1 /* 2 * Copyright (c) 2001, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "gc/parallel/objectStartArray.inline.hpp" 26 #include "gc/parallel/parallelArguments.hpp" 27 #include "gc/parallel/parallelInitLogger.hpp" 28 #include "gc/parallel/parallelScavengeHeap.inline.hpp" 29 #include "gc/parallel/psAdaptiveSizePolicy.hpp" 30 #include "gc/parallel/psMemoryPool.hpp" 31 #include "gc/parallel/psParallelCompact.inline.hpp" 32 #include "gc/parallel/psPromotionManager.hpp" 33 #include "gc/parallel/psScavenge.hpp" 34 #include "gc/parallel/psVMOperations.hpp" 35 #include "gc/shared/fullGCForwarding.inline.hpp" 36 #include "gc/shared/gcHeapSummary.hpp" 37 #include "gc/shared/gcLocker.inline.hpp" 38 #include "gc/shared/gcWhen.hpp" 39 #include "gc/shared/genArguments.hpp" 40 #include "gc/shared/locationPrinter.inline.hpp" 41 #include "gc/shared/scavengableNMethods.hpp" 42 #include "gc/shared/suspendibleThreadSet.hpp" 43 #include "logging/log.hpp" 44 #include "memory/iterator.hpp" 45 #include "memory/metaspaceCounters.hpp" 46 #include "memory/metaspaceUtils.hpp" 47 #include "memory/reservedSpace.hpp" 48 #include "memory/universe.hpp" 49 #include "oops/oop.inline.hpp" 50 #include "runtime/cpuTimeCounters.hpp" 51 #include "runtime/handles.inline.hpp" 52 #include "runtime/java.hpp" 53 #include "runtime/vmThread.hpp" 54 #include "services/memoryManager.hpp" 55 #include "utilities/macros.hpp" 56 #include "utilities/vmError.hpp" 57 58 PSYoungGen* ParallelScavengeHeap::_young_gen = nullptr; 59 PSOldGen* ParallelScavengeHeap::_old_gen = nullptr; 60 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = nullptr; 61 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = nullptr; 62 63 jint ParallelScavengeHeap::initialize() { 64 const size_t reserved_heap_size = ParallelArguments::heap_reserved_size_bytes(); 65 66 ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_heap_size, HeapAlignment); 67 68 trace_actual_reserved_page_size(reserved_heap_size, heap_rs); 69 70 initialize_reserved_region(heap_rs); 71 // Layout the reserved space for the generations. 72 ReservedSpace old_rs = heap_rs.first_part(MaxOldSize, GenAlignment); 73 ReservedSpace young_rs = heap_rs.last_part(MaxOldSize, GenAlignment); 74 assert(young_rs.size() == MaxNewSize, "Didn't reserve all of the heap"); 75 76 PSCardTable* card_table = new PSCardTable(_reserved); 77 card_table->initialize(old_rs.base(), young_rs.base()); 78 79 CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table); 80 barrier_set->initialize(); 81 BarrierSet::set_barrier_set(barrier_set); 82 83 // Set up WorkerThreads 84 _workers.initialize_workers(); 85 86 // Create and initialize the generations. 87 _young_gen = new PSYoungGen( 88 young_rs, 89 NewSize, 90 MinNewSize, 91 MaxNewSize); 92 _old_gen = new PSOldGen( 93 old_rs, 94 OldSize, 95 MinOldSize, 96 MaxOldSize, 97 "old", 1); 98 99 assert(young_gen()->max_gen_size() == young_rs.size(),"Consistency check"); 100 assert(old_gen()->max_gen_size() == old_rs.size(), "Consistency check"); 101 102 double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0; 103 104 const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes(); 105 const size_t old_capacity = _old_gen->capacity_in_bytes(); 106 const size_t initial_promo_size = MIN2(eden_capacity, old_capacity); 107 _size_policy = 108 new PSAdaptiveSizePolicy(eden_capacity, 109 initial_promo_size, 110 young_gen()->to_space()->capacity_in_bytes(), 111 GenAlignment, 112 max_gc_pause_sec, 113 GCTimeRatio 114 ); 115 116 assert((old_gen()->virtual_space()->high_boundary() == 117 young_gen()->virtual_space()->low_boundary()), 118 "Boundaries must meet"); 119 // initialize the policy counters - 2 collectors, 2 generations 120 _gc_policy_counters = 121 new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy); 122 123 if (!PSParallelCompact::initialize_aux_data()) { 124 return JNI_ENOMEM; 125 } 126 127 // Create CPU time counter 128 CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers); 129 130 ParallelInitLogger::print(); 131 132 FullGCForwarding::initialize(_reserved); 133 134 return JNI_OK; 135 } 136 137 void ParallelScavengeHeap::initialize_serviceability() { 138 139 _eden_pool = new EdenMutableSpacePool(_young_gen, 140 _young_gen->eden_space(), 141 "PS Eden Space", 142 false /* support_usage_threshold */); 143 144 _survivor_pool = new SurvivorMutableSpacePool(_young_gen, 145 "PS Survivor Space", 146 false /* support_usage_threshold */); 147 148 _old_pool = new PSGenerationPool(_old_gen, 149 "PS Old Gen", 150 true /* support_usage_threshold */); 151 152 _young_manager = new GCMemoryManager("PS Scavenge"); 153 _old_manager = new GCMemoryManager("PS MarkSweep"); 154 155 _old_manager->add_pool(_eden_pool); 156 _old_manager->add_pool(_survivor_pool); 157 _old_manager->add_pool(_old_pool); 158 159 _young_manager->add_pool(_eden_pool); 160 _young_manager->add_pool(_survivor_pool); 161 162 } 163 164 void ParallelScavengeHeap::safepoint_synchronize_begin() { 165 if (UseStringDeduplication) { 166 SuspendibleThreadSet::synchronize(); 167 } 168 } 169 170 void ParallelScavengeHeap::safepoint_synchronize_end() { 171 if (UseStringDeduplication) { 172 SuspendibleThreadSet::desynchronize(); 173 } 174 } 175 class PSIsScavengable : public BoolObjectClosure { 176 bool do_object_b(oop obj) { 177 return ParallelScavengeHeap::heap()->is_in_young(obj); 178 } 179 }; 180 181 static PSIsScavengable _is_scavengable; 182 183 void ParallelScavengeHeap::post_initialize() { 184 CollectedHeap::post_initialize(); 185 // Need to init the tenuring threshold 186 PSScavenge::initialize(); 187 PSParallelCompact::post_initialize(); 188 PSPromotionManager::initialize(); 189 190 ScavengableNMethods::initialize(&_is_scavengable); 191 GCLocker::initialize(); 192 } 193 194 void ParallelScavengeHeap::update_counters() { 195 young_gen()->update_counters(); 196 old_gen()->update_counters(); 197 MetaspaceCounters::update_performance_counters(); 198 update_parallel_worker_threads_cpu_time(); 199 } 200 201 size_t ParallelScavengeHeap::capacity() const { 202 size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes(); 203 return value; 204 } 205 206 size_t ParallelScavengeHeap::used() const { 207 size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes(); 208 return value; 209 } 210 211 bool ParallelScavengeHeap::is_maximal_no_gc() const { 212 // We don't expand young-gen except at a GC. 213 return old_gen()->is_maximal_no_gc(); 214 } 215 216 217 size_t ParallelScavengeHeap::max_capacity() const { 218 size_t estimated = reserved_region().byte_size(); 219 if (UseAdaptiveSizePolicy) { 220 estimated -= _size_policy->max_survivor_size(young_gen()->max_gen_size()); 221 } else { 222 estimated -= young_gen()->to_space()->capacity_in_bytes(); 223 } 224 return MAX2(estimated, capacity()); 225 } 226 227 bool ParallelScavengeHeap::is_in(const void* p) const { 228 return young_gen()->is_in(p) || old_gen()->is_in(p); 229 } 230 231 bool ParallelScavengeHeap::is_in_reserved(const void* p) const { 232 return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p); 233 } 234 235 bool ParallelScavengeHeap::requires_barriers(stackChunkOop p) const { 236 return !is_in_young(p); 237 } 238 239 // There are two levels of allocation policy here. 240 // 241 // When an allocation request fails, the requesting thread must invoke a VM 242 // operation, transfer control to the VM thread, and await the results of a 243 // garbage collection. That is quite expensive, and we should avoid doing it 244 // multiple times if possible. 245 // 246 // To accomplish this, we have a basic allocation policy, and also a 247 // failed allocation policy. 248 // 249 // The basic allocation policy controls how you allocate memory without 250 // attempting garbage collection. It is okay to grab locks and 251 // expand the heap, if that can be done without coming to a safepoint. 252 // It is likely that the basic allocation policy will not be very 253 // aggressive. 254 // 255 // The failed allocation policy is invoked from the VM thread after 256 // the basic allocation policy is unable to satisfy a mem_allocate 257 // request. This policy needs to cover the entire range of collection, 258 // heap expansion, and out-of-memory conditions. It should make every 259 // attempt to allocate the requested memory. 260 261 // Basic allocation policy. Should never be called at a safepoint, or 262 // from the VM thread. 263 // 264 // This method must handle cases where many mem_allocate requests fail 265 // simultaneously. When that happens, only one VM operation will succeed, 266 // and the rest will not be executed. For that reason, this method loops 267 // during failed allocation attempts. If the java heap becomes exhausted, 268 // we rely on the size_policy object to force a bail out. 269 HeapWord* ParallelScavengeHeap::mem_allocate(size_t size, 270 bool* gc_overhead_limit_was_exceeded) { 271 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint"); 272 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread"); 273 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock"); 274 275 bool is_tlab = false; 276 return mem_allocate_work(size, is_tlab, gc_overhead_limit_was_exceeded); 277 } 278 279 HeapWord* ParallelScavengeHeap::mem_allocate_work(size_t size, 280 bool is_tlab, 281 bool* gc_overhead_limit_was_exceeded) { 282 283 // In general gc_overhead_limit_was_exceeded should be false so 284 // set it so here and reset it to true only if the gc time 285 // limit is being exceeded as checked below. 286 *gc_overhead_limit_was_exceeded = false; 287 288 HeapWord* result = young_gen()->allocate(size); 289 290 uint loop_count = 0; 291 uint gc_count = 0; 292 293 while (result == nullptr) { 294 // We don't want to have multiple collections for a single filled generation. 295 // To prevent this, each thread tracks the total_collections() value, and if 296 // the count has changed, does not do a new collection. 297 // 298 // The collection count must be read only while holding the heap lock. VM 299 // operations also hold the heap lock during collections. There is a lock 300 // contention case where thread A blocks waiting on the Heap_lock, while 301 // thread B is holding it doing a collection. When thread A gets the lock, 302 // the collection count has already changed. To prevent duplicate collections, 303 // The policy MUST attempt allocations during the same period it reads the 304 // total_collections() value! 305 { 306 MutexLocker ml(Heap_lock); 307 gc_count = total_collections(); 308 309 result = young_gen()->allocate(size); 310 if (result != nullptr) { 311 return result; 312 } 313 314 // If certain conditions hold, try allocating from the old gen. 315 if (!is_tlab) { 316 result = mem_allocate_old_gen(size); 317 if (result != nullptr) { 318 return result; 319 } 320 } 321 } 322 323 assert(result == nullptr, "inv"); 324 { 325 VM_ParallelCollectForAllocation op(size, is_tlab, gc_count); 326 VMThread::execute(&op); 327 328 // Did the VM operation execute? If so, return the result directly. 329 // This prevents us from looping until time out on requests that can 330 // not be satisfied. 331 if (op.prologue_succeeded()) { 332 assert(is_in_or_null(op.result()), "result not in heap"); 333 334 // Exit the loop if the gc time limit has been exceeded. 335 // The allocation must have failed above ("result" guarding 336 // this path is null) and the most recent collection has exceeded the 337 // gc overhead limit (although enough may have been collected to 338 // satisfy the allocation). Exit the loop so that an out-of-memory 339 // will be thrown (return a null ignoring the contents of 340 // op.result()), 341 // but clear gc_overhead_limit_exceeded so that the next collection 342 // starts with a clean slate (i.e., forgets about previous overhead 343 // excesses). Fill op.result() with a filler object so that the 344 // heap remains parsable. 345 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded(); 346 const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear(); 347 348 if (limit_exceeded && softrefs_clear) { 349 *gc_overhead_limit_was_exceeded = true; 350 size_policy()->set_gc_overhead_limit_exceeded(false); 351 log_trace(gc)("ParallelScavengeHeap::mem_allocate: return null because gc_overhead_limit_exceeded is set"); 352 if (op.result() != nullptr) { 353 CollectedHeap::fill_with_object(op.result(), size); 354 } 355 return nullptr; 356 } 357 358 return op.result(); 359 } 360 } 361 362 // The policy object will prevent us from looping forever. If the 363 // time spent in gc crosses a threshold, we will bail out. 364 loop_count++; 365 if ((result == nullptr) && (QueuedAllocationWarningCount > 0) && 366 (loop_count % QueuedAllocationWarningCount == 0)) { 367 log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count); 368 log_warning(gc)("\tsize=%zu", size); 369 } 370 } 371 372 return result; 373 } 374 375 HeapWord* ParallelScavengeHeap::allocate_old_gen_and_record(size_t size) { 376 assert_locked_or_safepoint(Heap_lock); 377 HeapWord* res = old_gen()->allocate(size); 378 if (res != nullptr) { 379 _size_policy->tenured_allocation(size * HeapWordSize); 380 } 381 return res; 382 } 383 384 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) { 385 if (!should_alloc_in_eden(size)) { 386 // Size is too big for eden. 387 return allocate_old_gen_and_record(size); 388 } 389 390 return nullptr; 391 } 392 393 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) { 394 PSParallelCompact::invoke(clear_all_soft_refs); 395 } 396 397 HeapWord* ParallelScavengeHeap::expand_heap_and_allocate(size_t size, bool is_tlab) { 398 HeapWord* result = nullptr; 399 400 result = young_gen()->allocate(size); 401 if (result == nullptr && !is_tlab) { 402 result = old_gen()->expand_and_allocate(size); 403 } 404 return result; // Could be null if we are out of space. 405 } 406 407 HeapWord* ParallelScavengeHeap::satisfy_failed_allocation(size_t size, bool is_tlab) { 408 assert(size != 0, "precondition"); 409 410 HeapWord* result = nullptr; 411 412 // If young-gen can handle this allocation, attempt young-gc firstly. 413 bool should_run_young_gc = is_tlab || should_alloc_in_eden(size); 414 collect_at_safepoint(!should_run_young_gc); 415 416 result = expand_heap_and_allocate(size, is_tlab); 417 if (result != nullptr) { 418 return result; 419 } 420 421 // If we reach this point, we're really out of memory. Try every trick 422 // we can to reclaim memory. Force collection of soft references. Force 423 // a complete compaction of the heap. Any additional methods for finding 424 // free memory should be here, especially if they are expensive. If this 425 // attempt fails, an OOM exception will be thrown. 426 { 427 // Make sure the heap is fully compacted 428 uintx old_interval = HeapMaximumCompactionInterval; 429 HeapMaximumCompactionInterval = 0; 430 431 const bool clear_all_soft_refs = true; 432 PSParallelCompact::invoke(clear_all_soft_refs); 433 434 // Restore 435 HeapMaximumCompactionInterval = old_interval; 436 } 437 438 result = expand_heap_and_allocate(size, is_tlab); 439 if (result != nullptr) { 440 return result; 441 } 442 443 // What else? We might try synchronous finalization later. If the total 444 // space available is large enough for the allocation, then a more 445 // complete compaction phase than we've tried so far might be 446 // appropriate. 447 return nullptr; 448 } 449 450 451 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) { 452 CollectedHeap::ensure_parsability(retire_tlabs); 453 young_gen()->eden_space()->ensure_parsability(); 454 } 455 456 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const { 457 return young_gen()->eden_space()->tlab_capacity(thr); 458 } 459 460 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const { 461 return young_gen()->eden_space()->tlab_used(thr); 462 } 463 464 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const { 465 return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr); 466 } 467 468 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) { 469 bool dummy; 470 HeapWord* result = mem_allocate_work(requested_size /* size */, 471 true /* is_tlab */, 472 &dummy); 473 if (result != nullptr) { 474 *actual_size = requested_size; 475 } 476 477 return result; 478 } 479 480 void ParallelScavengeHeap::resize_all_tlabs() { 481 CollectedHeap::resize_all_tlabs(); 482 } 483 484 void ParallelScavengeHeap::prune_scavengable_nmethods() { 485 ScavengableNMethods::prune_nmethods_not_into_young(); 486 } 487 488 void ParallelScavengeHeap::prune_unlinked_nmethods() { 489 ScavengableNMethods::prune_unlinked_nmethods(); 490 } 491 492 void ParallelScavengeHeap::collect(GCCause::Cause cause) { 493 assert(!Heap_lock->owned_by_self(), 494 "this thread should not own the Heap_lock"); 495 496 uint gc_count = 0; 497 uint full_gc_count = 0; 498 { 499 MutexLocker ml(Heap_lock); 500 // This value is guarded by the Heap_lock 501 gc_count = total_collections(); 502 full_gc_count = total_full_collections(); 503 } 504 505 while (true) { 506 VM_ParallelGCCollect op(gc_count, full_gc_count, cause); 507 VMThread::execute(&op); 508 509 if (!GCCause::is_explicit_full_gc(cause)) { 510 return; 511 } 512 513 { 514 MutexLocker ml(Heap_lock); 515 if (full_gc_count != total_full_collections()) { 516 return; 517 } 518 } 519 } 520 } 521 522 bool ParallelScavengeHeap::must_clear_all_soft_refs() { 523 return _gc_cause == GCCause::_metadata_GC_clear_soft_refs || 524 _gc_cause == GCCause::_wb_full_gc; 525 } 526 527 void ParallelScavengeHeap::collect_at_safepoint(bool full) { 528 assert(!GCLocker::is_active(), "precondition"); 529 bool clear_soft_refs = must_clear_all_soft_refs(); 530 531 if (!full) { 532 bool success = PSScavenge::invoke(clear_soft_refs); 533 if (success) { 534 return; 535 } 536 // Upgrade to Full-GC if young-gc fails 537 } 538 PSParallelCompact::invoke(clear_soft_refs); 539 } 540 541 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) { 542 young_gen()->object_iterate(cl); 543 old_gen()->object_iterate(cl); 544 } 545 546 // The HeapBlockClaimer is used during parallel iteration over the heap, 547 // allowing workers to claim heap areas ("blocks"), gaining exclusive rights to these. 548 // The eden and survivor spaces are treated as single blocks as it is hard to divide 549 // these spaces. 550 // The old space is divided into fixed-size blocks. 551 class HeapBlockClaimer : public StackObj { 552 size_t _claimed_index; 553 554 public: 555 static const size_t InvalidIndex = SIZE_MAX; 556 static const size_t EdenIndex = 0; 557 static const size_t SurvivorIndex = 1; 558 static const size_t NumNonOldGenClaims = 2; 559 560 HeapBlockClaimer() : _claimed_index(EdenIndex) { } 561 // Claim the block and get the block index. 562 size_t claim_and_get_block() { 563 size_t block_index; 564 block_index = Atomic::fetch_then_add(&_claimed_index, 1u); 565 566 PSOldGen* old_gen = ParallelScavengeHeap::heap()->old_gen(); 567 size_t num_claims = old_gen->num_iterable_blocks() + NumNonOldGenClaims; 568 569 return block_index < num_claims ? block_index : InvalidIndex; 570 } 571 }; 572 573 void ParallelScavengeHeap::object_iterate_parallel(ObjectClosure* cl, 574 HeapBlockClaimer* claimer) { 575 size_t block_index = claimer->claim_and_get_block(); 576 // Iterate until all blocks are claimed 577 if (block_index == HeapBlockClaimer::EdenIndex) { 578 young_gen()->eden_space()->object_iterate(cl); 579 block_index = claimer->claim_and_get_block(); 580 } 581 if (block_index == HeapBlockClaimer::SurvivorIndex) { 582 young_gen()->from_space()->object_iterate(cl); 583 young_gen()->to_space()->object_iterate(cl); 584 block_index = claimer->claim_and_get_block(); 585 } 586 while (block_index != HeapBlockClaimer::InvalidIndex) { 587 old_gen()->object_iterate_block(cl, block_index - HeapBlockClaimer::NumNonOldGenClaims); 588 block_index = claimer->claim_and_get_block(); 589 } 590 } 591 592 class PSScavengeParallelObjectIterator : public ParallelObjectIteratorImpl { 593 private: 594 ParallelScavengeHeap* _heap; 595 HeapBlockClaimer _claimer; 596 597 public: 598 PSScavengeParallelObjectIterator() : 599 _heap(ParallelScavengeHeap::heap()), 600 _claimer() {} 601 602 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 603 _heap->object_iterate_parallel(cl, &_claimer); 604 } 605 }; 606 607 ParallelObjectIteratorImpl* ParallelScavengeHeap::parallel_object_iterator(uint thread_num) { 608 return new PSScavengeParallelObjectIterator(); 609 } 610 611 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const { 612 if (young_gen()->is_in_reserved(addr)) { 613 assert(young_gen()->is_in(addr), 614 "addr should be in allocated part of young gen"); 615 // called from os::print_location by find or VMError 616 if (DebuggingContext::is_enabled() || VMError::is_error_reported()) { 617 return nullptr; 618 } 619 Unimplemented(); 620 } else if (old_gen()->is_in_reserved(addr)) { 621 assert(old_gen()->is_in(addr), 622 "addr should be in allocated part of old gen"); 623 return old_gen()->start_array()->object_start((HeapWord*)addr); 624 } 625 return nullptr; 626 } 627 628 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const { 629 return block_start(addr) == addr; 630 } 631 632 void ParallelScavengeHeap::prepare_for_verify() { 633 ensure_parsability(false); // no need to retire TLABs for verification 634 } 635 636 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() { 637 PSOldGen* old = old_gen(); 638 HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr(); 639 HeapWord* old_reserved_start = old->reserved().start(); 640 HeapWord* old_reserved_end = old->reserved().end(); 641 VirtualSpaceSummary old_summary(old_reserved_start, old_committed_end, old_reserved_end); 642 SpaceSummary old_space(old_reserved_start, old_committed_end, old->used_in_bytes()); 643 644 PSYoungGen* young = young_gen(); 645 VirtualSpaceSummary young_summary(young->reserved().start(), 646 (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end()); 647 648 MutableSpace* eden = young_gen()->eden_space(); 649 SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes()); 650 651 MutableSpace* from = young_gen()->from_space(); 652 SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes()); 653 654 MutableSpace* to = young_gen()->to_space(); 655 SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes()); 656 657 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 658 return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space); 659 } 660 661 bool ParallelScavengeHeap::print_location(outputStream* st, void* addr) const { 662 return BlockLocationPrinter<ParallelScavengeHeap>::print_location(st, addr); 663 } 664 665 void ParallelScavengeHeap::print_on(outputStream* st) const { 666 if (young_gen() != nullptr) { 667 young_gen()->print_on(st); 668 } 669 if (old_gen() != nullptr) { 670 old_gen()->print_on(st); 671 } 672 MetaspaceUtils::print_on(st); 673 } 674 675 void ParallelScavengeHeap::print_on_error(outputStream* st) const { 676 this->CollectedHeap::print_on_error(st); 677 678 st->cr(); 679 PSParallelCompact::print_on_error(st); 680 } 681 682 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const { 683 ParallelScavengeHeap::heap()->workers().threads_do(tc); 684 } 685 686 void ParallelScavengeHeap::print_tracing_info() const { 687 AdaptiveSizePolicyOutput::print(); 688 log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds()); 689 log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs", PSParallelCompact::accumulated_time()->seconds()); 690 } 691 692 PreGenGCValues ParallelScavengeHeap::get_pre_gc_values() const { 693 const PSYoungGen* const young = young_gen(); 694 const MutableSpace* const eden = young->eden_space(); 695 const MutableSpace* const from = young->from_space(); 696 const PSOldGen* const old = old_gen(); 697 698 return PreGenGCValues(young->used_in_bytes(), 699 young->capacity_in_bytes(), 700 eden->used_in_bytes(), 701 eden->capacity_in_bytes(), 702 from->used_in_bytes(), 703 from->capacity_in_bytes(), 704 old->used_in_bytes(), 705 old->capacity_in_bytes()); 706 } 707 708 void ParallelScavengeHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const { 709 const PSYoungGen* const young = young_gen(); 710 const MutableSpace* const eden = young->eden_space(); 711 const MutableSpace* const from = young->from_space(); 712 const PSOldGen* const old = old_gen(); 713 714 log_info(gc, heap)(HEAP_CHANGE_FORMAT" " 715 HEAP_CHANGE_FORMAT" " 716 HEAP_CHANGE_FORMAT, 717 HEAP_CHANGE_FORMAT_ARGS(young->name(), 718 pre_gc_values.young_gen_used(), 719 pre_gc_values.young_gen_capacity(), 720 young->used_in_bytes(), 721 young->capacity_in_bytes()), 722 HEAP_CHANGE_FORMAT_ARGS("Eden", 723 pre_gc_values.eden_used(), 724 pre_gc_values.eden_capacity(), 725 eden->used_in_bytes(), 726 eden->capacity_in_bytes()), 727 HEAP_CHANGE_FORMAT_ARGS("From", 728 pre_gc_values.from_used(), 729 pre_gc_values.from_capacity(), 730 from->used_in_bytes(), 731 from->capacity_in_bytes())); 732 log_info(gc, heap)(HEAP_CHANGE_FORMAT, 733 HEAP_CHANGE_FORMAT_ARGS(old->name(), 734 pre_gc_values.old_gen_used(), 735 pre_gc_values.old_gen_capacity(), 736 old->used_in_bytes(), 737 old->capacity_in_bytes())); 738 MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes()); 739 } 740 741 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) { 742 // Why do we need the total_collections()-filter below? 743 if (total_collections() > 0) { 744 log_debug(gc, verify)("Tenured"); 745 old_gen()->verify(); 746 747 log_debug(gc, verify)("Eden"); 748 young_gen()->verify(); 749 750 log_debug(gc, verify)("CardTable"); 751 card_table()->verify_all_young_refs_imprecise(); 752 } 753 } 754 755 void ParallelScavengeHeap::trace_actual_reserved_page_size(const size_t reserved_heap_size, const ReservedSpace rs) { 756 // Check if Info level is enabled, since os::trace_page_sizes() logs on Info level. 757 if(log_is_enabled(Info, pagesize)) { 758 const size_t page_size = rs.page_size(); 759 os::trace_page_sizes("Heap", 760 MinHeapSize, 761 reserved_heap_size, 762 rs.base(), 763 rs.size(), 764 page_size); 765 } 766 } 767 768 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 769 const PSHeapSummary& heap_summary = create_ps_heap_summary(); 770 gc_tracer->report_gc_heap_summary(when, heap_summary); 771 772 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 773 gc_tracer->report_metaspace_summary(when, metaspace_summary); 774 } 775 776 CardTableBarrierSet* ParallelScavengeHeap::barrier_set() { 777 return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set()); 778 } 779 780 PSCardTable* ParallelScavengeHeap::card_table() { 781 return static_cast<PSCardTable*>(barrier_set()->card_table()); 782 } 783 784 void ParallelScavengeHeap::resize_young_gen(size_t eden_size, 785 size_t survivor_size) { 786 // Delegate the resize to the generation. 787 _young_gen->resize(eden_size, survivor_size); 788 } 789 790 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) { 791 // Delegate the resize to the generation. 792 _old_gen->resize(desired_free_space); 793 } 794 795 HeapWord* ParallelScavengeHeap::allocate_loaded_archive_space(size_t size) { 796 return _old_gen->allocate(size); 797 } 798 799 void ParallelScavengeHeap::complete_loaded_archive_space(MemRegion archive_space) { 800 assert(_old_gen->object_space()->used_region().contains(archive_space), 801 "Archive space not contained in old gen"); 802 _old_gen->complete_loaded_archive_space(archive_space); 803 } 804 805 void ParallelScavengeHeap::register_nmethod(nmethod* nm) { 806 ScavengableNMethods::register_nmethod(nm); 807 } 808 809 void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) { 810 ScavengableNMethods::unregister_nmethod(nm); 811 } 812 813 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) { 814 ScavengableNMethods::verify_nmethod(nm); 815 } 816 817 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() { 818 GrowableArray<GCMemoryManager*> memory_managers(2); 819 memory_managers.append(_young_manager); 820 memory_managers.append(_old_manager); 821 return memory_managers; 822 } 823 824 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() { 825 GrowableArray<MemoryPool*> memory_pools(3); 826 memory_pools.append(_eden_pool); 827 memory_pools.append(_survivor_pool); 828 memory_pools.append(_old_pool); 829 return memory_pools; 830 } 831 832 void ParallelScavengeHeap::pin_object(JavaThread* thread, oop obj) { 833 GCLocker::enter(thread); 834 } 835 836 void ParallelScavengeHeap::unpin_object(JavaThread* thread, oop obj) { 837 GCLocker::exit(thread); 838 } 839 840 void ParallelScavengeHeap::update_parallel_worker_threads_cpu_time() { 841 assert(Thread::current()->is_VM_thread(), 842 "Must be called from VM thread to avoid races"); 843 if (!UsePerfData || !os::is_thread_cpu_time_supported()) { 844 return; 845 } 846 847 // Ensure ThreadTotalCPUTimeClosure destructor is called before publishing gc 848 // time. 849 { 850 ThreadTotalCPUTimeClosure tttc(CPUTimeGroups::CPUTimeType::gc_parallel_workers); 851 // Currently parallel worker threads in GCTaskManager never terminate, so it 852 // is safe for VMThread to read their CPU times. If upstream changes this 853 // behavior, we should rethink if it is still safe. 854 gc_threads_do(&tttc); 855 } 856 857 CPUTimeCounters::publish_gc_total_cpu_time(); 858 }