< prev index next >

src/hotspot/share/gc/parallel/parallelScavengeHeap.cpp

Print this page

 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/parallel/objectStartArray.inline.hpp"
 26 #include "gc/parallel/parallelArguments.hpp"
 27 #include "gc/parallel/parallelInitLogger.hpp"
 28 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
 29 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
 30 #include "gc/parallel/psMemoryPool.hpp"
 31 #include "gc/parallel/psParallelCompact.inline.hpp"

 32 #include "gc/parallel/psPromotionManager.hpp"
 33 #include "gc/parallel/psScavenge.hpp"
 34 #include "gc/parallel/psVMOperations.hpp"
 35 #include "gc/shared/fullGCForwarding.inline.hpp"
 36 #include "gc/shared/gcHeapSummary.hpp"
 37 #include "gc/shared/gcLocker.inline.hpp"
 38 #include "gc/shared/gcWhen.hpp"
 39 #include "gc/shared/genArguments.hpp"
 40 #include "gc/shared/locationPrinter.inline.hpp"
 41 #include "gc/shared/scavengableNMethods.hpp"
 42 #include "gc/shared/suspendibleThreadSet.hpp"
 43 #include "logging/log.hpp"
 44 #include "memory/iterator.hpp"
 45 #include "memory/metaspaceCounters.hpp"
 46 #include "memory/metaspaceUtils.hpp"
 47 #include "memory/reservedSpace.hpp"
 48 #include "memory/universe.hpp"
 49 #include "oops/oop.inline.hpp"
 50 #include "runtime/cpuTimeCounters.hpp"
 51 #include "runtime/handles.inline.hpp"

103 
104   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
105   const size_t old_capacity = _old_gen->capacity_in_bytes();
106   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
107   _size_policy =
108     new PSAdaptiveSizePolicy(eden_capacity,
109                              initial_promo_size,
110                              young_gen()->to_space()->capacity_in_bytes(),
111                              GenAlignment,
112                              max_gc_pause_sec,
113                              GCTimeRatio
114                              );
115 
116   assert((old_gen()->virtual_space()->high_boundary() ==
117           young_gen()->virtual_space()->low_boundary()),
118          "Boundaries must meet");
119   // initialize the policy counters - 2 collectors, 2 generations
120   _gc_policy_counters =
121     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
122 
123   if (!PSParallelCompact::initialize_aux_data()) {
124     return JNI_ENOMEM;






125   }
126 
127   // Create CPU time counter
128   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
129 
130   ParallelInitLogger::print();
131 
132   FullGCForwarding::initialize(_reserved);
133 
134   return JNI_OK;
135 }
136 
137 void ParallelScavengeHeap::initialize_serviceability() {
138 
139   _eden_pool = new EdenMutableSpacePool(_young_gen,
140                                         _young_gen->eden_space(),
141                                         "PS Eden Space",
142                                         false /* support_usage_threshold */);
143 
144   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,

167   }
168 }
169 
170 void ParallelScavengeHeap::safepoint_synchronize_end() {
171   if (UseStringDeduplication) {
172     SuspendibleThreadSet::desynchronize();
173   }
174 }
175 class PSIsScavengable : public BoolObjectClosure {
176   bool do_object_b(oop obj) {
177     return ParallelScavengeHeap::heap()->is_in_young(obj);
178   }
179 };
180 
181 static PSIsScavengable _is_scavengable;
182 
183 void ParallelScavengeHeap::post_initialize() {
184   CollectedHeap::post_initialize();
185   // Need to init the tenuring threshold
186   PSScavenge::initialize();
187   PSParallelCompact::post_initialize();




188   PSPromotionManager::initialize();
189 
190   ScavengableNMethods::initialize(&_is_scavengable);
191   GCLocker::initialize();
192 }
193 
194 void ParallelScavengeHeap::update_counters() {
195   young_gen()->update_counters();
196   old_gen()->update_counters();
197   MetaspaceCounters::update_performance_counters();
198   update_parallel_worker_threads_cpu_time();
199 }
200 
201 size_t ParallelScavengeHeap::capacity() const {
202   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
203   return value;
204 }
205 
206 size_t ParallelScavengeHeap::used() const {
207   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();

374 
375 HeapWord* ParallelScavengeHeap::allocate_old_gen_and_record(size_t size) {
376   assert_locked_or_safepoint(Heap_lock);
377   HeapWord* res = old_gen()->allocate(size);
378   if (res != nullptr) {
379     _size_policy->tenured_allocation(size * HeapWordSize);
380   }
381   return res;
382 }
383 
384 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
385   if (!should_alloc_in_eden(size)) {
386     // Size is too big for eden.
387     return allocate_old_gen_and_record(size);
388   }
389 
390   return nullptr;
391 }
392 
393 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
394   PSParallelCompact::invoke(clear_all_soft_refs);




395 }
396 
397 HeapWord* ParallelScavengeHeap::expand_heap_and_allocate(size_t size, bool is_tlab) {
398   HeapWord* result = nullptr;
399 
400   result = young_gen()->allocate(size);
401   if (result == nullptr && !is_tlab) {
402     result = old_gen()->expand_and_allocate(size);
403   }
404   return result;   // Could be null if we are out of space.
405 }
406 
407 HeapWord* ParallelScavengeHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
408   assert(size != 0, "precondition");
409 
410   HeapWord* result = nullptr;
411 
412   // If young-gen can handle this allocation, attempt young-gc firstly.
413   bool should_run_young_gc = is_tlab || should_alloc_in_eden(size);
414   collect_at_safepoint(!should_run_young_gc);
415 
416   result = expand_heap_and_allocate(size, is_tlab);
417   if (result != nullptr) {
418     return result;
419   }
420 
421   // If we reach this point, we're really out of memory. Try every trick
422   // we can to reclaim memory. Force collection of soft references. Force
423   // a complete compaction of the heap. Any additional methods for finding
424   // free memory should be here, especially if they are expensive. If this
425   // attempt fails, an OOM exception will be thrown.
426   {
427     // Make sure the heap is fully compacted
428     uintx old_interval = HeapMaximumCompactionInterval;
429     HeapMaximumCompactionInterval = 0;
430 
431     const bool clear_all_soft_refs = true;
432     PSParallelCompact::invoke(clear_all_soft_refs);




433 
434     // Restore
435     HeapMaximumCompactionInterval = old_interval;
436   }
437 
438   result = expand_heap_and_allocate(size, is_tlab);
439   if (result != nullptr) {
440     return result;
441   }
442 









443   // What else?  We might try synchronous finalization later.  If the total
444   // space available is large enough for the allocation, then a more
445   // complete compaction phase than we've tried so far might be
446   // appropriate.
447   return nullptr;
448 }
449 
450 
451 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
452   CollectedHeap::ensure_parsability(retire_tlabs);
453   young_gen()->eden_space()->ensure_parsability();
454 }
455 
456 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
457   return young_gen()->eden_space()->tlab_capacity(thr);
458 }
459 
460 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
461   return young_gen()->eden_space()->tlab_used(thr);
462 }

518     }
519   }
520 }
521 
522 bool ParallelScavengeHeap::must_clear_all_soft_refs() {
523   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
524          _gc_cause == GCCause::_wb_full_gc;
525 }
526 
527 void ParallelScavengeHeap::collect_at_safepoint(bool full) {
528   assert(!GCLocker::is_active(), "precondition");
529   bool clear_soft_refs = must_clear_all_soft_refs();
530 
531   if (!full) {
532     bool success = PSScavenge::invoke(clear_soft_refs);
533     if (success) {
534       return;
535     }
536     // Upgrade to Full-GC if young-gc fails
537   }
538   PSParallelCompact::invoke(clear_soft_refs);




539 }
540 
541 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
542   young_gen()->object_iterate(cl);
543   old_gen()->object_iterate(cl);
544 }
545 
546 // The HeapBlockClaimer is used during parallel iteration over the heap,
547 // allowing workers to claim heap areas ("blocks"), gaining exclusive rights to these.
548 // The eden and survivor spaces are treated as single blocks as it is hard to divide
549 // these spaces.
550 // The old space is divided into fixed-size blocks.
551 class HeapBlockClaimer : public StackObj {
552   size_t _claimed_index;
553 
554 public:
555   static const size_t InvalidIndex = SIZE_MAX;
556   static const size_t EdenIndex = 0;
557   static const size_t SurvivorIndex = 1;
558   static const size_t NumNonOldGenClaims = 2;

659 }
660 
661 bool ParallelScavengeHeap::print_location(outputStream* st, void* addr) const {
662   return BlockLocationPrinter<ParallelScavengeHeap>::print_location(st, addr);
663 }
664 
665 void ParallelScavengeHeap::print_on(outputStream* st) const {
666   if (young_gen() != nullptr) {
667     young_gen()->print_on(st);
668   }
669   if (old_gen() != nullptr) {
670     old_gen()->print_on(st);
671   }
672   MetaspaceUtils::print_on(st);
673 }
674 
675 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
676   this->CollectedHeap::print_on_error(st);
677 
678   st->cr();
679   PSParallelCompact::print_on_error(st);




680 }
681 
682 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
683   ParallelScavengeHeap::heap()->workers().threads_do(tc);
684 }
685 
686 void ParallelScavengeHeap::print_tracing_info() const {
687   AdaptiveSizePolicyOutput::print();
688   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
689   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs", PSParallelCompact::accumulated_time()->seconds());




690 }
691 
692 PreGenGCValues ParallelScavengeHeap::get_pre_gc_values() const {
693   const PSYoungGen* const young = young_gen();
694   const MutableSpace* const eden = young->eden_space();
695   const MutableSpace* const from = young->from_space();
696   const PSOldGen* const old = old_gen();
697 
698   return PreGenGCValues(young->used_in_bytes(),
699                         young->capacity_in_bytes(),
700                         eden->used_in_bytes(),
701                         eden->capacity_in_bytes(),
702                         from->used_in_bytes(),
703                         from->capacity_in_bytes(),
704                         old->used_in_bytes(),
705                         old->capacity_in_bytes());
706 }
707 
708 void ParallelScavengeHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
709   const PSYoungGen* const young = young_gen();

 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/parallel/objectStartArray.inline.hpp"
 26 #include "gc/parallel/parallelArguments.hpp"
 27 #include "gc/parallel/parallelInitLogger.hpp"
 28 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
 29 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
 30 #include "gc/parallel/psMemoryPool.hpp"
 31 #include "gc/parallel/psParallelCompact.inline.hpp"
 32 #include "gc/parallel/psParallelCompactNew.inline.hpp"
 33 #include "gc/parallel/psPromotionManager.hpp"
 34 #include "gc/parallel/psScavenge.hpp"
 35 #include "gc/parallel/psVMOperations.hpp"
 36 #include "gc/shared/fullGCForwarding.inline.hpp"
 37 #include "gc/shared/gcHeapSummary.hpp"
 38 #include "gc/shared/gcLocker.inline.hpp"
 39 #include "gc/shared/gcWhen.hpp"
 40 #include "gc/shared/genArguments.hpp"
 41 #include "gc/shared/locationPrinter.inline.hpp"
 42 #include "gc/shared/scavengableNMethods.hpp"
 43 #include "gc/shared/suspendibleThreadSet.hpp"
 44 #include "logging/log.hpp"
 45 #include "memory/iterator.hpp"
 46 #include "memory/metaspaceCounters.hpp"
 47 #include "memory/metaspaceUtils.hpp"
 48 #include "memory/reservedSpace.hpp"
 49 #include "memory/universe.hpp"
 50 #include "oops/oop.inline.hpp"
 51 #include "runtime/cpuTimeCounters.hpp"
 52 #include "runtime/handles.inline.hpp"

104 
105   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
106   const size_t old_capacity = _old_gen->capacity_in_bytes();
107   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
108   _size_policy =
109     new PSAdaptiveSizePolicy(eden_capacity,
110                              initial_promo_size,
111                              young_gen()->to_space()->capacity_in_bytes(),
112                              GenAlignment,
113                              max_gc_pause_sec,
114                              GCTimeRatio
115                              );
116 
117   assert((old_gen()->virtual_space()->high_boundary() ==
118           young_gen()->virtual_space()->low_boundary()),
119          "Boundaries must meet");
120   // initialize the policy counters - 2 collectors, 2 generations
121   _gc_policy_counters =
122     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
123 
124   if (UseCompactObjectHeaders) {
125     if (!PSParallelCompactNew::initialize_aux_data()) {
126       return JNI_ENOMEM;
127     }
128   } else {
129     if (!PSParallelCompact::initialize_aux_data()) {
130       return JNI_ENOMEM;
131     }
132   }
133 
134   // Create CPU time counter
135   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
136 
137   ParallelInitLogger::print();
138 
139   FullGCForwarding::initialize(_reserved);
140 
141   return JNI_OK;
142 }
143 
144 void ParallelScavengeHeap::initialize_serviceability() {
145 
146   _eden_pool = new EdenMutableSpacePool(_young_gen,
147                                         _young_gen->eden_space(),
148                                         "PS Eden Space",
149                                         false /* support_usage_threshold */);
150 
151   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,

174   }
175 }
176 
177 void ParallelScavengeHeap::safepoint_synchronize_end() {
178   if (UseStringDeduplication) {
179     SuspendibleThreadSet::desynchronize();
180   }
181 }
182 class PSIsScavengable : public BoolObjectClosure {
183   bool do_object_b(oop obj) {
184     return ParallelScavengeHeap::heap()->is_in_young(obj);
185   }
186 };
187 
188 static PSIsScavengable _is_scavengable;
189 
190 void ParallelScavengeHeap::post_initialize() {
191   CollectedHeap::post_initialize();
192   // Need to init the tenuring threshold
193   PSScavenge::initialize();
194   if (UseCompactObjectHeaders) {
195     PSParallelCompactNew::post_initialize();
196   } else {
197     PSParallelCompact::post_initialize();
198   }
199   PSPromotionManager::initialize();
200 
201   ScavengableNMethods::initialize(&_is_scavengable);
202   GCLocker::initialize();
203 }
204 
205 void ParallelScavengeHeap::update_counters() {
206   young_gen()->update_counters();
207   old_gen()->update_counters();
208   MetaspaceCounters::update_performance_counters();
209   update_parallel_worker_threads_cpu_time();
210 }
211 
212 size_t ParallelScavengeHeap::capacity() const {
213   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
214   return value;
215 }
216 
217 size_t ParallelScavengeHeap::used() const {
218   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();

385 
386 HeapWord* ParallelScavengeHeap::allocate_old_gen_and_record(size_t size) {
387   assert_locked_or_safepoint(Heap_lock);
388   HeapWord* res = old_gen()->allocate(size);
389   if (res != nullptr) {
390     _size_policy->tenured_allocation(size * HeapWordSize);
391   }
392   return res;
393 }
394 
395 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
396   if (!should_alloc_in_eden(size)) {
397     // Size is too big for eden.
398     return allocate_old_gen_and_record(size);
399   }
400 
401   return nullptr;
402 }
403 
404 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
405   if (UseCompactObjectHeaders) {
406     PSParallelCompactNew::invoke(clear_all_soft_refs, false /* serial */);
407   } else {
408     PSParallelCompact::invoke(clear_all_soft_refs);
409   }
410 }
411 
412 HeapWord* ParallelScavengeHeap::expand_heap_and_allocate(size_t size, bool is_tlab) {
413   HeapWord* result = nullptr;
414 
415   result = young_gen()->allocate(size);
416   if (result == nullptr && !is_tlab) {
417     result = old_gen()->expand_and_allocate(size);
418   }
419   return result;   // Could be null if we are out of space.
420 }
421 
422 HeapWord* ParallelScavengeHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
423   assert(size != 0, "precondition");
424 
425   HeapWord* result = nullptr;
426 
427   // If young-gen can handle this allocation, attempt young-gc firstly.
428   bool should_run_young_gc = is_tlab || should_alloc_in_eden(size);
429   collect_at_safepoint(!should_run_young_gc);
430 
431   result = expand_heap_and_allocate(size, is_tlab);
432   if (result != nullptr) {
433     return result;
434   }
435 
436   // If we reach this point, we're really out of memory. Try every trick
437   // we can to reclaim memory. Force collection of soft references. Force
438   // a complete compaction of the heap. Any additional methods for finding
439   // free memory should be here, especially if they are expensive. If this
440   // attempt fails, an OOM exception will be thrown.
441   {
442     // Make sure the heap is fully compacted
443     uintx old_interval = HeapMaximumCompactionInterval;
444     HeapMaximumCompactionInterval = 0;
445 
446     const bool clear_all_soft_refs = true;
447     if (UseCompactObjectHeaders) {
448       PSParallelCompactNew::invoke(clear_all_soft_refs, false /* serial */);
449     } else {
450       PSParallelCompact::invoke(clear_all_soft_refs);
451     }
452 
453     // Restore
454     HeapMaximumCompactionInterval = old_interval;
455   }
456 
457   result = expand_heap_and_allocate(size, is_tlab);
458   if (result != nullptr) {
459     return result;
460   }
461 
462   if (UseCompactObjectHeaders) {
463     PSParallelCompactNew::invoke(true /* clear_soft_refs */, true /* serial */);
464   }
465 
466   result = expand_heap_and_allocate(size, is_tlab);
467   if (result != nullptr) {
468     return result;
469   }
470 
471   // What else?  We might try synchronous finalization later.  If the total
472   // space available is large enough for the allocation, then a more
473   // complete compaction phase than we've tried so far might be
474   // appropriate.
475   return nullptr;
476 }
477 
478 
479 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
480   CollectedHeap::ensure_parsability(retire_tlabs);
481   young_gen()->eden_space()->ensure_parsability();
482 }
483 
484 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
485   return young_gen()->eden_space()->tlab_capacity(thr);
486 }
487 
488 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
489   return young_gen()->eden_space()->tlab_used(thr);
490 }

546     }
547   }
548 }
549 
550 bool ParallelScavengeHeap::must_clear_all_soft_refs() {
551   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
552          _gc_cause == GCCause::_wb_full_gc;
553 }
554 
555 void ParallelScavengeHeap::collect_at_safepoint(bool full) {
556   assert(!GCLocker::is_active(), "precondition");
557   bool clear_soft_refs = must_clear_all_soft_refs();
558 
559   if (!full) {
560     bool success = PSScavenge::invoke(clear_soft_refs);
561     if (success) {
562       return;
563     }
564     // Upgrade to Full-GC if young-gc fails
565   }
566   if (UseCompactObjectHeaders) {
567     PSParallelCompactNew::invoke(clear_soft_refs, false /* serial */);
568   } else {
569     PSParallelCompact::invoke(clear_soft_refs);
570   }
571 }
572 
573 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
574   young_gen()->object_iterate(cl);
575   old_gen()->object_iterate(cl);
576 }
577 
578 // The HeapBlockClaimer is used during parallel iteration over the heap,
579 // allowing workers to claim heap areas ("blocks"), gaining exclusive rights to these.
580 // The eden and survivor spaces are treated as single blocks as it is hard to divide
581 // these spaces.
582 // The old space is divided into fixed-size blocks.
583 class HeapBlockClaimer : public StackObj {
584   size_t _claimed_index;
585 
586 public:
587   static const size_t InvalidIndex = SIZE_MAX;
588   static const size_t EdenIndex = 0;
589   static const size_t SurvivorIndex = 1;
590   static const size_t NumNonOldGenClaims = 2;

691 }
692 
693 bool ParallelScavengeHeap::print_location(outputStream* st, void* addr) const {
694   return BlockLocationPrinter<ParallelScavengeHeap>::print_location(st, addr);
695 }
696 
697 void ParallelScavengeHeap::print_on(outputStream* st) const {
698   if (young_gen() != nullptr) {
699     young_gen()->print_on(st);
700   }
701   if (old_gen() != nullptr) {
702     old_gen()->print_on(st);
703   }
704   MetaspaceUtils::print_on(st);
705 }
706 
707 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
708   this->CollectedHeap::print_on_error(st);
709 
710   st->cr();
711   if (UseCompactObjectHeaders) {
712     PSParallelCompactNew::print_on_error(st);
713   } else {
714     PSParallelCompact::print_on_error(st);
715   }
716 }
717 
718 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
719   ParallelScavengeHeap::heap()->workers().threads_do(tc);
720 }
721 
722 void ParallelScavengeHeap::print_tracing_info() const {
723   AdaptiveSizePolicyOutput::print();
724   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
725   if (UseCompactObjectHeaders) {
726     log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs", PSParallelCompactNew::accumulated_time()->seconds());
727   } else {
728     log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs", PSParallelCompact::accumulated_time()->seconds());
729   }
730 }
731 
732 PreGenGCValues ParallelScavengeHeap::get_pre_gc_values() const {
733   const PSYoungGen* const young = young_gen();
734   const MutableSpace* const eden = young->eden_space();
735   const MutableSpace* const from = young->from_space();
736   const PSOldGen* const old = old_gen();
737 
738   return PreGenGCValues(young->used_in_bytes(),
739                         young->capacity_in_bytes(),
740                         eden->used_in_bytes(),
741                         eden->capacity_in_bytes(),
742                         from->used_in_bytes(),
743                         from->capacity_in_bytes(),
744                         old->used_in_bytes(),
745                         old->capacity_in_bytes());
746 }
747 
748 void ParallelScavengeHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
749   const PSYoungGen* const young = young_gen();
< prev index next >