); 186 reg_def V1_K ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(3) ); 187 188 reg_def V2 ( SOC, SOC, Op_RegF, 2, v2->as_VMReg() ); 189 reg_def V2_H ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next() ); 190 reg_def V2_J ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(2) ); 191 reg_def V2_K ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(3) ); 192 193 reg_def V3 ( SOC, SOC, Op_RegF, 3, v3->as_VMReg() ); 194 reg_def V3_H ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next() ); 195 reg_def V3_J ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(2) ); 196 reg_def V3_K ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(3) ); 197 198 reg_def V4 ( SOC, SOC, Op_RegF, 4, v4->as_VMReg() ); 199 reg_def V4_H ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next() ); 200 reg_def V4_J ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(2) ); 201 reg_def V4_K ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(3) ); 202 203 reg_def V5 ( SOC, SOC, Op_RegF, 5, v5->as_VMReg() ); 204 reg_def V5_H ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next() ); 205 reg_def V5_J ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(2) ); 206 reg_def V5_K ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(3) ); 207 208 reg_def V6 ( SOC, SOC, Op_RegF, 6, v6->as_VMReg() ); 209 reg_def V6_H ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next() ); 210 reg_def V6_J ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(2) ); 211 reg_def V6_K ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(3) ); 212 213 reg_def V7 ( SOC, SOC, Op_RegF, 7, v7->as_VMReg() ); 214 reg_def V7_H ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next() ); 215 reg_def V7_J ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(2) ); 216 reg_def V7_K ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(3) ); 217 218 reg_def V8 ( SOC, SOE, Op_RegF, 8, v8->as_VMReg() ); 219 reg_def V8_H ( SOC, SOE, Op_RegF, 8, v8->as_VMReg()->next() ); 220 reg_def V8_J ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(2) ); 221 reg_def V8_K ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(3) ); 222 223 reg_def V9 ( SOC, SOE, Op_RegF, 9, v9->as_VMReg() ); 224 reg_def V9_H ( SOC, SOE, Op_RegF, 9, v9->as_VMReg()->next() ); 225 reg_def V9_J ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(2) ); 226 reg_def V9_K ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(3) ); 227 228 reg_def V10 ( SOC, SOE, Op_RegF, 10, v10->as_VMReg() ); 229 reg_def V10_H ( SOC, SOE, Op_RegF, 10, v10->as_VMReg()->next() ); 230 reg_def V10_J ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(2) ); 231 reg_def V10_K ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(3) ); 232 233 reg_def V11 ( SOC, SOE, Op_RegF, 11, v11->as_VMReg() ); 234 reg_def V11_H ( SOC, SOE, Op_RegF, 11, v11->as_VMReg()->next() ); 235 reg_def V11_J ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(2) ); 236 reg_def V11_K ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(3) ); 237 238 reg_def V12 ( SOC, SOE, Op_RegF, 12, v12->as_VMReg() ); 239 reg_def V12_H ( SOC, SOE, Op_RegF, 12, v12->as_VMReg()->next() ); 240 reg_def V12_J ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(2) ); 241 reg_def V12_K ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(3) ); 242 243 reg_def V13 ( SOC, SOE, Op_RegF, 13, v13->as_VMReg() ); 244 reg_def V13_H ( SOC, SOE, Op_RegF, 13, v13->as_VMReg()->next() ); 245 reg_def V13_J ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(2) ); 246 reg_def V13_K ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(3) ); 247 248 reg_def V14 ( SOC, SOE, Op_RegF, 14, v14->as_VMReg() ); 249 reg_def V14_H ( SOC, SOE, Op_RegF, 14, v14->as_VMReg()->next() ); 250 reg_def V14_J ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(2) ); 251 reg_def V14_K ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(3) ); 252 253 reg_def V15 ( SOC, SOE, Op_RegF, 15, v15->as_VMReg() ); 254 reg_def V15_H ( SOC, SOE, Op_RegF, 15, v15->as_VMReg()->next() ); 255 reg_def V15_J ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(2) ); 256 reg_def V15_K ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(3) ); 257 258 reg_def V16 ( SOC, SOC, Op_RegF, 16, v16->as_VMReg() ); 259 reg_def V16_H ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next() ); 260 reg_def V16_J ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(2) ); 261 reg_def V16_K ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(3) ); 262 263 reg_def V17 ( SOC, SOC, Op_RegF, 17, v17->as_VMReg() ); 264 reg_def V17_H ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next() ); 265 reg_def V17_J ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(2) ); 266 reg_def V17_K ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(3) ); 267 268 reg_def V18 ( SOC, SOC, Op_RegF, 18, v18->as_VMReg() ); 269 reg_def V18_H ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next() ); 270 reg_def V18_J ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(2) ); 271 reg_def V18_K ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(3) ); 272 273 reg_def V19 ( SOC, SOC, Op_RegF, 19, v19->as_VMReg() ); 274 reg_def V19_H ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next() ); 275 reg_def V19_J ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(2) ); 276 reg_def V19_K ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(3) ); 277 278 reg_def V20 ( SOC, SOC, Op_RegF, 20, v20->as_VMReg() ); 279 reg_def V20_H ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next() ); 280 reg_def V20_J ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(2) ); 281 reg_def V20_K ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(3) ); 282 283 reg_def V21 ( SOC, SOC, Op_RegF, 21, v21->as_VMReg() ); 284 reg_def V21_H ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next() ); 285 reg_def V21_J ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(2) ); 286 reg_def V21_K ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(3) ); 287 288 reg_def V22 ( SOC, SOC, Op_RegF, 22, v22->as_VMReg() ); 289 reg_def V22_H ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next() ); 290 reg_def V22_J ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(2) ); 291 reg_def V22_K ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(3) ); 292 293 reg_def V23 ( SOC, SOC, Op_RegF, 23, v23->as_VMReg() ); 294 reg_def V23_H ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next() ); 295 reg_def V23_J ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(2) ); 296 reg_def V23_K ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(3) ); 297 298 reg_def V24 ( SOC, SOC, Op_RegF, 24, v24->as_VMReg() ); 299 reg_def V24_H ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next() ); 300 reg_def V24_J ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(2) ); 301 reg_def V24_K ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(3) ); 302 303 reg_def V25 ( SOC, SOC, Op_RegF, 25, v25->as_VMReg() ); 304 reg_def V25_H ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next() ); 305 reg_def V25_J ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(2) ); 306 reg_def V25_K ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(3) ); 307 308 reg_def V26 ( SOC, SOC, Op_RegF, 26, v26->as_VMReg() ); 309 reg_def V26_H ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next() ); 310 reg_def V26_J ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(2) ); 311 reg_def V26_K ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(3) ); 312 313 reg_def V27 ( SOC, SOC, Op_RegF, 27, v27->as_VMReg() ); 314 reg_def V27_H ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next() ); 315 reg_def V27_J ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(2) ); 316 reg_def V27_K ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(3) ); 317 318 reg_def V28 ( SOC, SOC, Op_RegF, 28, v28->as_VMReg() ); 319 reg_def V28_H ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next() ); 320 reg_def V28_J ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(2) ); 321 reg_def V28_K ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(3) ); 322 323 reg_def V29 ( SOC, SOC, Op_RegF, 29, v29->as_VMReg() ); 324 reg_def V29_H ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next() ); 325 reg_def V29_J ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(2) ); 326 reg_def V29_K ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(3) ); 327 328 reg_def V30 ( SOC, SOC, Op_RegF, 30, v30->as_VMReg() ); 329 reg_def V30_H ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next() ); 330 reg_def V30_J ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(2) ); 331 reg_def V30_K ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(3) ); 332 333 reg_def V31 ( SOC, SOC, Op_RegF, 31, v31->as_VMReg() ); 334 reg_def V31_H ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next() ); 335 reg_def V31_J ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(2) ); 336 reg_def V31_K ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(3) ); 337 338 // ---------------------------- 339 // SVE Predicate Registers 340 // ---------------------------- 341 reg_def P0 (SOC, SOC, Op_RegVectMask, 0, p0->as_VMReg()); 342 reg_def P1 (SOC, SOC, Op_RegVectMask, 1, p1->as_VMReg()); 343 reg_def P2 (SOC, SOC, Op_RegVectMask, 2, p2->as_VMReg()); 344 reg_def P3 (SOC, SOC, Op_RegVectMask, 3, p3->as_VMReg()); 345 reg_def P4 (SOC, SOC, Op_RegVectMask, 4, p4->as_VMReg()); 346 reg_def P5 (SOC, SOC, Op_RegVectMask, 5, p5->as_VMReg()); 347 reg_def P6 (SOC, SOC, Op_RegVectMask, 6, p6->as_VMReg()); 348 reg_def P7 (SOC, SOC, Op_RegVectMask, 7, p7->as_VMReg()); 349 reg_def P8 (SOC, SOC, Op_RegVectMask, 8, p8->as_VMReg()); 350 reg_def P9 (SOC, SOC, Op_RegVectMask, 9, p9->as_VMReg()); 351 reg_def P10 (SOC, SOC, Op_RegVectMask, 10, p10->as_VMReg()); 352 reg_def P11 (SOC, SOC, Op_RegVectMask, 11, p11->as_VMReg()); 353 reg_def P12 (SOC, SOC, Op_RegVectMask, 12, p12->as_VMReg()); 354 reg_def P13 (SOC, SOC, Op_RegVectMask, 13, p13->as_VMReg()); 355 reg_def P14 (SOC, SOC, Op_RegVectMask, 14, p14->as_VMReg()); 356 reg_def P15 (SOC, SOC, Op_RegVectMask, 15, p15->as_VMReg()); 357 358 // ---------------------------- 359 // Special Registers 360 // ---------------------------- 361 362 // the AArch64 CSPR status flag register is not directly accessible as 363 // instruction operand. the FPSR status flag register is a system 364 // register which can be written/read using MSR/MRS but again does not 365 // appear as an operand (a code identifying the FSPR occurs as an 366 // immediate value in the instruction). 367 368 reg_def RFLAGS(SOC, SOC, 0, 32, VMRegImpl::Bad()); 369 370 // Specify priority of register selection within phases of register 371 // allocation. Highest priority is first. A useful heuristic is to 372 // give registers a low priority when they are required by machine 373 // instructions, like EAX and EDX on I486, and choose no-save registers 374 // before save-on-call, & save-on-call before save-on-entry. Registers 375 // which participate in fixed calling sequences should come last. 376 // Registers which are used as pairs must fall on an even boundary. 377 378 alloc_class chunk0( 379 // volatiles 380 R10, R10_H, 381 R11, R11_H, 382 R12, R12_H, 383 R13, R13_H, 384 R14, R14_H, 385 R15, R15_H, 386 R16, R16_H, 387 R17, R17_H, 388 R18, R18_H, 389 390 // arg registers 391 R0, R0_H, 392 R1, R1_H, 393 R2, R2_H, 394 R3, R3_H, 395 R4, R4_H, 396 R5, R5_H, 397 R6, R6_H, 398 R7, R7_H, 399 400 // non-volatiles 401 R19, R19_H, 402 R20, R20_H, 403 R21, R21_H, 404 R22, R22_H, 405 R23, R23_H, 406 R24, R24_H, 407 R25, R25_H, 408 R26, R26_H, 409 410 // non-allocatable registers 411 412 R27, R27_H, // heapbase 413 R28, R28_H, // thread 414 R29, R29_H, // fp 415 R30, R30_H, // lr 416 R31, R31_H, // sp 417 R8, R8_H, // rscratch1 418 R9, R9_H, // rscratch2 419 ); 420 421 alloc_class chunk1( 422 423 // no save 424 V16, V16_H, V16_J, V16_K, 425 V17, V17_H, V17_J, V17_K, 426 V18, V18_H, V18_J, V18_K, 427 V19, V19_H, V19_J, V19_K, 428 V20, V20_H, V20_J, V20_K, 429 V21, V21_H, V21_J, V21_K, 430 V22, V22_H, V22_J, V22_K, 431 V23, V23_H, V23_J, V23_K, 432 V24, V24_H, V24_J, V24_K, 433 V25, V25_H, V25_J, V25_K, 434 V26, V26_H, V26_J, V26_K, 435 V27, V27_H, V27_J, V27_K, 436 V28, V28_H, V28_J, V28_K, 437 V29, V29_H, V29_J, V29_K, 438 V30, V30_H, V30_J, V30_K, 439 V31, V31_H, V31_J, V31_K, 440 441 // arg registers 442 V0, V0_H, V0_J, V0_K, 443 V1, V1_H, V1_J, V1_K, 444 V2, V2_H, V2_J, V2_K, 445 V3, V3_H, V3_J, V3_K, 446 V4, V4_H, V4_J, V4_K, 447 V5, V5_H, V5_J, V5_K, 448 V6, V6_H, V6_J, V6_K, 449 V7, V7_H, V7_J, V7_K, 450 451 // non-volatiles 452 V8, V8_H, V8_J, V8_K, 453 V9, V9_H, V9_J, V9_K, 454 V10, V10_H, V10_J, V10_K, 455 V11, V11_H, V11_J, V11_K, 456 V12, V12_H, V12_J, V12_K, 457 V13, V13_H, V13_J, V13_K, 458 V14, V14_H, V14_J, V14_K, 459 V15, V15_H, V15_J, V15_K, 460 ); 461 462 alloc_class chunk2 ( 463 // Governing predicates for load/store and arithmetic 464 P0, 465 P1, 466 P2, 467 P3, 468 P4, 469 P5, 470 P6, 471 472 // Extra predicates 473 P8, 474 P9, 475 P10, 476 P11, 477 P12, 478 P13, 479 P14, 480 P15, 481 482 // Preserved for all-true predicate 483 P7, 484 ); 485 486 alloc_class chunk3(RFLAGS); 487 488 //----------Architecture Description Register Classes-------------------------- 489 // Several register classes are automatically defined based upon information in 490 // this architecture description. 491 // 1) reg_class inline_cache_reg ( /* as def'd in frame section */ ) 492 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ ) 493 // 494 495 // Class for all 32 bit general purpose registers 496 reg_class all_reg32( 497 R0, 498 R1, 499 R2, 500 R3, 501 R4, 502 R5, 503 R6, 504 R7, 505 R10, 506 R11, 507 R12, 508 R13, 509 R14, 510 R15, 511 R16, 512 R17, 513 R18, 514 R19, 515 R20, 516 R21, 517 R22, 518 R23, 519 R24, 520 R25, 521 R26, 522 R27, 523 R28, 524 R29, 525 R30, 526 R31 527 ); 528 529 530 // Class for all 32 bit integer registers (excluding SP which 531 // will never be used as an integer register) 532 reg_class any_reg32 %{ 533 return _ANY_REG32_mask; 534 %} 535 536 // Singleton class for R0 int register 537 reg_class int_r0_reg(R0); 538 539 // Singleton class for R2 int register 540 reg_class int_r2_reg(R2); 541 542 // Singleton class for R3 int register 543 reg_class int_r3_reg(R3); 544 545 // Singleton class for R4 int register 546 reg_class int_r4_reg(R4); 547 548 // Singleton class for R31 int register 549 reg_class int_r31_reg(R31); 550 551 // Class for all 64 bit general purpose registers 552 reg_class all_reg( 553 R0, R0_H, 554 R1, R1_H, 555 R2, R2_H, 556 R3, R3_H, 557 R4, R4_H, 558 R5, R5_H, 559 R6, R6_H, 560 R7, R7_H, 561 R10, R10_H, 562 R11, R11_H, 563 R12, R12_H, 564 R13, R13_H, 565 R14, R14_H, 566 R15, R15_H, 567 R16, R16_H, 568 R17, R17_H, 569 R18, R18_H, 570 R19, R19_H, 571 R20, R20_H, 572 R21, R21_H, 573 R22, R22_H, 574 R23, R23_H, 575 R24, R24_H, 576 R25, R25_H, 577 R26, R26_H, 578 R27, R27_H, 579 R28, R28_H, 580 R29, R29_H, 581 R30, R30_H, 582 R31, R31_H 583 ); 584 585 // Class for all long integer registers (including SP) 586 reg_class any_reg %{ 587 return _ANY_REG_mask; 588 %} 589 590 // Class for non-allocatable 32 bit registers 591 reg_class non_allocatable_reg32( 592 #ifdef R18_RESERVED 593 // See comment in register_aarch64.hpp 594 R18, // tls on Windows 595 #endif 596 R28, // thread 597 R30, // lr 598 R31 // sp 599 ); 600 601 // Class for non-allocatable 64 bit registers 602 reg_class non_allocatable_reg( 603 #ifdef R18_RESERVED 604 // See comment in register_aarch64.hpp 605 R18, R18_H, // tls on Windows, platform register on macOS 606 #endif 607 R28, R28_H, // thread 608 R30, R30_H, // lr 609 R31, R31_H // sp 610 ); 611 612 // Class for all non-special integer registers 613 reg_class no_special_reg32 %{ 614 return _NO_SPECIAL_REG32_mask; 615 %} 616 617 // Class for all non-special long integer registers 618 reg_class no_special_reg %{ 619 return _NO_SPECIAL_REG_mask; 620 %} 621 622 // Class for 64 bit register r0 623 reg_class r0_reg( 624 R0, R0_H 625 ); 626 627 // Class for 64 bit register r1 628 reg_class r1_reg( 629 R1, R1_H 630 ); 631 632 // Class for 64 bit register r2 633 reg_class r2_reg( 634 R2, R2_H 635 ); 636 637 // Class for 64 bit register r3 638 reg_class r3_reg( 639 R3, R3_H 640 ); 641 642 // Class for 64 bit register r4 643 reg_class r4_reg( 644 R4, R4_H 645 ); 646 647 // Class for 64 bit register r5 648 reg_class r5_reg( 649 R5, R5_H 650 ); 651 652 // Class for 64 bit register r10 653 reg_class r10_reg( 654 R10, R10_H 655 ); 656 657 // Class for 64 bit register r11 658 reg_class r11_reg( 659 R11, R11_H 660 ); 661 662 // Class for method register 663 reg_class method_reg( 664 R12, R12_H 665 ); 666 667 // Class for thread register 668 reg_class thread_reg( 669 R28, R28_H 670 ); 671 672 // Class for frame pointer register 673 reg_class fp_reg( 674 R29, R29_H 675 ); 676 677 // Class for link register 678 reg_class lr_reg( 679 R30, R30_H 680 ); 681 682 // Class for long sp register 683 reg_class sp_reg( 684 R31, R31_H 685 ); 686 687 // Class for all pointer registers 688 reg_class ptr_reg %{ 689 return _PTR_REG_mask; 690 %} 691 692 // Class for all non_special pointer registers 693 reg_class no_special_ptr_reg %{ 694 return _NO_SPECIAL_PTR_REG_mask; 695 %} 696 697 // Class for all non_special pointer registers (excluding rfp) 698 reg_class no_special_no_rfp_ptr_reg %{ 699 return _NO_SPECIAL_NO_RFP_PTR_REG_mask; 700 %} 701 702 // Class for all float registers 703 reg_class float_reg( 704 V0, 705 V1, 706 V2, 707 V3, 708 V4, 709 V5, 710 V6, 711 V7, 712 V8, 713 V9, 714 V10, 715 V11, 716 V12, 717 V13, 718 V14, 719 V15, 720 V16, 721 V17, 722 V18, 723 V19, 724 V20, 725 V21, 726 V22, 727 V23, 728 V24, 729 V25, 730 V26, 731 V27, 732 V28, 733 V29, 734 V30, 735 V31 736 ); 737 738 // Double precision float registers have virtual `high halves' that 739 // are needed by the allocator. 740 // Class for all double registers 741 reg_class double_reg( 742 V0, V0_H, 743 V1, V1_H, 744 V2, V2_H, 745 V3, V3_H, 746 V4, V4_H, 747 V5, V5_H, 748 V6, V6_H, 749 V7, V7_H, 750 V8, V8_H, 751 V9, V9_H, 752 V10, V10_H, 753 V11, V11_H, 754 V12, V12_H, 755 V13, V13_H, 756 V14, V14_H, 757 V15, V15_H, 758 V16, V16_H, 759 V17, V17_H, 760 V18, V18_H, 761 V19, V19_H, 762 V20, V20_H, 763 V21, V21_H, 764 V22, V22_H, 765 V23, V23_H, 766 V24, V24_H, 767 V25, V25_H, 768 V26, V26_H, 769 V27, V27_H, 770 V28, V28_H, 771 V29, V29_H, 772 V30, V30_H, 773 V31, V31_H 774 ); 775 776 // Class for all SVE vector registers. 777 reg_class vectora_reg ( 778 V0, V0_H, V0_J, V0_K, 779 V1, V1_H, V1_J, V1_K, 780 V2, V2_H, V2_J, V2_K, 781 V3, V3_H, V3_J, V3_K, 782 V4, V4_H, V4_J, V4_K, 783 V5, V5_H, V5_J, V5_K, 784 V6, V6_H, V6_J, V6_K, 785 V7, V7_H, V7_J, V7_K, 786 V8, V8_H, V8_J, V8_K, 787 V9, V9_H, V9_J, V9_K, 788 V10, V10_H, V10_J, V10_K, 789 V11, V11_H, V11_J, V11_K, 790 V12, V12_H, V12_J, V12_K, 791 V13, V13_H, V13_J, V13_K, 792 V14, V14_H, V14_J, V14_K, 793 V15, V15_H, V15_J, V15_K, 794 V16, V16_H, V16_J, V16_K, 795 V17, V17_H, V17_J, V17_K, 796 V18, V18_H, V18_J, V18_K, 797 V19, V19_H, V19_J, V19_K, 798 V20, V20_H, V20_J, V20_K, 799 V21, V21_H, V21_J, V21_K, 800 V22, V22_H, V22_J, V22_K, 801 V23, V23_H, V23_J, V23_K, 802 V24, V24_H, V24_J, V24_K, 803 V25, V25_H, V25_J, V25_K, 804 V26, V26_H, V26_J, V26_K, 805 V27, V27_H, V27_J, V27_K, 806 V28, V28_H, V28_J, V28_K, 807 V29, V29_H, V29_J, V29_K, 808 V30, V30_H, V30_J, V30_K, 809 V31, V31_H, V31_J, V31_K, 810 ); 811 812 // Class for all 64bit vector registers 813 reg_class vectord_reg( 814 V0, V0_H, 815 V1, V1_H, 816 V2, V2_H, 817 V3, V3_H, 818 V4, V4_H, 819 V5, V5_H, 820 V6, V6_H, 821 V7, V7_H, 822 V8, V8_H, 823 V9, V9_H, 824 V10, V10_H, 825 V11, V11_H, 826 V12, V12_H, 827 V13, V13_H, 828 V14, V14_H, 829 V15, V15_H, 830 V16, V16_H, 831 V17, V17_H, 832 V18, V18_H, 833 V19, V19_H, 834 V20, V20_H, 835 V21, V21_H, 836 V22, V22_H, 837 V23, V23_H, 838 V24, V24_H, 839 V25, V25_H, 840 V26, V26_H, 841 V27, V27_H, 842 V28, V28_H, 843 V29, V29_H, 844 V30, V30_H, 845 V31, V31_H 846 ); 847 848 // Class for all 128bit vector registers 849 reg_class vectorx_reg( 850 V0, V0_H, V0_J, V0_K, 851 V1, V1_H, V1_J, V1_K, 852 V2, V2_H, V2_J, V2_K, 853 V3, V3_H, V3_J, V3_K, 854 V4, V4_H, V4_J, V4_K, 855 V5, V5_H, V5_J, V5_K, 856 V6, V6_H, V6_J, V6_K, 857 V7, V7_H, V7_J, V7_K, 858 V8, V8_H, V8_J, V8_K, 859 V9, V9_H, V9_J, V9_K, 860 V10, V10_H, V10_J, V10_K, 861 V11, V11_H, V11_J, V11_K, 862 V12, V12_H, V12_J, V12_K, 863 V13, V13_H, V13_J, V13_K, 864 V14, V14_H, V14_J, V14_K, 865 V15, V15_H, V15_J, V15_K, 866 V16, V16_H, V16_J, V16_K, 867 V17, V17_H, V17_J, V17_K, 868 V18, V18_H, V18_J, V18_K, 869 V19, V19_H, V19_J, V19_K, 870 V20, V20_H, V20_J, V20_K, 871 V21, V21_H, V21_J, V21_K, 872 V22, V22_H, V22_J, V22_K, 873 V23, V23_H, V23_J, V23_K, 874 V24, V24_H, V24_J, V24_K, 875 V25, V25_H, V25_J, V25_K, 876 V26, V26_H, V26_J, V26_K, 877 V27, V27_H, V27_J, V27_K, 878 V28, V28_H, V28_J, V28_K, 879 V29, V29_H, V29_J, V29_K, 880 V30, V30_H, V30_J, V30_K, 881 V31, V31_H, V31_J, V31_K 882 ); 883 884 // Class for 128 bit register v0 885 reg_class v0_reg( 886 V0, V0_H 887 ); 888 889 // Class for 128 bit register v1 890 reg_class v1_reg( 891 V1, V1_H 892 ); 893 894 // Class for 128 bit register v2 895 reg_class v2_reg( 896 V2, V2_H 897 ); 898 899 // Class for 128 bit register v3 900 reg_class v3_reg( 901 V3, V3_H 902 ); 903 904 // Class for 128 bit register v4 905 reg_class v4_reg( 906 V4, V4_H 907 ); 908 909 // Class for 128 bit register v5 910 reg_class v5_reg( 911 V5, V5_H 912 ); 913 914 // Class for 128 bit register v6 915 reg_class v6_reg( 916 V6, V6_H 917 ); 918 919 // Class for 128 bit register v7 920 reg_class v7_reg( 921 V7, V7_H 922 ); 923 924 // Class for 128 bit register v8 925 reg_class v8_reg( 926 V8, V8_H 927 ); 928 929 // Class for 128 bit register v9 930 reg_class v9_reg( 931 V9, V9_H 932 ); 933 934 // Class for 128 bit register v10 935 reg_class v10_reg( 936 V10, V10_H 937 ); 938 939 // Class for 128 bit register v11 940 reg_class v11_reg( 941 V11, V11_H 942 ); 943 944 // Class for 128 bit register v12 945 reg_class v12_reg( 946 V12, V12_H 947 ); 948 949 // Class for 128 bit register v13 950 reg_class v13_reg( 951 V13, V13_H 952 ); 953 954 // Class for 128 bit register v14 955 reg_class v14_reg( 956 V14, V14_H 957 ); 958 959 // Class for 128 bit register v15 960 reg_class v15_reg( 961 V15, V15_H 962 ); 963 964 // Class for 128 bit register v16 965 reg_class v16_reg( 966 V16, V16_H 967 ); 968 969 // Class for 128 bit register v17 970 reg_class v17_reg( 971 V17, V17_H 972 ); 973 974 // Class for 128 bit register v18 975 reg_class v18_reg( 976 V18, V18_H 977 ); 978 979 // Class for 128 bit register v19 980 reg_class v19_reg( 981 V19, V19_H 982 ); 983 984 // Class for 128 bit register v20 985 reg_class v20_reg( 986 V20, V20_H 987 ); 988 989 // Class for 128 bit register v21 990 reg_class v21_reg( 991 V21, V21_H 992 ); 993 994 // Class for 128 bit register v22 995 reg_class v22_reg( 996 V22, V22_H 997 ); 998 999 // Class for 128 bit register v23 1000 reg_class v23_reg( 1001 V23, V23_H 1002 ); 1003 1004 // Class for 128 bit register v24 1005 reg_class v24_reg( 1006 V24, V24_H 1007 ); 1008 1009 // Class for 128 bit register v25 1010 reg_class v25_reg( 1011 V25, V25_H 1012 ); 1013 1014 // Class for 128 bit register v26 1015 reg_class v26_reg( 1016 V26, V26_H 1017 ); 1018 1019 // Class for 128 bit register v27 1020 reg_class v27_reg( 1021 V27, V27_H 1022 ); 1023 1024 // Class for 128 bit register v28 1025 reg_class v28_reg( 1026 V28, V28_H 1027 ); 1028 1029 // Class for 128 bit register v29 1030 reg_class v29_reg( 1031 V29, V29_H 1032 ); 1033 1034 // Class for 128 bit register v30 1035 reg_class v30_reg( 1036 V30, V30_H 1037 ); 1038 1039 // Class for 128 bit register v31 1040 reg_class v31_reg( 1041 V31, V31_H 1042 ); 1043 1044 // Class for all SVE predicate registers. 1045 reg_class pr_reg ( 1046 P0, 1047 P1, 1048 P2, 1049 P3, 1050 P4, 1051 P5, 1052 P6, 1053 // P7, non-allocatable, preserved with all elements preset to TRUE. 1054 P8, 1055 P9, 1056 P10, 1057 P11, 1058 P12, 1059 P13, 1060 P14, 1061 P15 1062 ); 1063 1064 // Class for SVE governing predicate registers, which are used 1065 // to determine the active elements of a predicated instruction. 1066 reg_class gov_pr ( 1067 P0, 1068 P1, 1069 P2, 1070 P3, 1071 P4, 1072 P5, 1073 P6, 1074 // P7, non-allocatable, preserved with all elements preset to TRUE. 1075 ); 1076 1077 reg_class p0_reg(P0); 1078 reg_class p1_reg(P1); 1079 1080 // Singleton class for condition codes 1081 reg_class int_flags(RFLAGS); 1082 1083 %} 1084 1085 //----------DEFINITION BLOCK--------------------------------------------------- 1086 // Define name --> value mappings to inform the ADLC of an integer valued name 1087 // Current support includes integer values in the range [0, 0x7FFFFFFF] 1088 // Format: 1089 // int_def <name> ( <int_value>, <expression>); 1090 // Generated Code in ad_<arch>.hpp 1091 // #define <name> (<expression>) 1092 // // value == <int_value> 1093 // Generated code in ad_<arch>.cpp adlc_verification() 1094 // assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>"); 1095 // 1096 1097 // we follow the ppc-aix port in using a simple cost model which ranks 1098 // register operations as cheap, memory ops as more expensive and 1099 // branches as most expensive. the first two have a low as well as a 1100 // normal cost. huge cost appears to be a way of saying don't do 1101 // something 1102 1103 definitions %{ 1104 // The default cost (of a register move instruction). 1105 int_def INSN_COST ( 100, 100); 1106 int_def BRANCH_COST ( 200, 2 * INSN_COST); 1107 int_def CALL_COST ( 200, 2 * INSN_COST); 1108 int_def VOLATILE_REF_COST ( 1000, 10 * INSN_COST); 1109 %} 1110 1111 1112 //----------SOURCE BLOCK------------------------------------------------------- 1113 // This is a block of C++ code which provides values, functions, and 1114 // definitions necessary in the rest of the architecture description 1115 1116 source_hpp %{ 1117 1118 #include "asm/macroAssembler.hpp" 1119 #include "gc/shared/barrierSetAssembler.hpp" 1120 #include "gc/shared/cardTable.hpp" 1121 #include "gc/shared/cardTableBarrierSet.hpp" 1122 #include "gc/shared/collectedHeap.hpp" 1123 #include "opto/addnode.hpp" 1124 #include "opto/convertnode.hpp" 1125 #include "runtime/objectMonitor.hpp" 1126 1127 extern RegMask _ANY_REG32_mask; 1128 extern RegMask _ANY_REG_mask; 1129 extern RegMask _PTR_REG_mask; 1130 extern RegMask _NO_SPECIAL_REG32_mask; 1131 extern RegMask _NO_SPECIAL_REG_mask; 1132 extern RegMask _NO_SPECIAL_PTR_REG_mask; 1133 extern RegMask _NO_SPECIAL_NO_RFP_PTR_REG_mask; 1134 1135 class CallStubImpl { 1136 1137 //-------------------------------------------------------------- 1138 //---< Used for optimization in Compile::shorten_branches >--- 1139 //-------------------------------------------------------------- 1140 1141 public: 1142 // Size of call trampoline stub. 1143 static uint size_call_trampoline() { 1144 return 0; // no call trampolines on this platform 1145 } 1146 1147 // number of relocations needed by a call trampoline stub 1148 static uint reloc_call_trampoline() { 1149 return 0; // no call trampolines on this platform 1150 } 1151 }; 1152 1153 class HandlerImpl { 1154 1155 public: 1156 1157 static int emit_exception_handler(C2_MacroAssembler *masm); 1158 static int emit_deopt_handler(C2_MacroAssembler* masm); 1159 1160 static uint size_exception_handler() { 1161 return MacroAssembler::far_codestub_branch_size(); 1162 } 1163 1164 static uint size_deopt_handler() { 1165 // count one adr and one far branch instruction 1166 return NativeInstruction::instruction_size + MacroAssembler::far_codestub_branch_size(); 1167 } 1168 }; 1169 1170 class Node::PD { 1171 public: 1172 enum NodeFlags { 1173 _last_flag = Node::_last_flag 1174 }; 1175 }; 1176 1177 bool is_CAS(int opcode, bool maybe_volatile); 1178 1179 // predicates controlling emit of ldr<x>/ldar<x> and associated dmb 1180 1181 bool unnecessary_acquire(const Node *barrier); 1182 bool needs_acquiring_load(const Node *load); 1183 1184 // predicates controlling emit of str<x>/stlr<x> and associated dmbs 1185 1186 bool unnecessary_release(const Node *barrier); 1187 bool unnecessary_volatile(const Node *barrier); 1188 bool needs_releasing_store(const Node *store); 1189 1190 // predicate controlling translation of CompareAndSwapX 1191 bool needs_acquiring_load_exclusive(const Node *load); 1192 1193 // predicate controlling addressing modes 1194 bool size_fits_all_mem_uses(AddPNode* addp, int shift); 1195 1196 // Convert BootTest condition to Assembler condition. 1197 // Replicate the logic of cmpOpOper::ccode() and cmpOpUOper::ccode(). 1198 Assembler::Condition to_assembler_cond(BoolTest::mask cond); 1199 %} 1200 1201 source %{ 1202 1203 // Derived RegMask with conditionally allocatable registers 1204 1205 void PhaseOutput::pd_perform_mach_node_analysis() { 1206 } 1207 1208 int MachNode::pd_alignment_required() const { 1209 return 1; 1210 } 1211 1212 int MachNode::compute_padding(int current_offset) const { 1213 return 0; 1214 } 1215 1216 RegMask _ANY_REG32_mask; 1217 RegMask _ANY_REG_mask; 1218 RegMask _PTR_REG_mask; 1219 RegMask _NO_SPECIAL_REG32_mask; 1220 RegMask _NO_SPECIAL_REG_mask; 1221 RegMask _NO_SPECIAL_PTR_REG_mask; 1222 RegMask _NO_SPECIAL_NO_RFP_PTR_REG_mask; 1223 1224 void reg_mask_init() { 1225 // We derive below RegMask(s) from the ones which are auto-generated from 1226 // adlc register classes to make AArch64 rheapbase (r27) and rfp (r29) 1227 // registers conditionally reserved. 1228 1229 _ANY_REG32_mask = _ALL_REG32_mask; 1230 _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(r31_sp->as_VMReg())); 1231 1232 _ANY_REG_mask = _ALL_REG_mask; 1233 1234 _PTR_REG_mask = _ALL_REG_mask; 1235 1236 _NO_SPECIAL_REG32_mask = _ALL_REG32_mask; 1237 _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask); 1238 1239 _NO_SPECIAL_REG_mask = _ALL_REG_mask; 1240 _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1241 1242 _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask; 1243 _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1244 1245 // r27 is not allocatable when compressed oops is on and heapbase is not 1246 // zero, compressed klass pointers doesn't use r27 after JDK-8234794 1247 if (UseCompressedOops && (CompressedOops::base() != nullptr)) { 1248 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg())); 1249 _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg())); 1250 _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg())); 1251 } 1252 1253 // r29 is not allocatable when PreserveFramePointer is on 1254 if (PreserveFramePointer) { 1255 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg())); 1256 _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg())); 1257 _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg())); 1258 } 1259 1260 _NO_SPECIAL_NO_RFP_PTR_REG_mask = _NO_SPECIAL_PTR_REG_mask; 1261 _NO_SPECIAL_NO_RFP_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg())); 1262 } 1263 1264 // Optimizaton of volatile gets and puts 1265 // ------------------------------------- 1266 // 1267 // AArch64 has ldar<x> and stlr<x> instructions which we can safely 1268 // use to implement volatile reads and writes. For a volatile read 1269 // we simply need 1270 // 1271 // ldar<x> 1272 // 1273 // and for a volatile write we need 1274 // 1275 // stlr<x> 1276 // 1277 // Alternatively, we can implement them by pairing a normal 1278 // load/store with a memory barrier. For a volatile read we need 1279 // 1280 // ldr<x> 1281 // dmb ishld 1282 // 1283 // for a volatile write 1284 // 1285 // dmb ish 1286 // str<x> 1287 // dmb ish 1288 // 1289 // We can also use ldaxr and stlxr to implement compare and swap CAS 1290 // sequences. These are normally translated to an instruction 1291 // sequence like the following 1292 // 1293 // dmb ish 1294 // retry: 1295 // ldxr<x> rval raddr 1296 // cmp rval rold 1297 // b.ne done 1298 // stlxr<x> rval, rnew, rold 1299 // cbnz rval retry 1300 // done: 1301 // cset r0, eq 1302 // dmb ishld 1303 // 1304 // Note that the exclusive store is already using an stlxr 1305 // instruction. That is required to ensure visibility to other 1306 // threads of the exclusive write (assuming it succeeds) before that 1307 // of any subsequent writes. 1308 // 1309 // The following instruction sequence is an improvement on the above 1310 // 1311 // retry: 1312 // ldaxr<x> rval raddr 1313 // cmp rval rold 1314 // b.ne done 1315 // stlxr<x> rval, rnew, rold 1316 // cbnz rval retry 1317 // done: 1318 // cset r0, eq 1319 // 1320 // We don't need the leading dmb ish since the stlxr guarantees 1321 // visibility of prior writes in the case that the swap is 1322 // successful. Crucially we don't have to worry about the case where 1323 // the swap is not successful since no valid program should be 1324 // relying on visibility of prior changes by the attempting thread 1325 // in the case where the CAS fails. 1326 // 1327 // Similarly, we don't need the trailing dmb ishld if we substitute 1328 // an ldaxr instruction since that will provide all the guarantees we 1329 // require regarding observation of changes made by other threads 1330 // before any change to the CAS address observed by the load. 1331 // 1332 // In order to generate the desired instruction sequence we need to 1333 // be able to identify specific 'signature' ideal graph node 1334 // sequences which i) occur as a translation of a volatile reads or 1335 // writes or CAS operations and ii) do not occur through any other 1336 // translation or graph transformation. We can then provide 1337 // alternative aldc matching rules which translate these node 1338 // sequences to the desired machine code sequences. Selection of the 1339 // alternative rules can be implemented by predicates which identify 1340 // the relevant node sequences. 1341 // 1342 // The ideal graph generator translates a volatile read to the node 1343 // sequence 1344 // 1345 // LoadX[mo_acquire] 1346 // MemBarAcquire 1347 // 1348 // As a special case when using the compressed oops optimization we 1349 // may also see this variant 1350 // 1351 // LoadN[mo_acquire] 1352 // DecodeN 1353 // MemBarAcquire 1354 // 1355 // A volatile write is translated to the node sequence 1356 // 1357 // MemBarRelease 1358 // StoreX[mo_release] {CardMark}-optional 1359 // MemBarVolatile 1360 // 1361 // n.b. the above node patterns are generated with a strict 1362 // 'signature' configuration of input and output dependencies (see 1363 // the predicates below for exact details). The card mark may be as 1364 // simple as a few extra nodes or, in a few GC configurations, may 1365 // include more complex control flow between the leading and 1366 // trailing memory barriers. However, whatever the card mark 1367 // configuration these signatures are unique to translated volatile 1368 // reads/stores -- they will not appear as a result of any other 1369 // bytecode translation or inlining nor as a consequence of 1370 // optimizing transforms. 1371 // 1372 // We also want to catch inlined unsafe volatile gets and puts and 1373 // be able to implement them using either ldar<x>/stlr<x> or some 1374 // combination of ldr<x>/stlr<x> and dmb instructions. 1375 // 1376 // Inlined unsafe volatiles puts manifest as a minor variant of the 1377 // normal volatile put node sequence containing an extra cpuorder 1378 // membar 1379 // 1380 // MemBarRelease 1381 // MemBarCPUOrder 1382 // StoreX[mo_release] {CardMark}-optional 1383 // MemBarCPUOrder 1384 // MemBarVolatile 1385 // 1386 // n.b. as an aside, a cpuorder membar is not itself subject to 1387 // matching and translation by adlc rules. However, the rule 1388 // predicates need to detect its presence in order to correctly 1389 // select the desired adlc rules. 1390 // 1391 // Inlined unsafe volatile gets manifest as a slightly different 1392 // node sequence to a normal volatile get because of the 1393 // introduction of some CPUOrder memory barriers to bracket the 1394 // Load. However, but the same basic skeleton of a LoadX feeding a 1395 // MemBarAcquire, possibly through an optional DecodeN, is still 1396 // present 1397 // 1398 // MemBarCPUOrder 1399 // || \\ 1400 // MemBarCPUOrder LoadX[mo_acquire] 1401 // || | 1402 // || {DecodeN} optional 1403 // || / 1404 // MemBarAcquire 1405 // 1406 // In this case the acquire membar does not directly depend on the 1407 // load. However, we can be sure that the load is generated from an 1408 // inlined unsafe volatile get if we see it dependent on this unique 1409 // sequence of membar nodes. Similarly, given an acquire membar we 1410 // can know that it was added because of an inlined unsafe volatile 1411 // get if it is fed and feeds a cpuorder membar and if its feed 1412 // membar also feeds an acquiring load. 1413 // 1414 // Finally an inlined (Unsafe) CAS operation is translated to the 1415 // following ideal graph 1416 // 1417 // MemBarRelease 1418 // MemBarCPUOrder 1419 // CompareAndSwapX {CardMark}-optional 1420 // MemBarCPUOrder 1421 // MemBarAcquire 1422 // 1423 // So, where we can identify these volatile read and write 1424 // signatures we can choose to plant either of the above two code 1425 // sequences. For a volatile read we can simply plant a normal 1426 // ldr<x> and translate the MemBarAcquire to a dmb. However, we can 1427 // also choose to inhibit translation of the MemBarAcquire and 1428 // inhibit planting of the ldr<x>, instead planting an ldar<x>. 1429 // 1430 // When we recognise a volatile store signature we can choose to 1431 // plant at a dmb ish as a translation for the MemBarRelease, a 1432 // normal str<x> and then a dmb ish for the MemBarVolatile. 1433 // Alternatively, we can inhibit translation of the MemBarRelease 1434 // and MemBarVolatile and instead plant a simple stlr<x> 1435 // instruction. 1436 // 1437 // when we recognise a CAS signature we can choose to plant a dmb 1438 // ish as a translation for the MemBarRelease, the conventional 1439 // macro-instruction sequence for the CompareAndSwap node (which 1440 // uses ldxr<x>) and then a dmb ishld for the MemBarAcquire. 1441 // Alternatively, we can elide generation of the dmb instructions 1442 // and plant the alternative CompareAndSwap macro-instruction 1443 // sequence (which uses ldaxr<x>). 1444 // 1445 // Of course, the above only applies when we see these signature 1446 // configurations. We still want to plant dmb instructions in any 1447 // other cases where we may see a MemBarAcquire, MemBarRelease or 1448 // MemBarVolatile. For example, at the end of a constructor which 1449 // writes final/volatile fields we will see a MemBarRelease 1450 // instruction and this needs a 'dmb ish' lest we risk the 1451 // constructed object being visible without making the 1452 // final/volatile field writes visible. 1453 // 1454 // n.b. the translation rules below which rely on detection of the 1455 // volatile signatures and insert ldar<x> or stlr<x> are failsafe. 1456 // If we see anything other than the signature configurations we 1457 // always just translate the loads and stores to ldr<x> and str<x> 1458 // and translate acquire, release and volatile membars to the 1459 // relevant dmb instructions. 1460 // 1461 1462 // is_CAS(int opcode, bool maybe_volatile) 1463 // 1464 // return true if opcode is one of the possible CompareAndSwapX 1465 // values otherwise false. 1466 1467 bool is_CAS(int opcode, bool maybe_volatile) 1468 { 1469 switch(opcode) { 1470 // We handle these 1471 case Op_CompareAndSwapI: 1472 case Op_CompareAndSwapL: 1473 case Op_CompareAndSwapP: 1474 case Op_CompareAndSwapN: 1475 case Op_ShenandoahCompareAndSwapP: 1476 case Op_ShenandoahCompareAndSwapN: 1477 case Op_CompareAndSwapB: 1478 case Op_CompareAndSwapS: 1479 case Op_GetAndSetI: 1480 case Op_GetAndSetL: 1481 case Op_GetAndSetP: 1482 case Op_GetAndSetN: 1483 case Op_GetAndAddI: 1484 case Op_GetAndAddL: 1485 return true; 1486 case Op_CompareAndExchangeI: 1487 case Op_CompareAndExchangeN: 1488 case Op_CompareAndExchangeB: 1489 case Op_CompareAndExchangeS: 1490 case Op_CompareAndExchangeL: 1491 case Op_CompareAndExchangeP: 1492 case Op_WeakCompareAndSwapB: 1493 case Op_WeakCompareAndSwapS: 1494 case Op_WeakCompareAndSwapI: 1495 case Op_WeakCompareAndSwapL: 1496 case Op_WeakCompareAndSwapP: 1497 case Op_WeakCompareAndSwapN: 1498 case Op_ShenandoahWeakCompareAndSwapP: 1499 case Op_ShenandoahWeakCompareAndSwapN: 1500 case Op_ShenandoahCompareAndExchangeP: 1501 case Op_ShenandoahCompareAndExchangeN: 1502 return maybe_volatile; 1503 default: 1504 return false; 1505 } 1506 } 1507 1508 // helper to determine the maximum number of Phi nodes we may need to 1509 // traverse when searching from a card mark membar for the merge mem 1510 // feeding a trailing membar or vice versa 1511 1512 // predicates controlling emit of ldr<x>/ldar<x> 1513 1514 bool unnecessary_acquire(const Node *barrier) 1515 { 1516 assert(barrier->is_MemBar(), "expecting a membar"); 1517 1518 MemBarNode* mb = barrier->as_MemBar(); 1519 1520 if (mb->trailing_load()) { 1521 return true; 1522 } 1523 1524 if (mb->trailing_load_store()) { 1525 Node* load_store = mb->in(MemBarNode::Precedent); 1526 assert(load_store->is_LoadStore(), "unexpected graph shape"); 1527 return is_CAS(load_store->Opcode(), true); 1528 } 1529 1530 return false; 1531 } 1532 1533 bool needs_acquiring_load(const Node *n) 1534 { 1535 assert(n->is_Load(), "expecting a load"); 1536 LoadNode *ld = n->as_Load(); 1537 return ld->is_acquire(); 1538 } 1539 1540 bool unnecessary_release(const Node *n) 1541 { 1542 assert((n->is_MemBar() && 1543 n->Opcode() == Op_MemBarRelease), 1544 "expecting a release membar"); 1545 1546 MemBarNode *barrier = n->as_MemBar(); 1547 if (!barrier->leading()) { 1548 return false; 1549 } else { 1550 Node* trailing = barrier->trailing_membar(); 1551 MemBarNode* trailing_mb = trailing->as_MemBar(); 1552 assert(trailing_mb->trailing(), "Not a trailing membar?"); 1553 assert(trailing_mb->leading_membar() == n, "inconsistent leading/trailing membars"); 1554 1555 Node* mem = trailing_mb->in(MemBarNode::Precedent); 1556 if (mem->is_Store()) { 1557 assert(mem->as_Store()->is_release(), ""); 1558 assert(trailing_mb->Opcode() == Op_MemBarVolatile, ""); 1559 return true; 1560 } else { 1561 assert(mem->is_LoadStore(), ""); 1562 assert(trailing_mb->Opcode() == Op_MemBarAcquire, ""); 1563 return is_CAS(mem->Opcode(), true); 1564 } 1565 } 1566 return false; 1567 } 1568 1569 bool unnecessary_volatile(const Node *n) 1570 { 1571 // assert n->is_MemBar(); 1572 MemBarNode *mbvol = n->as_MemBar(); 1573 1574 bool release = mbvol->trailing_store(); 1575 assert(!release || (mbvol->in(MemBarNode::Precedent)->is_Store() && mbvol->in(MemBarNode::Precedent)->as_Store()->is_release()), ""); 1576 #ifdef ASSERT 1577 if (release) { 1578 Node* leading = mbvol->leading_membar(); 1579 assert(leading->Opcode() == Op_MemBarRelease, ""); 1580 assert(leading->as_MemBar()->leading_store(), ""); 1581 assert(leading->as_MemBar()->trailing_membar() == mbvol, ""); 1582 } 1583 #endif 1584 1585 return release; 1586 } 1587 1588 // predicates controlling emit of str<x>/stlr<x> 1589 1590 bool needs_releasing_store(const Node *n) 1591 { 1592 // assert n->is_Store(); 1593 StoreNode *st = n->as_Store(); 1594 return st->trailing_membar() != nullptr; 1595 } 1596 1597 // predicate controlling translation of CAS 1598 // 1599 // returns true if CAS needs to use an acquiring load otherwise false 1600 1601 bool needs_acquiring_load_exclusive(const Node *n) 1602 { 1603 assert(is_CAS(n->Opcode(), true), "expecting a compare and swap"); 1604 LoadStoreNode* ldst = n->as_LoadStore(); 1605 if (is_CAS(n->Opcode(), false)) { 1606 assert(ldst->trailing_membar() != nullptr, "expected trailing membar"); 1607 } else { 1608 return ldst->trailing_membar() != nullptr; 1609 } 1610 1611 // so we can just return true here 1612 return true; 1613 } 1614 1615 #define __ masm-> 1616 1617 // advance declarations for helper functions to convert register 1618 // indices to register objects 1619 1620 // the ad file has to provide implementations of certain methods 1621 // expected by the generic code 1622 // 1623 // REQUIRED FUNCTIONALITY 1624 1625 //============================================================================= 1626 1627 // !!!!! Special hack to get all types of calls to specify the byte offset 1628 // from the start of the call to the point where the return address 1629 // will point. 1630 1631 int MachCallStaticJavaNode::ret_addr_offset() 1632 { 1633 // call should be a simple bl 1634 int off = 4; 1635 return off; 1636 } 1637 1638 int MachCallDynamicJavaNode::ret_addr_offset() 1639 { 1640 return 16; // movz, movk, movk, bl 1641 } 1642 1643 int MachCallRuntimeNode::ret_addr_offset() { 1644 // for generated stubs the call will be 1645 // bl(addr) 1646 // or with far branches 1647 // bl(trampoline_stub) 1648 // for real runtime callouts it will be six instructions 1649 // see aarch64_enc_java_to_runtime 1650 // adr(rscratch2, retaddr) 1651 // str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset())); 1652 // lea(rscratch1, RuntimeAddress(addr) 1653 // blr(rscratch1) 1654 CodeBlob *cb = CodeCache::find_blob(_entry_point); 1655 if (cb) { 1656 return 1 * NativeInstruction::instruction_size; 1657 } else { 1658 return 6 * NativeInstruction::instruction_size; 1659 } 1660 } 1661 1662 //============================================================================= 1663 1664 #ifndef PRODUCT 1665 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1666 st->print("BREAKPOINT"); 1667 } 1668 #endif 1669 1670 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1671 __ brk(0); 1672 } 1673 1674 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const { 1675 return MachNode::size(ra_); 1676 } 1677 1678 //============================================================================= 1679 1680 #ifndef PRODUCT 1681 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const { 1682 st->print("nop \t# %d bytes pad for loops and calls", _count); 1683 } 1684 #endif 1685 1686 void MachNopNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc*) const { 1687 for (int i = 0; i < _count; i++) { 1688 __ nop(); 1689 } 1690 } 1691 1692 uint MachNopNode::size(PhaseRegAlloc*) const { 1693 return _count * NativeInstruction::instruction_size; 1694 } 1695 1696 //============================================================================= 1697 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty; 1698 1699 int ConstantTable::calculate_table_base_offset() const { 1700 return 0; // absolute addressing, no offset 1701 } 1702 1703 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; } 1704 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) { 1705 ShouldNotReachHere(); 1706 } 1707 1708 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const { 1709 // Empty encoding 1710 } 1711 1712 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const { 1713 return 0; 1714 } 1715 1716 #ifndef PRODUCT 1717 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const { 1718 st->print("-- \t// MachConstantBaseNode (empty encoding)"); 1719 } 1720 #endif 1721 1722 #ifndef PRODUCT 1723 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1724 Compile* C = ra_->C; 1725 1726 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1727 1728 if (C->output()->need_stack_bang(framesize)) 1729 st->print("# stack bang size=%d\n\t", framesize); 1730 1731 if (VM_Version::use_rop_protection()) { 1732 st->print("ldr zr, [lr]\n\t"); 1733 st->print("paciaz\n\t"); 1734 } 1735 if (framesize < ((1 << 9) + 2 * wordSize)) { 1736 st->print("sub sp, sp, #%d\n\t", framesize); 1737 st->print("stp rfp, lr, [sp, #%d]", framesize - 2 * wordSize); 1738 if (PreserveFramePointer) st->print("\n\tadd rfp, sp, #%d", framesize - 2 * wordSize); 1739 } else { 1740 st->print("stp lr, rfp, [sp, #%d]!\n\t", -(2 * wordSize)); 1741 if (PreserveFramePointer) st->print("mov rfp, sp\n\t"); 1742 st->print("mov rscratch1, #%d\n\t", framesize - 2 * wordSize); 1743 st->print("sub sp, sp, rscratch1"); 1744 } 1745 if (C->stub_function() == nullptr) { 1746 st->print("\n\t"); 1747 st->print("ldr rscratch1, [guard]\n\t"); 1748 st->print("dmb ishld\n\t"); 1749 st->print("ldr rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t"); 1750 st->print("cmp rscratch1, rscratch2\n\t"); 1751 st->print("b.eq skip"); 1752 st->print("\n\t"); 1753 st->print("blr #nmethod_entry_barrier_stub\n\t"); 1754 st->print("b skip\n\t"); 1755 st->print("guard: int\n\t"); 1756 st->print("\n\t"); 1757 st->print("skip:\n\t"); 1758 } 1759 } 1760 #endif 1761 1762 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1763 Compile* C = ra_->C; 1764 1765 // n.b. frame size includes space for return pc and rfp 1766 const int framesize = C->output()->frame_size_in_bytes(); 1767 1768 // insert a nop at the start of the prolog so we can patch in a 1769 // branch if we need to invalidate the method later 1770 __ nop(); 1771 1772 if (C->clinit_barrier_on_entry()) { 1773 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 1774 1775 Label L_skip_barrier; 1776 1777 __ mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 1778 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1779 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1780 __ bind(L_skip_barrier); 1781 } 1782 1783 if (C->max_vector_size() > 0) { 1784 __ reinitialize_ptrue(); 1785 } 1786 1787 int bangsize = C->output()->bang_size_in_bytes(); 1788 if (C->output()->need_stack_bang(bangsize)) 1789 __ generate_stack_overflow_check(bangsize); 1790 1791 __ build_frame(framesize); 1792 1793 if (C->stub_function() == nullptr) { 1794 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1795 // Dummy labels for just measuring the code size 1796 Label dummy_slow_path; 1797 Label dummy_continuation; 1798 Label dummy_guard; 1799 Label* slow_path = &dummy_slow_path; 1800 Label* continuation = &dummy_continuation; 1801 Label* guard = &dummy_guard; 1802 if (!Compile::current()->output()->in_scratch_emit_size()) { 1803 // Use real labels from actual stub when not emitting code for the purpose of measuring its size 1804 C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub(); 1805 Compile::current()->output()->add_stub(stub); 1806 slow_path = &stub->entry(); 1807 continuation = &stub->continuation(); 1808 guard = &stub->guard(); 1809 } 1810 // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub. 1811 bs->nmethod_entry_barrier(masm, slow_path, continuation, guard); 1812 } 1813 1814 if (VerifyStackAtCalls) { 1815 Unimplemented(); 1816 } 1817 1818 C->output()->set_frame_complete(__ offset()); 1819 1820 if (C->has_mach_constant_base_node()) { 1821 // NOTE: We set the table base offset here because users might be 1822 // emitted before MachConstantBaseNode. 1823 ConstantTable& constant_table = C->output()->constant_table(); 1824 constant_table.set_table_base_offset(constant_table.calculate_table_base_offset()); 1825 } 1826 } 1827 1828 uint MachPrologNode::size(PhaseRegAlloc* ra_) const 1829 { 1830 return MachNode::size(ra_); // too many variables; just compute it 1831 // the hard way 1832 } 1833 1834 int MachPrologNode::reloc() const 1835 { 1836 return 0; 1837 } 1838 1839 //============================================================================= 1840 1841 #ifndef PRODUCT 1842 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1843 Compile* C = ra_->C; 1844 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1845 1846 st->print("# pop frame %d\n\t",framesize); 1847 1848 if (framesize == 0) { 1849 st->print("ldp lr, rfp, [sp],#%d\n\t", (2 * wordSize)); 1850 } else if (framesize < ((1 << 9) + 2 * wordSize)) { 1851 st->print("ldp lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize); 1852 st->print("add sp, sp, #%d\n\t", framesize); 1853 } else { 1854 st->print("mov rscratch1, #%d\n\t", framesize - 2 * wordSize); 1855 st->print("add sp, sp, rscratch1\n\t"); 1856 st->print("ldp lr, rfp, [sp],#%d\n\t", (2 * wordSize)); 1857 } 1858 if (VM_Version::use_rop_protection()) { 1859 st->print("autiaz\n\t"); 1860 st->print("ldr zr, [lr]\n\t"); 1861 } 1862 1863 if (do_polling() && C->is_method_compilation()) { 1864 st->print("# test polling word\n\t"); 1865 st->print("ldr rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset())); 1866 st->print("cmp sp, rscratch1\n\t"); 1867 st->print("bhi #slow_path"); 1868 } 1869 } 1870 #endif 1871 1872 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 1873 Compile* C = ra_->C; 1874 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1875 1876 __ remove_frame(framesize); 1877 1878 if (StackReservedPages > 0 && C->has_reserved_stack_access()) { 1879 __ reserved_stack_check(); 1880 } 1881 1882 if (do_polling() && C->is_method_compilation()) { 1883 Label dummy_label; 1884 Label* code_stub = &dummy_label; 1885 if (!C->output()->in_scratch_emit_size()) { 1886 C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset()); 1887 C->output()->add_stub(stub); 1888 code_stub = &stub->entry(); 1889 } 1890 __ relocate(relocInfo::poll_return_type); 1891 __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */); 1892 } 1893 } 1894 1895 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const { 1896 // Variable size. Determine dynamically. 1897 return MachNode::size(ra_); 1898 } 1899 1900 int MachEpilogNode::reloc() const { 1901 // Return number of relocatable values contained in this instruction. 1902 return 1; // 1 for polling page. 1903 } 1904 1905 const Pipeline * MachEpilogNode::pipeline() const { 1906 return MachNode::pipeline_class(); 1907 } 1908 1909 //============================================================================= 1910 1911 static enum RC rc_class(OptoReg::Name reg) { 1912 1913 if (reg == OptoReg::Bad) { 1914 return rc_bad; 1915 } 1916 1917 // we have 32 int registers * 2 halves 1918 int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register; 1919 1920 if (reg < slots_of_int_registers) { 1921 return rc_int; 1922 } 1923 1924 // we have 32 float register * 8 halves 1925 int slots_of_float_registers = FloatRegister::number_of_registers * FloatRegister::max_slots_per_register; 1926 if (reg < slots_of_int_registers + slots_of_float_registers) { 1927 return rc_float; 1928 } 1929 1930 int slots_of_predicate_registers = PRegister::number_of_registers * PRegister::max_slots_per_register; 1931 if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_predicate_registers) { 1932 return rc_predicate; 1933 } 1934 1935 // Between predicate regs & stack is the flags. 1936 assert(OptoReg::is_stack(reg), "blow up if spilling flags"); 1937 1938 return rc_stack; 1939 } 1940 1941 uint MachSpillCopyNode::implementation(C2_MacroAssembler *masm, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const { 1942 Compile* C = ra_->C; 1943 1944 // Get registers to move. 1945 OptoReg::Name src_hi = ra_->get_reg_second(in(1)); 1946 OptoReg::Name src_lo = ra_->get_reg_first(in(1)); 1947 OptoReg::Name dst_hi = ra_->get_reg_second(this); 1948 OptoReg::Name dst_lo = ra_->get_reg_first(this); 1949 1950 enum RC src_hi_rc = rc_class(src_hi); 1951 enum RC src_lo_rc = rc_class(src_lo); 1952 enum RC dst_hi_rc = rc_class(dst_hi); 1953 enum RC dst_lo_rc = rc_class(dst_lo); 1954 1955 assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register"); 1956 1957 if (src_hi != OptoReg::Bad && !bottom_type()->isa_vectmask()) { 1958 assert((src_lo&1)==0 && src_lo+1==src_hi && 1959 (dst_lo&1)==0 && dst_lo+1==dst_hi, 1960 "expected aligned-adjacent pairs"); 1961 } 1962 1963 if (src_lo == dst_lo && src_hi == dst_hi) { 1964 return 0; // Self copy, no move. 1965 } 1966 1967 bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi && 1968 (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi; 1969 int src_offset = ra_->reg2offset(src_lo); 1970 int dst_offset = ra_->reg2offset(dst_lo); 1971 1972 if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) { 1973 uint ireg = ideal_reg(); 1974 if (ireg == Op_VecA && masm) { 1975 int sve_vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 1976 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 1977 // stack->stack 1978 __ spill_copy_sve_vector_stack_to_stack(src_offset, dst_offset, 1979 sve_vector_reg_size_in_bytes); 1980 } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) { 1981 __ spill_sve_vector(as_FloatRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo), 1982 sve_vector_reg_size_in_bytes); 1983 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) { 1984 __ unspill_sve_vector(as_FloatRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo), 1985 sve_vector_reg_size_in_bytes); 1986 } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) { 1987 __ sve_orr(as_FloatRegister(Matcher::_regEncode[dst_lo]), 1988 as_FloatRegister(Matcher::_regEncode[src_lo]), 1989 as_FloatRegister(Matcher::_regEncode[src_lo])); 1990 } else { 1991 ShouldNotReachHere(); 1992 } 1993 } else if (masm) { 1994 assert(ireg == Op_VecD || ireg == Op_VecX, "must be 64 bit or 128 bit vector"); 1995 assert((src_lo_rc != rc_int && dst_lo_rc != rc_int), "sanity"); 1996 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 1997 // stack->stack 1998 assert((src_offset & 7) == 0 && (dst_offset & 7) == 0, "unaligned stack offset"); 1999 if (ireg == Op_VecD) { 2000 __ unspill(rscratch1, true, src_offset); 2001 __ spill(rscratch1, true, dst_offset); 2002 } else { 2003 __ spill_copy128(src_offset, dst_offset); 2004 } 2005 } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) { 2006 __ mov(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2007 ireg == Op_VecD ? __ T8B : __ T16B, 2008 as_FloatRegister(Matcher::_regEncode[src_lo])); 2009 } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) { 2010 __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]), 2011 ireg == Op_VecD ? __ D : __ Q, 2012 ra_->reg2offset(dst_lo)); 2013 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) { 2014 __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2015 ireg == Op_VecD ? __ D : __ Q, 2016 ra_->reg2offset(src_lo)); 2017 } else { 2018 ShouldNotReachHere(); 2019 } 2020 } 2021 } else if (masm) { 2022 switch (src_lo_rc) { 2023 case rc_int: 2024 if (dst_lo_rc == rc_int) { // gpr --> gpr copy 2025 if (is64) { 2026 __ mov(as_Register(Matcher::_regEncode[dst_lo]), 2027 as_Register(Matcher::_regEncode[src_lo])); 2028 } else { 2029 __ movw(as_Register(Matcher::_regEncode[dst_lo]), 2030 as_Register(Matcher::_regEncode[src_lo])); 2031 } 2032 } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy 2033 if (is64) { 2034 __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2035 as_Register(Matcher::_regEncode[src_lo])); 2036 } else { 2037 __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2038 as_Register(Matcher::_regEncode[src_lo])); 2039 } 2040 } else { // gpr --> stack spill 2041 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 2042 __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset); 2043 } 2044 break; 2045 case rc_float: 2046 if (dst_lo_rc == rc_int) { // fpr --> gpr copy 2047 if (is64) { 2048 __ fmovd(as_Register(Matcher::_regEncode[dst_lo]), 2049 as_FloatRegister(Matcher::_regEncode[src_lo])); 2050 } else { 2051 __ fmovs(as_Register(Matcher::_regEncode[dst_lo]), 2052 as_FloatRegister(Matcher::_regEncode[src_lo])); 2053 } 2054 } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy 2055 if (is64) { 2056 __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2057 as_FloatRegister(Matcher::_regEncode[src_lo])); 2058 } else { 2059 __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2060 as_FloatRegister(Matcher::_regEncode[src_lo])); 2061 } 2062 } else { // fpr --> stack spill 2063 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 2064 __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]), 2065 is64 ? __ D : __ S, dst_offset); 2066 } 2067 break; 2068 case rc_stack: 2069 if (dst_lo_rc == rc_int) { // stack --> gpr load 2070 __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset); 2071 } else if (dst_lo_rc == rc_float) { // stack --> fpr load 2072 __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2073 is64 ? __ D : __ S, src_offset); 2074 } else if (dst_lo_rc == rc_predicate) { 2075 __ unspill_sve_predicate(as_PRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo), 2076 Matcher::scalable_vector_reg_size(T_BYTE) >> 3); 2077 } else { // stack --> stack copy 2078 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 2079 if (ideal_reg() == Op_RegVectMask) { 2080 __ spill_copy_sve_predicate_stack_to_stack(src_offset, dst_offset, 2081 Matcher::scalable_vector_reg_size(T_BYTE) >> 3); 2082 } else { 2083 __ unspill(rscratch1, is64, src_offset); 2084 __ spill(rscratch1, is64, dst_offset); 2085 } 2086 } 2087 break; 2088 case rc_predicate: 2089 if (dst_lo_rc == rc_predicate) { 2090 __ sve_mov(as_PRegister(Matcher::_regEncode[dst_lo]), as_PRegister(Matcher::_regEncode[src_lo])); 2091 } else if (dst_lo_rc == rc_stack) { 2092 __ spill_sve_predicate(as_PRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo), 2093 Matcher::scalable_vector_reg_size(T_BYTE) >> 3); 2094 } else { 2095 assert(false, "bad src and dst rc_class combination."); 2096 ShouldNotReachHere(); 2097 } 2098 break; 2099 default: 2100 assert(false, "bad rc_class for spill"); 2101 ShouldNotReachHere(); 2102 } 2103 } 2104 2105 if (st) { 2106 st->print("spill "); 2107 if (src_lo_rc == rc_stack) { 2108 st->print("[sp, #%d] -> ", ra_->reg2offset(src_lo)); 2109 } else { 2110 st->print("%s -> ", Matcher::regName[src_lo]); 2111 } 2112 if (dst_lo_rc == rc_stack) { 2113 st->print("[sp, #%d]", ra_->reg2offset(dst_lo)); 2114 } else { 2115 st->print("%s", Matcher::regName[dst_lo]); 2116 } 2117 if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) { 2118 int vsize = 0; 2119 switch (ideal_reg()) { 2120 case Op_VecD: 2121 vsize = 64; 2122 break; 2123 case Op_VecX: 2124 vsize = 128; 2125 break; 2126 case Op_VecA: 2127 vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8; 2128 break; 2129 default: 2130 assert(false, "bad register type for spill"); 2131 ShouldNotReachHere(); 2132 } 2133 st->print("\t# vector spill size = %d", vsize); 2134 } else if (ideal_reg() == Op_RegVectMask) { 2135 assert(Matcher::supports_scalable_vector(), "bad register type for spill"); 2136 int vsize = Matcher::scalable_predicate_reg_slots() * 32; 2137 st->print("\t# predicate spill size = %d", vsize); 2138 } else { 2139 st->print("\t# spill size = %d", is64 ? 64 : 32); 2140 } 2141 } 2142 2143 return 0; 2144 2145 } 2146 2147 #ifndef PRODUCT 2148 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 2149 if (!ra_) 2150 st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx); 2151 else 2152 implementation(nullptr, ra_, false, st); 2153 } 2154 #endif 2155 2156 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 2157 implementation(masm, ra_, false, nullptr); 2158 } 2159 2160 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const { 2161 return MachNode::size(ra_); 2162 } 2163 2164 //============================================================================= 2165 2166 #ifndef PRODUCT 2167 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 2168 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 2169 int reg = ra_->get_reg_first(this); 2170 st->print("add %s, rsp, #%d]\t# box lock", 2171 Matcher::regName[reg], offset); 2172 } 2173 #endif 2174 2175 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 2176 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 2177 int reg = ra_->get_encode(this); 2178 2179 // This add will handle any 24-bit signed offset. 24 bits allows an 2180 // 8 megabyte stack frame. 2181 __ add(as_Register(reg), sp, offset); 2182 } 2183 2184 uint BoxLockNode::size(PhaseRegAlloc *ra_) const { 2185 // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_). 2186 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 2187 2188 if (Assembler::operand_valid_for_add_sub_immediate(offset)) { 2189 return NativeInstruction::instruction_size; 2190 } else { 2191 return 2 * NativeInstruction::instruction_size; 2192 } 2193 } 2194 2195 //============================================================================= 2196 2197 #ifndef PRODUCT 2198 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const 2199 { 2200 st->print_cr("# MachUEPNode"); 2201 if (UseCompressedClassPointers) { 2202 st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 2203 st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass"); 2204 st->print_cr("\tcmpw rscratch1, r10"); 2205 } else { 2206 st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 2207 st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass"); 2208 st->print_cr("\tcmp rscratch1, r10"); 2209 } 2210 st->print_cr("\tbne, SharedRuntime::_ic_miss_stub"); 2211 } 2212 #endif 2213 2214 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const 2215 { 2216 __ ic_check(InteriorEntryAlignment); 2217 } 2218 2219 uint MachUEPNode::size(PhaseRegAlloc* ra_) const 2220 { 2221 return MachNode::size(ra_); 2222 } 2223 2224 // REQUIRED EMIT CODE 2225 2226 //============================================================================= 2227 2228 // Emit exception handler code. 2229 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm) 2230 { 2231 // mov rscratch1 #exception_blob_entry_point 2232 // br rscratch1 2233 // Note that the code buffer's insts_mark is always relative to insts. 2234 // That's why we must use the macroassembler to generate a handler. 2235 address base = __ start_a_stub(size_exception_handler()); 2236 if (base == nullptr) { 2237 ciEnv::current()->record_failure("CodeCache is full"); 2238 return 0; // CodeBuffer::expand failed 2239 } 2240 int offset = __ offset(); 2241 __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point())); 2242 assert(__ offset() - offset <= (int) size_exception_handler(), "overflow"); 2243 __ end_a_stub(); 2244 return offset; 2245 } 2246 2247 // Emit deopt handler code. 2248 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm) 2249 { 2250 // Note that the code buffer's insts_mark is always relative to insts. 2251 // That's why we must use the macroassembler to generate a handler. 2252 address base = __ start_a_stub(size_deopt_handler()); 2253 if (base == nullptr) { 2254 ciEnv::current()->record_failure("CodeCache is full"); 2255 return 0; // CodeBuffer::expand failed 2256 } 2257 int offset = __ offset(); 2258 2259 __ adr(lr, __ pc()); 2260 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 2261 2262 assert(__ offset() - offset == (int) size_deopt_handler(), "overflow"); 2263 __ end_a_stub(); 2264 return offset; 2265 } 2266 2267 // REQUIRED MATCHER CODE 2268 2269 //============================================================================= 2270 2271 bool Matcher::match_rule_supported(int opcode) { 2272 if (!has_match_rule(opcode)) 2273 return false; 2274 2275 switch (opcode) { 2276 case Op_OnSpinWait: 2277 return VM_Version::supports_on_spin_wait(); 2278 case Op_CacheWB: 2279 case Op_CacheWBPreSync: 2280 case Op_CacheWBPostSync: 2281 if (!VM_Version::supports_data_cache_line_flush()) { 2282 return false; 2283 } 2284 break; 2285 case Op_ExpandBits: 2286 case Op_CompressBits: 2287 if (!VM_Version::supports_svebitperm()) { 2288 return false; 2289 } 2290 break; 2291 case Op_FmaF: 2292 case Op_FmaD: 2293 case Op_FmaVF: 2294 case Op_FmaVD: 2295 if (!UseFMA) { 2296 return false; 2297 } 2298 break; 2299 } 2300 2301 return true; // Per default match rules are supported. 2302 } 2303 2304 const RegMask* Matcher::predicate_reg_mask(void) { 2305 return &_PR_REG_mask; 2306 } 2307 2308 bool Matcher::supports_vector_calling_convention(void) { 2309 return EnableVectorSupport && UseVectorStubs; 2310 } 2311 2312 OptoRegPair Matcher::vector_return_value(uint ideal_reg) { 2313 assert(EnableVectorSupport && UseVectorStubs, "sanity"); 2314 int lo = V0_num; 2315 int hi = V0_H_num; 2316 if (ideal_reg == Op_VecX || ideal_reg == Op_VecA) { 2317 hi = V0_K_num; 2318 } 2319 return OptoRegPair(hi, lo); 2320 } 2321 2322 // Is this branch offset short enough that a short branch can be used? 2323 // 2324 // NOTE: If the platform does not provide any short branch variants, then 2325 // this method should return false for offset 0. 2326 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) { 2327 // The passed offset is relative to address of the branch. 2328 2329 return (-32768 <= offset && offset < 32768); 2330 } 2331 2332 // Vector width in bytes. 2333 int Matcher::vector_width_in_bytes(BasicType bt) { 2334 // The MaxVectorSize should have been set by detecting SVE max vector register size. 2335 int size = MIN2((UseSVE > 0) ? (int)FloatRegister::sve_vl_max : (int)FloatRegister::neon_vl, (int)MaxVectorSize); 2336 // Minimum 2 values in vector 2337 if (size < 2*type2aelembytes(bt)) size = 0; 2338 // But never < 4 2339 if (size < 4) size = 0; 2340 return size; 2341 } 2342 2343 // Limits on vector size (number of elements) loaded into vector. 2344 int Matcher::max_vector_size(const BasicType bt) { 2345 return vector_width_in_bytes(bt)/type2aelembytes(bt); 2346 } 2347 2348 int Matcher::min_vector_size(const BasicType bt) { 2349 int max_size = max_vector_size(bt); 2350 // Limit the min vector size to 8 bytes. 2351 int size = 8 / type2aelembytes(bt); 2352 if (bt == T_BYTE) { 2353 // To support vector api shuffle/rearrange. 2354 size = 4; 2355 } else if (bt == T_BOOLEAN) { 2356 // To support vector api load/store mask. 2357 size = 2; 2358 } 2359 if (size < 2) size = 2; 2360 return MIN2(size, max_size); 2361 } 2362 2363 int Matcher::max_vector_size_auto_vectorization(const BasicType bt) { 2364 return Matcher::max_vector_size(bt); 2365 } 2366 2367 // Actual max scalable vector register length. 2368 int Matcher::scalable_vector_reg_size(const BasicType bt) { 2369 return Matcher::max_vector_size(bt); 2370 } 2371 2372 // Vector ideal reg. 2373 uint Matcher::vector_ideal_reg(int len) { 2374 if (UseSVE > 0 && FloatRegister::neon_vl < len && len <= FloatRegister::sve_vl_max) { 2375 return Op_VecA; 2376 } 2377 switch(len) { 2378 // For 16-bit/32-bit mask vector, reuse VecD. 2379 case 2: 2380 case 4: 2381 case 8: return Op_VecD; 2382 case 16: return Op_VecX; 2383 } 2384 ShouldNotReachHere(); 2385 return 0; 2386 } 2387 2388 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* generic_opnd, uint ideal_reg, bool is_temp) { 2389 assert(Matcher::is_generic_vector(generic_opnd), "not generic"); 2390 switch (ideal_reg) { 2391 case Op_VecA: return new vecAOper(); 2392 case Op_VecD: return new vecDOper(); 2393 case Op_VecX: return new vecXOper(); 2394 } 2395 ShouldNotReachHere(); 2396 return nullptr; 2397 } 2398 2399 bool Matcher::is_reg2reg_move(MachNode* m) { 2400 return false; 2401 } 2402 2403 bool Matcher::is_generic_vector(MachOper* opnd) { 2404 return opnd->opcode() == VREG; 2405 } 2406 2407 // Return whether or not this register is ever used as an argument. 2408 // This function is used on startup to build the trampoline stubs in 2409 // generateOptoStub. Registers not mentioned will be killed by the VM 2410 // call in the trampoline, and arguments in those registers not be 2411 // available to the callee. 2412 bool Matcher::can_be_java_arg(int reg) 2413 { 2414 return 2415 reg == R0_num || reg == R0_H_num || 2416 reg == R1_num || reg == R1_H_num || 2417 reg == R2_num || reg == R2_H_num || 2418 reg == R3_num || reg == R3_H_num || 2419 reg == R4_num || reg == R4_H_num || 2420 reg == R5_num || reg == R5_H_num || 2421 reg == R6_num || reg == R6_H_num || 2422 reg == R7_num || reg == R7_H_num || 2423 reg == V0_num || reg == V0_H_num || 2424 reg == V1_num || reg == V1_H_num || 2425 reg == V2_num || reg == V2_H_num || 2426 reg == V3_num || reg == V3_H_num || 2427 reg == V4_num || reg == V4_H_num || 2428 reg == V5_num || reg == V5_H_num || 2429 reg == V6_num || reg == V6_H_num || 2430 reg == V7_num || reg == V7_H_num; 2431 } 2432 2433 bool Matcher::is_spillable_arg(int reg) 2434 { 2435 return can_be_java_arg(reg); 2436 } 2437 2438 uint Matcher::int_pressure_limit() 2439 { 2440 // JDK-8183543: When taking the number of available registers as int 2441 // register pressure threshold, the jtreg test: 2442 // test/hotspot/jtreg/compiler/regalloc/TestC2IntPressure.java 2443 // failed due to C2 compilation failure with 2444 // "COMPILE SKIPPED: failed spill-split-recycle sanity check". 2445 // 2446 // A derived pointer is live at CallNode and then is flagged by RA 2447 // as a spilled LRG. Spilling heuristics(Spill-USE) explicitly skip 2448 // derived pointers and lastly fail to spill after reaching maximum 2449 // number of iterations. Lowering the default pressure threshold to 2450 // (_NO_SPECIAL_REG32_mask.Size() minus 1) forces CallNode to become 2451 // a high register pressure area of the code so that split_DEF can 2452 // generate DefinitionSpillCopy for the derived pointer. 2453 uint default_int_pressure_threshold = _NO_SPECIAL_REG32_mask.Size() - 1; 2454 if (!PreserveFramePointer) { 2455 // When PreserveFramePointer is off, frame pointer is allocatable, 2456 // but different from other SOC registers, it is excluded from 2457 // fatproj's mask because its save type is No-Save. Decrease 1 to 2458 // ensure high pressure at fatproj when PreserveFramePointer is off. 2459 // See check_pressure_at_fatproj(). 2460 default_int_pressure_threshold--; 2461 } 2462 return (INTPRESSURE == -1) ? default_int_pressure_threshold : INTPRESSURE; 2463 } 2464 2465 uint Matcher::float_pressure_limit() 2466 { 2467 // _FLOAT_REG_mask is generated by adlc from the float_reg register class. 2468 return (FLOATPRESSURE == -1) ? _FLOAT_REG_mask.Size() : FLOATPRESSURE; 2469 } 2470 2471 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) { 2472 return false; 2473 } 2474 2475 RegMask Matcher::divI_proj_mask() { 2476 ShouldNotReachHere(); 2477 return RegMask(); 2478 } 2479 2480 // Register for MODI projection of divmodI. 2481 RegMask Matcher::modI_proj_mask() { 2482 ShouldNotReachHere(); 2483 return RegMask(); 2484 } 2485 2486 // Register for DIVL projection of divmodL. 2487 RegMask Matcher::divL_proj_mask() { 2488 ShouldNotReachHere(); 2489 return RegMask(); 2490 } 2491 2492 // Register for MODL projection of divmodL. 2493 RegMask Matcher::modL_proj_mask() { 2494 ShouldNotReachHere(); 2495 return RegMask(); 2496 } 2497 2498 const RegMask Matcher::method_handle_invoke_SP_save_mask() { 2499 return FP_REG_mask(); 2500 } 2501 2502 bool size_fits_all_mem_uses(AddPNode* addp, int shift) { 2503 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 2504 Node* u = addp->fast_out(i); 2505 if (u->is_LoadStore()) { 2506 // On AArch64, LoadStoreNodes (i.e. compare and swap 2507 // instructions) only take register indirect as an operand, so 2508 // any attempt to use an AddPNode as an input to a LoadStoreNode 2509 // must fail. 2510 return false; 2511 } 2512 if (u->is_Mem()) { 2513 int opsize = u->as_Mem()->memory_size(); 2514 assert(opsize > 0, "unexpected memory operand size"); 2515 if (u->as_Mem()->memory_size() != (1<<shift)) { 2516 return false; 2517 } 2518 } 2519 } 2520 return true; 2521 } 2522 2523 // Convert BootTest condition to Assembler condition. 2524 // Replicate the logic of cmpOpOper::ccode() and cmpOpUOper::ccode(). 2525 Assembler::Condition to_assembler_cond(BoolTest::mask cond) { 2526 Assembler::Condition result; 2527 switch(cond) { 2528 case BoolTest::eq: 2529 result = Assembler::EQ; break; 2530 case BoolTest::ne: 2531 result = Assembler::NE; break; 2532 case BoolTest::le: 2533 result = Assembler::LE; break; 2534 case BoolTest::ge: 2535 result = Assembler::GE; break; 2536 case BoolTest::lt: 2537 result = Assembler::LT; break; 2538 case BoolTest::gt: 2539 result = Assembler::GT; break; 2540 case BoolTest::ule: 2541 result = Assembler::LS; break; 2542 case BoolTest::uge: 2543 result = Assembler::HS; break; 2544 case BoolTest::ult: 2545 result = Assembler::LO; break; 2546 case BoolTest::ugt: 2547 result = Assembler::HI; break; 2548 case BoolTest::overflow: 2549 result = Assembler::VS; break; 2550 case BoolTest::no_overflow: 2551 result = Assembler::VC; break; 2552 default: 2553 ShouldNotReachHere(); 2554 return Assembler::Condition(-1); 2555 } 2556 2557 // Check conversion 2558 if (cond & BoolTest::unsigned_compare) { 2559 assert(cmpOpUOper((BoolTest::mask)((int)cond & ~(BoolTest::unsigned_compare))).ccode() == result, "Invalid conversion"); 2560 } else { 2561 assert(cmpOpOper(cond).ccode() == result, "Invalid conversion"); 2562 } 2563 2564 return result; 2565 } 2566 2567 // Binary src (Replicate con) 2568 static bool is_valid_sve_arith_imm_pattern(Node* n, Node* m) { 2569 if (n == nullptr || m == nullptr) { 2570 return false; 2571 } 2572 2573 if (UseSVE == 0 || m->Opcode() != Op_Replicate) { 2574 return false; 2575 } 2576 2577 Node* imm_node = m->in(1); 2578 if (!imm_node->is_Con()) { 2579 return false; 2580 } 2581 2582 const Type* t = imm_node->bottom_type(); 2583 if (!(t->isa_int() || t->isa_long())) { 2584 return false; 2585 } 2586 2587 switch (n->Opcode()) { 2588 case Op_AndV: 2589 case Op_OrV: 2590 case Op_XorV: { 2591 Assembler::SIMD_RegVariant T = Assembler::elemType_to_regVariant(Matcher::vector_element_basic_type(n)); 2592 uint64_t value = t->isa_long() ? (uint64_t)imm_node->get_long() : (uint64_t)imm_node->get_int(); 2593 return Assembler::operand_valid_for_sve_logical_immediate(Assembler::regVariant_to_elemBits(T), value); 2594 } 2595 case Op_AddVB: 2596 return (imm_node->get_int() <= 255 && imm_node->get_int() >= -255); 2597 case Op_AddVS: 2598 case Op_AddVI: 2599 return Assembler::operand_valid_for_sve_add_sub_immediate((int64_t)imm_node->get_int()); 2600 case Op_AddVL: 2601 return Assembler::operand_valid_for_sve_add_sub_immediate(imm_node->get_long()); 2602 default: 2603 return false; 2604 } 2605 } 2606 2607 // (XorV src (Replicate m1)) 2608 // (XorVMask src (MaskAll m1)) 2609 static bool is_vector_bitwise_not_pattern(Node* n, Node* m) { 2610 if (n != nullptr && m != nullptr) { 2611 return (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) && 2612 VectorNode::is_all_ones_vector(m); 2613 } 2614 return false; 2615 } 2616 2617 // Should the matcher clone input 'm' of node 'n'? 2618 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) { 2619 if (is_vshift_con_pattern(n, m) || 2620 is_vector_bitwise_not_pattern(n, m) || 2621 is_valid_sve_arith_imm_pattern(n, m) || 2622 is_encode_and_store_pattern(n, m)) { 2623 mstack.push(m, Visit); 2624 return true; 2625 } 2626 return false; 2627 } 2628 2629 // Should the Matcher clone shifts on addressing modes, expecting them 2630 // to be subsumed into complex addressing expressions or compute them 2631 // into registers? 2632 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { 2633 2634 // Loads and stores with indirect memory input (e.g., volatile loads and 2635 // stores) do not subsume the input into complex addressing expressions. If 2636 // the addressing expression is input to at least one such load or store, do 2637 // not clone the addressing expression. Query needs_acquiring_load and 2638 // needs_releasing_store as a proxy for indirect memory input, as it is not 2639 // possible to directly query for indirect memory input at this stage. 2640 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 2641 Node* n = m->fast_out(i); 2642 if (n->is_Load() && needs_acquiring_load(n)) { 2643 return false; 2644 } 2645 if (n->is_Store() && needs_releasing_store(n)) { 2646 return false; 2647 } 2648 } 2649 2650 if (clone_base_plus_offset_address(m, mstack, address_visited)) { 2651 return true; 2652 } 2653 2654 Node *off = m->in(AddPNode::Offset); 2655 if (off->Opcode() == Op_LShiftL && off->in(2)->is_Con() && 2656 size_fits_all_mem_uses(m, off->in(2)->get_int()) && 2657 // Are there other uses besides address expressions? 2658 !is_visited(off)) { 2659 address_visited.set(off->_idx); // Flag as address_visited 2660 mstack.push(off->in(2), Visit); 2661 Node *conv = off->in(1); 2662 if (conv->Opcode() == Op_ConvI2L && 2663 // Are there other uses besides address expressions? 2664 !is_visited(conv)) { 2665 address_visited.set(conv->_idx); // Flag as address_visited 2666 mstack.push(conv->in(1), Pre_Visit); 2667 } else { 2668 mstack.push(conv, Pre_Visit); 2669 } 2670 address_visited.test_set(m->_idx); // Flag as address_visited 2671 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2672 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2673 return true; 2674 } else if (off->Opcode() == Op_ConvI2L && 2675 // Are there other uses besides address expressions? 2676 !is_visited(off)) { 2677 address_visited.test_set(m->_idx); // Flag as address_visited 2678 address_visited.set(off->_idx); // Flag as address_visited 2679 mstack.push(off->in(1), Pre_Visit); 2680 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2681 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2682 return true; 2683 } 2684 return false; 2685 } 2686 2687 #define MOV_VOLATILE(REG, BASE, INDEX, SCALE, DISP, SCRATCH, INSN) \ 2688 { \ 2689 guarantee(INDEX == -1, "mode not permitted for volatile"); \ 2690 guarantee(DISP == 0, "mode not permitted for volatile"); \ 2691 guarantee(SCALE == 0, "mode not permitted for volatile"); \ 2692 __ INSN(REG, as_Register(BASE)); \ 2693 } 2694 2695 2696 static Address mem2address(int opcode, Register base, int index, int size, int disp) 2697 { 2698 Address::extend scale; 2699 2700 // Hooboy, this is fugly. We need a way to communicate to the 2701 // encoder that the index needs to be sign extended, so we have to 2702 // enumerate all the cases. 2703 switch (opcode) { 2704 case INDINDEXSCALEDI2L: 2705 case INDINDEXSCALEDI2LN: 2706 case INDINDEXI2L: 2707 case INDINDEXI2LN: 2708 scale = Address::sxtw(size); 2709 break; 2710 default: 2711 scale = Address::lsl(size); 2712 } 2713 2714 if (index == -1) { 2715 return Address(base, disp); 2716 } else { 2717 assert(disp == 0, "unsupported address mode: disp = %d", disp); 2718 return Address(base, as_Register(index), scale); 2719 } 2720 } 2721 2722 2723 typedef void (MacroAssembler::* mem_insn)(Register Rt, const Address &adr); 2724 typedef void (MacroAssembler::* mem_insn2)(Register Rt, Register adr); 2725 typedef void (MacroAssembler::* mem_float_insn)(FloatRegister Rt, const Address &adr); 2726 typedef void (MacroAssembler::* mem_vector_insn)(FloatRegister Rt, 2727 MacroAssembler::SIMD_RegVariant T, const Address &adr); 2728 2729 // Used for all non-volatile memory accesses. The use of 2730 // $mem->opcode() to discover whether this pattern uses sign-extended 2731 // offsets is something of a kludge. 2732 static void loadStore(C2_MacroAssembler* masm, mem_insn insn, 2733 Register reg, int opcode, 2734 Register base, int index, int scale, int disp, 2735 int size_in_memory) 2736 { 2737 Address addr = mem2address(opcode, base, index, scale, disp); 2738 if (addr.getMode() == Address::base_plus_offset) { 2739 /* Fix up any out-of-range offsets. */ 2740 assert_different_registers(rscratch1, base); 2741 assert_different_registers(rscratch1, reg); 2742 addr = __ legitimize_address(addr, size_in_memory, rscratch1); 2743 } 2744 (masm->*insn)(reg, addr); 2745 } 2746 2747 static void loadStore(C2_MacroAssembler* masm, mem_float_insn insn, 2748 FloatRegister reg, int opcode, 2749 Register base, int index, int size, int disp, 2750 int size_in_memory) 2751 { 2752 Address::extend scale; 2753 2754 switch (opcode) { 2755 case INDINDEXSCALEDI2L: 2756 case INDINDEXSCALEDI2LN: 2757 scale = Address::sxtw(size); 2758 break; 2759 default: 2760 scale = Address::lsl(size); 2761 } 2762 2763 if (index == -1) { 2764 // Fix up any out-of-range offsets. 2765 assert_different_registers(rscratch1, base); 2766 Address addr = Address(base, disp); 2767 addr = __ legitimize_address(addr, size_in_memory, rscratch1); 2768 (masm->*insn)(reg, addr); 2769 } else { 2770 assert(disp == 0, "unsupported address mode: disp = %d", disp); 2771 (masm->*insn)(reg, Address(base, as_Register(index), scale)); 2772 } 2773 } 2774 2775 static void loadStore(C2_MacroAssembler* masm, mem_vector_insn insn, 2776 FloatRegister reg, MacroAssembler::SIMD_RegVariant T, 2777 int opcode, Register base, int index, int size, int disp) 2778 { 2779 if (index == -1) { 2780 (masm->*insn)(reg, T, Address(base, disp)); 2781 } else { 2782 assert(disp == 0, "unsupported address mode"); 2783 (masm->*insn)(reg, T, Address(base, as_Register(index), Address::lsl(size))); 2784 } 2785 } 2786 2787 %} 2788 2789 2790 2791 //----------ENCODING BLOCK----------------------------------------------------- 2792 // This block specifies the encoding classes used by the compiler to 2793 // output byte streams. Encoding classes are parameterized macros 2794 // used by Machine Instruction Nodes in order to generate the bit 2795 // encoding of the instruction. Operands specify their base encoding 2796 // interface with the interface keyword. There are currently 2797 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, & 2798 // COND_INTER. REG_INTER causes an operand to generate a function 2799 // which returns its register number when queried. CONST_INTER causes 2800 // an operand to generate a function which returns the value of the 2801 // constant when queried. MEMORY_INTER causes an operand to generate 2802 // four functions which return the Base Register, the Index Register, 2803 // the Scale Value, and the Offset Value of the operand when queried. 2804 // COND_INTER causes an operand to generate six functions which return 2805 // the encoding code (ie - encoding bits for the instruction) 2806 // associated with each basic boolean condition for a conditional 2807 // instruction. 2808 // 2809 // Instructions specify two basic values for encoding. Again, a 2810 // function is available to check if the constant displacement is an 2811 // oop. They use the ins_encode keyword to specify their encoding 2812 // classes (which must be a sequence of enc_class names, and their 2813 // parameters, specified in the encoding block), and they use the 2814 // opcode keyword to specify, in order, their primary, secondary, and 2815 // tertiary opcode. Only the opcode sections which a particular 2816 // instruction needs for encoding need to be specified. 2817 encode %{ 2818 // Build emit functions for each basic byte or larger field in the 2819 // intel encoding scheme (opcode, rm, sib, immediate), and call them 2820 // from C++ code in the enc_class source block. Emit functions will 2821 // live in the main source block for now. In future, we can 2822 // generalize this by adding a syntax that specifies the sizes of 2823 // fields in an order, so that the adlc can build the emit functions 2824 // automagically 2825 2826 // catch all for unimplemented encodings 2827 enc_class enc_unimplemented %{ 2828 __ unimplemented("C2 catch all"); 2829 %} 2830 2831 // BEGIN Non-volatile memory access 2832 2833 // This encoding class is generated automatically from ad_encode.m4. 2834 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2835 enc_class aarch64_enc_ldrsbw(iRegI dst, memory1 mem) %{ 2836 Register dst_reg = as_Register($dst$$reg); 2837 loadStore(masm, &MacroAssembler::ldrsbw, dst_reg, $mem->opcode(), 2838 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2839 %} 2840 2841 // This encoding class is generated automatically from ad_encode.m4. 2842 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2843 enc_class aarch64_enc_ldrsb(iRegI dst, memory1 mem) %{ 2844 Register dst_reg = as_Register($dst$$reg); 2845 loadStore(masm, &MacroAssembler::ldrsb, dst_reg, $mem->opcode(), 2846 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2847 %} 2848 2849 // This encoding class is generated automatically from ad_encode.m4. 2850 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2851 enc_class aarch64_enc_ldrb(iRegI dst, memory1 mem) %{ 2852 Register dst_reg = as_Register($dst$$reg); 2853 loadStore(masm, &MacroAssembler::ldrb, dst_reg, $mem->opcode(), 2854 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2855 %} 2856 2857 // This encoding class is generated automatically from ad_encode.m4. 2858 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2859 enc_class aarch64_enc_ldrb(iRegL dst, memory1 mem) %{ 2860 Register dst_reg = as_Register($dst$$reg); 2861 loadStore(masm, &MacroAssembler::ldrb, dst_reg, $mem->opcode(), 2862 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2863 %} 2864 2865 // This encoding class is generated automatically from ad_encode.m4. 2866 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2867 enc_class aarch64_enc_ldrshw(iRegI dst, memory2 mem) %{ 2868 Register dst_reg = as_Register($dst$$reg); 2869 loadStore(masm, &MacroAssembler::ldrshw, dst_reg, $mem->opcode(), 2870 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2871 %} 2872 2873 // This encoding class is generated automatically from ad_encode.m4. 2874 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2875 enc_class aarch64_enc_ldrsh(iRegI dst, memory2 mem) %{ 2876 Register dst_reg = as_Register($dst$$reg); 2877 loadStore(masm, &MacroAssembler::ldrsh, dst_reg, $mem->opcode(), 2878 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2879 %} 2880 2881 // This encoding class is generated automatically from ad_encode.m4. 2882 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2883 enc_class aarch64_enc_ldrh(iRegI dst, memory2 mem) %{ 2884 Register dst_reg = as_Register($dst$$reg); 2885 loadStore(masm, &MacroAssembler::ldrh, dst_reg, $mem->opcode(), 2886 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2887 %} 2888 2889 // This encoding class is generated automatically from ad_encode.m4. 2890 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2891 enc_class aarch64_enc_ldrh(iRegL dst, memory2 mem) %{ 2892 Register dst_reg = as_Register($dst$$reg); 2893 loadStore(masm, &MacroAssembler::ldrh, dst_reg, $mem->opcode(), 2894 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2895 %} 2896 2897 // This encoding class is generated automatically from ad_encode.m4. 2898 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2899 enc_class aarch64_enc_ldrw(iRegI dst, memory4 mem) %{ 2900 Register dst_reg = as_Register($dst$$reg); 2901 loadStore(masm, &MacroAssembler::ldrw, dst_reg, $mem->opcode(), 2902 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2903 %} 2904 2905 // This encoding class is generated automatically from ad_encode.m4. 2906 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2907 enc_class aarch64_enc_ldrw(iRegL dst, memory4 mem) %{ 2908 Register dst_reg = as_Register($dst$$reg); 2909 loadStore(masm, &MacroAssembler::ldrw, dst_reg, $mem->opcode(), 2910 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2911 %} 2912 2913 // This encoding class is generated automatically from ad_encode.m4. 2914 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2915 enc_class aarch64_enc_ldrsw(iRegL dst, memory4 mem) %{ 2916 Register dst_reg = as_Register($dst$$reg); 2917 loadStore(masm, &MacroAssembler::ldrsw, dst_reg, $mem->opcode(), 2918 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2919 %} 2920 2921 // This encoding class is generated automatically from ad_encode.m4. 2922 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2923 enc_class aarch64_enc_ldr(iRegL dst, memory8 mem) %{ 2924 Register dst_reg = as_Register($dst$$reg); 2925 loadStore(masm, &MacroAssembler::ldr, dst_reg, $mem->opcode(), 2926 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 2927 %} 2928 2929 // This encoding class is generated automatically from ad_encode.m4. 2930 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2931 enc_class aarch64_enc_ldrs(vRegF dst, memory4 mem) %{ 2932 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 2933 loadStore(masm, &MacroAssembler::ldrs, dst_reg, $mem->opcode(), 2934 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2935 %} 2936 2937 // This encoding class is generated automatically from ad_encode.m4. 2938 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2939 enc_class aarch64_enc_ldrd(vRegD dst, memory8 mem) %{ 2940 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 2941 loadStore(masm, &MacroAssembler::ldrd, dst_reg, $mem->opcode(), 2942 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 2943 %} 2944 2945 // This encoding class is generated automatically from ad_encode.m4. 2946 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2947 enc_class aarch64_enc_strb(iRegI src, memory1 mem) %{ 2948 Register src_reg = as_Register($src$$reg); 2949 loadStore(masm, &MacroAssembler::strb, src_reg, $mem->opcode(), 2950 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2951 %} 2952 2953 // This encoding class is generated automatically from ad_encode.m4. 2954 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2955 enc_class aarch64_enc_strb0(memory1 mem) %{ 2956 loadStore(masm, &MacroAssembler::strb, zr, $mem->opcode(), 2957 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2958 %} 2959 2960 // This encoding class is generated automatically from ad_encode.m4. 2961 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2962 enc_class aarch64_enc_strh(iRegI src, memory2 mem) %{ 2963 Register src_reg = as_Register($src$$reg); 2964 loadStore(masm, &MacroAssembler::strh, src_reg, $mem->opcode(), 2965 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2966 %} 2967 2968 // This encoding class is generated automatically from ad_encode.m4. 2969 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2970 enc_class aarch64_enc_strh0(memory2 mem) %{ 2971 loadStore(masm, &MacroAssembler::strh, zr, $mem->opcode(), 2972 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2973 %} 2974 2975 // This encoding class is generated automatically from ad_encode.m4. 2976 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2977 enc_class aarch64_enc_strw(iRegI src, memory4 mem) %{ 2978 Register src_reg = as_Register($src$$reg); 2979 loadStore(masm, &MacroAssembler::strw, src_reg, $mem->opcode(), 2980 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2981 %} 2982 2983 // This encoding class is generated automatically from ad_encode.m4. 2984 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2985 enc_class aarch64_enc_strw0(memory4 mem) %{ 2986 loadStore(masm, &MacroAssembler::strw, zr, $mem->opcode(), 2987 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2988 %} 2989 2990 // This encoding class is generated automatically from ad_encode.m4. 2991 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2992 enc_class aarch64_enc_str(iRegL src, memory8 mem) %{ 2993 Register src_reg = as_Register($src$$reg); 2994 // we sometimes get asked to store the stack pointer into the 2995 // current thread -- we cannot do that directly on AArch64 2996 if (src_reg == r31_sp) { 2997 assert(as_Register($mem$$base) == rthread, "unexpected store for sp"); 2998 __ mov(rscratch2, sp); 2999 src_reg = rscratch2; 3000 } 3001 loadStore(masm, &MacroAssembler::str, src_reg, $mem->opcode(), 3002 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 3003 %} 3004 3005 // This encoding class is generated automatically from ad_encode.m4. 3006 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3007 enc_class aarch64_enc_str0(memory8 mem) %{ 3008 loadStore(masm, &MacroAssembler::str, zr, $mem->opcode(), 3009 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 3010 %} 3011 3012 // This encoding class is generated automatically from ad_encode.m4. 3013 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3014 enc_class aarch64_enc_strs(vRegF src, memory4 mem) %{ 3015 FloatRegister src_reg = as_FloatRegister($src$$reg); 3016 loadStore(masm, &MacroAssembler::strs, src_reg, $mem->opcode(), 3017 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 3018 %} 3019 3020 // This encoding class is generated automatically from ad_encode.m4. 3021 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3022 enc_class aarch64_enc_strd(vRegD src, memory8 mem) %{ 3023 FloatRegister src_reg = as_FloatRegister($src$$reg); 3024 loadStore(masm, &MacroAssembler::strd, src_reg, $mem->opcode(), 3025 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 3026 %} 3027 3028 // This encoding class is generated automatically from ad_encode.m4. 3029 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3030 enc_class aarch64_enc_strb0_ordered(memory4 mem) %{ 3031 __ membar(Assembler::StoreStore); 3032 loadStore(masm, &MacroAssembler::strb, zr, $mem->opcode(), 3033 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 3034 %} 3035 3036 // END Non-volatile memory access 3037 3038 // Vector loads and stores 3039 enc_class aarch64_enc_ldrvH(vReg dst, memory mem) %{ 3040 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 3041 loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::H, 3042 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3043 %} 3044 3045 enc_class aarch64_enc_ldrvS(vReg dst, memory mem) %{ 3046 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 3047 loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::S, 3048 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3049 %} 3050 3051 enc_class aarch64_enc_ldrvD(vReg dst, memory mem) %{ 3052 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 3053 loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::D, 3054 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3055 %} 3056 3057 enc_class aarch64_enc_ldrvQ(vReg dst, memory mem) %{ 3058 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 3059 loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::Q, 3060 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3061 %} 3062 3063 enc_class aarch64_enc_strvH(vReg src, memory mem) %{ 3064 FloatRegister src_reg = as_FloatRegister($src$$reg); 3065 loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::H, 3066 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3067 %} 3068 3069 enc_class aarch64_enc_strvS(vReg src, memory mem) %{ 3070 FloatRegister src_reg = as_FloatRegister($src$$reg); 3071 loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::S, 3072 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3073 %} 3074 3075 enc_class aarch64_enc_strvD(vReg src, memory mem) %{ 3076 FloatRegister src_reg = as_FloatRegister($src$$reg); 3077 loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::D, 3078 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3079 %} 3080 3081 enc_class aarch64_enc_strvQ(vReg src, memory mem) %{ 3082 FloatRegister src_reg = as_FloatRegister($src$$reg); 3083 loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::Q, 3084 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3085 %} 3086 3087 // volatile loads and stores 3088 3089 enc_class aarch64_enc_stlrb(iRegI src, memory mem) %{ 3090 MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3091 rscratch1, stlrb); 3092 %} 3093 3094 enc_class aarch64_enc_stlrb0(memory mem) %{ 3095 MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3096 rscratch1, stlrb); 3097 %} 3098 3099 enc_class aarch64_enc_stlrh(iRegI src, memory mem) %{ 3100 MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3101 rscratch1, stlrh); 3102 %} 3103 3104 enc_class aarch64_enc_stlrh0(memory mem) %{ 3105 MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3106 rscratch1, stlrh); 3107 %} 3108 3109 enc_class aarch64_enc_stlrw(iRegI src, memory mem) %{ 3110 MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3111 rscratch1, stlrw); 3112 %} 3113 3114 enc_class aarch64_enc_stlrw0(memory mem) %{ 3115 MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3116 rscratch1, stlrw); 3117 %} 3118 3119 enc_class aarch64_enc_ldarsbw(iRegI dst, memory mem) %{ 3120 Register dst_reg = as_Register($dst$$reg); 3121 MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3122 rscratch1, ldarb); 3123 __ sxtbw(dst_reg, dst_reg); 3124 %} 3125 3126 enc_class aarch64_enc_ldarsb(iRegL dst, memory mem) %{ 3127 Register dst_reg = as_Register($dst$$reg); 3128 MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3129 rscratch1, ldarb); 3130 __ sxtb(dst_reg, dst_reg); 3131 %} 3132 3133 enc_class aarch64_enc_ldarbw(iRegI dst, memory mem) %{ 3134 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3135 rscratch1, ldarb); 3136 %} 3137 3138 enc_class aarch64_enc_ldarb(iRegL dst, memory mem) %{ 3139 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3140 rscratch1, ldarb); 3141 %} 3142 3143 enc_class aarch64_enc_ldarshw(iRegI dst, memory mem) %{ 3144 Register dst_reg = as_Register($dst$$reg); 3145 MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3146 rscratch1, ldarh); 3147 __ sxthw(dst_reg, dst_reg); 3148 %} 3149 3150 enc_class aarch64_enc_ldarsh(iRegL dst, memory mem) %{ 3151 Register dst_reg = as_Register($dst$$reg); 3152 MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3153 rscratch1, ldarh); 3154 __ sxth(dst_reg, dst_reg); 3155 %} 3156 3157 enc_class aarch64_enc_ldarhw(iRegI dst, memory mem) %{ 3158 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3159 rscratch1, ldarh); 3160 %} 3161 3162 enc_class aarch64_enc_ldarh(iRegL dst, memory mem) %{ 3163 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3164 rscratch1, ldarh); 3165 %} 3166 3167 enc_class aarch64_enc_ldarw(iRegI dst, memory mem) %{ 3168 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3169 rscratch1, ldarw); 3170 %} 3171 3172 enc_class aarch64_enc_ldarw(iRegL dst, memory mem) %{ 3173 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3174 rscratch1, ldarw); 3175 %} 3176 3177 enc_class aarch64_enc_ldar(iRegL dst, memory mem) %{ 3178 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3179 rscratch1, ldar); 3180 %} 3181 3182 enc_class aarch64_enc_fldars(vRegF dst, memory mem) %{ 3183 MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3184 rscratch1, ldarw); 3185 __ fmovs(as_FloatRegister($dst$$reg), rscratch1); 3186 %} 3187 3188 enc_class aarch64_enc_fldard(vRegD dst, memory mem) %{ 3189 MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3190 rscratch1, ldar); 3191 __ fmovd(as_FloatRegister($dst$$reg), rscratch1); 3192 %} 3193 3194 enc_class aarch64_enc_stlr(iRegL src, memory mem) %{ 3195 Register src_reg = as_Register($src$$reg); 3196 // we sometimes get asked to store the stack pointer into the 3197 // current thread -- we cannot do that directly on AArch64 3198 if (src_reg == r31_sp) { 3199 assert(as_Register($mem$$base) == rthread, "unexpected store for sp"); 3200 __ mov(rscratch2, sp); 3201 src_reg = rscratch2; 3202 } 3203 MOV_VOLATILE(src_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3204 rscratch1, stlr); 3205 %} 3206 3207 enc_class aarch64_enc_stlr0(memory mem) %{ 3208 MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3209 rscratch1, stlr); 3210 %} 3211 3212 enc_class aarch64_enc_fstlrs(vRegF src, memory mem) %{ 3213 { 3214 FloatRegister src_reg = as_FloatRegister($src$$reg); 3215 __ fmovs(rscratch2, src_reg); 3216 } 3217 MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3218 rscratch1, stlrw); 3219 %} 3220 3221 enc_class aarch64_enc_fstlrd(vRegD src, memory mem) %{ 3222 { 3223 FloatRegister src_reg = as_FloatRegister($src$$reg); 3224 __ fmovd(rscratch2, src_reg); 3225 } 3226 MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3227 rscratch1, stlr); 3228 %} 3229 3230 // synchronized read/update encodings 3231 3232 enc_class aarch64_enc_ldaxr(iRegL dst, memory8 mem) %{ 3233 Register dst_reg = as_Register($dst$$reg); 3234 Register base = as_Register($mem$$base); 3235 int index = $mem$$index; 3236 int scale = $mem$$scale; 3237 int disp = $mem$$disp; 3238 if (index == -1) { 3239 if (disp != 0) { 3240 __ lea(rscratch1, Address(base, disp)); 3241 __ ldaxr(dst_reg, rscratch1); 3242 } else { 3243 // TODO 3244 // should we ever get anything other than this case? 3245 __ ldaxr(dst_reg, base); 3246 } 3247 } else { 3248 Register index_reg = as_Register(index); 3249 if (disp == 0) { 3250 __ lea(rscratch1, Address(base, index_reg, Address::lsl(scale))); 3251 __ ldaxr(dst_reg, rscratch1); 3252 } else { 3253 __ lea(rscratch1, Address(base, disp)); 3254 __ lea(rscratch1, Address(rscratch1, index_reg, Address::lsl(scale))); 3255 __ ldaxr(dst_reg, rscratch1); 3256 } 3257 } 3258 %} 3259 3260 enc_class aarch64_enc_stlxr(iRegLNoSp src, memory8 mem) %{ 3261 Register src_reg = as_Register($src$$reg); 3262 Register base = as_Register($mem$$base); 3263 int index = $mem$$index; 3264 int scale = $mem$$scale; 3265 int disp = $mem$$disp; 3266 if (index == -1) { 3267 if (disp != 0) { 3268 __ lea(rscratch2, Address(base, disp)); 3269 __ stlxr(rscratch1, src_reg, rscratch2); 3270 } else { 3271 // TODO 3272 // should we ever get anything other than this case? 3273 __ stlxr(rscratch1, src_reg, base); 3274 } 3275 } else { 3276 Register index_reg = as_Register(index); 3277 if (disp == 0) { 3278 __ lea(rscratch2, Address(base, index_reg, Address::lsl(scale))); 3279 __ stlxr(rscratch1, src_reg, rscratch2); 3280 } else { 3281 __ lea(rscratch2, Address(base, disp)); 3282 __ lea(rscratch2, Address(rscratch2, index_reg, Address::lsl(scale))); 3283 __ stlxr(rscratch1, src_reg, rscratch2); 3284 } 3285 } 3286 __ cmpw(rscratch1, zr); 3287 %} 3288 3289 enc_class aarch64_enc_cmpxchg(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{ 3290 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3291 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3292 Assembler::xword, /*acquire*/ false, /*release*/ true, 3293 /*weak*/ false, noreg); 3294 %} 3295 3296 enc_class aarch64_enc_cmpxchgw(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3297 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3298 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3299 Assembler::word, /*acquire*/ false, /*release*/ true, 3300 /*weak*/ false, noreg); 3301 %} 3302 3303 enc_class aarch64_enc_cmpxchgs(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3304 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3305 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3306 Assembler::halfword, /*acquire*/ false, /*release*/ true, 3307 /*weak*/ false, noreg); 3308 %} 3309 3310 enc_class aarch64_enc_cmpxchgb(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3311 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3312 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3313 Assembler::byte, /*acquire*/ false, /*release*/ true, 3314 /*weak*/ false, noreg); 3315 %} 3316 3317 3318 // The only difference between aarch64_enc_cmpxchg and 3319 // aarch64_enc_cmpxchg_acq is that we use load-acquire in the 3320 // CompareAndSwap sequence to serve as a barrier on acquiring a 3321 // lock. 3322 enc_class aarch64_enc_cmpxchg_acq(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{ 3323 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3324 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3325 Assembler::xword, /*acquire*/ true, /*release*/ true, 3326 /*weak*/ false, noreg); 3327 %} 3328 3329 enc_class aarch64_enc_cmpxchgw_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3330 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3331 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3332 Assembler::word, /*acquire*/ true, /*release*/ true, 3333 /*weak*/ false, noreg); 3334 %} 3335 3336 enc_class aarch64_enc_cmpxchgs_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3337 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3338 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3339 Assembler::halfword, /*acquire*/ true, /*release*/ true, 3340 /*weak*/ false, noreg); 3341 %} 3342 3343 enc_class aarch64_enc_cmpxchgb_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3344 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3345 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3346 Assembler::byte, /*acquire*/ true, /*release*/ true, 3347 /*weak*/ false, noreg); 3348 %} 3349 3350 // auxiliary used for CompareAndSwapX to set result register 3351 enc_class aarch64_enc_cset_eq(iRegINoSp res) %{ 3352 Register res_reg = as_Register($res$$reg); 3353 __ cset(res_reg, Assembler::EQ); 3354 %} 3355 3356 // prefetch encodings 3357 3358 enc_class aarch64_enc_prefetchw(memory mem) %{ 3359 Register base = as_Register($mem$$base); 3360 int index = $mem$$index; 3361 int scale = $mem$$scale; 3362 int disp = $mem$$disp; 3363 if (index == -1) { 3364 // Fix up any out-of-range offsets. 3365 assert_different_registers(rscratch1, base); 3366 Address addr = Address(base, disp); 3367 addr = __ legitimize_address(addr, 8, rscratch1); 3368 __ prfm(addr, PSTL1KEEP); 3369 } else { 3370 Register index_reg = as_Register(index); 3371 if (disp == 0) { 3372 __ prfm(Address(base, index_reg, Address::lsl(scale)), PSTL1KEEP); 3373 } else { 3374 __ lea(rscratch1, Address(base, disp)); 3375 __ prfm(Address(rscratch1, index_reg, Address::lsl(scale)), PSTL1KEEP); 3376 } 3377 } 3378 %} 3379 3380 // mov encodings 3381 3382 enc_class aarch64_enc_movw_imm(iRegI dst, immI src) %{ 3383 uint32_t con = (uint32_t)$src$$constant; 3384 Register dst_reg = as_Register($dst$$reg); 3385 if (con == 0) { 3386 __ movw(dst_reg, zr); 3387 } else { 3388 __ movw(dst_reg, con); 3389 } 3390 %} 3391 3392 enc_class aarch64_enc_mov_imm(iRegL dst, immL src) %{ 3393 Register dst_reg = as_Register($dst$$reg); 3394 uint64_t con = (uint64_t)$src$$constant; 3395 if (con == 0) { 3396 __ mov(dst_reg, zr); 3397 } else { 3398 __ mov(dst_reg, con); 3399 } 3400 %} 3401 3402 enc_class aarch64_enc_mov_p(iRegP dst, immP src) %{ 3403 Register dst_reg = as_Register($dst$$reg); 3404 address con = (address)$src$$constant; 3405 if (con == nullptr || con == (address)1) { 3406 ShouldNotReachHere(); 3407 } else { 3408 relocInfo::relocType rtype = $src->constant_reloc(); 3409 if (rtype == relocInfo::oop_type) { 3410 __ movoop(dst_reg, (jobject)con); 3411 } else if (rtype == relocInfo::metadata_type) { 3412 __ mov_metadata(dst_reg, (Metadata*)con); 3413 } else { 3414 assert(rtype == relocInfo::none, "unexpected reloc type"); 3415 if (! __ is_valid_AArch64_address(con) || 3416 con < (address)(uintptr_t)os::vm_page_size()) { 3417 __ mov(dst_reg, con); 3418 } else { 3419 uint64_t offset; 3420 __ adrp(dst_reg, con, offset); 3421 __ add(dst_reg, dst_reg, offset); 3422 } 3423 } 3424 } 3425 %} 3426 3427 enc_class aarch64_enc_mov_p0(iRegP dst, immP0 src) %{ 3428 Register dst_reg = as_Register($dst$$reg); 3429 __ mov(dst_reg, zr); 3430 %} 3431 3432 enc_class aarch64_enc_mov_p1(iRegP dst, immP_1 src) %{ 3433 Register dst_reg = as_Register($dst$$reg); 3434 __ mov(dst_reg, (uint64_t)1); 3435 %} 3436 3437 enc_class aarch64_enc_mov_byte_map_base(iRegP dst, immByteMapBase src) %{ 3438 __ load_byte_map_base($dst$$Register); 3439 %} 3440 3441 enc_class aarch64_enc_mov_n(iRegN dst, immN src) %{ 3442 Register dst_reg = as_Register($dst$$reg); 3443 address con = (address)$src$$constant; 3444 if (con == nullptr) { 3445 ShouldNotReachHere(); 3446 } else { 3447 relocInfo::relocType rtype = $src->constant_reloc(); 3448 assert(rtype == relocInfo::oop_type, "unexpected reloc type"); 3449 __ set_narrow_oop(dst_reg, (jobject)con); 3450 } 3451 %} 3452 3453 enc_class aarch64_enc_mov_n0(iRegN dst, immN0 src) %{ 3454 Register dst_reg = as_Register($dst$$reg); 3455 __ mov(dst_reg, zr); 3456 %} 3457 3458 enc_class aarch64_enc_mov_nk(iRegN dst, immNKlass src) %{ 3459 Register dst_reg = as_Register($dst$$reg); 3460 address con = (address)$src$$constant; 3461 if (con == nullptr) { 3462 ShouldNotReachHere(); 3463 } else { 3464 relocInfo::relocType rtype = $src->constant_reloc(); 3465 assert(rtype == relocInfo::metadata_type, "unexpected reloc type"); 3466 __ set_narrow_klass(dst_reg, (Klass *)con); 3467 } 3468 %} 3469 3470 // arithmetic encodings 3471 3472 enc_class aarch64_enc_addsubw_imm(iRegI dst, iRegI src1, immIAddSub src2) %{ 3473 Register dst_reg = as_Register($dst$$reg); 3474 Register src_reg = as_Register($src1$$reg); 3475 int32_t con = (int32_t)$src2$$constant; 3476 // add has primary == 0, subtract has primary == 1 3477 if ($primary) { con = -con; } 3478 if (con < 0) { 3479 __ subw(dst_reg, src_reg, -con); 3480 } else { 3481 __ addw(dst_reg, src_reg, con); 3482 } 3483 %} 3484 3485 enc_class aarch64_enc_addsub_imm(iRegL dst, iRegL src1, immLAddSub src2) %{ 3486 Register dst_reg = as_Register($dst$$reg); 3487 Register src_reg = as_Register($src1$$reg); 3488 int32_t con = (int32_t)$src2$$constant; 3489 // add has primary == 0, subtract has primary == 1 3490 if ($primary) { con = -con; } 3491 if (con < 0) { 3492 __ sub(dst_reg, src_reg, -con); 3493 } else { 3494 __ add(dst_reg, src_reg, con); 3495 } 3496 %} 3497 3498 enc_class aarch64_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{ 3499 Register dst_reg = as_Register($dst$$reg); 3500 Register src1_reg = as_Register($src1$$reg); 3501 Register src2_reg = as_Register($src2$$reg); 3502 __ corrected_idivl(dst_reg, src1_reg, src2_reg, false, rscratch1); 3503 %} 3504 3505 enc_class aarch64_enc_div(iRegI dst, iRegI src1, iRegI src2) %{ 3506 Register dst_reg = as_Register($dst$$reg); 3507 Register src1_reg = as_Register($src1$$reg); 3508 Register src2_reg = as_Register($src2$$reg); 3509 __ corrected_idivq(dst_reg, src1_reg, src2_reg, false, rscratch1); 3510 %} 3511 3512 enc_class aarch64_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{ 3513 Register dst_reg = as_Register($dst$$reg); 3514 Register src1_reg = as_Register($src1$$reg); 3515 Register src2_reg = as_Register($src2$$reg); 3516 __ corrected_idivl(dst_reg, src1_reg, src2_reg, true, rscratch1); 3517 %} 3518 3519 enc_class aarch64_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{ 3520 Register dst_reg = as_Register($dst$$reg); 3521 Register src1_reg = as_Register($src1$$reg); 3522 Register src2_reg = as_Register($src2$$reg); 3523 __ corrected_idivq(dst_reg, src1_reg, src2_reg, true, rscratch1); 3524 %} 3525 3526 // compare instruction encodings 3527 3528 enc_class aarch64_enc_cmpw(iRegI src1, iRegI src2) %{ 3529 Register reg1 = as_Register($src1$$reg); 3530 Register reg2 = as_Register($src2$$reg); 3531 __ cmpw(reg1, reg2); 3532 %} 3533 3534 enc_class aarch64_enc_cmpw_imm_addsub(iRegI src1, immIAddSub src2) %{ 3535 Register reg = as_Register($src1$$reg); 3536 int32_t val = $src2$$constant; 3537 if (val >= 0) { 3538 __ subsw(zr, reg, val); 3539 } else { 3540 __ addsw(zr, reg, -val); 3541 } 3542 %} 3543 3544 enc_class aarch64_enc_cmpw_imm(iRegI src1, immI src2) %{ 3545 Register reg1 = as_Register($src1$$reg); 3546 uint32_t val = (uint32_t)$src2$$constant; 3547 __ movw(rscratch1, val); 3548 __ cmpw(reg1, rscratch1); 3549 %} 3550 3551 enc_class aarch64_enc_cmp(iRegL src1, iRegL src2) %{ 3552 Register reg1 = as_Register($src1$$reg); 3553 Register reg2 = as_Register($src2$$reg); 3554 __ cmp(reg1, reg2); 3555 %} 3556 3557 enc_class aarch64_enc_cmp_imm_addsub(iRegL src1, immL12 src2) %{ 3558 Register reg = as_Register($src1$$reg); 3559 int64_t val = $src2$$constant; 3560 if (val >= 0) { 3561 __ subs(zr, reg, val); 3562 } else if (val != -val) { 3563 __ adds(zr, reg, -val); 3564 } else { 3565 // aargh, Long.MIN_VALUE is a special case 3566 __ orr(rscratch1, zr, (uint64_t)val); 3567 __ subs(zr, reg, rscratch1); 3568 } 3569 %} 3570 3571 enc_class aarch64_enc_cmp_imm(iRegL src1, immL src2) %{ 3572 Register reg1 = as_Register($src1$$reg); 3573 uint64_t val = (uint64_t)$src2$$constant; 3574 __ mov(rscratch1, val); 3575 __ cmp(reg1, rscratch1); 3576 %} 3577 3578 enc_class aarch64_enc_cmpp(iRegP src1, iRegP src2) %{ 3579 Register reg1 = as_Register($src1$$reg); 3580 Register reg2 = as_Register($src2$$reg); 3581 __ cmp(reg1, reg2); 3582 %} 3583 3584 enc_class aarch64_enc_cmpn(iRegN src1, iRegN src2) %{ 3585 Register reg1 = as_Register($src1$$reg); 3586 Register reg2 = as_Register($src2$$reg); 3587 __ cmpw(reg1, reg2); 3588 %} 3589 3590 enc_class aarch64_enc_testp(iRegP src) %{ 3591 Register reg = as_Register($src$$reg); 3592 __ cmp(reg, zr); 3593 %} 3594 3595 enc_class aarch64_enc_testn(iRegN src) %{ 3596 Register reg = as_Register($src$$reg); 3597 __ cmpw(reg, zr); 3598 %} 3599 3600 enc_class aarch64_enc_b(label lbl) %{ 3601 Label *L = $lbl$$label; 3602 __ b(*L); 3603 %} 3604 3605 enc_class aarch64_enc_br_con(cmpOp cmp, label lbl) %{ 3606 Label *L = $lbl$$label; 3607 __ br ((Assembler::Condition)$cmp$$cmpcode, *L); 3608 %} 3609 3610 enc_class aarch64_enc_br_conU(cmpOpU cmp, label lbl) %{ 3611 Label *L = $lbl$$label; 3612 __ br ((Assembler::Condition)$cmp$$cmpcode, *L); 3613 %} 3614 3615 enc_class aarch64_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result) 3616 %{ 3617 Register sub_reg = as_Register($sub$$reg); 3618 Register super_reg = as_Register($super$$reg); 3619 Register temp_reg = as_Register($temp$$reg); 3620 Register result_reg = as_Register($result$$reg); 3621 3622 Label miss; 3623 __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg, 3624 nullptr, &miss, 3625 /*set_cond_codes:*/ true); 3626 if ($primary) { 3627 __ mov(result_reg, zr); 3628 } 3629 __ bind(miss); 3630 %} 3631 3632 enc_class aarch64_enc_java_static_call(method meth) %{ 3633 address addr = (address)$meth$$method; 3634 address call; 3635 if (!_method) { 3636 // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap. 3637 call = __ trampoline_call(Address(addr, relocInfo::runtime_call_type)); 3638 if (call == nullptr) { 3639 ciEnv::current()->record_failure("CodeCache is full"); 3640 return; 3641 } 3642 } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) { 3643 // The NOP here is purely to ensure that eliding a call to 3644 // JVM_EnsureMaterializedForStackWalk doesn't change the code size. 3645 __ nop(); 3646 __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)"); 3647 } else { 3648 int method_index = resolved_method_index(masm); 3649 RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index) 3650 : static_call_Relocation::spec(method_index); 3651 call = __ trampoline_call(Address(addr, rspec)); 3652 if (call == nullptr) { 3653 ciEnv::current()->record_failure("CodeCache is full"); 3654 return; 3655 } 3656 if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) { 3657 // Calls of the same statically bound method can share 3658 // a stub to the interpreter. 3659 __ code()->shared_stub_to_interp_for(_method, call - __ begin()); 3660 } else { 3661 // Emit stub for static call 3662 address stub = CompiledDirectCall::emit_to_interp_stub(masm, call); 3663 if (stub == nullptr) { 3664 ciEnv::current()->record_failure("CodeCache is full"); 3665 return; 3666 } 3667 } 3668 } 3669 3670 __ post_call_nop(); 3671 3672 // Only non uncommon_trap calls need to reinitialize ptrue. 3673 if (Compile::current()->max_vector_size() > 0 && uncommon_trap_request() == 0) { 3674 __ reinitialize_ptrue(); 3675 } 3676 %} 3677 3678 enc_class aarch64_enc_java_dynamic_call(method meth) %{ 3679 int method_index = resolved_method_index(masm); 3680 address call = __ ic_call((address)$meth$$method, method_index); 3681 if (call == nullptr) { 3682 ciEnv::current()->record_failure("CodeCache is full"); 3683 return; 3684 } 3685 __ post_call_nop(); 3686 if (Compile::current()->max_vector_size() > 0) { 3687 __ reinitialize_ptrue(); 3688 } 3689 %} 3690 3691 enc_class aarch64_enc_call_epilog() %{ 3692 if (VerifyStackAtCalls) { 3693 // Check that stack depth is unchanged: find majik cookie on stack 3694 __ call_Unimplemented(); 3695 } 3696 %} 3697 3698 enc_class aarch64_enc_java_to_runtime(method meth) %{ 3699 // some calls to generated routines (arraycopy code) are scheduled 3700 // by C2 as runtime calls. if so we can call them using a br (they 3701 // will be in a reachable segment) otherwise we have to use a blr 3702 // which loads the absolute address into a register. 3703 address entry = (address)$meth$$method; 3704 CodeBlob *cb = CodeCache::find_blob(entry); 3705 if (cb) { 3706 address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type)); 3707 if (call == nullptr) { 3708 ciEnv::current()->record_failure("CodeCache is full"); 3709 return; 3710 } 3711 __ post_call_nop(); 3712 } else { 3713 Label retaddr; 3714 // Make the anchor frame walkable 3715 __ adr(rscratch2, retaddr); 3716 __ str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset())); 3717 __ lea(rscratch1, RuntimeAddress(entry)); 3718 __ blr(rscratch1); 3719 __ bind(retaddr); 3720 __ post_call_nop(); 3721 } 3722 if (Compile::current()->max_vector_size() > 0) { 3723 __ reinitialize_ptrue(); 3724 } 3725 %} 3726 3727 enc_class aarch64_enc_rethrow() %{ 3728 __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub())); 3729 %} 3730 3731 enc_class aarch64_enc_ret() %{ 3732 #ifdef ASSERT 3733 if (Compile::current()->max_vector_size() > 0) { 3734 __ verify_ptrue(); 3735 } 3736 #endif 3737 __ ret(lr); 3738 %} 3739 3740 enc_class aarch64_enc_tail_call(iRegP jump_target) %{ 3741 Register target_reg = as_Register($jump_target$$reg); 3742 __ br(target_reg); 3743 %} 3744 3745 enc_class aarch64_enc_tail_jmp(iRegP jump_target) %{ 3746 Register target_reg = as_Register($jump_target$$reg); 3747 // exception oop should be in r0 3748 // ret addr has been popped into lr 3749 // callee expects it in r3 3750 __ mov(r3, lr); 3751 __ br(target_reg); 3752 %} 3753 3754 %} 3755 3756 //----------FRAME-------------------------------------------------------------- 3757 // Definition of frame structure and management information. 3758 // 3759 // S T A C K L A Y O U T Allocators stack-slot number 3760 // | (to get allocators register number 3761 // G Owned by | | v add OptoReg::stack0()) 3762 // r CALLER | | 3763 // o | +--------+ pad to even-align allocators stack-slot 3764 // w V | pad0 | numbers; owned by CALLER 3765 // t -----------+--------+----> Matcher::_in_arg_limit, unaligned 3766 // h ^ | in | 5 3767 // | | args | 4 Holes in incoming args owned by SELF 3768 // | | | | 3 3769 // | | +--------+ 3770 // V | | old out| Empty on Intel, window on Sparc 3771 // | old |preserve| Must be even aligned. 3772 // | SP-+--------+----> Matcher::_old_SP, even aligned 3773 // | | in | 3 area for Intel ret address 3774 // Owned by |preserve| Empty on Sparc. 3775 // SELF +--------+ 3776 // | | pad2 | 2 pad to align old SP 3777 // | +--------+ 1 3778 // | | locks | 0 3779 // | +--------+----> OptoReg::stack0(), even aligned 3780 // | | pad1 | 11 pad to align new SP 3781 // | +--------+ 3782 // | | | 10 3783 // | | spills | 9 spills 3784 // V | | 8 (pad0 slot for callee) 3785 // -----------+--------+----> Matcher::_out_arg_limit, unaligned 3786 // ^ | out | 7 3787 // | | args | 6 Holes in outgoing args owned by CALLEE 3788 // Owned by +--------+ 3789 // CALLEE | new out| 6 Empty on Intel, window on Sparc 3790 // | new |preserve| Must be even-aligned. 3791 // | SP-+--------+----> Matcher::_new_SP, even aligned 3792 // | | | 3793 // 3794 // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is 3795 // known from SELF's arguments and the Java calling convention. 3796 // Region 6-7 is determined per call site. 3797 // Note 2: If the calling convention leaves holes in the incoming argument 3798 // area, those holes are owned by SELF. Holes in the outgoing area 3799 // are owned by the CALLEE. Holes should not be necessary in the 3800 // incoming area, as the Java calling convention is completely under 3801 // the control of the AD file. Doubles can be sorted and packed to 3802 // avoid holes. Holes in the outgoing arguments may be necessary for 3803 // varargs C calling conventions. 3804 // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is 3805 // even aligned with pad0 as needed. 3806 // Region 6 is even aligned. Region 6-7 is NOT even aligned; 3807 // (the latter is true on Intel but is it false on AArch64?) 3808 // region 6-11 is even aligned; it may be padded out more so that 3809 // the region from SP to FP meets the minimum stack alignment. 3810 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack 3811 // alignment. Region 11, pad1, may be dynamically extended so that 3812 // SP meets the minimum alignment. 3813 3814 frame %{ 3815 // These three registers define part of the calling convention 3816 // between compiled code and the interpreter. 3817 3818 // Inline Cache Register or Method for I2C. 3819 inline_cache_reg(R12); 3820 3821 // Number of stack slots consumed by locking an object 3822 sync_stack_slots(2); 3823 3824 // Compiled code's Frame Pointer 3825 frame_pointer(R31); 3826 3827 // Interpreter stores its frame pointer in a register which is 3828 // stored to the stack by I2CAdaptors. 3829 // I2CAdaptors convert from interpreted java to compiled java. 3830 interpreter_frame_pointer(R29); 3831 3832 // Stack alignment requirement 3833 stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes) 3834 3835 // Number of outgoing stack slots killed above the out_preserve_stack_slots 3836 // for calls to C. Supports the var-args backing area for register parms. 3837 varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt); 3838 3839 // The after-PROLOG location of the return address. Location of 3840 // return address specifies a type (REG or STACK) and a number 3841 // representing the register number (i.e. - use a register name) or 3842 // stack slot. 3843 // Ret Addr is on stack in slot 0 if no locks or verification or alignment. 3844 // Otherwise, it is above the locks and verification slot and alignment word 3845 // TODO this may well be correct but need to check why that - 2 is there 3846 // ppc port uses 0 but we definitely need to allow for fixed_slots 3847 // which folds in the space used for monitors 3848 return_addr(STACK - 2 + 3849 align_up((Compile::current()->in_preserve_stack_slots() + 3850 Compile::current()->fixed_slots()), 3851 stack_alignment_in_slots())); 3852 3853 // Location of compiled Java return values. Same as C for now. 3854 return_value 3855 %{ 3856 // TODO do we allow ideal_reg == Op_RegN??? 3857 assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, 3858 "only return normal values"); 3859 3860 static const int lo[Op_RegL + 1] = { // enum name 3861 0, // Op_Node 3862 0, // Op_Set 3863 R0_num, // Op_RegN 3864 R0_num, // Op_RegI 3865 R0_num, // Op_RegP 3866 V0_num, // Op_RegF 3867 V0_num, // Op_RegD 3868 R0_num // Op_RegL 3869 }; 3870 3871 static const int hi[Op_RegL + 1] = { // enum name 3872 0, // Op_Node 3873 0, // Op_Set 3874 OptoReg::Bad, // Op_RegN 3875 OptoReg::Bad, // Op_RegI 3876 R0_H_num, // Op_RegP 3877 OptoReg::Bad, // Op_RegF 3878 V0_H_num, // Op_RegD 3879 R0_H_num // Op_RegL 3880 }; 3881 3882 return OptoRegPair(hi[ideal_reg], lo[ideal_reg]); 3883 %} 3884 %} 3885 3886 //----------ATTRIBUTES--------------------------------------------------------- 3887 //----------Operand Attributes------------------------------------------------- 3888 op_attrib op_cost(1); // Required cost attribute 3889 3890 //----------Instruction Attributes--------------------------------------------- 3891 ins_attrib ins_cost(INSN_COST); // Required cost attribute 3892 ins_attrib ins_size(32); // Required size attribute (in bits) 3893 ins_attrib ins_short_branch(0); // Required flag: is this instruction 3894 // a non-matching short branch variant 3895 // of some long branch? 3896 ins_attrib ins_alignment(4); // Required alignment attribute (must 3897 // be a power of 2) specifies the 3898 // alignment that some part of the 3899 // instruction (not necessarily the 3900 // start) requires. If > 1, a 3901 // compute_padding() function must be 3902 // provided for the instruction 3903 3904 //----------OPERANDS----------------------------------------------------------- 3905 // Operand definitions must precede instruction definitions for correct parsing 3906 // in the ADLC because operands constitute user defined types which are used in 3907 // instruction definitions. 3908 3909 //----------Simple Operands---------------------------------------------------- 3910 3911 // Integer operands 32 bit 3912 // 32 bit immediate 3913 operand immI() 3914 %{ 3915 match(ConI); 3916 3917 op_cost(0); 3918 format %{ %} 3919 interface(CONST_INTER); 3920 %} 3921 3922 // 32 bit zero 3923 operand immI0() 3924 %{ 3925 predicate(n->get_int() == 0); 3926 match(ConI); 3927 3928 op_cost(0); 3929 format %{ %} 3930 interface(CONST_INTER); 3931 %} 3932 3933 // 32 bit unit increment 3934 operand immI_1() 3935 %{ 3936 predicate(n->get_int() == 1); 3937 match(ConI); 3938 3939 op_cost(0); 3940 format %{ %} 3941 interface(CONST_INTER); 3942 %} 3943 3944 // 32 bit unit decrement 3945 operand immI_M1() 3946 %{ 3947 predicate(n->get_int() == -1); 3948 match(ConI); 3949 3950 op_cost(0); 3951 format %{ %} 3952 interface(CONST_INTER); 3953 %} 3954 3955 // Shift values for add/sub extension shift 3956 operand immIExt() 3957 %{ 3958 predicate(0 <= n->get_int() && (n->get_int() <= 4)); 3959 match(ConI); 3960 3961 op_cost(0); 3962 format %{ %} 3963 interface(CONST_INTER); 3964 %} 3965 3966 operand immI_gt_1() 3967 %{ 3968 predicate(n->get_int() > 1); 3969 match(ConI); 3970 3971 op_cost(0); 3972 format %{ %} 3973 interface(CONST_INTER); 3974 %} 3975 3976 operand immI_le_4() 3977 %{ 3978 predicate(n->get_int() <= 4); 3979 match(ConI); 3980 3981 op_cost(0); 3982 format %{ %} 3983 interface(CONST_INTER); 3984 %} 3985 3986 operand immI_16() 3987 %{ 3988 predicate(n->get_int() == 16); 3989 match(ConI); 3990 3991 op_cost(0); 3992 format %{ %} 3993 interface(CONST_INTER); 3994 %} 3995 3996 operand immI_24() 3997 %{ 3998 predicate(n->get_int() == 24); 3999 match(ConI); 4000 4001 op_cost(0); 4002 format %{ %} 4003 interface(CONST_INTER); 4004 %} 4005 4006 operand immI_32() 4007 %{ 4008 predicate(n->get_int() == 32); 4009 match(ConI); 4010 4011 op_cost(0); 4012 format %{ %} 4013 interface(CONST_INTER); 4014 %} 4015 4016 operand immI_48() 4017 %{ 4018 predicate(n->get_int() == 48); 4019 match(ConI); 4020 4021 op_cost(0); 4022 format %{ %} 4023 interface(CONST_INTER); 4024 %} 4025 4026 operand immI_56() 4027 %{ 4028 predicate(n->get_int() == 56); 4029 match(ConI); 4030 4031 op_cost(0); 4032 format %{ %} 4033 interface(CONST_INTER); 4034 %} 4035 4036 operand immI_255() 4037 %{ 4038 predicate(n->get_int() == 255); 4039 match(ConI); 4040 4041 op_cost(0); 4042 format %{ %} 4043 interface(CONST_INTER); 4044 %} 4045 4046 operand immI_65535() 4047 %{ 4048 predicate(n->get_int() == 65535); 4049 match(ConI); 4050 4051 op_cost(0); 4052 format %{ %} 4053 interface(CONST_INTER); 4054 %} 4055 4056 operand immI_positive() 4057 %{ 4058 predicate(n->get_int() > 0); 4059 match(ConI); 4060 4061 op_cost(0); 4062 format %{ %} 4063 interface(CONST_INTER); 4064 %} 4065 4066 // BoolTest condition for signed compare 4067 operand immI_cmp_cond() 4068 %{ 4069 predicate(!Matcher::is_unsigned_booltest_pred(n->get_int())); 4070 match(ConI); 4071 4072 op_cost(0); 4073 format %{ %} 4074 interface(CONST_INTER); 4075 %} 4076 4077 // BoolTest condition for unsigned compare 4078 operand immI_cmpU_cond() 4079 %{ 4080 predicate(Matcher::is_unsigned_booltest_pred(n->get_int())); 4081 match(ConI); 4082 4083 op_cost(0); 4084 format %{ %} 4085 interface(CONST_INTER); 4086 %} 4087 4088 operand immL_255() 4089 %{ 4090 predicate(n->get_long() == 255L); 4091 match(ConL); 4092 4093 op_cost(0); 4094 format %{ %} 4095 interface(CONST_INTER); 4096 %} 4097 4098 operand immL_65535() 4099 %{ 4100 predicate(n->get_long() == 65535L); 4101 match(ConL); 4102 4103 op_cost(0); 4104 format %{ %} 4105 interface(CONST_INTER); 4106 %} 4107 4108 operand immL_4294967295() 4109 %{ 4110 predicate(n->get_long() == 4294967295L); 4111 match(ConL); 4112 4113 op_cost(0); 4114 format %{ %} 4115 interface(CONST_INTER); 4116 %} 4117 4118 operand immL_bitmask() 4119 %{ 4120 predicate((n->get_long() != 0) 4121 && ((n->get_long() & 0xc000000000000000l) == 0) 4122 && is_power_of_2(n->get_long() + 1)); 4123 match(ConL); 4124 4125 op_cost(0); 4126 format %{ %} 4127 interface(CONST_INTER); 4128 %} 4129 4130 operand immI_bitmask() 4131 %{ 4132 predicate((n->get_int() != 0) 4133 && ((n->get_int() & 0xc0000000) == 0) 4134 && is_power_of_2(n->get_int() + 1)); 4135 match(ConI); 4136 4137 op_cost(0); 4138 format %{ %} 4139 interface(CONST_INTER); 4140 %} 4141 4142 operand immL_positive_bitmaskI() 4143 %{ 4144 predicate((n->get_long() != 0) 4145 && ((julong)n->get_long() < 0x80000000ULL) 4146 && is_power_of_2(n->get_long() + 1)); 4147 match(ConL); 4148 4149 op_cost(0); 4150 format %{ %} 4151 interface(CONST_INTER); 4152 %} 4153 4154 // Scale values for scaled offset addressing modes (up to long but not quad) 4155 operand immIScale() 4156 %{ 4157 predicate(0 <= n->get_int() && (n->get_int() <= 3)); 4158 match(ConI); 4159 4160 op_cost(0); 4161 format %{ %} 4162 interface(CONST_INTER); 4163 %} 4164 4165 // 5 bit signed integer 4166 operand immI5() 4167 %{ 4168 predicate(Assembler::is_simm(n->get_int(), 5)); 4169 match(ConI); 4170 4171 op_cost(0); 4172 format %{ %} 4173 interface(CONST_INTER); 4174 %} 4175 4176 // 7 bit unsigned integer 4177 operand immIU7() 4178 %{ 4179 predicate(Assembler::is_uimm(n->get_int(), 7)); 4180 match(ConI); 4181 4182 op_cost(0); 4183 format %{ %} 4184 interface(CONST_INTER); 4185 %} 4186 4187 // Offset for scaled or unscaled immediate loads and stores 4188 operand immIOffset() 4189 %{ 4190 predicate(Address::offset_ok_for_immed(n->get_int(), 0)); 4191 match(ConI); 4192 4193 op_cost(0); 4194 format %{ %} 4195 interface(CONST_INTER); 4196 %} 4197 4198 operand immIOffset1() 4199 %{ 4200 predicate(Address::offset_ok_for_immed(n->get_int(), 0)); 4201 match(ConI); 4202 4203 op_cost(0); 4204 format %{ %} 4205 interface(CONST_INTER); 4206 %} 4207 4208 operand immIOffset2() 4209 %{ 4210 predicate(Address::offset_ok_for_immed(n->get_int(), 1)); 4211 match(ConI); 4212 4213 op_cost(0); 4214 format %{ %} 4215 interface(CONST_INTER); 4216 %} 4217 4218 operand immIOffset4() 4219 %{ 4220 predicate(Address::offset_ok_for_immed(n->get_int(), 2)); 4221 match(ConI); 4222 4223 op_cost(0); 4224 format %{ %} 4225 interface(CONST_INTER); 4226 %} 4227 4228 operand immIOffset8() 4229 %{ 4230 predicate(Address::offset_ok_for_immed(n->get_int(), 3)); 4231 match(ConI); 4232 4233 op_cost(0); 4234 format %{ %} 4235 interface(CONST_INTER); 4236 %} 4237 4238 operand immIOffset16() 4239 %{ 4240 predicate(Address::offset_ok_for_immed(n->get_int(), 4)); 4241 match(ConI); 4242 4243 op_cost(0); 4244 format %{ %} 4245 interface(CONST_INTER); 4246 %} 4247 4248 operand immLOffset() 4249 %{ 4250 predicate(n->get_long() >= -256 && n->get_long() <= 65520); 4251 match(ConL); 4252 4253 op_cost(0); 4254 format %{ %} 4255 interface(CONST_INTER); 4256 %} 4257 4258 operand immLoffset1() 4259 %{ 4260 predicate(Address::offset_ok_for_immed(n->get_long(), 0)); 4261 match(ConL); 4262 4263 op_cost(0); 4264 format %{ %} 4265 interface(CONST_INTER); 4266 %} 4267 4268 operand immLoffset2() 4269 %{ 4270 predicate(Address::offset_ok_for_immed(n->get_long(), 1)); 4271 match(ConL); 4272 4273 op_cost(0); 4274 format %{ %} 4275 interface(CONST_INTER); 4276 %} 4277 4278 operand immLoffset4() 4279 %{ 4280 predicate(Address::offset_ok_for_immed(n->get_long(), 2)); 4281 match(ConL); 4282 4283 op_cost(0); 4284 format %{ %} 4285 interface(CONST_INTER); 4286 %} 4287 4288 operand immLoffset8() 4289 %{ 4290 predicate(Address::offset_ok_for_immed(n->get_long(), 3)); 4291 match(ConL); 4292 4293 op_cost(0); 4294 format %{ %} 4295 interface(CONST_INTER); 4296 %} 4297 4298 operand immLoffset16() 4299 %{ 4300 predicate(Address::offset_ok_for_immed(n->get_long(), 4)); 4301 match(ConL); 4302 4303 op_cost(0); 4304 format %{ %} 4305 interface(CONST_INTER); 4306 %} 4307 4308 // 5 bit signed long integer 4309 operand immL5() 4310 %{ 4311 predicate(Assembler::is_simm(n->get_long(), 5)); 4312 match(ConL); 4313 4314 op_cost(0); 4315 format %{ %} 4316 interface(CONST_INTER); 4317 %} 4318 4319 // 7 bit unsigned long integer 4320 operand immLU7() 4321 %{ 4322 predicate(Assembler::is_uimm(n->get_long(), 7)); 4323 match(ConL); 4324 4325 op_cost(0); 4326 format %{ %} 4327 interface(CONST_INTER); 4328 %} 4329 4330 // 8 bit signed value. 4331 operand immI8() 4332 %{ 4333 predicate(n->get_int() <= 127 && n->get_int() >= -128); 4334 match(ConI); 4335 4336 op_cost(0); 4337 format %{ %} 4338 interface(CONST_INTER); 4339 %} 4340 4341 // 8 bit signed value (simm8), or #simm8 LSL 8. 4342 operand immI8_shift8() 4343 %{ 4344 predicate((n->get_int() <= 127 && n->get_int() >= -128) || 4345 (n->get_int() <= 32512 && n->get_int() >= -32768 && (n->get_int() & 0xff) == 0)); 4346 match(ConI); 4347 4348 op_cost(0); 4349 format %{ %} 4350 interface(CONST_INTER); 4351 %} 4352 4353 // 8 bit signed value (simm8), or #simm8 LSL 8. 4354 operand immL8_shift8() 4355 %{ 4356 predicate((n->get_long() <= 127 && n->get_long() >= -128) || 4357 (n->get_long() <= 32512 && n->get_long() >= -32768 && (n->get_long() & 0xff) == 0)); 4358 match(ConL); 4359 4360 op_cost(0); 4361 format %{ %} 4362 interface(CONST_INTER); 4363 %} 4364 4365 // 8 bit integer valid for vector add sub immediate 4366 operand immBAddSubV() 4367 %{ 4368 predicate(n->get_int() <= 255 && n->get_int() >= -255); 4369 match(ConI); 4370 4371 op_cost(0); 4372 format %{ %} 4373 interface(CONST_INTER); 4374 %} 4375 4376 // 32 bit integer valid for add sub immediate 4377 operand immIAddSub() 4378 %{ 4379 predicate(Assembler::operand_valid_for_add_sub_immediate((int64_t)n->get_int())); 4380 match(ConI); 4381 op_cost(0); 4382 format %{ %} 4383 interface(CONST_INTER); 4384 %} 4385 4386 // 32 bit integer valid for vector add sub immediate 4387 operand immIAddSubV() 4388 %{ 4389 predicate(Assembler::operand_valid_for_sve_add_sub_immediate((int64_t)n->get_int())); 4390 match(ConI); 4391 4392 op_cost(0); 4393 format %{ %} 4394 interface(CONST_INTER); 4395 %} 4396 4397 // 32 bit unsigned integer valid for logical immediate 4398 4399 operand immBLog() 4400 %{ 4401 predicate(Assembler::operand_valid_for_sve_logical_immediate(BitsPerByte, (uint64_t)n->get_int())); 4402 match(ConI); 4403 4404 op_cost(0); 4405 format %{ %} 4406 interface(CONST_INTER); 4407 %} 4408 4409 operand immSLog() 4410 %{ 4411 predicate(Assembler::operand_valid_for_sve_logical_immediate(BitsPerShort, (uint64_t)n->get_int())); 4412 match(ConI); 4413 4414 op_cost(0); 4415 format %{ %} 4416 interface(CONST_INTER); 4417 %} 4418 4419 operand immILog() 4420 %{ 4421 predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/true, (uint64_t)n->get_int())); 4422 match(ConI); 4423 4424 op_cost(0); 4425 format %{ %} 4426 interface(CONST_INTER); 4427 %} 4428 4429 // Integer operands 64 bit 4430 // 64 bit immediate 4431 operand immL() 4432 %{ 4433 match(ConL); 4434 4435 op_cost(0); 4436 format %{ %} 4437 interface(CONST_INTER); 4438 %} 4439 4440 // 64 bit zero 4441 operand immL0() 4442 %{ 4443 predicate(n->get_long() == 0); 4444 match(ConL); 4445 4446 op_cost(0); 4447 format %{ %} 4448 interface(CONST_INTER); 4449 %} 4450 4451 // 64 bit unit decrement 4452 operand immL_M1() 4453 %{ 4454 predicate(n->get_long() == -1); 4455 match(ConL); 4456 4457 op_cost(0); 4458 format %{ %} 4459 interface(CONST_INTER); 4460 %} 4461 4462 // 64 bit integer valid for add sub immediate 4463 operand immLAddSub() 4464 %{ 4465 predicate(Assembler::operand_valid_for_add_sub_immediate(n->get_long())); 4466 match(ConL); 4467 op_cost(0); 4468 format %{ %} 4469 interface(CONST_INTER); 4470 %} 4471 4472 // 64 bit integer valid for addv subv immediate 4473 operand immLAddSubV() 4474 %{ 4475 predicate(Assembler::operand_valid_for_sve_add_sub_immediate(n->get_long())); 4476 match(ConL); 4477 4478 op_cost(0); 4479 format %{ %} 4480 interface(CONST_INTER); 4481 %} 4482 4483 // 64 bit integer valid for logical immediate 4484 operand immLLog() 4485 %{ 4486 predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/false, (uint64_t)n->get_long())); 4487 match(ConL); 4488 op_cost(0); 4489 format %{ %} 4490 interface(CONST_INTER); 4491 %} 4492 4493 // Long Immediate: low 32-bit mask 4494 operand immL_32bits() 4495 %{ 4496 predicate(n->get_long() == 0xFFFFFFFFL); 4497 match(ConL); 4498 op_cost(0); 4499 format %{ %} 4500 interface(CONST_INTER); 4501 %} 4502 4503 // Pointer operands 4504 // Pointer Immediate 4505 operand immP() 4506 %{ 4507 match(ConP); 4508 4509 op_cost(0); 4510 format %{ %} 4511 interface(CONST_INTER); 4512 %} 4513 4514 // nullptr Pointer Immediate 4515 operand immP0() 4516 %{ 4517 predicate(n->get_ptr() == 0); 4518 match(ConP); 4519 4520 op_cost(0); 4521 format %{ %} 4522 interface(CONST_INTER); 4523 %} 4524 4525 // Pointer Immediate One 4526 // this is used in object initialization (initial object header) 4527 operand immP_1() 4528 %{ 4529 predicate(n->get_ptr() == 1); 4530 match(ConP); 4531 4532 op_cost(0); 4533 format %{ %} 4534 interface(CONST_INTER); 4535 %} 4536 4537 // Card Table Byte Map Base 4538 operand immByteMapBase() 4539 %{ 4540 // Get base of card map 4541 predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) && 4542 SHENANDOAHGC_ONLY(!BarrierSet::barrier_set()->is_a(BarrierSet::ShenandoahBarrierSet) &&) 4543 (CardTable::CardValue*)n->get_ptr() == ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base()); 4544 match(ConP); 4545 4546 op_cost(0); 4547 format %{ %} 4548 interface(CONST_INTER); 4549 %} 4550 4551 // Float and Double operands 4552 // Double Immediate 4553 operand immD() 4554 %{ 4555 match(ConD); 4556 op_cost(0); 4557 format %{ %} 4558 interface(CONST_INTER); 4559 %} 4560 4561 // Double Immediate: +0.0d 4562 operand immD0() 4563 %{ 4564 predicate(jlong_cast(n->getd()) == 0); 4565 match(ConD); 4566 4567 op_cost(0); 4568 format %{ %} 4569 interface(CONST_INTER); 4570 %} 4571 4572 // constant 'double +0.0'. 4573 operand immDPacked() 4574 %{ 4575 predicate(Assembler::operand_valid_for_float_immediate(n->getd())); 4576 match(ConD); 4577 op_cost(0); 4578 format %{ %} 4579 interface(CONST_INTER); 4580 %} 4581 4582 // Float Immediate 4583 operand immF() 4584 %{ 4585 match(ConF); 4586 op_cost(0); 4587 format %{ %} 4588 interface(CONST_INTER); 4589 %} 4590 4591 // Float Immediate: +0.0f. 4592 operand immF0() 4593 %{ 4594 predicate(jint_cast(n->getf()) == 0); 4595 match(ConF); 4596 4597 op_cost(0); 4598 format %{ %} 4599 interface(CONST_INTER); 4600 %} 4601 4602 // 4603 operand immFPacked() 4604 %{ 4605 predicate(Assembler::operand_valid_for_float_immediate((double)n->getf())); 4606 match(ConF); 4607 op_cost(0); 4608 format %{ %} 4609 interface(CONST_INTER); 4610 %} 4611 4612 // Narrow pointer operands 4613 // Narrow Pointer Immediate 4614 operand immN() 4615 %{ 4616 match(ConN); 4617 4618 op_cost(0); 4619 format %{ %} 4620 interface(CONST_INTER); 4621 %} 4622 4623 // Narrow nullptr Pointer Immediate 4624 operand immN0() 4625 %{ 4626 predicate(n->get_narrowcon() == 0); 4627 match(ConN); 4628 4629 op_cost(0); 4630 format %{ %} 4631 interface(CONST_INTER); 4632 %} 4633 4634 operand immNKlass() 4635 %{ 4636 match(ConNKlass); 4637 4638 op_cost(0); 4639 format %{ %} 4640 interface(CONST_INTER); 4641 %} 4642 4643 // Integer 32 bit Register Operands 4644 // Integer 32 bitRegister (excludes SP) 4645 operand iRegI() 4646 %{ 4647 constraint(ALLOC_IN_RC(any_reg32)); 4648 match(RegI); 4649 match(iRegINoSp); 4650 op_cost(0); 4651 format %{ %} 4652 interface(REG_INTER); 4653 %} 4654 4655 // Integer 32 bit Register not Special 4656 operand iRegINoSp() 4657 %{ 4658 constraint(ALLOC_IN_RC(no_special_reg32)); 4659 match(RegI); 4660 op_cost(0); 4661 format %{ %} 4662 interface(REG_INTER); 4663 %} 4664 4665 // Integer 64 bit Register Operands 4666 // Integer 64 bit Register (includes SP) 4667 operand iRegL() 4668 %{ 4669 constraint(ALLOC_IN_RC(any_reg)); 4670 match(RegL); 4671 match(iRegLNoSp); 4672 op_cost(0); 4673 format %{ %} 4674 interface(REG_INTER); 4675 %} 4676 4677 // Integer 64 bit Register not Special 4678 operand iRegLNoSp() 4679 %{ 4680 constraint(ALLOC_IN_RC(no_special_reg)); 4681 match(RegL); 4682 match(iRegL_R0); 4683 format %{ %} 4684 interface(REG_INTER); 4685 %} 4686 4687 // Pointer Register Operands 4688 // Pointer Register 4689 operand iRegP() 4690 %{ 4691 constraint(ALLOC_IN_RC(ptr_reg)); 4692 match(RegP); 4693 match(iRegPNoSp); 4694 match(iRegP_R0); 4695 //match(iRegP_R2); 4696 //match(iRegP_R4); 4697 match(iRegP_R5); 4698 match(thread_RegP); 4699 op_cost(0); 4700 format %{ %} 4701 interface(REG_INTER); 4702 %} 4703 4704 // Pointer 64 bit Register not Special 4705 operand iRegPNoSp() 4706 %{ 4707 constraint(ALLOC_IN_RC(no_special_ptr_reg)); 4708 match(RegP); 4709 // match(iRegP); 4710 // match(iRegP_R0); 4711 // match(iRegP_R2); 4712 // match(iRegP_R4); 4713 // match(iRegP_R5); 4714 // match(thread_RegP); 4715 op_cost(0); 4716 format %{ %} 4717 interface(REG_INTER); 4718 %} 4719 4720 // This operand is not allowed to use rfp even if 4721 // rfp is not used to hold the frame pointer. 4722 operand iRegPNoSpNoRfp() 4723 %{ 4724 constraint(ALLOC_IN_RC(no_special_no_rfp_ptr_reg)); 4725 match(RegP); 4726 match(iRegPNoSp); 4727 op_cost(0); 4728 format %{ %} 4729 interface(REG_INTER); 4730 %} 4731 4732 // Pointer 64 bit Register R0 only 4733 operand iRegP_R0() 4734 %{ 4735 constraint(ALLOC_IN_RC(r0_reg)); 4736 match(RegP); 4737 // match(iRegP); 4738 match(iRegPNoSp); 4739 op_cost(0); 4740 format %{ %} 4741 interface(REG_INTER); 4742 %} 4743 4744 // Pointer 64 bit Register R1 only 4745 operand iRegP_R1() 4746 %{ 4747 constraint(ALLOC_IN_RC(r1_reg)); 4748 match(RegP); 4749 // match(iRegP); 4750 match(iRegPNoSp); 4751 op_cost(0); 4752 format %{ %} 4753 interface(REG_INTER); 4754 %} 4755 4756 // Pointer 64 bit Register R2 only 4757 operand iRegP_R2() 4758 %{ 4759 constraint(ALLOC_IN_RC(r2_reg)); 4760 match(RegP); 4761 // match(iRegP); 4762 match(iRegPNoSp); 4763 op_cost(0); 4764 format %{ %} 4765 interface(REG_INTER); 4766 %} 4767 4768 // Pointer 64 bit Register R3 only 4769 operand iRegP_R3() 4770 %{ 4771 constraint(ALLOC_IN_RC(r3_reg)); 4772 match(RegP); 4773 // match(iRegP); 4774 match(iRegPNoSp); 4775 op_cost(0); 4776 format %{ %} 4777 interface(REG_INTER); 4778 %} 4779 4780 // Pointer 64 bit Register R4 only 4781 operand iRegP_R4() 4782 %{ 4783 constraint(ALLOC_IN_RC(r4_reg)); 4784 match(RegP); 4785 // match(iRegP); 4786 match(iRegPNoSp); 4787 op_cost(0); 4788 format %{ %} 4789 interface(REG_INTER); 4790 %} 4791 4792 // Pointer 64 bit Register R5 only 4793 operand iRegP_R5() 4794 %{ 4795 constraint(ALLOC_IN_RC(r5_reg)); 4796 match(RegP); 4797 // match(iRegP); 4798 match(iRegPNoSp); 4799 op_cost(0); 4800 format %{ %} 4801 interface(REG_INTER); 4802 %} 4803 4804 // Pointer 64 bit Register R10 only 4805 operand iRegP_R10() 4806 %{ 4807 constraint(ALLOC_IN_RC(r10_reg)); 4808 match(RegP); 4809 // match(iRegP); 4810 match(iRegPNoSp); 4811 op_cost(0); 4812 format %{ %} 4813 interface(REG_INTER); 4814 %} 4815 4816 // Long 64 bit Register R0 only 4817 operand iRegL_R0() 4818 %{ 4819 constraint(ALLOC_IN_RC(r0_reg)); 4820 match(RegL); 4821 match(iRegLNoSp); 4822 op_cost(0); 4823 format %{ %} 4824 interface(REG_INTER); 4825 %} 4826 4827 // Long 64 bit Register R11 only 4828 operand iRegL_R11() 4829 %{ 4830 constraint(ALLOC_IN_RC(r11_reg)); 4831 match(RegL); 4832 match(iRegLNoSp); 4833 op_cost(0); 4834 format %{ %} 4835 interface(REG_INTER); 4836 %} 4837 4838 // Register R0 only 4839 operand iRegI_R0() 4840 %{ 4841 constraint(ALLOC_IN_RC(int_r0_reg)); 4842 match(RegI); 4843 match(iRegINoSp); 4844 op_cost(0); 4845 format %{ %} 4846 interface(REG_INTER); 4847 %} 4848 4849 // Register R2 only 4850 operand iRegI_R2() 4851 %{ 4852 constraint(ALLOC_IN_RC(int_r2_reg)); 4853 match(RegI); 4854 match(iRegINoSp); 4855 op_cost(0); 4856 format %{ %} 4857 interface(REG_INTER); 4858 %} 4859 4860 // Register R3 only 4861 operand iRegI_R3() 4862 %{ 4863 constraint(ALLOC_IN_RC(int_r3_reg)); 4864 match(RegI); 4865 match(iRegINoSp); 4866 op_cost(0); 4867 format %{ %} 4868 interface(REG_INTER); 4869 %} 4870 4871 4872 // Register R4 only 4873 operand iRegI_R4() 4874 %{ 4875 constraint(ALLOC_IN_RC(int_r4_reg)); 4876 match(RegI); 4877 match(iRegINoSp); 4878 op_cost(0); 4879 format %{ %} 4880 interface(REG_INTER); 4881 %} 4882 4883 4884 // Pointer Register Operands 4885 // Narrow Pointer Register 4886 operand iRegN() 4887 %{ 4888 constraint(ALLOC_IN_RC(any_reg32)); 4889 match(RegN); 4890 match(iRegNNoSp); 4891 op_cost(0); 4892 format %{ %} 4893 interface(REG_INTER); 4894 %} 4895 4896 // Integer 64 bit Register not Special 4897 operand iRegNNoSp() 4898 %{ 4899 constraint(ALLOC_IN_RC(no_special_reg32)); 4900 match(RegN); 4901 op_cost(0); 4902 format %{ %} 4903 interface(REG_INTER); 4904 %} 4905 4906 // Float Register 4907 // Float register operands 4908 operand vRegF() 4909 %{ 4910 constraint(ALLOC_IN_RC(float_reg)); 4911 match(RegF); 4912 4913 op_cost(0); 4914 format %{ %} 4915 interface(REG_INTER); 4916 %} 4917 4918 // Double Register 4919 // Double register operands 4920 operand vRegD() 4921 %{ 4922 constraint(ALLOC_IN_RC(double_reg)); 4923 match(RegD); 4924 4925 op_cost(0); 4926 format %{ %} 4927 interface(REG_INTER); 4928 %} 4929 4930 // Generic vector class. This will be used for 4931 // all vector operands, including NEON and SVE. 4932 operand vReg() 4933 %{ 4934 constraint(ALLOC_IN_RC(dynamic)); 4935 match(VecA); 4936 match(VecD); 4937 match(VecX); 4938 4939 op_cost(0); 4940 format %{ %} 4941 interface(REG_INTER); 4942 %} 4943 4944 operand vecA() 4945 %{ 4946 constraint(ALLOC_IN_RC(vectora_reg)); 4947 match(VecA); 4948 4949 op_cost(0); 4950 format %{ %} 4951 interface(REG_INTER); 4952 %} 4953 4954 operand vecD() 4955 %{ 4956 constraint(ALLOC_IN_RC(vectord_reg)); 4957 match(VecD); 4958 4959 op_cost(0); 4960 format %{ %} 4961 interface(REG_INTER); 4962 %} 4963 4964 operand vecX() 4965 %{ 4966 constraint(ALLOC_IN_RC(vectorx_reg)); 4967 match(VecX); 4968 4969 op_cost(0); 4970 format %{ %} 4971 interface(REG_INTER); 4972 %} 4973 4974 operand vRegD_V0() 4975 %{ 4976 constraint(ALLOC_IN_RC(v0_reg)); 4977 match(RegD); 4978 op_cost(0); 4979 format %{ %} 4980 interface(REG_INTER); 4981 %} 4982 4983 operand vRegD_V1() 4984 %{ 4985 constraint(ALLOC_IN_RC(v1_reg)); 4986 match(RegD); 4987 op_cost(0); 4988 format %{ %} 4989 interface(REG_INTER); 4990 %} 4991 4992 operand vRegD_V2() 4993 %{ 4994 constraint(ALLOC_IN_RC(v2_reg)); 4995 match(RegD); 4996 op_cost(0); 4997 format %{ %} 4998 interface(REG_INTER); 4999 %} 5000 5001 operand vRegD_V3() 5002 %{ 5003 constraint(ALLOC_IN_RC(v3_reg)); 5004 match(RegD); 5005 op_cost(0); 5006 format %{ %} 5007 interface(REG_INTER); 5008 %} 5009 5010 operand vRegD_V4() 5011 %{ 5012 constraint(ALLOC_IN_RC(v4_reg)); 5013 match(RegD); 5014 op_cost(0); 5015 format %{ %} 5016 interface(REG_INTER); 5017 %} 5018 5019 operand vRegD_V5() 5020 %{ 5021 constraint(ALLOC_IN_RC(v5_reg)); 5022 match(RegD); 5023 op_cost(0); 5024 format %{ %} 5025 interface(REG_INTER); 5026 %} 5027 5028 operand vRegD_V6() 5029 %{ 5030 constraint(ALLOC_IN_RC(v6_reg)); 5031 match(RegD); 5032 op_cost(0); 5033 format %{ %} 5034 interface(REG_INTER); 5035 %} 5036 5037 operand vRegD_V7() 5038 %{ 5039 constraint(ALLOC_IN_RC(v7_reg)); 5040 match(RegD); 5041 op_cost(0); 5042 format %{ %} 5043 interface(REG_INTER); 5044 %} 5045 5046 operand vRegD_V12() 5047 %{ 5048 constraint(ALLOC_IN_RC(v12_reg)); 5049 match(RegD); 5050 op_cost(0); 5051 format %{ %} 5052 interface(REG_INTER); 5053 %} 5054 5055 operand vRegD_V13() 5056 %{ 5057 constraint(ALLOC_IN_RC(v13_reg)); 5058 match(RegD); 5059 op_cost(0); 5060 format %{ %} 5061 interface(REG_INTER); 5062 %} 5063 5064 operand pReg() 5065 %{ 5066 constraint(ALLOC_IN_RC(pr_reg)); 5067 match(RegVectMask); 5068 match(pRegGov); 5069 op_cost(0); 5070 format %{ %} 5071 interface(REG_INTER); 5072 %} 5073 5074 operand pRegGov() 5075 %{ 5076 constraint(ALLOC_IN_RC(gov_pr)); 5077 match(RegVectMask); 5078 match(pReg); 5079 op_cost(0); 5080 format %{ %} 5081 interface(REG_INTER); 5082 %} 5083 5084 operand pRegGov_P0() 5085 %{ 5086 constraint(ALLOC_IN_RC(p0_reg)); 5087 match(RegVectMask); 5088 op_cost(0); 5089 format %{ %} 5090 interface(REG_INTER); 5091 %} 5092 5093 operand pRegGov_P1() 5094 %{ 5095 constraint(ALLOC_IN_RC(p1_reg)); 5096 match(RegVectMask); 5097 op_cost(0); 5098 format %{ %} 5099 interface(REG_INTER); 5100 %} 5101 5102 // Flags register, used as output of signed compare instructions 5103 5104 // note that on AArch64 we also use this register as the output for 5105 // for floating point compare instructions (CmpF CmpD). this ensures 5106 // that ordered inequality tests use GT, GE, LT or LE none of which 5107 // pass through cases where the result is unordered i.e. one or both 5108 // inputs to the compare is a NaN. this means that the ideal code can 5109 // replace e.g. a GT with an LE and not end up capturing the NaN case 5110 // (where the comparison should always fail). EQ and NE tests are 5111 // always generated in ideal code so that unordered folds into the NE 5112 // case, matching the behaviour of AArch64 NE. 5113 // 5114 // This differs from x86 where the outputs of FP compares use a 5115 // special FP flags registers and where compares based on this 5116 // register are distinguished into ordered inequalities (cmpOpUCF) and 5117 // EQ/NEQ tests (cmpOpUCF2). x86 has to special case the latter tests 5118 // to explicitly handle the unordered case in branches. x86 also has 5119 // to include extra CMoveX rules to accept a cmpOpUCF input. 5120 5121 operand rFlagsReg() 5122 %{ 5123 constraint(ALLOC_IN_RC(int_flags)); 5124 match(RegFlags); 5125 5126 op_cost(0); 5127 format %{ "RFLAGS" %} 5128 interface(REG_INTER); 5129 %} 5130 5131 // Flags register, used as output of unsigned compare instructions 5132 operand rFlagsRegU() 5133 %{ 5134 constraint(ALLOC_IN_RC(int_flags)); 5135 match(RegFlags); 5136 5137 op_cost(0); 5138 format %{ "RFLAGSU" %} 5139 interface(REG_INTER); 5140 %} 5141 5142 // Special Registers 5143 5144 // Method Register 5145 operand inline_cache_RegP(iRegP reg) 5146 %{ 5147 constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg 5148 match(reg); 5149 match(iRegPNoSp); 5150 op_cost(0); 5151 format %{ %} 5152 interface(REG_INTER); 5153 %} 5154 5155 // Thread Register 5156 operand thread_RegP(iRegP reg) 5157 %{ 5158 constraint(ALLOC_IN_RC(thread_reg)); // link_reg 5159 match(reg); 5160 op_cost(0); 5161 format %{ %} 5162 interface(REG_INTER); 5163 %} 5164 5165 //----------Memory Operands---------------------------------------------------- 5166 5167 operand indirect(iRegP reg) 5168 %{ 5169 constraint(ALLOC_IN_RC(ptr_reg)); 5170 match(reg); 5171 op_cost(0); 5172 format %{ "[$reg]" %} 5173 interface(MEMORY_INTER) %{ 5174 base($reg); 5175 index(0xffffffff); 5176 scale(0x0); 5177 disp(0x0); 5178 %} 5179 %} 5180 5181 operand indIndexScaledI2L(iRegP reg, iRegI ireg, immIScale scale) 5182 %{ 5183 constraint(ALLOC_IN_RC(ptr_reg)); 5184 predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int())); 5185 match(AddP reg (LShiftL (ConvI2L ireg) scale)); 5186 op_cost(0); 5187 format %{ "$reg, $ireg sxtw($scale), 0, I2L" %} 5188 interface(MEMORY_INTER) %{ 5189 base($reg); 5190 index($ireg); 5191 scale($scale); 5192 disp(0x0); 5193 %} 5194 %} 5195 5196 operand indIndexScaled(iRegP reg, iRegL lreg, immIScale scale) 5197 %{ 5198 constraint(ALLOC_IN_RC(ptr_reg)); 5199 predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int())); 5200 match(AddP reg (LShiftL lreg scale)); 5201 op_cost(0); 5202 format %{ "$reg, $lreg lsl($scale)" %} 5203 interface(MEMORY_INTER) %{ 5204 base($reg); 5205 index($lreg); 5206 scale($scale); 5207 disp(0x0); 5208 %} 5209 %} 5210 5211 operand indIndexI2L(iRegP reg, iRegI ireg) 5212 %{ 5213 constraint(ALLOC_IN_RC(ptr_reg)); 5214 match(AddP reg (ConvI2L ireg)); 5215 op_cost(0); 5216 format %{ "$reg, $ireg, 0, I2L" %} 5217 interface(MEMORY_INTER) %{ 5218 base($reg); 5219 index($ireg); 5220 scale(0x0); 5221 disp(0x0); 5222 %} 5223 %} 5224 5225 operand indIndex(iRegP reg, iRegL lreg) 5226 %{ 5227 constraint(ALLOC_IN_RC(ptr_reg)); 5228 match(AddP reg lreg); 5229 op_cost(0); 5230 format %{ "$reg, $lreg" %} 5231 interface(MEMORY_INTER) %{ 5232 base($reg); 5233 index($lreg); 5234 scale(0x0); 5235 disp(0x0); 5236 %} 5237 %} 5238 5239 operand indOffI1(iRegP reg, immIOffset1 off) 5240 %{ 5241 constraint(ALLOC_IN_RC(ptr_reg)); 5242 match(AddP reg off); 5243 op_cost(0); 5244 format %{ "[$reg, $off]" %} 5245 interface(MEMORY_INTER) %{ 5246 base($reg); 5247 index(0xffffffff); 5248 scale(0x0); 5249 disp($off); 5250 %} 5251 %} 5252 5253 operand indOffI2(iRegP reg, immIOffset2 off) 5254 %{ 5255 constraint(ALLOC_IN_RC(ptr_reg)); 5256 match(AddP reg off); 5257 op_cost(0); 5258 format %{ "[$reg, $off]" %} 5259 interface(MEMORY_INTER) %{ 5260 base($reg); 5261 index(0xffffffff); 5262 scale(0x0); 5263 disp($off); 5264 %} 5265 %} 5266 5267 operand indOffI4(iRegP reg, immIOffset4 off) 5268 %{ 5269 constraint(ALLOC_IN_RC(ptr_reg)); 5270 match(AddP reg off); 5271 op_cost(0); 5272 format %{ "[$reg, $off]" %} 5273 interface(MEMORY_INTER) %{ 5274 base($reg); 5275 index(0xffffffff); 5276 scale(0x0); 5277 disp($off); 5278 %} 5279 %} 5280 5281 operand indOffI8(iRegP reg, immIOffset8 off) 5282 %{ 5283 constraint(ALLOC_IN_RC(ptr_reg)); 5284 match(AddP reg off); 5285 op_cost(0); 5286 format %{ "[$reg, $off]" %} 5287 interface(MEMORY_INTER) %{ 5288 base($reg); 5289 index(0xffffffff); 5290 scale(0x0); 5291 disp($off); 5292 %} 5293 %} 5294 5295 operand indOffI16(iRegP reg, immIOffset16 off) 5296 %{ 5297 constraint(ALLOC_IN_RC(ptr_reg)); 5298 match(AddP reg off); 5299 op_cost(0); 5300 format %{ "[$reg, $off]" %} 5301 interface(MEMORY_INTER) %{ 5302 base($reg); 5303 index(0xffffffff); 5304 scale(0x0); 5305 disp($off); 5306 %} 5307 %} 5308 5309 operand indOffL1(iRegP reg, immLoffset1 off) 5310 %{ 5311 constraint(ALLOC_IN_RC(ptr_reg)); 5312 match(AddP reg off); 5313 op_cost(0); 5314 format %{ "[$reg, $off]" %} 5315 interface(MEMORY_INTER) %{ 5316 base($reg); 5317 index(0xffffffff); 5318 scale(0x0); 5319 disp($off); 5320 %} 5321 %} 5322 5323 operand indOffL2(iRegP reg, immLoffset2 off) 5324 %{ 5325 constraint(ALLOC_IN_RC(ptr_reg)); 5326 match(AddP reg off); 5327 op_cost(0); 5328 format %{ "[$reg, $off]" %} 5329 interface(MEMORY_INTER) %{ 5330 base($reg); 5331 index(0xffffffff); 5332 scale(0x0); 5333 disp($off); 5334 %} 5335 %} 5336 5337 operand indOffL4(iRegP reg, immLoffset4 off) 5338 %{ 5339 constraint(ALLOC_IN_RC(ptr_reg)); 5340 match(AddP reg off); 5341 op_cost(0); 5342 format %{ "[$reg, $off]" %} 5343 interface(MEMORY_INTER) %{ 5344 base($reg); 5345 index(0xffffffff); 5346 scale(0x0); 5347 disp($off); 5348 %} 5349 %} 5350 5351 operand indOffL8(iRegP reg, immLoffset8 off) 5352 %{ 5353 constraint(ALLOC_IN_RC(ptr_reg)); 5354 match(AddP reg off); 5355 op_cost(0); 5356 format %{ "[$reg, $off]" %} 5357 interface(MEMORY_INTER) %{ 5358 base($reg); 5359 index(0xffffffff); 5360 scale(0x0); 5361 disp($off); 5362 %} 5363 %} 5364 5365 operand indOffL16(iRegP reg, immLoffset16 off) 5366 %{ 5367 constraint(ALLOC_IN_RC(ptr_reg)); 5368 match(AddP reg off); 5369 op_cost(0); 5370 format %{ "[$reg, $off]" %} 5371 interface(MEMORY_INTER) %{ 5372 base($reg); 5373 index(0xffffffff); 5374 scale(0x0); 5375 disp($off); 5376 %} 5377 %} 5378 5379 operand indirectX2P(iRegL reg) 5380 %{ 5381 constraint(ALLOC_IN_RC(ptr_reg)); 5382 match(CastX2P reg); 5383 op_cost(0); 5384 format %{ "[$reg]\t# long -> ptr" %} 5385 interface(MEMORY_INTER) %{ 5386 base($reg); 5387 index(0xffffffff); 5388 scale(0x0); 5389 disp(0x0); 5390 %} 5391 %} 5392 5393 operand indOffX2P(iRegL reg, immLOffset off) 5394 %{ 5395 constraint(ALLOC_IN_RC(ptr_reg)); 5396 match(AddP (CastX2P reg) off); 5397 op_cost(0); 5398 format %{ "[$reg, $off]\t# long -> ptr" %} 5399 interface(MEMORY_INTER) %{ 5400 base($reg); 5401 index(0xffffffff); 5402 scale(0x0); 5403 disp($off); 5404 %} 5405 %} 5406 5407 operand indirectN(iRegN reg) 5408 %{ 5409 predicate(CompressedOops::shift() == 0); 5410 constraint(ALLOC_IN_RC(ptr_reg)); 5411 match(DecodeN reg); 5412 op_cost(0); 5413 format %{ "[$reg]\t# narrow" %} 5414 interface(MEMORY_INTER) %{ 5415 base($reg); 5416 index(0xffffffff); 5417 scale(0x0); 5418 disp(0x0); 5419 %} 5420 %} 5421 5422 operand indIndexScaledI2LN(iRegN reg, iRegI ireg, immIScale scale) 5423 %{ 5424 predicate(CompressedOops::shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int())); 5425 constraint(ALLOC_IN_RC(ptr_reg)); 5426 match(AddP (DecodeN reg) (LShiftL (ConvI2L ireg) scale)); 5427 op_cost(0); 5428 format %{ "$reg, $ireg sxtw($scale), 0, I2L\t# narrow" %} 5429 interface(MEMORY_INTER) %{ 5430 base($reg); 5431 index($ireg); 5432 scale($scale); 5433 disp(0x0); 5434 %} 5435 %} 5436 5437 operand indIndexScaledN(iRegN reg, iRegL lreg, immIScale scale) 5438 %{ 5439 predicate(CompressedOops::shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int())); 5440 constraint(ALLOC_IN_RC(ptr_reg)); 5441 match(AddP (DecodeN reg) (LShiftL lreg scale)); 5442 op_cost(0); 5443 format %{ "$reg, $lreg lsl($scale)\t# narrow" %} 5444 interface(MEMORY_INTER) %{ 5445 base($reg); 5446 index($lreg); 5447 scale($scale); 5448 disp(0x0); 5449 %} 5450 %} 5451 5452 operand indIndexI2LN(iRegN reg, iRegI ireg) 5453 %{ 5454 predicate(CompressedOops::shift() == 0); 5455 constraint(ALLOC_IN_RC(ptr_reg)); 5456 match(AddP (DecodeN reg) (ConvI2L ireg)); 5457 op_cost(0); 5458 format %{ "$reg, $ireg, 0, I2L\t# narrow" %} 5459 interface(MEMORY_INTER) %{ 5460 base($reg); 5461 index($ireg); 5462 scale(0x0); 5463 disp(0x0); 5464 %} 5465 %} 5466 5467 operand indIndexN(iRegN reg, iRegL lreg) 5468 %{ 5469 predicate(CompressedOops::shift() == 0); 5470 constraint(ALLOC_IN_RC(ptr_reg)); 5471 match(AddP (DecodeN reg) lreg); 5472 op_cost(0); 5473 format %{ "$reg, $lreg\t# narrow" %} 5474 interface(MEMORY_INTER) %{ 5475 base($reg); 5476 index($lreg); 5477 scale(0x0); 5478 disp(0x0); 5479 %} 5480 %} 5481 5482 operand indOffIN(iRegN reg, immIOffset off) 5483 %{ 5484 predicate(CompressedOops::shift() == 0); 5485 constraint(ALLOC_IN_RC(ptr_reg)); 5486 match(AddP (DecodeN reg) off); 5487 op_cost(0); 5488 format %{ "[$reg, $off]\t# narrow" %} 5489 interface(MEMORY_INTER) %{ 5490 base($reg); 5491 index(0xffffffff); 5492 scale(0x0); 5493 disp($off); 5494 %} 5495 %} 5496 5497 operand indOffLN(iRegN reg, immLOffset off) 5498 %{ 5499 predicate(CompressedOops::shift() == 0); 5500 constraint(ALLOC_IN_RC(ptr_reg)); 5501 match(AddP (DecodeN reg) off); 5502 op_cost(0); 5503 format %{ "[$reg, $off]\t# narrow" %} 5504 interface(MEMORY_INTER) %{ 5505 base($reg); 5506 index(0xffffffff); 5507 scale(0x0); 5508 disp($off); 5509 %} 5510 %} 5511 5512 5513 //----------Special Memory Operands-------------------------------------------- 5514 // Stack Slot Operand - This operand is used for loading and storing temporary 5515 // values on the stack where a match requires a value to 5516 // flow through memory. 5517 operand stackSlotP(sRegP reg) 5518 %{ 5519 constraint(ALLOC_IN_RC(stack_slots)); 5520 op_cost(100); 5521 // No match rule because this operand is only generated in matching 5522 // match(RegP); 5523 format %{ "[$reg]" %} 5524 interface(MEMORY_INTER) %{ 5525 base(0x1e); // RSP 5526 index(0x0); // No Index 5527 scale(0x0); // No Scale 5528 disp($reg); // Stack Offset 5529 %} 5530 %} 5531 5532 operand stackSlotI(sRegI reg) 5533 %{ 5534 constraint(ALLOC_IN_RC(stack_slots)); 5535 // No match rule because this operand is only generated in matching 5536 // match(RegI); 5537 format %{ "[$reg]" %} 5538 interface(MEMORY_INTER) %{ 5539 base(0x1e); // RSP 5540 index(0x0); // No Index 5541 scale(0x0); // No Scale 5542 disp($reg); // Stack Offset 5543 %} 5544 %} 5545 5546 operand stackSlotF(sRegF reg) 5547 %{ 5548 constraint(ALLOC_IN_RC(stack_slots)); 5549 // No match rule because this operand is only generated in matching 5550 // match(RegF); 5551 format %{ "[$reg]" %} 5552 interface(MEMORY_INTER) %{ 5553 base(0x1e); // RSP 5554 index(0x0); // No Index 5555 scale(0x0); // No Scale 5556 disp($reg); // Stack Offset 5557 %} 5558 %} 5559 5560 operand stackSlotD(sRegD reg) 5561 %{ 5562 constraint(ALLOC_IN_RC(stack_slots)); 5563 // No match rule because this operand is only generated in matching 5564 // match(RegD); 5565 format %{ "[$reg]" %} 5566 interface(MEMORY_INTER) %{ 5567 base(0x1e); // RSP 5568 index(0x0); // No Index 5569 scale(0x0); // No Scale 5570 disp($reg); // Stack Offset 5571 %} 5572 %} 5573 5574 operand stackSlotL(sRegL reg) 5575 %{ 5576 constraint(ALLOC_IN_RC(stack_slots)); 5577 // No match rule because this operand is only generated in matching 5578 // match(RegL); 5579 format %{ "[$reg]" %} 5580 interface(MEMORY_INTER) %{ 5581 base(0x1e); // RSP 5582 index(0x0); // No Index 5583 scale(0x0); // No Scale 5584 disp($reg); // Stack Offset 5585 %} 5586 %} 5587 5588 // Operands for expressing Control Flow 5589 // NOTE: Label is a predefined operand which should not be redefined in 5590 // the AD file. It is generically handled within the ADLC. 5591 5592 //----------Conditional Branch Operands---------------------------------------- 5593 // Comparison Op - This is the operation of the comparison, and is limited to 5594 // the following set of codes: 5595 // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=) 5596 // 5597 // Other attributes of the comparison, such as unsignedness, are specified 5598 // by the comparison instruction that sets a condition code flags register. 5599 // That result is represented by a flags operand whose subtype is appropriate 5600 // to the unsignedness (etc.) of the comparison. 5601 // 5602 // Later, the instruction which matches both the Comparison Op (a Bool) and 5603 // the flags (produced by the Cmp) specifies the coding of the comparison op 5604 // by matching a specific subtype of Bool operand below, such as cmpOpU. 5605 5606 // used for signed integral comparisons and fp comparisons 5607 5608 operand cmpOp() 5609 %{ 5610 match(Bool); 5611 5612 format %{ "" %} 5613 interface(COND_INTER) %{ 5614 equal(0x0, "eq"); 5615 not_equal(0x1, "ne"); 5616 less(0xb, "lt"); 5617 greater_equal(0xa, "ge"); 5618 less_equal(0xd, "le"); 5619 greater(0xc, "gt"); 5620 overflow(0x6, "vs"); 5621 no_overflow(0x7, "vc"); 5622 %} 5623 %} 5624 5625 // used for unsigned integral comparisons 5626 5627 operand cmpOpU() 5628 %{ 5629 match(Bool); 5630 5631 format %{ "" %} 5632 interface(COND_INTER) %{ 5633 equal(0x0, "eq"); 5634 not_equal(0x1, "ne"); 5635 less(0x3, "lo"); 5636 greater_equal(0x2, "hs"); 5637 less_equal(0x9, "ls"); 5638 greater(0x8, "hi"); 5639 overflow(0x6, "vs"); 5640 no_overflow(0x7, "vc"); 5641 %} 5642 %} 5643 5644 // used for certain integral comparisons which can be 5645 // converted to cbxx or tbxx instructions 5646 5647 operand cmpOpEqNe() 5648 %{ 5649 match(Bool); 5650 op_cost(0); 5651 predicate(n->as_Bool()->_test._test == BoolTest::ne 5652 || n->as_Bool()->_test._test == BoolTest::eq); 5653 5654 format %{ "" %} 5655 interface(COND_INTER) %{ 5656 equal(0x0, "eq"); 5657 not_equal(0x1, "ne"); 5658 less(0xb, "lt"); 5659 greater_equal(0xa, "ge"); 5660 less_equal(0xd, "le"); 5661 greater(0xc, "gt"); 5662 overflow(0x6, "vs"); 5663 no_overflow(0x7, "vc"); 5664 %} 5665 %} 5666 5667 // used for certain integral comparisons which can be 5668 // converted to cbxx or tbxx instructions 5669 5670 operand cmpOpLtGe() 5671 %{ 5672 match(Bool); 5673 op_cost(0); 5674 5675 predicate(n->as_Bool()->_test._test == BoolTest::lt 5676 || n->as_Bool()->_test._test == BoolTest::ge); 5677 5678 format %{ "" %} 5679 interface(COND_INTER) %{ 5680 equal(0x0, "eq"); 5681 not_equal(0x1, "ne"); 5682 less(0xb, "lt"); 5683 greater_equal(0xa, "ge"); 5684 less_equal(0xd, "le"); 5685 greater(0xc, "gt"); 5686 overflow(0x6, "vs"); 5687 no_overflow(0x7, "vc"); 5688 %} 5689 %} 5690 5691 // used for certain unsigned integral comparisons which can be 5692 // converted to cbxx or tbxx instructions 5693 5694 operand cmpOpUEqNeLeGt() 5695 %{ 5696 match(Bool); 5697 op_cost(0); 5698 5699 predicate(n->as_Bool()->_test._test == BoolTest::eq || 5700 n->as_Bool()->_test._test == BoolTest::ne || 5701 n->as_Bool()->_test._test == BoolTest::le || 5702 n->as_Bool()->_test._test == BoolTest::gt); 5703 5704 format %{ "" %} 5705 interface(COND_INTER) %{ 5706 equal(0x0, "eq"); 5707 not_equal(0x1, "ne"); 5708 less(0x3, "lo"); 5709 greater_equal(0x2, "hs"); 5710 less_equal(0x9, "ls"); 5711 greater(0x8, "hi"); 5712 overflow(0x6, "vs"); 5713 no_overflow(0x7, "vc"); 5714 %} 5715 %} 5716 5717 // Special operand allowing long args to int ops to be truncated for free 5718 5719 operand iRegL2I(iRegL reg) %{ 5720 5721 op_cost(0); 5722 5723 match(ConvL2I reg); 5724 5725 format %{ "l2i($reg)" %} 5726 5727 interface(REG_INTER) 5728 %} 5729 5730 operand iRegL2P(iRegL reg) %{ 5731 5732 op_cost(0); 5733 5734 match(CastX2P reg); 5735 5736 format %{ "l2p($reg)" %} 5737 5738 interface(REG_INTER) 5739 %} 5740 5741 opclass vmem2(indirect, indIndex, indOffI2, indOffL2); 5742 opclass vmem4(indirect, indIndex, indOffI4, indOffL4); 5743 opclass vmem8(indirect, indIndex, indOffI8, indOffL8); 5744 opclass vmem16(indirect, indIndex, indOffI16, indOffL16); 5745 5746 //----------OPERAND CLASSES---------------------------------------------------- 5747 // Operand Classes are groups of operands that are used as to simplify 5748 // instruction definitions by not requiring the AD writer to specify 5749 // separate instructions for every form of operand when the 5750 // instruction accepts multiple operand types with the same basic 5751 // encoding and format. The classic case of this is memory operands. 5752 5753 // memory is used to define read/write location for load/store 5754 // instruction defs. we can turn a memory op into an Address 5755 5756 opclass memory1(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI1, indOffL1, 5757 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indirectX2P, indOffX2P); 5758 5759 opclass memory2(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI2, indOffL2, 5760 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indirectX2P, indOffX2P); 5761 5762 opclass memory4(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI4, indOffL4, 5763 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P); 5764 5765 opclass memory8(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI8, indOffL8, 5766 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P); 5767 5768 // All of the memory operands. For the pipeline description. 5769 opclass memory(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, 5770 indOffI1, indOffL1, indOffI2, indOffL2, indOffI4, indOffL4, indOffI8, indOffL8, 5771 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P); 5772 5773 opclass memory_noindex(indirect, 5774 indOffI1, indOffL1,indOffI2, indOffL2, indOffI4, indOffL4, indOffI8, indOffL8, 5775 indirectN, indOffIN, indOffLN, indirectX2P, indOffX2P); 5776 5777 // iRegIorL2I is used for src inputs in rules for 32 bit int (I) 5778 // operations. it allows the src to be either an iRegI or a (ConvL2I 5779 // iRegL). in the latter case the l2i normally planted for a ConvL2I 5780 // can be elided because the 32-bit instruction will just employ the 5781 // lower 32 bits anyway. 5782 // 5783 // n.b. this does not elide all L2I conversions. if the truncated 5784 // value is consumed by more than one operation then the ConvL2I 5785 // cannot be bundled into the consuming nodes so an l2i gets planted 5786 // (actually a movw $dst $src) and the downstream instructions consume 5787 // the result of the l2i as an iRegI input. That's a shame since the 5788 // movw is actually redundant but its not too costly. 5789 5790 opclass iRegIorL2I(iRegI, iRegL2I); 5791 opclass iRegPorL2P(iRegP, iRegL2P); 5792 5793 //----------PIPELINE----------------------------------------------------------- 5794 // Rules which define the behavior of the target architectures pipeline. 5795 5796 // For specific pipelines, eg A53, define the stages of that pipeline 5797 //pipe_desc(ISS, EX1, EX2, WR); 5798 #define ISS S0 5799 #define EX1 S1 5800 #define EX2 S2 5801 #define WR S3 5802 5803 // Integer ALU reg operation 5804 pipeline %{ 5805 5806 attributes %{ 5807 // ARM instructions are of fixed length 5808 fixed_size_instructions; // Fixed size instructions TODO does 5809 max_instructions_per_bundle = 4; // A53 = 2, A57 = 4 5810 // ARM instructions come in 32-bit word units 5811 instruction_unit_size = 4; // An instruction is 4 bytes long 5812 instruction_fetch_unit_size = 64; // The processor fetches one line 5813 instruction_fetch_units = 1; // of 64 bytes 5814 5815 // List of nop instructions 5816 nops( MachNop ); 5817 %} 5818 5819 // We don't use an actual pipeline model so don't care about resources 5820 // or description. we do use pipeline classes to introduce fixed 5821 // latencies 5822 5823 //----------RESOURCES---------------------------------------------------------- 5824 // Resources are the functional units available to the machine 5825 5826 resources( INS0, INS1, INS01 = INS0 | INS1, 5827 ALU0, ALU1, ALU = ALU0 | ALU1, 5828 MAC, 5829 DIV, 5830 BRANCH, 5831 LDST, 5832 NEON_FP); 5833 5834 //----------PIPELINE DESCRIPTION----------------------------------------------- 5835 // Pipeline Description specifies the stages in the machine's pipeline 5836 5837 // Define the pipeline as a generic 6 stage pipeline 5838 pipe_desc(S0, S1, S2, S3, S4, S5); 5839 5840 //----------PIPELINE CLASSES--------------------------------------------------- 5841 // Pipeline Classes describe the stages in which input and output are 5842 // referenced by the hardware pipeline. 5843 5844 pipe_class fp_dop_reg_reg_s(vRegF dst, vRegF src1, vRegF src2) 5845 %{ 5846 single_instruction; 5847 src1 : S1(read); 5848 src2 : S2(read); 5849 dst : S5(write); 5850 INS01 : ISS; 5851 NEON_FP : S5; 5852 %} 5853 5854 pipe_class fp_dop_reg_reg_d(vRegD dst, vRegD src1, vRegD src2) 5855 %{ 5856 single_instruction; 5857 src1 : S1(read); 5858 src2 : S2(read); 5859 dst : S5(write); 5860 INS01 : ISS; 5861 NEON_FP : S5; 5862 %} 5863 5864 pipe_class fp_uop_s(vRegF dst, vRegF src) 5865 %{ 5866 single_instruction; 5867 src : S1(read); 5868 dst : S5(write); 5869 INS01 : ISS; 5870 NEON_FP : S5; 5871 %} 5872 5873 pipe_class fp_uop_d(vRegD dst, vRegD src) 5874 %{ 5875 single_instruction; 5876 src : S1(read); 5877 dst : S5(write); 5878 INS01 : ISS; 5879 NEON_FP : S5; 5880 %} 5881 5882 pipe_class fp_d2f(vRegF dst, vRegD src) 5883 %{ 5884 single_instruction; 5885 src : S1(read); 5886 dst : S5(write); 5887 INS01 : ISS; 5888 NEON_FP : S5; 5889 %} 5890 5891 pipe_class fp_f2d(vRegD dst, vRegF src) 5892 %{ 5893 single_instruction; 5894 src : S1(read); 5895 dst : S5(write); 5896 INS01 : ISS; 5897 NEON_FP : S5; 5898 %} 5899 5900 pipe_class fp_f2i(iRegINoSp dst, vRegF src) 5901 %{ 5902 single_instruction; 5903 src : S1(read); 5904 dst : S5(write); 5905 INS01 : ISS; 5906 NEON_FP : S5; 5907 %} 5908 5909 pipe_class fp_f2l(iRegLNoSp dst, vRegF src) 5910 %{ 5911 single_instruction; 5912 src : S1(read); 5913 dst : S5(write); 5914 INS01 : ISS; 5915 NEON_FP : S5; 5916 %} 5917 5918 pipe_class fp_i2f(vRegF dst, iRegIorL2I src) 5919 %{ 5920 single_instruction; 5921 src : S1(read); 5922 dst : S5(write); 5923 INS01 : ISS; 5924 NEON_FP : S5; 5925 %} 5926 5927 pipe_class fp_l2f(vRegF dst, iRegL src) 5928 %{ 5929 single_instruction; 5930 src : S1(read); 5931 dst : S5(write); 5932 INS01 : ISS; 5933 NEON_FP : S5; 5934 %} 5935 5936 pipe_class fp_d2i(iRegINoSp dst, vRegD src) 5937 %{ 5938 single_instruction; 5939 src : S1(read); 5940 dst : S5(write); 5941 INS01 : ISS; 5942 NEON_FP : S5; 5943 %} 5944 5945 pipe_class fp_d2l(iRegLNoSp dst, vRegD src) 5946 %{ 5947 single_instruction; 5948 src : S1(read); 5949 dst : S5(write); 5950 INS01 : ISS; 5951 NEON_FP : S5; 5952 %} 5953 5954 pipe_class fp_i2d(vRegD dst, iRegIorL2I src) 5955 %{ 5956 single_instruction; 5957 src : S1(read); 5958 dst : S5(write); 5959 INS01 : ISS; 5960 NEON_FP : S5; 5961 %} 5962 5963 pipe_class fp_l2d(vRegD dst, iRegIorL2I src) 5964 %{ 5965 single_instruction; 5966 src : S1(read); 5967 dst : S5(write); 5968 INS01 : ISS; 5969 NEON_FP : S5; 5970 %} 5971 5972 pipe_class fp_div_s(vRegF dst, vRegF src1, vRegF src2) 5973 %{ 5974 single_instruction; 5975 src1 : S1(read); 5976 src2 : S2(read); 5977 dst : S5(write); 5978 INS0 : ISS; 5979 NEON_FP : S5; 5980 %} 5981 5982 pipe_class fp_div_d(vRegD dst, vRegD src1, vRegD src2) 5983 %{ 5984 single_instruction; 5985 src1 : S1(read); 5986 src2 : S2(read); 5987 dst : S5(write); 5988 INS0 : ISS; 5989 NEON_FP : S5; 5990 %} 5991 5992 pipe_class fp_cond_reg_reg_s(vRegF dst, vRegF src1, vRegF src2, rFlagsReg cr) 5993 %{ 5994 single_instruction; 5995 cr : S1(read); 5996 src1 : S1(read); 5997 src2 : S1(read); 5998 dst : S3(write); 5999 INS01 : ISS; 6000 NEON_FP : S3; 6001 %} 6002 6003 pipe_class fp_cond_reg_reg_d(vRegD dst, vRegD src1, vRegD src2, rFlagsReg cr) 6004 %{ 6005 single_instruction; 6006 cr : S1(read); 6007 src1 : S1(read); 6008 src2 : S1(read); 6009 dst : S3(write); 6010 INS01 : ISS; 6011 NEON_FP : S3; 6012 %} 6013 6014 pipe_class fp_imm_s(vRegF dst) 6015 %{ 6016 single_instruction; 6017 dst : S3(write); 6018 INS01 : ISS; 6019 NEON_FP : S3; 6020 %} 6021 6022 pipe_class fp_imm_d(vRegD dst) 6023 %{ 6024 single_instruction; 6025 dst : S3(write); 6026 INS01 : ISS; 6027 NEON_FP : S3; 6028 %} 6029 6030 pipe_class fp_load_constant_s(vRegF dst) 6031 %{ 6032 single_instruction; 6033 dst : S4(write); 6034 INS01 : ISS; 6035 NEON_FP : S4; 6036 %} 6037 6038 pipe_class fp_load_constant_d(vRegD dst) 6039 %{ 6040 single_instruction; 6041 dst : S4(write); 6042 INS01 : ISS; 6043 NEON_FP : S4; 6044 %} 6045 6046 //------- Integer ALU operations -------------------------- 6047 6048 // Integer ALU reg-reg operation 6049 // Operands needed in EX1, result generated in EX2 6050 // Eg. ADD x0, x1, x2 6051 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) 6052 %{ 6053 single_instruction; 6054 dst : EX2(write); 6055 src1 : EX1(read); 6056 src2 : EX1(read); 6057 INS01 : ISS; // Dual issue as instruction 0 or 1 6058 ALU : EX2; 6059 %} 6060 6061 // Integer ALU reg-reg operation with constant shift 6062 // Shifted register must be available in LATE_ISS instead of EX1 6063 // Eg. ADD x0, x1, x2, LSL #2 6064 pipe_class ialu_reg_reg_shift(iRegI dst, iRegI src1, iRegI src2, immI shift) 6065 %{ 6066 single_instruction; 6067 dst : EX2(write); 6068 src1 : EX1(read); 6069 src2 : ISS(read); 6070 INS01 : ISS; 6071 ALU : EX2; 6072 %} 6073 6074 // Integer ALU reg operation with constant shift 6075 // Eg. LSL x0, x1, #shift 6076 pipe_class ialu_reg_shift(iRegI dst, iRegI src1) 6077 %{ 6078 single_instruction; 6079 dst : EX2(write); 6080 src1 : ISS(read); 6081 INS01 : ISS; 6082 ALU : EX2; 6083 %} 6084 6085 // Integer ALU reg-reg operation with variable shift 6086 // Both operands must be available in LATE_ISS instead of EX1 6087 // Result is available in EX1 instead of EX2 6088 // Eg. LSLV x0, x1, x2 6089 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2) 6090 %{ 6091 single_instruction; 6092 dst : EX1(write); 6093 src1 : ISS(read); 6094 src2 : ISS(read); 6095 INS01 : ISS; 6096 ALU : EX1; 6097 %} 6098 6099 // Integer ALU reg-reg operation with extract 6100 // As for _vshift above, but result generated in EX2 6101 // Eg. EXTR x0, x1, x2, #N 6102 pipe_class ialu_reg_reg_extr(iRegI dst, iRegI src1, iRegI src2) 6103 %{ 6104 single_instruction; 6105 dst : EX2(write); 6106 src1 : ISS(read); 6107 src2 : ISS(read); 6108 INS1 : ISS; // Can only dual issue as Instruction 1 6109 ALU : EX1; 6110 %} 6111 6112 // Integer ALU reg operation 6113 // Eg. NEG x0, x1 6114 pipe_class ialu_reg(iRegI dst, iRegI src) 6115 %{ 6116 single_instruction; 6117 dst : EX2(write); 6118 src : EX1(read); 6119 INS01 : ISS; 6120 ALU : EX2; 6121 %} 6122 6123 // Integer ALU reg mmediate operation 6124 // Eg. ADD x0, x1, #N 6125 pipe_class ialu_reg_imm(iRegI dst, iRegI src1) 6126 %{ 6127 single_instruction; 6128 dst : EX2(write); 6129 src1 : EX1(read); 6130 INS01 : ISS; 6131 ALU : EX2; 6132 %} 6133 6134 // Integer ALU immediate operation (no source operands) 6135 // Eg. MOV x0, #N 6136 pipe_class ialu_imm(iRegI dst) 6137 %{ 6138 single_instruction; 6139 dst : EX1(write); 6140 INS01 : ISS; 6141 ALU : EX1; 6142 %} 6143 6144 //------- Compare operation ------------------------------- 6145 6146 // Compare reg-reg 6147 // Eg. CMP x0, x1 6148 pipe_class icmp_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2) 6149 %{ 6150 single_instruction; 6151 // fixed_latency(16); 6152 cr : EX2(write); 6153 op1 : EX1(read); 6154 op2 : EX1(read); 6155 INS01 : ISS; 6156 ALU : EX2; 6157 %} 6158 6159 // Compare reg-reg 6160 // Eg. CMP x0, #N 6161 pipe_class icmp_reg_imm(rFlagsReg cr, iRegI op1) 6162 %{ 6163 single_instruction; 6164 // fixed_latency(16); 6165 cr : EX2(write); 6166 op1 : EX1(read); 6167 INS01 : ISS; 6168 ALU : EX2; 6169 %} 6170 6171 //------- Conditional instructions ------------------------ 6172 6173 // Conditional no operands 6174 // Eg. CSINC x0, zr, zr, <cond> 6175 pipe_class icond_none(iRegI dst, rFlagsReg cr) 6176 %{ 6177 single_instruction; 6178 cr : EX1(read); 6179 dst : EX2(write); 6180 INS01 : ISS; 6181 ALU : EX2; 6182 %} 6183 6184 // Conditional 2 operand 6185 // EG. CSEL X0, X1, X2, <cond> 6186 pipe_class icond_reg_reg(iRegI dst, iRegI src1, iRegI src2, rFlagsReg cr) 6187 %{ 6188 single_instruction; 6189 cr : EX1(read); 6190 src1 : EX1(read); 6191 src2 : EX1(read); 6192 dst : EX2(write); 6193 INS01 : ISS; 6194 ALU : EX2; 6195 %} 6196 6197 // Conditional 2 operand 6198 // EG. CSEL X0, X1, X2, <cond> 6199 pipe_class icond_reg(iRegI dst, iRegI src, rFlagsReg cr) 6200 %{ 6201 single_instruction; 6202 cr : EX1(read); 6203 src : EX1(read); 6204 dst : EX2(write); 6205 INS01 : ISS; 6206 ALU : EX2; 6207 %} 6208 6209 //------- Multiply pipeline operations -------------------- 6210 6211 // Multiply reg-reg 6212 // Eg. MUL w0, w1, w2 6213 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) 6214 %{ 6215 single_instruction; 6216 dst : WR(write); 6217 src1 : ISS(read); 6218 src2 : ISS(read); 6219 INS01 : ISS; 6220 MAC : WR; 6221 %} 6222 6223 // Multiply accumulate 6224 // Eg. MADD w0, w1, w2, w3 6225 pipe_class imac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3) 6226 %{ 6227 single_instruction; 6228 dst : WR(write); 6229 src1 : ISS(read); 6230 src2 : ISS(read); 6231 src3 : ISS(read); 6232 INS01 : ISS; 6233 MAC : WR; 6234 %} 6235 6236 // Eg. MUL w0, w1, w2 6237 pipe_class lmul_reg_reg(iRegI dst, iRegI src1, iRegI src2) 6238 %{ 6239 single_instruction; 6240 fixed_latency(3); // Maximum latency for 64 bit mul 6241 dst : WR(write); 6242 src1 : ISS(read); 6243 src2 : ISS(read); 6244 INS01 : ISS; 6245 MAC : WR; 6246 %} 6247 6248 // Multiply accumulate 6249 // Eg. MADD w0, w1, w2, w3 6250 pipe_class lmac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3) 6251 %{ 6252 single_instruction; 6253 fixed_latency(3); // Maximum latency for 64 bit mul 6254 dst : WR(write); 6255 src1 : ISS(read); 6256 src2 : ISS(read); 6257 src3 : ISS(read); 6258 INS01 : ISS; 6259 MAC : WR; 6260 %} 6261 6262 //------- Divide pipeline operations -------------------- 6263 6264 // Eg. SDIV w0, w1, w2 6265 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2) 6266 %{ 6267 single_instruction; 6268 fixed_latency(8); // Maximum latency for 32 bit divide 6269 dst : WR(write); 6270 src1 : ISS(read); 6271 src2 : ISS(read); 6272 INS0 : ISS; // Can only dual issue as instruction 0 6273 DIV : WR; 6274 %} 6275 6276 // Eg. SDIV x0, x1, x2 6277 pipe_class ldiv_reg_reg(iRegI dst, iRegI src1, iRegI src2) 6278 %{ 6279 single_instruction; 6280 fixed_latency(16); // Maximum latency for 64 bit divide 6281 dst : WR(write); 6282 src1 : ISS(read); 6283 src2 : ISS(read); 6284 INS0 : ISS; // Can only dual issue as instruction 0 6285 DIV : WR; 6286 %} 6287 6288 //------- Load pipeline operations ------------------------ 6289 6290 // Load - prefetch 6291 // Eg. PFRM <mem> 6292 pipe_class iload_prefetch(memory mem) 6293 %{ 6294 single_instruction; 6295 mem : ISS(read); 6296 INS01 : ISS; 6297 LDST : WR; 6298 %} 6299 6300 // Load - reg, mem 6301 // Eg. LDR x0, <mem> 6302 pipe_class iload_reg_mem(iRegI dst, memory mem) 6303 %{ 6304 single_instruction; 6305 dst : WR(write); 6306 mem : ISS(read); 6307 INS01 : ISS; 6308 LDST : WR; 6309 %} 6310 6311 // Load - reg, reg 6312 // Eg. LDR x0, [sp, x1] 6313 pipe_class iload_reg_reg(iRegI dst, iRegI src) 6314 %{ 6315 single_instruction; 6316 dst : WR(write); 6317 src : ISS(read); 6318 INS01 : ISS; 6319 LDST : WR; 6320 %} 6321 6322 //------- Store pipeline operations ----------------------- 6323 6324 // Store - zr, mem 6325 // Eg. STR zr, <mem> 6326 pipe_class istore_mem(memory mem) 6327 %{ 6328 single_instruction; 6329 mem : ISS(read); 6330 INS01 : ISS; 6331 LDST : WR; 6332 %} 6333 6334 // Store - reg, mem 6335 // Eg. STR x0, <mem> 6336 pipe_class istore_reg_mem(iRegI src, memory mem) 6337 %{ 6338 single_instruction; 6339 mem : ISS(read); 6340 src : EX2(read); 6341 INS01 : ISS; 6342 LDST : WR; 6343 %} 6344 6345 // Store - reg, reg 6346 // Eg. STR x0, [sp, x1] 6347 pipe_class istore_reg_reg(iRegI dst, iRegI src) 6348 %{ 6349 single_instruction; 6350 dst : ISS(read); 6351 src : EX2(read); 6352 INS01 : ISS; 6353 LDST : WR; 6354 %} 6355 6356 //------- Store pipeline operations ----------------------- 6357 6358 // Branch 6359 pipe_class pipe_branch() 6360 %{ 6361 single_instruction; 6362 INS01 : ISS; 6363 BRANCH : EX1; 6364 %} 6365 6366 // Conditional branch 6367 pipe_class pipe_branch_cond(rFlagsReg cr) 6368 %{ 6369 single_instruction; 6370 cr : EX1(read); 6371 INS01 : ISS; 6372 BRANCH : EX1; 6373 %} 6374 6375 // Compare & Branch 6376 // EG. CBZ/CBNZ 6377 pipe_class pipe_cmp_branch(iRegI op1) 6378 %{ 6379 single_instruction; 6380 op1 : EX1(read); 6381 INS01 : ISS; 6382 BRANCH : EX1; 6383 %} 6384 6385 //------- Synchronisation operations ---------------------- 6386 6387 // Any operation requiring serialization. 6388 // EG. DMB/Atomic Ops/Load Acquire/Str Release 6389 pipe_class pipe_serial() 6390 %{ 6391 single_instruction; 6392 force_serialization; 6393 fixed_latency(16); 6394 INS01 : ISS(2); // Cannot dual issue with any other instruction 6395 LDST : WR; 6396 %} 6397 6398 // Generic big/slow expanded idiom - also serialized 6399 pipe_class pipe_slow() 6400 %{ 6401 instruction_count(10); 6402 multiple_bundles; 6403 force_serialization; 6404 fixed_latency(16); 6405 INS01 : ISS(2); // Cannot dual issue with any other instruction 6406 LDST : WR; 6407 %} 6408 6409 // Empty pipeline class 6410 pipe_class pipe_class_empty() 6411 %{ 6412 single_instruction; 6413 fixed_latency(0); 6414 %} 6415 6416 // Default pipeline class. 6417 pipe_class pipe_class_default() 6418 %{ 6419 single_instruction; 6420 fixed_latency(2); 6421 %} 6422 6423 // Pipeline class for compares. 6424 pipe_class pipe_class_compare() 6425 %{ 6426 single_instruction; 6427 fixed_latency(16); 6428 %} 6429 6430 // Pipeline class for memory operations. 6431 pipe_class pipe_class_memory() 6432 %{ 6433 single_instruction; 6434 fixed_latency(16); 6435 %} 6436 6437 // Pipeline class for call. 6438 pipe_class pipe_class_call() 6439 %{ 6440 single_instruction; 6441 fixed_latency(100); 6442 %} 6443 6444 // Define the class for the Nop node. 6445 define %{ 6446 MachNop = pipe_class_empty; 6447 %} 6448 6449 %} 6450 //----------INSTRUCTIONS------------------------------------------------------- 6451 // 6452 // match -- States which machine-independent subtree may be replaced 6453 // by this instruction. 6454 // ins_cost -- The estimated cost of this instruction is used by instruction 6455 // selection to identify a minimum cost tree of machine 6456 // instructions that matches a tree of machine-independent 6457 // instructions. 6458 // format -- A string providing the disassembly for this instruction. 6459 // The value of an instruction's operand may be inserted 6460 // by referring to it with a '$' prefix. 6461 // opcode -- Three instruction opcodes may be provided. These are referred 6462 // to within an encode class as $primary, $secondary, and $tertiary 6463 // rrspectively. The primary opcode is commonly used to 6464 // indicate the type of machine instruction, while secondary 6465 // and tertiary are often used for prefix options or addressing 6466 // modes. 6467 // ins_encode -- A list of encode classes with parameters. The encode class 6468 // name must have been defined in an 'enc_class' specification 6469 // in the encode section of the architecture description. 6470 6471 // ============================================================================ 6472 // Memory (Load/Store) Instructions 6473 6474 // Load Instructions 6475 6476 // Load Byte (8 bit signed) 6477 instruct loadB(iRegINoSp dst, memory1 mem) 6478 %{ 6479 match(Set dst (LoadB mem)); 6480 predicate(!needs_acquiring_load(n)); 6481 6482 ins_cost(4 * INSN_COST); 6483 format %{ "ldrsbw $dst, $mem\t# byte" %} 6484 6485 ins_encode(aarch64_enc_ldrsbw(dst, mem)); 6486 6487 ins_pipe(iload_reg_mem); 6488 %} 6489 6490 // Load Byte (8 bit signed) into long 6491 instruct loadB2L(iRegLNoSp dst, memory1 mem) 6492 %{ 6493 match(Set dst (ConvI2L (LoadB mem))); 6494 predicate(!needs_acquiring_load(n->in(1))); 6495 6496 ins_cost(4 * INSN_COST); 6497 format %{ "ldrsb $dst, $mem\t# byte" %} 6498 6499 ins_encode(aarch64_enc_ldrsb(dst, mem)); 6500 6501 ins_pipe(iload_reg_mem); 6502 %} 6503 6504 // Load Byte (8 bit unsigned) 6505 instruct loadUB(iRegINoSp dst, memory1 mem) 6506 %{ 6507 match(Set dst (LoadUB mem)); 6508 predicate(!needs_acquiring_load(n)); 6509 6510 ins_cost(4 * INSN_COST); 6511 format %{ "ldrbw $dst, $mem\t# byte" %} 6512 6513 ins_encode(aarch64_enc_ldrb(dst, mem)); 6514 6515 ins_pipe(iload_reg_mem); 6516 %} 6517 6518 // Load Byte (8 bit unsigned) into long 6519 instruct loadUB2L(iRegLNoSp dst, memory1 mem) 6520 %{ 6521 match(Set dst (ConvI2L (LoadUB mem))); 6522 predicate(!needs_acquiring_load(n->in(1))); 6523 6524 ins_cost(4 * INSN_COST); 6525 format %{ "ldrb $dst, $mem\t# byte" %} 6526 6527 ins_encode(aarch64_enc_ldrb(dst, mem)); 6528 6529 ins_pipe(iload_reg_mem); 6530 %} 6531 6532 // Load Short (16 bit signed) 6533 instruct loadS(iRegINoSp dst, memory2 mem) 6534 %{ 6535 match(Set dst (LoadS mem)); 6536 predicate(!needs_acquiring_load(n)); 6537 6538 ins_cost(4 * INSN_COST); 6539 format %{ "ldrshw $dst, $mem\t# short" %} 6540 6541 ins_encode(aarch64_enc_ldrshw(dst, mem)); 6542 6543 ins_pipe(iload_reg_mem); 6544 %} 6545 6546 // Load Short (16 bit signed) into long 6547 instruct loadS2L(iRegLNoSp dst, memory2 mem) 6548 %{ 6549 match(Set dst (ConvI2L (LoadS mem))); 6550 predicate(!needs_acquiring_load(n->in(1))); 6551 6552 ins_cost(4 * INSN_COST); 6553 format %{ "ldrsh $dst, $mem\t# short" %} 6554 6555 ins_encode(aarch64_enc_ldrsh(dst, mem)); 6556 6557 ins_pipe(iload_reg_mem); 6558 %} 6559 6560 // Load Char (16 bit unsigned) 6561 instruct loadUS(iRegINoSp dst, memory2 mem) 6562 %{ 6563 match(Set dst (LoadUS mem)); 6564 predicate(!needs_acquiring_load(n)); 6565 6566 ins_cost(4 * INSN_COST); 6567 format %{ "ldrh $dst, $mem\t# short" %} 6568 6569 ins_encode(aarch64_enc_ldrh(dst, mem)); 6570 6571 ins_pipe(iload_reg_mem); 6572 %} 6573 6574 // Load Short/Char (16 bit unsigned) into long 6575 instruct loadUS2L(iRegLNoSp dst, memory2 mem) 6576 %{ 6577 match(Set dst (ConvI2L (LoadUS mem))); 6578 predicate(!needs_acquiring_load(n->in(1))); 6579 6580 ins_cost(4 * INSN_COST); 6581 format %{ "ldrh $dst, $mem\t# short" %} 6582 6583 ins_encode(aarch64_enc_ldrh(dst, mem)); 6584 6585 ins_pipe(iload_reg_mem); 6586 %} 6587 6588 // Load Integer (32 bit signed) 6589 instruct loadI(iRegINoSp dst, memory4 mem) 6590 %{ 6591 match(Set dst (LoadI mem)); 6592 predicate(!needs_acquiring_load(n)); 6593 6594 ins_cost(4 * INSN_COST); 6595 format %{ "ldrw $dst, $mem\t# int" %} 6596 6597 ins_encode(aarch64_enc_ldrw(dst, mem)); 6598 6599 ins_pipe(iload_reg_mem); 6600 %} 6601 6602 // Load Integer (32 bit signed) into long 6603 instruct loadI2L(iRegLNoSp dst, memory4 mem) 6604 %{ 6605 match(Set dst (ConvI2L (LoadI mem))); 6606 predicate(!needs_acquiring_load(n->in(1))); 6607 6608 ins_cost(4 * INSN_COST); 6609 format %{ "ldrsw $dst, $mem\t# int" %} 6610 6611 ins_encode(aarch64_enc_ldrsw(dst, mem)); 6612 6613 ins_pipe(iload_reg_mem); 6614 %} 6615 6616 // Load Integer (32 bit unsigned) into long 6617 instruct loadUI2L(iRegLNoSp dst, memory4 mem, immL_32bits mask) 6618 %{ 6619 match(Set dst (AndL (ConvI2L (LoadI mem)) mask)); 6620 predicate(!needs_acquiring_load(n->in(1)->in(1)->as_Load())); 6621 6622 ins_cost(4 * INSN_COST); 6623 format %{ "ldrw $dst, $mem\t# int" %} 6624 6625 ins_encode(aarch64_enc_ldrw(dst, mem)); 6626 6627 ins_pipe(iload_reg_mem); 6628 %} 6629 6630 // Load Long (64 bit signed) 6631 instruct loadL(iRegLNoSp dst, memory8 mem) 6632 %{ 6633 match(Set dst (LoadL mem)); 6634 predicate(!needs_acquiring_load(n)); 6635 6636 ins_cost(4 * INSN_COST); 6637 format %{ "ldr $dst, $mem\t# int" %} 6638 6639 ins_encode(aarch64_enc_ldr(dst, mem)); 6640 6641 ins_pipe(iload_reg_mem); 6642 %} 6643 6644 // Load Range 6645 instruct loadRange(iRegINoSp dst, memory4 mem) 6646 %{ 6647 match(Set dst (LoadRange mem)); 6648 6649 ins_cost(4 * INSN_COST); 6650 format %{ "ldrw $dst, $mem\t# range" %} 6651 6652 ins_encode(aarch64_enc_ldrw(dst, mem)); 6653 6654 ins_pipe(iload_reg_mem); 6655 %} 6656 6657 // Load Pointer 6658 instruct loadP(iRegPNoSp dst, memory8 mem) 6659 %{ 6660 match(Set dst (LoadP mem)); 6661 predicate(!needs_acquiring_load(n) && (n->as_Load()->barrier_data() == 0)); 6662 6663 ins_cost(4 * INSN_COST); 6664 format %{ "ldr $dst, $mem\t# ptr" %} 6665 6666 ins_encode(aarch64_enc_ldr(dst, mem)); 6667 6668 ins_pipe(iload_reg_mem); 6669 %} 6670 6671 // Load Compressed Pointer 6672 instruct loadN(iRegNNoSp dst, memory4 mem) 6673 %{ 6674 match(Set dst (LoadN mem)); 6675 predicate(!needs_acquiring_load(n) && n->as_Load()->barrier_data() == 0); 6676 6677 ins_cost(4 * INSN_COST); 6678 format %{ "ldrw $dst, $mem\t# compressed ptr" %} 6679 6680 ins_encode(aarch64_enc_ldrw(dst, mem)); 6681 6682 ins_pipe(iload_reg_mem); 6683 %} 6684 6685 // Load Klass Pointer 6686 instruct loadKlass(iRegPNoSp dst, memory8 mem) 6687 %{ 6688 match(Set dst (LoadKlass mem)); 6689 predicate(!needs_acquiring_load(n)); 6690 6691 ins_cost(4 * INSN_COST); 6692 format %{ "ldr $dst, $mem\t# class" %} 6693 6694 ins_encode(aarch64_enc_ldr(dst, mem)); 6695 6696 ins_pipe(iload_reg_mem); 6697 %} 6698 6699 // Load Narrow Klass Pointer 6700 instruct loadNKlass(iRegNNoSp dst, memory4 mem) 6701 %{ 6702 match(Set dst (LoadNKlass mem)); 6703 predicate(!needs_acquiring_load(n) && !UseCompactObjectHeaders); 6704 6705 ins_cost(4 * INSN_COST); 6706 format %{ "ldrw $dst, $mem\t# compressed class ptr" %} 6707 6708 ins_encode(aarch64_enc_ldrw(dst, mem)); 6709 6710 ins_pipe(iload_reg_mem); 6711 %} 6712 6713 instruct loadNKlassCompactHeaders(iRegNNoSp dst, memory_noindex mem) 6714 %{ 6715 match(Set dst (LoadNKlass mem)); 6716 predicate(!needs_acquiring_load(n) && UseCompactObjectHeaders); 6717 6718 ins_cost(4 * INSN_COST); 6719 format %{ 6720 "ldrw $dst, $mem\t# compressed class ptr, shifted\n\t" 6721 "lsrw $dst, $dst, markWord::klass_shift" 6722 %} 6723 ins_encode %{ 6724 assert($mem$$index$$Register == noreg, "must not have indexed address"); 6725 // The incoming address is pointing into obj-start + klass_offset_in_bytes. We need to extract 6726 // obj-start, so that we can load from the object's mark-word instead. 6727 __ ldrw($dst$$Register, Address($mem$$base$$Register, $mem$$disp - Type::klass_offset())); 6728 __ lsrw($dst$$Register, $dst$$Register, markWord::klass_shift); 6729 %} 6730 ins_pipe(iload_reg_mem); 6731 %} 6732 6733 // Load Float 6734 instruct loadF(vRegF dst, memory4 mem) 6735 %{ 6736 match(Set dst (LoadF mem)); 6737 predicate(!needs_acquiring_load(n)); 6738 6739 ins_cost(4 * INSN_COST); 6740 format %{ "ldrs $dst, $mem\t# float" %} 6741 6742 ins_encode( aarch64_enc_ldrs(dst, mem) ); 6743 6744 ins_pipe(pipe_class_memory); 6745 %} 6746 6747 // Load Double 6748 instruct loadD(vRegD dst, memory8 mem) 6749 %{ 6750 match(Set dst (LoadD mem)); 6751 predicate(!needs_acquiring_load(n)); 6752 6753 ins_cost(4 * INSN_COST); 6754 format %{ "ldrd $dst, $mem\t# double" %} 6755 6756 ins_encode( aarch64_enc_ldrd(dst, mem) ); 6757 6758 ins_pipe(pipe_class_memory); 6759 %} 6760 6761 6762 // Load Int Constant 6763 instruct loadConI(iRegINoSp dst, immI src) 6764 %{ 6765 match(Set dst src); 6766 6767 ins_cost(INSN_COST); 6768 format %{ "mov $dst, $src\t# int" %} 6769 6770 ins_encode( aarch64_enc_movw_imm(dst, src) ); 6771 6772 ins_pipe(ialu_imm); 6773 %} 6774 6775 // Load Long Constant 6776 instruct loadConL(iRegLNoSp dst, immL src) 6777 %{ 6778 match(Set dst src); 6779 6780 ins_cost(INSN_COST); 6781 format %{ "mov $dst, $src\t# long" %} 6782 6783 ins_encode( aarch64_enc_mov_imm(dst, src) ); 6784 6785 ins_pipe(ialu_imm); 6786 %} 6787 6788 // Load Pointer Constant 6789 6790 instruct loadConP(iRegPNoSp dst, immP con) 6791 %{ 6792 match(Set dst con); 6793 6794 ins_cost(INSN_COST * 4); 6795 format %{ 6796 "mov $dst, $con\t# ptr\n\t" 6797 %} 6798 6799 ins_encode(aarch64_enc_mov_p(dst, con)); 6800 6801 ins_pipe(ialu_imm); 6802 %} 6803 6804 // Load Null Pointer Constant 6805 6806 instruct loadConP0(iRegPNoSp dst, immP0 con) 6807 %{ 6808 match(Set dst con); 6809 6810 ins_cost(INSN_COST); 6811 format %{ "mov $dst, $con\t# nullptr ptr" %} 6812 6813 ins_encode(aarch64_enc_mov_p0(dst, con)); 6814 6815 ins_pipe(ialu_imm); 6816 %} 6817 6818 // Load Pointer Constant One 6819 6820 instruct loadConP1(iRegPNoSp dst, immP_1 con) 6821 %{ 6822 match(Set dst con); 6823 6824 ins_cost(INSN_COST); 6825 format %{ "mov $dst, $con\t# nullptr ptr" %} 6826 6827 ins_encode(aarch64_enc_mov_p1(dst, con)); 6828 6829 ins_pipe(ialu_imm); 6830 %} 6831 6832 // Load Byte Map Base Constant 6833 6834 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con) 6835 %{ 6836 match(Set dst con); 6837 6838 ins_cost(INSN_COST); 6839 format %{ "adr $dst, $con\t# Byte Map Base" %} 6840 6841 ins_encode(aarch64_enc_mov_byte_map_base(dst, con)); 6842 6843 ins_pipe(ialu_imm); 6844 %} 6845 6846 // Load Narrow Pointer Constant 6847 6848 instruct loadConN(iRegNNoSp dst, immN con) 6849 %{ 6850 match(Set dst con); 6851 6852 ins_cost(INSN_COST * 4); 6853 format %{ "mov $dst, $con\t# compressed ptr" %} 6854 6855 ins_encode(aarch64_enc_mov_n(dst, con)); 6856 6857 ins_pipe(ialu_imm); 6858 %} 6859 6860 // Load Narrow Null Pointer Constant 6861 6862 instruct loadConN0(iRegNNoSp dst, immN0 con) 6863 %{ 6864 match(Set dst con); 6865 6866 ins_cost(INSN_COST); 6867 format %{ "mov $dst, $con\t# compressed nullptr ptr" %} 6868 6869 ins_encode(aarch64_enc_mov_n0(dst, con)); 6870 6871 ins_pipe(ialu_imm); 6872 %} 6873 6874 // Load Narrow Klass Constant 6875 6876 instruct loadConNKlass(iRegNNoSp dst, immNKlass con) 6877 %{ 6878 match(Set dst con); 6879 6880 ins_cost(INSN_COST); 6881 format %{ "mov $dst, $con\t# compressed klass ptr" %} 6882 6883 ins_encode(aarch64_enc_mov_nk(dst, con)); 6884 6885 ins_pipe(ialu_imm); 6886 %} 6887 6888 // Load Packed Float Constant 6889 6890 instruct loadConF_packed(vRegF dst, immFPacked con) %{ 6891 match(Set dst con); 6892 ins_cost(INSN_COST * 4); 6893 format %{ "fmovs $dst, $con"%} 6894 ins_encode %{ 6895 __ fmovs(as_FloatRegister($dst$$reg), (double)$con$$constant); 6896 %} 6897 6898 ins_pipe(fp_imm_s); 6899 %} 6900 6901 // Load Float Constant 6902 6903 instruct loadConF(vRegF dst, immF con) %{ 6904 match(Set dst con); 6905 6906 ins_cost(INSN_COST * 4); 6907 6908 format %{ 6909 "ldrs $dst, [$constantaddress]\t# load from constant table: float=$con\n\t" 6910 %} 6911 6912 ins_encode %{ 6913 __ ldrs(as_FloatRegister($dst$$reg), $constantaddress($con)); 6914 %} 6915 6916 ins_pipe(fp_load_constant_s); 6917 %} 6918 6919 // Load Packed Double Constant 6920 6921 instruct loadConD_packed(vRegD dst, immDPacked con) %{ 6922 match(Set dst con); 6923 ins_cost(INSN_COST); 6924 format %{ "fmovd $dst, $con"%} 6925 ins_encode %{ 6926 __ fmovd(as_FloatRegister($dst$$reg), $con$$constant); 6927 %} 6928 6929 ins_pipe(fp_imm_d); 6930 %} 6931 6932 // Load Double Constant 6933 6934 instruct loadConD(vRegD dst, immD con) %{ 6935 match(Set dst con); 6936 6937 ins_cost(INSN_COST * 5); 6938 format %{ 6939 "ldrd $dst, [$constantaddress]\t# load from constant table: float=$con\n\t" 6940 %} 6941 6942 ins_encode %{ 6943 __ ldrd(as_FloatRegister($dst$$reg), $constantaddress($con)); 6944 %} 6945 6946 ins_pipe(fp_load_constant_d); 6947 %} 6948 6949 // Store Instructions 6950 6951 // Store Byte 6952 instruct storeB(iRegIorL2I src, memory1 mem) 6953 %{ 6954 match(Set mem (StoreB mem src)); 6955 predicate(!needs_releasing_store(n)); 6956 6957 ins_cost(INSN_COST); 6958 format %{ "strb $src, $mem\t# byte" %} 6959 6960 ins_encode(aarch64_enc_strb(src, mem)); 6961 6962 ins_pipe(istore_reg_mem); 6963 %} 6964 6965 6966 instruct storeimmB0(immI0 zero, memory1 mem) 6967 %{ 6968 match(Set mem (StoreB mem zero)); 6969 predicate(!needs_releasing_store(n)); 6970 6971 ins_cost(INSN_COST); 6972 format %{ "strb rscractch2, $mem\t# byte" %} 6973 6974 ins_encode(aarch64_enc_strb0(mem)); 6975 6976 ins_pipe(istore_mem); 6977 %} 6978 6979 // Store Char/Short 6980 instruct storeC(iRegIorL2I src, memory2 mem) 6981 %{ 6982 match(Set mem (StoreC mem src)); 6983 predicate(!needs_releasing_store(n)); 6984 6985 ins_cost(INSN_COST); 6986 format %{ "strh $src, $mem\t# short" %} 6987 6988 ins_encode(aarch64_enc_strh(src, mem)); 6989 6990 ins_pipe(istore_reg_mem); 6991 %} 6992 6993 instruct storeimmC0(immI0 zero, memory2 mem) 6994 %{ 6995 match(Set mem (StoreC mem zero)); 6996 predicate(!needs_releasing_store(n)); 6997 6998 ins_cost(INSN_COST); 6999 format %{ "strh zr, $mem\t# short" %} 7000 7001 ins_encode(aarch64_enc_strh0(mem)); 7002 7003 ins_pipe(istore_mem); 7004 %} 7005 7006 // Store Integer 7007 7008 instruct storeI(iRegIorL2I src, memory4 mem) 7009 %{ 7010 match(Set mem(StoreI mem src)); 7011 predicate(!needs_releasing_store(n)); 7012 7013 ins_cost(INSN_COST); 7014 format %{ "strw $src, $mem\t# int" %} 7015 7016 ins_encode(aarch64_enc_strw(src, mem)); 7017 7018 ins_pipe(istore_reg_mem); 7019 %} 7020 7021 instruct storeimmI0(immI0 zero, memory4 mem) 7022 %{ 7023 match(Set mem(StoreI mem zero)); 7024 predicate(!needs_releasing_store(n)); 7025 7026 ins_cost(INSN_COST); 7027 format %{ "strw zr, $mem\t# int" %} 7028 7029 ins_encode(aarch64_enc_strw0(mem)); 7030 7031 ins_pipe(istore_mem); 7032 %} 7033 7034 // Store Long (64 bit signed) 7035 instruct storeL(iRegL src, memory8 mem) 7036 %{ 7037 match(Set mem (StoreL mem src)); 7038 predicate(!needs_releasing_store(n)); 7039 7040 ins_cost(INSN_COST); 7041 format %{ "str $src, $mem\t# int" %} 7042 7043 ins_encode(aarch64_enc_str(src, mem)); 7044 7045 ins_pipe(istore_reg_mem); 7046 %} 7047 7048 // Store Long (64 bit signed) 7049 instruct storeimmL0(immL0 zero, memory8 mem) 7050 %{ 7051 match(Set mem (StoreL mem zero)); 7052 predicate(!needs_releasing_store(n)); 7053 7054 ins_cost(INSN_COST); 7055 format %{ "str zr, $mem\t# int" %} 7056 7057 ins_encode(aarch64_enc_str0(mem)); 7058 7059 ins_pipe(istore_mem); 7060 %} 7061 7062 // Store Pointer 7063 instruct storeP(iRegP src, memory8 mem) 7064 %{ 7065 match(Set mem (StoreP mem src)); 7066 predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0); 7067 7068 ins_cost(INSN_COST); 7069 format %{ "str $src, $mem\t# ptr" %} 7070 7071 ins_encode(aarch64_enc_str(src, mem)); 7072 7073 ins_pipe(istore_reg_mem); 7074 %} 7075 7076 // Store Pointer 7077 instruct storeimmP0(immP0 zero, memory8 mem) 7078 %{ 7079 match(Set mem (StoreP mem zero)); 7080 predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0); 7081 7082 ins_cost(INSN_COST); 7083 format %{ "str zr, $mem\t# ptr" %} 7084 7085 ins_encode(aarch64_enc_str0(mem)); 7086 7087 ins_pipe(istore_mem); 7088 %} 7089 7090 // Store Compressed Pointer 7091 instruct storeN(iRegN src, memory4 mem) 7092 %{ 7093 match(Set mem (StoreN mem src)); 7094 predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0); 7095 7096 ins_cost(INSN_COST); 7097 format %{ "strw $src, $mem\t# compressed ptr" %} 7098 7099 ins_encode(aarch64_enc_strw(src, mem)); 7100 7101 ins_pipe(istore_reg_mem); 7102 %} 7103 7104 instruct storeImmN0(immN0 zero, memory4 mem) 7105 %{ 7106 match(Set mem (StoreN mem zero)); 7107 predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0); 7108 7109 ins_cost(INSN_COST); 7110 format %{ "strw zr, $mem\t# compressed ptr" %} 7111 7112 ins_encode(aarch64_enc_strw0(mem)); 7113 7114 ins_pipe(istore_mem); 7115 %} 7116 7117 // Store Float 7118 instruct storeF(vRegF src, memory4 mem) 7119 %{ 7120 match(Set mem (StoreF mem src)); 7121 predicate(!needs_releasing_store(n)); 7122 7123 ins_cost(INSN_COST); 7124 format %{ "strs $src, $mem\t# float" %} 7125 7126 ins_encode( aarch64_enc_strs(src, mem) ); 7127 7128 ins_pipe(pipe_class_memory); 7129 %} 7130 7131 // TODO 7132 // implement storeImmF0 and storeFImmPacked 7133 7134 // Store Double 7135 instruct storeD(vRegD src, memory8 mem) 7136 %{ 7137 match(Set mem (StoreD mem src)); 7138 predicate(!needs_releasing_store(n)); 7139 7140 ins_cost(INSN_COST); 7141 format %{ "strd $src, $mem\t# double" %} 7142 7143 ins_encode( aarch64_enc_strd(src, mem) ); 7144 7145 ins_pipe(pipe_class_memory); 7146 %} 7147 7148 // Store Compressed Klass Pointer 7149 instruct storeNKlass(iRegN src, memory4 mem) 7150 %{ 7151 predicate(!needs_releasing_store(n)); 7152 match(Set mem (StoreNKlass mem src)); 7153 7154 ins_cost(INSN_COST); 7155 format %{ "strw $src, $mem\t# compressed klass ptr" %} 7156 7157 ins_encode(aarch64_enc_strw(src, mem)); 7158 7159 ins_pipe(istore_reg_mem); 7160 %} 7161 7162 // TODO 7163 // implement storeImmD0 and storeDImmPacked 7164 7165 // prefetch instructions 7166 // Must be safe to execute with invalid address (cannot fault). 7167 7168 instruct prefetchalloc( memory8 mem ) %{ 7169 match(PrefetchAllocation mem); 7170 7171 ins_cost(INSN_COST); 7172 format %{ "prfm $mem, PSTL1KEEP\t# Prefetch into level 1 cache write keep" %} 7173 7174 ins_encode( aarch64_enc_prefetchw(mem) ); 7175 7176 ins_pipe(iload_prefetch); 7177 %} 7178 7179 // ---------------- volatile loads and stores ---------------- 7180 7181 // Load Byte (8 bit signed) 7182 instruct loadB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7183 %{ 7184 match(Set dst (LoadB mem)); 7185 7186 ins_cost(VOLATILE_REF_COST); 7187 format %{ "ldarsb $dst, $mem\t# byte" %} 7188 7189 ins_encode(aarch64_enc_ldarsb(dst, mem)); 7190 7191 ins_pipe(pipe_serial); 7192 %} 7193 7194 // Load Byte (8 bit signed) into long 7195 instruct loadB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 7196 %{ 7197 match(Set dst (ConvI2L (LoadB mem))); 7198 7199 ins_cost(VOLATILE_REF_COST); 7200 format %{ "ldarsb $dst, $mem\t# byte" %} 7201 7202 ins_encode(aarch64_enc_ldarsb(dst, mem)); 7203 7204 ins_pipe(pipe_serial); 7205 %} 7206 7207 // Load Byte (8 bit unsigned) 7208 instruct loadUB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7209 %{ 7210 match(Set dst (LoadUB mem)); 7211 7212 ins_cost(VOLATILE_REF_COST); 7213 format %{ "ldarb $dst, $mem\t# byte" %} 7214 7215 ins_encode(aarch64_enc_ldarb(dst, mem)); 7216 7217 ins_pipe(pipe_serial); 7218 %} 7219 7220 // Load Byte (8 bit unsigned) into long 7221 instruct loadUB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 7222 %{ 7223 match(Set dst (ConvI2L (LoadUB mem))); 7224 7225 ins_cost(VOLATILE_REF_COST); 7226 format %{ "ldarb $dst, $mem\t# byte" %} 7227 7228 ins_encode(aarch64_enc_ldarb(dst, mem)); 7229 7230 ins_pipe(pipe_serial); 7231 %} 7232 7233 // Load Short (16 bit signed) 7234 instruct loadS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7235 %{ 7236 match(Set dst (LoadS mem)); 7237 7238 ins_cost(VOLATILE_REF_COST); 7239 format %{ "ldarshw $dst, $mem\t# short" %} 7240 7241 ins_encode(aarch64_enc_ldarshw(dst, mem)); 7242 7243 ins_pipe(pipe_serial); 7244 %} 7245 7246 instruct loadUS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7247 %{ 7248 match(Set dst (LoadUS mem)); 7249 7250 ins_cost(VOLATILE_REF_COST); 7251 format %{ "ldarhw $dst, $mem\t# short" %} 7252 7253 ins_encode(aarch64_enc_ldarhw(dst, mem)); 7254 7255 ins_pipe(pipe_serial); 7256 %} 7257 7258 // Load Short/Char (16 bit unsigned) into long 7259 instruct loadUS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 7260 %{ 7261 match(Set dst (ConvI2L (LoadUS mem))); 7262 7263 ins_cost(VOLATILE_REF_COST); 7264 format %{ "ldarh $dst, $mem\t# short" %} 7265 7266 ins_encode(aarch64_enc_ldarh(dst, mem)); 7267 7268 ins_pipe(pipe_serial); 7269 %} 7270 7271 // Load Short/Char (16 bit signed) into long 7272 instruct loadS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 7273 %{ 7274 match(Set dst (ConvI2L (LoadS mem))); 7275 7276 ins_cost(VOLATILE_REF_COST); 7277 format %{ "ldarh $dst, $mem\t# short" %} 7278 7279 ins_encode(aarch64_enc_ldarsh(dst, mem)); 7280 7281 ins_pipe(pipe_serial); 7282 %} 7283 7284 // Load Integer (32 bit signed) 7285 instruct loadI_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7286 %{ 7287 match(Set dst (LoadI mem)); 7288 7289 ins_cost(VOLATILE_REF_COST); 7290 format %{ "ldarw $dst, $mem\t# int" %} 7291 7292 ins_encode(aarch64_enc_ldarw(dst, mem)); 7293 7294 ins_pipe(pipe_serial); 7295 %} 7296 7297 // Load Integer (32 bit unsigned) into long 7298 instruct loadUI2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem, immL_32bits mask) 7299 %{ 7300 match(Set dst (AndL (ConvI2L (LoadI mem)) mask)); 7301 7302 ins_cost(VOLATILE_REF_COST); 7303 format %{ "ldarw $dst, $mem\t# int" %} 7304 7305 ins_encode(aarch64_enc_ldarw(dst, mem)); 7306 7307 ins_pipe(pipe_serial); 7308 %} 7309 7310 // Load Long (64 bit signed) 7311 instruct loadL_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 7312 %{ 7313 match(Set dst (LoadL mem)); 7314 7315 ins_cost(VOLATILE_REF_COST); 7316 format %{ "ldar $dst, $mem\t# int" %} 7317 7318 ins_encode(aarch64_enc_ldar(dst, mem)); 7319 7320 ins_pipe(pipe_serial); 7321 %} 7322 7323 // Load Pointer 7324 instruct loadP_volatile(iRegPNoSp dst, /* sync_memory*/indirect mem) 7325 %{ 7326 match(Set dst (LoadP mem)); 7327 predicate(n->as_Load()->barrier_data() == 0); 7328 7329 ins_cost(VOLATILE_REF_COST); 7330 format %{ "ldar $dst, $mem\t# ptr" %} 7331 7332 ins_encode(aarch64_enc_ldar(dst, mem)); 7333 7334 ins_pipe(pipe_serial); 7335 %} 7336 7337 // Load Compressed Pointer 7338 instruct loadN_volatile(iRegNNoSp dst, /* sync_memory*/indirect mem) 7339 %{ 7340 match(Set dst (LoadN mem)); 7341 predicate(n->as_Load()->barrier_data() == 0); 7342 7343 ins_cost(VOLATILE_REF_COST); 7344 format %{ "ldarw $dst, $mem\t# compressed ptr" %} 7345 7346 ins_encode(aarch64_enc_ldarw(dst, mem)); 7347 7348 ins_pipe(pipe_serial); 7349 %} 7350 7351 // Load Float 7352 instruct loadF_volatile(vRegF dst, /* sync_memory*/indirect mem) 7353 %{ 7354 match(Set dst (LoadF mem)); 7355 7356 ins_cost(VOLATILE_REF_COST); 7357 format %{ "ldars $dst, $mem\t# float" %} 7358 7359 ins_encode( aarch64_enc_fldars(dst, mem) ); 7360 7361 ins_pipe(pipe_serial); 7362 %} 7363 7364 // Load Double 7365 instruct loadD_volatile(vRegD dst, /* sync_memory*/indirect mem) 7366 %{ 7367 match(Set dst (LoadD mem)); 7368 7369 ins_cost(VOLATILE_REF_COST); 7370 format %{ "ldard $dst, $mem\t# double" %} 7371 7372 ins_encode( aarch64_enc_fldard(dst, mem) ); 7373 7374 ins_pipe(pipe_serial); 7375 %} 7376 7377 // Store Byte 7378 instruct storeB_volatile(iRegIorL2I src, /* sync_memory*/indirect mem) 7379 %{ 7380 match(Set mem (StoreB mem src)); 7381 7382 ins_cost(VOLATILE_REF_COST); 7383 format %{ "stlrb $src, $mem\t# byte" %} 7384 7385 ins_encode(aarch64_enc_stlrb(src, mem)); 7386 7387 ins_pipe(pipe_class_memory); 7388 %} 7389 7390 instruct storeimmB0_volatile(immI0 zero, /* sync_memory*/indirect mem) 7391 %{ 7392 match(Set mem (StoreB mem zero)); 7393 7394 ins_cost(VOLATILE_REF_COST); 7395 format %{ "stlrb zr, $mem\t# byte" %} 7396 7397 ins_encode(aarch64_enc_stlrb0(mem)); 7398 7399 ins_pipe(pipe_class_memory); 7400 %} 7401 7402 // Store Char/Short 7403 instruct storeC_volatile(iRegIorL2I src, /* sync_memory*/indirect mem) 7404 %{ 7405 match(Set mem (StoreC mem src)); 7406 7407 ins_cost(VOLATILE_REF_COST); 7408 format %{ "stlrh $src, $mem\t# short" %} 7409 7410 ins_encode(aarch64_enc_stlrh(src, mem)); 7411 7412 ins_pipe(pipe_class_memory); 7413 %} 7414 7415 instruct storeimmC0_volatile(immI0 zero, /* sync_memory*/indirect mem) 7416 %{ 7417 match(Set mem (StoreC mem zero)); 7418 7419 ins_cost(VOLATILE_REF_COST); 7420 format %{ "stlrh zr, $mem\t# short" %} 7421 7422 ins_encode(aarch64_enc_stlrh0(mem)); 7423 7424 ins_pipe(pipe_class_memory); 7425 %} 7426 7427 // Store Integer 7428 7429 instruct storeI_volatile(iRegIorL2I src, /* sync_memory*/indirect mem) 7430 %{ 7431 match(Set mem(StoreI mem src)); 7432 7433 ins_cost(VOLATILE_REF_COST); 7434 format %{ "stlrw $src, $mem\t# int" %} 7435 7436 ins_encode(aarch64_enc_stlrw(src, mem)); 7437 7438 ins_pipe(pipe_class_memory); 7439 %} 7440 7441 instruct storeimmI0_volatile(immI0 zero, /* sync_memory*/indirect mem) 7442 %{ 7443 match(Set mem(StoreI mem zero)); 7444 7445 ins_cost(VOLATILE_REF_COST); 7446 format %{ "stlrw zr, $mem\t# int" %} 7447 7448 ins_encode(aarch64_enc_stlrw0(mem)); 7449 7450 ins_pipe(pipe_class_memory); 7451 %} 7452 7453 // Store Long (64 bit signed) 7454 instruct storeL_volatile(iRegL src, /* sync_memory*/indirect mem) 7455 %{ 7456 match(Set mem (StoreL mem src)); 7457 7458 ins_cost(VOLATILE_REF_COST); 7459 format %{ "stlr $src, $mem\t# int" %} 7460 7461 ins_encode(aarch64_enc_stlr(src, mem)); 7462 7463 ins_pipe(pipe_class_memory); 7464 %} 7465 7466 instruct storeimmL0_volatile(immL0 zero, /* sync_memory*/indirect mem) 7467 %{ 7468 match(Set mem (StoreL mem zero)); 7469 7470 ins_cost(VOLATILE_REF_COST); 7471 format %{ "stlr zr, $mem\t# int" %} 7472 7473 ins_encode(aarch64_enc_stlr0(mem)); 7474 7475 ins_pipe(pipe_class_memory); 7476 %} 7477 7478 // Store Pointer 7479 instruct storeP_volatile(iRegP src, /* sync_memory*/indirect mem) 7480 %{ 7481 match(Set mem (StoreP mem src)); 7482 predicate(n->as_Store()->barrier_data() == 0); 7483 7484 ins_cost(VOLATILE_REF_COST); 7485 format %{ "stlr $src, $mem\t# ptr" %} 7486 7487 ins_encode(aarch64_enc_stlr(src, mem)); 7488 7489 ins_pipe(pipe_class_memory); 7490 %} 7491 7492 instruct storeimmP0_volatile(immP0 zero, /* sync_memory*/indirect mem) 7493 %{ 7494 match(Set mem (StoreP mem zero)); 7495 predicate(n->as_Store()->barrier_data() == 0); 7496 7497 ins_cost(VOLATILE_REF_COST); 7498 format %{ "stlr zr, $mem\t# ptr" %} 7499 7500 ins_encode(aarch64_enc_stlr0(mem)); 7501 7502 ins_pipe(pipe_class_memory); 7503 %} 7504 7505 // Store Compressed Pointer 7506 instruct storeN_volatile(iRegN src, /* sync_memory*/indirect mem) 7507 %{ 7508 match(Set mem (StoreN mem src)); 7509 predicate(n->as_Store()->barrier_data() == 0); 7510 7511 ins_cost(VOLATILE_REF_COST); 7512 format %{ "stlrw $src, $mem\t# compressed ptr" %} 7513 7514 ins_encode(aarch64_enc_stlrw(src, mem)); 7515 7516 ins_pipe(pipe_class_memory); 7517 %} 7518 7519 instruct storeimmN0_volatile(immN0 zero, /* sync_memory*/indirect mem) 7520 %{ 7521 match(Set mem (StoreN mem zero)); 7522 predicate(n->as_Store()->barrier_data() == 0); 7523 7524 ins_cost(VOLATILE_REF_COST); 7525 format %{ "stlrw zr, $mem\t# compressed ptr" %} 7526 7527 ins_encode(aarch64_enc_stlrw0(mem)); 7528 7529 ins_pipe(pipe_class_memory); 7530 %} 7531 7532 // Store Float 7533 instruct storeF_volatile(vRegF src, /* sync_memory*/indirect mem) 7534 %{ 7535 match(Set mem (StoreF mem src)); 7536 7537 ins_cost(VOLATILE_REF_COST); 7538 format %{ "stlrs $src, $mem\t# float" %} 7539 7540 ins_encode( aarch64_enc_fstlrs(src, mem) ); 7541 7542 ins_pipe(pipe_class_memory); 7543 %} 7544 7545 // TODO 7546 // implement storeImmF0 and storeFImmPacked 7547 7548 // Store Double 7549 instruct storeD_volatile(vRegD src, /* sync_memory*/indirect mem) 7550 %{ 7551 match(Set mem (StoreD mem src)); 7552 7553 ins_cost(VOLATILE_REF_COST); 7554 format %{ "stlrd $src, $mem\t# double" %} 7555 7556 ins_encode( aarch64_enc_fstlrd(src, mem) ); 7557 7558 ins_pipe(pipe_class_memory); 7559 %} 7560 7561 // ---------------- end of volatile loads and stores ---------------- 7562 7563 instruct cacheWB(indirect addr) 7564 %{ 7565 predicate(VM_Version::supports_data_cache_line_flush()); 7566 match(CacheWB addr); 7567 7568 ins_cost(100); 7569 format %{"cache wb $addr" %} 7570 ins_encode %{ 7571 assert($addr->index_position() < 0, "should be"); 7572 assert($addr$$disp == 0, "should be"); 7573 __ cache_wb(Address($addr$$base$$Register, 0)); 7574 %} 7575 ins_pipe(pipe_slow); // XXX 7576 %} 7577 7578 instruct cacheWBPreSync() 7579 %{ 7580 predicate(VM_Version::supports_data_cache_line_flush()); 7581 match(CacheWBPreSync); 7582 7583 ins_cost(100); 7584 format %{"cache wb presync" %} 7585 ins_encode %{ 7586 __ cache_wbsync(true); 7587 %} 7588 ins_pipe(pipe_slow); // XXX 7589 %} 7590 7591 instruct cacheWBPostSync() 7592 %{ 7593 predicate(VM_Version::supports_data_cache_line_flush()); 7594 match(CacheWBPostSync); 7595 7596 ins_cost(100); 7597 format %{"cache wb postsync" %} 7598 ins_encode %{ 7599 __ cache_wbsync(false); 7600 %} 7601 ins_pipe(pipe_slow); // XXX 7602 %} 7603 7604 // ============================================================================ 7605 // BSWAP Instructions 7606 7607 instruct bytes_reverse_int(iRegINoSp dst, iRegIorL2I src) %{ 7608 match(Set dst (ReverseBytesI src)); 7609 7610 ins_cost(INSN_COST); 7611 format %{ "revw $dst, $src" %} 7612 7613 ins_encode %{ 7614 __ revw(as_Register($dst$$reg), as_Register($src$$reg)); 7615 %} 7616 7617 ins_pipe(ialu_reg); 7618 %} 7619 7620 instruct bytes_reverse_long(iRegLNoSp dst, iRegL src) %{ 7621 match(Set dst (ReverseBytesL src)); 7622 7623 ins_cost(INSN_COST); 7624 format %{ "rev $dst, $src" %} 7625 7626 ins_encode %{ 7627 __ rev(as_Register($dst$$reg), as_Register($src$$reg)); 7628 %} 7629 7630 ins_pipe(ialu_reg); 7631 %} 7632 7633 instruct bytes_reverse_unsigned_short(iRegINoSp dst, iRegIorL2I src) %{ 7634 match(Set dst (ReverseBytesUS src)); 7635 7636 ins_cost(INSN_COST); 7637 format %{ "rev16w $dst, $src" %} 7638 7639 ins_encode %{ 7640 __ rev16w(as_Register($dst$$reg), as_Register($src$$reg)); 7641 %} 7642 7643 ins_pipe(ialu_reg); 7644 %} 7645 7646 instruct bytes_reverse_short(iRegINoSp dst, iRegIorL2I src) %{ 7647 match(Set dst (ReverseBytesS src)); 7648 7649 ins_cost(INSN_COST); 7650 format %{ "rev16w $dst, $src\n\t" 7651 "sbfmw $dst, $dst, #0, #15" %} 7652 7653 ins_encode %{ 7654 __ rev16w(as_Register($dst$$reg), as_Register($src$$reg)); 7655 __ sbfmw(as_Register($dst$$reg), as_Register($dst$$reg), 0U, 15U); 7656 %} 7657 7658 ins_pipe(ialu_reg); 7659 %} 7660 7661 // ============================================================================ 7662 // Zero Count Instructions 7663 7664 instruct countLeadingZerosI(iRegINoSp dst, iRegIorL2I src) %{ 7665 match(Set dst (CountLeadingZerosI src)); 7666 7667 ins_cost(INSN_COST); 7668 format %{ "clzw $dst, $src" %} 7669 ins_encode %{ 7670 __ clzw(as_Register($dst$$reg), as_Register($src$$reg)); 7671 %} 7672 7673 ins_pipe(ialu_reg); 7674 %} 7675 7676 instruct countLeadingZerosL(iRegINoSp dst, iRegL src) %{ 7677 match(Set dst (CountLeadingZerosL src)); 7678 7679 ins_cost(INSN_COST); 7680 format %{ "clz $dst, $src" %} 7681 ins_encode %{ 7682 __ clz(as_Register($dst$$reg), as_Register($src$$reg)); 7683 %} 7684 7685 ins_pipe(ialu_reg); 7686 %} 7687 7688 instruct countTrailingZerosI(iRegINoSp dst, iRegIorL2I src) %{ 7689 match(Set dst (CountTrailingZerosI src)); 7690 7691 ins_cost(INSN_COST * 2); 7692 format %{ "rbitw $dst, $src\n\t" 7693 "clzw $dst, $dst" %} 7694 ins_encode %{ 7695 __ rbitw(as_Register($dst$$reg), as_Register($src$$reg)); 7696 __ clzw(as_Register($dst$$reg), as_Register($dst$$reg)); 7697 %} 7698 7699 ins_pipe(ialu_reg); 7700 %} 7701 7702 instruct countTrailingZerosL(iRegINoSp dst, iRegL src) %{ 7703 match(Set dst (CountTrailingZerosL src)); 7704 7705 ins_cost(INSN_COST * 2); 7706 format %{ "rbit $dst, $src\n\t" 7707 "clz $dst, $dst" %} 7708 ins_encode %{ 7709 __ rbit(as_Register($dst$$reg), as_Register($src$$reg)); 7710 __ clz(as_Register($dst$$reg), as_Register($dst$$reg)); 7711 %} 7712 7713 ins_pipe(ialu_reg); 7714 %} 7715 7716 //---------- Population Count Instructions ------------------------------------- 7717 // 7718 7719 instruct popCountI(iRegINoSp dst, iRegIorL2I src, vRegF tmp) %{ 7720 match(Set dst (PopCountI src)); 7721 effect(TEMP tmp); 7722 ins_cost(INSN_COST * 13); 7723 7724 format %{ "movw $src, $src\n\t" 7725 "mov $tmp, $src\t# vector (1D)\n\t" 7726 "cnt $tmp, $tmp\t# vector (8B)\n\t" 7727 "addv $tmp, $tmp\t# vector (8B)\n\t" 7728 "mov $dst, $tmp\t# vector (1D)" %} 7729 ins_encode %{ 7730 __ movw($src$$Register, $src$$Register); // ensure top 32 bits 0 7731 __ mov($tmp$$FloatRegister, __ D, 0, $src$$Register); 7732 __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 7733 __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 7734 __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0); 7735 %} 7736 7737 ins_pipe(pipe_class_default); 7738 %} 7739 7740 instruct popCountI_mem(iRegINoSp dst, memory4 mem, vRegF tmp) %{ 7741 match(Set dst (PopCountI (LoadI mem))); 7742 effect(TEMP tmp); 7743 ins_cost(INSN_COST * 13); 7744 7745 format %{ "ldrs $tmp, $mem\n\t" 7746 "cnt $tmp, $tmp\t# vector (8B)\n\t" 7747 "addv $tmp, $tmp\t# vector (8B)\n\t" 7748 "mov $dst, $tmp\t# vector (1D)" %} 7749 ins_encode %{ 7750 FloatRegister tmp_reg = as_FloatRegister($tmp$$reg); 7751 loadStore(masm, &MacroAssembler::ldrs, tmp_reg, $mem->opcode(), 7752 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 7753 __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 7754 __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 7755 __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0); 7756 %} 7757 7758 ins_pipe(pipe_class_default); 7759 %} 7760 7761 // Note: Long.bitCount(long) returns an int. 7762 instruct popCountL(iRegINoSp dst, iRegL src, vRegD tmp) %{ 7763 match(Set dst (PopCountL src)); 7764 effect(TEMP tmp); 7765 ins_cost(INSN_COST * 13); 7766 7767 format %{ "mov $tmp, $src\t# vector (1D)\n\t" 7768 "cnt $tmp, $tmp\t# vector (8B)\n\t" 7769 "addv $tmp, $tmp\t# vector (8B)\n\t" 7770 "mov $dst, $tmp\t# vector (1D)" %} 7771 ins_encode %{ 7772 __ mov($tmp$$FloatRegister, __ D, 0, $src$$Register); 7773 __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 7774 __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 7775 __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0); 7776 %} 7777 7778 ins_pipe(pipe_class_default); 7779 %} 7780 7781 instruct popCountL_mem(iRegINoSp dst, memory8 mem, vRegD tmp) %{ 7782 match(Set dst (PopCountL (LoadL mem))); 7783 effect(TEMP tmp); 7784 ins_cost(INSN_COST * 13); 7785 7786 format %{ "ldrd $tmp, $mem\n\t" 7787 "cnt $tmp, $tmp\t# vector (8B)\n\t" 7788 "addv $tmp, $tmp\t# vector (8B)\n\t" 7789 "mov $dst, $tmp\t# vector (1D)" %} 7790 ins_encode %{ 7791 FloatRegister tmp_reg = as_FloatRegister($tmp$$reg); 7792 loadStore(masm, &MacroAssembler::ldrd, tmp_reg, $mem->opcode(), 7793 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 7794 __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 7795 __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 7796 __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0); 7797 %} 7798 7799 ins_pipe(pipe_class_default); 7800 %} 7801 7802 // ============================================================================ 7803 // VerifyVectorAlignment Instruction 7804 7805 instruct verify_vector_alignment(iRegP addr, immL_positive_bitmaskI mask, rFlagsReg cr) %{ 7806 match(Set addr (VerifyVectorAlignment addr mask)); 7807 effect(KILL cr); 7808 format %{ "verify_vector_alignment $addr $mask \t! verify alignment" %} 7809 ins_encode %{ 7810 Label Lskip; 7811 // check if masked bits of addr are zero 7812 __ tst($addr$$Register, $mask$$constant); 7813 __ br(Assembler::EQ, Lskip); 7814 __ stop("verify_vector_alignment found a misaligned vector memory access"); 7815 __ bind(Lskip); 7816 %} 7817 ins_pipe(pipe_slow); 7818 %} 7819 7820 // ============================================================================ 7821 // MemBar Instruction 7822 7823 instruct load_fence() %{ 7824 match(LoadFence); 7825 ins_cost(VOLATILE_REF_COST); 7826 7827 format %{ "load_fence" %} 7828 7829 ins_encode %{ 7830 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 7831 %} 7832 ins_pipe(pipe_serial); 7833 %} 7834 7835 instruct unnecessary_membar_acquire() %{ 7836 predicate(unnecessary_acquire(n)); 7837 match(MemBarAcquire); 7838 ins_cost(0); 7839 7840 format %{ "membar_acquire (elided)" %} 7841 7842 ins_encode %{ 7843 __ block_comment("membar_acquire (elided)"); 7844 %} 7845 7846 ins_pipe(pipe_class_empty); 7847 %} 7848 7849 instruct membar_acquire() %{ 7850 match(MemBarAcquire); 7851 ins_cost(VOLATILE_REF_COST); 7852 7853 format %{ "membar_acquire\n\t" 7854 "dmb ishld" %} 7855 7856 ins_encode %{ 7857 __ block_comment("membar_acquire"); 7858 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 7859 %} 7860 7861 ins_pipe(pipe_serial); 7862 %} 7863 7864 7865 instruct membar_acquire_lock() %{ 7866 match(MemBarAcquireLock); 7867 ins_cost(VOLATILE_REF_COST); 7868 7869 format %{ "membar_acquire_lock (elided)" %} 7870 7871 ins_encode %{ 7872 __ block_comment("membar_acquire_lock (elided)"); 7873 %} 7874 7875 ins_pipe(pipe_serial); 7876 %} 7877 7878 instruct store_fence() %{ 7879 match(StoreFence); 7880 ins_cost(VOLATILE_REF_COST); 7881 7882 format %{ "store_fence" %} 7883 7884 ins_encode %{ 7885 __ membar(Assembler::LoadStore|Assembler::StoreStore); 7886 %} 7887 ins_pipe(pipe_serial); 7888 %} 7889 7890 instruct unnecessary_membar_release() %{ 7891 predicate(unnecessary_release(n)); 7892 match(MemBarRelease); 7893 ins_cost(0); 7894 7895 format %{ "membar_release (elided)" %} 7896 7897 ins_encode %{ 7898 __ block_comment("membar_release (elided)"); 7899 %} 7900 ins_pipe(pipe_serial); 7901 %} 7902 7903 instruct membar_release() %{ 7904 match(MemBarRelease); 7905 ins_cost(VOLATILE_REF_COST); 7906 7907 format %{ "membar_release\n\t" 7908 "dmb ishst\n\tdmb ishld" %} 7909 7910 ins_encode %{ 7911 __ block_comment("membar_release"); 7912 // These will be merged if AlwaysMergeDMB is enabled. 7913 __ membar(Assembler::StoreStore); 7914 __ membar(Assembler::LoadStore); 7915 %} 7916 ins_pipe(pipe_serial); 7917 %} 7918 7919 instruct membar_storestore() %{ 7920 match(MemBarStoreStore); 7921 match(StoreStoreFence); 7922 ins_cost(VOLATILE_REF_COST); 7923 7924 format %{ "MEMBAR-store-store" %} 7925 7926 ins_encode %{ 7927 __ membar(Assembler::StoreStore); 7928 %} 7929 ins_pipe(pipe_serial); 7930 %} 7931 7932 instruct membar_release_lock() %{ 7933 match(MemBarReleaseLock); 7934 ins_cost(VOLATILE_REF_COST); 7935 7936 format %{ "membar_release_lock (elided)" %} 7937 7938 ins_encode %{ 7939 __ block_comment("membar_release_lock (elided)"); 7940 %} 7941 7942 ins_pipe(pipe_serial); 7943 %} 7944 7945 instruct unnecessary_membar_volatile() %{ 7946 predicate(unnecessary_volatile(n)); 7947 match(MemBarVolatile); 7948 ins_cost(0); 7949 7950 format %{ "membar_volatile (elided)" %} 7951 7952 ins_encode %{ 7953 __ block_comment("membar_volatile (elided)"); 7954 %} 7955 7956 ins_pipe(pipe_serial); 7957 %} 7958 7959 instruct membar_volatile() %{ 7960 match(MemBarVolatile); 7961 ins_cost(VOLATILE_REF_COST*100); 7962 7963 format %{ "membar_volatile\n\t" 7964 "dmb ish"%} 7965 7966 ins_encode %{ 7967 __ block_comment("membar_volatile"); 7968 __ membar(Assembler::StoreLoad); 7969 %} 7970 7971 ins_pipe(pipe_serial); 7972 %} 7973 7974 // ============================================================================ 7975 // Cast/Convert Instructions 7976 7977 instruct castX2P(iRegPNoSp dst, iRegL src) %{ 7978 match(Set dst (CastX2P src)); 7979 7980 ins_cost(INSN_COST); 7981 format %{ "mov $dst, $src\t# long -> ptr" %} 7982 7983 ins_encode %{ 7984 if ($dst$$reg != $src$$reg) { 7985 __ mov(as_Register($dst$$reg), as_Register($src$$reg)); 7986 } 7987 %} 7988 7989 ins_pipe(ialu_reg); 7990 %} 7991 7992 instruct castP2X(iRegLNoSp dst, iRegP src) %{ 7993 match(Set dst (CastP2X src)); 7994 7995 ins_cost(INSN_COST); 7996 format %{ "mov $dst, $src\t# ptr -> long" %} 7997 7998 ins_encode %{ 7999 if ($dst$$reg != $src$$reg) { 8000 __ mov(as_Register($dst$$reg), as_Register($src$$reg)); 8001 } 8002 %} 8003 8004 ins_pipe(ialu_reg); 8005 %} 8006 8007 // Convert oop into int for vectors alignment masking 8008 instruct convP2I(iRegINoSp dst, iRegP src) %{ 8009 match(Set dst (ConvL2I (CastP2X src))); 8010 8011 ins_cost(INSN_COST); 8012 format %{ "movw $dst, $src\t# ptr -> int" %} 8013 ins_encode %{ 8014 __ movw($dst$$Register, $src$$Register); 8015 %} 8016 8017 ins_pipe(ialu_reg); 8018 %} 8019 8020 // Convert compressed oop into int for vectors alignment masking 8021 // in case of 32bit oops (heap < 4Gb). 8022 instruct convN2I(iRegINoSp dst, iRegN src) 8023 %{ 8024 predicate(CompressedOops::shift() == 0); 8025 match(Set dst (ConvL2I (CastP2X (DecodeN src)))); 8026 8027 ins_cost(INSN_COST); 8028 format %{ "mov dst, $src\t# compressed ptr -> int" %} 8029 ins_encode %{ 8030 __ movw($dst$$Register, $src$$Register); 8031 %} 8032 8033 ins_pipe(ialu_reg); 8034 %} 8035 8036 8037 // Convert oop pointer into compressed form 8038 instruct encodeHeapOop(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{ 8039 predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull); 8040 match(Set dst (EncodeP src)); 8041 effect(KILL cr); 8042 ins_cost(INSN_COST * 3); 8043 format %{ "encode_heap_oop $dst, $src" %} 8044 ins_encode %{ 8045 Register s = $src$$Register; 8046 Register d = $dst$$Register; 8047 __ encode_heap_oop(d, s); 8048 %} 8049 ins_pipe(ialu_reg); 8050 %} 8051 8052 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{ 8053 predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull); 8054 match(Set dst (EncodeP src)); 8055 ins_cost(INSN_COST * 3); 8056 format %{ "encode_heap_oop_not_null $dst, $src" %} 8057 ins_encode %{ 8058 __ encode_heap_oop_not_null($dst$$Register, $src$$Register); 8059 %} 8060 ins_pipe(ialu_reg); 8061 %} 8062 8063 instruct decodeHeapOop(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{ 8064 predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull && 8065 n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant); 8066 match(Set dst (DecodeN src)); 8067 ins_cost(INSN_COST * 3); 8068 format %{ "decode_heap_oop $dst, $src" %} 8069 ins_encode %{ 8070 Register s = $src$$Register; 8071 Register d = $dst$$Register; 8072 __ decode_heap_oop(d, s); 8073 %} 8074 ins_pipe(ialu_reg); 8075 %} 8076 8077 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{ 8078 predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull || 8079 n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant); 8080 match(Set dst (DecodeN src)); 8081 ins_cost(INSN_COST * 3); 8082 format %{ "decode_heap_oop_not_null $dst, $src" %} 8083 ins_encode %{ 8084 Register s = $src$$Register; 8085 Register d = $dst$$Register; 8086 __ decode_heap_oop_not_null(d, s); 8087 %} 8088 ins_pipe(ialu_reg); 8089 %} 8090 8091 // n.b. AArch64 implementations of encode_klass_not_null and 8092 // decode_klass_not_null do not modify the flags register so, unlike 8093 // Intel, we don't kill CR as a side effect here 8094 8095 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{ 8096 match(Set dst (EncodePKlass src)); 8097 8098 ins_cost(INSN_COST * 3); 8099 format %{ "encode_klass_not_null $dst,$src" %} 8100 8101 ins_encode %{ 8102 Register src_reg = as_Register($src$$reg); 8103 Register dst_reg = as_Register($dst$$reg); 8104 __ encode_klass_not_null(dst_reg, src_reg); 8105 %} 8106 8107 ins_pipe(ialu_reg); 8108 %} 8109 8110 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src) %{ 8111 match(Set dst (DecodeNKlass src)); 8112 8113 ins_cost(INSN_COST * 3); 8114 format %{ "decode_klass_not_null $dst,$src" %} 8115 8116 ins_encode %{ 8117 Register src_reg = as_Register($src$$reg); 8118 Register dst_reg = as_Register($dst$$reg); 8119 if (dst_reg != src_reg) { 8120 __ decode_klass_not_null(dst_reg, src_reg); 8121 } else { 8122 __ decode_klass_not_null(dst_reg); 8123 } 8124 %} 8125 8126 ins_pipe(ialu_reg); 8127 %} 8128 8129 instruct checkCastPP(iRegPNoSp dst) 8130 %{ 8131 match(Set dst (CheckCastPP dst)); 8132 8133 size(0); 8134 format %{ "# checkcastPP of $dst" %} 8135 ins_encode(/* empty encoding */); 8136 ins_pipe(pipe_class_empty); 8137 %} 8138 8139 instruct castPP(iRegPNoSp dst) 8140 %{ 8141 match(Set dst (CastPP dst)); 8142 8143 size(0); 8144 format %{ "# castPP of $dst" %} 8145 ins_encode(/* empty encoding */); 8146 ins_pipe(pipe_class_empty); 8147 %} 8148 8149 instruct castII(iRegI dst) 8150 %{ 8151 match(Set dst (CastII dst)); 8152 8153 size(0); 8154 format %{ "# castII of $dst" %} 8155 ins_encode(/* empty encoding */); 8156 ins_cost(0); 8157 ins_pipe(pipe_class_empty); 8158 %} 8159 8160 instruct castLL(iRegL dst) 8161 %{ 8162 match(Set dst (CastLL dst)); 8163 8164 size(0); 8165 format %{ "# castLL of $dst" %} 8166 ins_encode(/* empty encoding */); 8167 ins_cost(0); 8168 ins_pipe(pipe_class_empty); 8169 %} 8170 8171 instruct castFF(vRegF dst) 8172 %{ 8173 match(Set dst (CastFF dst)); 8174 8175 size(0); 8176 format %{ "# castFF of $dst" %} 8177 ins_encode(/* empty encoding */); 8178 ins_cost(0); 8179 ins_pipe(pipe_class_empty); 8180 %} 8181 8182 instruct castDD(vRegD dst) 8183 %{ 8184 match(Set dst (CastDD dst)); 8185 8186 size(0); 8187 format %{ "# castDD of $dst" %} 8188 ins_encode(/* empty encoding */); 8189 ins_cost(0); 8190 ins_pipe(pipe_class_empty); 8191 %} 8192 8193 instruct castVV(vReg dst) 8194 %{ 8195 match(Set dst (CastVV dst)); 8196 8197 size(0); 8198 format %{ "# castVV of $dst" %} 8199 ins_encode(/* empty encoding */); 8200 ins_cost(0); 8201 ins_pipe(pipe_class_empty); 8202 %} 8203 8204 instruct castVVMask(pRegGov dst) 8205 %{ 8206 match(Set dst (CastVV dst)); 8207 8208 size(0); 8209 format %{ "# castVV of $dst" %} 8210 ins_encode(/* empty encoding */); 8211 ins_cost(0); 8212 ins_pipe(pipe_class_empty); 8213 %} 8214 8215 // ============================================================================ 8216 // Atomic operation instructions 8217 // 8218 8219 // standard CompareAndSwapX when we are using barriers 8220 // these have higher priority than the rules selected by a predicate 8221 8222 // XXX No flag versions for CompareAndSwap{I,L,P,N} because matcher 8223 // can't match them 8224 8225 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 8226 8227 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 8228 ins_cost(2 * VOLATILE_REF_COST); 8229 8230 effect(KILL cr); 8231 8232 format %{ 8233 "cmpxchgb $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 8234 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8235 %} 8236 8237 ins_encode(aarch64_enc_cmpxchgb(mem, oldval, newval), 8238 aarch64_enc_cset_eq(res)); 8239 8240 ins_pipe(pipe_slow); 8241 %} 8242 8243 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 8244 8245 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 8246 ins_cost(2 * VOLATILE_REF_COST); 8247 8248 effect(KILL cr); 8249 8250 format %{ 8251 "cmpxchgs $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 8252 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8253 %} 8254 8255 ins_encode(aarch64_enc_cmpxchgs(mem, oldval, newval), 8256 aarch64_enc_cset_eq(res)); 8257 8258 ins_pipe(pipe_slow); 8259 %} 8260 8261 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 8262 8263 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 8264 ins_cost(2 * VOLATILE_REF_COST); 8265 8266 effect(KILL cr); 8267 8268 format %{ 8269 "cmpxchgw $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 8270 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8271 %} 8272 8273 ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval), 8274 aarch64_enc_cset_eq(res)); 8275 8276 ins_pipe(pipe_slow); 8277 %} 8278 8279 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{ 8280 8281 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 8282 ins_cost(2 * VOLATILE_REF_COST); 8283 8284 effect(KILL cr); 8285 8286 format %{ 8287 "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval" 8288 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8289 %} 8290 8291 ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval), 8292 aarch64_enc_cset_eq(res)); 8293 8294 ins_pipe(pipe_slow); 8295 %} 8296 8297 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 8298 8299 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 8300 predicate(n->as_LoadStore()->barrier_data() == 0); 8301 ins_cost(2 * VOLATILE_REF_COST); 8302 8303 effect(KILL cr); 8304 8305 format %{ 8306 "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval" 8307 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8308 %} 8309 8310 ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval), 8311 aarch64_enc_cset_eq(res)); 8312 8313 ins_pipe(pipe_slow); 8314 %} 8315 8316 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{ 8317 8318 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 8319 predicate(n->as_LoadStore()->barrier_data() == 0); 8320 ins_cost(2 * VOLATILE_REF_COST); 8321 8322 effect(KILL cr); 8323 8324 format %{ 8325 "cmpxchgw $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval" 8326 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8327 %} 8328 8329 ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval), 8330 aarch64_enc_cset_eq(res)); 8331 8332 ins_pipe(pipe_slow); 8333 %} 8334 8335 // alternative CompareAndSwapX when we are eliding barriers 8336 8337 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 8338 8339 predicate(needs_acquiring_load_exclusive(n)); 8340 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 8341 ins_cost(VOLATILE_REF_COST); 8342 8343 effect(KILL cr); 8344 8345 format %{ 8346 "cmpxchgb_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 8347 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8348 %} 8349 8350 ins_encode(aarch64_enc_cmpxchgb_acq(mem, oldval, newval), 8351 aarch64_enc_cset_eq(res)); 8352 8353 ins_pipe(pipe_slow); 8354 %} 8355 8356 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 8357 8358 predicate(needs_acquiring_load_exclusive(n)); 8359 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 8360 ins_cost(VOLATILE_REF_COST); 8361 8362 effect(KILL cr); 8363 8364 format %{ 8365 "cmpxchgs_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 8366 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8367 %} 8368 8369 ins_encode(aarch64_enc_cmpxchgs_acq(mem, oldval, newval), 8370 aarch64_enc_cset_eq(res)); 8371 8372 ins_pipe(pipe_slow); 8373 %} 8374 8375 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 8376 8377 predicate(needs_acquiring_load_exclusive(n)); 8378 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 8379 ins_cost(VOLATILE_REF_COST); 8380 8381 effect(KILL cr); 8382 8383 format %{ 8384 "cmpxchgw_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 8385 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8386 %} 8387 8388 ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval), 8389 aarch64_enc_cset_eq(res)); 8390 8391 ins_pipe(pipe_slow); 8392 %} 8393 8394 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{ 8395 8396 predicate(needs_acquiring_load_exclusive(n)); 8397 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 8398 ins_cost(VOLATILE_REF_COST); 8399 8400 effect(KILL cr); 8401 8402 format %{ 8403 "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval" 8404 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8405 %} 8406 8407 ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval), 8408 aarch64_enc_cset_eq(res)); 8409 8410 ins_pipe(pipe_slow); 8411 %} 8412 8413 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 8414 8415 predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0)); 8416 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 8417 ins_cost(VOLATILE_REF_COST); 8418 8419 effect(KILL cr); 8420 8421 format %{ 8422 "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval" 8423 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8424 %} 8425 8426 ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval), 8427 aarch64_enc_cset_eq(res)); 8428 8429 ins_pipe(pipe_slow); 8430 %} 8431 8432 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{ 8433 8434 predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0); 8435 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 8436 ins_cost(VOLATILE_REF_COST); 8437 8438 effect(KILL cr); 8439 8440 format %{ 8441 "cmpxchgw_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval" 8442 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8443 %} 8444 8445 ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval), 8446 aarch64_enc_cset_eq(res)); 8447 8448 ins_pipe(pipe_slow); 8449 %} 8450 8451 8452 // --------------------------------------------------------------------- 8453 8454 // BEGIN This section of the file is automatically generated. Do not edit -------------- 8455 8456 // Sundry CAS operations. Note that release is always true, 8457 // regardless of the memory ordering of the CAS. This is because we 8458 // need the volatile case to be sequentially consistent but there is 8459 // no trailing StoreLoad barrier emitted by C2. Unfortunately we 8460 // can't check the type of memory ordering here, so we always emit a 8461 // STLXR. 8462 8463 // This section is generated from cas.m4 8464 8465 8466 // This pattern is generated automatically from cas.m4. 8467 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8468 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8469 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 8470 ins_cost(2 * VOLATILE_REF_COST); 8471 effect(TEMP_DEF res, KILL cr); 8472 format %{ 8473 "cmpxchgb $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval" 8474 %} 8475 ins_encode %{ 8476 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8477 Assembler::byte, /*acquire*/ false, /*release*/ true, 8478 /*weak*/ false, $res$$Register); 8479 __ sxtbw($res$$Register, $res$$Register); 8480 %} 8481 ins_pipe(pipe_slow); 8482 %} 8483 8484 // This pattern is generated automatically from cas.m4. 8485 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8486 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8487 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 8488 ins_cost(2 * VOLATILE_REF_COST); 8489 effect(TEMP_DEF res, KILL cr); 8490 format %{ 8491 "cmpxchgs $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval" 8492 %} 8493 ins_encode %{ 8494 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8495 Assembler::halfword, /*acquire*/ false, /*release*/ true, 8496 /*weak*/ false, $res$$Register); 8497 __ sxthw($res$$Register, $res$$Register); 8498 %} 8499 ins_pipe(pipe_slow); 8500 %} 8501 8502 // This pattern is generated automatically from cas.m4. 8503 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8504 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8505 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 8506 ins_cost(2 * VOLATILE_REF_COST); 8507 effect(TEMP_DEF res, KILL cr); 8508 format %{ 8509 "cmpxchgw $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval" 8510 %} 8511 ins_encode %{ 8512 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8513 Assembler::word, /*acquire*/ false, /*release*/ true, 8514 /*weak*/ false, $res$$Register); 8515 %} 8516 ins_pipe(pipe_slow); 8517 %} 8518 8519 // This pattern is generated automatically from cas.m4. 8520 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8521 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{ 8522 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 8523 ins_cost(2 * VOLATILE_REF_COST); 8524 effect(TEMP_DEF res, KILL cr); 8525 format %{ 8526 "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval" 8527 %} 8528 ins_encode %{ 8529 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8530 Assembler::xword, /*acquire*/ false, /*release*/ true, 8531 /*weak*/ false, $res$$Register); 8532 %} 8533 ins_pipe(pipe_slow); 8534 %} 8535 8536 // This pattern is generated automatically from cas.m4. 8537 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8538 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{ 8539 predicate(n->as_LoadStore()->barrier_data() == 0); 8540 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 8541 ins_cost(2 * VOLATILE_REF_COST); 8542 effect(TEMP_DEF res, KILL cr); 8543 format %{ 8544 "cmpxchgw $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval" 8545 %} 8546 ins_encode %{ 8547 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8548 Assembler::word, /*acquire*/ false, /*release*/ true, 8549 /*weak*/ false, $res$$Register); 8550 %} 8551 ins_pipe(pipe_slow); 8552 %} 8553 8554 // This pattern is generated automatically from cas.m4. 8555 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8556 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 8557 predicate(n->as_LoadStore()->barrier_data() == 0); 8558 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 8559 ins_cost(2 * VOLATILE_REF_COST); 8560 effect(TEMP_DEF res, KILL cr); 8561 format %{ 8562 "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval" 8563 %} 8564 ins_encode %{ 8565 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8566 Assembler::xword, /*acquire*/ false, /*release*/ true, 8567 /*weak*/ false, $res$$Register); 8568 %} 8569 ins_pipe(pipe_slow); 8570 %} 8571 8572 // This pattern is generated automatically from cas.m4. 8573 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8574 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8575 predicate(needs_acquiring_load_exclusive(n)); 8576 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 8577 ins_cost(VOLATILE_REF_COST); 8578 effect(TEMP_DEF res, KILL cr); 8579 format %{ 8580 "cmpxchgb_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval" 8581 %} 8582 ins_encode %{ 8583 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8584 Assembler::byte, /*acquire*/ true, /*release*/ true, 8585 /*weak*/ false, $res$$Register); 8586 __ sxtbw($res$$Register, $res$$Register); 8587 %} 8588 ins_pipe(pipe_slow); 8589 %} 8590 8591 // This pattern is generated automatically from cas.m4. 8592 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8593 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8594 predicate(needs_acquiring_load_exclusive(n)); 8595 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 8596 ins_cost(VOLATILE_REF_COST); 8597 effect(TEMP_DEF res, KILL cr); 8598 format %{ 8599 "cmpxchgs_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval" 8600 %} 8601 ins_encode %{ 8602 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8603 Assembler::halfword, /*acquire*/ true, /*release*/ true, 8604 /*weak*/ false, $res$$Register); 8605 __ sxthw($res$$Register, $res$$Register); 8606 %} 8607 ins_pipe(pipe_slow); 8608 %} 8609 8610 // This pattern is generated automatically from cas.m4. 8611 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8612 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8613 predicate(needs_acquiring_load_exclusive(n)); 8614 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 8615 ins_cost(VOLATILE_REF_COST); 8616 effect(TEMP_DEF res, KILL cr); 8617 format %{ 8618 "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval" 8619 %} 8620 ins_encode %{ 8621 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8622 Assembler::word, /*acquire*/ true, /*release*/ true, 8623 /*weak*/ false, $res$$Register); 8624 %} 8625 ins_pipe(pipe_slow); 8626 %} 8627 8628 // This pattern is generated automatically from cas.m4. 8629 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8630 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{ 8631 predicate(needs_acquiring_load_exclusive(n)); 8632 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 8633 ins_cost(VOLATILE_REF_COST); 8634 effect(TEMP_DEF res, KILL cr); 8635 format %{ 8636 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval" 8637 %} 8638 ins_encode %{ 8639 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8640 Assembler::xword, /*acquire*/ true, /*release*/ true, 8641 /*weak*/ false, $res$$Register); 8642 %} 8643 ins_pipe(pipe_slow); 8644 %} 8645 8646 // This pattern is generated automatically from cas.m4. 8647 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8648 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{ 8649 predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0); 8650 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 8651 ins_cost(VOLATILE_REF_COST); 8652 effect(TEMP_DEF res, KILL cr); 8653 format %{ 8654 "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval" 8655 %} 8656 ins_encode %{ 8657 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8658 Assembler::word, /*acquire*/ true, /*release*/ true, 8659 /*weak*/ false, $res$$Register); 8660 %} 8661 ins_pipe(pipe_slow); 8662 %} 8663 8664 // This pattern is generated automatically from cas.m4. 8665 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8666 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 8667 predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0)); 8668 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 8669 ins_cost(VOLATILE_REF_COST); 8670 effect(TEMP_DEF res, KILL cr); 8671 format %{ 8672 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval" 8673 %} 8674 ins_encode %{ 8675 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8676 Assembler::xword, /*acquire*/ true, /*release*/ true, 8677 /*weak*/ false, $res$$Register); 8678 %} 8679 ins_pipe(pipe_slow); 8680 %} 8681 8682 // This pattern is generated automatically from cas.m4. 8683 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8684 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8685 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 8686 ins_cost(2 * VOLATILE_REF_COST); 8687 effect(KILL cr); 8688 format %{ 8689 "cmpxchgb $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval" 8690 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8691 %} 8692 ins_encode %{ 8693 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8694 Assembler::byte, /*acquire*/ false, /*release*/ true, 8695 /*weak*/ true, noreg); 8696 __ csetw($res$$Register, Assembler::EQ); 8697 %} 8698 ins_pipe(pipe_slow); 8699 %} 8700 8701 // This pattern is generated automatically from cas.m4. 8702 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8703 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8704 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 8705 ins_cost(2 * VOLATILE_REF_COST); 8706 effect(KILL cr); 8707 format %{ 8708 "cmpxchgs $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval" 8709 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8710 %} 8711 ins_encode %{ 8712 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8713 Assembler::halfword, /*acquire*/ false, /*release*/ true, 8714 /*weak*/ true, noreg); 8715 __ csetw($res$$Register, Assembler::EQ); 8716 %} 8717 ins_pipe(pipe_slow); 8718 %} 8719 8720 // This pattern is generated automatically from cas.m4. 8721 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8722 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8723 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 8724 ins_cost(2 * VOLATILE_REF_COST); 8725 effect(KILL cr); 8726 format %{ 8727 "cmpxchgw $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval" 8728 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8729 %} 8730 ins_encode %{ 8731 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8732 Assembler::word, /*acquire*/ false, /*release*/ true, 8733 /*weak*/ true, noreg); 8734 __ csetw($res$$Register, Assembler::EQ); 8735 %} 8736 ins_pipe(pipe_slow); 8737 %} 8738 8739 // This pattern is generated automatically from cas.m4. 8740 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8741 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{ 8742 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 8743 ins_cost(2 * VOLATILE_REF_COST); 8744 effect(KILL cr); 8745 format %{ 8746 "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval" 8747 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8748 %} 8749 ins_encode %{ 8750 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8751 Assembler::xword, /*acquire*/ false, /*release*/ true, 8752 /*weak*/ true, noreg); 8753 __ csetw($res$$Register, Assembler::EQ); 8754 %} 8755 ins_pipe(pipe_slow); 8756 %} 8757 8758 // This pattern is generated automatically from cas.m4. 8759 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8760 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{ 8761 predicate(n->as_LoadStore()->barrier_data() == 0); 8762 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 8763 ins_cost(2 * VOLATILE_REF_COST); 8764 effect(KILL cr); 8765 format %{ 8766 "cmpxchgw $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval" 8767 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8768 %} 8769 ins_encode %{ 8770 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8771 Assembler::word, /*acquire*/ false, /*release*/ true, 8772 /*weak*/ true, noreg); 8773 __ csetw($res$$Register, Assembler::EQ); 8774 %} 8775 ins_pipe(pipe_slow); 8776 %} 8777 8778 // This pattern is generated automatically from cas.m4. 8779 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8780 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 8781 predicate(n->as_LoadStore()->barrier_data() == 0); 8782 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 8783 ins_cost(2 * VOLATILE_REF_COST); 8784 effect(KILL cr); 8785 format %{ 8786 "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval" 8787 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8788 %} 8789 ins_encode %{ 8790 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8791 Assembler::xword, /*acquire*/ false, /*release*/ true, 8792 /*weak*/ true, noreg); 8793 __ csetw($res$$Register, Assembler::EQ); 8794 %} 8795 ins_pipe(pipe_slow); 8796 %} 8797 8798 // This pattern is generated automatically from cas.m4. 8799 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8800 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8801 predicate(needs_acquiring_load_exclusive(n)); 8802 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 8803 ins_cost(VOLATILE_REF_COST); 8804 effect(KILL cr); 8805 format %{ 8806 "cmpxchgb_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval" 8807 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8808 %} 8809 ins_encode %{ 8810 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8811 Assembler::byte, /*acquire*/ true, /*release*/ true, 8812 /*weak*/ true, noreg); 8813 __ csetw($res$$Register, Assembler::EQ); 8814 %} 8815 ins_pipe(pipe_slow); 8816 %} 8817 8818 // This pattern is generated automatically from cas.m4. 8819 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8820 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8821 predicate(needs_acquiring_load_exclusive(n)); 8822 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 8823 ins_cost(VOLATILE_REF_COST); 8824 effect(KILL cr); 8825 format %{ 8826 "cmpxchgs_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval" 8827 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8828 %} 8829 ins_encode %{ 8830 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8831 Assembler::halfword, /*acquire*/ true, /*release*/ true, 8832 /*weak*/ true, noreg); 8833 __ csetw($res$$Register, Assembler::EQ); 8834 %} 8835 ins_pipe(pipe_slow); 8836 %} 8837 8838 // This pattern is generated automatically from cas.m4. 8839 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8840 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 8841 predicate(needs_acquiring_load_exclusive(n)); 8842 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 8843 ins_cost(VOLATILE_REF_COST); 8844 effect(KILL cr); 8845 format %{ 8846 "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval" 8847 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8848 %} 8849 ins_encode %{ 8850 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8851 Assembler::word, /*acquire*/ true, /*release*/ true, 8852 /*weak*/ true, noreg); 8853 __ csetw($res$$Register, Assembler::EQ); 8854 %} 8855 ins_pipe(pipe_slow); 8856 %} 8857 8858 // This pattern is generated automatically from cas.m4. 8859 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8860 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{ 8861 predicate(needs_acquiring_load_exclusive(n)); 8862 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 8863 ins_cost(VOLATILE_REF_COST); 8864 effect(KILL cr); 8865 format %{ 8866 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval" 8867 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8868 %} 8869 ins_encode %{ 8870 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8871 Assembler::xword, /*acquire*/ true, /*release*/ true, 8872 /*weak*/ true, noreg); 8873 __ csetw($res$$Register, Assembler::EQ); 8874 %} 8875 ins_pipe(pipe_slow); 8876 %} 8877 8878 // This pattern is generated automatically from cas.m4. 8879 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8880 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{ 8881 predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0); 8882 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 8883 ins_cost(VOLATILE_REF_COST); 8884 effect(KILL cr); 8885 format %{ 8886 "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval" 8887 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8888 %} 8889 ins_encode %{ 8890 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8891 Assembler::word, /*acquire*/ true, /*release*/ true, 8892 /*weak*/ true, noreg); 8893 __ csetw($res$$Register, Assembler::EQ); 8894 %} 8895 ins_pipe(pipe_slow); 8896 %} 8897 8898 // This pattern is generated automatically from cas.m4. 8899 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 8900 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 8901 predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0)); 8902 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 8903 ins_cost(VOLATILE_REF_COST); 8904 effect(KILL cr); 8905 format %{ 8906 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval" 8907 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 8908 %} 8909 ins_encode %{ 8910 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 8911 Assembler::xword, /*acquire*/ true, /*release*/ true, 8912 /*weak*/ true, noreg); 8913 __ csetw($res$$Register, Assembler::EQ); 8914 %} 8915 ins_pipe(pipe_slow); 8916 %} 8917 8918 // END This section of the file is automatically generated. Do not edit -------------- 8919 // --------------------------------------------------------------------- 8920 8921 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev) %{ 8922 match(Set prev (GetAndSetI mem newv)); 8923 ins_cost(2 * VOLATILE_REF_COST); 8924 format %{ "atomic_xchgw $prev, $newv, [$mem]" %} 8925 ins_encode %{ 8926 __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 8927 %} 8928 ins_pipe(pipe_serial); 8929 %} 8930 8931 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev) %{ 8932 match(Set prev (GetAndSetL mem newv)); 8933 ins_cost(2 * VOLATILE_REF_COST); 8934 format %{ "atomic_xchg $prev, $newv, [$mem]" %} 8935 ins_encode %{ 8936 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 8937 %} 8938 ins_pipe(pipe_serial); 8939 %} 8940 8941 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev) %{ 8942 predicate(n->as_LoadStore()->barrier_data() == 0); 8943 match(Set prev (GetAndSetN mem newv)); 8944 ins_cost(2 * VOLATILE_REF_COST); 8945 format %{ "atomic_xchgw $prev, $newv, [$mem]" %} 8946 ins_encode %{ 8947 __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 8948 %} 8949 ins_pipe(pipe_serial); 8950 %} 8951 8952 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev) %{ 8953 predicate(n->as_LoadStore()->barrier_data() == 0); 8954 match(Set prev (GetAndSetP mem newv)); 8955 ins_cost(2 * VOLATILE_REF_COST); 8956 format %{ "atomic_xchg $prev, $newv, [$mem]" %} 8957 ins_encode %{ 8958 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 8959 %} 8960 ins_pipe(pipe_serial); 8961 %} 8962 8963 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev) %{ 8964 predicate(needs_acquiring_load_exclusive(n)); 8965 match(Set prev (GetAndSetI mem newv)); 8966 ins_cost(VOLATILE_REF_COST); 8967 format %{ "atomic_xchgw_acq $prev, $newv, [$mem]" %} 8968 ins_encode %{ 8969 __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 8970 %} 8971 ins_pipe(pipe_serial); 8972 %} 8973 8974 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev) %{ 8975 predicate(needs_acquiring_load_exclusive(n)); 8976 match(Set prev (GetAndSetL mem newv)); 8977 ins_cost(VOLATILE_REF_COST); 8978 format %{ "atomic_xchg_acq $prev, $newv, [$mem]" %} 8979 ins_encode %{ 8980 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 8981 %} 8982 ins_pipe(pipe_serial); 8983 %} 8984 8985 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev) %{ 8986 predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0); 8987 match(Set prev (GetAndSetN mem newv)); 8988 ins_cost(VOLATILE_REF_COST); 8989 format %{ "atomic_xchgw_acq $prev, $newv, [$mem]" %} 8990 ins_encode %{ 8991 __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 8992 %} 8993 ins_pipe(pipe_serial); 8994 %} 8995 8996 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev) %{ 8997 predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0)); 8998 match(Set prev (GetAndSetP mem newv)); 8999 ins_cost(VOLATILE_REF_COST); 9000 format %{ "atomic_xchg_acq $prev, $newv, [$mem]" %} 9001 ins_encode %{ 9002 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9003 %} 9004 ins_pipe(pipe_serial); 9005 %} 9006 9007 9008 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) %{ 9009 match(Set newval (GetAndAddL mem incr)); 9010 ins_cost(2 * VOLATILE_REF_COST + 1); 9011 format %{ "get_and_addL $newval, [$mem], $incr" %} 9012 ins_encode %{ 9013 __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base)); 9014 %} 9015 ins_pipe(pipe_serial); 9016 %} 9017 9018 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) %{ 9019 predicate(n->as_LoadStore()->result_not_used()); 9020 match(Set dummy (GetAndAddL mem incr)); 9021 ins_cost(2 * VOLATILE_REF_COST); 9022 format %{ "get_and_addL [$mem], $incr" %} 9023 ins_encode %{ 9024 __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base)); 9025 %} 9026 ins_pipe(pipe_serial); 9027 %} 9028 9029 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAddSub incr) %{ 9030 match(Set newval (GetAndAddL mem incr)); 9031 ins_cost(2 * VOLATILE_REF_COST + 1); 9032 format %{ "get_and_addL $newval, [$mem], $incr" %} 9033 ins_encode %{ 9034 __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base)); 9035 %} 9036 ins_pipe(pipe_serial); 9037 %} 9038 9039 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAddSub incr) %{ 9040 predicate(n->as_LoadStore()->result_not_used()); 9041 match(Set dummy (GetAndAddL mem incr)); 9042 ins_cost(2 * VOLATILE_REF_COST); 9043 format %{ "get_and_addL [$mem], $incr" %} 9044 ins_encode %{ 9045 __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base)); 9046 %} 9047 ins_pipe(pipe_serial); 9048 %} 9049 9050 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{ 9051 match(Set newval (GetAndAddI mem incr)); 9052 ins_cost(2 * VOLATILE_REF_COST + 1); 9053 format %{ "get_and_addI $newval, [$mem], $incr" %} 9054 ins_encode %{ 9055 __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 9056 %} 9057 ins_pipe(pipe_serial); 9058 %} 9059 9060 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) %{ 9061 predicate(n->as_LoadStore()->result_not_used()); 9062 match(Set dummy (GetAndAddI mem incr)); 9063 ins_cost(2 * VOLATILE_REF_COST); 9064 format %{ "get_and_addI [$mem], $incr" %} 9065 ins_encode %{ 9066 __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base)); 9067 %} 9068 ins_pipe(pipe_serial); 9069 %} 9070 9071 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAddSub incr) %{ 9072 match(Set newval (GetAndAddI mem incr)); 9073 ins_cost(2 * VOLATILE_REF_COST + 1); 9074 format %{ "get_and_addI $newval, [$mem], $incr" %} 9075 ins_encode %{ 9076 __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 9077 %} 9078 ins_pipe(pipe_serial); 9079 %} 9080 9081 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAddSub incr) %{ 9082 predicate(n->as_LoadStore()->result_not_used()); 9083 match(Set dummy (GetAndAddI mem incr)); 9084 ins_cost(2 * VOLATILE_REF_COST); 9085 format %{ "get_and_addI [$mem], $incr" %} 9086 ins_encode %{ 9087 __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base)); 9088 %} 9089 ins_pipe(pipe_serial); 9090 %} 9091 9092 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr) %{ 9093 predicate(needs_acquiring_load_exclusive(n)); 9094 match(Set newval (GetAndAddL mem incr)); 9095 ins_cost(VOLATILE_REF_COST + 1); 9096 format %{ "get_and_addL_acq $newval, [$mem], $incr" %} 9097 ins_encode %{ 9098 __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base)); 9099 %} 9100 ins_pipe(pipe_serial); 9101 %} 9102 9103 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{ 9104 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n)); 9105 match(Set dummy (GetAndAddL mem incr)); 9106 ins_cost(VOLATILE_REF_COST); 9107 format %{ "get_and_addL_acq [$mem], $incr" %} 9108 ins_encode %{ 9109 __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base)); 9110 %} 9111 ins_pipe(pipe_serial); 9112 %} 9113 9114 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAddSub incr) %{ 9115 predicate(needs_acquiring_load_exclusive(n)); 9116 match(Set newval (GetAndAddL mem incr)); 9117 ins_cost(VOLATILE_REF_COST + 1); 9118 format %{ "get_and_addL_acq $newval, [$mem], $incr" %} 9119 ins_encode %{ 9120 __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base)); 9121 %} 9122 ins_pipe(pipe_serial); 9123 %} 9124 9125 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAddSub incr) %{ 9126 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n)); 9127 match(Set dummy (GetAndAddL mem incr)); 9128 ins_cost(VOLATILE_REF_COST); 9129 format %{ "get_and_addL_acq [$mem], $incr" %} 9130 ins_encode %{ 9131 __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base)); 9132 %} 9133 ins_pipe(pipe_serial); 9134 %} 9135 9136 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{ 9137 predicate(needs_acquiring_load_exclusive(n)); 9138 match(Set newval (GetAndAddI mem incr)); 9139 ins_cost(VOLATILE_REF_COST + 1); 9140 format %{ "get_and_addI_acq $newval, [$mem], $incr" %} 9141 ins_encode %{ 9142 __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 9143 %} 9144 ins_pipe(pipe_serial); 9145 %} 9146 9147 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr) %{ 9148 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n)); 9149 match(Set dummy (GetAndAddI mem incr)); 9150 ins_cost(VOLATILE_REF_COST); 9151 format %{ "get_and_addI_acq [$mem], $incr" %} 9152 ins_encode %{ 9153 __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base)); 9154 %} 9155 ins_pipe(pipe_serial); 9156 %} 9157 9158 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAddSub incr) %{ 9159 predicate(needs_acquiring_load_exclusive(n)); 9160 match(Set newval (GetAndAddI mem incr)); 9161 ins_cost(VOLATILE_REF_COST + 1); 9162 format %{ "get_and_addI_acq $newval, [$mem], $incr" %} 9163 ins_encode %{ 9164 __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 9165 %} 9166 ins_pipe(pipe_serial); 9167 %} 9168 9169 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAddSub incr) %{ 9170 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n)); 9171 match(Set dummy (GetAndAddI mem incr)); 9172 ins_cost(VOLATILE_REF_COST); 9173 format %{ "get_and_addI_acq [$mem], $incr" %} 9174 ins_encode %{ 9175 __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base)); 9176 %} 9177 ins_pipe(pipe_serial); 9178 %} 9179 9180 // Manifest a CmpU result in an integer register. 9181 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0) 9182 instruct cmpU3_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg flags) 9183 %{ 9184 match(Set dst (CmpU3 src1 src2)); 9185 effect(KILL flags); 9186 9187 ins_cost(INSN_COST * 3); 9188 format %{ 9189 "cmpw $src1, $src2\n\t" 9190 "csetw $dst, ne\n\t" 9191 "cnegw $dst, lo\t# CmpU3(reg)" 9192 %} 9193 ins_encode %{ 9194 __ cmpw($src1$$Register, $src2$$Register); 9195 __ csetw($dst$$Register, Assembler::NE); 9196 __ cnegw($dst$$Register, $dst$$Register, Assembler::LO); 9197 %} 9198 9199 ins_pipe(pipe_class_default); 9200 %} 9201 9202 instruct cmpU3_reg_imm(iRegINoSp dst, iRegI src1, immIAddSub src2, rFlagsReg flags) 9203 %{ 9204 match(Set dst (CmpU3 src1 src2)); 9205 effect(KILL flags); 9206 9207 ins_cost(INSN_COST * 3); 9208 format %{ 9209 "subsw zr, $src1, $src2\n\t" 9210 "csetw $dst, ne\n\t" 9211 "cnegw $dst, lo\t# CmpU3(imm)" 9212 %} 9213 ins_encode %{ 9214 __ subsw(zr, $src1$$Register, (int32_t)$src2$$constant); 9215 __ csetw($dst$$Register, Assembler::NE); 9216 __ cnegw($dst$$Register, $dst$$Register, Assembler::LO); 9217 %} 9218 9219 ins_pipe(pipe_class_default); 9220 %} 9221 9222 // Manifest a CmpUL result in an integer register. 9223 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0) 9224 instruct cmpUL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags) 9225 %{ 9226 match(Set dst (CmpUL3 src1 src2)); 9227 effect(KILL flags); 9228 9229 ins_cost(INSN_COST * 3); 9230 format %{ 9231 "cmp $src1, $src2\n\t" 9232 "csetw $dst, ne\n\t" 9233 "cnegw $dst, lo\t# CmpUL3(reg)" 9234 %} 9235 ins_encode %{ 9236 __ cmp($src1$$Register, $src2$$Register); 9237 __ csetw($dst$$Register, Assembler::NE); 9238 __ cnegw($dst$$Register, $dst$$Register, Assembler::LO); 9239 %} 9240 9241 ins_pipe(pipe_class_default); 9242 %} 9243 9244 instruct cmpUL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags) 9245 %{ 9246 match(Set dst (CmpUL3 src1 src2)); 9247 effect(KILL flags); 9248 9249 ins_cost(INSN_COST * 3); 9250 format %{ 9251 "subs zr, $src1, $src2\n\t" 9252 "csetw $dst, ne\n\t" 9253 "cnegw $dst, lo\t# CmpUL3(imm)" 9254 %} 9255 ins_encode %{ 9256 __ subs(zr, $src1$$Register, (int32_t)$src2$$constant); 9257 __ csetw($dst$$Register, Assembler::NE); 9258 __ cnegw($dst$$Register, $dst$$Register, Assembler::LO); 9259 %} 9260 9261 ins_pipe(pipe_class_default); 9262 %} 9263 9264 // Manifest a CmpL result in an integer register. 9265 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0) 9266 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags) 9267 %{ 9268 match(Set dst (CmpL3 src1 src2)); 9269 effect(KILL flags); 9270 9271 ins_cost(INSN_COST * 3); 9272 format %{ 9273 "cmp $src1, $src2\n\t" 9274 "csetw $dst, ne\n\t" 9275 "cnegw $dst, lt\t# CmpL3(reg)" 9276 %} 9277 ins_encode %{ 9278 __ cmp($src1$$Register, $src2$$Register); 9279 __ csetw($dst$$Register, Assembler::NE); 9280 __ cnegw($dst$$Register, $dst$$Register, Assembler::LT); 9281 %} 9282 9283 ins_pipe(pipe_class_default); 9284 %} 9285 9286 instruct cmpL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags) 9287 %{ 9288 match(Set dst (CmpL3 src1 src2)); 9289 effect(KILL flags); 9290 9291 ins_cost(INSN_COST * 3); 9292 format %{ 9293 "subs zr, $src1, $src2\n\t" 9294 "csetw $dst, ne\n\t" 9295 "cnegw $dst, lt\t# CmpL3(imm)" 9296 %} 9297 ins_encode %{ 9298 __ subs(zr, $src1$$Register, (int32_t)$src2$$constant); 9299 __ csetw($dst$$Register, Assembler::NE); 9300 __ cnegw($dst$$Register, $dst$$Register, Assembler::LT); 9301 %} 9302 9303 ins_pipe(pipe_class_default); 9304 %} 9305 9306 // ============================================================================ 9307 // Conditional Move Instructions 9308 9309 // n.b. we have identical rules for both a signed compare op (cmpOp) 9310 // and an unsigned compare op (cmpOpU). it would be nice if we could 9311 // define an op class which merged both inputs and use it to type the 9312 // argument to a single rule. unfortunatelyt his fails because the 9313 // opclass does not live up to the COND_INTER interface of its 9314 // component operands. When the generic code tries to negate the 9315 // operand it ends up running the generci Machoper::negate method 9316 // which throws a ShouldNotHappen. So, we have to provide two flavours 9317 // of each rule, one for a cmpOp and a second for a cmpOpU (sigh). 9318 9319 instruct cmovI_reg_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 9320 match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2))); 9321 9322 ins_cost(INSN_COST * 2); 9323 format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, int" %} 9324 9325 ins_encode %{ 9326 __ cselw(as_Register($dst$$reg), 9327 as_Register($src2$$reg), 9328 as_Register($src1$$reg), 9329 (Assembler::Condition)$cmp$$cmpcode); 9330 %} 9331 9332 ins_pipe(icond_reg_reg); 9333 %} 9334 9335 instruct cmovUI_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 9336 match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2))); 9337 9338 ins_cost(INSN_COST * 2); 9339 format %{ "cselw $dst, $src2, $src1 $cmp\t# unsigned, int" %} 9340 9341 ins_encode %{ 9342 __ cselw(as_Register($dst$$reg), 9343 as_Register($src2$$reg), 9344 as_Register($src1$$reg), 9345 (Assembler::Condition)$cmp$$cmpcode); 9346 %} 9347 9348 ins_pipe(icond_reg_reg); 9349 %} 9350 9351 // special cases where one arg is zero 9352 9353 // n.b. this is selected in preference to the rule above because it 9354 // avoids loading constant 0 into a source register 9355 9356 // TODO 9357 // we ought only to be able to cull one of these variants as the ideal 9358 // transforms ought always to order the zero consistently (to left/right?) 9359 9360 instruct cmovI_zero_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{ 9361 match(Set dst (CMoveI (Binary cmp cr) (Binary zero src))); 9362 9363 ins_cost(INSN_COST * 2); 9364 format %{ "cselw $dst, $src, zr $cmp\t# signed, int" %} 9365 9366 ins_encode %{ 9367 __ cselw(as_Register($dst$$reg), 9368 as_Register($src$$reg), 9369 zr, 9370 (Assembler::Condition)$cmp$$cmpcode); 9371 %} 9372 9373 ins_pipe(icond_reg); 9374 %} 9375 9376 instruct cmovUI_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{ 9377 match(Set dst (CMoveI (Binary cmp cr) (Binary zero src))); 9378 9379 ins_cost(INSN_COST * 2); 9380 format %{ "cselw $dst, $src, zr $cmp\t# unsigned, int" %} 9381 9382 ins_encode %{ 9383 __ cselw(as_Register($dst$$reg), 9384 as_Register($src$$reg), 9385 zr, 9386 (Assembler::Condition)$cmp$$cmpcode); 9387 %} 9388 9389 ins_pipe(icond_reg); 9390 %} 9391 9392 instruct cmovI_reg_zero(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{ 9393 match(Set dst (CMoveI (Binary cmp cr) (Binary src zero))); 9394 9395 ins_cost(INSN_COST * 2); 9396 format %{ "cselw $dst, zr, $src $cmp\t# signed, int" %} 9397 9398 ins_encode %{ 9399 __ cselw(as_Register($dst$$reg), 9400 zr, 9401 as_Register($src$$reg), 9402 (Assembler::Condition)$cmp$$cmpcode); 9403 %} 9404 9405 ins_pipe(icond_reg); 9406 %} 9407 9408 instruct cmovUI_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{ 9409 match(Set dst (CMoveI (Binary cmp cr) (Binary src zero))); 9410 9411 ins_cost(INSN_COST * 2); 9412 format %{ "cselw $dst, zr, $src $cmp\t# unsigned, int" %} 9413 9414 ins_encode %{ 9415 __ cselw(as_Register($dst$$reg), 9416 zr, 9417 as_Register($src$$reg), 9418 (Assembler::Condition)$cmp$$cmpcode); 9419 %} 9420 9421 ins_pipe(icond_reg); 9422 %} 9423 9424 // special case for creating a boolean 0 or 1 9425 9426 // n.b. this is selected in preference to the rule above because it 9427 // avoids loading constants 0 and 1 into a source register 9428 9429 instruct cmovI_reg_zero_one(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, immI_1 one) %{ 9430 match(Set dst (CMoveI (Binary cmp cr) (Binary one zero))); 9431 9432 ins_cost(INSN_COST * 2); 9433 format %{ "csincw $dst, zr, zr $cmp\t# signed, int" %} 9434 9435 ins_encode %{ 9436 // equivalently 9437 // cset(as_Register($dst$$reg), 9438 // negate_condition((Assembler::Condition)$cmp$$cmpcode)); 9439 __ csincw(as_Register($dst$$reg), 9440 zr, 9441 zr, 9442 (Assembler::Condition)$cmp$$cmpcode); 9443 %} 9444 9445 ins_pipe(icond_none); 9446 %} 9447 9448 instruct cmovUI_reg_zero_one(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, immI_1 one) %{ 9449 match(Set dst (CMoveI (Binary cmp cr) (Binary one zero))); 9450 9451 ins_cost(INSN_COST * 2); 9452 format %{ "csincw $dst, zr, zr $cmp\t# unsigned, int" %} 9453 9454 ins_encode %{ 9455 // equivalently 9456 // cset(as_Register($dst$$reg), 9457 // negate_condition((Assembler::Condition)$cmp$$cmpcode)); 9458 __ csincw(as_Register($dst$$reg), 9459 zr, 9460 zr, 9461 (Assembler::Condition)$cmp$$cmpcode); 9462 %} 9463 9464 ins_pipe(icond_none); 9465 %} 9466 9467 instruct cmovL_reg_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{ 9468 match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2))); 9469 9470 ins_cost(INSN_COST * 2); 9471 format %{ "csel $dst, $src2, $src1 $cmp\t# signed, long" %} 9472 9473 ins_encode %{ 9474 __ csel(as_Register($dst$$reg), 9475 as_Register($src2$$reg), 9476 as_Register($src1$$reg), 9477 (Assembler::Condition)$cmp$$cmpcode); 9478 %} 9479 9480 ins_pipe(icond_reg_reg); 9481 %} 9482 9483 instruct cmovUL_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{ 9484 match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2))); 9485 9486 ins_cost(INSN_COST * 2); 9487 format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, long" %} 9488 9489 ins_encode %{ 9490 __ csel(as_Register($dst$$reg), 9491 as_Register($src2$$reg), 9492 as_Register($src1$$reg), 9493 (Assembler::Condition)$cmp$$cmpcode); 9494 %} 9495 9496 ins_pipe(icond_reg_reg); 9497 %} 9498 9499 // special cases where one arg is zero 9500 9501 instruct cmovL_reg_zero(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src, immL0 zero) %{ 9502 match(Set dst (CMoveL (Binary cmp cr) (Binary src zero))); 9503 9504 ins_cost(INSN_COST * 2); 9505 format %{ "csel $dst, zr, $src $cmp\t# signed, long" %} 9506 9507 ins_encode %{ 9508 __ csel(as_Register($dst$$reg), 9509 zr, 9510 as_Register($src$$reg), 9511 (Assembler::Condition)$cmp$$cmpcode); 9512 %} 9513 9514 ins_pipe(icond_reg); 9515 %} 9516 9517 instruct cmovUL_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src, immL0 zero) %{ 9518 match(Set dst (CMoveL (Binary cmp cr) (Binary src zero))); 9519 9520 ins_cost(INSN_COST * 2); 9521 format %{ "csel $dst, zr, $src $cmp\t# unsigned, long" %} 9522 9523 ins_encode %{ 9524 __ csel(as_Register($dst$$reg), 9525 zr, 9526 as_Register($src$$reg), 9527 (Assembler::Condition)$cmp$$cmpcode); 9528 %} 9529 9530 ins_pipe(icond_reg); 9531 %} 9532 9533 instruct cmovL_zero_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, immL0 zero, iRegL src) %{ 9534 match(Set dst (CMoveL (Binary cmp cr) (Binary zero src))); 9535 9536 ins_cost(INSN_COST * 2); 9537 format %{ "csel $dst, $src, zr $cmp\t# signed, long" %} 9538 9539 ins_encode %{ 9540 __ csel(as_Register($dst$$reg), 9541 as_Register($src$$reg), 9542 zr, 9543 (Assembler::Condition)$cmp$$cmpcode); 9544 %} 9545 9546 ins_pipe(icond_reg); 9547 %} 9548 9549 instruct cmovUL_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, immL0 zero, iRegL src) %{ 9550 match(Set dst (CMoveL (Binary cmp cr) (Binary zero src))); 9551 9552 ins_cost(INSN_COST * 2); 9553 format %{ "csel $dst, $src, zr $cmp\t# unsigned, long" %} 9554 9555 ins_encode %{ 9556 __ csel(as_Register($dst$$reg), 9557 as_Register($src$$reg), 9558 zr, 9559 (Assembler::Condition)$cmp$$cmpcode); 9560 %} 9561 9562 ins_pipe(icond_reg); 9563 %} 9564 9565 instruct cmovP_reg_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{ 9566 match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2))); 9567 9568 ins_cost(INSN_COST * 2); 9569 format %{ "csel $dst, $src2, $src1 $cmp\t# signed, ptr" %} 9570 9571 ins_encode %{ 9572 __ csel(as_Register($dst$$reg), 9573 as_Register($src2$$reg), 9574 as_Register($src1$$reg), 9575 (Assembler::Condition)$cmp$$cmpcode); 9576 %} 9577 9578 ins_pipe(icond_reg_reg); 9579 %} 9580 9581 instruct cmovUP_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{ 9582 match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2))); 9583 9584 ins_cost(INSN_COST * 2); 9585 format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, ptr" %} 9586 9587 ins_encode %{ 9588 __ csel(as_Register($dst$$reg), 9589 as_Register($src2$$reg), 9590 as_Register($src1$$reg), 9591 (Assembler::Condition)$cmp$$cmpcode); 9592 %} 9593 9594 ins_pipe(icond_reg_reg); 9595 %} 9596 9597 // special cases where one arg is zero 9598 9599 instruct cmovP_reg_zero(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src, immP0 zero) %{ 9600 match(Set dst (CMoveP (Binary cmp cr) (Binary src zero))); 9601 9602 ins_cost(INSN_COST * 2); 9603 format %{ "csel $dst, zr, $src $cmp\t# signed, ptr" %} 9604 9605 ins_encode %{ 9606 __ csel(as_Register($dst$$reg), 9607 zr, 9608 as_Register($src$$reg), 9609 (Assembler::Condition)$cmp$$cmpcode); 9610 %} 9611 9612 ins_pipe(icond_reg); 9613 %} 9614 9615 instruct cmovUP_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src, immP0 zero) %{ 9616 match(Set dst (CMoveP (Binary cmp cr) (Binary src zero))); 9617 9618 ins_cost(INSN_COST * 2); 9619 format %{ "csel $dst, zr, $src $cmp\t# unsigned, ptr" %} 9620 9621 ins_encode %{ 9622 __ csel(as_Register($dst$$reg), 9623 zr, 9624 as_Register($src$$reg), 9625 (Assembler::Condition)$cmp$$cmpcode); 9626 %} 9627 9628 ins_pipe(icond_reg); 9629 %} 9630 9631 instruct cmovP_zero_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, immP0 zero, iRegP src) %{ 9632 match(Set dst (CMoveP (Binary cmp cr) (Binary zero src))); 9633 9634 ins_cost(INSN_COST * 2); 9635 format %{ "csel $dst, $src, zr $cmp\t# signed, ptr" %} 9636 9637 ins_encode %{ 9638 __ csel(as_Register($dst$$reg), 9639 as_Register($src$$reg), 9640 zr, 9641 (Assembler::Condition)$cmp$$cmpcode); 9642 %} 9643 9644 ins_pipe(icond_reg); 9645 %} 9646 9647 instruct cmovUP_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, immP0 zero, iRegP src) %{ 9648 match(Set dst (CMoveP (Binary cmp cr) (Binary zero src))); 9649 9650 ins_cost(INSN_COST * 2); 9651 format %{ "csel $dst, $src, zr $cmp\t# unsigned, ptr" %} 9652 9653 ins_encode %{ 9654 __ csel(as_Register($dst$$reg), 9655 as_Register($src$$reg), 9656 zr, 9657 (Assembler::Condition)$cmp$$cmpcode); 9658 %} 9659 9660 ins_pipe(icond_reg); 9661 %} 9662 9663 instruct cmovN_reg_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{ 9664 match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2))); 9665 9666 ins_cost(INSN_COST * 2); 9667 format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr" %} 9668 9669 ins_encode %{ 9670 __ cselw(as_Register($dst$$reg), 9671 as_Register($src2$$reg), 9672 as_Register($src1$$reg), 9673 (Assembler::Condition)$cmp$$cmpcode); 9674 %} 9675 9676 ins_pipe(icond_reg_reg); 9677 %} 9678 9679 instruct cmovUN_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{ 9680 match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2))); 9681 9682 ins_cost(INSN_COST * 2); 9683 format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr" %} 9684 9685 ins_encode %{ 9686 __ cselw(as_Register($dst$$reg), 9687 as_Register($src2$$reg), 9688 as_Register($src1$$reg), 9689 (Assembler::Condition)$cmp$$cmpcode); 9690 %} 9691 9692 ins_pipe(icond_reg_reg); 9693 %} 9694 9695 // special cases where one arg is zero 9696 9697 instruct cmovN_reg_zero(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src, immN0 zero) %{ 9698 match(Set dst (CMoveN (Binary cmp cr) (Binary src zero))); 9699 9700 ins_cost(INSN_COST * 2); 9701 format %{ "cselw $dst, zr, $src $cmp\t# signed, compressed ptr" %} 9702 9703 ins_encode %{ 9704 __ cselw(as_Register($dst$$reg), 9705 zr, 9706 as_Register($src$$reg), 9707 (Assembler::Condition)$cmp$$cmpcode); 9708 %} 9709 9710 ins_pipe(icond_reg); 9711 %} 9712 9713 instruct cmovUN_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src, immN0 zero) %{ 9714 match(Set dst (CMoveN (Binary cmp cr) (Binary src zero))); 9715 9716 ins_cost(INSN_COST * 2); 9717 format %{ "cselw $dst, zr, $src $cmp\t# unsigned, compressed ptr" %} 9718 9719 ins_encode %{ 9720 __ cselw(as_Register($dst$$reg), 9721 zr, 9722 as_Register($src$$reg), 9723 (Assembler::Condition)$cmp$$cmpcode); 9724 %} 9725 9726 ins_pipe(icond_reg); 9727 %} 9728 9729 instruct cmovN_zero_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, immN0 zero, iRegN src) %{ 9730 match(Set dst (CMoveN (Binary cmp cr) (Binary zero src))); 9731 9732 ins_cost(INSN_COST * 2); 9733 format %{ "cselw $dst, $src, zr $cmp\t# signed, compressed ptr" %} 9734 9735 ins_encode %{ 9736 __ cselw(as_Register($dst$$reg), 9737 as_Register($src$$reg), 9738 zr, 9739 (Assembler::Condition)$cmp$$cmpcode); 9740 %} 9741 9742 ins_pipe(icond_reg); 9743 %} 9744 9745 instruct cmovUN_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, immN0 zero, iRegN src) %{ 9746 match(Set dst (CMoveN (Binary cmp cr) (Binary zero src))); 9747 9748 ins_cost(INSN_COST * 2); 9749 format %{ "cselw $dst, $src, zr $cmp\t# unsigned, compressed ptr" %} 9750 9751 ins_encode %{ 9752 __ cselw(as_Register($dst$$reg), 9753 as_Register($src$$reg), 9754 zr, 9755 (Assembler::Condition)$cmp$$cmpcode); 9756 %} 9757 9758 ins_pipe(icond_reg); 9759 %} 9760 9761 instruct cmovF_reg(cmpOp cmp, rFlagsReg cr, vRegF dst, vRegF src1, vRegF src2) 9762 %{ 9763 match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2))); 9764 9765 ins_cost(INSN_COST * 3); 9766 9767 format %{ "fcsels $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %} 9768 ins_encode %{ 9769 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 9770 __ fcsels(as_FloatRegister($dst$$reg), 9771 as_FloatRegister($src2$$reg), 9772 as_FloatRegister($src1$$reg), 9773 cond); 9774 %} 9775 9776 ins_pipe(fp_cond_reg_reg_s); 9777 %} 9778 9779 instruct cmovUF_reg(cmpOpU cmp, rFlagsRegU cr, vRegF dst, vRegF src1, vRegF src2) 9780 %{ 9781 match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2))); 9782 9783 ins_cost(INSN_COST * 3); 9784 9785 format %{ "fcsels $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %} 9786 ins_encode %{ 9787 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 9788 __ fcsels(as_FloatRegister($dst$$reg), 9789 as_FloatRegister($src2$$reg), 9790 as_FloatRegister($src1$$reg), 9791 cond); 9792 %} 9793 9794 ins_pipe(fp_cond_reg_reg_s); 9795 %} 9796 9797 instruct cmovD_reg(cmpOp cmp, rFlagsReg cr, vRegD dst, vRegD src1, vRegD src2) 9798 %{ 9799 match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2))); 9800 9801 ins_cost(INSN_COST * 3); 9802 9803 format %{ "fcseld $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %} 9804 ins_encode %{ 9805 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 9806 __ fcseld(as_FloatRegister($dst$$reg), 9807 as_FloatRegister($src2$$reg), 9808 as_FloatRegister($src1$$reg), 9809 cond); 9810 %} 9811 9812 ins_pipe(fp_cond_reg_reg_d); 9813 %} 9814 9815 instruct cmovUD_reg(cmpOpU cmp, rFlagsRegU cr, vRegD dst, vRegD src1, vRegD src2) 9816 %{ 9817 match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2))); 9818 9819 ins_cost(INSN_COST * 3); 9820 9821 format %{ "fcseld $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %} 9822 ins_encode %{ 9823 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 9824 __ fcseld(as_FloatRegister($dst$$reg), 9825 as_FloatRegister($src2$$reg), 9826 as_FloatRegister($src1$$reg), 9827 cond); 9828 %} 9829 9830 ins_pipe(fp_cond_reg_reg_d); 9831 %} 9832 9833 // ============================================================================ 9834 // Arithmetic Instructions 9835 // 9836 9837 // Integer Addition 9838 9839 // TODO 9840 // these currently employ operations which do not set CR and hence are 9841 // not flagged as killing CR but we would like to isolate the cases 9842 // where we want to set flags from those where we don't. need to work 9843 // out how to do that. 9844 9845 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 9846 match(Set dst (AddI src1 src2)); 9847 9848 ins_cost(INSN_COST); 9849 format %{ "addw $dst, $src1, $src2" %} 9850 9851 ins_encode %{ 9852 __ addw(as_Register($dst$$reg), 9853 as_Register($src1$$reg), 9854 as_Register($src2$$reg)); 9855 %} 9856 9857 ins_pipe(ialu_reg_reg); 9858 %} 9859 9860 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{ 9861 match(Set dst (AddI src1 src2)); 9862 9863 ins_cost(INSN_COST); 9864 format %{ "addw $dst, $src1, $src2" %} 9865 9866 // use opcode to indicate that this is an add not a sub 9867 opcode(0x0); 9868 9869 ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2)); 9870 9871 ins_pipe(ialu_reg_imm); 9872 %} 9873 9874 instruct addI_reg_imm_i2l(iRegINoSp dst, iRegL src1, immIAddSub src2) %{ 9875 match(Set dst (AddI (ConvL2I src1) src2)); 9876 9877 ins_cost(INSN_COST); 9878 format %{ "addw $dst, $src1, $src2" %} 9879 9880 // use opcode to indicate that this is an add not a sub 9881 opcode(0x0); 9882 9883 ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2)); 9884 9885 ins_pipe(ialu_reg_imm); 9886 %} 9887 9888 // Pointer Addition 9889 instruct addP_reg_reg(iRegPNoSp dst, iRegPorL2P src1, iRegL src2) %{ 9890 match(Set dst (AddP src1 src2)); 9891 9892 ins_cost(INSN_COST); 9893 format %{ "add $dst, $src1, $src2\t# ptr" %} 9894 9895 ins_encode %{ 9896 __ add(as_Register($dst$$reg), 9897 as_Register($src1$$reg), 9898 as_Register($src2$$reg)); 9899 %} 9900 9901 ins_pipe(ialu_reg_reg); 9902 %} 9903 9904 instruct addP_reg_reg_ext(iRegPNoSp dst, iRegPorL2P src1, iRegIorL2I src2) %{ 9905 match(Set dst (AddP src1 (ConvI2L src2))); 9906 9907 ins_cost(1.9 * INSN_COST); 9908 format %{ "add $dst, $src1, $src2, sxtw\t# ptr" %} 9909 9910 ins_encode %{ 9911 __ add(as_Register($dst$$reg), 9912 as_Register($src1$$reg), 9913 as_Register($src2$$reg), ext::sxtw); 9914 %} 9915 9916 ins_pipe(ialu_reg_reg); 9917 %} 9918 9919 instruct addP_reg_reg_lsl(iRegPNoSp dst, iRegPorL2P src1, iRegL src2, immIScale scale) %{ 9920 match(Set dst (AddP src1 (LShiftL src2 scale))); 9921 9922 ins_cost(1.9 * INSN_COST); 9923 format %{ "add $dst, $src1, $src2, LShiftL $scale\t# ptr" %} 9924 9925 ins_encode %{ 9926 __ lea(as_Register($dst$$reg), 9927 Address(as_Register($src1$$reg), as_Register($src2$$reg), 9928 Address::lsl($scale$$constant))); 9929 %} 9930 9931 ins_pipe(ialu_reg_reg_shift); 9932 %} 9933 9934 instruct addP_reg_reg_ext_shift(iRegPNoSp dst, iRegPorL2P src1, iRegIorL2I src2, immIScale scale) %{ 9935 match(Set dst (AddP src1 (LShiftL (ConvI2L src2) scale))); 9936 9937 ins_cost(1.9 * INSN_COST); 9938 format %{ "add $dst, $src1, $src2, I2L $scale\t# ptr" %} 9939 9940 ins_encode %{ 9941 __ lea(as_Register($dst$$reg), 9942 Address(as_Register($src1$$reg), as_Register($src2$$reg), 9943 Address::sxtw($scale$$constant))); 9944 %} 9945 9946 ins_pipe(ialu_reg_reg_shift); 9947 %} 9948 9949 instruct lshift_ext(iRegLNoSp dst, iRegIorL2I src, immI scale, rFlagsReg cr) %{ 9950 match(Set dst (LShiftL (ConvI2L src) scale)); 9951 9952 ins_cost(INSN_COST); 9953 format %{ "sbfiz $dst, $src, $scale & 63, -$scale & 63\t" %} 9954 9955 ins_encode %{ 9956 __ sbfiz(as_Register($dst$$reg), 9957 as_Register($src$$reg), 9958 $scale$$constant & 63, MIN2(32, (int)((-$scale$$constant) & 63))); 9959 %} 9960 9961 ins_pipe(ialu_reg_shift); 9962 %} 9963 9964 // Pointer Immediate Addition 9965 // n.b. this needs to be more expensive than using an indirect memory 9966 // operand 9967 instruct addP_reg_imm(iRegPNoSp dst, iRegPorL2P src1, immLAddSub src2) %{ 9968 match(Set dst (AddP src1 src2)); 9969 9970 ins_cost(INSN_COST); 9971 format %{ "add $dst, $src1, $src2\t# ptr" %} 9972 9973 // use opcode to indicate that this is an add not a sub 9974 opcode(0x0); 9975 9976 ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) ); 9977 9978 ins_pipe(ialu_reg_imm); 9979 %} 9980 9981 // Long Addition 9982 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 9983 9984 match(Set dst (AddL src1 src2)); 9985 9986 ins_cost(INSN_COST); 9987 format %{ "add $dst, $src1, $src2" %} 9988 9989 ins_encode %{ 9990 __ add(as_Register($dst$$reg), 9991 as_Register($src1$$reg), 9992 as_Register($src2$$reg)); 9993 %} 9994 9995 ins_pipe(ialu_reg_reg); 9996 %} 9997 9998 // No constant pool entries requiredLong Immediate Addition. 9999 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{ 10000 match(Set dst (AddL src1 src2)); 10001 10002 ins_cost(INSN_COST); 10003 format %{ "add $dst, $src1, $src2" %} 10004 10005 // use opcode to indicate that this is an add not a sub 10006 opcode(0x0); 10007 10008 ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) ); 10009 10010 ins_pipe(ialu_reg_imm); 10011 %} 10012 10013 // Integer Subtraction 10014 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10015 match(Set dst (SubI src1 src2)); 10016 10017 ins_cost(INSN_COST); 10018 format %{ "subw $dst, $src1, $src2" %} 10019 10020 ins_encode %{ 10021 __ subw(as_Register($dst$$reg), 10022 as_Register($src1$$reg), 10023 as_Register($src2$$reg)); 10024 %} 10025 10026 ins_pipe(ialu_reg_reg); 10027 %} 10028 10029 // Immediate Subtraction 10030 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{ 10031 match(Set dst (SubI src1 src2)); 10032 10033 ins_cost(INSN_COST); 10034 format %{ "subw $dst, $src1, $src2" %} 10035 10036 // use opcode to indicate that this is a sub not an add 10037 opcode(0x1); 10038 10039 ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2)); 10040 10041 ins_pipe(ialu_reg_imm); 10042 %} 10043 10044 // Long Subtraction 10045 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10046 10047 match(Set dst (SubL src1 src2)); 10048 10049 ins_cost(INSN_COST); 10050 format %{ "sub $dst, $src1, $src2" %} 10051 10052 ins_encode %{ 10053 __ sub(as_Register($dst$$reg), 10054 as_Register($src1$$reg), 10055 as_Register($src2$$reg)); 10056 %} 10057 10058 ins_pipe(ialu_reg_reg); 10059 %} 10060 10061 // No constant pool entries requiredLong Immediate Subtraction. 10062 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{ 10063 match(Set dst (SubL src1 src2)); 10064 10065 ins_cost(INSN_COST); 10066 format %{ "sub$dst, $src1, $src2" %} 10067 10068 // use opcode to indicate that this is a sub not an add 10069 opcode(0x1); 10070 10071 ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) ); 10072 10073 ins_pipe(ialu_reg_imm); 10074 %} 10075 10076 // Integer Negation (special case for sub) 10077 10078 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr) %{ 10079 match(Set dst (SubI zero src)); 10080 10081 ins_cost(INSN_COST); 10082 format %{ "negw $dst, $src\t# int" %} 10083 10084 ins_encode %{ 10085 __ negw(as_Register($dst$$reg), 10086 as_Register($src$$reg)); 10087 %} 10088 10089 ins_pipe(ialu_reg); 10090 %} 10091 10092 // Long Negation 10093 10094 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero, rFlagsReg cr) %{ 10095 match(Set dst (SubL zero src)); 10096 10097 ins_cost(INSN_COST); 10098 format %{ "neg $dst, $src\t# long" %} 10099 10100 ins_encode %{ 10101 __ neg(as_Register($dst$$reg), 10102 as_Register($src$$reg)); 10103 %} 10104 10105 ins_pipe(ialu_reg); 10106 %} 10107 10108 // Integer Multiply 10109 10110 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10111 match(Set dst (MulI src1 src2)); 10112 10113 ins_cost(INSN_COST * 3); 10114 format %{ "mulw $dst, $src1, $src2" %} 10115 10116 ins_encode %{ 10117 __ mulw(as_Register($dst$$reg), 10118 as_Register($src1$$reg), 10119 as_Register($src2$$reg)); 10120 %} 10121 10122 ins_pipe(imul_reg_reg); 10123 %} 10124 10125 instruct smulI(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10126 match(Set dst (MulL (ConvI2L src1) (ConvI2L src2))); 10127 10128 ins_cost(INSN_COST * 3); 10129 format %{ "smull $dst, $src1, $src2" %} 10130 10131 ins_encode %{ 10132 __ smull(as_Register($dst$$reg), 10133 as_Register($src1$$reg), 10134 as_Register($src2$$reg)); 10135 %} 10136 10137 ins_pipe(imul_reg_reg); 10138 %} 10139 10140 // Long Multiply 10141 10142 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10143 match(Set dst (MulL src1 src2)); 10144 10145 ins_cost(INSN_COST * 5); 10146 format %{ "mul $dst, $src1, $src2" %} 10147 10148 ins_encode %{ 10149 __ mul(as_Register($dst$$reg), 10150 as_Register($src1$$reg), 10151 as_Register($src2$$reg)); 10152 %} 10153 10154 ins_pipe(lmul_reg_reg); 10155 %} 10156 10157 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) 10158 %{ 10159 match(Set dst (MulHiL src1 src2)); 10160 10161 ins_cost(INSN_COST * 7); 10162 format %{ "smulh $dst, $src1, $src2\t# mulhi" %} 10163 10164 ins_encode %{ 10165 __ smulh(as_Register($dst$$reg), 10166 as_Register($src1$$reg), 10167 as_Register($src2$$reg)); 10168 %} 10169 10170 ins_pipe(lmul_reg_reg); 10171 %} 10172 10173 instruct umulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) 10174 %{ 10175 match(Set dst (UMulHiL src1 src2)); 10176 10177 ins_cost(INSN_COST * 7); 10178 format %{ "umulh $dst, $src1, $src2\t# umulhi" %} 10179 10180 ins_encode %{ 10181 __ umulh(as_Register($dst$$reg), 10182 as_Register($src1$$reg), 10183 as_Register($src2$$reg)); 10184 %} 10185 10186 ins_pipe(lmul_reg_reg); 10187 %} 10188 10189 // Combined Integer Multiply & Add/Sub 10190 10191 instruct maddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{ 10192 match(Set dst (AddI src3 (MulI src1 src2))); 10193 10194 ins_cost(INSN_COST * 3); 10195 format %{ "madd $dst, $src1, $src2, $src3" %} 10196 10197 ins_encode %{ 10198 __ maddw(as_Register($dst$$reg), 10199 as_Register($src1$$reg), 10200 as_Register($src2$$reg), 10201 as_Register($src3$$reg)); 10202 %} 10203 10204 ins_pipe(imac_reg_reg); 10205 %} 10206 10207 instruct msubI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{ 10208 match(Set dst (SubI src3 (MulI src1 src2))); 10209 10210 ins_cost(INSN_COST * 3); 10211 format %{ "msub $dst, $src1, $src2, $src3" %} 10212 10213 ins_encode %{ 10214 __ msubw(as_Register($dst$$reg), 10215 as_Register($src1$$reg), 10216 as_Register($src2$$reg), 10217 as_Register($src3$$reg)); 10218 %} 10219 10220 ins_pipe(imac_reg_reg); 10221 %} 10222 10223 // Combined Integer Multiply & Neg 10224 10225 instruct mnegI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI0 zero) %{ 10226 match(Set dst (MulI (SubI zero src1) src2)); 10227 10228 ins_cost(INSN_COST * 3); 10229 format %{ "mneg $dst, $src1, $src2" %} 10230 10231 ins_encode %{ 10232 __ mnegw(as_Register($dst$$reg), 10233 as_Register($src1$$reg), 10234 as_Register($src2$$reg)); 10235 %} 10236 10237 ins_pipe(imac_reg_reg); 10238 %} 10239 10240 // Combined Long Multiply & Add/Sub 10241 10242 instruct maddL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{ 10243 match(Set dst (AddL src3 (MulL src1 src2))); 10244 10245 ins_cost(INSN_COST * 5); 10246 format %{ "madd $dst, $src1, $src2, $src3" %} 10247 10248 ins_encode %{ 10249 __ madd(as_Register($dst$$reg), 10250 as_Register($src1$$reg), 10251 as_Register($src2$$reg), 10252 as_Register($src3$$reg)); 10253 %} 10254 10255 ins_pipe(lmac_reg_reg); 10256 %} 10257 10258 instruct msubL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{ 10259 match(Set dst (SubL src3 (MulL src1 src2))); 10260 10261 ins_cost(INSN_COST * 5); 10262 format %{ "msub $dst, $src1, $src2, $src3" %} 10263 10264 ins_encode %{ 10265 __ msub(as_Register($dst$$reg), 10266 as_Register($src1$$reg), 10267 as_Register($src2$$reg), 10268 as_Register($src3$$reg)); 10269 %} 10270 10271 ins_pipe(lmac_reg_reg); 10272 %} 10273 10274 // Combined Long Multiply & Neg 10275 10276 instruct mnegL(iRegLNoSp dst, iRegL src1, iRegL src2, immL0 zero) %{ 10277 match(Set dst (MulL (SubL zero src1) src2)); 10278 10279 ins_cost(INSN_COST * 5); 10280 format %{ "mneg $dst, $src1, $src2" %} 10281 10282 ins_encode %{ 10283 __ mneg(as_Register($dst$$reg), 10284 as_Register($src1$$reg), 10285 as_Register($src2$$reg)); 10286 %} 10287 10288 ins_pipe(lmac_reg_reg); 10289 %} 10290 10291 // Combine Integer Signed Multiply & Add/Sub/Neg Long 10292 10293 instruct smaddL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegLNoSp src3) %{ 10294 match(Set dst (AddL src3 (MulL (ConvI2L src1) (ConvI2L src2)))); 10295 10296 ins_cost(INSN_COST * 3); 10297 format %{ "smaddl $dst, $src1, $src2, $src3" %} 10298 10299 ins_encode %{ 10300 __ smaddl(as_Register($dst$$reg), 10301 as_Register($src1$$reg), 10302 as_Register($src2$$reg), 10303 as_Register($src3$$reg)); 10304 %} 10305 10306 ins_pipe(imac_reg_reg); 10307 %} 10308 10309 instruct smsubL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegLNoSp src3) %{ 10310 match(Set dst (SubL src3 (MulL (ConvI2L src1) (ConvI2L src2)))); 10311 10312 ins_cost(INSN_COST * 3); 10313 format %{ "smsubl $dst, $src1, $src2, $src3" %} 10314 10315 ins_encode %{ 10316 __ smsubl(as_Register($dst$$reg), 10317 as_Register($src1$$reg), 10318 as_Register($src2$$reg), 10319 as_Register($src3$$reg)); 10320 %} 10321 10322 ins_pipe(imac_reg_reg); 10323 %} 10324 10325 instruct smnegL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, immL0 zero) %{ 10326 match(Set dst (MulL (SubL zero (ConvI2L src1)) (ConvI2L src2))); 10327 10328 ins_cost(INSN_COST * 3); 10329 format %{ "smnegl $dst, $src1, $src2" %} 10330 10331 ins_encode %{ 10332 __ smnegl(as_Register($dst$$reg), 10333 as_Register($src1$$reg), 10334 as_Register($src2$$reg)); 10335 %} 10336 10337 ins_pipe(imac_reg_reg); 10338 %} 10339 10340 // Combined Multiply-Add Shorts into Integer (dst = src1 * src2 + src3 * src4) 10341 10342 instruct muladdS2I(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3, iRegIorL2I src4) %{ 10343 match(Set dst (MulAddS2I (Binary src1 src2) (Binary src3 src4))); 10344 10345 ins_cost(INSN_COST * 5); 10346 format %{ "mulw rscratch1, $src1, $src2\n\t" 10347 "maddw $dst, $src3, $src4, rscratch1" %} 10348 10349 ins_encode %{ 10350 __ mulw(rscratch1, as_Register($src1$$reg), as_Register($src2$$reg)); 10351 __ maddw(as_Register($dst$$reg), as_Register($src3$$reg), as_Register($src4$$reg), rscratch1); %} 10352 10353 ins_pipe(imac_reg_reg); 10354 %} 10355 10356 // Integer Divide 10357 10358 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10359 match(Set dst (DivI src1 src2)); 10360 10361 ins_cost(INSN_COST * 19); 10362 format %{ "sdivw $dst, $src1, $src2" %} 10363 10364 ins_encode(aarch64_enc_divw(dst, src1, src2)); 10365 ins_pipe(idiv_reg_reg); 10366 %} 10367 10368 // Long Divide 10369 10370 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10371 match(Set dst (DivL src1 src2)); 10372 10373 ins_cost(INSN_COST * 35); 10374 format %{ "sdiv $dst, $src1, $src2" %} 10375 10376 ins_encode(aarch64_enc_div(dst, src1, src2)); 10377 ins_pipe(ldiv_reg_reg); 10378 %} 10379 10380 // Integer Remainder 10381 10382 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10383 match(Set dst (ModI src1 src2)); 10384 10385 ins_cost(INSN_COST * 22); 10386 format %{ "sdivw rscratch1, $src1, $src2\n\t" 10387 "msubw $dst, rscratch1, $src2, $src1" %} 10388 10389 ins_encode(aarch64_enc_modw(dst, src1, src2)); 10390 ins_pipe(idiv_reg_reg); 10391 %} 10392 10393 // Long Remainder 10394 10395 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10396 match(Set dst (ModL src1 src2)); 10397 10398 ins_cost(INSN_COST * 38); 10399 format %{ "sdiv rscratch1, $src1, $src2\n" 10400 "msub $dst, rscratch1, $src2, $src1" %} 10401 10402 ins_encode(aarch64_enc_mod(dst, src1, src2)); 10403 ins_pipe(ldiv_reg_reg); 10404 %} 10405 10406 // Unsigned Integer Divide 10407 10408 instruct UdivI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10409 match(Set dst (UDivI src1 src2)); 10410 10411 ins_cost(INSN_COST * 19); 10412 format %{ "udivw $dst, $src1, $src2" %} 10413 10414 ins_encode %{ 10415 __ udivw($dst$$Register, $src1$$Register, $src2$$Register); 10416 %} 10417 10418 ins_pipe(idiv_reg_reg); 10419 %} 10420 10421 // Unsigned Long Divide 10422 10423 instruct UdivL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10424 match(Set dst (UDivL src1 src2)); 10425 10426 ins_cost(INSN_COST * 35); 10427 format %{ "udiv $dst, $src1, $src2" %} 10428 10429 ins_encode %{ 10430 __ udiv($dst$$Register, $src1$$Register, $src2$$Register); 10431 %} 10432 10433 ins_pipe(ldiv_reg_reg); 10434 %} 10435 10436 // Unsigned Integer Remainder 10437 10438 instruct UmodI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10439 match(Set dst (UModI src1 src2)); 10440 10441 ins_cost(INSN_COST * 22); 10442 format %{ "udivw rscratch1, $src1, $src2\n\t" 10443 "msubw $dst, rscratch1, $src2, $src1" %} 10444 10445 ins_encode %{ 10446 __ udivw(rscratch1, $src1$$Register, $src2$$Register); 10447 __ msubw($dst$$Register, rscratch1, $src2$$Register, $src1$$Register); 10448 %} 10449 10450 ins_pipe(idiv_reg_reg); 10451 %} 10452 10453 // Unsigned Long Remainder 10454 10455 instruct UModL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10456 match(Set dst (UModL src1 src2)); 10457 10458 ins_cost(INSN_COST * 38); 10459 format %{ "udiv rscratch1, $src1, $src2\n" 10460 "msub $dst, rscratch1, $src2, $src1" %} 10461 10462 ins_encode %{ 10463 __ udiv(rscratch1, $src1$$Register, $src2$$Register); 10464 __ msub($dst$$Register, rscratch1, $src2$$Register, $src1$$Register); 10465 %} 10466 10467 ins_pipe(ldiv_reg_reg); 10468 %} 10469 10470 // Integer Shifts 10471 10472 // Shift Left Register 10473 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10474 match(Set dst (LShiftI src1 src2)); 10475 10476 ins_cost(INSN_COST * 2); 10477 format %{ "lslvw $dst, $src1, $src2" %} 10478 10479 ins_encode %{ 10480 __ lslvw(as_Register($dst$$reg), 10481 as_Register($src1$$reg), 10482 as_Register($src2$$reg)); 10483 %} 10484 10485 ins_pipe(ialu_reg_reg_vshift); 10486 %} 10487 10488 // Shift Left Immediate 10489 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 10490 match(Set dst (LShiftI src1 src2)); 10491 10492 ins_cost(INSN_COST); 10493 format %{ "lslw $dst, $src1, ($src2 & 0x1f)" %} 10494 10495 ins_encode %{ 10496 __ lslw(as_Register($dst$$reg), 10497 as_Register($src1$$reg), 10498 $src2$$constant & 0x1f); 10499 %} 10500 10501 ins_pipe(ialu_reg_shift); 10502 %} 10503 10504 // Shift Right Logical Register 10505 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10506 match(Set dst (URShiftI src1 src2)); 10507 10508 ins_cost(INSN_COST * 2); 10509 format %{ "lsrvw $dst, $src1, $src2" %} 10510 10511 ins_encode %{ 10512 __ lsrvw(as_Register($dst$$reg), 10513 as_Register($src1$$reg), 10514 as_Register($src2$$reg)); 10515 %} 10516 10517 ins_pipe(ialu_reg_reg_vshift); 10518 %} 10519 10520 // Shift Right Logical Immediate 10521 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 10522 match(Set dst (URShiftI src1 src2)); 10523 10524 ins_cost(INSN_COST); 10525 format %{ "lsrw $dst, $src1, ($src2 & 0x1f)" %} 10526 10527 ins_encode %{ 10528 __ lsrw(as_Register($dst$$reg), 10529 as_Register($src1$$reg), 10530 $src2$$constant & 0x1f); 10531 %} 10532 10533 ins_pipe(ialu_reg_shift); 10534 %} 10535 10536 // Shift Right Arithmetic Register 10537 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10538 match(Set dst (RShiftI src1 src2)); 10539 10540 ins_cost(INSN_COST * 2); 10541 format %{ "asrvw $dst, $src1, $src2" %} 10542 10543 ins_encode %{ 10544 __ asrvw(as_Register($dst$$reg), 10545 as_Register($src1$$reg), 10546 as_Register($src2$$reg)); 10547 %} 10548 10549 ins_pipe(ialu_reg_reg_vshift); 10550 %} 10551 10552 // Shift Right Arithmetic Immediate 10553 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 10554 match(Set dst (RShiftI src1 src2)); 10555 10556 ins_cost(INSN_COST); 10557 format %{ "asrw $dst, $src1, ($src2 & 0x1f)" %} 10558 10559 ins_encode %{ 10560 __ asrw(as_Register($dst$$reg), 10561 as_Register($src1$$reg), 10562 $src2$$constant & 0x1f); 10563 %} 10564 10565 ins_pipe(ialu_reg_shift); 10566 %} 10567 10568 // Combined Int Mask and Right Shift (using UBFM) 10569 // TODO 10570 10571 // Long Shifts 10572 10573 // Shift Left Register 10574 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 10575 match(Set dst (LShiftL src1 src2)); 10576 10577 ins_cost(INSN_COST * 2); 10578 format %{ "lslv $dst, $src1, $src2" %} 10579 10580 ins_encode %{ 10581 __ lslv(as_Register($dst$$reg), 10582 as_Register($src1$$reg), 10583 as_Register($src2$$reg)); 10584 %} 10585 10586 ins_pipe(ialu_reg_reg_vshift); 10587 %} 10588 10589 // Shift Left Immediate 10590 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 10591 match(Set dst (LShiftL src1 src2)); 10592 10593 ins_cost(INSN_COST); 10594 format %{ "lsl $dst, $src1, ($src2 & 0x3f)" %} 10595 10596 ins_encode %{ 10597 __ lsl(as_Register($dst$$reg), 10598 as_Register($src1$$reg), 10599 $src2$$constant & 0x3f); 10600 %} 10601 10602 ins_pipe(ialu_reg_shift); 10603 %} 10604 10605 // Shift Right Logical Register 10606 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 10607 match(Set dst (URShiftL src1 src2)); 10608 10609 ins_cost(INSN_COST * 2); 10610 format %{ "lsrv $dst, $src1, $src2" %} 10611 10612 ins_encode %{ 10613 __ lsrv(as_Register($dst$$reg), 10614 as_Register($src1$$reg), 10615 as_Register($src2$$reg)); 10616 %} 10617 10618 ins_pipe(ialu_reg_reg_vshift); 10619 %} 10620 10621 // Shift Right Logical Immediate 10622 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 10623 match(Set dst (URShiftL src1 src2)); 10624 10625 ins_cost(INSN_COST); 10626 format %{ "lsr $dst, $src1, ($src2 & 0x3f)" %} 10627 10628 ins_encode %{ 10629 __ lsr(as_Register($dst$$reg), 10630 as_Register($src1$$reg), 10631 $src2$$constant & 0x3f); 10632 %} 10633 10634 ins_pipe(ialu_reg_shift); 10635 %} 10636 10637 // A special-case pattern for card table stores. 10638 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{ 10639 match(Set dst (URShiftL (CastP2X src1) src2)); 10640 10641 ins_cost(INSN_COST); 10642 format %{ "lsr $dst, p2x($src1), ($src2 & 0x3f)" %} 10643 10644 ins_encode %{ 10645 __ lsr(as_Register($dst$$reg), 10646 as_Register($src1$$reg), 10647 $src2$$constant & 0x3f); 10648 %} 10649 10650 ins_pipe(ialu_reg_shift); 10651 %} 10652 10653 // Shift Right Arithmetic Register 10654 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 10655 match(Set dst (RShiftL src1 src2)); 10656 10657 ins_cost(INSN_COST * 2); 10658 format %{ "asrv $dst, $src1, $src2" %} 10659 10660 ins_encode %{ 10661 __ asrv(as_Register($dst$$reg), 10662 as_Register($src1$$reg), 10663 as_Register($src2$$reg)); 10664 %} 10665 10666 ins_pipe(ialu_reg_reg_vshift); 10667 %} 10668 10669 // Shift Right Arithmetic Immediate 10670 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 10671 match(Set dst (RShiftL src1 src2)); 10672 10673 ins_cost(INSN_COST); 10674 format %{ "asr $dst, $src1, ($src2 & 0x3f)" %} 10675 10676 ins_encode %{ 10677 __ asr(as_Register($dst$$reg), 10678 as_Register($src1$$reg), 10679 $src2$$constant & 0x3f); 10680 %} 10681 10682 ins_pipe(ialu_reg_shift); 10683 %} 10684 10685 // BEGIN This section of the file is automatically generated. Do not edit -------------- 10686 // This section is generated from aarch64_ad.m4 10687 10688 // This pattern is automatically generated from aarch64_ad.m4 10689 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10690 instruct regL_not_reg(iRegLNoSp dst, 10691 iRegL src1, immL_M1 m1, 10692 rFlagsReg cr) %{ 10693 match(Set dst (XorL src1 m1)); 10694 ins_cost(INSN_COST); 10695 format %{ "eon $dst, $src1, zr" %} 10696 10697 ins_encode %{ 10698 __ eon(as_Register($dst$$reg), 10699 as_Register($src1$$reg), 10700 zr, 10701 Assembler::LSL, 0); 10702 %} 10703 10704 ins_pipe(ialu_reg); 10705 %} 10706 10707 // This pattern is automatically generated from aarch64_ad.m4 10708 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10709 instruct regI_not_reg(iRegINoSp dst, 10710 iRegIorL2I src1, immI_M1 m1, 10711 rFlagsReg cr) %{ 10712 match(Set dst (XorI src1 m1)); 10713 ins_cost(INSN_COST); 10714 format %{ "eonw $dst, $src1, zr" %} 10715 10716 ins_encode %{ 10717 __ eonw(as_Register($dst$$reg), 10718 as_Register($src1$$reg), 10719 zr, 10720 Assembler::LSL, 0); 10721 %} 10722 10723 ins_pipe(ialu_reg); 10724 %} 10725 10726 // This pattern is automatically generated from aarch64_ad.m4 10727 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10728 instruct NegI_reg_URShift_reg(iRegINoSp dst, 10729 immI0 zero, iRegIorL2I src1, immI src2) %{ 10730 match(Set dst (SubI zero (URShiftI src1 src2))); 10731 10732 ins_cost(1.9 * INSN_COST); 10733 format %{ "negw $dst, $src1, LSR $src2" %} 10734 10735 ins_encode %{ 10736 __ negw(as_Register($dst$$reg), as_Register($src1$$reg), 10737 Assembler::LSR, $src2$$constant & 0x1f); 10738 %} 10739 10740 ins_pipe(ialu_reg_shift); 10741 %} 10742 10743 // This pattern is automatically generated from aarch64_ad.m4 10744 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10745 instruct NegI_reg_RShift_reg(iRegINoSp dst, 10746 immI0 zero, iRegIorL2I src1, immI src2) %{ 10747 match(Set dst (SubI zero (RShiftI src1 src2))); 10748 10749 ins_cost(1.9 * INSN_COST); 10750 format %{ "negw $dst, $src1, ASR $src2" %} 10751 10752 ins_encode %{ 10753 __ negw(as_Register($dst$$reg), as_Register($src1$$reg), 10754 Assembler::ASR, $src2$$constant & 0x1f); 10755 %} 10756 10757 ins_pipe(ialu_reg_shift); 10758 %} 10759 10760 // This pattern is automatically generated from aarch64_ad.m4 10761 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10762 instruct NegI_reg_LShift_reg(iRegINoSp dst, 10763 immI0 zero, iRegIorL2I src1, immI src2) %{ 10764 match(Set dst (SubI zero (LShiftI src1 src2))); 10765 10766 ins_cost(1.9 * INSN_COST); 10767 format %{ "negw $dst, $src1, LSL $src2" %} 10768 10769 ins_encode %{ 10770 __ negw(as_Register($dst$$reg), as_Register($src1$$reg), 10771 Assembler::LSL, $src2$$constant & 0x1f); 10772 %} 10773 10774 ins_pipe(ialu_reg_shift); 10775 %} 10776 10777 // This pattern is automatically generated from aarch64_ad.m4 10778 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10779 instruct NegL_reg_URShift_reg(iRegLNoSp dst, 10780 immL0 zero, iRegL src1, immI src2) %{ 10781 match(Set dst (SubL zero (URShiftL src1 src2))); 10782 10783 ins_cost(1.9 * INSN_COST); 10784 format %{ "neg $dst, $src1, LSR $src2" %} 10785 10786 ins_encode %{ 10787 __ neg(as_Register($dst$$reg), as_Register($src1$$reg), 10788 Assembler::LSR, $src2$$constant & 0x3f); 10789 %} 10790 10791 ins_pipe(ialu_reg_shift); 10792 %} 10793 10794 // This pattern is automatically generated from aarch64_ad.m4 10795 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10796 instruct NegL_reg_RShift_reg(iRegLNoSp dst, 10797 immL0 zero, iRegL src1, immI src2) %{ 10798 match(Set dst (SubL zero (RShiftL src1 src2))); 10799 10800 ins_cost(1.9 * INSN_COST); 10801 format %{ "neg $dst, $src1, ASR $src2" %} 10802 10803 ins_encode %{ 10804 __ neg(as_Register($dst$$reg), as_Register($src1$$reg), 10805 Assembler::ASR, $src2$$constant & 0x3f); 10806 %} 10807 10808 ins_pipe(ialu_reg_shift); 10809 %} 10810 10811 // This pattern is automatically generated from aarch64_ad.m4 10812 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10813 instruct NegL_reg_LShift_reg(iRegLNoSp dst, 10814 immL0 zero, iRegL src1, immI src2) %{ 10815 match(Set dst (SubL zero (LShiftL src1 src2))); 10816 10817 ins_cost(1.9 * INSN_COST); 10818 format %{ "neg $dst, $src1, LSL $src2" %} 10819 10820 ins_encode %{ 10821 __ neg(as_Register($dst$$reg), as_Register($src1$$reg), 10822 Assembler::LSL, $src2$$constant & 0x3f); 10823 %} 10824 10825 ins_pipe(ialu_reg_shift); 10826 %} 10827 10828 // This pattern is automatically generated from aarch64_ad.m4 10829 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10830 instruct AndI_reg_not_reg(iRegINoSp dst, 10831 iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{ 10832 match(Set dst (AndI src1 (XorI src2 m1))); 10833 ins_cost(INSN_COST); 10834 format %{ "bicw $dst, $src1, $src2" %} 10835 10836 ins_encode %{ 10837 __ bicw(as_Register($dst$$reg), 10838 as_Register($src1$$reg), 10839 as_Register($src2$$reg), 10840 Assembler::LSL, 0); 10841 %} 10842 10843 ins_pipe(ialu_reg_reg); 10844 %} 10845 10846 // This pattern is automatically generated from aarch64_ad.m4 10847 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10848 instruct AndL_reg_not_reg(iRegLNoSp dst, 10849 iRegL src1, iRegL src2, immL_M1 m1) %{ 10850 match(Set dst (AndL src1 (XorL src2 m1))); 10851 ins_cost(INSN_COST); 10852 format %{ "bic $dst, $src1, $src2" %} 10853 10854 ins_encode %{ 10855 __ bic(as_Register($dst$$reg), 10856 as_Register($src1$$reg), 10857 as_Register($src2$$reg), 10858 Assembler::LSL, 0); 10859 %} 10860 10861 ins_pipe(ialu_reg_reg); 10862 %} 10863 10864 // This pattern is automatically generated from aarch64_ad.m4 10865 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10866 instruct OrI_reg_not_reg(iRegINoSp dst, 10867 iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{ 10868 match(Set dst (OrI src1 (XorI src2 m1))); 10869 ins_cost(INSN_COST); 10870 format %{ "ornw $dst, $src1, $src2" %} 10871 10872 ins_encode %{ 10873 __ ornw(as_Register($dst$$reg), 10874 as_Register($src1$$reg), 10875 as_Register($src2$$reg), 10876 Assembler::LSL, 0); 10877 %} 10878 10879 ins_pipe(ialu_reg_reg); 10880 %} 10881 10882 // This pattern is automatically generated from aarch64_ad.m4 10883 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10884 instruct OrL_reg_not_reg(iRegLNoSp dst, 10885 iRegL src1, iRegL src2, immL_M1 m1) %{ 10886 match(Set dst (OrL src1 (XorL src2 m1))); 10887 ins_cost(INSN_COST); 10888 format %{ "orn $dst, $src1, $src2" %} 10889 10890 ins_encode %{ 10891 __ orn(as_Register($dst$$reg), 10892 as_Register($src1$$reg), 10893 as_Register($src2$$reg), 10894 Assembler::LSL, 0); 10895 %} 10896 10897 ins_pipe(ialu_reg_reg); 10898 %} 10899 10900 // This pattern is automatically generated from aarch64_ad.m4 10901 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10902 instruct XorI_reg_not_reg(iRegINoSp dst, 10903 iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{ 10904 match(Set dst (XorI m1 (XorI src2 src1))); 10905 ins_cost(INSN_COST); 10906 format %{ "eonw $dst, $src1, $src2" %} 10907 10908 ins_encode %{ 10909 __ eonw(as_Register($dst$$reg), 10910 as_Register($src1$$reg), 10911 as_Register($src2$$reg), 10912 Assembler::LSL, 0); 10913 %} 10914 10915 ins_pipe(ialu_reg_reg); 10916 %} 10917 10918 // This pattern is automatically generated from aarch64_ad.m4 10919 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10920 instruct XorL_reg_not_reg(iRegLNoSp dst, 10921 iRegL src1, iRegL src2, immL_M1 m1) %{ 10922 match(Set dst (XorL m1 (XorL src2 src1))); 10923 ins_cost(INSN_COST); 10924 format %{ "eon $dst, $src1, $src2" %} 10925 10926 ins_encode %{ 10927 __ eon(as_Register($dst$$reg), 10928 as_Register($src1$$reg), 10929 as_Register($src2$$reg), 10930 Assembler::LSL, 0); 10931 %} 10932 10933 ins_pipe(ialu_reg_reg); 10934 %} 10935 10936 // This pattern is automatically generated from aarch64_ad.m4 10937 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10938 // val & (-1 ^ (val >>> shift)) ==> bicw 10939 instruct AndI_reg_URShift_not_reg(iRegINoSp dst, 10940 iRegIorL2I src1, iRegIorL2I src2, 10941 immI src3, immI_M1 src4) %{ 10942 match(Set dst (AndI src1 (XorI(URShiftI src2 src3) src4))); 10943 ins_cost(1.9 * INSN_COST); 10944 format %{ "bicw $dst, $src1, $src2, LSR $src3" %} 10945 10946 ins_encode %{ 10947 __ bicw(as_Register($dst$$reg), 10948 as_Register($src1$$reg), 10949 as_Register($src2$$reg), 10950 Assembler::LSR, 10951 $src3$$constant & 0x1f); 10952 %} 10953 10954 ins_pipe(ialu_reg_reg_shift); 10955 %} 10956 10957 // This pattern is automatically generated from aarch64_ad.m4 10958 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10959 // val & (-1 ^ (val >>> shift)) ==> bic 10960 instruct AndL_reg_URShift_not_reg(iRegLNoSp dst, 10961 iRegL src1, iRegL src2, 10962 immI src3, immL_M1 src4) %{ 10963 match(Set dst (AndL src1 (XorL(URShiftL src2 src3) src4))); 10964 ins_cost(1.9 * INSN_COST); 10965 format %{ "bic $dst, $src1, $src2, LSR $src3" %} 10966 10967 ins_encode %{ 10968 __ bic(as_Register($dst$$reg), 10969 as_Register($src1$$reg), 10970 as_Register($src2$$reg), 10971 Assembler::LSR, 10972 $src3$$constant & 0x3f); 10973 %} 10974 10975 ins_pipe(ialu_reg_reg_shift); 10976 %} 10977 10978 // This pattern is automatically generated from aarch64_ad.m4 10979 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 10980 // val & (-1 ^ (val >> shift)) ==> bicw 10981 instruct AndI_reg_RShift_not_reg(iRegINoSp dst, 10982 iRegIorL2I src1, iRegIorL2I src2, 10983 immI src3, immI_M1 src4) %{ 10984 match(Set dst (AndI src1 (XorI(RShiftI src2 src3) src4))); 10985 ins_cost(1.9 * INSN_COST); 10986 format %{ "bicw $dst, $src1, $src2, ASR $src3" %} 10987 10988 ins_encode %{ 10989 __ bicw(as_Register($dst$$reg), 10990 as_Register($src1$$reg), 10991 as_Register($src2$$reg), 10992 Assembler::ASR, 10993 $src3$$constant & 0x1f); 10994 %} 10995 10996 ins_pipe(ialu_reg_reg_shift); 10997 %} 10998 10999 // This pattern is automatically generated from aarch64_ad.m4 11000 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11001 // val & (-1 ^ (val >> shift)) ==> bic 11002 instruct AndL_reg_RShift_not_reg(iRegLNoSp dst, 11003 iRegL src1, iRegL src2, 11004 immI src3, immL_M1 src4) %{ 11005 match(Set dst (AndL src1 (XorL(RShiftL src2 src3) src4))); 11006 ins_cost(1.9 * INSN_COST); 11007 format %{ "bic $dst, $src1, $src2, ASR $src3" %} 11008 11009 ins_encode %{ 11010 __ bic(as_Register($dst$$reg), 11011 as_Register($src1$$reg), 11012 as_Register($src2$$reg), 11013 Assembler::ASR, 11014 $src3$$constant & 0x3f); 11015 %} 11016 11017 ins_pipe(ialu_reg_reg_shift); 11018 %} 11019 11020 // This pattern is automatically generated from aarch64_ad.m4 11021 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11022 // val & (-1 ^ (val ror shift)) ==> bicw 11023 instruct AndI_reg_RotateRight_not_reg(iRegINoSp dst, 11024 iRegIorL2I src1, iRegIorL2I src2, 11025 immI src3, immI_M1 src4) %{ 11026 match(Set dst (AndI src1 (XorI(RotateRight src2 src3) src4))); 11027 ins_cost(1.9 * INSN_COST); 11028 format %{ "bicw $dst, $src1, $src2, ROR $src3" %} 11029 11030 ins_encode %{ 11031 __ bicw(as_Register($dst$$reg), 11032 as_Register($src1$$reg), 11033 as_Register($src2$$reg), 11034 Assembler::ROR, 11035 $src3$$constant & 0x1f); 11036 %} 11037 11038 ins_pipe(ialu_reg_reg_shift); 11039 %} 11040 11041 // This pattern is automatically generated from aarch64_ad.m4 11042 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11043 // val & (-1 ^ (val ror shift)) ==> bic 11044 instruct AndL_reg_RotateRight_not_reg(iRegLNoSp dst, 11045 iRegL src1, iRegL src2, 11046 immI src3, immL_M1 src4) %{ 11047 match(Set dst (AndL src1 (XorL(RotateRight src2 src3) src4))); 11048 ins_cost(1.9 * INSN_COST); 11049 format %{ "bic $dst, $src1, $src2, ROR $src3" %} 11050 11051 ins_encode %{ 11052 __ bic(as_Register($dst$$reg), 11053 as_Register($src1$$reg), 11054 as_Register($src2$$reg), 11055 Assembler::ROR, 11056 $src3$$constant & 0x3f); 11057 %} 11058 11059 ins_pipe(ialu_reg_reg_shift); 11060 %} 11061 11062 // This pattern is automatically generated from aarch64_ad.m4 11063 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11064 // val & (-1 ^ (val << shift)) ==> bicw 11065 instruct AndI_reg_LShift_not_reg(iRegINoSp dst, 11066 iRegIorL2I src1, iRegIorL2I src2, 11067 immI src3, immI_M1 src4) %{ 11068 match(Set dst (AndI src1 (XorI(LShiftI src2 src3) src4))); 11069 ins_cost(1.9 * INSN_COST); 11070 format %{ "bicw $dst, $src1, $src2, LSL $src3" %} 11071 11072 ins_encode %{ 11073 __ bicw(as_Register($dst$$reg), 11074 as_Register($src1$$reg), 11075 as_Register($src2$$reg), 11076 Assembler::LSL, 11077 $src3$$constant & 0x1f); 11078 %} 11079 11080 ins_pipe(ialu_reg_reg_shift); 11081 %} 11082 11083 // This pattern is automatically generated from aarch64_ad.m4 11084 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11085 // val & (-1 ^ (val << shift)) ==> bic 11086 instruct AndL_reg_LShift_not_reg(iRegLNoSp dst, 11087 iRegL src1, iRegL src2, 11088 immI src3, immL_M1 src4) %{ 11089 match(Set dst (AndL src1 (XorL(LShiftL src2 src3) src4))); 11090 ins_cost(1.9 * INSN_COST); 11091 format %{ "bic $dst, $src1, $src2, LSL $src3" %} 11092 11093 ins_encode %{ 11094 __ bic(as_Register($dst$$reg), 11095 as_Register($src1$$reg), 11096 as_Register($src2$$reg), 11097 Assembler::LSL, 11098 $src3$$constant & 0x3f); 11099 %} 11100 11101 ins_pipe(ialu_reg_reg_shift); 11102 %} 11103 11104 // This pattern is automatically generated from aarch64_ad.m4 11105 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11106 // val ^ (-1 ^ (val >>> shift)) ==> eonw 11107 instruct XorI_reg_URShift_not_reg(iRegINoSp dst, 11108 iRegIorL2I src1, iRegIorL2I src2, 11109 immI src3, immI_M1 src4) %{ 11110 match(Set dst (XorI src4 (XorI(URShiftI src2 src3) src1))); 11111 ins_cost(1.9 * INSN_COST); 11112 format %{ "eonw $dst, $src1, $src2, LSR $src3" %} 11113 11114 ins_encode %{ 11115 __ eonw(as_Register($dst$$reg), 11116 as_Register($src1$$reg), 11117 as_Register($src2$$reg), 11118 Assembler::LSR, 11119 $src3$$constant & 0x1f); 11120 %} 11121 11122 ins_pipe(ialu_reg_reg_shift); 11123 %} 11124 11125 // This pattern is automatically generated from aarch64_ad.m4 11126 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11127 // val ^ (-1 ^ (val >>> shift)) ==> eon 11128 instruct XorL_reg_URShift_not_reg(iRegLNoSp dst, 11129 iRegL src1, iRegL src2, 11130 immI src3, immL_M1 src4) %{ 11131 match(Set dst (XorL src4 (XorL(URShiftL src2 src3) src1))); 11132 ins_cost(1.9 * INSN_COST); 11133 format %{ "eon $dst, $src1, $src2, LSR $src3" %} 11134 11135 ins_encode %{ 11136 __ eon(as_Register($dst$$reg), 11137 as_Register($src1$$reg), 11138 as_Register($src2$$reg), 11139 Assembler::LSR, 11140 $src3$$constant & 0x3f); 11141 %} 11142 11143 ins_pipe(ialu_reg_reg_shift); 11144 %} 11145 11146 // This pattern is automatically generated from aarch64_ad.m4 11147 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11148 // val ^ (-1 ^ (val >> shift)) ==> eonw 11149 instruct XorI_reg_RShift_not_reg(iRegINoSp dst, 11150 iRegIorL2I src1, iRegIorL2I src2, 11151 immI src3, immI_M1 src4) %{ 11152 match(Set dst (XorI src4 (XorI(RShiftI src2 src3) src1))); 11153 ins_cost(1.9 * INSN_COST); 11154 format %{ "eonw $dst, $src1, $src2, ASR $src3" %} 11155 11156 ins_encode %{ 11157 __ eonw(as_Register($dst$$reg), 11158 as_Register($src1$$reg), 11159 as_Register($src2$$reg), 11160 Assembler::ASR, 11161 $src3$$constant & 0x1f); 11162 %} 11163 11164 ins_pipe(ialu_reg_reg_shift); 11165 %} 11166 11167 // This pattern is automatically generated from aarch64_ad.m4 11168 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11169 // val ^ (-1 ^ (val >> shift)) ==> eon 11170 instruct XorL_reg_RShift_not_reg(iRegLNoSp dst, 11171 iRegL src1, iRegL src2, 11172 immI src3, immL_M1 src4) %{ 11173 match(Set dst (XorL src4 (XorL(RShiftL src2 src3) src1))); 11174 ins_cost(1.9 * INSN_COST); 11175 format %{ "eon $dst, $src1, $src2, ASR $src3" %} 11176 11177 ins_encode %{ 11178 __ eon(as_Register($dst$$reg), 11179 as_Register($src1$$reg), 11180 as_Register($src2$$reg), 11181 Assembler::ASR, 11182 $src3$$constant & 0x3f); 11183 %} 11184 11185 ins_pipe(ialu_reg_reg_shift); 11186 %} 11187 11188 // This pattern is automatically generated from aarch64_ad.m4 11189 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11190 // val ^ (-1 ^ (val ror shift)) ==> eonw 11191 instruct XorI_reg_RotateRight_not_reg(iRegINoSp dst, 11192 iRegIorL2I src1, iRegIorL2I src2, 11193 immI src3, immI_M1 src4) %{ 11194 match(Set dst (XorI src4 (XorI(RotateRight src2 src3) src1))); 11195 ins_cost(1.9 * INSN_COST); 11196 format %{ "eonw $dst, $src1, $src2, ROR $src3" %} 11197 11198 ins_encode %{ 11199 __ eonw(as_Register($dst$$reg), 11200 as_Register($src1$$reg), 11201 as_Register($src2$$reg), 11202 Assembler::ROR, 11203 $src3$$constant & 0x1f); 11204 %} 11205 11206 ins_pipe(ialu_reg_reg_shift); 11207 %} 11208 11209 // This pattern is automatically generated from aarch64_ad.m4 11210 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11211 // val ^ (-1 ^ (val ror shift)) ==> eon 11212 instruct XorL_reg_RotateRight_not_reg(iRegLNoSp dst, 11213 iRegL src1, iRegL src2, 11214 immI src3, immL_M1 src4) %{ 11215 match(Set dst (XorL src4 (XorL(RotateRight src2 src3) src1))); 11216 ins_cost(1.9 * INSN_COST); 11217 format %{ "eon $dst, $src1, $src2, ROR $src3" %} 11218 11219 ins_encode %{ 11220 __ eon(as_Register($dst$$reg), 11221 as_Register($src1$$reg), 11222 as_Register($src2$$reg), 11223 Assembler::ROR, 11224 $src3$$constant & 0x3f); 11225 %} 11226 11227 ins_pipe(ialu_reg_reg_shift); 11228 %} 11229 11230 // This pattern is automatically generated from aarch64_ad.m4 11231 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11232 // val ^ (-1 ^ (val << shift)) ==> eonw 11233 instruct XorI_reg_LShift_not_reg(iRegINoSp dst, 11234 iRegIorL2I src1, iRegIorL2I src2, 11235 immI src3, immI_M1 src4) %{ 11236 match(Set dst (XorI src4 (XorI(LShiftI src2 src3) src1))); 11237 ins_cost(1.9 * INSN_COST); 11238 format %{ "eonw $dst, $src1, $src2, LSL $src3" %} 11239 11240 ins_encode %{ 11241 __ eonw(as_Register($dst$$reg), 11242 as_Register($src1$$reg), 11243 as_Register($src2$$reg), 11244 Assembler::LSL, 11245 $src3$$constant & 0x1f); 11246 %} 11247 11248 ins_pipe(ialu_reg_reg_shift); 11249 %} 11250 11251 // This pattern is automatically generated from aarch64_ad.m4 11252 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11253 // val ^ (-1 ^ (val << shift)) ==> eon 11254 instruct XorL_reg_LShift_not_reg(iRegLNoSp dst, 11255 iRegL src1, iRegL src2, 11256 immI src3, immL_M1 src4) %{ 11257 match(Set dst (XorL src4 (XorL(LShiftL src2 src3) src1))); 11258 ins_cost(1.9 * INSN_COST); 11259 format %{ "eon $dst, $src1, $src2, LSL $src3" %} 11260 11261 ins_encode %{ 11262 __ eon(as_Register($dst$$reg), 11263 as_Register($src1$$reg), 11264 as_Register($src2$$reg), 11265 Assembler::LSL, 11266 $src3$$constant & 0x3f); 11267 %} 11268 11269 ins_pipe(ialu_reg_reg_shift); 11270 %} 11271 11272 // This pattern is automatically generated from aarch64_ad.m4 11273 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11274 // val | (-1 ^ (val >>> shift)) ==> ornw 11275 instruct OrI_reg_URShift_not_reg(iRegINoSp dst, 11276 iRegIorL2I src1, iRegIorL2I src2, 11277 immI src3, immI_M1 src4) %{ 11278 match(Set dst (OrI src1 (XorI(URShiftI src2 src3) src4))); 11279 ins_cost(1.9 * INSN_COST); 11280 format %{ "ornw $dst, $src1, $src2, LSR $src3" %} 11281 11282 ins_encode %{ 11283 __ ornw(as_Register($dst$$reg), 11284 as_Register($src1$$reg), 11285 as_Register($src2$$reg), 11286 Assembler::LSR, 11287 $src3$$constant & 0x1f); 11288 %} 11289 11290 ins_pipe(ialu_reg_reg_shift); 11291 %} 11292 11293 // This pattern is automatically generated from aarch64_ad.m4 11294 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11295 // val | (-1 ^ (val >>> shift)) ==> orn 11296 instruct OrL_reg_URShift_not_reg(iRegLNoSp dst, 11297 iRegL src1, iRegL src2, 11298 immI src3, immL_M1 src4) %{ 11299 match(Set dst (OrL src1 (XorL(URShiftL src2 src3) src4))); 11300 ins_cost(1.9 * INSN_COST); 11301 format %{ "orn $dst, $src1, $src2, LSR $src3" %} 11302 11303 ins_encode %{ 11304 __ orn(as_Register($dst$$reg), 11305 as_Register($src1$$reg), 11306 as_Register($src2$$reg), 11307 Assembler::LSR, 11308 $src3$$constant & 0x3f); 11309 %} 11310 11311 ins_pipe(ialu_reg_reg_shift); 11312 %} 11313 11314 // This pattern is automatically generated from aarch64_ad.m4 11315 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11316 // val | (-1 ^ (val >> shift)) ==> ornw 11317 instruct OrI_reg_RShift_not_reg(iRegINoSp dst, 11318 iRegIorL2I src1, iRegIorL2I src2, 11319 immI src3, immI_M1 src4) %{ 11320 match(Set dst (OrI src1 (XorI(RShiftI src2 src3) src4))); 11321 ins_cost(1.9 * INSN_COST); 11322 format %{ "ornw $dst, $src1, $src2, ASR $src3" %} 11323 11324 ins_encode %{ 11325 __ ornw(as_Register($dst$$reg), 11326 as_Register($src1$$reg), 11327 as_Register($src2$$reg), 11328 Assembler::ASR, 11329 $src3$$constant & 0x1f); 11330 %} 11331 11332 ins_pipe(ialu_reg_reg_shift); 11333 %} 11334 11335 // This pattern is automatically generated from aarch64_ad.m4 11336 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11337 // val | (-1 ^ (val >> shift)) ==> orn 11338 instruct OrL_reg_RShift_not_reg(iRegLNoSp dst, 11339 iRegL src1, iRegL src2, 11340 immI src3, immL_M1 src4) %{ 11341 match(Set dst (OrL src1 (XorL(RShiftL src2 src3) src4))); 11342 ins_cost(1.9 * INSN_COST); 11343 format %{ "orn $dst, $src1, $src2, ASR $src3" %} 11344 11345 ins_encode %{ 11346 __ orn(as_Register($dst$$reg), 11347 as_Register($src1$$reg), 11348 as_Register($src2$$reg), 11349 Assembler::ASR, 11350 $src3$$constant & 0x3f); 11351 %} 11352 11353 ins_pipe(ialu_reg_reg_shift); 11354 %} 11355 11356 // This pattern is automatically generated from aarch64_ad.m4 11357 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11358 // val | (-1 ^ (val ror shift)) ==> ornw 11359 instruct OrI_reg_RotateRight_not_reg(iRegINoSp dst, 11360 iRegIorL2I src1, iRegIorL2I src2, 11361 immI src3, immI_M1 src4) %{ 11362 match(Set dst (OrI src1 (XorI(RotateRight src2 src3) src4))); 11363 ins_cost(1.9 * INSN_COST); 11364 format %{ "ornw $dst, $src1, $src2, ROR $src3" %} 11365 11366 ins_encode %{ 11367 __ ornw(as_Register($dst$$reg), 11368 as_Register($src1$$reg), 11369 as_Register($src2$$reg), 11370 Assembler::ROR, 11371 $src3$$constant & 0x1f); 11372 %} 11373 11374 ins_pipe(ialu_reg_reg_shift); 11375 %} 11376 11377 // This pattern is automatically generated from aarch64_ad.m4 11378 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11379 // val | (-1 ^ (val ror shift)) ==> orn 11380 instruct OrL_reg_RotateRight_not_reg(iRegLNoSp dst, 11381 iRegL src1, iRegL src2, 11382 immI src3, immL_M1 src4) %{ 11383 match(Set dst (OrL src1 (XorL(RotateRight src2 src3) src4))); 11384 ins_cost(1.9 * INSN_COST); 11385 format %{ "orn $dst, $src1, $src2, ROR $src3" %} 11386 11387 ins_encode %{ 11388 __ orn(as_Register($dst$$reg), 11389 as_Register($src1$$reg), 11390 as_Register($src2$$reg), 11391 Assembler::ROR, 11392 $src3$$constant & 0x3f); 11393 %} 11394 11395 ins_pipe(ialu_reg_reg_shift); 11396 %} 11397 11398 // This pattern is automatically generated from aarch64_ad.m4 11399 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11400 // val | (-1 ^ (val << shift)) ==> ornw 11401 instruct OrI_reg_LShift_not_reg(iRegINoSp dst, 11402 iRegIorL2I src1, iRegIorL2I src2, 11403 immI src3, immI_M1 src4) %{ 11404 match(Set dst (OrI src1 (XorI(LShiftI src2 src3) src4))); 11405 ins_cost(1.9 * INSN_COST); 11406 format %{ "ornw $dst, $src1, $src2, LSL $src3" %} 11407 11408 ins_encode %{ 11409 __ ornw(as_Register($dst$$reg), 11410 as_Register($src1$$reg), 11411 as_Register($src2$$reg), 11412 Assembler::LSL, 11413 $src3$$constant & 0x1f); 11414 %} 11415 11416 ins_pipe(ialu_reg_reg_shift); 11417 %} 11418 11419 // This pattern is automatically generated from aarch64_ad.m4 11420 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11421 // val | (-1 ^ (val << shift)) ==> orn 11422 instruct OrL_reg_LShift_not_reg(iRegLNoSp dst, 11423 iRegL src1, iRegL src2, 11424 immI src3, immL_M1 src4) %{ 11425 match(Set dst (OrL src1 (XorL(LShiftL src2 src3) src4))); 11426 ins_cost(1.9 * INSN_COST); 11427 format %{ "orn $dst, $src1, $src2, LSL $src3" %} 11428 11429 ins_encode %{ 11430 __ orn(as_Register($dst$$reg), 11431 as_Register($src1$$reg), 11432 as_Register($src2$$reg), 11433 Assembler::LSL, 11434 $src3$$constant & 0x3f); 11435 %} 11436 11437 ins_pipe(ialu_reg_reg_shift); 11438 %} 11439 11440 // This pattern is automatically generated from aarch64_ad.m4 11441 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11442 instruct AndI_reg_URShift_reg(iRegINoSp dst, 11443 iRegIorL2I src1, iRegIorL2I src2, 11444 immI src3) %{ 11445 match(Set dst (AndI src1 (URShiftI src2 src3))); 11446 11447 ins_cost(1.9 * INSN_COST); 11448 format %{ "andw $dst, $src1, $src2, LSR $src3" %} 11449 11450 ins_encode %{ 11451 __ andw(as_Register($dst$$reg), 11452 as_Register($src1$$reg), 11453 as_Register($src2$$reg), 11454 Assembler::LSR, 11455 $src3$$constant & 0x1f); 11456 %} 11457 11458 ins_pipe(ialu_reg_reg_shift); 11459 %} 11460 11461 // This pattern is automatically generated from aarch64_ad.m4 11462 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11463 instruct AndL_reg_URShift_reg(iRegLNoSp dst, 11464 iRegL src1, iRegL src2, 11465 immI src3) %{ 11466 match(Set dst (AndL src1 (URShiftL src2 src3))); 11467 11468 ins_cost(1.9 * INSN_COST); 11469 format %{ "andr $dst, $src1, $src2, LSR $src3" %} 11470 11471 ins_encode %{ 11472 __ andr(as_Register($dst$$reg), 11473 as_Register($src1$$reg), 11474 as_Register($src2$$reg), 11475 Assembler::LSR, 11476 $src3$$constant & 0x3f); 11477 %} 11478 11479 ins_pipe(ialu_reg_reg_shift); 11480 %} 11481 11482 // This pattern is automatically generated from aarch64_ad.m4 11483 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11484 instruct AndI_reg_RShift_reg(iRegINoSp dst, 11485 iRegIorL2I src1, iRegIorL2I src2, 11486 immI src3) %{ 11487 match(Set dst (AndI src1 (RShiftI src2 src3))); 11488 11489 ins_cost(1.9 * INSN_COST); 11490 format %{ "andw $dst, $src1, $src2, ASR $src3" %} 11491 11492 ins_encode %{ 11493 __ andw(as_Register($dst$$reg), 11494 as_Register($src1$$reg), 11495 as_Register($src2$$reg), 11496 Assembler::ASR, 11497 $src3$$constant & 0x1f); 11498 %} 11499 11500 ins_pipe(ialu_reg_reg_shift); 11501 %} 11502 11503 // This pattern is automatically generated from aarch64_ad.m4 11504 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11505 instruct AndL_reg_RShift_reg(iRegLNoSp dst, 11506 iRegL src1, iRegL src2, 11507 immI src3) %{ 11508 match(Set dst (AndL src1 (RShiftL src2 src3))); 11509 11510 ins_cost(1.9 * INSN_COST); 11511 format %{ "andr $dst, $src1, $src2, ASR $src3" %} 11512 11513 ins_encode %{ 11514 __ andr(as_Register($dst$$reg), 11515 as_Register($src1$$reg), 11516 as_Register($src2$$reg), 11517 Assembler::ASR, 11518 $src3$$constant & 0x3f); 11519 %} 11520 11521 ins_pipe(ialu_reg_reg_shift); 11522 %} 11523 11524 // This pattern is automatically generated from aarch64_ad.m4 11525 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11526 instruct AndI_reg_LShift_reg(iRegINoSp dst, 11527 iRegIorL2I src1, iRegIorL2I src2, 11528 immI src3) %{ 11529 match(Set dst (AndI src1 (LShiftI src2 src3))); 11530 11531 ins_cost(1.9 * INSN_COST); 11532 format %{ "andw $dst, $src1, $src2, LSL $src3" %} 11533 11534 ins_encode %{ 11535 __ andw(as_Register($dst$$reg), 11536 as_Register($src1$$reg), 11537 as_Register($src2$$reg), 11538 Assembler::LSL, 11539 $src3$$constant & 0x1f); 11540 %} 11541 11542 ins_pipe(ialu_reg_reg_shift); 11543 %} 11544 11545 // This pattern is automatically generated from aarch64_ad.m4 11546 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11547 instruct AndL_reg_LShift_reg(iRegLNoSp dst, 11548 iRegL src1, iRegL src2, 11549 immI src3) %{ 11550 match(Set dst (AndL src1 (LShiftL src2 src3))); 11551 11552 ins_cost(1.9 * INSN_COST); 11553 format %{ "andr $dst, $src1, $src2, LSL $src3" %} 11554 11555 ins_encode %{ 11556 __ andr(as_Register($dst$$reg), 11557 as_Register($src1$$reg), 11558 as_Register($src2$$reg), 11559 Assembler::LSL, 11560 $src3$$constant & 0x3f); 11561 %} 11562 11563 ins_pipe(ialu_reg_reg_shift); 11564 %} 11565 11566 // This pattern is automatically generated from aarch64_ad.m4 11567 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11568 instruct AndI_reg_RotateRight_reg(iRegINoSp dst, 11569 iRegIorL2I src1, iRegIorL2I src2, 11570 immI src3) %{ 11571 match(Set dst (AndI src1 (RotateRight src2 src3))); 11572 11573 ins_cost(1.9 * INSN_COST); 11574 format %{ "andw $dst, $src1, $src2, ROR $src3" %} 11575 11576 ins_encode %{ 11577 __ andw(as_Register($dst$$reg), 11578 as_Register($src1$$reg), 11579 as_Register($src2$$reg), 11580 Assembler::ROR, 11581 $src3$$constant & 0x1f); 11582 %} 11583 11584 ins_pipe(ialu_reg_reg_shift); 11585 %} 11586 11587 // This pattern is automatically generated from aarch64_ad.m4 11588 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11589 instruct AndL_reg_RotateRight_reg(iRegLNoSp dst, 11590 iRegL src1, iRegL src2, 11591 immI src3) %{ 11592 match(Set dst (AndL src1 (RotateRight src2 src3))); 11593 11594 ins_cost(1.9 * INSN_COST); 11595 format %{ "andr $dst, $src1, $src2, ROR $src3" %} 11596 11597 ins_encode %{ 11598 __ andr(as_Register($dst$$reg), 11599 as_Register($src1$$reg), 11600 as_Register($src2$$reg), 11601 Assembler::ROR, 11602 $src3$$constant & 0x3f); 11603 %} 11604 11605 ins_pipe(ialu_reg_reg_shift); 11606 %} 11607 11608 // This pattern is automatically generated from aarch64_ad.m4 11609 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11610 instruct XorI_reg_URShift_reg(iRegINoSp dst, 11611 iRegIorL2I src1, iRegIorL2I src2, 11612 immI src3) %{ 11613 match(Set dst (XorI src1 (URShiftI src2 src3))); 11614 11615 ins_cost(1.9 * INSN_COST); 11616 format %{ "eorw $dst, $src1, $src2, LSR $src3" %} 11617 11618 ins_encode %{ 11619 __ eorw(as_Register($dst$$reg), 11620 as_Register($src1$$reg), 11621 as_Register($src2$$reg), 11622 Assembler::LSR, 11623 $src3$$constant & 0x1f); 11624 %} 11625 11626 ins_pipe(ialu_reg_reg_shift); 11627 %} 11628 11629 // This pattern is automatically generated from aarch64_ad.m4 11630 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11631 instruct XorL_reg_URShift_reg(iRegLNoSp dst, 11632 iRegL src1, iRegL src2, 11633 immI src3) %{ 11634 match(Set dst (XorL src1 (URShiftL src2 src3))); 11635 11636 ins_cost(1.9 * INSN_COST); 11637 format %{ "eor $dst, $src1, $src2, LSR $src3" %} 11638 11639 ins_encode %{ 11640 __ eor(as_Register($dst$$reg), 11641 as_Register($src1$$reg), 11642 as_Register($src2$$reg), 11643 Assembler::LSR, 11644 $src3$$constant & 0x3f); 11645 %} 11646 11647 ins_pipe(ialu_reg_reg_shift); 11648 %} 11649 11650 // This pattern is automatically generated from aarch64_ad.m4 11651 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11652 instruct XorI_reg_RShift_reg(iRegINoSp dst, 11653 iRegIorL2I src1, iRegIorL2I src2, 11654 immI src3) %{ 11655 match(Set dst (XorI src1 (RShiftI src2 src3))); 11656 11657 ins_cost(1.9 * INSN_COST); 11658 format %{ "eorw $dst, $src1, $src2, ASR $src3" %} 11659 11660 ins_encode %{ 11661 __ eorw(as_Register($dst$$reg), 11662 as_Register($src1$$reg), 11663 as_Register($src2$$reg), 11664 Assembler::ASR, 11665 $src3$$constant & 0x1f); 11666 %} 11667 11668 ins_pipe(ialu_reg_reg_shift); 11669 %} 11670 11671 // This pattern is automatically generated from aarch64_ad.m4 11672 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11673 instruct XorL_reg_RShift_reg(iRegLNoSp dst, 11674 iRegL src1, iRegL src2, 11675 immI src3) %{ 11676 match(Set dst (XorL src1 (RShiftL src2 src3))); 11677 11678 ins_cost(1.9 * INSN_COST); 11679 format %{ "eor $dst, $src1, $src2, ASR $src3" %} 11680 11681 ins_encode %{ 11682 __ eor(as_Register($dst$$reg), 11683 as_Register($src1$$reg), 11684 as_Register($src2$$reg), 11685 Assembler::ASR, 11686 $src3$$constant & 0x3f); 11687 %} 11688 11689 ins_pipe(ialu_reg_reg_shift); 11690 %} 11691 11692 // This pattern is automatically generated from aarch64_ad.m4 11693 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11694 instruct XorI_reg_LShift_reg(iRegINoSp dst, 11695 iRegIorL2I src1, iRegIorL2I src2, 11696 immI src3) %{ 11697 match(Set dst (XorI src1 (LShiftI src2 src3))); 11698 11699 ins_cost(1.9 * INSN_COST); 11700 format %{ "eorw $dst, $src1, $src2, LSL $src3" %} 11701 11702 ins_encode %{ 11703 __ eorw(as_Register($dst$$reg), 11704 as_Register($src1$$reg), 11705 as_Register($src2$$reg), 11706 Assembler::LSL, 11707 $src3$$constant & 0x1f); 11708 %} 11709 11710 ins_pipe(ialu_reg_reg_shift); 11711 %} 11712 11713 // This pattern is automatically generated from aarch64_ad.m4 11714 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11715 instruct XorL_reg_LShift_reg(iRegLNoSp dst, 11716 iRegL src1, iRegL src2, 11717 immI src3) %{ 11718 match(Set dst (XorL src1 (LShiftL src2 src3))); 11719 11720 ins_cost(1.9 * INSN_COST); 11721 format %{ "eor $dst, $src1, $src2, LSL $src3" %} 11722 11723 ins_encode %{ 11724 __ eor(as_Register($dst$$reg), 11725 as_Register($src1$$reg), 11726 as_Register($src2$$reg), 11727 Assembler::LSL, 11728 $src3$$constant & 0x3f); 11729 %} 11730 11731 ins_pipe(ialu_reg_reg_shift); 11732 %} 11733 11734 // This pattern is automatically generated from aarch64_ad.m4 11735 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11736 instruct XorI_reg_RotateRight_reg(iRegINoSp dst, 11737 iRegIorL2I src1, iRegIorL2I src2, 11738 immI src3) %{ 11739 match(Set dst (XorI src1 (RotateRight src2 src3))); 11740 11741 ins_cost(1.9 * INSN_COST); 11742 format %{ "eorw $dst, $src1, $src2, ROR $src3" %} 11743 11744 ins_encode %{ 11745 __ eorw(as_Register($dst$$reg), 11746 as_Register($src1$$reg), 11747 as_Register($src2$$reg), 11748 Assembler::ROR, 11749 $src3$$constant & 0x1f); 11750 %} 11751 11752 ins_pipe(ialu_reg_reg_shift); 11753 %} 11754 11755 // This pattern is automatically generated from aarch64_ad.m4 11756 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11757 instruct XorL_reg_RotateRight_reg(iRegLNoSp dst, 11758 iRegL src1, iRegL src2, 11759 immI src3) %{ 11760 match(Set dst (XorL src1 (RotateRight src2 src3))); 11761 11762 ins_cost(1.9 * INSN_COST); 11763 format %{ "eor $dst, $src1, $src2, ROR $src3" %} 11764 11765 ins_encode %{ 11766 __ eor(as_Register($dst$$reg), 11767 as_Register($src1$$reg), 11768 as_Register($src2$$reg), 11769 Assembler::ROR, 11770 $src3$$constant & 0x3f); 11771 %} 11772 11773 ins_pipe(ialu_reg_reg_shift); 11774 %} 11775 11776 // This pattern is automatically generated from aarch64_ad.m4 11777 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11778 instruct OrI_reg_URShift_reg(iRegINoSp dst, 11779 iRegIorL2I src1, iRegIorL2I src2, 11780 immI src3) %{ 11781 match(Set dst (OrI src1 (URShiftI src2 src3))); 11782 11783 ins_cost(1.9 * INSN_COST); 11784 format %{ "orrw $dst, $src1, $src2, LSR $src3" %} 11785 11786 ins_encode %{ 11787 __ orrw(as_Register($dst$$reg), 11788 as_Register($src1$$reg), 11789 as_Register($src2$$reg), 11790 Assembler::LSR, 11791 $src3$$constant & 0x1f); 11792 %} 11793 11794 ins_pipe(ialu_reg_reg_shift); 11795 %} 11796 11797 // This pattern is automatically generated from aarch64_ad.m4 11798 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11799 instruct OrL_reg_URShift_reg(iRegLNoSp dst, 11800 iRegL src1, iRegL src2, 11801 immI src3) %{ 11802 match(Set dst (OrL src1 (URShiftL src2 src3))); 11803 11804 ins_cost(1.9 * INSN_COST); 11805 format %{ "orr $dst, $src1, $src2, LSR $src3" %} 11806 11807 ins_encode %{ 11808 __ orr(as_Register($dst$$reg), 11809 as_Register($src1$$reg), 11810 as_Register($src2$$reg), 11811 Assembler::LSR, 11812 $src3$$constant & 0x3f); 11813 %} 11814 11815 ins_pipe(ialu_reg_reg_shift); 11816 %} 11817 11818 // This pattern is automatically generated from aarch64_ad.m4 11819 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11820 instruct OrI_reg_RShift_reg(iRegINoSp dst, 11821 iRegIorL2I src1, iRegIorL2I src2, 11822 immI src3) %{ 11823 match(Set dst (OrI src1 (RShiftI src2 src3))); 11824 11825 ins_cost(1.9 * INSN_COST); 11826 format %{ "orrw $dst, $src1, $src2, ASR $src3" %} 11827 11828 ins_encode %{ 11829 __ orrw(as_Register($dst$$reg), 11830 as_Register($src1$$reg), 11831 as_Register($src2$$reg), 11832 Assembler::ASR, 11833 $src3$$constant & 0x1f); 11834 %} 11835 11836 ins_pipe(ialu_reg_reg_shift); 11837 %} 11838 11839 // This pattern is automatically generated from aarch64_ad.m4 11840 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11841 instruct OrL_reg_RShift_reg(iRegLNoSp dst, 11842 iRegL src1, iRegL src2, 11843 immI src3) %{ 11844 match(Set dst (OrL src1 (RShiftL src2 src3))); 11845 11846 ins_cost(1.9 * INSN_COST); 11847 format %{ "orr $dst, $src1, $src2, ASR $src3" %} 11848 11849 ins_encode %{ 11850 __ orr(as_Register($dst$$reg), 11851 as_Register($src1$$reg), 11852 as_Register($src2$$reg), 11853 Assembler::ASR, 11854 $src3$$constant & 0x3f); 11855 %} 11856 11857 ins_pipe(ialu_reg_reg_shift); 11858 %} 11859 11860 // This pattern is automatically generated from aarch64_ad.m4 11861 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11862 instruct OrI_reg_LShift_reg(iRegINoSp dst, 11863 iRegIorL2I src1, iRegIorL2I src2, 11864 immI src3) %{ 11865 match(Set dst (OrI src1 (LShiftI src2 src3))); 11866 11867 ins_cost(1.9 * INSN_COST); 11868 format %{ "orrw $dst, $src1, $src2, LSL $src3" %} 11869 11870 ins_encode %{ 11871 __ orrw(as_Register($dst$$reg), 11872 as_Register($src1$$reg), 11873 as_Register($src2$$reg), 11874 Assembler::LSL, 11875 $src3$$constant & 0x1f); 11876 %} 11877 11878 ins_pipe(ialu_reg_reg_shift); 11879 %} 11880 11881 // This pattern is automatically generated from aarch64_ad.m4 11882 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11883 instruct OrL_reg_LShift_reg(iRegLNoSp dst, 11884 iRegL src1, iRegL src2, 11885 immI src3) %{ 11886 match(Set dst (OrL src1 (LShiftL src2 src3))); 11887 11888 ins_cost(1.9 * INSN_COST); 11889 format %{ "orr $dst, $src1, $src2, LSL $src3" %} 11890 11891 ins_encode %{ 11892 __ orr(as_Register($dst$$reg), 11893 as_Register($src1$$reg), 11894 as_Register($src2$$reg), 11895 Assembler::LSL, 11896 $src3$$constant & 0x3f); 11897 %} 11898 11899 ins_pipe(ialu_reg_reg_shift); 11900 %} 11901 11902 // This pattern is automatically generated from aarch64_ad.m4 11903 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11904 instruct OrI_reg_RotateRight_reg(iRegINoSp dst, 11905 iRegIorL2I src1, iRegIorL2I src2, 11906 immI src3) %{ 11907 match(Set dst (OrI src1 (RotateRight src2 src3))); 11908 11909 ins_cost(1.9 * INSN_COST); 11910 format %{ "orrw $dst, $src1, $src2, ROR $src3" %} 11911 11912 ins_encode %{ 11913 __ orrw(as_Register($dst$$reg), 11914 as_Register($src1$$reg), 11915 as_Register($src2$$reg), 11916 Assembler::ROR, 11917 $src3$$constant & 0x1f); 11918 %} 11919 11920 ins_pipe(ialu_reg_reg_shift); 11921 %} 11922 11923 // This pattern is automatically generated from aarch64_ad.m4 11924 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11925 instruct OrL_reg_RotateRight_reg(iRegLNoSp dst, 11926 iRegL src1, iRegL src2, 11927 immI src3) %{ 11928 match(Set dst (OrL src1 (RotateRight src2 src3))); 11929 11930 ins_cost(1.9 * INSN_COST); 11931 format %{ "orr $dst, $src1, $src2, ROR $src3" %} 11932 11933 ins_encode %{ 11934 __ orr(as_Register($dst$$reg), 11935 as_Register($src1$$reg), 11936 as_Register($src2$$reg), 11937 Assembler::ROR, 11938 $src3$$constant & 0x3f); 11939 %} 11940 11941 ins_pipe(ialu_reg_reg_shift); 11942 %} 11943 11944 // This pattern is automatically generated from aarch64_ad.m4 11945 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11946 instruct AddI_reg_URShift_reg(iRegINoSp dst, 11947 iRegIorL2I src1, iRegIorL2I src2, 11948 immI src3) %{ 11949 match(Set dst (AddI src1 (URShiftI src2 src3))); 11950 11951 ins_cost(1.9 * INSN_COST); 11952 format %{ "addw $dst, $src1, $src2, LSR $src3" %} 11953 11954 ins_encode %{ 11955 __ addw(as_Register($dst$$reg), 11956 as_Register($src1$$reg), 11957 as_Register($src2$$reg), 11958 Assembler::LSR, 11959 $src3$$constant & 0x1f); 11960 %} 11961 11962 ins_pipe(ialu_reg_reg_shift); 11963 %} 11964 11965 // This pattern is automatically generated from aarch64_ad.m4 11966 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11967 instruct AddL_reg_URShift_reg(iRegLNoSp dst, 11968 iRegL src1, iRegL src2, 11969 immI src3) %{ 11970 match(Set dst (AddL src1 (URShiftL src2 src3))); 11971 11972 ins_cost(1.9 * INSN_COST); 11973 format %{ "add $dst, $src1, $src2, LSR $src3" %} 11974 11975 ins_encode %{ 11976 __ add(as_Register($dst$$reg), 11977 as_Register($src1$$reg), 11978 as_Register($src2$$reg), 11979 Assembler::LSR, 11980 $src3$$constant & 0x3f); 11981 %} 11982 11983 ins_pipe(ialu_reg_reg_shift); 11984 %} 11985 11986 // This pattern is automatically generated from aarch64_ad.m4 11987 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11988 instruct AddI_reg_RShift_reg(iRegINoSp dst, 11989 iRegIorL2I src1, iRegIorL2I src2, 11990 immI src3) %{ 11991 match(Set dst (AddI src1 (RShiftI src2 src3))); 11992 11993 ins_cost(1.9 * INSN_COST); 11994 format %{ "addw $dst, $src1, $src2, ASR $src3" %} 11995 11996 ins_encode %{ 11997 __ addw(as_Register($dst$$reg), 11998 as_Register($src1$$reg), 11999 as_Register($src2$$reg), 12000 Assembler::ASR, 12001 $src3$$constant & 0x1f); 12002 %} 12003 12004 ins_pipe(ialu_reg_reg_shift); 12005 %} 12006 12007 // This pattern is automatically generated from aarch64_ad.m4 12008 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12009 instruct AddL_reg_RShift_reg(iRegLNoSp dst, 12010 iRegL src1, iRegL src2, 12011 immI src3) %{ 12012 match(Set dst (AddL src1 (RShiftL src2 src3))); 12013 12014 ins_cost(1.9 * INSN_COST); 12015 format %{ "add $dst, $src1, $src2, ASR $src3" %} 12016 12017 ins_encode %{ 12018 __ add(as_Register($dst$$reg), 12019 as_Register($src1$$reg), 12020 as_Register($src2$$reg), 12021 Assembler::ASR, 12022 $src3$$constant & 0x3f); 12023 %} 12024 12025 ins_pipe(ialu_reg_reg_shift); 12026 %} 12027 12028 // This pattern is automatically generated from aarch64_ad.m4 12029 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12030 instruct AddI_reg_LShift_reg(iRegINoSp dst, 12031 iRegIorL2I src1, iRegIorL2I src2, 12032 immI src3) %{ 12033 match(Set dst (AddI src1 (LShiftI src2 src3))); 12034 12035 ins_cost(1.9 * INSN_COST); 12036 format %{ "addw $dst, $src1, $src2, LSL $src3" %} 12037 12038 ins_encode %{ 12039 __ addw(as_Register($dst$$reg), 12040 as_Register($src1$$reg), 12041 as_Register($src2$$reg), 12042 Assembler::LSL, 12043 $src3$$constant & 0x1f); 12044 %} 12045 12046 ins_pipe(ialu_reg_reg_shift); 12047 %} 12048 12049 // This pattern is automatically generated from aarch64_ad.m4 12050 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12051 instruct AddL_reg_LShift_reg(iRegLNoSp dst, 12052 iRegL src1, iRegL src2, 12053 immI src3) %{ 12054 match(Set dst (AddL src1 (LShiftL src2 src3))); 12055 12056 ins_cost(1.9 * INSN_COST); 12057 format %{ "add $dst, $src1, $src2, LSL $src3" %} 12058 12059 ins_encode %{ 12060 __ add(as_Register($dst$$reg), 12061 as_Register($src1$$reg), 12062 as_Register($src2$$reg), 12063 Assembler::LSL, 12064 $src3$$constant & 0x3f); 12065 %} 12066 12067 ins_pipe(ialu_reg_reg_shift); 12068 %} 12069 12070 // This pattern is automatically generated from aarch64_ad.m4 12071 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12072 instruct SubI_reg_URShift_reg(iRegINoSp dst, 12073 iRegIorL2I src1, iRegIorL2I src2, 12074 immI src3) %{ 12075 match(Set dst (SubI src1 (URShiftI src2 src3))); 12076 12077 ins_cost(1.9 * INSN_COST); 12078 format %{ "subw $dst, $src1, $src2, LSR $src3" %} 12079 12080 ins_encode %{ 12081 __ subw(as_Register($dst$$reg), 12082 as_Register($src1$$reg), 12083 as_Register($src2$$reg), 12084 Assembler::LSR, 12085 $src3$$constant & 0x1f); 12086 %} 12087 12088 ins_pipe(ialu_reg_reg_shift); 12089 %} 12090 12091 // This pattern is automatically generated from aarch64_ad.m4 12092 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12093 instruct SubL_reg_URShift_reg(iRegLNoSp dst, 12094 iRegL src1, iRegL src2, 12095 immI src3) %{ 12096 match(Set dst (SubL src1 (URShiftL src2 src3))); 12097 12098 ins_cost(1.9 * INSN_COST); 12099 format %{ "sub $dst, $src1, $src2, LSR $src3" %} 12100 12101 ins_encode %{ 12102 __ sub(as_Register($dst$$reg), 12103 as_Register($src1$$reg), 12104 as_Register($src2$$reg), 12105 Assembler::LSR, 12106 $src3$$constant & 0x3f); 12107 %} 12108 12109 ins_pipe(ialu_reg_reg_shift); 12110 %} 12111 12112 // This pattern is automatically generated from aarch64_ad.m4 12113 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12114 instruct SubI_reg_RShift_reg(iRegINoSp dst, 12115 iRegIorL2I src1, iRegIorL2I src2, 12116 immI src3) %{ 12117 match(Set dst (SubI src1 (RShiftI src2 src3))); 12118 12119 ins_cost(1.9 * INSN_COST); 12120 format %{ "subw $dst, $src1, $src2, ASR $src3" %} 12121 12122 ins_encode %{ 12123 __ subw(as_Register($dst$$reg), 12124 as_Register($src1$$reg), 12125 as_Register($src2$$reg), 12126 Assembler::ASR, 12127 $src3$$constant & 0x1f); 12128 %} 12129 12130 ins_pipe(ialu_reg_reg_shift); 12131 %} 12132 12133 // This pattern is automatically generated from aarch64_ad.m4 12134 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12135 instruct SubL_reg_RShift_reg(iRegLNoSp dst, 12136 iRegL src1, iRegL src2, 12137 immI src3) %{ 12138 match(Set dst (SubL src1 (RShiftL src2 src3))); 12139 12140 ins_cost(1.9 * INSN_COST); 12141 format %{ "sub $dst, $src1, $src2, ASR $src3" %} 12142 12143 ins_encode %{ 12144 __ sub(as_Register($dst$$reg), 12145 as_Register($src1$$reg), 12146 as_Register($src2$$reg), 12147 Assembler::ASR, 12148 $src3$$constant & 0x3f); 12149 %} 12150 12151 ins_pipe(ialu_reg_reg_shift); 12152 %} 12153 12154 // This pattern is automatically generated from aarch64_ad.m4 12155 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12156 instruct SubI_reg_LShift_reg(iRegINoSp dst, 12157 iRegIorL2I src1, iRegIorL2I src2, 12158 immI src3) %{ 12159 match(Set dst (SubI src1 (LShiftI src2 src3))); 12160 12161 ins_cost(1.9 * INSN_COST); 12162 format %{ "subw $dst, $src1, $src2, LSL $src3" %} 12163 12164 ins_encode %{ 12165 __ subw(as_Register($dst$$reg), 12166 as_Register($src1$$reg), 12167 as_Register($src2$$reg), 12168 Assembler::LSL, 12169 $src3$$constant & 0x1f); 12170 %} 12171 12172 ins_pipe(ialu_reg_reg_shift); 12173 %} 12174 12175 // This pattern is automatically generated from aarch64_ad.m4 12176 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12177 instruct SubL_reg_LShift_reg(iRegLNoSp dst, 12178 iRegL src1, iRegL src2, 12179 immI src3) %{ 12180 match(Set dst (SubL src1 (LShiftL src2 src3))); 12181 12182 ins_cost(1.9 * INSN_COST); 12183 format %{ "sub $dst, $src1, $src2, LSL $src3" %} 12184 12185 ins_encode %{ 12186 __ sub(as_Register($dst$$reg), 12187 as_Register($src1$$reg), 12188 as_Register($src2$$reg), 12189 Assembler::LSL, 12190 $src3$$constant & 0x3f); 12191 %} 12192 12193 ins_pipe(ialu_reg_reg_shift); 12194 %} 12195 12196 // This pattern is automatically generated from aarch64_ad.m4 12197 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12198 12199 // Shift Left followed by Shift Right. 12200 // This idiom is used by the compiler for the i2b bytecode etc. 12201 instruct sbfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count) 12202 %{ 12203 match(Set dst (RShiftL (LShiftL src lshift_count) rshift_count)); 12204 ins_cost(INSN_COST * 2); 12205 format %{ "sbfm $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %} 12206 ins_encode %{ 12207 int lshift = $lshift_count$$constant & 63; 12208 int rshift = $rshift_count$$constant & 63; 12209 int s = 63 - lshift; 12210 int r = (rshift - lshift) & 63; 12211 __ sbfm(as_Register($dst$$reg), 12212 as_Register($src$$reg), 12213 r, s); 12214 %} 12215 12216 ins_pipe(ialu_reg_shift); 12217 %} 12218 12219 // This pattern is automatically generated from aarch64_ad.m4 12220 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12221 12222 // Shift Left followed by Shift Right. 12223 // This idiom is used by the compiler for the i2b bytecode etc. 12224 instruct sbfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count) 12225 %{ 12226 match(Set dst (RShiftI (LShiftI src lshift_count) rshift_count)); 12227 ins_cost(INSN_COST * 2); 12228 format %{ "sbfmw $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %} 12229 ins_encode %{ 12230 int lshift = $lshift_count$$constant & 31; 12231 int rshift = $rshift_count$$constant & 31; 12232 int s = 31 - lshift; 12233 int r = (rshift - lshift) & 31; 12234 __ sbfmw(as_Register($dst$$reg), 12235 as_Register($src$$reg), 12236 r, s); 12237 %} 12238 12239 ins_pipe(ialu_reg_shift); 12240 %} 12241 12242 // This pattern is automatically generated from aarch64_ad.m4 12243 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12244 12245 // Shift Left followed by Shift Right. 12246 // This idiom is used by the compiler for the i2b bytecode etc. 12247 instruct ubfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count) 12248 %{ 12249 match(Set dst (URShiftL (LShiftL src lshift_count) rshift_count)); 12250 ins_cost(INSN_COST * 2); 12251 format %{ "ubfm $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %} 12252 ins_encode %{ 12253 int lshift = $lshift_count$$constant & 63; 12254 int rshift = $rshift_count$$constant & 63; 12255 int s = 63 - lshift; 12256 int r = (rshift - lshift) & 63; 12257 __ ubfm(as_Register($dst$$reg), 12258 as_Register($src$$reg), 12259 r, s); 12260 %} 12261 12262 ins_pipe(ialu_reg_shift); 12263 %} 12264 12265 // This pattern is automatically generated from aarch64_ad.m4 12266 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12267 12268 // Shift Left followed by Shift Right. 12269 // This idiom is used by the compiler for the i2b bytecode etc. 12270 instruct ubfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count) 12271 %{ 12272 match(Set dst (URShiftI (LShiftI src lshift_count) rshift_count)); 12273 ins_cost(INSN_COST * 2); 12274 format %{ "ubfmw $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %} 12275 ins_encode %{ 12276 int lshift = $lshift_count$$constant & 31; 12277 int rshift = $rshift_count$$constant & 31; 12278 int s = 31 - lshift; 12279 int r = (rshift - lshift) & 31; 12280 __ ubfmw(as_Register($dst$$reg), 12281 as_Register($src$$reg), 12282 r, s); 12283 %} 12284 12285 ins_pipe(ialu_reg_shift); 12286 %} 12287 12288 // Bitfield extract with shift & mask 12289 12290 // This pattern is automatically generated from aarch64_ad.m4 12291 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12292 instruct ubfxwI(iRegINoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask) 12293 %{ 12294 match(Set dst (AndI (URShiftI src rshift) mask)); 12295 // Make sure we are not going to exceed what ubfxw can do. 12296 predicate((exact_log2(n->in(2)->get_int() + 1) + (n->in(1)->in(2)->get_int() & 31)) <= (31 + 1)); 12297 12298 ins_cost(INSN_COST); 12299 format %{ "ubfxw $dst, $src, $rshift, $mask" %} 12300 ins_encode %{ 12301 int rshift = $rshift$$constant & 31; 12302 intptr_t mask = $mask$$constant; 12303 int width = exact_log2(mask+1); 12304 __ ubfxw(as_Register($dst$$reg), 12305 as_Register($src$$reg), rshift, width); 12306 %} 12307 ins_pipe(ialu_reg_shift); 12308 %} 12309 12310 // This pattern is automatically generated from aarch64_ad.m4 12311 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12312 instruct ubfxL(iRegLNoSp dst, iRegL src, immI rshift, immL_bitmask mask) 12313 %{ 12314 match(Set dst (AndL (URShiftL src rshift) mask)); 12315 // Make sure we are not going to exceed what ubfx can do. 12316 predicate((exact_log2_long(n->in(2)->get_long() + 1) + (n->in(1)->in(2)->get_int() & 63)) <= (63 + 1)); 12317 12318 ins_cost(INSN_COST); 12319 format %{ "ubfx $dst, $src, $rshift, $mask" %} 12320 ins_encode %{ 12321 int rshift = $rshift$$constant & 63; 12322 intptr_t mask = $mask$$constant; 12323 int width = exact_log2_long(mask+1); 12324 __ ubfx(as_Register($dst$$reg), 12325 as_Register($src$$reg), rshift, width); 12326 %} 12327 ins_pipe(ialu_reg_shift); 12328 %} 12329 12330 12331 // This pattern is automatically generated from aarch64_ad.m4 12332 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12333 12334 // We can use ubfx when extending an And with a mask when we know mask 12335 // is positive. We know that because immI_bitmask guarantees it. 12336 instruct ubfxIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask) 12337 %{ 12338 match(Set dst (ConvI2L (AndI (URShiftI src rshift) mask))); 12339 // Make sure we are not going to exceed what ubfxw can do. 12340 predicate((exact_log2(n->in(1)->in(2)->get_int() + 1) + (n->in(1)->in(1)->in(2)->get_int() & 31)) <= (31 + 1)); 12341 12342 ins_cost(INSN_COST * 2); 12343 format %{ "ubfx $dst, $src, $rshift, $mask" %} 12344 ins_encode %{ 12345 int rshift = $rshift$$constant & 31; 12346 intptr_t mask = $mask$$constant; 12347 int width = exact_log2(mask+1); 12348 __ ubfx(as_Register($dst$$reg), 12349 as_Register($src$$reg), rshift, width); 12350 %} 12351 ins_pipe(ialu_reg_shift); 12352 %} 12353 12354 12355 // This pattern is automatically generated from aarch64_ad.m4 12356 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12357 12358 // We can use ubfiz when masking by a positive number and then left shifting the result. 12359 // We know that the mask is positive because immI_bitmask guarantees it. 12360 instruct ubfizwI(iRegINoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask) 12361 %{ 12362 match(Set dst (LShiftI (AndI src mask) lshift)); 12363 predicate((exact_log2(n->in(1)->in(2)->get_int() + 1) + (n->in(2)->get_int() & 31)) <= (31 + 1)); 12364 12365 ins_cost(INSN_COST); 12366 format %{ "ubfizw $dst, $src, $lshift, $mask" %} 12367 ins_encode %{ 12368 int lshift = $lshift$$constant & 31; 12369 intptr_t mask = $mask$$constant; 12370 int width = exact_log2(mask+1); 12371 __ ubfizw(as_Register($dst$$reg), 12372 as_Register($src$$reg), lshift, width); 12373 %} 12374 ins_pipe(ialu_reg_shift); 12375 %} 12376 12377 // This pattern is automatically generated from aarch64_ad.m4 12378 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12379 12380 // We can use ubfiz when masking by a positive number and then left shifting the result. 12381 // We know that the mask is positive because immL_bitmask guarantees it. 12382 instruct ubfizL(iRegLNoSp dst, iRegL src, immI lshift, immL_bitmask mask) 12383 %{ 12384 match(Set dst (LShiftL (AndL src mask) lshift)); 12385 predicate((exact_log2_long(n->in(1)->in(2)->get_long() + 1) + (n->in(2)->get_int() & 63)) <= (63 + 1)); 12386 12387 ins_cost(INSN_COST); 12388 format %{ "ubfiz $dst, $src, $lshift, $mask" %} 12389 ins_encode %{ 12390 int lshift = $lshift$$constant & 63; 12391 intptr_t mask = $mask$$constant; 12392 int width = exact_log2_long(mask+1); 12393 __ ubfiz(as_Register($dst$$reg), 12394 as_Register($src$$reg), lshift, width); 12395 %} 12396 ins_pipe(ialu_reg_shift); 12397 %} 12398 12399 // This pattern is automatically generated from aarch64_ad.m4 12400 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12401 12402 // We can use ubfiz when masking by a positive number and then left shifting the result. 12403 // We know that the mask is positive because immI_bitmask guarantees it. 12404 instruct ubfizwIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask) 12405 %{ 12406 match(Set dst (ConvI2L (LShiftI (AndI src mask) lshift))); 12407 predicate((exact_log2(n->in(1)->in(1)->in(2)->get_int() + 1) + (n->in(1)->in(2)->get_int() & 31)) <= 31); 12408 12409 ins_cost(INSN_COST); 12410 format %{ "ubfizw $dst, $src, $lshift, $mask" %} 12411 ins_encode %{ 12412 int lshift = $lshift$$constant & 31; 12413 intptr_t mask = $mask$$constant; 12414 int width = exact_log2(mask+1); 12415 __ ubfizw(as_Register($dst$$reg), 12416 as_Register($src$$reg), lshift, width); 12417 %} 12418 ins_pipe(ialu_reg_shift); 12419 %} 12420 12421 // This pattern is automatically generated from aarch64_ad.m4 12422 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12423 12424 // We can use ubfiz when masking by a positive number and then left shifting the result. 12425 // We know that the mask is positive because immL_bitmask guarantees it. 12426 instruct ubfizLConvL2I(iRegINoSp dst, iRegL src, immI lshift, immL_positive_bitmaskI mask) 12427 %{ 12428 match(Set dst (ConvL2I (LShiftL (AndL src mask) lshift))); 12429 predicate((exact_log2_long(n->in(1)->in(1)->in(2)->get_long() + 1) + (n->in(1)->in(2)->get_int() & 63)) <= 31); 12430 12431 ins_cost(INSN_COST); 12432 format %{ "ubfiz $dst, $src, $lshift, $mask" %} 12433 ins_encode %{ 12434 int lshift = $lshift$$constant & 63; 12435 intptr_t mask = $mask$$constant; 12436 int width = exact_log2_long(mask+1); 12437 __ ubfiz(as_Register($dst$$reg), 12438 as_Register($src$$reg), lshift, width); 12439 %} 12440 ins_pipe(ialu_reg_shift); 12441 %} 12442 12443 12444 // This pattern is automatically generated from aarch64_ad.m4 12445 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12446 12447 // If there is a convert I to L block between and AndI and a LShiftL, we can also match ubfiz 12448 instruct ubfizIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask) 12449 %{ 12450 match(Set dst (LShiftL (ConvI2L (AndI src mask)) lshift)); 12451 predicate((exact_log2(n->in(1)->in(1)->in(2)->get_int() + 1) + (n->in(2)->get_int() & 63)) <= (63 + 1)); 12452 12453 ins_cost(INSN_COST); 12454 format %{ "ubfiz $dst, $src, $lshift, $mask" %} 12455 ins_encode %{ 12456 int lshift = $lshift$$constant & 63; 12457 intptr_t mask = $mask$$constant; 12458 int width = exact_log2(mask+1); 12459 __ ubfiz(as_Register($dst$$reg), 12460 as_Register($src$$reg), lshift, width); 12461 %} 12462 ins_pipe(ialu_reg_shift); 12463 %} 12464 12465 // This pattern is automatically generated from aarch64_ad.m4 12466 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12467 12468 // If there is a convert L to I block between and AndL and a LShiftI, we can also match ubfiz 12469 instruct ubfizLConvL2Ix(iRegINoSp dst, iRegL src, immI lshift, immL_positive_bitmaskI mask) 12470 %{ 12471 match(Set dst (LShiftI (ConvL2I (AndL src mask)) lshift)); 12472 predicate((exact_log2_long(n->in(1)->in(1)->in(2)->get_long() + 1) + (n->in(2)->get_int() & 31)) <= 31); 12473 12474 ins_cost(INSN_COST); 12475 format %{ "ubfiz $dst, $src, $lshift, $mask" %} 12476 ins_encode %{ 12477 int lshift = $lshift$$constant & 31; 12478 intptr_t mask = $mask$$constant; 12479 int width = exact_log2(mask+1); 12480 __ ubfiz(as_Register($dst$$reg), 12481 as_Register($src$$reg), lshift, width); 12482 %} 12483 ins_pipe(ialu_reg_shift); 12484 %} 12485 12486 // This pattern is automatically generated from aarch64_ad.m4 12487 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12488 12489 // Can skip int2long conversions after AND with small bitmask 12490 instruct ubfizIConvI2LAndI(iRegLNoSp dst, iRegI src, immI_bitmask msk) 12491 %{ 12492 match(Set dst (ConvI2L (AndI src msk))); 12493 ins_cost(INSN_COST); 12494 format %{ "ubfiz $dst, $src, 0, exact_log2($msk + 1) " %} 12495 ins_encode %{ 12496 __ ubfiz(as_Register($dst$$reg), as_Register($src$$reg), 0, exact_log2($msk$$constant + 1)); 12497 %} 12498 ins_pipe(ialu_reg_shift); 12499 %} 12500 12501 12502 // Rotations 12503 12504 // This pattern is automatically generated from aarch64_ad.m4 12505 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12506 instruct extrOrL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr) 12507 %{ 12508 match(Set dst (OrL (LShiftL src1 lshift) (URShiftL src2 rshift))); 12509 predicate(0 == (((n->in(1)->in(2)->get_int() & 63) + (n->in(2)->in(2)->get_int() & 63)) & 63)); 12510 12511 ins_cost(INSN_COST); 12512 format %{ "extr $dst, $src1, $src2, #$rshift" %} 12513 12514 ins_encode %{ 12515 __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg), 12516 $rshift$$constant & 63); 12517 %} 12518 ins_pipe(ialu_reg_reg_extr); 12519 %} 12520 12521 12522 // This pattern is automatically generated from aarch64_ad.m4 12523 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12524 instruct extrOrI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr) 12525 %{ 12526 match(Set dst (OrI (LShiftI src1 lshift) (URShiftI src2 rshift))); 12527 predicate(0 == (((n->in(1)->in(2)->get_int() & 31) + (n->in(2)->in(2)->get_int() & 31)) & 31)); 12528 12529 ins_cost(INSN_COST); 12530 format %{ "extr $dst, $src1, $src2, #$rshift" %} 12531 12532 ins_encode %{ 12533 __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg), 12534 $rshift$$constant & 31); 12535 %} 12536 ins_pipe(ialu_reg_reg_extr); 12537 %} 12538 12539 12540 // This pattern is automatically generated from aarch64_ad.m4 12541 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12542 instruct extrAddL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr) 12543 %{ 12544 match(Set dst (AddL (LShiftL src1 lshift) (URShiftL src2 rshift))); 12545 predicate(0 == (((n->in(1)->in(2)->get_int() & 63) + (n->in(2)->in(2)->get_int() & 63)) & 63)); 12546 12547 ins_cost(INSN_COST); 12548 format %{ "extr $dst, $src1, $src2, #$rshift" %} 12549 12550 ins_encode %{ 12551 __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg), 12552 $rshift$$constant & 63); 12553 %} 12554 ins_pipe(ialu_reg_reg_extr); 12555 %} 12556 12557 12558 // This pattern is automatically generated from aarch64_ad.m4 12559 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12560 instruct extrAddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr) 12561 %{ 12562 match(Set dst (AddI (LShiftI src1 lshift) (URShiftI src2 rshift))); 12563 predicate(0 == (((n->in(1)->in(2)->get_int() & 31) + (n->in(2)->in(2)->get_int() & 31)) & 31)); 12564 12565 ins_cost(INSN_COST); 12566 format %{ "extr $dst, $src1, $src2, #$rshift" %} 12567 12568 ins_encode %{ 12569 __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg), 12570 $rshift$$constant & 31); 12571 %} 12572 ins_pipe(ialu_reg_reg_extr); 12573 %} 12574 12575 // This pattern is automatically generated from aarch64_ad.m4 12576 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12577 instruct rorI_imm(iRegINoSp dst, iRegI src, immI shift) 12578 %{ 12579 match(Set dst (RotateRight src shift)); 12580 12581 ins_cost(INSN_COST); 12582 format %{ "ror $dst, $src, $shift" %} 12583 12584 ins_encode %{ 12585 __ extrw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($src$$reg), 12586 $shift$$constant & 0x1f); 12587 %} 12588 ins_pipe(ialu_reg_reg_vshift); 12589 %} 12590 12591 // This pattern is automatically generated from aarch64_ad.m4 12592 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12593 instruct rorL_imm(iRegLNoSp dst, iRegL src, immI shift) 12594 %{ 12595 match(Set dst (RotateRight src shift)); 12596 12597 ins_cost(INSN_COST); 12598 format %{ "ror $dst, $src, $shift" %} 12599 12600 ins_encode %{ 12601 __ extr(as_Register($dst$$reg), as_Register($src$$reg), as_Register($src$$reg), 12602 $shift$$constant & 0x3f); 12603 %} 12604 ins_pipe(ialu_reg_reg_vshift); 12605 %} 12606 12607 // This pattern is automatically generated from aarch64_ad.m4 12608 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12609 instruct rorI_reg(iRegINoSp dst, iRegI src, iRegI shift) 12610 %{ 12611 match(Set dst (RotateRight src shift)); 12612 12613 ins_cost(INSN_COST); 12614 format %{ "ror $dst, $src, $shift" %} 12615 12616 ins_encode %{ 12617 __ rorvw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg)); 12618 %} 12619 ins_pipe(ialu_reg_reg_vshift); 12620 %} 12621 12622 // This pattern is automatically generated from aarch64_ad.m4 12623 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12624 instruct rorL_reg(iRegLNoSp dst, iRegL src, iRegI shift) 12625 %{ 12626 match(Set dst (RotateRight src shift)); 12627 12628 ins_cost(INSN_COST); 12629 format %{ "ror $dst, $src, $shift" %} 12630 12631 ins_encode %{ 12632 __ rorv(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg)); 12633 %} 12634 ins_pipe(ialu_reg_reg_vshift); 12635 %} 12636 12637 // This pattern is automatically generated from aarch64_ad.m4 12638 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12639 instruct rolI_reg(iRegINoSp dst, iRegI src, iRegI shift) 12640 %{ 12641 match(Set dst (RotateLeft src shift)); 12642 12643 ins_cost(INSN_COST); 12644 format %{ "rol $dst, $src, $shift" %} 12645 12646 ins_encode %{ 12647 __ subw(rscratch1, zr, as_Register($shift$$reg)); 12648 __ rorvw(as_Register($dst$$reg), as_Register($src$$reg), rscratch1); 12649 %} 12650 ins_pipe(ialu_reg_reg_vshift); 12651 %} 12652 12653 // This pattern is automatically generated from aarch64_ad.m4 12654 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12655 instruct rolL_reg(iRegLNoSp dst, iRegL src, iRegI shift) 12656 %{ 12657 match(Set dst (RotateLeft src shift)); 12658 12659 ins_cost(INSN_COST); 12660 format %{ "rol $dst, $src, $shift" %} 12661 12662 ins_encode %{ 12663 __ subw(rscratch1, zr, as_Register($shift$$reg)); 12664 __ rorv(as_Register($dst$$reg), as_Register($src$$reg), rscratch1); 12665 %} 12666 ins_pipe(ialu_reg_reg_vshift); 12667 %} 12668 12669 12670 // Add/subtract (extended) 12671 12672 // This pattern is automatically generated from aarch64_ad.m4 12673 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12674 instruct AddExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr) 12675 %{ 12676 match(Set dst (AddL src1 (ConvI2L src2))); 12677 ins_cost(INSN_COST); 12678 format %{ "add $dst, $src1, $src2, sxtw" %} 12679 12680 ins_encode %{ 12681 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12682 as_Register($src2$$reg), ext::sxtw); 12683 %} 12684 ins_pipe(ialu_reg_reg); 12685 %} 12686 12687 // This pattern is automatically generated from aarch64_ad.m4 12688 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12689 instruct SubExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr) 12690 %{ 12691 match(Set dst (SubL src1 (ConvI2L src2))); 12692 ins_cost(INSN_COST); 12693 format %{ "sub $dst, $src1, $src2, sxtw" %} 12694 12695 ins_encode %{ 12696 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 12697 as_Register($src2$$reg), ext::sxtw); 12698 %} 12699 ins_pipe(ialu_reg_reg); 12700 %} 12701 12702 // This pattern is automatically generated from aarch64_ad.m4 12703 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12704 instruct AddExtI_sxth(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_16 lshift, immI_16 rshift, rFlagsReg cr) 12705 %{ 12706 match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift))); 12707 ins_cost(INSN_COST); 12708 format %{ "add $dst, $src1, $src2, sxth" %} 12709 12710 ins_encode %{ 12711 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12712 as_Register($src2$$reg), ext::sxth); 12713 %} 12714 ins_pipe(ialu_reg_reg); 12715 %} 12716 12717 // This pattern is automatically generated from aarch64_ad.m4 12718 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12719 instruct AddExtI_sxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr) 12720 %{ 12721 match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift))); 12722 ins_cost(INSN_COST); 12723 format %{ "add $dst, $src1, $src2, sxtb" %} 12724 12725 ins_encode %{ 12726 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12727 as_Register($src2$$reg), ext::sxtb); 12728 %} 12729 ins_pipe(ialu_reg_reg); 12730 %} 12731 12732 // This pattern is automatically generated from aarch64_ad.m4 12733 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12734 instruct AddExtI_uxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr) 12735 %{ 12736 match(Set dst (AddI src1 (URShiftI (LShiftI src2 lshift) rshift))); 12737 ins_cost(INSN_COST); 12738 format %{ "add $dst, $src1, $src2, uxtb" %} 12739 12740 ins_encode %{ 12741 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12742 as_Register($src2$$reg), ext::uxtb); 12743 %} 12744 ins_pipe(ialu_reg_reg); 12745 %} 12746 12747 // This pattern is automatically generated from aarch64_ad.m4 12748 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12749 instruct AddExtL_sxth(iRegLNoSp dst, iRegL src1, iRegL src2, immI_48 lshift, immI_48 rshift, rFlagsReg cr) 12750 %{ 12751 match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift))); 12752 ins_cost(INSN_COST); 12753 format %{ "add $dst, $src1, $src2, sxth" %} 12754 12755 ins_encode %{ 12756 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12757 as_Register($src2$$reg), ext::sxth); 12758 %} 12759 ins_pipe(ialu_reg_reg); 12760 %} 12761 12762 // This pattern is automatically generated from aarch64_ad.m4 12763 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12764 instruct AddExtL_sxtw(iRegLNoSp dst, iRegL src1, iRegL src2, immI_32 lshift, immI_32 rshift, rFlagsReg cr) 12765 %{ 12766 match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift))); 12767 ins_cost(INSN_COST); 12768 format %{ "add $dst, $src1, $src2, sxtw" %} 12769 12770 ins_encode %{ 12771 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12772 as_Register($src2$$reg), ext::sxtw); 12773 %} 12774 ins_pipe(ialu_reg_reg); 12775 %} 12776 12777 // This pattern is automatically generated from aarch64_ad.m4 12778 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12779 instruct AddExtL_sxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr) 12780 %{ 12781 match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift))); 12782 ins_cost(INSN_COST); 12783 format %{ "add $dst, $src1, $src2, sxtb" %} 12784 12785 ins_encode %{ 12786 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12787 as_Register($src2$$reg), ext::sxtb); 12788 %} 12789 ins_pipe(ialu_reg_reg); 12790 %} 12791 12792 // This pattern is automatically generated from aarch64_ad.m4 12793 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12794 instruct AddExtL_uxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr) 12795 %{ 12796 match(Set dst (AddL src1 (URShiftL (LShiftL src2 lshift) rshift))); 12797 ins_cost(INSN_COST); 12798 format %{ "add $dst, $src1, $src2, uxtb" %} 12799 12800 ins_encode %{ 12801 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12802 as_Register($src2$$reg), ext::uxtb); 12803 %} 12804 ins_pipe(ialu_reg_reg); 12805 %} 12806 12807 // This pattern is automatically generated from aarch64_ad.m4 12808 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12809 instruct AddExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr) 12810 %{ 12811 match(Set dst (AddI src1 (AndI src2 mask))); 12812 ins_cost(INSN_COST); 12813 format %{ "addw $dst, $src1, $src2, uxtb" %} 12814 12815 ins_encode %{ 12816 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 12817 as_Register($src2$$reg), ext::uxtb); 12818 %} 12819 ins_pipe(ialu_reg_reg); 12820 %} 12821 12822 // This pattern is automatically generated from aarch64_ad.m4 12823 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12824 instruct AddExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr) 12825 %{ 12826 match(Set dst (AddI src1 (AndI src2 mask))); 12827 ins_cost(INSN_COST); 12828 format %{ "addw $dst, $src1, $src2, uxth" %} 12829 12830 ins_encode %{ 12831 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 12832 as_Register($src2$$reg), ext::uxth); 12833 %} 12834 ins_pipe(ialu_reg_reg); 12835 %} 12836 12837 // This pattern is automatically generated from aarch64_ad.m4 12838 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12839 instruct AddExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr) 12840 %{ 12841 match(Set dst (AddL src1 (AndL src2 mask))); 12842 ins_cost(INSN_COST); 12843 format %{ "add $dst, $src1, $src2, uxtb" %} 12844 12845 ins_encode %{ 12846 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12847 as_Register($src2$$reg), ext::uxtb); 12848 %} 12849 ins_pipe(ialu_reg_reg); 12850 %} 12851 12852 // This pattern is automatically generated from aarch64_ad.m4 12853 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12854 instruct AddExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr) 12855 %{ 12856 match(Set dst (AddL src1 (AndL src2 mask))); 12857 ins_cost(INSN_COST); 12858 format %{ "add $dst, $src1, $src2, uxth" %} 12859 12860 ins_encode %{ 12861 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12862 as_Register($src2$$reg), ext::uxth); 12863 %} 12864 ins_pipe(ialu_reg_reg); 12865 %} 12866 12867 // This pattern is automatically generated from aarch64_ad.m4 12868 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12869 instruct AddExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr) 12870 %{ 12871 match(Set dst (AddL src1 (AndL src2 mask))); 12872 ins_cost(INSN_COST); 12873 format %{ "add $dst, $src1, $src2, uxtw" %} 12874 12875 ins_encode %{ 12876 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12877 as_Register($src2$$reg), ext::uxtw); 12878 %} 12879 ins_pipe(ialu_reg_reg); 12880 %} 12881 12882 // This pattern is automatically generated from aarch64_ad.m4 12883 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12884 instruct SubExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr) 12885 %{ 12886 match(Set dst (SubI src1 (AndI src2 mask))); 12887 ins_cost(INSN_COST); 12888 format %{ "subw $dst, $src1, $src2, uxtb" %} 12889 12890 ins_encode %{ 12891 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 12892 as_Register($src2$$reg), ext::uxtb); 12893 %} 12894 ins_pipe(ialu_reg_reg); 12895 %} 12896 12897 // This pattern is automatically generated from aarch64_ad.m4 12898 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12899 instruct SubExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr) 12900 %{ 12901 match(Set dst (SubI src1 (AndI src2 mask))); 12902 ins_cost(INSN_COST); 12903 format %{ "subw $dst, $src1, $src2, uxth" %} 12904 12905 ins_encode %{ 12906 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 12907 as_Register($src2$$reg), ext::uxth); 12908 %} 12909 ins_pipe(ialu_reg_reg); 12910 %} 12911 12912 // This pattern is automatically generated from aarch64_ad.m4 12913 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12914 instruct SubExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr) 12915 %{ 12916 match(Set dst (SubL src1 (AndL src2 mask))); 12917 ins_cost(INSN_COST); 12918 format %{ "sub $dst, $src1, $src2, uxtb" %} 12919 12920 ins_encode %{ 12921 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 12922 as_Register($src2$$reg), ext::uxtb); 12923 %} 12924 ins_pipe(ialu_reg_reg); 12925 %} 12926 12927 // This pattern is automatically generated from aarch64_ad.m4 12928 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12929 instruct SubExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr) 12930 %{ 12931 match(Set dst (SubL src1 (AndL src2 mask))); 12932 ins_cost(INSN_COST); 12933 format %{ "sub $dst, $src1, $src2, uxth" %} 12934 12935 ins_encode %{ 12936 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 12937 as_Register($src2$$reg), ext::uxth); 12938 %} 12939 ins_pipe(ialu_reg_reg); 12940 %} 12941 12942 // This pattern is automatically generated from aarch64_ad.m4 12943 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12944 instruct SubExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr) 12945 %{ 12946 match(Set dst (SubL src1 (AndL src2 mask))); 12947 ins_cost(INSN_COST); 12948 format %{ "sub $dst, $src1, $src2, uxtw" %} 12949 12950 ins_encode %{ 12951 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 12952 as_Register($src2$$reg), ext::uxtw); 12953 %} 12954 ins_pipe(ialu_reg_reg); 12955 %} 12956 12957 12958 // This pattern is automatically generated from aarch64_ad.m4 12959 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12960 instruct AddExtL_sxtb_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_56 lshift1, immI_56 rshift1, rFlagsReg cr) 12961 %{ 12962 match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 12963 ins_cost(1.9 * INSN_COST); 12964 format %{ "add $dst, $src1, $src2, sxtb #lshift2" %} 12965 12966 ins_encode %{ 12967 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12968 as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant)); 12969 %} 12970 ins_pipe(ialu_reg_reg_shift); 12971 %} 12972 12973 // This pattern is automatically generated from aarch64_ad.m4 12974 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12975 instruct AddExtL_sxth_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_48 lshift1, immI_48 rshift1, rFlagsReg cr) 12976 %{ 12977 match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 12978 ins_cost(1.9 * INSN_COST); 12979 format %{ "add $dst, $src1, $src2, sxth #lshift2" %} 12980 12981 ins_encode %{ 12982 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12983 as_Register($src2$$reg), ext::sxth, ($lshift2$$constant)); 12984 %} 12985 ins_pipe(ialu_reg_reg_shift); 12986 %} 12987 12988 // This pattern is automatically generated from aarch64_ad.m4 12989 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12990 instruct AddExtL_sxtw_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_32 lshift1, immI_32 rshift1, rFlagsReg cr) 12991 %{ 12992 match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 12993 ins_cost(1.9 * INSN_COST); 12994 format %{ "add $dst, $src1, $src2, sxtw #lshift2" %} 12995 12996 ins_encode %{ 12997 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 12998 as_Register($src2$$reg), ext::sxtw, ($lshift2$$constant)); 12999 %} 13000 ins_pipe(ialu_reg_reg_shift); 13001 %} 13002 13003 // This pattern is automatically generated from aarch64_ad.m4 13004 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13005 instruct SubExtL_sxtb_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_56 lshift1, immI_56 rshift1, rFlagsReg cr) 13006 %{ 13007 match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13008 ins_cost(1.9 * INSN_COST); 13009 format %{ "sub $dst, $src1, $src2, sxtb #lshift2" %} 13010 13011 ins_encode %{ 13012 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13013 as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant)); 13014 %} 13015 ins_pipe(ialu_reg_reg_shift); 13016 %} 13017 13018 // This pattern is automatically generated from aarch64_ad.m4 13019 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13020 instruct SubExtL_sxth_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_48 lshift1, immI_48 rshift1, rFlagsReg cr) 13021 %{ 13022 match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13023 ins_cost(1.9 * INSN_COST); 13024 format %{ "sub $dst, $src1, $src2, sxth #lshift2" %} 13025 13026 ins_encode %{ 13027 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13028 as_Register($src2$$reg), ext::sxth, ($lshift2$$constant)); 13029 %} 13030 ins_pipe(ialu_reg_reg_shift); 13031 %} 13032 13033 // This pattern is automatically generated from aarch64_ad.m4 13034 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13035 instruct SubExtL_sxtw_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_32 lshift1, immI_32 rshift1, rFlagsReg cr) 13036 %{ 13037 match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13038 ins_cost(1.9 * INSN_COST); 13039 format %{ "sub $dst, $src1, $src2, sxtw #lshift2" %} 13040 13041 ins_encode %{ 13042 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13043 as_Register($src2$$reg), ext::sxtw, ($lshift2$$constant)); 13044 %} 13045 ins_pipe(ialu_reg_reg_shift); 13046 %} 13047 13048 // This pattern is automatically generated from aarch64_ad.m4 13049 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13050 instruct AddExtI_sxtb_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_24 lshift1, immI_24 rshift1, rFlagsReg cr) 13051 %{ 13052 match(Set dst (AddI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2))); 13053 ins_cost(1.9 * INSN_COST); 13054 format %{ "addw $dst, $src1, $src2, sxtb #lshift2" %} 13055 13056 ins_encode %{ 13057 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13058 as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant)); 13059 %} 13060 ins_pipe(ialu_reg_reg_shift); 13061 %} 13062 13063 // This pattern is automatically generated from aarch64_ad.m4 13064 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13065 instruct AddExtI_sxth_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_16 lshift1, immI_16 rshift1, rFlagsReg cr) 13066 %{ 13067 match(Set dst (AddI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2))); 13068 ins_cost(1.9 * INSN_COST); 13069 format %{ "addw $dst, $src1, $src2, sxth #lshift2" %} 13070 13071 ins_encode %{ 13072 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13073 as_Register($src2$$reg), ext::sxth, ($lshift2$$constant)); 13074 %} 13075 ins_pipe(ialu_reg_reg_shift); 13076 %} 13077 13078 // This pattern is automatically generated from aarch64_ad.m4 13079 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13080 instruct SubExtI_sxtb_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_24 lshift1, immI_24 rshift1, rFlagsReg cr) 13081 %{ 13082 match(Set dst (SubI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2))); 13083 ins_cost(1.9 * INSN_COST); 13084 format %{ "subw $dst, $src1, $src2, sxtb #lshift2" %} 13085 13086 ins_encode %{ 13087 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13088 as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant)); 13089 %} 13090 ins_pipe(ialu_reg_reg_shift); 13091 %} 13092 13093 // This pattern is automatically generated from aarch64_ad.m4 13094 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13095 instruct SubExtI_sxth_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_16 lshift1, immI_16 rshift1, rFlagsReg cr) 13096 %{ 13097 match(Set dst (SubI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2))); 13098 ins_cost(1.9 * INSN_COST); 13099 format %{ "subw $dst, $src1, $src2, sxth #lshift2" %} 13100 13101 ins_encode %{ 13102 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13103 as_Register($src2$$reg), ext::sxth, ($lshift2$$constant)); 13104 %} 13105 ins_pipe(ialu_reg_reg_shift); 13106 %} 13107 13108 // This pattern is automatically generated from aarch64_ad.m4 13109 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13110 instruct AddExtI_shift(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, immIExt lshift, rFlagsReg cr) 13111 %{ 13112 match(Set dst (AddL src1 (LShiftL (ConvI2L src2) lshift))); 13113 ins_cost(1.9 * INSN_COST); 13114 format %{ "add $dst, $src1, $src2, sxtw #lshift" %} 13115 13116 ins_encode %{ 13117 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13118 as_Register($src2$$reg), ext::sxtw, ($lshift$$constant)); 13119 %} 13120 ins_pipe(ialu_reg_reg_shift); 13121 %} 13122 13123 // This pattern is automatically generated from aarch64_ad.m4 13124 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13125 instruct SubExtI_shift(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, immIExt lshift, rFlagsReg cr) 13126 %{ 13127 match(Set dst (SubL src1 (LShiftL (ConvI2L src2) lshift))); 13128 ins_cost(1.9 * INSN_COST); 13129 format %{ "sub $dst, $src1, $src2, sxtw #lshift" %} 13130 13131 ins_encode %{ 13132 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13133 as_Register($src2$$reg), ext::sxtw, ($lshift$$constant)); 13134 %} 13135 ins_pipe(ialu_reg_reg_shift); 13136 %} 13137 13138 // This pattern is automatically generated from aarch64_ad.m4 13139 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13140 instruct AddExtL_uxtb_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, immIExt lshift, rFlagsReg cr) 13141 %{ 13142 match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift))); 13143 ins_cost(1.9 * INSN_COST); 13144 format %{ "add $dst, $src1, $src2, uxtb #lshift" %} 13145 13146 ins_encode %{ 13147 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13148 as_Register($src2$$reg), ext::uxtb, ($lshift$$constant)); 13149 %} 13150 ins_pipe(ialu_reg_reg_shift); 13151 %} 13152 13153 // This pattern is automatically generated from aarch64_ad.m4 13154 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13155 instruct AddExtL_uxth_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, immIExt lshift, rFlagsReg cr) 13156 %{ 13157 match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift))); 13158 ins_cost(1.9 * INSN_COST); 13159 format %{ "add $dst, $src1, $src2, uxth #lshift" %} 13160 13161 ins_encode %{ 13162 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13163 as_Register($src2$$reg), ext::uxth, ($lshift$$constant)); 13164 %} 13165 ins_pipe(ialu_reg_reg_shift); 13166 %} 13167 13168 // This pattern is automatically generated from aarch64_ad.m4 13169 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13170 instruct AddExtL_uxtw_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, immIExt lshift, rFlagsReg cr) 13171 %{ 13172 match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift))); 13173 ins_cost(1.9 * INSN_COST); 13174 format %{ "add $dst, $src1, $src2, uxtw #lshift" %} 13175 13176 ins_encode %{ 13177 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13178 as_Register($src2$$reg), ext::uxtw, ($lshift$$constant)); 13179 %} 13180 ins_pipe(ialu_reg_reg_shift); 13181 %} 13182 13183 // This pattern is automatically generated from aarch64_ad.m4 13184 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13185 instruct SubExtL_uxtb_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, immIExt lshift, rFlagsReg cr) 13186 %{ 13187 match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift))); 13188 ins_cost(1.9 * INSN_COST); 13189 format %{ "sub $dst, $src1, $src2, uxtb #lshift" %} 13190 13191 ins_encode %{ 13192 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13193 as_Register($src2$$reg), ext::uxtb, ($lshift$$constant)); 13194 %} 13195 ins_pipe(ialu_reg_reg_shift); 13196 %} 13197 13198 // This pattern is automatically generated from aarch64_ad.m4 13199 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13200 instruct SubExtL_uxth_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, immIExt lshift, rFlagsReg cr) 13201 %{ 13202 match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift))); 13203 ins_cost(1.9 * INSN_COST); 13204 format %{ "sub $dst, $src1, $src2, uxth #lshift" %} 13205 13206 ins_encode %{ 13207 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13208 as_Register($src2$$reg), ext::uxth, ($lshift$$constant)); 13209 %} 13210 ins_pipe(ialu_reg_reg_shift); 13211 %} 13212 13213 // This pattern is automatically generated from aarch64_ad.m4 13214 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13215 instruct SubExtL_uxtw_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, immIExt lshift, rFlagsReg cr) 13216 %{ 13217 match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift))); 13218 ins_cost(1.9 * INSN_COST); 13219 format %{ "sub $dst, $src1, $src2, uxtw #lshift" %} 13220 13221 ins_encode %{ 13222 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13223 as_Register($src2$$reg), ext::uxtw, ($lshift$$constant)); 13224 %} 13225 ins_pipe(ialu_reg_reg_shift); 13226 %} 13227 13228 // This pattern is automatically generated from aarch64_ad.m4 13229 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13230 instruct AddExtI_uxtb_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, immIExt lshift, rFlagsReg cr) 13231 %{ 13232 match(Set dst (AddI src1 (LShiftI (AndI src2 mask) lshift))); 13233 ins_cost(1.9 * INSN_COST); 13234 format %{ "addw $dst, $src1, $src2, uxtb #lshift" %} 13235 13236 ins_encode %{ 13237 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13238 as_Register($src2$$reg), ext::uxtb, ($lshift$$constant)); 13239 %} 13240 ins_pipe(ialu_reg_reg_shift); 13241 %} 13242 13243 // This pattern is automatically generated from aarch64_ad.m4 13244 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13245 instruct AddExtI_uxth_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, immIExt lshift, rFlagsReg cr) 13246 %{ 13247 match(Set dst (AddI src1 (LShiftI (AndI src2 mask) lshift))); 13248 ins_cost(1.9 * INSN_COST); 13249 format %{ "addw $dst, $src1, $src2, uxth #lshift" %} 13250 13251 ins_encode %{ 13252 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13253 as_Register($src2$$reg), ext::uxth, ($lshift$$constant)); 13254 %} 13255 ins_pipe(ialu_reg_reg_shift); 13256 %} 13257 13258 // This pattern is automatically generated from aarch64_ad.m4 13259 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13260 instruct SubExtI_uxtb_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, immIExt lshift, rFlagsReg cr) 13261 %{ 13262 match(Set dst (SubI src1 (LShiftI (AndI src2 mask) lshift))); 13263 ins_cost(1.9 * INSN_COST); 13264 format %{ "subw $dst, $src1, $src2, uxtb #lshift" %} 13265 13266 ins_encode %{ 13267 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13268 as_Register($src2$$reg), ext::uxtb, ($lshift$$constant)); 13269 %} 13270 ins_pipe(ialu_reg_reg_shift); 13271 %} 13272 13273 // This pattern is automatically generated from aarch64_ad.m4 13274 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13275 instruct SubExtI_uxth_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, immIExt lshift, rFlagsReg cr) 13276 %{ 13277 match(Set dst (SubI src1 (LShiftI (AndI src2 mask) lshift))); 13278 ins_cost(1.9 * INSN_COST); 13279 format %{ "subw $dst, $src1, $src2, uxth #lshift" %} 13280 13281 ins_encode %{ 13282 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13283 as_Register($src2$$reg), ext::uxth, ($lshift$$constant)); 13284 %} 13285 ins_pipe(ialu_reg_reg_shift); 13286 %} 13287 13288 // This pattern is automatically generated from aarch64_ad.m4 13289 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13290 instruct cmovI_reg_reg_lt(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr) 13291 %{ 13292 effect(DEF dst, USE src1, USE src2, USE cr); 13293 ins_cost(INSN_COST * 2); 13294 format %{ "cselw $dst, $src1, $src2 lt\t" %} 13295 13296 ins_encode %{ 13297 __ cselw($dst$$Register, 13298 $src1$$Register, 13299 $src2$$Register, 13300 Assembler::LT); 13301 %} 13302 ins_pipe(icond_reg_reg); 13303 %} 13304 13305 // This pattern is automatically generated from aarch64_ad.m4 13306 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13307 instruct cmovI_reg_reg_gt(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr) 13308 %{ 13309 effect(DEF dst, USE src1, USE src2, USE cr); 13310 ins_cost(INSN_COST * 2); 13311 format %{ "cselw $dst, $src1, $src2 gt\t" %} 13312 13313 ins_encode %{ 13314 __ cselw($dst$$Register, 13315 $src1$$Register, 13316 $src2$$Register, 13317 Assembler::GT); 13318 %} 13319 ins_pipe(icond_reg_reg); 13320 %} 13321 13322 // This pattern is automatically generated from aarch64_ad.m4 13323 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13324 instruct cmovI_reg_imm0_lt(iRegINoSp dst, iRegI src1, rFlagsReg cr) 13325 %{ 13326 effect(DEF dst, USE src1, USE cr); 13327 ins_cost(INSN_COST * 2); 13328 format %{ "cselw $dst, $src1, zr lt\t" %} 13329 13330 ins_encode %{ 13331 __ cselw($dst$$Register, 13332 $src1$$Register, 13333 zr, 13334 Assembler::LT); 13335 %} 13336 ins_pipe(icond_reg); 13337 %} 13338 13339 // This pattern is automatically generated from aarch64_ad.m4 13340 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13341 instruct cmovI_reg_imm0_gt(iRegINoSp dst, iRegI src1, rFlagsReg cr) 13342 %{ 13343 effect(DEF dst, USE src1, USE cr); 13344 ins_cost(INSN_COST * 2); 13345 format %{ "cselw $dst, $src1, zr gt\t" %} 13346 13347 ins_encode %{ 13348 __ cselw($dst$$Register, 13349 $src1$$Register, 13350 zr, 13351 Assembler::GT); 13352 %} 13353 ins_pipe(icond_reg); 13354 %} 13355 13356 // This pattern is automatically generated from aarch64_ad.m4 13357 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13358 instruct cmovI_reg_imm1_le(iRegINoSp dst, iRegI src1, rFlagsReg cr) 13359 %{ 13360 effect(DEF dst, USE src1, USE cr); 13361 ins_cost(INSN_COST * 2); 13362 format %{ "csincw $dst, $src1, zr le\t" %} 13363 13364 ins_encode %{ 13365 __ csincw($dst$$Register, 13366 $src1$$Register, 13367 zr, 13368 Assembler::LE); 13369 %} 13370 ins_pipe(icond_reg); 13371 %} 13372 13373 // This pattern is automatically generated from aarch64_ad.m4 13374 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13375 instruct cmovI_reg_imm1_gt(iRegINoSp dst, iRegI src1, rFlagsReg cr) 13376 %{ 13377 effect(DEF dst, USE src1, USE cr); 13378 ins_cost(INSN_COST * 2); 13379 format %{ "csincw $dst, $src1, zr gt\t" %} 13380 13381 ins_encode %{ 13382 __ csincw($dst$$Register, 13383 $src1$$Register, 13384 zr, 13385 Assembler::GT); 13386 %} 13387 ins_pipe(icond_reg); 13388 %} 13389 13390 // This pattern is automatically generated from aarch64_ad.m4 13391 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13392 instruct cmovI_reg_immM1_lt(iRegINoSp dst, iRegI src1, rFlagsReg cr) 13393 %{ 13394 effect(DEF dst, USE src1, USE cr); 13395 ins_cost(INSN_COST * 2); 13396 format %{ "csinvw $dst, $src1, zr lt\t" %} 13397 13398 ins_encode %{ 13399 __ csinvw($dst$$Register, 13400 $src1$$Register, 13401 zr, 13402 Assembler::LT); 13403 %} 13404 ins_pipe(icond_reg); 13405 %} 13406 13407 // This pattern is automatically generated from aarch64_ad.m4 13408 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13409 instruct cmovI_reg_immM1_ge(iRegINoSp dst, iRegI src1, rFlagsReg cr) 13410 %{ 13411 effect(DEF dst, USE src1, USE cr); 13412 ins_cost(INSN_COST * 2); 13413 format %{ "csinvw $dst, $src1, zr ge\t" %} 13414 13415 ins_encode %{ 13416 __ csinvw($dst$$Register, 13417 $src1$$Register, 13418 zr, 13419 Assembler::GE); 13420 %} 13421 ins_pipe(icond_reg); 13422 %} 13423 13424 // This pattern is automatically generated from aarch64_ad.m4 13425 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13426 instruct minI_reg_imm0(iRegINoSp dst, iRegIorL2I src, immI0 imm) 13427 %{ 13428 match(Set dst (MinI src imm)); 13429 ins_cost(INSN_COST * 3); 13430 expand %{ 13431 rFlagsReg cr; 13432 compI_reg_imm0(cr, src); 13433 cmovI_reg_imm0_lt(dst, src, cr); 13434 %} 13435 %} 13436 13437 // This pattern is automatically generated from aarch64_ad.m4 13438 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13439 instruct minI_imm0_reg(iRegINoSp dst, immI0 imm, iRegIorL2I src) 13440 %{ 13441 match(Set dst (MinI imm src)); 13442 ins_cost(INSN_COST * 3); 13443 expand %{ 13444 rFlagsReg cr; 13445 compI_reg_imm0(cr, src); 13446 cmovI_reg_imm0_lt(dst, src, cr); 13447 %} 13448 %} 13449 13450 // This pattern is automatically generated from aarch64_ad.m4 13451 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13452 instruct minI_reg_imm1(iRegINoSp dst, iRegIorL2I src, immI_1 imm) 13453 %{ 13454 match(Set dst (MinI src imm)); 13455 ins_cost(INSN_COST * 3); 13456 expand %{ 13457 rFlagsReg cr; 13458 compI_reg_imm0(cr, src); 13459 cmovI_reg_imm1_le(dst, src, cr); 13460 %} 13461 %} 13462 13463 // This pattern is automatically generated from aarch64_ad.m4 13464 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13465 instruct minI_imm1_reg(iRegINoSp dst, immI_1 imm, iRegIorL2I src) 13466 %{ 13467 match(Set dst (MinI imm src)); 13468 ins_cost(INSN_COST * 3); 13469 expand %{ 13470 rFlagsReg cr; 13471 compI_reg_imm0(cr, src); 13472 cmovI_reg_imm1_le(dst, src, cr); 13473 %} 13474 %} 13475 13476 // This pattern is automatically generated from aarch64_ad.m4 13477 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13478 instruct minI_reg_immM1(iRegINoSp dst, iRegIorL2I src, immI_M1 imm) 13479 %{ 13480 match(Set dst (MinI src imm)); 13481 ins_cost(INSN_COST * 3); 13482 expand %{ 13483 rFlagsReg cr; 13484 compI_reg_imm0(cr, src); 13485 cmovI_reg_immM1_lt(dst, src, cr); 13486 %} 13487 %} 13488 13489 // This pattern is automatically generated from aarch64_ad.m4 13490 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13491 instruct minI_immM1_reg(iRegINoSp dst, immI_M1 imm, iRegIorL2I src) 13492 %{ 13493 match(Set dst (MinI imm src)); 13494 ins_cost(INSN_COST * 3); 13495 expand %{ 13496 rFlagsReg cr; 13497 compI_reg_imm0(cr, src); 13498 cmovI_reg_immM1_lt(dst, src, cr); 13499 %} 13500 %} 13501 13502 // This pattern is automatically generated from aarch64_ad.m4 13503 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13504 instruct maxI_reg_imm0(iRegINoSp dst, iRegIorL2I src, immI0 imm) 13505 %{ 13506 match(Set dst (MaxI src imm)); 13507 ins_cost(INSN_COST * 3); 13508 expand %{ 13509 rFlagsReg cr; 13510 compI_reg_imm0(cr, src); 13511 cmovI_reg_imm0_gt(dst, src, cr); 13512 %} 13513 %} 13514 13515 // This pattern is automatically generated from aarch64_ad.m4 13516 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13517 instruct maxI_imm0_reg(iRegINoSp dst, immI0 imm, iRegIorL2I src) 13518 %{ 13519 match(Set dst (MaxI imm src)); 13520 ins_cost(INSN_COST * 3); 13521 expand %{ 13522 rFlagsReg cr; 13523 compI_reg_imm0(cr, src); 13524 cmovI_reg_imm0_gt(dst, src, cr); 13525 %} 13526 %} 13527 13528 // This pattern is automatically generated from aarch64_ad.m4 13529 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13530 instruct maxI_reg_imm1(iRegINoSp dst, iRegIorL2I src, immI_1 imm) 13531 %{ 13532 match(Set dst (MaxI src imm)); 13533 ins_cost(INSN_COST * 3); 13534 expand %{ 13535 rFlagsReg cr; 13536 compI_reg_imm0(cr, src); 13537 cmovI_reg_imm1_gt(dst, src, cr); 13538 %} 13539 %} 13540 13541 // This pattern is automatically generated from aarch64_ad.m4 13542 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13543 instruct maxI_imm1_reg(iRegINoSp dst, immI_1 imm, iRegIorL2I src) 13544 %{ 13545 match(Set dst (MaxI imm src)); 13546 ins_cost(INSN_COST * 3); 13547 expand %{ 13548 rFlagsReg cr; 13549 compI_reg_imm0(cr, src); 13550 cmovI_reg_imm1_gt(dst, src, cr); 13551 %} 13552 %} 13553 13554 // This pattern is automatically generated from aarch64_ad.m4 13555 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13556 instruct maxI_reg_immM1(iRegINoSp dst, iRegIorL2I src, immI_M1 imm) 13557 %{ 13558 match(Set dst (MaxI src imm)); 13559 ins_cost(INSN_COST * 3); 13560 expand %{ 13561 rFlagsReg cr; 13562 compI_reg_imm0(cr, src); 13563 cmovI_reg_immM1_ge(dst, src, cr); 13564 %} 13565 %} 13566 13567 // This pattern is automatically generated from aarch64_ad.m4 13568 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13569 instruct maxI_immM1_reg(iRegINoSp dst, immI_M1 imm, iRegIorL2I src) 13570 %{ 13571 match(Set dst (MaxI imm src)); 13572 ins_cost(INSN_COST * 3); 13573 expand %{ 13574 rFlagsReg cr; 13575 compI_reg_imm0(cr, src); 13576 cmovI_reg_immM1_ge(dst, src, cr); 13577 %} 13578 %} 13579 13580 // This pattern is automatically generated from aarch64_ad.m4 13581 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13582 instruct bits_reverse_I(iRegINoSp dst, iRegIorL2I src) 13583 %{ 13584 match(Set dst (ReverseI src)); 13585 ins_cost(INSN_COST); 13586 format %{ "rbitw $dst, $src" %} 13587 ins_encode %{ 13588 __ rbitw($dst$$Register, $src$$Register); 13589 %} 13590 ins_pipe(ialu_reg); 13591 %} 13592 13593 // This pattern is automatically generated from aarch64_ad.m4 13594 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13595 instruct bits_reverse_L(iRegLNoSp dst, iRegL src) 13596 %{ 13597 match(Set dst (ReverseL src)); 13598 ins_cost(INSN_COST); 13599 format %{ "rbit $dst, $src" %} 13600 ins_encode %{ 13601 __ rbit($dst$$Register, $src$$Register); 13602 %} 13603 ins_pipe(ialu_reg); 13604 %} 13605 13606 13607 // END This section of the file is automatically generated. Do not edit -------------- 13608 13609 13610 // ============================================================================ 13611 // Floating Point Arithmetic Instructions 13612 13613 instruct addF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 13614 match(Set dst (AddF src1 src2)); 13615 13616 ins_cost(INSN_COST * 5); 13617 format %{ "fadds $dst, $src1, $src2" %} 13618 13619 ins_encode %{ 13620 __ fadds(as_FloatRegister($dst$$reg), 13621 as_FloatRegister($src1$$reg), 13622 as_FloatRegister($src2$$reg)); 13623 %} 13624 13625 ins_pipe(fp_dop_reg_reg_s); 13626 %} 13627 13628 instruct addD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 13629 match(Set dst (AddD src1 src2)); 13630 13631 ins_cost(INSN_COST * 5); 13632 format %{ "faddd $dst, $src1, $src2" %} 13633 13634 ins_encode %{ 13635 __ faddd(as_FloatRegister($dst$$reg), 13636 as_FloatRegister($src1$$reg), 13637 as_FloatRegister($src2$$reg)); 13638 %} 13639 13640 ins_pipe(fp_dop_reg_reg_d); 13641 %} 13642 13643 instruct subF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 13644 match(Set dst (SubF src1 src2)); 13645 13646 ins_cost(INSN_COST * 5); 13647 format %{ "fsubs $dst, $src1, $src2" %} 13648 13649 ins_encode %{ 13650 __ fsubs(as_FloatRegister($dst$$reg), 13651 as_FloatRegister($src1$$reg), 13652 as_FloatRegister($src2$$reg)); 13653 %} 13654 13655 ins_pipe(fp_dop_reg_reg_s); 13656 %} 13657 13658 instruct subD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 13659 match(Set dst (SubD src1 src2)); 13660 13661 ins_cost(INSN_COST * 5); 13662 format %{ "fsubd $dst, $src1, $src2" %} 13663 13664 ins_encode %{ 13665 __ fsubd(as_FloatRegister($dst$$reg), 13666 as_FloatRegister($src1$$reg), 13667 as_FloatRegister($src2$$reg)); 13668 %} 13669 13670 ins_pipe(fp_dop_reg_reg_d); 13671 %} 13672 13673 instruct mulF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 13674 match(Set dst (MulF src1 src2)); 13675 13676 ins_cost(INSN_COST * 6); 13677 format %{ "fmuls $dst, $src1, $src2" %} 13678 13679 ins_encode %{ 13680 __ fmuls(as_FloatRegister($dst$$reg), 13681 as_FloatRegister($src1$$reg), 13682 as_FloatRegister($src2$$reg)); 13683 %} 13684 13685 ins_pipe(fp_dop_reg_reg_s); 13686 %} 13687 13688 instruct mulD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 13689 match(Set dst (MulD src1 src2)); 13690 13691 ins_cost(INSN_COST * 6); 13692 format %{ "fmuld $dst, $src1, $src2" %} 13693 13694 ins_encode %{ 13695 __ fmuld(as_FloatRegister($dst$$reg), 13696 as_FloatRegister($src1$$reg), 13697 as_FloatRegister($src2$$reg)); 13698 %} 13699 13700 ins_pipe(fp_dop_reg_reg_d); 13701 %} 13702 13703 // src1 * src2 + src3 13704 instruct maddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{ 13705 match(Set dst (FmaF src3 (Binary src1 src2))); 13706 13707 format %{ "fmadds $dst, $src1, $src2, $src3" %} 13708 13709 ins_encode %{ 13710 assert(UseFMA, "Needs FMA instructions support."); 13711 __ fmadds(as_FloatRegister($dst$$reg), 13712 as_FloatRegister($src1$$reg), 13713 as_FloatRegister($src2$$reg), 13714 as_FloatRegister($src3$$reg)); 13715 %} 13716 13717 ins_pipe(pipe_class_default); 13718 %} 13719 13720 // src1 * src2 + src3 13721 instruct maddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{ 13722 match(Set dst (FmaD src3 (Binary src1 src2))); 13723 13724 format %{ "fmaddd $dst, $src1, $src2, $src3" %} 13725 13726 ins_encode %{ 13727 assert(UseFMA, "Needs FMA instructions support."); 13728 __ fmaddd(as_FloatRegister($dst$$reg), 13729 as_FloatRegister($src1$$reg), 13730 as_FloatRegister($src2$$reg), 13731 as_FloatRegister($src3$$reg)); 13732 %} 13733 13734 ins_pipe(pipe_class_default); 13735 %} 13736 13737 // src1 * (-src2) + src3 13738 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3" 13739 instruct msubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{ 13740 match(Set dst (FmaF src3 (Binary src1 (NegF src2)))); 13741 13742 format %{ "fmsubs $dst, $src1, $src2, $src3" %} 13743 13744 ins_encode %{ 13745 assert(UseFMA, "Needs FMA instructions support."); 13746 __ fmsubs(as_FloatRegister($dst$$reg), 13747 as_FloatRegister($src1$$reg), 13748 as_FloatRegister($src2$$reg), 13749 as_FloatRegister($src3$$reg)); 13750 %} 13751 13752 ins_pipe(pipe_class_default); 13753 %} 13754 13755 // src1 * (-src2) + src3 13756 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3" 13757 instruct msubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{ 13758 match(Set dst (FmaD src3 (Binary src1 (NegD src2)))); 13759 13760 format %{ "fmsubd $dst, $src1, $src2, $src3" %} 13761 13762 ins_encode %{ 13763 assert(UseFMA, "Needs FMA instructions support."); 13764 __ fmsubd(as_FloatRegister($dst$$reg), 13765 as_FloatRegister($src1$$reg), 13766 as_FloatRegister($src2$$reg), 13767 as_FloatRegister($src3$$reg)); 13768 %} 13769 13770 ins_pipe(pipe_class_default); 13771 %} 13772 13773 // src1 * (-src2) - src3 13774 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3" 13775 instruct mnaddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{ 13776 match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2)))); 13777 13778 format %{ "fnmadds $dst, $src1, $src2, $src3" %} 13779 13780 ins_encode %{ 13781 assert(UseFMA, "Needs FMA instructions support."); 13782 __ fnmadds(as_FloatRegister($dst$$reg), 13783 as_FloatRegister($src1$$reg), 13784 as_FloatRegister($src2$$reg), 13785 as_FloatRegister($src3$$reg)); 13786 %} 13787 13788 ins_pipe(pipe_class_default); 13789 %} 13790 13791 // src1 * (-src2) - src3 13792 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3" 13793 instruct mnaddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{ 13794 match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2)))); 13795 13796 format %{ "fnmaddd $dst, $src1, $src2, $src3" %} 13797 13798 ins_encode %{ 13799 assert(UseFMA, "Needs FMA instructions support."); 13800 __ fnmaddd(as_FloatRegister($dst$$reg), 13801 as_FloatRegister($src1$$reg), 13802 as_FloatRegister($src2$$reg), 13803 as_FloatRegister($src3$$reg)); 13804 %} 13805 13806 ins_pipe(pipe_class_default); 13807 %} 13808 13809 // src1 * src2 - src3 13810 instruct mnsubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3, immF0 zero) %{ 13811 match(Set dst (FmaF (NegF src3) (Binary src1 src2))); 13812 13813 format %{ "fnmsubs $dst, $src1, $src2, $src3" %} 13814 13815 ins_encode %{ 13816 assert(UseFMA, "Needs FMA instructions support."); 13817 __ fnmsubs(as_FloatRegister($dst$$reg), 13818 as_FloatRegister($src1$$reg), 13819 as_FloatRegister($src2$$reg), 13820 as_FloatRegister($src3$$reg)); 13821 %} 13822 13823 ins_pipe(pipe_class_default); 13824 %} 13825 13826 // src1 * src2 - src3 13827 instruct mnsubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3, immD0 zero) %{ 13828 match(Set dst (FmaD (NegD src3) (Binary src1 src2))); 13829 13830 format %{ "fnmsubd $dst, $src1, $src2, $src3" %} 13831 13832 ins_encode %{ 13833 assert(UseFMA, "Needs FMA instructions support."); 13834 // n.b. insn name should be fnmsubd 13835 __ fnmsub(as_FloatRegister($dst$$reg), 13836 as_FloatRegister($src1$$reg), 13837 as_FloatRegister($src2$$reg), 13838 as_FloatRegister($src3$$reg)); 13839 %} 13840 13841 ins_pipe(pipe_class_default); 13842 %} 13843 13844 13845 // Math.max(FF)F 13846 instruct maxF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 13847 match(Set dst (MaxF src1 src2)); 13848 13849 format %{ "fmaxs $dst, $src1, $src2" %} 13850 ins_encode %{ 13851 __ fmaxs(as_FloatRegister($dst$$reg), 13852 as_FloatRegister($src1$$reg), 13853 as_FloatRegister($src2$$reg)); 13854 %} 13855 13856 ins_pipe(fp_dop_reg_reg_s); 13857 %} 13858 13859 // Math.min(FF)F 13860 instruct minF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 13861 match(Set dst (MinF src1 src2)); 13862 13863 format %{ "fmins $dst, $src1, $src2" %} 13864 ins_encode %{ 13865 __ fmins(as_FloatRegister($dst$$reg), 13866 as_FloatRegister($src1$$reg), 13867 as_FloatRegister($src2$$reg)); 13868 %} 13869 13870 ins_pipe(fp_dop_reg_reg_s); 13871 %} 13872 13873 // Math.max(DD)D 13874 instruct maxD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 13875 match(Set dst (MaxD src1 src2)); 13876 13877 format %{ "fmaxd $dst, $src1, $src2" %} 13878 ins_encode %{ 13879 __ fmaxd(as_FloatRegister($dst$$reg), 13880 as_FloatRegister($src1$$reg), 13881 as_FloatRegister($src2$$reg)); 13882 %} 13883 13884 ins_pipe(fp_dop_reg_reg_d); 13885 %} 13886 13887 // Math.min(DD)D 13888 instruct minD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 13889 match(Set dst (MinD src1 src2)); 13890 13891 format %{ "fmind $dst, $src1, $src2" %} 13892 ins_encode %{ 13893 __ fmind(as_FloatRegister($dst$$reg), 13894 as_FloatRegister($src1$$reg), 13895 as_FloatRegister($src2$$reg)); 13896 %} 13897 13898 ins_pipe(fp_dop_reg_reg_d); 13899 %} 13900 13901 13902 instruct divF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 13903 match(Set dst (DivF src1 src2)); 13904 13905 ins_cost(INSN_COST * 18); 13906 format %{ "fdivs $dst, $src1, $src2" %} 13907 13908 ins_encode %{ 13909 __ fdivs(as_FloatRegister($dst$$reg), 13910 as_FloatRegister($src1$$reg), 13911 as_FloatRegister($src2$$reg)); 13912 %} 13913 13914 ins_pipe(fp_div_s); 13915 %} 13916 13917 instruct divD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 13918 match(Set dst (DivD src1 src2)); 13919 13920 ins_cost(INSN_COST * 32); 13921 format %{ "fdivd $dst, $src1, $src2" %} 13922 13923 ins_encode %{ 13924 __ fdivd(as_FloatRegister($dst$$reg), 13925 as_FloatRegister($src1$$reg), 13926 as_FloatRegister($src2$$reg)); 13927 %} 13928 13929 ins_pipe(fp_div_d); 13930 %} 13931 13932 instruct negF_reg_reg(vRegF dst, vRegF src) %{ 13933 match(Set dst (NegF src)); 13934 13935 ins_cost(INSN_COST * 3); 13936 format %{ "fneg $dst, $src" %} 13937 13938 ins_encode %{ 13939 __ fnegs(as_FloatRegister($dst$$reg), 13940 as_FloatRegister($src$$reg)); 13941 %} 13942 13943 ins_pipe(fp_uop_s); 13944 %} 13945 13946 instruct negD_reg_reg(vRegD dst, vRegD src) %{ 13947 match(Set dst (NegD src)); 13948 13949 ins_cost(INSN_COST * 3); 13950 format %{ "fnegd $dst, $src" %} 13951 13952 ins_encode %{ 13953 __ fnegd(as_FloatRegister($dst$$reg), 13954 as_FloatRegister($src$$reg)); 13955 %} 13956 13957 ins_pipe(fp_uop_d); 13958 %} 13959 13960 instruct absI_reg(iRegINoSp dst, iRegIorL2I src, rFlagsReg cr) 13961 %{ 13962 match(Set dst (AbsI src)); 13963 13964 effect(KILL cr); 13965 ins_cost(INSN_COST * 2); 13966 format %{ "cmpw $src, zr\n\t" 13967 "cnegw $dst, $src, Assembler::LT\t# int abs" 13968 %} 13969 13970 ins_encode %{ 13971 __ cmpw(as_Register($src$$reg), zr); 13972 __ cnegw(as_Register($dst$$reg), as_Register($src$$reg), Assembler::LT); 13973 %} 13974 ins_pipe(pipe_class_default); 13975 %} 13976 13977 instruct absL_reg(iRegLNoSp dst, iRegL src, rFlagsReg cr) 13978 %{ 13979 match(Set dst (AbsL src)); 13980 13981 effect(KILL cr); 13982 ins_cost(INSN_COST * 2); 13983 format %{ "cmp $src, zr\n\t" 13984 "cneg $dst, $src, Assembler::LT\t# long abs" 13985 %} 13986 13987 ins_encode %{ 13988 __ cmp(as_Register($src$$reg), zr); 13989 __ cneg(as_Register($dst$$reg), as_Register($src$$reg), Assembler::LT); 13990 %} 13991 ins_pipe(pipe_class_default); 13992 %} 13993 13994 instruct absF_reg(vRegF dst, vRegF src) %{ 13995 match(Set dst (AbsF src)); 13996 13997 ins_cost(INSN_COST * 3); 13998 format %{ "fabss $dst, $src" %} 13999 ins_encode %{ 14000 __ fabss(as_FloatRegister($dst$$reg), 14001 as_FloatRegister($src$$reg)); 14002 %} 14003 14004 ins_pipe(fp_uop_s); 14005 %} 14006 14007 instruct absD_reg(vRegD dst, vRegD src) %{ 14008 match(Set dst (AbsD src)); 14009 14010 ins_cost(INSN_COST * 3); 14011 format %{ "fabsd $dst, $src" %} 14012 ins_encode %{ 14013 __ fabsd(as_FloatRegister($dst$$reg), 14014 as_FloatRegister($src$$reg)); 14015 %} 14016 14017 ins_pipe(fp_uop_d); 14018 %} 14019 14020 instruct absdF_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14021 match(Set dst (AbsF (SubF src1 src2))); 14022 14023 ins_cost(INSN_COST * 3); 14024 format %{ "fabds $dst, $src1, $src2" %} 14025 ins_encode %{ 14026 __ fabds(as_FloatRegister($dst$$reg), 14027 as_FloatRegister($src1$$reg), 14028 as_FloatRegister($src2$$reg)); 14029 %} 14030 14031 ins_pipe(fp_uop_s); 14032 %} 14033 14034 instruct absdD_reg(vRegD dst, vRegD src1, vRegD src2) %{ 14035 match(Set dst (AbsD (SubD src1 src2))); 14036 14037 ins_cost(INSN_COST * 3); 14038 format %{ "fabdd $dst, $src1, $src2" %} 14039 ins_encode %{ 14040 __ fabdd(as_FloatRegister($dst$$reg), 14041 as_FloatRegister($src1$$reg), 14042 as_FloatRegister($src2$$reg)); 14043 %} 14044 14045 ins_pipe(fp_uop_d); 14046 %} 14047 14048 instruct sqrtD_reg(vRegD dst, vRegD src) %{ 14049 match(Set dst (SqrtD src)); 14050 14051 ins_cost(INSN_COST * 50); 14052 format %{ "fsqrtd $dst, $src" %} 14053 ins_encode %{ 14054 __ fsqrtd(as_FloatRegister($dst$$reg), 14055 as_FloatRegister($src$$reg)); 14056 %} 14057 14058 ins_pipe(fp_div_s); 14059 %} 14060 14061 instruct sqrtF_reg(vRegF dst, vRegF src) %{ 14062 match(Set dst (SqrtF src)); 14063 14064 ins_cost(INSN_COST * 50); 14065 format %{ "fsqrts $dst, $src" %} 14066 ins_encode %{ 14067 __ fsqrts(as_FloatRegister($dst$$reg), 14068 as_FloatRegister($src$$reg)); 14069 %} 14070 14071 ins_pipe(fp_div_d); 14072 %} 14073 14074 // Math.rint, floor, ceil 14075 instruct roundD_reg(vRegD dst, vRegD src, immI rmode) %{ 14076 match(Set dst (RoundDoubleMode src rmode)); 14077 format %{ "frint $dst, $src, $rmode" %} 14078 ins_encode %{ 14079 switch ($rmode$$constant) { 14080 case RoundDoubleModeNode::rmode_rint: 14081 __ frintnd(as_FloatRegister($dst$$reg), 14082 as_FloatRegister($src$$reg)); 14083 break; 14084 case RoundDoubleModeNode::rmode_floor: 14085 __ frintmd(as_FloatRegister($dst$$reg), 14086 as_FloatRegister($src$$reg)); 14087 break; 14088 case RoundDoubleModeNode::rmode_ceil: 14089 __ frintpd(as_FloatRegister($dst$$reg), 14090 as_FloatRegister($src$$reg)); 14091 break; 14092 } 14093 %} 14094 ins_pipe(fp_uop_d); 14095 %} 14096 14097 instruct copySignD_reg(vRegD dst, vRegD src1, vRegD src2, vRegD zero) %{ 14098 match(Set dst (CopySignD src1 (Binary src2 zero))); 14099 effect(TEMP_DEF dst, USE src1, USE src2, USE zero); 14100 format %{ "CopySignD $dst $src1 $src2" %} 14101 ins_encode %{ 14102 FloatRegister dst = as_FloatRegister($dst$$reg), 14103 src1 = as_FloatRegister($src1$$reg), 14104 src2 = as_FloatRegister($src2$$reg), 14105 zero = as_FloatRegister($zero$$reg); 14106 __ fnegd(dst, zero); 14107 __ bsl(dst, __ T8B, src2, src1); 14108 %} 14109 ins_pipe(fp_uop_d); 14110 %} 14111 14112 instruct copySignF_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14113 match(Set dst (CopySignF src1 src2)); 14114 effect(TEMP_DEF dst, USE src1, USE src2); 14115 format %{ "CopySignF $dst $src1 $src2" %} 14116 ins_encode %{ 14117 FloatRegister dst = as_FloatRegister($dst$$reg), 14118 src1 = as_FloatRegister($src1$$reg), 14119 src2 = as_FloatRegister($src2$$reg); 14120 __ movi(dst, __ T2S, 0x80, 24); 14121 __ bsl(dst, __ T8B, src2, src1); 14122 %} 14123 ins_pipe(fp_uop_d); 14124 %} 14125 14126 instruct signumD_reg(vRegD dst, vRegD src, vRegD zero, vRegD one) %{ 14127 match(Set dst (SignumD src (Binary zero one))); 14128 effect(TEMP_DEF dst, USE src, USE zero, USE one); 14129 format %{ "signumD $dst, $src" %} 14130 ins_encode %{ 14131 FloatRegister src = as_FloatRegister($src$$reg), 14132 dst = as_FloatRegister($dst$$reg), 14133 zero = as_FloatRegister($zero$$reg), 14134 one = as_FloatRegister($one$$reg); 14135 __ facgtd(dst, src, zero); // dst=0 for +-0.0 and NaN. 0xFFF..F otherwise 14136 __ ushrd(dst, dst, 1); // dst=0 for +-0.0 and NaN. 0x7FF..F otherwise 14137 // Bit selection instruction gets bit from "one" for each enabled bit in 14138 // "dst", otherwise gets a bit from "src". For "src" that contains +-0.0 or 14139 // NaN the whole "src" will be copied because "dst" is zero. For all other 14140 // "src" values dst is 0x7FF..F, which means only the sign bit is copied 14141 // from "src", and all other bits are copied from 1.0. 14142 __ bsl(dst, __ T8B, one, src); 14143 %} 14144 ins_pipe(fp_uop_d); 14145 %} 14146 14147 instruct signumF_reg(vRegF dst, vRegF src, vRegF zero, vRegF one) %{ 14148 match(Set dst (SignumF src (Binary zero one))); 14149 effect(TEMP_DEF dst, USE src, USE zero, USE one); 14150 format %{ "signumF $dst, $src" %} 14151 ins_encode %{ 14152 FloatRegister src = as_FloatRegister($src$$reg), 14153 dst = as_FloatRegister($dst$$reg), 14154 zero = as_FloatRegister($zero$$reg), 14155 one = as_FloatRegister($one$$reg); 14156 __ facgts(dst, src, zero); // dst=0 for +-0.0 and NaN. 0xFFF..F otherwise 14157 __ ushr(dst, __ T2S, dst, 1); // dst=0 for +-0.0 and NaN. 0x7FF..F otherwise 14158 // Bit selection instruction gets bit from "one" for each enabled bit in 14159 // "dst", otherwise gets a bit from "src". For "src" that contains +-0.0 or 14160 // NaN the whole "src" will be copied because "dst" is zero. For all other 14161 // "src" values dst is 0x7FF..F, which means only the sign bit is copied 14162 // from "src", and all other bits are copied from 1.0. 14163 __ bsl(dst, __ T8B, one, src); 14164 %} 14165 ins_pipe(fp_uop_d); 14166 %} 14167 14168 instruct onspinwait() %{ 14169 match(OnSpinWait); 14170 ins_cost(INSN_COST); 14171 14172 format %{ "onspinwait" %} 14173 14174 ins_encode %{ 14175 __ spin_wait(); 14176 %} 14177 ins_pipe(pipe_class_empty); 14178 %} 14179 14180 // ============================================================================ 14181 // Logical Instructions 14182 14183 // Integer Logical Instructions 14184 14185 // And Instructions 14186 14187 14188 instruct andI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, rFlagsReg cr) %{ 14189 match(Set dst (AndI src1 src2)); 14190 14191 format %{ "andw $dst, $src1, $src2\t# int" %} 14192 14193 ins_cost(INSN_COST); 14194 ins_encode %{ 14195 __ andw(as_Register($dst$$reg), 14196 as_Register($src1$$reg), 14197 as_Register($src2$$reg)); 14198 %} 14199 14200 ins_pipe(ialu_reg_reg); 14201 %} 14202 14203 instruct andI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2, rFlagsReg cr) %{ 14204 match(Set dst (AndI src1 src2)); 14205 14206 format %{ "andsw $dst, $src1, $src2\t# int" %} 14207 14208 ins_cost(INSN_COST); 14209 ins_encode %{ 14210 __ andw(as_Register($dst$$reg), 14211 as_Register($src1$$reg), 14212 (uint64_t)($src2$$constant)); 14213 %} 14214 14215 ins_pipe(ialu_reg_imm); 14216 %} 14217 14218 // Or Instructions 14219 14220 instruct orI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 14221 match(Set dst (OrI src1 src2)); 14222 14223 format %{ "orrw $dst, $src1, $src2\t# int" %} 14224 14225 ins_cost(INSN_COST); 14226 ins_encode %{ 14227 __ orrw(as_Register($dst$$reg), 14228 as_Register($src1$$reg), 14229 as_Register($src2$$reg)); 14230 %} 14231 14232 ins_pipe(ialu_reg_reg); 14233 %} 14234 14235 instruct orI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{ 14236 match(Set dst (OrI src1 src2)); 14237 14238 format %{ "orrw $dst, $src1, $src2\t# int" %} 14239 14240 ins_cost(INSN_COST); 14241 ins_encode %{ 14242 __ orrw(as_Register($dst$$reg), 14243 as_Register($src1$$reg), 14244 (uint64_t)($src2$$constant)); 14245 %} 14246 14247 ins_pipe(ialu_reg_imm); 14248 %} 14249 14250 // Xor Instructions 14251 14252 instruct xorI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 14253 match(Set dst (XorI src1 src2)); 14254 14255 format %{ "eorw $dst, $src1, $src2\t# int" %} 14256 14257 ins_cost(INSN_COST); 14258 ins_encode %{ 14259 __ eorw(as_Register($dst$$reg), 14260 as_Register($src1$$reg), 14261 as_Register($src2$$reg)); 14262 %} 14263 14264 ins_pipe(ialu_reg_reg); 14265 %} 14266 14267 instruct xorI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{ 14268 match(Set dst (XorI src1 src2)); 14269 14270 format %{ "eorw $dst, $src1, $src2\t# int" %} 14271 14272 ins_cost(INSN_COST); 14273 ins_encode %{ 14274 __ eorw(as_Register($dst$$reg), 14275 as_Register($src1$$reg), 14276 (uint64_t)($src2$$constant)); 14277 %} 14278 14279 ins_pipe(ialu_reg_imm); 14280 %} 14281 14282 // Long Logical Instructions 14283 // TODO 14284 14285 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) %{ 14286 match(Set dst (AndL src1 src2)); 14287 14288 format %{ "and $dst, $src1, $src2\t# int" %} 14289 14290 ins_cost(INSN_COST); 14291 ins_encode %{ 14292 __ andr(as_Register($dst$$reg), 14293 as_Register($src1$$reg), 14294 as_Register($src2$$reg)); 14295 %} 14296 14297 ins_pipe(ialu_reg_reg); 14298 %} 14299 14300 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2, rFlagsReg cr) %{ 14301 match(Set dst (AndL src1 src2)); 14302 14303 format %{ "and $dst, $src1, $src2\t# int" %} 14304 14305 ins_cost(INSN_COST); 14306 ins_encode %{ 14307 __ andr(as_Register($dst$$reg), 14308 as_Register($src1$$reg), 14309 (uint64_t)($src2$$constant)); 14310 %} 14311 14312 ins_pipe(ialu_reg_imm); 14313 %} 14314 14315 // Or Instructions 14316 14317 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 14318 match(Set dst (OrL src1 src2)); 14319 14320 format %{ "orr $dst, $src1, $src2\t# int" %} 14321 14322 ins_cost(INSN_COST); 14323 ins_encode %{ 14324 __ orr(as_Register($dst$$reg), 14325 as_Register($src1$$reg), 14326 as_Register($src2$$reg)); 14327 %} 14328 14329 ins_pipe(ialu_reg_reg); 14330 %} 14331 14332 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{ 14333 match(Set dst (OrL src1 src2)); 14334 14335 format %{ "orr $dst, $src1, $src2\t# int" %} 14336 14337 ins_cost(INSN_COST); 14338 ins_encode %{ 14339 __ orr(as_Register($dst$$reg), 14340 as_Register($src1$$reg), 14341 (uint64_t)($src2$$constant)); 14342 %} 14343 14344 ins_pipe(ialu_reg_imm); 14345 %} 14346 14347 // Xor Instructions 14348 14349 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 14350 match(Set dst (XorL src1 src2)); 14351 14352 format %{ "eor $dst, $src1, $src2\t# int" %} 14353 14354 ins_cost(INSN_COST); 14355 ins_encode %{ 14356 __ eor(as_Register($dst$$reg), 14357 as_Register($src1$$reg), 14358 as_Register($src2$$reg)); 14359 %} 14360 14361 ins_pipe(ialu_reg_reg); 14362 %} 14363 14364 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{ 14365 match(Set dst (XorL src1 src2)); 14366 14367 ins_cost(INSN_COST); 14368 format %{ "eor $dst, $src1, $src2\t# int" %} 14369 14370 ins_encode %{ 14371 __ eor(as_Register($dst$$reg), 14372 as_Register($src1$$reg), 14373 (uint64_t)($src2$$constant)); 14374 %} 14375 14376 ins_pipe(ialu_reg_imm); 14377 %} 14378 14379 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src) 14380 %{ 14381 match(Set dst (ConvI2L src)); 14382 14383 ins_cost(INSN_COST); 14384 format %{ "sxtw $dst, $src\t# i2l" %} 14385 ins_encode %{ 14386 __ sbfm($dst$$Register, $src$$Register, 0, 31); 14387 %} 14388 ins_pipe(ialu_reg_shift); 14389 %} 14390 14391 // this pattern occurs in bigmath arithmetic 14392 instruct convUI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask) 14393 %{ 14394 match(Set dst (AndL (ConvI2L src) mask)); 14395 14396 ins_cost(INSN_COST); 14397 format %{ "ubfm $dst, $src, 0, 31\t# ui2l" %} 14398 ins_encode %{ 14399 __ ubfm($dst$$Register, $src$$Register, 0, 31); 14400 %} 14401 14402 ins_pipe(ialu_reg_shift); 14403 %} 14404 14405 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{ 14406 match(Set dst (ConvL2I src)); 14407 14408 ins_cost(INSN_COST); 14409 format %{ "movw $dst, $src \t// l2i" %} 14410 14411 ins_encode %{ 14412 __ movw(as_Register($dst$$reg), as_Register($src$$reg)); 14413 %} 14414 14415 ins_pipe(ialu_reg); 14416 %} 14417 14418 instruct convD2F_reg(vRegF dst, vRegD src) %{ 14419 match(Set dst (ConvD2F src)); 14420 14421 ins_cost(INSN_COST * 5); 14422 format %{ "fcvtd $dst, $src \t// d2f" %} 14423 14424 ins_encode %{ 14425 __ fcvtd(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 14426 %} 14427 14428 ins_pipe(fp_d2f); 14429 %} 14430 14431 instruct convF2D_reg(vRegD dst, vRegF src) %{ 14432 match(Set dst (ConvF2D src)); 14433 14434 ins_cost(INSN_COST * 5); 14435 format %{ "fcvts $dst, $src \t// f2d" %} 14436 14437 ins_encode %{ 14438 __ fcvts(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 14439 %} 14440 14441 ins_pipe(fp_f2d); 14442 %} 14443 14444 instruct convF2I_reg_reg(iRegINoSp dst, vRegF src) %{ 14445 match(Set dst (ConvF2I src)); 14446 14447 ins_cost(INSN_COST * 5); 14448 format %{ "fcvtzsw $dst, $src \t// f2i" %} 14449 14450 ins_encode %{ 14451 __ fcvtzsw(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 14452 %} 14453 14454 ins_pipe(fp_f2i); 14455 %} 14456 14457 instruct convF2L_reg_reg(iRegLNoSp dst, vRegF src) %{ 14458 match(Set dst (ConvF2L src)); 14459 14460 ins_cost(INSN_COST * 5); 14461 format %{ "fcvtzs $dst, $src \t// f2l" %} 14462 14463 ins_encode %{ 14464 __ fcvtzs(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 14465 %} 14466 14467 ins_pipe(fp_f2l); 14468 %} 14469 14470 instruct convF2HF_reg_reg(iRegINoSp dst, vRegF src, vRegF tmp) %{ 14471 match(Set dst (ConvF2HF src)); 14472 format %{ "fcvt $tmp, $src\t# convert single to half precision\n\t" 14473 "smov $dst, $tmp\t# move result from $tmp to $dst" 14474 %} 14475 effect(TEMP tmp); 14476 ins_encode %{ 14477 __ flt_to_flt16($dst$$Register, $src$$FloatRegister, $tmp$$FloatRegister); 14478 %} 14479 ins_pipe(pipe_slow); 14480 %} 14481 14482 instruct convHF2F_reg_reg(vRegF dst, iRegINoSp src, vRegF tmp) %{ 14483 match(Set dst (ConvHF2F src)); 14484 format %{ "mov $tmp, $src\t# move source from $src to $tmp\n\t" 14485 "fcvt $dst, $tmp\t# convert half to single precision" 14486 %} 14487 effect(TEMP tmp); 14488 ins_encode %{ 14489 __ flt16_to_flt($dst$$FloatRegister, $src$$Register, $tmp$$FloatRegister); 14490 %} 14491 ins_pipe(pipe_slow); 14492 %} 14493 14494 instruct convI2F_reg_reg(vRegF dst, iRegIorL2I src) %{ 14495 match(Set dst (ConvI2F src)); 14496 14497 ins_cost(INSN_COST * 5); 14498 format %{ "scvtfws $dst, $src \t// i2f" %} 14499 14500 ins_encode %{ 14501 __ scvtfws(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 14502 %} 14503 14504 ins_pipe(fp_i2f); 14505 %} 14506 14507 instruct convL2F_reg_reg(vRegF dst, iRegL src) %{ 14508 match(Set dst (ConvL2F src)); 14509 14510 ins_cost(INSN_COST * 5); 14511 format %{ "scvtfs $dst, $src \t// l2f" %} 14512 14513 ins_encode %{ 14514 __ scvtfs(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 14515 %} 14516 14517 ins_pipe(fp_l2f); 14518 %} 14519 14520 instruct convD2I_reg_reg(iRegINoSp dst, vRegD src) %{ 14521 match(Set dst (ConvD2I src)); 14522 14523 ins_cost(INSN_COST * 5); 14524 format %{ "fcvtzdw $dst, $src \t// d2i" %} 14525 14526 ins_encode %{ 14527 __ fcvtzdw(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 14528 %} 14529 14530 ins_pipe(fp_d2i); 14531 %} 14532 14533 instruct convD2L_reg_reg(iRegLNoSp dst, vRegD src) %{ 14534 match(Set dst (ConvD2L src)); 14535 14536 ins_cost(INSN_COST * 5); 14537 format %{ "fcvtzd $dst, $src \t// d2l" %} 14538 14539 ins_encode %{ 14540 __ fcvtzd(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 14541 %} 14542 14543 ins_pipe(fp_d2l); 14544 %} 14545 14546 instruct convI2D_reg_reg(vRegD dst, iRegIorL2I src) %{ 14547 match(Set dst (ConvI2D src)); 14548 14549 ins_cost(INSN_COST * 5); 14550 format %{ "scvtfwd $dst, $src \t// i2d" %} 14551 14552 ins_encode %{ 14553 __ scvtfwd(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 14554 %} 14555 14556 ins_pipe(fp_i2d); 14557 %} 14558 14559 instruct convL2D_reg_reg(vRegD dst, iRegL src) %{ 14560 match(Set dst (ConvL2D src)); 14561 14562 ins_cost(INSN_COST * 5); 14563 format %{ "scvtfd $dst, $src \t// l2d" %} 14564 14565 ins_encode %{ 14566 __ scvtfd(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 14567 %} 14568 14569 ins_pipe(fp_l2d); 14570 %} 14571 14572 instruct round_double_reg(iRegLNoSp dst, vRegD src, vRegD ftmp, rFlagsReg cr) 14573 %{ 14574 match(Set dst (RoundD src)); 14575 effect(TEMP_DEF dst, TEMP ftmp, KILL cr); 14576 format %{ "java_round_double $dst,$src"%} 14577 ins_encode %{ 14578 __ java_round_double($dst$$Register, as_FloatRegister($src$$reg), 14579 as_FloatRegister($ftmp$$reg)); 14580 %} 14581 ins_pipe(pipe_slow); 14582 %} 14583 14584 instruct round_float_reg(iRegINoSp dst, vRegF src, vRegF ftmp, rFlagsReg cr) 14585 %{ 14586 match(Set dst (RoundF src)); 14587 effect(TEMP_DEF dst, TEMP ftmp, KILL cr); 14588 format %{ "java_round_float $dst,$src"%} 14589 ins_encode %{ 14590 __ java_round_float($dst$$Register, as_FloatRegister($src$$reg), 14591 as_FloatRegister($ftmp$$reg)); 14592 %} 14593 ins_pipe(pipe_slow); 14594 %} 14595 14596 // stack <-> reg and reg <-> reg shuffles with no conversion 14597 14598 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{ 14599 14600 match(Set dst (MoveF2I src)); 14601 14602 effect(DEF dst, USE src); 14603 14604 ins_cost(4 * INSN_COST); 14605 14606 format %{ "ldrw $dst, $src\t# MoveF2I_stack_reg" %} 14607 14608 ins_encode %{ 14609 __ ldrw($dst$$Register, Address(sp, $src$$disp)); 14610 %} 14611 14612 ins_pipe(iload_reg_reg); 14613 14614 %} 14615 14616 instruct MoveI2F_stack_reg(vRegF dst, stackSlotI src) %{ 14617 14618 match(Set dst (MoveI2F src)); 14619 14620 effect(DEF dst, USE src); 14621 14622 ins_cost(4 * INSN_COST); 14623 14624 format %{ "ldrs $dst, $src\t# MoveI2F_stack_reg" %} 14625 14626 ins_encode %{ 14627 __ ldrs(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 14628 %} 14629 14630 ins_pipe(pipe_class_memory); 14631 14632 %} 14633 14634 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{ 14635 14636 match(Set dst (MoveD2L src)); 14637 14638 effect(DEF dst, USE src); 14639 14640 ins_cost(4 * INSN_COST); 14641 14642 format %{ "ldr $dst, $src\t# MoveD2L_stack_reg" %} 14643 14644 ins_encode %{ 14645 __ ldr($dst$$Register, Address(sp, $src$$disp)); 14646 %} 14647 14648 ins_pipe(iload_reg_reg); 14649 14650 %} 14651 14652 instruct MoveL2D_stack_reg(vRegD dst, stackSlotL src) %{ 14653 14654 match(Set dst (MoveL2D src)); 14655 14656 effect(DEF dst, USE src); 14657 14658 ins_cost(4 * INSN_COST); 14659 14660 format %{ "ldrd $dst, $src\t# MoveL2D_stack_reg" %} 14661 14662 ins_encode %{ 14663 __ ldrd(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 14664 %} 14665 14666 ins_pipe(pipe_class_memory); 14667 14668 %} 14669 14670 instruct MoveF2I_reg_stack(stackSlotI dst, vRegF src) %{ 14671 14672 match(Set dst (MoveF2I src)); 14673 14674 effect(DEF dst, USE src); 14675 14676 ins_cost(INSN_COST); 14677 14678 format %{ "strs $src, $dst\t# MoveF2I_reg_stack" %} 14679 14680 ins_encode %{ 14681 __ strs(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 14682 %} 14683 14684 ins_pipe(pipe_class_memory); 14685 14686 %} 14687 14688 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{ 14689 14690 match(Set dst (MoveI2F src)); 14691 14692 effect(DEF dst, USE src); 14693 14694 ins_cost(INSN_COST); 14695 14696 format %{ "strw $src, $dst\t# MoveI2F_reg_stack" %} 14697 14698 ins_encode %{ 14699 __ strw($src$$Register, Address(sp, $dst$$disp)); 14700 %} 14701 14702 ins_pipe(istore_reg_reg); 14703 14704 %} 14705 14706 instruct MoveD2L_reg_stack(stackSlotL dst, vRegD src) %{ 14707 14708 match(Set dst (MoveD2L src)); 14709 14710 effect(DEF dst, USE src); 14711 14712 ins_cost(INSN_COST); 14713 14714 format %{ "strd $dst, $src\t# MoveD2L_reg_stack" %} 14715 14716 ins_encode %{ 14717 __ strd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 14718 %} 14719 14720 ins_pipe(pipe_class_memory); 14721 14722 %} 14723 14724 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{ 14725 14726 match(Set dst (MoveL2D src)); 14727 14728 effect(DEF dst, USE src); 14729 14730 ins_cost(INSN_COST); 14731 14732 format %{ "str $src, $dst\t# MoveL2D_reg_stack" %} 14733 14734 ins_encode %{ 14735 __ str($src$$Register, Address(sp, $dst$$disp)); 14736 %} 14737 14738 ins_pipe(istore_reg_reg); 14739 14740 %} 14741 14742 instruct MoveF2I_reg_reg(iRegINoSp dst, vRegF src) %{ 14743 14744 match(Set dst (MoveF2I src)); 14745 14746 effect(DEF dst, USE src); 14747 14748 ins_cost(INSN_COST); 14749 14750 format %{ "fmovs $dst, $src\t# MoveF2I_reg_reg" %} 14751 14752 ins_encode %{ 14753 __ fmovs($dst$$Register, as_FloatRegister($src$$reg)); 14754 %} 14755 14756 ins_pipe(fp_f2i); 14757 14758 %} 14759 14760 instruct MoveI2F_reg_reg(vRegF dst, iRegI src) %{ 14761 14762 match(Set dst (MoveI2F src)); 14763 14764 effect(DEF dst, USE src); 14765 14766 ins_cost(INSN_COST); 14767 14768 format %{ "fmovs $dst, $src\t# MoveI2F_reg_reg" %} 14769 14770 ins_encode %{ 14771 __ fmovs(as_FloatRegister($dst$$reg), $src$$Register); 14772 %} 14773 14774 ins_pipe(fp_i2f); 14775 14776 %} 14777 14778 instruct MoveD2L_reg_reg(iRegLNoSp dst, vRegD src) %{ 14779 14780 match(Set dst (MoveD2L src)); 14781 14782 effect(DEF dst, USE src); 14783 14784 ins_cost(INSN_COST); 14785 14786 format %{ "fmovd $dst, $src\t# MoveD2L_reg_reg" %} 14787 14788 ins_encode %{ 14789 __ fmovd($dst$$Register, as_FloatRegister($src$$reg)); 14790 %} 14791 14792 ins_pipe(fp_d2l); 14793 14794 %} 14795 14796 instruct MoveL2D_reg_reg(vRegD dst, iRegL src) %{ 14797 14798 match(Set dst (MoveL2D src)); 14799 14800 effect(DEF dst, USE src); 14801 14802 ins_cost(INSN_COST); 14803 14804 format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %} 14805 14806 ins_encode %{ 14807 __ fmovd(as_FloatRegister($dst$$reg), $src$$Register); 14808 %} 14809 14810 ins_pipe(fp_l2d); 14811 14812 %} 14813 14814 // ============================================================================ 14815 // clearing of an array 14816 14817 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr) 14818 %{ 14819 match(Set dummy (ClearArray cnt base)); 14820 effect(USE_KILL cnt, USE_KILL base, KILL cr); 14821 14822 ins_cost(4 * INSN_COST); 14823 format %{ "ClearArray $cnt, $base" %} 14824 14825 ins_encode %{ 14826 address tpc = __ zero_words($base$$Register, $cnt$$Register); 14827 if (tpc == nullptr) { 14828 ciEnv::current()->record_failure("CodeCache is full"); 14829 return; 14830 } 14831 %} 14832 14833 ins_pipe(pipe_class_memory); 14834 %} 14835 14836 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr) 14837 %{ 14838 predicate((uint64_t)n->in(2)->get_long() 14839 < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord)); 14840 match(Set dummy (ClearArray cnt base)); 14841 effect(TEMP temp, USE_KILL base, KILL cr); 14842 14843 ins_cost(4 * INSN_COST); 14844 format %{ "ClearArray $cnt, $base" %} 14845 14846 ins_encode %{ 14847 address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant); 14848 if (tpc == nullptr) { 14849 ciEnv::current()->record_failure("CodeCache is full"); 14850 return; 14851 } 14852 %} 14853 14854 ins_pipe(pipe_class_memory); 14855 %} 14856 14857 // ============================================================================ 14858 // Overflow Math Instructions 14859 14860 instruct overflowAddI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2) 14861 %{ 14862 match(Set cr (OverflowAddI op1 op2)); 14863 14864 format %{ "cmnw $op1, $op2\t# overflow check int" %} 14865 ins_cost(INSN_COST); 14866 ins_encode %{ 14867 __ cmnw($op1$$Register, $op2$$Register); 14868 %} 14869 14870 ins_pipe(icmp_reg_reg); 14871 %} 14872 14873 instruct overflowAddI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2) 14874 %{ 14875 match(Set cr (OverflowAddI op1 op2)); 14876 14877 format %{ "cmnw $op1, $op2\t# overflow check int" %} 14878 ins_cost(INSN_COST); 14879 ins_encode %{ 14880 __ cmnw($op1$$Register, $op2$$constant); 14881 %} 14882 14883 ins_pipe(icmp_reg_imm); 14884 %} 14885 14886 instruct overflowAddL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2) 14887 %{ 14888 match(Set cr (OverflowAddL op1 op2)); 14889 14890 format %{ "cmn $op1, $op2\t# overflow check long" %} 14891 ins_cost(INSN_COST); 14892 ins_encode %{ 14893 __ cmn($op1$$Register, $op2$$Register); 14894 %} 14895 14896 ins_pipe(icmp_reg_reg); 14897 %} 14898 14899 instruct overflowAddL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2) 14900 %{ 14901 match(Set cr (OverflowAddL op1 op2)); 14902 14903 format %{ "adds zr, $op1, $op2\t# overflow check long" %} 14904 ins_cost(INSN_COST); 14905 ins_encode %{ 14906 __ adds(zr, $op1$$Register, $op2$$constant); 14907 %} 14908 14909 ins_pipe(icmp_reg_imm); 14910 %} 14911 14912 instruct overflowSubI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2) 14913 %{ 14914 match(Set cr (OverflowSubI op1 op2)); 14915 14916 format %{ "cmpw $op1, $op2\t# overflow check int" %} 14917 ins_cost(INSN_COST); 14918 ins_encode %{ 14919 __ cmpw($op1$$Register, $op2$$Register); 14920 %} 14921 14922 ins_pipe(icmp_reg_reg); 14923 %} 14924 14925 instruct overflowSubI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2) 14926 %{ 14927 match(Set cr (OverflowSubI op1 op2)); 14928 14929 format %{ "cmpw $op1, $op2\t# overflow check int" %} 14930 ins_cost(INSN_COST); 14931 ins_encode %{ 14932 __ cmpw($op1$$Register, $op2$$constant); 14933 %} 14934 14935 ins_pipe(icmp_reg_imm); 14936 %} 14937 14938 instruct overflowSubL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2) 14939 %{ 14940 match(Set cr (OverflowSubL op1 op2)); 14941 14942 format %{ "cmp $op1, $op2\t# overflow check long" %} 14943 ins_cost(INSN_COST); 14944 ins_encode %{ 14945 __ cmp($op1$$Register, $op2$$Register); 14946 %} 14947 14948 ins_pipe(icmp_reg_reg); 14949 %} 14950 14951 instruct overflowSubL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2) 14952 %{ 14953 match(Set cr (OverflowSubL op1 op2)); 14954 14955 format %{ "cmp $op1, $op2\t# overflow check long" %} 14956 ins_cost(INSN_COST); 14957 ins_encode %{ 14958 __ subs(zr, $op1$$Register, $op2$$constant); 14959 %} 14960 14961 ins_pipe(icmp_reg_imm); 14962 %} 14963 14964 instruct overflowNegI_reg(rFlagsReg cr, immI0 zero, iRegIorL2I op1) 14965 %{ 14966 match(Set cr (OverflowSubI zero op1)); 14967 14968 format %{ "cmpw zr, $op1\t# overflow check int" %} 14969 ins_cost(INSN_COST); 14970 ins_encode %{ 14971 __ cmpw(zr, $op1$$Register); 14972 %} 14973 14974 ins_pipe(icmp_reg_imm); 14975 %} 14976 14977 instruct overflowNegL_reg(rFlagsReg cr, immI0 zero, iRegL op1) 14978 %{ 14979 match(Set cr (OverflowSubL zero op1)); 14980 14981 format %{ "cmp zr, $op1\t# overflow check long" %} 14982 ins_cost(INSN_COST); 14983 ins_encode %{ 14984 __ cmp(zr, $op1$$Register); 14985 %} 14986 14987 ins_pipe(icmp_reg_imm); 14988 %} 14989 14990 instruct overflowMulI_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2) 14991 %{ 14992 match(Set cr (OverflowMulI op1 op2)); 14993 14994 format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t" 14995 "cmp rscratch1, rscratch1, sxtw\n\t" 14996 "movw rscratch1, #0x80000000\n\t" 14997 "cselw rscratch1, rscratch1, zr, NE\n\t" 14998 "cmpw rscratch1, #1" %} 14999 ins_cost(5 * INSN_COST); 15000 ins_encode %{ 15001 __ smull(rscratch1, $op1$$Register, $op2$$Register); 15002 __ subs(zr, rscratch1, rscratch1, ext::sxtw); // NE => overflow 15003 __ movw(rscratch1, 0x80000000); // Develop 0 (EQ), 15004 __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE) 15005 __ cmpw(rscratch1, 1); // 0x80000000 - 1 => VS 15006 %} 15007 15008 ins_pipe(pipe_slow); 15009 %} 15010 15011 instruct overflowMulI_reg_branch(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, label labl, rFlagsReg cr) 15012 %{ 15013 match(If cmp (OverflowMulI op1 op2)); 15014 predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow 15015 || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow); 15016 effect(USE labl, KILL cr); 15017 15018 format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t" 15019 "cmp rscratch1, rscratch1, sxtw\n\t" 15020 "b$cmp $labl" %} 15021 ins_cost(3 * INSN_COST); // Branch is rare so treat as INSN_COST 15022 ins_encode %{ 15023 Label* L = $labl$$label; 15024 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15025 __ smull(rscratch1, $op1$$Register, $op2$$Register); 15026 __ subs(zr, rscratch1, rscratch1, ext::sxtw); // NE => overflow 15027 __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L); 15028 %} 15029 15030 ins_pipe(pipe_serial); 15031 %} 15032 15033 instruct overflowMulL_reg(rFlagsReg cr, iRegL op1, iRegL op2) 15034 %{ 15035 match(Set cr (OverflowMulL op1 op2)); 15036 15037 format %{ "mul rscratch1, $op1, $op2\t#overflow check long\n\t" 15038 "smulh rscratch2, $op1, $op2\n\t" 15039 "cmp rscratch2, rscratch1, ASR #63\n\t" 15040 "movw rscratch1, #0x80000000\n\t" 15041 "cselw rscratch1, rscratch1, zr, NE\n\t" 15042 "cmpw rscratch1, #1" %} 15043 ins_cost(6 * INSN_COST); 15044 ins_encode %{ 15045 __ mul(rscratch1, $op1$$Register, $op2$$Register); // Result bits 0..63 15046 __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127 15047 __ cmp(rscratch2, rscratch1, Assembler::ASR, 63); // Top is pure sign ext 15048 __ movw(rscratch1, 0x80000000); // Develop 0 (EQ), 15049 __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE) 15050 __ cmpw(rscratch1, 1); // 0x80000000 - 1 => VS 15051 %} 15052 15053 ins_pipe(pipe_slow); 15054 %} 15055 15056 instruct overflowMulL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, rFlagsReg cr) 15057 %{ 15058 match(If cmp (OverflowMulL op1 op2)); 15059 predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow 15060 || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow); 15061 effect(USE labl, KILL cr); 15062 15063 format %{ "mul rscratch1, $op1, $op2\t#overflow check long\n\t" 15064 "smulh rscratch2, $op1, $op2\n\t" 15065 "cmp rscratch2, rscratch1, ASR #63\n\t" 15066 "b$cmp $labl" %} 15067 ins_cost(4 * INSN_COST); // Branch is rare so treat as INSN_COST 15068 ins_encode %{ 15069 Label* L = $labl$$label; 15070 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15071 __ mul(rscratch1, $op1$$Register, $op2$$Register); // Result bits 0..63 15072 __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127 15073 __ cmp(rscratch2, rscratch1, Assembler::ASR, 63); // Top is pure sign ext 15074 __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L); 15075 %} 15076 15077 ins_pipe(pipe_serial); 15078 %} 15079 15080 // ============================================================================ 15081 // Compare Instructions 15082 15083 instruct compI_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2) 15084 %{ 15085 match(Set cr (CmpI op1 op2)); 15086 15087 effect(DEF cr, USE op1, USE op2); 15088 15089 ins_cost(INSN_COST); 15090 format %{ "cmpw $op1, $op2" %} 15091 15092 ins_encode(aarch64_enc_cmpw(op1, op2)); 15093 15094 ins_pipe(icmp_reg_reg); 15095 %} 15096 15097 instruct compI_reg_immI0(rFlagsReg cr, iRegI op1, immI0 zero) 15098 %{ 15099 match(Set cr (CmpI op1 zero)); 15100 15101 effect(DEF cr, USE op1); 15102 15103 ins_cost(INSN_COST); 15104 format %{ "cmpw $op1, 0" %} 15105 15106 ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero)); 15107 15108 ins_pipe(icmp_reg_imm); 15109 %} 15110 15111 instruct compI_reg_immIAddSub(rFlagsReg cr, iRegI op1, immIAddSub op2) 15112 %{ 15113 match(Set cr (CmpI op1 op2)); 15114 15115 effect(DEF cr, USE op1); 15116 15117 ins_cost(INSN_COST); 15118 format %{ "cmpw $op1, $op2" %} 15119 15120 ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2)); 15121 15122 ins_pipe(icmp_reg_imm); 15123 %} 15124 15125 instruct compI_reg_immI(rFlagsReg cr, iRegI op1, immI op2) 15126 %{ 15127 match(Set cr (CmpI op1 op2)); 15128 15129 effect(DEF cr, USE op1); 15130 15131 ins_cost(INSN_COST * 2); 15132 format %{ "cmpw $op1, $op2" %} 15133 15134 ins_encode(aarch64_enc_cmpw_imm(op1, op2)); 15135 15136 ins_pipe(icmp_reg_imm); 15137 %} 15138 15139 // Unsigned compare Instructions; really, same as signed compare 15140 // except it should only be used to feed an If or a CMovI which takes a 15141 // cmpOpU. 15142 15143 instruct compU_reg_reg(rFlagsRegU cr, iRegI op1, iRegI op2) 15144 %{ 15145 match(Set cr (CmpU op1 op2)); 15146 15147 effect(DEF cr, USE op1, USE op2); 15148 15149 ins_cost(INSN_COST); 15150 format %{ "cmpw $op1, $op2\t# unsigned" %} 15151 15152 ins_encode(aarch64_enc_cmpw(op1, op2)); 15153 15154 ins_pipe(icmp_reg_reg); 15155 %} 15156 15157 instruct compU_reg_immI0(rFlagsRegU cr, iRegI op1, immI0 zero) 15158 %{ 15159 match(Set cr (CmpU op1 zero)); 15160 15161 effect(DEF cr, USE op1); 15162 15163 ins_cost(INSN_COST); 15164 format %{ "cmpw $op1, #0\t# unsigned" %} 15165 15166 ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero)); 15167 15168 ins_pipe(icmp_reg_imm); 15169 %} 15170 15171 instruct compU_reg_immIAddSub(rFlagsRegU cr, iRegI op1, immIAddSub op2) 15172 %{ 15173 match(Set cr (CmpU op1 op2)); 15174 15175 effect(DEF cr, USE op1); 15176 15177 ins_cost(INSN_COST); 15178 format %{ "cmpw $op1, $op2\t# unsigned" %} 15179 15180 ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2)); 15181 15182 ins_pipe(icmp_reg_imm); 15183 %} 15184 15185 instruct compU_reg_immI(rFlagsRegU cr, iRegI op1, immI op2) 15186 %{ 15187 match(Set cr (CmpU op1 op2)); 15188 15189 effect(DEF cr, USE op1); 15190 15191 ins_cost(INSN_COST * 2); 15192 format %{ "cmpw $op1, $op2\t# unsigned" %} 15193 15194 ins_encode(aarch64_enc_cmpw_imm(op1, op2)); 15195 15196 ins_pipe(icmp_reg_imm); 15197 %} 15198 15199 instruct compL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2) 15200 %{ 15201 match(Set cr (CmpL op1 op2)); 15202 15203 effect(DEF cr, USE op1, USE op2); 15204 15205 ins_cost(INSN_COST); 15206 format %{ "cmp $op1, $op2" %} 15207 15208 ins_encode(aarch64_enc_cmp(op1, op2)); 15209 15210 ins_pipe(icmp_reg_reg); 15211 %} 15212 15213 instruct compL_reg_immL0(rFlagsReg cr, iRegL op1, immL0 zero) 15214 %{ 15215 match(Set cr (CmpL op1 zero)); 15216 15217 effect(DEF cr, USE op1); 15218 15219 ins_cost(INSN_COST); 15220 format %{ "tst $op1" %} 15221 15222 ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero)); 15223 15224 ins_pipe(icmp_reg_imm); 15225 %} 15226 15227 instruct compL_reg_immLAddSub(rFlagsReg cr, iRegL op1, immLAddSub op2) 15228 %{ 15229 match(Set cr (CmpL op1 op2)); 15230 15231 effect(DEF cr, USE op1); 15232 15233 ins_cost(INSN_COST); 15234 format %{ "cmp $op1, $op2" %} 15235 15236 ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2)); 15237 15238 ins_pipe(icmp_reg_imm); 15239 %} 15240 15241 instruct compL_reg_immL(rFlagsReg cr, iRegL op1, immL op2) 15242 %{ 15243 match(Set cr (CmpL op1 op2)); 15244 15245 effect(DEF cr, USE op1); 15246 15247 ins_cost(INSN_COST * 2); 15248 format %{ "cmp $op1, $op2" %} 15249 15250 ins_encode(aarch64_enc_cmp_imm(op1, op2)); 15251 15252 ins_pipe(icmp_reg_imm); 15253 %} 15254 15255 instruct compUL_reg_reg(rFlagsRegU cr, iRegL op1, iRegL op2) 15256 %{ 15257 match(Set cr (CmpUL op1 op2)); 15258 15259 effect(DEF cr, USE op1, USE op2); 15260 15261 ins_cost(INSN_COST); 15262 format %{ "cmp $op1, $op2" %} 15263 15264 ins_encode(aarch64_enc_cmp(op1, op2)); 15265 15266 ins_pipe(icmp_reg_reg); 15267 %} 15268 15269 instruct compUL_reg_immL0(rFlagsRegU cr, iRegL op1, immL0 zero) 15270 %{ 15271 match(Set cr (CmpUL op1 zero)); 15272 15273 effect(DEF cr, USE op1); 15274 15275 ins_cost(INSN_COST); 15276 format %{ "tst $op1" %} 15277 15278 ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero)); 15279 15280 ins_pipe(icmp_reg_imm); 15281 %} 15282 15283 instruct compUL_reg_immLAddSub(rFlagsRegU cr, iRegL op1, immLAddSub op2) 15284 %{ 15285 match(Set cr (CmpUL op1 op2)); 15286 15287 effect(DEF cr, USE op1); 15288 15289 ins_cost(INSN_COST); 15290 format %{ "cmp $op1, $op2" %} 15291 15292 ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2)); 15293 15294 ins_pipe(icmp_reg_imm); 15295 %} 15296 15297 instruct compUL_reg_immL(rFlagsRegU cr, iRegL op1, immL op2) 15298 %{ 15299 match(Set cr (CmpUL op1 op2)); 15300 15301 effect(DEF cr, USE op1); 15302 15303 ins_cost(INSN_COST * 2); 15304 format %{ "cmp $op1, $op2" %} 15305 15306 ins_encode(aarch64_enc_cmp_imm(op1, op2)); 15307 15308 ins_pipe(icmp_reg_imm); 15309 %} 15310 15311 instruct compP_reg_reg(rFlagsRegU cr, iRegP op1, iRegP op2) 15312 %{ 15313 match(Set cr (CmpP op1 op2)); 15314 15315 effect(DEF cr, USE op1, USE op2); 15316 15317 ins_cost(INSN_COST); 15318 format %{ "cmp $op1, $op2\t // ptr" %} 15319 15320 ins_encode(aarch64_enc_cmpp(op1, op2)); 15321 15322 ins_pipe(icmp_reg_reg); 15323 %} 15324 15325 instruct compN_reg_reg(rFlagsRegU cr, iRegN op1, iRegN op2) 15326 %{ 15327 match(Set cr (CmpN op1 op2)); 15328 15329 effect(DEF cr, USE op1, USE op2); 15330 15331 ins_cost(INSN_COST); 15332 format %{ "cmp $op1, $op2\t // compressed ptr" %} 15333 15334 ins_encode(aarch64_enc_cmpn(op1, op2)); 15335 15336 ins_pipe(icmp_reg_reg); 15337 %} 15338 15339 instruct testP_reg(rFlagsRegU cr, iRegP op1, immP0 zero) 15340 %{ 15341 match(Set cr (CmpP op1 zero)); 15342 15343 effect(DEF cr, USE op1, USE zero); 15344 15345 ins_cost(INSN_COST); 15346 format %{ "cmp $op1, 0\t // ptr" %} 15347 15348 ins_encode(aarch64_enc_testp(op1)); 15349 15350 ins_pipe(icmp_reg_imm); 15351 %} 15352 15353 instruct testN_reg(rFlagsRegU cr, iRegN op1, immN0 zero) 15354 %{ 15355 match(Set cr (CmpN op1 zero)); 15356 15357 effect(DEF cr, USE op1, USE zero); 15358 15359 ins_cost(INSN_COST); 15360 format %{ "cmp $op1, 0\t // compressed ptr" %} 15361 15362 ins_encode(aarch64_enc_testn(op1)); 15363 15364 ins_pipe(icmp_reg_imm); 15365 %} 15366 15367 // FP comparisons 15368 // 15369 // n.b. CmpF/CmpD set a normal flags reg which then gets compared 15370 // using normal cmpOp. See declaration of rFlagsReg for details. 15371 15372 instruct compF_reg_reg(rFlagsReg cr, vRegF src1, vRegF src2) 15373 %{ 15374 match(Set cr (CmpF src1 src2)); 15375 15376 ins_cost(3 * INSN_COST); 15377 format %{ "fcmps $src1, $src2" %} 15378 15379 ins_encode %{ 15380 __ fcmps(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg)); 15381 %} 15382 15383 ins_pipe(pipe_class_compare); 15384 %} 15385 15386 instruct compF_reg_zero(rFlagsReg cr, vRegF src1, immF0 src2) 15387 %{ 15388 match(Set cr (CmpF src1 src2)); 15389 15390 ins_cost(3 * INSN_COST); 15391 format %{ "fcmps $src1, 0.0" %} 15392 15393 ins_encode %{ 15394 __ fcmps(as_FloatRegister($src1$$reg), 0.0); 15395 %} 15396 15397 ins_pipe(pipe_class_compare); 15398 %} 15399 // FROM HERE 15400 15401 instruct compD_reg_reg(rFlagsReg cr, vRegD src1, vRegD src2) 15402 %{ 15403 match(Set cr (CmpD src1 src2)); 15404 15405 ins_cost(3 * INSN_COST); 15406 format %{ "fcmpd $src1, $src2" %} 15407 15408 ins_encode %{ 15409 __ fcmpd(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg)); 15410 %} 15411 15412 ins_pipe(pipe_class_compare); 15413 %} 15414 15415 instruct compD_reg_zero(rFlagsReg cr, vRegD src1, immD0 src2) 15416 %{ 15417 match(Set cr (CmpD src1 src2)); 15418 15419 ins_cost(3 * INSN_COST); 15420 format %{ "fcmpd $src1, 0.0" %} 15421 15422 ins_encode %{ 15423 __ fcmpd(as_FloatRegister($src1$$reg), 0.0); 15424 %} 15425 15426 ins_pipe(pipe_class_compare); 15427 %} 15428 15429 instruct compF3_reg_reg(iRegINoSp dst, vRegF src1, vRegF src2, rFlagsReg cr) 15430 %{ 15431 match(Set dst (CmpF3 src1 src2)); 15432 effect(KILL cr); 15433 15434 ins_cost(5 * INSN_COST); 15435 format %{ "fcmps $src1, $src2\n\t" 15436 "csinvw($dst, zr, zr, eq\n\t" 15437 "csnegw($dst, $dst, $dst, lt)" 15438 %} 15439 15440 ins_encode %{ 15441 Label done; 15442 FloatRegister s1 = as_FloatRegister($src1$$reg); 15443 FloatRegister s2 = as_FloatRegister($src2$$reg); 15444 Register d = as_Register($dst$$reg); 15445 __ fcmps(s1, s2); 15446 // installs 0 if EQ else -1 15447 __ csinvw(d, zr, zr, Assembler::EQ); 15448 // keeps -1 if less or unordered else installs 1 15449 __ csnegw(d, d, d, Assembler::LT); 15450 __ bind(done); 15451 %} 15452 15453 ins_pipe(pipe_class_default); 15454 15455 %} 15456 15457 instruct compD3_reg_reg(iRegINoSp dst, vRegD src1, vRegD src2, rFlagsReg cr) 15458 %{ 15459 match(Set dst (CmpD3 src1 src2)); 15460 effect(KILL cr); 15461 15462 ins_cost(5 * INSN_COST); 15463 format %{ "fcmpd $src1, $src2\n\t" 15464 "csinvw($dst, zr, zr, eq\n\t" 15465 "csnegw($dst, $dst, $dst, lt)" 15466 %} 15467 15468 ins_encode %{ 15469 Label done; 15470 FloatRegister s1 = as_FloatRegister($src1$$reg); 15471 FloatRegister s2 = as_FloatRegister($src2$$reg); 15472 Register d = as_Register($dst$$reg); 15473 __ fcmpd(s1, s2); 15474 // installs 0 if EQ else -1 15475 __ csinvw(d, zr, zr, Assembler::EQ); 15476 // keeps -1 if less or unordered else installs 1 15477 __ csnegw(d, d, d, Assembler::LT); 15478 __ bind(done); 15479 %} 15480 ins_pipe(pipe_class_default); 15481 15482 %} 15483 15484 instruct compF3_reg_immF0(iRegINoSp dst, vRegF src1, immF0 zero, rFlagsReg cr) 15485 %{ 15486 match(Set dst (CmpF3 src1 zero)); 15487 effect(KILL cr); 15488 15489 ins_cost(5 * INSN_COST); 15490 format %{ "fcmps $src1, 0.0\n\t" 15491 "csinvw($dst, zr, zr, eq\n\t" 15492 "csnegw($dst, $dst, $dst, lt)" 15493 %} 15494 15495 ins_encode %{ 15496 Label done; 15497 FloatRegister s1 = as_FloatRegister($src1$$reg); 15498 Register d = as_Register($dst$$reg); 15499 __ fcmps(s1, 0.0); 15500 // installs 0 if EQ else -1 15501 __ csinvw(d, zr, zr, Assembler::EQ); 15502 // keeps -1 if less or unordered else installs 1 15503 __ csnegw(d, d, d, Assembler::LT); 15504 __ bind(done); 15505 %} 15506 15507 ins_pipe(pipe_class_default); 15508 15509 %} 15510 15511 instruct compD3_reg_immD0(iRegINoSp dst, vRegD src1, immD0 zero, rFlagsReg cr) 15512 %{ 15513 match(Set dst (CmpD3 src1 zero)); 15514 effect(KILL cr); 15515 15516 ins_cost(5 * INSN_COST); 15517 format %{ "fcmpd $src1, 0.0\n\t" 15518 "csinvw($dst, zr, zr, eq\n\t" 15519 "csnegw($dst, $dst, $dst, lt)" 15520 %} 15521 15522 ins_encode %{ 15523 Label done; 15524 FloatRegister s1 = as_FloatRegister($src1$$reg); 15525 Register d = as_Register($dst$$reg); 15526 __ fcmpd(s1, 0.0); 15527 // installs 0 if EQ else -1 15528 __ csinvw(d, zr, zr, Assembler::EQ); 15529 // keeps -1 if less or unordered else installs 1 15530 __ csnegw(d, d, d, Assembler::LT); 15531 __ bind(done); 15532 %} 15533 ins_pipe(pipe_class_default); 15534 15535 %} 15536 15537 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegIorL2I p, iRegIorL2I q, rFlagsReg cr) 15538 %{ 15539 match(Set dst (CmpLTMask p q)); 15540 effect(KILL cr); 15541 15542 ins_cost(3 * INSN_COST); 15543 15544 format %{ "cmpw $p, $q\t# cmpLTMask\n\t" 15545 "csetw $dst, lt\n\t" 15546 "subw $dst, zr, $dst" 15547 %} 15548 15549 ins_encode %{ 15550 __ cmpw(as_Register($p$$reg), as_Register($q$$reg)); 15551 __ csetw(as_Register($dst$$reg), Assembler::LT); 15552 __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 15553 %} 15554 15555 ins_pipe(ialu_reg_reg); 15556 %} 15557 15558 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr) 15559 %{ 15560 match(Set dst (CmpLTMask src zero)); 15561 effect(KILL cr); 15562 15563 ins_cost(INSN_COST); 15564 15565 format %{ "asrw $dst, $src, #31\t# cmpLTMask0" %} 15566 15567 ins_encode %{ 15568 __ asrw(as_Register($dst$$reg), as_Register($src$$reg), 31); 15569 %} 15570 15571 ins_pipe(ialu_reg_shift); 15572 %} 15573 15574 // ============================================================================ 15575 // Max and Min 15576 15577 // Like compI_reg_reg or compI_reg_immI0 but without match rule and second zero parameter. 15578 15579 instruct compI_reg_imm0(rFlagsReg cr, iRegI src) 15580 %{ 15581 effect(DEF cr, USE src); 15582 ins_cost(INSN_COST); 15583 format %{ "cmpw $src, 0" %} 15584 15585 ins_encode %{ 15586 __ cmpw($src$$Register, 0); 15587 %} 15588 ins_pipe(icmp_reg_imm); 15589 %} 15590 15591 instruct minI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) 15592 %{ 15593 match(Set dst (MinI src1 src2)); 15594 ins_cost(INSN_COST * 3); 15595 15596 expand %{ 15597 rFlagsReg cr; 15598 compI_reg_reg(cr, src1, src2); 15599 cmovI_reg_reg_lt(dst, src1, src2, cr); 15600 %} 15601 %} 15602 15603 instruct maxI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) 15604 %{ 15605 match(Set dst (MaxI src1 src2)); 15606 ins_cost(INSN_COST * 3); 15607 15608 expand %{ 15609 rFlagsReg cr; 15610 compI_reg_reg(cr, src1, src2); 15611 cmovI_reg_reg_gt(dst, src1, src2, cr); 15612 %} 15613 %} 15614 15615 15616 // ============================================================================ 15617 // Branch Instructions 15618 15619 // Direct Branch. 15620 instruct branch(label lbl) 15621 %{ 15622 match(Goto); 15623 15624 effect(USE lbl); 15625 15626 ins_cost(BRANCH_COST); 15627 format %{ "b $lbl" %} 15628 15629 ins_encode(aarch64_enc_b(lbl)); 15630 15631 ins_pipe(pipe_branch); 15632 %} 15633 15634 // Conditional Near Branch 15635 instruct branchCon(cmpOp cmp, rFlagsReg cr, label lbl) 15636 %{ 15637 // Same match rule as `branchConFar'. 15638 match(If cmp cr); 15639 15640 effect(USE lbl); 15641 15642 ins_cost(BRANCH_COST); 15643 // If set to 1 this indicates that the current instruction is a 15644 // short variant of a long branch. This avoids using this 15645 // instruction in first-pass matching. It will then only be used in 15646 // the `Shorten_branches' pass. 15647 // ins_short_branch(1); 15648 format %{ "b$cmp $lbl" %} 15649 15650 ins_encode(aarch64_enc_br_con(cmp, lbl)); 15651 15652 ins_pipe(pipe_branch_cond); 15653 %} 15654 15655 // Conditional Near Branch Unsigned 15656 instruct branchConU(cmpOpU cmp, rFlagsRegU cr, label lbl) 15657 %{ 15658 // Same match rule as `branchConFar'. 15659 match(If cmp cr); 15660 15661 effect(USE lbl); 15662 15663 ins_cost(BRANCH_COST); 15664 // If set to 1 this indicates that the current instruction is a 15665 // short variant of a long branch. This avoids using this 15666 // instruction in first-pass matching. It will then only be used in 15667 // the `Shorten_branches' pass. 15668 // ins_short_branch(1); 15669 format %{ "b$cmp $lbl\t# unsigned" %} 15670 15671 ins_encode(aarch64_enc_br_conU(cmp, lbl)); 15672 15673 ins_pipe(pipe_branch_cond); 15674 %} 15675 15676 // Make use of CBZ and CBNZ. These instructions, as well as being 15677 // shorter than (cmp; branch), have the additional benefit of not 15678 // killing the flags. 15679 15680 instruct cmpI_imm0_branch(cmpOpEqNe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsReg cr) %{ 15681 match(If cmp (CmpI op1 op2)); 15682 effect(USE labl); 15683 15684 ins_cost(BRANCH_COST); 15685 format %{ "cbw$cmp $op1, $labl" %} 15686 ins_encode %{ 15687 Label* L = $labl$$label; 15688 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15689 if (cond == Assembler::EQ) 15690 __ cbzw($op1$$Register, *L); 15691 else 15692 __ cbnzw($op1$$Register, *L); 15693 %} 15694 ins_pipe(pipe_cmp_branch); 15695 %} 15696 15697 instruct cmpL_imm0_branch(cmpOpEqNe cmp, iRegL op1, immL0 op2, label labl, rFlagsReg cr) %{ 15698 match(If cmp (CmpL op1 op2)); 15699 effect(USE labl); 15700 15701 ins_cost(BRANCH_COST); 15702 format %{ "cb$cmp $op1, $labl" %} 15703 ins_encode %{ 15704 Label* L = $labl$$label; 15705 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15706 if (cond == Assembler::EQ) 15707 __ cbz($op1$$Register, *L); 15708 else 15709 __ cbnz($op1$$Register, *L); 15710 %} 15711 ins_pipe(pipe_cmp_branch); 15712 %} 15713 15714 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 op2, label labl, rFlagsReg cr) %{ 15715 match(If cmp (CmpP op1 op2)); 15716 effect(USE labl); 15717 15718 ins_cost(BRANCH_COST); 15719 format %{ "cb$cmp $op1, $labl" %} 15720 ins_encode %{ 15721 Label* L = $labl$$label; 15722 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15723 if (cond == Assembler::EQ) 15724 __ cbz($op1$$Register, *L); 15725 else 15726 __ cbnz($op1$$Register, *L); 15727 %} 15728 ins_pipe(pipe_cmp_branch); 15729 %} 15730 15731 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 op2, label labl, rFlagsReg cr) %{ 15732 match(If cmp (CmpN op1 op2)); 15733 effect(USE labl); 15734 15735 ins_cost(BRANCH_COST); 15736 format %{ "cbw$cmp $op1, $labl" %} 15737 ins_encode %{ 15738 Label* L = $labl$$label; 15739 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15740 if (cond == Assembler::EQ) 15741 __ cbzw($op1$$Register, *L); 15742 else 15743 __ cbnzw($op1$$Register, *L); 15744 %} 15745 ins_pipe(pipe_cmp_branch); 15746 %} 15747 15748 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN oop, immP0 zero, label labl, rFlagsReg cr) %{ 15749 match(If cmp (CmpP (DecodeN oop) zero)); 15750 effect(USE labl); 15751 15752 ins_cost(BRANCH_COST); 15753 format %{ "cb$cmp $oop, $labl" %} 15754 ins_encode %{ 15755 Label* L = $labl$$label; 15756 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15757 if (cond == Assembler::EQ) 15758 __ cbzw($oop$$Register, *L); 15759 else 15760 __ cbnzw($oop$$Register, *L); 15761 %} 15762 ins_pipe(pipe_cmp_branch); 15763 %} 15764 15765 instruct cmpUI_imm0_branch(cmpOpUEqNeLeGt cmp, iRegIorL2I op1, immI0 op2, label labl) %{ 15766 match(If cmp (CmpU op1 op2)); 15767 effect(USE labl); 15768 15769 ins_cost(BRANCH_COST); 15770 format %{ "cbw$cmp $op1, $labl" %} 15771 ins_encode %{ 15772 Label* L = $labl$$label; 15773 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15774 if (cond == Assembler::EQ || cond == Assembler::LS) { 15775 __ cbzw($op1$$Register, *L); 15776 } else { 15777 assert(cond == Assembler::NE || cond == Assembler::HI, "unexpected condition"); 15778 __ cbnzw($op1$$Register, *L); 15779 } 15780 %} 15781 ins_pipe(pipe_cmp_branch); 15782 %} 15783 15784 instruct cmpUL_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 op2, label labl) %{ 15785 match(If cmp (CmpUL op1 op2)); 15786 effect(USE labl); 15787 15788 ins_cost(BRANCH_COST); 15789 format %{ "cb$cmp $op1, $labl" %} 15790 ins_encode %{ 15791 Label* L = $labl$$label; 15792 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15793 if (cond == Assembler::EQ || cond == Assembler::LS) { 15794 __ cbz($op1$$Register, *L); 15795 } else { 15796 assert(cond == Assembler::NE || cond == Assembler::HI, "unexpected condition"); 15797 __ cbnz($op1$$Register, *L); 15798 } 15799 %} 15800 ins_pipe(pipe_cmp_branch); 15801 %} 15802 15803 // Test bit and Branch 15804 15805 // Patterns for short (< 32KiB) variants 15806 instruct cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{ 15807 match(If cmp (CmpL op1 op2)); 15808 effect(USE labl); 15809 15810 ins_cost(BRANCH_COST); 15811 format %{ "cb$cmp $op1, $labl # long" %} 15812 ins_encode %{ 15813 Label* L = $labl$$label; 15814 Assembler::Condition cond = 15815 ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ; 15816 __ tbr(cond, $op1$$Register, 63, *L); 15817 %} 15818 ins_pipe(pipe_cmp_branch); 15819 ins_short_branch(1); 15820 %} 15821 15822 instruct cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{ 15823 match(If cmp (CmpI op1 op2)); 15824 effect(USE labl); 15825 15826 ins_cost(BRANCH_COST); 15827 format %{ "cb$cmp $op1, $labl # int" %} 15828 ins_encode %{ 15829 Label* L = $labl$$label; 15830 Assembler::Condition cond = 15831 ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ; 15832 __ tbr(cond, $op1$$Register, 31, *L); 15833 %} 15834 ins_pipe(pipe_cmp_branch); 15835 ins_short_branch(1); 15836 %} 15837 15838 instruct cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{ 15839 match(If cmp (CmpL (AndL op1 op2) op3)); 15840 predicate(is_power_of_2((julong)n->in(2)->in(1)->in(2)->get_long())); 15841 effect(USE labl); 15842 15843 ins_cost(BRANCH_COST); 15844 format %{ "tb$cmp $op1, $op2, $labl" %} 15845 ins_encode %{ 15846 Label* L = $labl$$label; 15847 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15848 int bit = exact_log2_long($op2$$constant); 15849 __ tbr(cond, $op1$$Register, bit, *L); 15850 %} 15851 ins_pipe(pipe_cmp_branch); 15852 ins_short_branch(1); 15853 %} 15854 15855 instruct cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{ 15856 match(If cmp (CmpI (AndI op1 op2) op3)); 15857 predicate(is_power_of_2((juint)n->in(2)->in(1)->in(2)->get_int())); 15858 effect(USE labl); 15859 15860 ins_cost(BRANCH_COST); 15861 format %{ "tb$cmp $op1, $op2, $labl" %} 15862 ins_encode %{ 15863 Label* L = $labl$$label; 15864 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15865 int bit = exact_log2((juint)$op2$$constant); 15866 __ tbr(cond, $op1$$Register, bit, *L); 15867 %} 15868 ins_pipe(pipe_cmp_branch); 15869 ins_short_branch(1); 15870 %} 15871 15872 // And far variants 15873 instruct far_cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{ 15874 match(If cmp (CmpL op1 op2)); 15875 effect(USE labl); 15876 15877 ins_cost(BRANCH_COST); 15878 format %{ "cb$cmp $op1, $labl # long" %} 15879 ins_encode %{ 15880 Label* L = $labl$$label; 15881 Assembler::Condition cond = 15882 ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ; 15883 __ tbr(cond, $op1$$Register, 63, *L, /*far*/true); 15884 %} 15885 ins_pipe(pipe_cmp_branch); 15886 %} 15887 15888 instruct far_cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{ 15889 match(If cmp (CmpI op1 op2)); 15890 effect(USE labl); 15891 15892 ins_cost(BRANCH_COST); 15893 format %{ "cb$cmp $op1, $labl # int" %} 15894 ins_encode %{ 15895 Label* L = $labl$$label; 15896 Assembler::Condition cond = 15897 ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ; 15898 __ tbr(cond, $op1$$Register, 31, *L, /*far*/true); 15899 %} 15900 ins_pipe(pipe_cmp_branch); 15901 %} 15902 15903 instruct far_cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{ 15904 match(If cmp (CmpL (AndL op1 op2) op3)); 15905 predicate(is_power_of_2((julong)n->in(2)->in(1)->in(2)->get_long())); 15906 effect(USE labl); 15907 15908 ins_cost(BRANCH_COST); 15909 format %{ "tb$cmp $op1, $op2, $labl" %} 15910 ins_encode %{ 15911 Label* L = $labl$$label; 15912 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15913 int bit = exact_log2_long($op2$$constant); 15914 __ tbr(cond, $op1$$Register, bit, *L, /*far*/true); 15915 %} 15916 ins_pipe(pipe_cmp_branch); 15917 %} 15918 15919 instruct far_cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{ 15920 match(If cmp (CmpI (AndI op1 op2) op3)); 15921 predicate(is_power_of_2((juint)n->in(2)->in(1)->in(2)->get_int())); 15922 effect(USE labl); 15923 15924 ins_cost(BRANCH_COST); 15925 format %{ "tb$cmp $op1, $op2, $labl" %} 15926 ins_encode %{ 15927 Label* L = $labl$$label; 15928 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15929 int bit = exact_log2((juint)$op2$$constant); 15930 __ tbr(cond, $op1$$Register, bit, *L, /*far*/true); 15931 %} 15932 ins_pipe(pipe_cmp_branch); 15933 %} 15934 15935 // Test bits 15936 15937 instruct cmpL_and(cmpOp cmp, iRegL op1, immL op2, immL0 op3, rFlagsReg cr) %{ 15938 match(Set cr (CmpL (AndL op1 op2) op3)); 15939 predicate(Assembler::operand_valid_for_logical_immediate 15940 (/*is_32*/false, n->in(1)->in(2)->get_long())); 15941 15942 ins_cost(INSN_COST); 15943 format %{ "tst $op1, $op2 # long" %} 15944 ins_encode %{ 15945 __ tst($op1$$Register, $op2$$constant); 15946 %} 15947 ins_pipe(ialu_reg_reg); 15948 %} 15949 15950 instruct cmpI_and(cmpOp cmp, iRegIorL2I op1, immI op2, immI0 op3, rFlagsReg cr) %{ 15951 match(Set cr (CmpI (AndI op1 op2) op3)); 15952 predicate(Assembler::operand_valid_for_logical_immediate 15953 (/*is_32*/true, n->in(1)->in(2)->get_int())); 15954 15955 ins_cost(INSN_COST); 15956 format %{ "tst $op1, $op2 # int" %} 15957 ins_encode %{ 15958 __ tstw($op1$$Register, $op2$$constant); 15959 %} 15960 ins_pipe(ialu_reg_reg); 15961 %} 15962 15963 instruct cmpL_and_reg(cmpOp cmp, iRegL op1, iRegL op2, immL0 op3, rFlagsReg cr) %{ 15964 match(Set cr (CmpL (AndL op1 op2) op3)); 15965 15966 ins_cost(INSN_COST); 15967 format %{ "tst $op1, $op2 # long" %} 15968 ins_encode %{ 15969 __ tst($op1$$Register, $op2$$Register); 15970 %} 15971 ins_pipe(ialu_reg_reg); 15972 %} 15973 15974 instruct cmpI_and_reg(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, immI0 op3, rFlagsReg cr) %{ 15975 match(Set cr (CmpI (AndI op1 op2) op3)); 15976 15977 ins_cost(INSN_COST); 15978 format %{ "tstw $op1, $op2 # int" %} 15979 ins_encode %{ 15980 __ tstw($op1$$Register, $op2$$Register); 15981 %} 15982 ins_pipe(ialu_reg_reg); 15983 %} 15984 15985 15986 // Conditional Far Branch 15987 // Conditional Far Branch Unsigned 15988 // TODO: fixme 15989 15990 // counted loop end branch near 15991 instruct branchLoopEnd(cmpOp cmp, rFlagsReg cr, label lbl) 15992 %{ 15993 match(CountedLoopEnd cmp cr); 15994 15995 effect(USE lbl); 15996 15997 ins_cost(BRANCH_COST); 15998 // short variant. 15999 // ins_short_branch(1); 16000 format %{ "b$cmp $lbl \t// counted loop end" %} 16001 16002 ins_encode(aarch64_enc_br_con(cmp, lbl)); 16003 16004 ins_pipe(pipe_branch); 16005 %} 16006 16007 // counted loop end branch far 16008 // TODO: fixme 16009 16010 // ============================================================================ 16011 // inlined locking and unlocking 16012 16013 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3) 16014 %{ 16015 predicate(LockingMode != LM_LIGHTWEIGHT); 16016 match(Set cr (FastLock object box)); 16017 effect(TEMP tmp, TEMP tmp2, TEMP tmp3); 16018 16019 ins_cost(5 * INSN_COST); 16020 format %{ "fastlock $object,$box\t! kills $tmp,$tmp2,$tmp3" %} 16021 16022 ins_encode %{ 16023 __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register); 16024 %} 16025 16026 ins_pipe(pipe_serial); 16027 %} 16028 16029 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2) 16030 %{ 16031 predicate(LockingMode != LM_LIGHTWEIGHT); 16032 match(Set cr (FastUnlock object box)); 16033 effect(TEMP tmp, TEMP tmp2); 16034 16035 ins_cost(5 * INSN_COST); 16036 format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2" %} 16037 16038 ins_encode %{ 16039 __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register); 16040 %} 16041 16042 ins_pipe(pipe_serial); 16043 %} 16044 16045 instruct cmpFastLockLightweight(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3) 16046 %{ 16047 predicate(LockingMode == LM_LIGHTWEIGHT); 16048 match(Set cr (FastLock object box)); 16049 effect(TEMP tmp, TEMP tmp2, TEMP tmp3); 16050 16051 ins_cost(5 * INSN_COST); 16052 format %{ "fastlock $object,$box\t! kills $tmp,$tmp2,$tmp3" %} 16053 16054 ins_encode %{ 16055 __ fast_lock_lightweight($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register); 16056 %} 16057 16058 ins_pipe(pipe_serial); 16059 %} 16060 16061 instruct cmpFastUnlockLightweight(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3) 16062 %{ 16063 predicate(LockingMode == LM_LIGHTWEIGHT); 16064 match(Set cr (FastUnlock object box)); 16065 effect(TEMP tmp, TEMP tmp2, TEMP tmp3); 16066 16067 ins_cost(5 * INSN_COST); 16068 format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2, $tmp3" %} 16069 16070 ins_encode %{ 16071 __ fast_unlock_lightweight($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register); 16072 %} 16073 16074 ins_pipe(pipe_serial); 16075 %} 16076 16077 // ============================================================================ 16078 // Safepoint Instructions 16079 16080 // TODO 16081 // provide a near and far version of this code 16082 16083 instruct safePoint(rFlagsReg cr, iRegP poll) 16084 %{ 16085 match(SafePoint poll); 16086 effect(KILL cr); 16087 16088 format %{ 16089 "ldrw zr, [$poll]\t# Safepoint: poll for GC" 16090 %} 16091 ins_encode %{ 16092 __ read_polling_page(as_Register($poll$$reg), relocInfo::poll_type); 16093 %} 16094 ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem); 16095 %} 16096 16097 16098 // ============================================================================ 16099 // Procedure Call/Return Instructions 16100 16101 // Call Java Static Instruction 16102 16103 instruct CallStaticJavaDirect(method meth) 16104 %{ 16105 match(CallStaticJava); 16106 16107 effect(USE meth); 16108 16109 ins_cost(CALL_COST); 16110 16111 format %{ "call,static $meth \t// ==> " %} 16112 16113 ins_encode(aarch64_enc_java_static_call(meth), 16114 aarch64_enc_call_epilog); 16115 16116 ins_pipe(pipe_class_call); 16117 %} 16118 16119 // TO HERE 16120 16121 // Call Java Dynamic Instruction 16122 instruct CallDynamicJavaDirect(method meth) 16123 %{ 16124 match(CallDynamicJava); 16125 16126 effect(USE meth); 16127 16128 ins_cost(CALL_COST); 16129 16130 format %{ "CALL,dynamic $meth \t// ==> " %} 16131 16132 ins_encode(aarch64_enc_java_dynamic_call(meth), 16133 aarch64_enc_call_epilog); 16134 16135 ins_pipe(pipe_class_call); 16136 %} 16137 16138 // Call Runtime Instruction 16139 16140 instruct CallRuntimeDirect(method meth) 16141 %{ 16142 match(CallRuntime); 16143 16144 effect(USE meth); 16145 16146 ins_cost(CALL_COST); 16147 16148 format %{ "CALL, runtime $meth" %} 16149 16150 ins_encode( aarch64_enc_java_to_runtime(meth) ); 16151 16152 ins_pipe(pipe_class_call); 16153 %} 16154 16155 // Call Runtime Instruction 16156 16157 instruct CallLeafDirect(method meth) 16158 %{ 16159 match(CallLeaf); 16160 16161 effect(USE meth); 16162 16163 ins_cost(CALL_COST); 16164 16165 format %{ "CALL, runtime leaf $meth" %} 16166 16167 ins_encode( aarch64_enc_java_to_runtime(meth) ); 16168 16169 ins_pipe(pipe_class_call); 16170 %} 16171 16172 // Call Runtime Instruction without safepoint and with vector arguments 16173 instruct CallLeafDirectVector(method meth) 16174 %{ 16175 match(CallLeafVector); 16176 16177 effect(USE meth); 16178 16179 ins_cost(CALL_COST); 16180 16181 format %{ "CALL, runtime leaf vector $meth" %} 16182 16183 ins_encode(aarch64_enc_java_to_runtime(meth)); 16184 16185 ins_pipe(pipe_class_call); 16186 %} 16187 16188 // Call Runtime Instruction 16189 16190 instruct CallLeafNoFPDirect(method meth) 16191 %{ 16192 match(CallLeafNoFP); 16193 16194 effect(USE meth); 16195 16196 ins_cost(CALL_COST); 16197 16198 format %{ "CALL, runtime leaf nofp $meth" %} 16199 16200 ins_encode( aarch64_enc_java_to_runtime(meth) ); 16201 16202 ins_pipe(pipe_class_call); 16203 %} 16204 16205 // Tail Call; Jump from runtime stub to Java code. 16206 // Also known as an 'interprocedural jump'. 16207 // Target of jump will eventually return to caller. 16208 // TailJump below removes the return address. 16209 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been 16210 // emitted just above the TailCall which has reset rfp to the caller state. 16211 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr) 16212 %{ 16213 match(TailCall jump_target method_ptr); 16214 16215 ins_cost(CALL_COST); 16216 16217 format %{ "br $jump_target\t# $method_ptr holds method" %} 16218 16219 ins_encode(aarch64_enc_tail_call(jump_target)); 16220 16221 ins_pipe(pipe_class_call); 16222 %} 16223 16224 instruct TailjmpInd(iRegPNoSpNoRfp jump_target, iRegP_R0 ex_oop) 16225 %{ 16226 match(TailJump jump_target ex_oop); 16227 16228 ins_cost(CALL_COST); 16229 16230 format %{ "br $jump_target\t# $ex_oop holds exception oop" %} 16231 16232 ins_encode(aarch64_enc_tail_jmp(jump_target)); 16233 16234 ins_pipe(pipe_class_call); 16235 %} 16236 16237 // Forward exception. 16238 instruct ForwardExceptionjmp() 16239 %{ 16240 match(ForwardException); 16241 ins_cost(CALL_COST); 16242 16243 format %{ "b forward_exception_stub" %} 16244 ins_encode %{ 16245 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 16246 %} 16247 ins_pipe(pipe_class_call); 16248 %} 16249 16250 // Create exception oop: created by stack-crawling runtime code. 16251 // Created exception is now available to this handler, and is setup 16252 // just prior to jumping to this handler. No code emitted. 16253 // TODO check 16254 // should ex_oop be in r0? intel uses rax, ppc cannot use r0 so uses rarg1 16255 instruct CreateException(iRegP_R0 ex_oop) 16256 %{ 16257 match(Set ex_oop (CreateEx)); 16258 16259 format %{ " -- \t// exception oop; no code emitted" %} 16260 16261 size(0); 16262 16263 ins_encode( /*empty*/ ); 16264 16265 ins_pipe(pipe_class_empty); 16266 %} 16267 16268 // Rethrow exception: The exception oop will come in the first 16269 // argument position. Then JUMP (not call) to the rethrow stub code. 16270 instruct RethrowException() %{ 16271 match(Rethrow); 16272 ins_cost(CALL_COST); 16273 16274 format %{ "b rethrow_stub" %} 16275 16276 ins_encode( aarch64_enc_rethrow() ); 16277 16278 ins_pipe(pipe_class_call); 16279 %} 16280 16281 16282 // Return Instruction 16283 // epilog node loads ret address into lr as part of frame pop 16284 instruct Ret() 16285 %{ 16286 match(Return); 16287 16288 format %{ "ret\t// return register" %} 16289 16290 ins_encode( aarch64_enc_ret() ); 16291 16292 ins_pipe(pipe_branch); 16293 %} 16294 16295 // Die now. 16296 instruct ShouldNotReachHere() %{ 16297 match(Halt); 16298 16299 ins_cost(CALL_COST); 16300 format %{ "ShouldNotReachHere" %} 16301 16302 ins_encode %{ 16303 if (is_reachable()) { 16304 __ stop(_halt_reason); 16305 } 16306 %} 16307 16308 ins_pipe(pipe_class_default); 16309 %} 16310 16311 // ============================================================================ 16312 // Partial Subtype Check 16313 // 16314 // superklass array for an instance of the superklass. Set a hidden 16315 // internal cache on a hit (cache is checked with exposed code in 16316 // gen_subtype_check()). Return NZ for a miss or zero for a hit. The 16317 // encoding ALSO sets flags. 16318 16319 instruct partialSubtypeCheck(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, rFlagsReg cr) 16320 %{ 16321 match(Set result (PartialSubtypeCheck sub super)); 16322 predicate(!UseSecondarySupersTable); 16323 effect(KILL cr, KILL temp); 16324 16325 ins_cost(20 * INSN_COST); // slightly larger than the next version 16326 format %{ "partialSubtypeCheck $result, $sub, $super" %} 16327 16328 ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result)); 16329 16330 opcode(0x1); // Force zero of result reg on hit 16331 16332 ins_pipe(pipe_class_memory); 16333 %} 16334 16335 // Two versions of partialSubtypeCheck, both used when we need to 16336 // search for a super class in the secondary supers array. The first 16337 // is used when we don't know _a priori_ the class being searched 16338 // for. The second, far more common, is used when we do know: this is 16339 // used for instanceof, checkcast, and any case where C2 can determine 16340 // it by constant propagation. 16341 16342 instruct partialSubtypeCheckVarSuper(iRegP_R4 sub, iRegP_R0 super, vRegD_V0 vtemp, iRegP_R5 result, 16343 iRegP_R1 tempR1, iRegP_R2 tempR2, iRegP_R3 tempR3, 16344 rFlagsReg cr) 16345 %{ 16346 match(Set result (PartialSubtypeCheck sub super)); 16347 predicate(UseSecondarySupersTable); 16348 effect(KILL cr, TEMP tempR1, TEMP tempR2, TEMP tempR3, TEMP vtemp); 16349 16350 ins_cost(10 * INSN_COST); // slightly larger than the next version 16351 format %{ "partialSubtypeCheck $result, $sub, $super" %} 16352 16353 ins_encode %{ 16354 __ lookup_secondary_supers_table_var($sub$$Register, $super$$Register, 16355 $tempR1$$Register, $tempR2$$Register, $tempR3$$Register, 16356 $vtemp$$FloatRegister, 16357 $result$$Register, /*L_success*/nullptr); 16358 %} 16359 16360 ins_pipe(pipe_class_memory); 16361 %} 16362 16363 instruct partialSubtypeCheckConstSuper(iRegP_R4 sub, iRegP_R0 super_reg, immP super_con, vRegD_V0 vtemp, iRegP_R5 result, 16364 iRegP_R1 tempR1, iRegP_R2 tempR2, iRegP_R3 tempR3, 16365 rFlagsReg cr) 16366 %{ 16367 match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con))); 16368 predicate(UseSecondarySupersTable); 16369 effect(KILL cr, TEMP tempR1, TEMP tempR2, TEMP tempR3, TEMP vtemp); 16370 16371 ins_cost(5 * INSN_COST); // smaller than the next version 16372 format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %} 16373 16374 ins_encode %{ 16375 bool success = false; 16376 u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot(); 16377 if (InlineSecondarySupersTest) { 16378 success = 16379 __ lookup_secondary_supers_table_const($sub$$Register, $super_reg$$Register, 16380 $tempR1$$Register, $tempR2$$Register, $tempR3$$Register, 16381 $vtemp$$FloatRegister, 16382 $result$$Register, 16383 super_klass_slot); 16384 } else { 16385 address call = __ trampoline_call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot))); 16386 success = (call != nullptr); 16387 } 16388 if (!success) { 16389 ciEnv::current()->record_failure("CodeCache is full"); 16390 return; 16391 } 16392 %} 16393 16394 ins_pipe(pipe_class_memory); 16395 %} 16396 16397 // Intrisics for String.compareTo() 16398 16399 instruct string_compareU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16400 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, rFlagsReg cr) 16401 %{ 16402 predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU)); 16403 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16404 effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16405 16406 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1" %} 16407 ins_encode %{ 16408 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16409 __ string_compare($str1$$Register, $str2$$Register, 16410 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16411 $tmp1$$Register, $tmp2$$Register, 16412 fnoreg, fnoreg, fnoreg, pnoreg, pnoreg, StrIntrinsicNode::UU); 16413 %} 16414 ins_pipe(pipe_class_memory); 16415 %} 16416 16417 instruct string_compareL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16418 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, rFlagsReg cr) 16419 %{ 16420 predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL)); 16421 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16422 effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16423 16424 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1" %} 16425 ins_encode %{ 16426 __ string_compare($str1$$Register, $str2$$Register, 16427 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16428 $tmp1$$Register, $tmp2$$Register, 16429 fnoreg, fnoreg, fnoreg, pnoreg, pnoreg, StrIntrinsicNode::LL); 16430 %} 16431 ins_pipe(pipe_class_memory); 16432 %} 16433 16434 instruct string_compareUL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16435 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, 16436 vRegD_V0 vtmp1, vRegD_V1 vtmp2, vRegD_V2 vtmp3, rFlagsReg cr) 16437 %{ 16438 predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL)); 16439 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16440 effect(KILL tmp1, KILL tmp2, KILL vtmp1, KILL vtmp2, KILL vtmp3, 16441 USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16442 16443 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1, $tmp2, $vtmp1, $vtmp2, $vtmp3" %} 16444 ins_encode %{ 16445 __ string_compare($str1$$Register, $str2$$Register, 16446 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16447 $tmp1$$Register, $tmp2$$Register, 16448 $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, 16449 $vtmp3$$FloatRegister, pnoreg, pnoreg, StrIntrinsicNode::UL); 16450 %} 16451 ins_pipe(pipe_class_memory); 16452 %} 16453 16454 instruct string_compareLU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16455 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, 16456 vRegD_V0 vtmp1, vRegD_V1 vtmp2, vRegD_V2 vtmp3, rFlagsReg cr) 16457 %{ 16458 predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU)); 16459 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16460 effect(KILL tmp1, KILL tmp2, KILL vtmp1, KILL vtmp2, KILL vtmp3, 16461 USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16462 16463 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1, $tmp2, $vtmp1, $vtmp2, $vtmp3" %} 16464 ins_encode %{ 16465 __ string_compare($str1$$Register, $str2$$Register, 16466 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16467 $tmp1$$Register, $tmp2$$Register, 16468 $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, 16469 $vtmp3$$FloatRegister, pnoreg, pnoreg, StrIntrinsicNode::LU); 16470 %} 16471 ins_pipe(pipe_class_memory); 16472 %} 16473 16474 // Note that Z registers alias the corresponding NEON registers, we declare the vector operands of 16475 // these string_compare variants as NEON register type for convenience so that the prototype of 16476 // string_compare can be shared with all variants. 16477 16478 instruct string_compareLL_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16479 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, 16480 vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1, 16481 pRegGov_P1 pgtmp2, rFlagsReg cr) 16482 %{ 16483 predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL)); 16484 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16485 effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2, 16486 USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16487 16488 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # USE sve" %} 16489 ins_encode %{ 16490 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16491 __ string_compare($str1$$Register, $str2$$Register, 16492 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16493 $tmp1$$Register, $tmp2$$Register, 16494 $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg, 16495 as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg), 16496 StrIntrinsicNode::LL); 16497 %} 16498 ins_pipe(pipe_class_memory); 16499 %} 16500 16501 instruct string_compareLU_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16502 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, 16503 vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1, 16504 pRegGov_P1 pgtmp2, rFlagsReg cr) 16505 %{ 16506 predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU)); 16507 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16508 effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2, 16509 USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16510 16511 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # USE sve" %} 16512 ins_encode %{ 16513 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16514 __ string_compare($str1$$Register, $str2$$Register, 16515 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16516 $tmp1$$Register, $tmp2$$Register, 16517 $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg, 16518 as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg), 16519 StrIntrinsicNode::LU); 16520 %} 16521 ins_pipe(pipe_class_memory); 16522 %} 16523 16524 instruct string_compareUL_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16525 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, 16526 vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1, 16527 pRegGov_P1 pgtmp2, rFlagsReg cr) 16528 %{ 16529 predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL)); 16530 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16531 effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2, 16532 USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16533 16534 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # USE sve" %} 16535 ins_encode %{ 16536 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16537 __ string_compare($str1$$Register, $str2$$Register, 16538 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16539 $tmp1$$Register, $tmp2$$Register, 16540 $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg, 16541 as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg), 16542 StrIntrinsicNode::UL); 16543 %} 16544 ins_pipe(pipe_class_memory); 16545 %} 16546 16547 instruct string_compareUU_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16548 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, 16549 vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1, 16550 pRegGov_P1 pgtmp2, rFlagsReg cr) 16551 %{ 16552 predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU)); 16553 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16554 effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2, 16555 USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16556 16557 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # USE sve" %} 16558 ins_encode %{ 16559 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16560 __ string_compare($str1$$Register, $str2$$Register, 16561 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16562 $tmp1$$Register, $tmp2$$Register, 16563 $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg, 16564 as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg), 16565 StrIntrinsicNode::UU); 16566 %} 16567 ins_pipe(pipe_class_memory); 16568 %} 16569 16570 instruct string_indexofUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2, 16571 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, 16572 iRegINoSp tmp3, iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, 16573 vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr) 16574 %{ 16575 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 16576 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 16577 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, 16578 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, 16579 TEMP vtmp0, TEMP vtmp1, KILL cr); 16580 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU) " 16581 "# KILL $str1 $cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %} 16582 16583 ins_encode %{ 16584 __ string_indexof($str1$$Register, $str2$$Register, 16585 $cnt1$$Register, $cnt2$$Register, 16586 $tmp1$$Register, $tmp2$$Register, 16587 $tmp3$$Register, $tmp4$$Register, 16588 $tmp5$$Register, $tmp6$$Register, 16589 -1, $result$$Register, StrIntrinsicNode::UU); 16590 %} 16591 ins_pipe(pipe_class_memory); 16592 %} 16593 16594 instruct string_indexofLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2, 16595 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 16596 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, 16597 vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr) 16598 %{ 16599 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 16600 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 16601 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, 16602 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, 16603 TEMP vtmp0, TEMP vtmp1, KILL cr); 16604 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL) " 16605 "# KILL $str1 $cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %} 16606 16607 ins_encode %{ 16608 __ string_indexof($str1$$Register, $str2$$Register, 16609 $cnt1$$Register, $cnt2$$Register, 16610 $tmp1$$Register, $tmp2$$Register, 16611 $tmp3$$Register, $tmp4$$Register, 16612 $tmp5$$Register, $tmp6$$Register, 16613 -1, $result$$Register, StrIntrinsicNode::LL); 16614 %} 16615 ins_pipe(pipe_class_memory); 16616 %} 16617 16618 instruct string_indexofUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2, 16619 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,iRegINoSp tmp3, 16620 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, 16621 vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr) 16622 %{ 16623 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 16624 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 16625 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, 16626 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, 16627 TEMP tmp6, TEMP vtmp0, TEMP vtmp1, KILL cr); 16628 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL) " 16629 "# KILL $str1 cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %} 16630 16631 ins_encode %{ 16632 __ string_indexof($str1$$Register, $str2$$Register, 16633 $cnt1$$Register, $cnt2$$Register, 16634 $tmp1$$Register, $tmp2$$Register, 16635 $tmp3$$Register, $tmp4$$Register, 16636 $tmp5$$Register, $tmp6$$Register, 16637 -1, $result$$Register, StrIntrinsicNode::UL); 16638 %} 16639 ins_pipe(pipe_class_memory); 16640 %} 16641 16642 instruct string_indexof_conUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, 16643 immI_le_4 int_cnt2, iRegI_R0 result, iRegINoSp tmp1, 16644 iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 16645 %{ 16646 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 16647 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 16648 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, 16649 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 16650 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU) " 16651 "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %} 16652 16653 ins_encode %{ 16654 int icnt2 = (int)$int_cnt2$$constant; 16655 __ string_indexof($str1$$Register, $str2$$Register, 16656 $cnt1$$Register, zr, 16657 $tmp1$$Register, $tmp2$$Register, 16658 $tmp3$$Register, $tmp4$$Register, zr, zr, 16659 icnt2, $result$$Register, StrIntrinsicNode::UU); 16660 %} 16661 ins_pipe(pipe_class_memory); 16662 %} 16663 16664 instruct string_indexof_conLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, 16665 immI_le_4 int_cnt2, iRegI_R0 result, iRegINoSp tmp1, 16666 iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 16667 %{ 16668 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 16669 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 16670 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, 16671 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 16672 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL) " 16673 "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %} 16674 16675 ins_encode %{ 16676 int icnt2 = (int)$int_cnt2$$constant; 16677 __ string_indexof($str1$$Register, $str2$$Register, 16678 $cnt1$$Register, zr, 16679 $tmp1$$Register, $tmp2$$Register, 16680 $tmp3$$Register, $tmp4$$Register, zr, zr, 16681 icnt2, $result$$Register, StrIntrinsicNode::LL); 16682 %} 16683 ins_pipe(pipe_class_memory); 16684 %} 16685 16686 instruct string_indexof_conUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, 16687 immI_1 int_cnt2, iRegI_R0 result, iRegINoSp tmp1, 16688 iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 16689 %{ 16690 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 16691 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 16692 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, 16693 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 16694 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL) " 16695 "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %} 16696 16697 ins_encode %{ 16698 int icnt2 = (int)$int_cnt2$$constant; 16699 __ string_indexof($str1$$Register, $str2$$Register, 16700 $cnt1$$Register, zr, 16701 $tmp1$$Register, $tmp2$$Register, 16702 $tmp3$$Register, $tmp4$$Register, zr, zr, 16703 icnt2, $result$$Register, StrIntrinsicNode::UL); 16704 %} 16705 ins_pipe(pipe_class_memory); 16706 %} 16707 16708 instruct string_indexof_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch, 16709 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, 16710 iRegINoSp tmp3, rFlagsReg cr) 16711 %{ 16712 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 16713 predicate((UseSVE == 0) && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U)); 16714 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, 16715 TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 16716 16717 format %{ "StringUTF16 IndexOf char[] $str1,$cnt1,$ch -> $result" %} 16718 16719 ins_encode %{ 16720 __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 16721 $result$$Register, $tmp1$$Register, $tmp2$$Register, 16722 $tmp3$$Register); 16723 %} 16724 ins_pipe(pipe_class_memory); 16725 %} 16726 16727 instruct stringL_indexof_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch, 16728 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, 16729 iRegINoSp tmp3, rFlagsReg cr) 16730 %{ 16731 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 16732 predicate((UseSVE == 0) && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L)); 16733 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, 16734 TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 16735 16736 format %{ "StringLatin1 IndexOf char[] $str1,$cnt1,$ch -> $result" %} 16737 16738 ins_encode %{ 16739 __ stringL_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 16740 $result$$Register, $tmp1$$Register, $tmp2$$Register, 16741 $tmp3$$Register); 16742 %} 16743 ins_pipe(pipe_class_memory); 16744 %} 16745 16746 instruct stringL_indexof_char_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch, 16747 iRegI_R0 result, vecA ztmp1, vecA ztmp2, 16748 pRegGov pgtmp, pReg ptmp, rFlagsReg cr) %{ 16749 predicate(UseSVE > 0 && ((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L); 16750 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 16751 effect(TEMP ztmp1, TEMP ztmp2, TEMP pgtmp, TEMP ptmp, KILL cr); 16752 format %{ "StringLatin1 IndexOf char[] $str1,$cnt1,$ch -> $result # use sve" %} 16753 ins_encode %{ 16754 __ string_indexof_char_sve($str1$$Register, $cnt1$$Register, $ch$$Register, 16755 $result$$Register, $ztmp1$$FloatRegister, 16756 $ztmp2$$FloatRegister, $pgtmp$$PRegister, 16757 $ptmp$$PRegister, true /* isL */); 16758 %} 16759 ins_pipe(pipe_class_memory); 16760 %} 16761 16762 instruct stringU_indexof_char_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch, 16763 iRegI_R0 result, vecA ztmp1, vecA ztmp2, 16764 pRegGov pgtmp, pReg ptmp, rFlagsReg cr) %{ 16765 predicate(UseSVE > 0 && ((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U); 16766 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 16767 effect(TEMP ztmp1, TEMP ztmp2, TEMP pgtmp, TEMP ptmp, KILL cr); 16768 format %{ "StringUTF16 IndexOf char[] $str1,$cnt1,$ch -> $result # use sve" %} 16769 ins_encode %{ 16770 __ string_indexof_char_sve($str1$$Register, $cnt1$$Register, $ch$$Register, 16771 $result$$Register, $ztmp1$$FloatRegister, 16772 $ztmp2$$FloatRegister, $pgtmp$$PRegister, 16773 $ptmp$$PRegister, false /* isL */); 16774 %} 16775 ins_pipe(pipe_class_memory); 16776 %} 16777 16778 instruct string_equalsL(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt, 16779 iRegI_R0 result, rFlagsReg cr) 16780 %{ 16781 predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL); 16782 match(Set result (StrEquals (Binary str1 str2) cnt)); 16783 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr); 16784 16785 format %{ "String Equals $str1,$str2,$cnt -> $result" %} 16786 ins_encode %{ 16787 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16788 __ string_equals($str1$$Register, $str2$$Register, 16789 $result$$Register, $cnt$$Register); 16790 %} 16791 ins_pipe(pipe_class_memory); 16792 %} 16793 16794 instruct array_equalsB(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result, 16795 iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3, 16796 vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3, 16797 vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7, 16798 iRegP_R10 tmp, rFlagsReg cr) 16799 %{ 16800 predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL); 16801 match(Set result (AryEq ary1 ary2)); 16802 effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3, 16803 TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5, 16804 TEMP vtmp6, TEMP vtmp7, KILL cr); 16805 16806 format %{ "Array Equals $ary1,ary2 -> $result # KILL $ary1 $ary2 $tmp $tmp1 $tmp2 $tmp3 V0-V7 cr" %} 16807 ins_encode %{ 16808 address tpc = __ arrays_equals($ary1$$Register, $ary2$$Register, 16809 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 16810 $result$$Register, $tmp$$Register, 1); 16811 if (tpc == nullptr) { 16812 ciEnv::current()->record_failure("CodeCache is full"); 16813 return; 16814 } 16815 %} 16816 ins_pipe(pipe_class_memory); 16817 %} 16818 16819 instruct array_equalsC(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result, 16820 iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3, 16821 vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3, 16822 vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7, 16823 iRegP_R10 tmp, rFlagsReg cr) 16824 %{ 16825 predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU); 16826 match(Set result (AryEq ary1 ary2)); 16827 effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3, 16828 TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5, 16829 TEMP vtmp6, TEMP vtmp7, KILL cr); 16830 16831 format %{ "Array Equals $ary1,ary2 -> $result # KILL $ary1 $ary2 $tmp $tmp1 $tmp2 $tmp3 V0-V7 cr" %} 16832 ins_encode %{ 16833 address tpc = __ arrays_equals($ary1$$Register, $ary2$$Register, 16834 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 16835 $result$$Register, $tmp$$Register, 2); 16836 if (tpc == nullptr) { 16837 ciEnv::current()->record_failure("CodeCache is full"); 16838 return; 16839 } 16840 %} 16841 ins_pipe(pipe_class_memory); 16842 %} 16843 16844 instruct arrays_hashcode(iRegP_R1 ary, iRegI_R2 cnt, iRegI_R0 result, immI basic_type, 16845 vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3, 16846 vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7, 16847 vRegD_V12 vtmp8, vRegD_V13 vtmp9, rFlagsReg cr) 16848 %{ 16849 match(Set result (VectorizedHashCode (Binary ary cnt) (Binary result basic_type))); 16850 effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5, TEMP vtmp6, 16851 TEMP vtmp7, TEMP vtmp8, TEMP vtmp9, USE_KILL ary, USE_KILL cnt, USE basic_type, KILL cr); 16852 16853 format %{ "Array HashCode array[] $ary,$cnt,$result,$basic_type -> $result // KILL all" %} 16854 ins_encode %{ 16855 address tpc = __ arrays_hashcode($ary$$Register, $cnt$$Register, $result$$Register, 16856 $vtmp3$$FloatRegister, $vtmp2$$FloatRegister, 16857 $vtmp1$$FloatRegister, $vtmp0$$FloatRegister, 16858 $vtmp4$$FloatRegister, $vtmp5$$FloatRegister, 16859 $vtmp6$$FloatRegister, $vtmp7$$FloatRegister, 16860 $vtmp8$$FloatRegister, $vtmp9$$FloatRegister, 16861 (BasicType)$basic_type$$constant); 16862 if (tpc == nullptr) { 16863 ciEnv::current()->record_failure("CodeCache is full"); 16864 return; 16865 } 16866 %} 16867 ins_pipe(pipe_class_memory); 16868 %} 16869 16870 instruct count_positives(iRegP_R1 ary1, iRegI_R2 len, iRegI_R0 result, rFlagsReg cr) 16871 %{ 16872 match(Set result (CountPositives ary1 len)); 16873 effect(USE_KILL ary1, USE_KILL len, KILL cr); 16874 format %{ "count positives byte[] $ary1,$len -> $result" %} 16875 ins_encode %{ 16876 address tpc = __ count_positives($ary1$$Register, $len$$Register, $result$$Register); 16877 if (tpc == nullptr) { 16878 ciEnv::current()->record_failure("CodeCache is full"); 16879 return; 16880 } 16881 %} 16882 ins_pipe( pipe_slow ); 16883 %} 16884 16885 // fast char[] to byte[] compression 16886 instruct string_compress(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len, 16887 vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, 16888 vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5, 16889 iRegI_R0 result, rFlagsReg cr) 16890 %{ 16891 match(Set result (StrCompressedCopy src (Binary dst len))); 16892 effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5, 16893 USE_KILL src, USE_KILL dst, USE len, KILL cr); 16894 16895 format %{ "String Compress $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %} 16896 ins_encode %{ 16897 __ char_array_compress($src$$Register, $dst$$Register, $len$$Register, 16898 $result$$Register, $vtmp0$$FloatRegister, $vtmp1$$FloatRegister, 16899 $vtmp2$$FloatRegister, $vtmp3$$FloatRegister, 16900 $vtmp4$$FloatRegister, $vtmp5$$FloatRegister); 16901 %} 16902 ins_pipe(pipe_slow); 16903 %} 16904 16905 // fast byte[] to char[] inflation 16906 instruct string_inflate(Universe dummy, iRegP_R0 src, iRegP_R1 dst, iRegI_R2 len, iRegP_R3 tmp, 16907 vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3, 16908 vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, rFlagsReg cr) 16909 %{ 16910 match(Set dummy (StrInflatedCopy src (Binary dst len))); 16911 effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, 16912 TEMP vtmp4, TEMP vtmp5, TEMP vtmp6, TEMP tmp, 16913 USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr); 16914 16915 format %{ "String Inflate $src,$dst # KILL $tmp $src $dst $len V0-V6 cr" %} 16916 ins_encode %{ 16917 address tpc = __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register, 16918 $vtmp0$$FloatRegister, $vtmp1$$FloatRegister, 16919 $vtmp2$$FloatRegister, $tmp$$Register); 16920 if (tpc == nullptr) { 16921 ciEnv::current()->record_failure("CodeCache is full"); 16922 return; 16923 } 16924 %} 16925 ins_pipe(pipe_class_memory); 16926 %} 16927 16928 // encode char[] to byte[] in ISO_8859_1 16929 instruct encode_iso_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len, 16930 vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, 16931 vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5, 16932 iRegI_R0 result, rFlagsReg cr) 16933 %{ 16934 predicate(!((EncodeISOArrayNode*)n)->is_ascii()); 16935 match(Set result (EncodeISOArray src (Binary dst len))); 16936 effect(USE_KILL src, USE_KILL dst, USE len, KILL vtmp0, KILL vtmp1, 16937 KILL vtmp2, KILL vtmp3, KILL vtmp4, KILL vtmp5, KILL cr); 16938 16939 format %{ "Encode ISO array $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %} 16940 ins_encode %{ 16941 __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register, 16942 $result$$Register, false, 16943 $vtmp0$$FloatRegister, $vtmp1$$FloatRegister, 16944 $vtmp2$$FloatRegister, $vtmp3$$FloatRegister, 16945 $vtmp4$$FloatRegister, $vtmp5$$FloatRegister); 16946 %} 16947 ins_pipe(pipe_class_memory); 16948 %} 16949 16950 instruct encode_ascii_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len, 16951 vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, 16952 vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5, 16953 iRegI_R0 result, rFlagsReg cr) 16954 %{ 16955 predicate(((EncodeISOArrayNode*)n)->is_ascii()); 16956 match(Set result (EncodeISOArray src (Binary dst len))); 16957 effect(USE_KILL src, USE_KILL dst, USE len, KILL vtmp0, KILL vtmp1, 16958 KILL vtmp2, KILL vtmp3, KILL vtmp4, KILL vtmp5, KILL cr); 16959 16960 format %{ "Encode ASCII array $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %} 16961 ins_encode %{ 16962 __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register, 16963 $result$$Register, true, 16964 $vtmp0$$FloatRegister, $vtmp1$$FloatRegister, 16965 $vtmp2$$FloatRegister, $vtmp3$$FloatRegister, 16966 $vtmp4$$FloatRegister, $vtmp5$$FloatRegister); 16967 %} 16968 ins_pipe(pipe_class_memory); 16969 %} 16970 16971 //----------------------------- CompressBits/ExpandBits ------------------------ 16972 16973 instruct compressBitsI_reg(iRegINoSp dst, iRegIorL2I src, iRegIorL2I mask, 16974 vRegF tdst, vRegF tsrc, vRegF tmask) %{ 16975 match(Set dst (CompressBits src mask)); 16976 effect(TEMP tdst, TEMP tsrc, TEMP tmask); 16977 format %{ "mov $tsrc, $src\n\t" 16978 "mov $tmask, $mask\n\t" 16979 "bext $tdst, $tsrc, $tmask\n\t" 16980 "mov $dst, $tdst" 16981 %} 16982 ins_encode %{ 16983 __ mov($tsrc$$FloatRegister, __ S, 0, $src$$Register); 16984 __ mov($tmask$$FloatRegister, __ S, 0, $mask$$Register); 16985 __ sve_bext($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister); 16986 __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0); 16987 %} 16988 ins_pipe(pipe_slow); 16989 %} 16990 16991 instruct compressBitsI_memcon(iRegINoSp dst, memory4 mem, immI mask, 16992 vRegF tdst, vRegF tsrc, vRegF tmask) %{ 16993 match(Set dst (CompressBits (LoadI mem) mask)); 16994 effect(TEMP tdst, TEMP tsrc, TEMP tmask); 16995 format %{ "ldrs $tsrc, $mem\n\t" 16996 "ldrs $tmask, $mask\n\t" 16997 "bext $tdst, $tsrc, $tmask\n\t" 16998 "mov $dst, $tdst" 16999 %} 17000 ins_encode %{ 17001 loadStore(masm, &MacroAssembler::ldrs, $tsrc$$FloatRegister, $mem->opcode(), 17002 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 17003 __ ldrs($tmask$$FloatRegister, $constantaddress($mask)); 17004 __ sve_bext($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister); 17005 __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0); 17006 %} 17007 ins_pipe(pipe_slow); 17008 %} 17009 17010 instruct compressBitsL_reg(iRegLNoSp dst, iRegL src, iRegL mask, 17011 vRegD tdst, vRegD tsrc, vRegD tmask) %{ 17012 match(Set dst (CompressBits src mask)); 17013 effect(TEMP tdst, TEMP tsrc, TEMP tmask); 17014 format %{ "mov $tsrc, $src\n\t" 17015 "mov $tmask, $mask\n\t" 17016 "bext $tdst, $tsrc, $tmask\n\t" 17017 "mov $dst, $tdst" 17018 %} 17019 ins_encode %{ 17020 __ mov($tsrc$$FloatRegister, __ D, 0, $src$$Register); 17021 __ mov($tmask$$FloatRegister, __ D, 0, $mask$$Register); 17022 __ sve_bext($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister); 17023 __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0); 17024 %} 17025 ins_pipe(pipe_slow); 17026 %} 17027 17028 instruct compressBitsL_memcon(iRegLNoSp dst, memory8 mem, immL mask, 17029 vRegF tdst, vRegF tsrc, vRegF tmask) %{ 17030 match(Set dst (CompressBits (LoadL mem) mask)); 17031 effect(TEMP tdst, TEMP tsrc, TEMP tmask); 17032 format %{ "ldrd $tsrc, $mem\n\t" 17033 "ldrd $tmask, $mask\n\t" 17034 "bext $tdst, $tsrc, $tmask\n\t" 17035 "mov $dst, $tdst" 17036 %} 17037 ins_encode %{ 17038 loadStore(masm, &MacroAssembler::ldrd, $tsrc$$FloatRegister, $mem->opcode(), 17039 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 17040 __ ldrd($tmask$$FloatRegister, $constantaddress($mask)); 17041 __ sve_bext($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister); 17042 __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0); 17043 %} 17044 ins_pipe(pipe_slow); 17045 %} 17046 17047 instruct expandBitsI_reg(iRegINoSp dst, iRegIorL2I src, iRegIorL2I mask, 17048 vRegF tdst, vRegF tsrc, vRegF tmask) %{ 17049 match(Set dst (ExpandBits src mask)); 17050 effect(TEMP tdst, TEMP tsrc, TEMP tmask); 17051 format %{ "mov $tsrc, $src\n\t" 17052 "mov $tmask, $mask\n\t" 17053 "bdep $tdst, $tsrc, $tmask\n\t" 17054 "mov $dst, $tdst" 17055 %} 17056 ins_encode %{ 17057 __ mov($tsrc$$FloatRegister, __ S, 0, $src$$Register); 17058 __ mov($tmask$$FloatRegister, __ S, 0, $mask$$Register); 17059 __ sve_bdep($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister); 17060 __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0); 17061 %} 17062 ins_pipe(pipe_slow); 17063 %} 17064 17065 instruct expandBitsI_memcon(iRegINoSp dst, memory4 mem, immI mask, 17066 vRegF tdst, vRegF tsrc, vRegF tmask) %{ 17067 match(Set dst (ExpandBits (LoadI mem) mask)); 17068 effect(TEMP tdst, TEMP tsrc, TEMP tmask); 17069 format %{ "ldrs $tsrc, $mem\n\t" 17070 "ldrs $tmask, $mask\n\t" 17071 "bdep $tdst, $tsrc, $tmask\n\t" 17072 "mov $dst, $tdst" 17073 %} 17074 ins_encode %{ 17075 loadStore(masm, &MacroAssembler::ldrs, $tsrc$$FloatRegister, $mem->opcode(), 17076 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 17077 __ ldrs($tmask$$FloatRegister, $constantaddress($mask)); 17078 __ sve_bdep($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister); 17079 __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0); 17080 %} 17081 ins_pipe(pipe_slow); 17082 %} 17083 17084 instruct expandBitsL_reg(iRegLNoSp dst, iRegL src, iRegL mask, 17085 vRegD tdst, vRegD tsrc, vRegD tmask) %{ 17086 match(Set dst (ExpandBits src mask)); 17087 effect(TEMP tdst, TEMP tsrc, TEMP tmask); 17088 format %{ "mov $tsrc, $src\n\t" 17089 "mov $tmask, $mask\n\t" 17090 "bdep $tdst, $tsrc, $tmask\n\t" 17091 "mov $dst, $tdst" 17092 %} 17093 ins_encode %{ 17094 __ mov($tsrc$$FloatRegister, __ D, 0, $src$$Register); 17095 __ mov($tmask$$FloatRegister, __ D, 0, $mask$$Register); 17096 __ sve_bdep($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister); 17097 __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0); 17098 %} 17099 ins_pipe(pipe_slow); 17100 %} 17101 17102 17103 instruct expandBitsL_memcon(iRegINoSp dst, memory8 mem, immL mask, 17104 vRegF tdst, vRegF tsrc, vRegF tmask) %{ 17105 match(Set dst (ExpandBits (LoadL mem) mask)); 17106 effect(TEMP tdst, TEMP tsrc, TEMP tmask); 17107 format %{ "ldrd $tsrc, $mem\n\t" 17108 "ldrd $tmask, $mask\n\t" 17109 "bdep $tdst, $tsrc, $tmask\n\t" 17110 "mov $dst, $tdst" 17111 %} 17112 ins_encode %{ 17113 loadStore(masm, &MacroAssembler::ldrd, $tsrc$$FloatRegister, $mem->opcode(), 17114 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 17115 __ ldrd($tmask$$FloatRegister, $constantaddress($mask)); 17116 __ sve_bdep($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister); 17117 __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0); 17118 %} 17119 ins_pipe(pipe_slow); 17120 %} 17121 17122 // ============================================================================ 17123 // This name is KNOWN by the ADLC and cannot be changed. 17124 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type 17125 // for this guy. 17126 instruct tlsLoadP(thread_RegP dst) 17127 %{ 17128 match(Set dst (ThreadLocal)); 17129 17130 ins_cost(0); 17131 17132 format %{ " -- \t// $dst=Thread::current(), empty" %} 17133 17134 size(0); 17135 17136 ins_encode( /*empty*/ ); 17137 17138 ins_pipe(pipe_class_empty); 17139 %} 17140 17141 //----------PEEPHOLE RULES----------------------------------------------------- 17142 // These must follow all instruction definitions as they use the names 17143 // defined in the instructions definitions. 17144 // 17145 // peepmatch ( root_instr_name [preceding_instruction]* ); 17146 // 17147 // peepconstraint %{ 17148 // (instruction_number.operand_name relational_op instruction_number.operand_name 17149 // [, ...] ); 17150 // // instruction numbers are zero-based using left to right order in peepmatch 17151 // 17152 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); 17153 // // provide an instruction_number.operand_name for each operand that appears 17154 // // in the replacement instruction's match rule 17155 // 17156 // ---------VM FLAGS--------------------------------------------------------- 17157 // 17158 // All peephole optimizations can be turned off using -XX:-OptoPeephole 17159 // 17160 // Each peephole rule is given an identifying number starting with zero and 17161 // increasing by one in the order seen by the parser. An individual peephole 17162 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=# 17163 // on the command-line. 17164 // 17165 // ---------CURRENT LIMITATIONS---------------------------------------------- 17166 // 17167 // Only match adjacent instructions in same basic block 17168 // Only equality constraints 17169 // Only constraints between operands, not (0.dest_reg == RAX_enc) 17170 // Only one replacement instruction 17171 // 17172 // ---------EXAMPLE---------------------------------------------------------- 17173 // 17174 // // pertinent parts of existing instructions in architecture description 17175 // instruct movI(iRegINoSp dst, iRegI src) 17176 // %{ 17177 // match(Set dst (CopyI src)); 17178 // %} 17179 // 17180 // instruct incI_iReg(iRegINoSp dst, immI1 src, rFlagsReg cr) 17181 // %{ 17182 // match(Set dst (AddI dst src)); 17183 // effect(KILL cr); 17184 // %} 17185 // 17186 // // Change (inc mov) to lea 17187 // peephole %{ 17188 // // increment preceded by register-register move 17189 // peepmatch ( incI_iReg movI ); 17190 // // require that the destination register of the increment 17191 // // match the destination register of the move 17192 // peepconstraint ( 0.dst == 1.dst ); 17193 // // construct a replacement instruction that sets 17194 // // the destination to ( move's source register + one ) 17195 // peepreplace ( leaI_iReg_immI( 0.dst 1.src 0.src ) ); 17196 // %} 17197 // 17198 17199 // Implementation no longer uses movX instructions since 17200 // machine-independent system no longer uses CopyX nodes. 17201 // 17202 // peephole 17203 // %{ 17204 // peepmatch (incI_iReg movI); 17205 // peepconstraint (0.dst == 1.dst); 17206 // peepreplace (leaI_iReg_immI(0.dst 1.src 0.src)); 17207 // %} 17208 17209 // peephole 17210 // %{ 17211 // peepmatch (decI_iReg movI); 17212 // peepconstraint (0.dst == 1.dst); 17213 // peepreplace (leaI_iReg_immI(0.dst 1.src 0.src)); 17214 // %} 17215 17216 // peephole 17217 // %{ 17218 // peepmatch (addI_iReg_imm movI); 17219 // peepconstraint (0.dst == 1.dst); 17220 // peepreplace (leaI_iReg_immI(0.dst 1.src 0.src)); 17221 // %} 17222 17223 // peephole 17224 // %{ 17225 // peepmatch (incL_iReg movL); 17226 // peepconstraint (0.dst == 1.dst); 17227 // peepreplace (leaL_iReg_immL(0.dst 1.src 0.src)); 17228 // %} 17229 17230 // peephole 17231 // %{ 17232 // peepmatch (decL_iReg movL); 17233 // peepconstraint (0.dst == 1.dst); 17234 // peepreplace (leaL_iReg_immL(0.dst 1.src 0.src)); 17235 // %} 17236 17237 // peephole 17238 // %{ 17239 // peepmatch (addL_iReg_imm movL); 17240 // peepconstraint (0.dst == 1.dst); 17241 // peepreplace (leaL_iReg_immL(0.dst 1.src 0.src)); 17242 // %} 17243 17244 // peephole 17245 // %{ 17246 // peepmatch (addP_iReg_imm movP); 17247 // peepconstraint (0.dst == 1.dst); 17248 // peepreplace (leaP_iReg_imm(0.dst 1.src 0.src)); 17249 // %} 17250 17251 // // Change load of spilled value to only a spill 17252 // instruct storeI(memory mem, iRegI src) 17253 // %{ 17254 // match(Set mem (StoreI mem src)); 17255 // %} 17256 // 17257 // instruct loadI(iRegINoSp dst, memory mem) 17258 // %{ 17259 // match(Set dst (LoadI mem)); 17260 // %} 17261 // 17262 17263 //----------SMARTSPILL RULES--------------------------------------------------- 17264 // These must follow all instruction definitions as they use the names 17265 // defined in the instructions definitions. 17266 17267 // Local Variables: 17268 // mode: c++ 17269 // End: