1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciUtilities.inline.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 if (jvms->has_method()) { 139 // Not a root compile. 140 const char* msg; 141 if (callee->intrinsic_candidate()) { 142 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 143 } else { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 145 : "failed to inline (intrinsic), method not annotated"; 146 } 147 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 148 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 149 } else { 150 // Root compile 151 ResourceMark rm; 152 stringStream msg_stream; 153 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 154 vmIntrinsics::name_at(intrinsic_id()), 155 is_virtual() ? " (virtual)" : "", bci); 156 const char *msg = msg_stream.freeze(); 157 log_debug(jit, inlining)("%s", msg); 158 if (C->print_intrinsics() || C->print_inlining()) { 159 tty->print("%s", msg); 160 } 161 } 162 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 163 164 return nullptr; 165 } 166 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 168 LibraryCallKit kit(jvms, this); 169 Compile* C = kit.C; 170 int nodes = C->unique(); 171 _last_predicate = predicate; 172 #ifndef PRODUCT 173 assert(is_predicated() && predicate < predicates_count(), "sanity"); 174 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 175 char buf[1000]; 176 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 177 tty->print_cr("Predicate for intrinsic %s", str); 178 } 179 #endif 180 ciMethod* callee = kit.callee(); 181 const int bci = kit.bci(); 182 183 Node* slow_ctl = kit.try_to_predicate(predicate); 184 if (!kit.failing()) { 185 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 186 : "(intrinsic, predicate)"; 187 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 188 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 189 190 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 191 if (C->log()) { 192 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 193 vmIntrinsics::name_at(intrinsic_id()), 194 (is_virtual() ? " virtual='1'" : ""), 195 C->unique() - nodes); 196 } 197 return slow_ctl; // Could be null if the check folds. 198 } 199 200 // The intrinsic bailed out 201 if (jvms->has_method()) { 202 // Not a root compile. 203 const char* msg = "failed to generate predicate for intrinsic"; 204 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 205 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 206 } else { 207 // Root compile 208 ResourceMark rm; 209 stringStream msg_stream; 210 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 211 vmIntrinsics::name_at(intrinsic_id()), 212 is_virtual() ? " (virtual)" : "", bci); 213 const char *msg = msg_stream.freeze(); 214 log_debug(jit, inlining)("%s", msg); 215 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 216 } 217 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 218 return nullptr; 219 } 220 221 bool LibraryCallKit::try_to_inline(int predicate) { 222 // Handle symbolic names for otherwise undistinguished boolean switches: 223 const bool is_store = true; 224 const bool is_compress = true; 225 const bool is_static = true; 226 const bool is_volatile = true; 227 228 if (!jvms()->has_method()) { 229 // Root JVMState has a null method. 230 assert(map()->memory()->Opcode() == Op_Parm, ""); 231 // Insert the memory aliasing node 232 set_all_memory(reset_memory()); 233 } 234 assert(merged_memory(), ""); 235 236 switch (intrinsic_id()) { 237 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 238 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 239 case vmIntrinsics::_getClass: return inline_native_getClass(); 240 241 case vmIntrinsics::_ceil: 242 case vmIntrinsics::_floor: 243 case vmIntrinsics::_rint: 244 case vmIntrinsics::_dsin: 245 case vmIntrinsics::_dcos: 246 case vmIntrinsics::_dtan: 247 case vmIntrinsics::_dtanh: 248 case vmIntrinsics::_dabs: 249 case vmIntrinsics::_fabs: 250 case vmIntrinsics::_iabs: 251 case vmIntrinsics::_labs: 252 case vmIntrinsics::_datan2: 253 case vmIntrinsics::_dsqrt: 254 case vmIntrinsics::_dsqrt_strict: 255 case vmIntrinsics::_dexp: 256 case vmIntrinsics::_dlog: 257 case vmIntrinsics::_dlog10: 258 case vmIntrinsics::_dpow: 259 case vmIntrinsics::_dcopySign: 260 case vmIntrinsics::_fcopySign: 261 case vmIntrinsics::_dsignum: 262 case vmIntrinsics::_roundF: 263 case vmIntrinsics::_roundD: 264 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 265 266 case vmIntrinsics::_notify: 267 case vmIntrinsics::_notifyAll: 268 return inline_notify(intrinsic_id()); 269 270 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 271 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 272 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 273 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 274 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 275 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 276 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 277 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 278 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 279 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 280 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 281 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 282 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 283 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 284 285 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 286 287 case vmIntrinsics::_arraySort: return inline_array_sort(); 288 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 289 290 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 291 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 292 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 293 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 294 295 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 296 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 297 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 298 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 299 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 300 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 301 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 302 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 303 304 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 305 306 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 307 308 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 309 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 310 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 311 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 312 313 case vmIntrinsics::_compressStringC: 314 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 315 case vmIntrinsics::_inflateStringC: 316 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 317 318 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 319 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 320 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 321 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 322 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 323 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 324 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 325 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 326 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 327 328 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 329 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 330 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 331 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 332 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 333 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 334 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 335 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 336 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 337 338 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 339 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 340 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 341 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 342 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 343 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 344 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 345 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 346 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 347 348 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 349 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 350 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 351 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 352 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 353 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 354 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 355 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 356 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 357 358 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 359 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 360 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 361 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 362 363 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 369 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 370 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 371 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 372 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 373 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 374 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 375 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 376 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 377 378 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 379 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 380 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 381 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 382 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 383 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 384 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 385 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 386 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 387 388 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 389 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 390 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 391 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 392 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 393 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 394 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 395 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 396 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 397 398 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 399 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 400 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 401 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 402 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 403 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 404 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 405 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 406 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 407 408 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 409 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 410 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 413 414 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 415 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 416 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 417 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 418 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 419 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 420 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 421 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 422 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 423 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 424 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 425 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 426 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 427 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 428 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 429 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 430 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 431 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 432 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 433 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 434 435 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 436 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 437 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 438 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 439 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 440 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 441 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 450 451 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 452 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 453 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 454 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 455 456 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 457 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 458 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 461 462 case vmIntrinsics::_loadFence: 463 case vmIntrinsics::_storeFence: 464 case vmIntrinsics::_storeStoreFence: 465 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 466 467 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 468 469 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 470 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 471 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 472 473 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 474 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 475 476 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 477 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 478 479 #if INCLUDE_JVMTI 480 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 481 "notifyJvmtiStart", true, false); 482 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 483 "notifyJvmtiEnd", false, true); 484 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 485 "notifyJvmtiMount", false, false); 486 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 487 "notifyJvmtiUnmount", false, false); 488 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 489 #endif 490 491 #ifdef JFR_HAVE_INTRINSICS 492 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 493 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 494 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 495 #endif 496 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 497 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 498 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 499 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 500 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 501 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 502 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 503 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 504 case vmIntrinsics::_getLength: return inline_native_getLength(); 505 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 506 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 507 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 508 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 509 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 510 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 511 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 512 513 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 514 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 515 516 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 517 518 case vmIntrinsics::_isInstance: 519 case vmIntrinsics::_isHidden: 520 case vmIntrinsics::_getSuperclass: 521 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 522 523 case vmIntrinsics::_floatToRawIntBits: 524 case vmIntrinsics::_floatToIntBits: 525 case vmIntrinsics::_intBitsToFloat: 526 case vmIntrinsics::_doubleToRawLongBits: 527 case vmIntrinsics::_doubleToLongBits: 528 case vmIntrinsics::_longBitsToDouble: 529 case vmIntrinsics::_floatToFloat16: 530 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 531 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 532 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 533 case vmIntrinsics::_floatIsFinite: 534 case vmIntrinsics::_floatIsInfinite: 535 case vmIntrinsics::_doubleIsFinite: 536 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 537 538 case vmIntrinsics::_numberOfLeadingZeros_i: 539 case vmIntrinsics::_numberOfLeadingZeros_l: 540 case vmIntrinsics::_numberOfTrailingZeros_i: 541 case vmIntrinsics::_numberOfTrailingZeros_l: 542 case vmIntrinsics::_bitCount_i: 543 case vmIntrinsics::_bitCount_l: 544 case vmIntrinsics::_reverse_i: 545 case vmIntrinsics::_reverse_l: 546 case vmIntrinsics::_reverseBytes_i: 547 case vmIntrinsics::_reverseBytes_l: 548 case vmIntrinsics::_reverseBytes_s: 549 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 550 551 case vmIntrinsics::_compress_i: 552 case vmIntrinsics::_compress_l: 553 case vmIntrinsics::_expand_i: 554 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 555 556 case vmIntrinsics::_compareUnsigned_i: 557 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 558 559 case vmIntrinsics::_divideUnsigned_i: 560 case vmIntrinsics::_divideUnsigned_l: 561 case vmIntrinsics::_remainderUnsigned_i: 562 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 563 564 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 565 566 case vmIntrinsics::_Reference_get: return inline_reference_get(); 567 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 568 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 569 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 570 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 571 572 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 573 574 case vmIntrinsics::_aescrypt_encryptBlock: 575 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 576 577 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 578 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 579 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 580 581 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 582 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 583 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 584 585 case vmIntrinsics::_counterMode_AESCrypt: 586 return inline_counterMode_AESCrypt(intrinsic_id()); 587 588 case vmIntrinsics::_galoisCounterMode_AESCrypt: 589 return inline_galoisCounterMode_AESCrypt(); 590 591 case vmIntrinsics::_md5_implCompress: 592 case vmIntrinsics::_sha_implCompress: 593 case vmIntrinsics::_sha2_implCompress: 594 case vmIntrinsics::_sha5_implCompress: 595 case vmIntrinsics::_sha3_implCompress: 596 return inline_digestBase_implCompress(intrinsic_id()); 597 case vmIntrinsics::_double_keccak: 598 return inline_double_keccak(); 599 600 case vmIntrinsics::_digestBase_implCompressMB: 601 return inline_digestBase_implCompressMB(predicate); 602 603 case vmIntrinsics::_multiplyToLen: 604 return inline_multiplyToLen(); 605 606 case vmIntrinsics::_squareToLen: 607 return inline_squareToLen(); 608 609 case vmIntrinsics::_mulAdd: 610 return inline_mulAdd(); 611 612 case vmIntrinsics::_montgomeryMultiply: 613 return inline_montgomeryMultiply(); 614 case vmIntrinsics::_montgomerySquare: 615 return inline_montgomerySquare(); 616 617 case vmIntrinsics::_bigIntegerRightShiftWorker: 618 return inline_bigIntegerShift(true); 619 case vmIntrinsics::_bigIntegerLeftShiftWorker: 620 return inline_bigIntegerShift(false); 621 622 case vmIntrinsics::_vectorizedMismatch: 623 return inline_vectorizedMismatch(); 624 625 case vmIntrinsics::_ghash_processBlocks: 626 return inline_ghash_processBlocks(); 627 case vmIntrinsics::_chacha20Block: 628 return inline_chacha20Block(); 629 case vmIntrinsics::_dilithiumAlmostNtt: 630 return inline_dilithiumAlmostNtt(); 631 case vmIntrinsics::_dilithiumAlmostInverseNtt: 632 return inline_dilithiumAlmostInverseNtt(); 633 case vmIntrinsics::_dilithiumNttMult: 634 return inline_dilithiumNttMult(); 635 case vmIntrinsics::_dilithiumMontMulByConstant: 636 return inline_dilithiumMontMulByConstant(); 637 case vmIntrinsics::_dilithiumDecomposePoly: 638 return inline_dilithiumDecomposePoly(); 639 case vmIntrinsics::_base64_encodeBlock: 640 return inline_base64_encodeBlock(); 641 case vmIntrinsics::_base64_decodeBlock: 642 return inline_base64_decodeBlock(); 643 case vmIntrinsics::_poly1305_processBlocks: 644 return inline_poly1305_processBlocks(); 645 case vmIntrinsics::_intpoly_montgomeryMult_P256: 646 return inline_intpoly_montgomeryMult_P256(); 647 case vmIntrinsics::_intpoly_assign: 648 return inline_intpoly_assign(); 649 case vmIntrinsics::_encodeISOArray: 650 case vmIntrinsics::_encodeByteISOArray: 651 return inline_encodeISOArray(false); 652 case vmIntrinsics::_encodeAsciiArray: 653 return inline_encodeISOArray(true); 654 655 case vmIntrinsics::_updateCRC32: 656 return inline_updateCRC32(); 657 case vmIntrinsics::_updateBytesCRC32: 658 return inline_updateBytesCRC32(); 659 case vmIntrinsics::_updateByteBufferCRC32: 660 return inline_updateByteBufferCRC32(); 661 662 case vmIntrinsics::_updateBytesCRC32C: 663 return inline_updateBytesCRC32C(); 664 case vmIntrinsics::_updateDirectByteBufferCRC32C: 665 return inline_updateDirectByteBufferCRC32C(); 666 667 case vmIntrinsics::_updateBytesAdler32: 668 return inline_updateBytesAdler32(); 669 case vmIntrinsics::_updateByteBufferAdler32: 670 return inline_updateByteBufferAdler32(); 671 672 case vmIntrinsics::_profileBoolean: 673 return inline_profileBoolean(); 674 case vmIntrinsics::_isCompileConstant: 675 return inline_isCompileConstant(); 676 677 case vmIntrinsics::_countPositives: 678 return inline_countPositives(); 679 680 case vmIntrinsics::_fmaD: 681 case vmIntrinsics::_fmaF: 682 return inline_fma(intrinsic_id()); 683 684 case vmIntrinsics::_isDigit: 685 case vmIntrinsics::_isLowerCase: 686 case vmIntrinsics::_isUpperCase: 687 case vmIntrinsics::_isWhitespace: 688 return inline_character_compare(intrinsic_id()); 689 690 case vmIntrinsics::_min: 691 case vmIntrinsics::_max: 692 case vmIntrinsics::_min_strict: 693 case vmIntrinsics::_max_strict: 694 case vmIntrinsics::_minL: 695 case vmIntrinsics::_maxL: 696 case vmIntrinsics::_minF: 697 case vmIntrinsics::_maxF: 698 case vmIntrinsics::_minD: 699 case vmIntrinsics::_maxD: 700 case vmIntrinsics::_minF_strict: 701 case vmIntrinsics::_maxF_strict: 702 case vmIntrinsics::_minD_strict: 703 case vmIntrinsics::_maxD_strict: 704 return inline_min_max(intrinsic_id()); 705 706 case vmIntrinsics::_VectorUnaryOp: 707 return inline_vector_nary_operation(1); 708 case vmIntrinsics::_VectorBinaryOp: 709 return inline_vector_nary_operation(2); 710 case vmIntrinsics::_VectorTernaryOp: 711 return inline_vector_nary_operation(3); 712 case vmIntrinsics::_VectorFromBitsCoerced: 713 return inline_vector_frombits_coerced(); 714 case vmIntrinsics::_VectorMaskOp: 715 return inline_vector_mask_operation(); 716 case vmIntrinsics::_VectorLoadOp: 717 return inline_vector_mem_operation(/*is_store=*/false); 718 case vmIntrinsics::_VectorLoadMaskedOp: 719 return inline_vector_mem_masked_operation(/*is_store*/false); 720 case vmIntrinsics::_VectorStoreOp: 721 return inline_vector_mem_operation(/*is_store=*/true); 722 case vmIntrinsics::_VectorStoreMaskedOp: 723 return inline_vector_mem_masked_operation(/*is_store=*/true); 724 case vmIntrinsics::_VectorGatherOp: 725 return inline_vector_gather_scatter(/*is_scatter*/ false); 726 case vmIntrinsics::_VectorScatterOp: 727 return inline_vector_gather_scatter(/*is_scatter*/ true); 728 case vmIntrinsics::_VectorReductionCoerced: 729 return inline_vector_reduction(); 730 case vmIntrinsics::_VectorTest: 731 return inline_vector_test(); 732 case vmIntrinsics::_VectorBlend: 733 return inline_vector_blend(); 734 case vmIntrinsics::_VectorRearrange: 735 return inline_vector_rearrange(); 736 case vmIntrinsics::_VectorSelectFrom: 737 return inline_vector_select_from(); 738 case vmIntrinsics::_VectorCompare: 739 return inline_vector_compare(); 740 case vmIntrinsics::_VectorBroadcastInt: 741 return inline_vector_broadcast_int(); 742 case vmIntrinsics::_VectorConvert: 743 return inline_vector_convert(); 744 case vmIntrinsics::_VectorInsert: 745 return inline_vector_insert(); 746 case vmIntrinsics::_VectorExtract: 747 return inline_vector_extract(); 748 case vmIntrinsics::_VectorCompressExpand: 749 return inline_vector_compress_expand(); 750 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 751 return inline_vector_select_from_two_vectors(); 752 case vmIntrinsics::_IndexVector: 753 return inline_index_vector(); 754 case vmIntrinsics::_IndexPartiallyInUpperRange: 755 return inline_index_partially_in_upper_range(); 756 757 case vmIntrinsics::_getObjectSize: 758 return inline_getObjectSize(); 759 760 case vmIntrinsics::_blackhole: 761 return inline_blackhole(); 762 763 default: 764 // If you get here, it may be that someone has added a new intrinsic 765 // to the list in vmIntrinsics.hpp without implementing it here. 766 #ifndef PRODUCT 767 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 768 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 769 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 770 } 771 #endif 772 return false; 773 } 774 } 775 776 Node* LibraryCallKit::try_to_predicate(int predicate) { 777 if (!jvms()->has_method()) { 778 // Root JVMState has a null method. 779 assert(map()->memory()->Opcode() == Op_Parm, ""); 780 // Insert the memory aliasing node 781 set_all_memory(reset_memory()); 782 } 783 assert(merged_memory(), ""); 784 785 switch (intrinsic_id()) { 786 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 787 return inline_cipherBlockChaining_AESCrypt_predicate(false); 788 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 789 return inline_cipherBlockChaining_AESCrypt_predicate(true); 790 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 791 return inline_electronicCodeBook_AESCrypt_predicate(false); 792 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 793 return inline_electronicCodeBook_AESCrypt_predicate(true); 794 case vmIntrinsics::_counterMode_AESCrypt: 795 return inline_counterMode_AESCrypt_predicate(); 796 case vmIntrinsics::_digestBase_implCompressMB: 797 return inline_digestBase_implCompressMB_predicate(predicate); 798 case vmIntrinsics::_galoisCounterMode_AESCrypt: 799 return inline_galoisCounterMode_AESCrypt_predicate(); 800 801 default: 802 // If you get here, it may be that someone has added a new intrinsic 803 // to the list in vmIntrinsics.hpp without implementing it here. 804 #ifndef PRODUCT 805 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 806 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 807 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 808 } 809 #endif 810 Node* slow_ctl = control(); 811 set_control(top()); // No fast path intrinsic 812 return slow_ctl; 813 } 814 } 815 816 //------------------------------set_result------------------------------- 817 // Helper function for finishing intrinsics. 818 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 819 record_for_igvn(region); 820 set_control(_gvn.transform(region)); 821 set_result( _gvn.transform(value)); 822 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 823 } 824 825 //------------------------------generate_guard--------------------------- 826 // Helper function for generating guarded fast-slow graph structures. 827 // The given 'test', if true, guards a slow path. If the test fails 828 // then a fast path can be taken. (We generally hope it fails.) 829 // In all cases, GraphKit::control() is updated to the fast path. 830 // The returned value represents the control for the slow path. 831 // The return value is never 'top'; it is either a valid control 832 // or null if it is obvious that the slow path can never be taken. 833 // Also, if region and the slow control are not null, the slow edge 834 // is appended to the region. 835 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 836 if (stopped()) { 837 // Already short circuited. 838 return nullptr; 839 } 840 841 // Build an if node and its projections. 842 // If test is true we take the slow path, which we assume is uncommon. 843 if (_gvn.type(test) == TypeInt::ZERO) { 844 // The slow branch is never taken. No need to build this guard. 845 return nullptr; 846 } 847 848 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 849 850 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 851 if (if_slow == top()) { 852 // The slow branch is never taken. No need to build this guard. 853 return nullptr; 854 } 855 856 if (region != nullptr) 857 region->add_req(if_slow); 858 859 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 860 set_control(if_fast); 861 862 return if_slow; 863 } 864 865 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 866 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 867 } 868 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 869 return generate_guard(test, region, PROB_FAIR); 870 } 871 872 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 873 Node* *pos_index) { 874 if (stopped()) 875 return nullptr; // already stopped 876 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 877 return nullptr; // index is already adequately typed 878 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 879 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 880 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 881 if (is_neg != nullptr && pos_index != nullptr) { 882 // Emulate effect of Parse::adjust_map_after_if. 883 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 884 (*pos_index) = _gvn.transform(ccast); 885 } 886 return is_neg; 887 } 888 889 // Make sure that 'position' is a valid limit index, in [0..length]. 890 // There are two equivalent plans for checking this: 891 // A. (offset + copyLength) unsigned<= arrayLength 892 // B. offset <= (arrayLength - copyLength) 893 // We require that all of the values above, except for the sum and 894 // difference, are already known to be non-negative. 895 // Plan A is robust in the face of overflow, if offset and copyLength 896 // are both hugely positive. 897 // 898 // Plan B is less direct and intuitive, but it does not overflow at 899 // all, since the difference of two non-negatives is always 900 // representable. Whenever Java methods must perform the equivalent 901 // check they generally use Plan B instead of Plan A. 902 // For the moment we use Plan A. 903 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 904 Node* subseq_length, 905 Node* array_length, 906 RegionNode* region) { 907 if (stopped()) 908 return nullptr; // already stopped 909 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 910 if (zero_offset && subseq_length->eqv_uncast(array_length)) 911 return nullptr; // common case of whole-array copy 912 Node* last = subseq_length; 913 if (!zero_offset) // last += offset 914 last = _gvn.transform(new AddINode(last, offset)); 915 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 916 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 917 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 918 return is_over; 919 } 920 921 // Emit range checks for the given String.value byte array 922 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 923 if (stopped()) { 924 return; // already stopped 925 } 926 RegionNode* bailout = new RegionNode(1); 927 record_for_igvn(bailout); 928 if (char_count) { 929 // Convert char count to byte count 930 count = _gvn.transform(new LShiftINode(count, intcon(1))); 931 } 932 933 // Offset and count must not be negative 934 generate_negative_guard(offset, bailout); 935 generate_negative_guard(count, bailout); 936 // Offset + count must not exceed length of array 937 generate_limit_guard(offset, count, load_array_length(array), bailout); 938 939 if (bailout->req() > 1) { 940 PreserveJVMState pjvms(this); 941 set_control(_gvn.transform(bailout)); 942 uncommon_trap(Deoptimization::Reason_intrinsic, 943 Deoptimization::Action_maybe_recompile); 944 } 945 } 946 947 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 948 bool is_immutable) { 949 ciKlass* thread_klass = env()->Thread_klass(); 950 const Type* thread_type 951 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 952 953 Node* thread = _gvn.transform(new ThreadLocalNode()); 954 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 955 tls_output = thread; 956 957 Node* thread_obj_handle 958 = (is_immutable 959 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 960 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 961 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 962 thread_obj_handle = _gvn.transform(thread_obj_handle); 963 964 DecoratorSet decorators = IN_NATIVE; 965 if (is_immutable) { 966 decorators |= C2_IMMUTABLE_MEMORY; 967 } 968 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 969 } 970 971 //--------------------------generate_current_thread-------------------- 972 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 973 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 974 /*is_immutable*/false); 975 } 976 977 //--------------------------generate_virtual_thread-------------------- 978 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 979 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 980 !C->method()->changes_current_thread()); 981 } 982 983 //------------------------------make_string_method_node------------------------ 984 // Helper method for String intrinsic functions. This version is called with 985 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 986 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 987 // containing the lengths of str1 and str2. 988 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 989 Node* result = nullptr; 990 switch (opcode) { 991 case Op_StrIndexOf: 992 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 993 str1_start, cnt1, str2_start, cnt2, ae); 994 break; 995 case Op_StrComp: 996 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 997 str1_start, cnt1, str2_start, cnt2, ae); 998 break; 999 case Op_StrEquals: 1000 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1001 // Use the constant length if there is one because optimized match rule may exist. 1002 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1003 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1004 break; 1005 default: 1006 ShouldNotReachHere(); 1007 return nullptr; 1008 } 1009 1010 // All these intrinsics have checks. 1011 C->set_has_split_ifs(true); // Has chance for split-if optimization 1012 clear_upper_avx(); 1013 1014 return _gvn.transform(result); 1015 } 1016 1017 //------------------------------inline_string_compareTo------------------------ 1018 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1019 Node* arg1 = argument(0); 1020 Node* arg2 = argument(1); 1021 1022 arg1 = must_be_not_null(arg1, true); 1023 arg2 = must_be_not_null(arg2, true); 1024 1025 // Get start addr and length of first argument 1026 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1027 Node* arg1_cnt = load_array_length(arg1); 1028 1029 // Get start addr and length of second argument 1030 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1031 Node* arg2_cnt = load_array_length(arg2); 1032 1033 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1034 set_result(result); 1035 return true; 1036 } 1037 1038 //------------------------------inline_string_equals------------------------ 1039 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1040 Node* arg1 = argument(0); 1041 Node* arg2 = argument(1); 1042 1043 // paths (plus control) merge 1044 RegionNode* region = new RegionNode(3); 1045 Node* phi = new PhiNode(region, TypeInt::BOOL); 1046 1047 if (!stopped()) { 1048 1049 arg1 = must_be_not_null(arg1, true); 1050 arg2 = must_be_not_null(arg2, true); 1051 1052 // Get start addr and length of first argument 1053 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1054 Node* arg1_cnt = load_array_length(arg1); 1055 1056 // Get start addr and length of second argument 1057 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1058 Node* arg2_cnt = load_array_length(arg2); 1059 1060 // Check for arg1_cnt != arg2_cnt 1061 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1062 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1063 Node* if_ne = generate_slow_guard(bol, nullptr); 1064 if (if_ne != nullptr) { 1065 phi->init_req(2, intcon(0)); 1066 region->init_req(2, if_ne); 1067 } 1068 1069 // Check for count == 0 is done by assembler code for StrEquals. 1070 1071 if (!stopped()) { 1072 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1073 phi->init_req(1, equals); 1074 region->init_req(1, control()); 1075 } 1076 } 1077 1078 // post merge 1079 set_control(_gvn.transform(region)); 1080 record_for_igvn(region); 1081 1082 set_result(_gvn.transform(phi)); 1083 return true; 1084 } 1085 1086 //------------------------------inline_array_equals---------------------------- 1087 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1088 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1089 Node* arg1 = argument(0); 1090 Node* arg2 = argument(1); 1091 1092 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1093 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1094 clear_upper_avx(); 1095 1096 return true; 1097 } 1098 1099 1100 //------------------------------inline_countPositives------------------------------ 1101 bool LibraryCallKit::inline_countPositives() { 1102 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1103 return false; 1104 } 1105 1106 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1107 // no receiver since it is static method 1108 Node* ba = argument(0); 1109 Node* offset = argument(1); 1110 Node* len = argument(2); 1111 1112 ba = must_be_not_null(ba, true); 1113 1114 // Range checks 1115 generate_string_range_check(ba, offset, len, false); 1116 if (stopped()) { 1117 return true; 1118 } 1119 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1120 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1121 set_result(_gvn.transform(result)); 1122 clear_upper_avx(); 1123 return true; 1124 } 1125 1126 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1127 Node* index = argument(0); 1128 Node* length = bt == T_INT ? argument(1) : argument(2); 1129 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1130 return false; 1131 } 1132 1133 // check that length is positive 1134 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1135 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1136 1137 { 1138 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1139 uncommon_trap(Deoptimization::Reason_intrinsic, 1140 Deoptimization::Action_make_not_entrant); 1141 } 1142 1143 if (stopped()) { 1144 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1145 return true; 1146 } 1147 1148 // length is now known positive, add a cast node to make this explicit 1149 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1150 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1151 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1152 ConstraintCastNode::RegularDependency, bt); 1153 casted_length = _gvn.transform(casted_length); 1154 replace_in_map(length, casted_length); 1155 length = casted_length; 1156 1157 // Use an unsigned comparison for the range check itself 1158 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1159 BoolTest::mask btest = BoolTest::lt; 1160 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1161 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1162 _gvn.set_type(rc, rc->Value(&_gvn)); 1163 if (!rc_bool->is_Con()) { 1164 record_for_igvn(rc); 1165 } 1166 set_control(_gvn.transform(new IfTrueNode(rc))); 1167 { 1168 PreserveJVMState pjvms(this); 1169 set_control(_gvn.transform(new IfFalseNode(rc))); 1170 uncommon_trap(Deoptimization::Reason_range_check, 1171 Deoptimization::Action_make_not_entrant); 1172 } 1173 1174 if (stopped()) { 1175 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1176 return true; 1177 } 1178 1179 // index is now known to be >= 0 and < length, cast it 1180 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1181 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1182 ConstraintCastNode::RegularDependency, bt); 1183 result = _gvn.transform(result); 1184 set_result(result); 1185 replace_in_map(index, result); 1186 return true; 1187 } 1188 1189 //------------------------------inline_string_indexOf------------------------ 1190 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1191 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1192 return false; 1193 } 1194 Node* src = argument(0); 1195 Node* tgt = argument(1); 1196 1197 // Make the merge point 1198 RegionNode* result_rgn = new RegionNode(4); 1199 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1200 1201 src = must_be_not_null(src, true); 1202 tgt = must_be_not_null(tgt, true); 1203 1204 // Get start addr and length of source string 1205 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1206 Node* src_count = load_array_length(src); 1207 1208 // Get start addr and length of substring 1209 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1210 Node* tgt_count = load_array_length(tgt); 1211 1212 Node* result = nullptr; 1213 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1214 1215 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1216 // Divide src size by 2 if String is UTF16 encoded 1217 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1218 } 1219 if (ae == StrIntrinsicNode::UU) { 1220 // Divide substring size by 2 if String is UTF16 encoded 1221 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1222 } 1223 1224 if (call_opt_stub) { 1225 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1226 StubRoutines::_string_indexof_array[ae], 1227 "stringIndexOf", TypePtr::BOTTOM, src_start, 1228 src_count, tgt_start, tgt_count); 1229 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1230 } else { 1231 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1232 result_rgn, result_phi, ae); 1233 } 1234 if (result != nullptr) { 1235 result_phi->init_req(3, result); 1236 result_rgn->init_req(3, control()); 1237 } 1238 set_control(_gvn.transform(result_rgn)); 1239 record_for_igvn(result_rgn); 1240 set_result(_gvn.transform(result_phi)); 1241 1242 return true; 1243 } 1244 1245 //-----------------------------inline_string_indexOfI----------------------- 1246 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1247 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1248 return false; 1249 } 1250 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1251 return false; 1252 } 1253 1254 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1255 Node* src = argument(0); // byte[] 1256 Node* src_count = argument(1); // char count 1257 Node* tgt = argument(2); // byte[] 1258 Node* tgt_count = argument(3); // char count 1259 Node* from_index = argument(4); // char index 1260 1261 src = must_be_not_null(src, true); 1262 tgt = must_be_not_null(tgt, true); 1263 1264 // Multiply byte array index by 2 if String is UTF16 encoded 1265 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1266 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1267 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1268 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1269 1270 // Range checks 1271 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1272 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1273 if (stopped()) { 1274 return true; 1275 } 1276 1277 RegionNode* region = new RegionNode(5); 1278 Node* phi = new PhiNode(region, TypeInt::INT); 1279 Node* result = nullptr; 1280 1281 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1282 1283 if (call_opt_stub) { 1284 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1285 StubRoutines::_string_indexof_array[ae], 1286 "stringIndexOf", TypePtr::BOTTOM, src_start, 1287 src_count, tgt_start, tgt_count); 1288 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1289 } else { 1290 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1291 region, phi, ae); 1292 } 1293 if (result != nullptr) { 1294 // The result is index relative to from_index if substring was found, -1 otherwise. 1295 // Generate code which will fold into cmove. 1296 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1297 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1298 1299 Node* if_lt = generate_slow_guard(bol, nullptr); 1300 if (if_lt != nullptr) { 1301 // result == -1 1302 phi->init_req(3, result); 1303 region->init_req(3, if_lt); 1304 } 1305 if (!stopped()) { 1306 result = _gvn.transform(new AddINode(result, from_index)); 1307 phi->init_req(4, result); 1308 region->init_req(4, control()); 1309 } 1310 } 1311 1312 set_control(_gvn.transform(region)); 1313 record_for_igvn(region); 1314 set_result(_gvn.transform(phi)); 1315 clear_upper_avx(); 1316 1317 return true; 1318 } 1319 1320 // Create StrIndexOfNode with fast path checks 1321 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1322 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1323 // Check for substr count > string count 1324 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1325 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1326 Node* if_gt = generate_slow_guard(bol, nullptr); 1327 if (if_gt != nullptr) { 1328 phi->init_req(1, intcon(-1)); 1329 region->init_req(1, if_gt); 1330 } 1331 if (!stopped()) { 1332 // Check for substr count == 0 1333 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1334 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1335 Node* if_zero = generate_slow_guard(bol, nullptr); 1336 if (if_zero != nullptr) { 1337 phi->init_req(2, intcon(0)); 1338 region->init_req(2, if_zero); 1339 } 1340 } 1341 if (!stopped()) { 1342 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1343 } 1344 return nullptr; 1345 } 1346 1347 //-----------------------------inline_string_indexOfChar----------------------- 1348 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1349 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1350 return false; 1351 } 1352 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1353 return false; 1354 } 1355 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1356 Node* src = argument(0); // byte[] 1357 Node* int_ch = argument(1); 1358 Node* from_index = argument(2); 1359 Node* max = argument(3); 1360 1361 src = must_be_not_null(src, true); 1362 1363 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1364 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1365 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1366 1367 // Range checks 1368 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1369 1370 // Check for int_ch >= 0 1371 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1372 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1373 { 1374 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1375 uncommon_trap(Deoptimization::Reason_intrinsic, 1376 Deoptimization::Action_maybe_recompile); 1377 } 1378 if (stopped()) { 1379 return true; 1380 } 1381 1382 RegionNode* region = new RegionNode(3); 1383 Node* phi = new PhiNode(region, TypeInt::INT); 1384 1385 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1386 C->set_has_split_ifs(true); // Has chance for split-if optimization 1387 _gvn.transform(result); 1388 1389 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1390 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1391 1392 Node* if_lt = generate_slow_guard(bol, nullptr); 1393 if (if_lt != nullptr) { 1394 // result == -1 1395 phi->init_req(2, result); 1396 region->init_req(2, if_lt); 1397 } 1398 if (!stopped()) { 1399 result = _gvn.transform(new AddINode(result, from_index)); 1400 phi->init_req(1, result); 1401 region->init_req(1, control()); 1402 } 1403 set_control(_gvn.transform(region)); 1404 record_for_igvn(region); 1405 set_result(_gvn.transform(phi)); 1406 clear_upper_avx(); 1407 1408 return true; 1409 } 1410 //---------------------------inline_string_copy--------------------- 1411 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1412 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1413 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1414 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1415 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1416 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1417 bool LibraryCallKit::inline_string_copy(bool compress) { 1418 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1419 return false; 1420 } 1421 int nargs = 5; // 2 oops, 3 ints 1422 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1423 1424 Node* src = argument(0); 1425 Node* src_offset = argument(1); 1426 Node* dst = argument(2); 1427 Node* dst_offset = argument(3); 1428 Node* length = argument(4); 1429 1430 // Check for allocation before we add nodes that would confuse 1431 // tightly_coupled_allocation() 1432 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1433 1434 // Figure out the size and type of the elements we will be copying. 1435 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1436 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1437 if (src_type == nullptr || dst_type == nullptr) { 1438 return false; 1439 } 1440 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1441 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1442 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1443 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1444 "Unsupported array types for inline_string_copy"); 1445 1446 src = must_be_not_null(src, true); 1447 dst = must_be_not_null(dst, true); 1448 1449 // Convert char[] offsets to byte[] offsets 1450 bool convert_src = (compress && src_elem == T_BYTE); 1451 bool convert_dst = (!compress && dst_elem == T_BYTE); 1452 if (convert_src) { 1453 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1454 } else if (convert_dst) { 1455 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1456 } 1457 1458 // Range checks 1459 generate_string_range_check(src, src_offset, length, convert_src); 1460 generate_string_range_check(dst, dst_offset, length, convert_dst); 1461 if (stopped()) { 1462 return true; 1463 } 1464 1465 Node* src_start = array_element_address(src, src_offset, src_elem); 1466 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1467 // 'src_start' points to src array + scaled offset 1468 // 'dst_start' points to dst array + scaled offset 1469 Node* count = nullptr; 1470 if (compress) { 1471 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1472 } else { 1473 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1474 } 1475 1476 if (alloc != nullptr) { 1477 if (alloc->maybe_set_complete(&_gvn)) { 1478 // "You break it, you buy it." 1479 InitializeNode* init = alloc->initialization(); 1480 assert(init->is_complete(), "we just did this"); 1481 init->set_complete_with_arraycopy(); 1482 assert(dst->is_CheckCastPP(), "sanity"); 1483 assert(dst->in(0)->in(0) == init, "dest pinned"); 1484 } 1485 // Do not let stores that initialize this object be reordered with 1486 // a subsequent store that would make this object accessible by 1487 // other threads. 1488 // Record what AllocateNode this StoreStore protects so that 1489 // escape analysis can go from the MemBarStoreStoreNode to the 1490 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1491 // based on the escape status of the AllocateNode. 1492 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1493 } 1494 if (compress) { 1495 set_result(_gvn.transform(count)); 1496 } 1497 clear_upper_avx(); 1498 1499 return true; 1500 } 1501 1502 #ifdef _LP64 1503 #define XTOP ,top() /*additional argument*/ 1504 #else //_LP64 1505 #define XTOP /*no additional argument*/ 1506 #endif //_LP64 1507 1508 //------------------------inline_string_toBytesU-------------------------- 1509 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1510 bool LibraryCallKit::inline_string_toBytesU() { 1511 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1512 return false; 1513 } 1514 // Get the arguments. 1515 Node* value = argument(0); 1516 Node* offset = argument(1); 1517 Node* length = argument(2); 1518 1519 Node* newcopy = nullptr; 1520 1521 // Set the original stack and the reexecute bit for the interpreter to reexecute 1522 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1523 { PreserveReexecuteState preexecs(this); 1524 jvms()->set_should_reexecute(true); 1525 1526 // Check if a null path was taken unconditionally. 1527 value = null_check(value); 1528 1529 RegionNode* bailout = new RegionNode(1); 1530 record_for_igvn(bailout); 1531 1532 // Range checks 1533 generate_negative_guard(offset, bailout); 1534 generate_negative_guard(length, bailout); 1535 generate_limit_guard(offset, length, load_array_length(value), bailout); 1536 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1537 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1538 1539 if (bailout->req() > 1) { 1540 PreserveJVMState pjvms(this); 1541 set_control(_gvn.transform(bailout)); 1542 uncommon_trap(Deoptimization::Reason_intrinsic, 1543 Deoptimization::Action_maybe_recompile); 1544 } 1545 if (stopped()) { 1546 return true; 1547 } 1548 1549 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1550 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1551 newcopy = new_array(klass_node, size, 0); // no arguments to push 1552 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1553 guarantee(alloc != nullptr, "created above"); 1554 1555 // Calculate starting addresses. 1556 Node* src_start = array_element_address(value, offset, T_CHAR); 1557 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1558 1559 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1560 const TypeInt* toffset = gvn().type(offset)->is_int(); 1561 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1562 1563 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1564 const char* copyfunc_name = "arraycopy"; 1565 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1566 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1567 OptoRuntime::fast_arraycopy_Type(), 1568 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1569 src_start, dst_start, ConvI2X(length) XTOP); 1570 // Do not let reads from the cloned object float above the arraycopy. 1571 if (alloc->maybe_set_complete(&_gvn)) { 1572 // "You break it, you buy it." 1573 InitializeNode* init = alloc->initialization(); 1574 assert(init->is_complete(), "we just did this"); 1575 init->set_complete_with_arraycopy(); 1576 assert(newcopy->is_CheckCastPP(), "sanity"); 1577 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1578 } 1579 // Do not let stores that initialize this object be reordered with 1580 // a subsequent store that would make this object accessible by 1581 // other threads. 1582 // Record what AllocateNode this StoreStore protects so that 1583 // escape analysis can go from the MemBarStoreStoreNode to the 1584 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1585 // based on the escape status of the AllocateNode. 1586 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1587 } // original reexecute is set back here 1588 1589 C->set_has_split_ifs(true); // Has chance for split-if optimization 1590 if (!stopped()) { 1591 set_result(newcopy); 1592 } 1593 clear_upper_avx(); 1594 1595 return true; 1596 } 1597 1598 //------------------------inline_string_getCharsU-------------------------- 1599 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1600 bool LibraryCallKit::inline_string_getCharsU() { 1601 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1602 return false; 1603 } 1604 1605 // Get the arguments. 1606 Node* src = argument(0); 1607 Node* src_begin = argument(1); 1608 Node* src_end = argument(2); // exclusive offset (i < src_end) 1609 Node* dst = argument(3); 1610 Node* dst_begin = argument(4); 1611 1612 // Check for allocation before we add nodes that would confuse 1613 // tightly_coupled_allocation() 1614 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1615 1616 // Check if a null path was taken unconditionally. 1617 src = null_check(src); 1618 dst = null_check(dst); 1619 if (stopped()) { 1620 return true; 1621 } 1622 1623 // Get length and convert char[] offset to byte[] offset 1624 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1625 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1626 1627 // Range checks 1628 generate_string_range_check(src, src_begin, length, true); 1629 generate_string_range_check(dst, dst_begin, length, false); 1630 if (stopped()) { 1631 return true; 1632 } 1633 1634 if (!stopped()) { 1635 // Calculate starting addresses. 1636 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1637 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1638 1639 // Check if array addresses are aligned to HeapWordSize 1640 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1641 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1642 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1643 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1644 1645 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1646 const char* copyfunc_name = "arraycopy"; 1647 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1648 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1649 OptoRuntime::fast_arraycopy_Type(), 1650 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1651 src_start, dst_start, ConvI2X(length) XTOP); 1652 // Do not let reads from the cloned object float above the arraycopy. 1653 if (alloc != nullptr) { 1654 if (alloc->maybe_set_complete(&_gvn)) { 1655 // "You break it, you buy it." 1656 InitializeNode* init = alloc->initialization(); 1657 assert(init->is_complete(), "we just did this"); 1658 init->set_complete_with_arraycopy(); 1659 assert(dst->is_CheckCastPP(), "sanity"); 1660 assert(dst->in(0)->in(0) == init, "dest pinned"); 1661 } 1662 // Do not let stores that initialize this object be reordered with 1663 // a subsequent store that would make this object accessible by 1664 // other threads. 1665 // Record what AllocateNode this StoreStore protects so that 1666 // escape analysis can go from the MemBarStoreStoreNode to the 1667 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1668 // based on the escape status of the AllocateNode. 1669 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1670 } else { 1671 insert_mem_bar(Op_MemBarCPUOrder); 1672 } 1673 } 1674 1675 C->set_has_split_ifs(true); // Has chance for split-if optimization 1676 return true; 1677 } 1678 1679 //----------------------inline_string_char_access---------------------------- 1680 // Store/Load char to/from byte[] array. 1681 // static void StringUTF16.putChar(byte[] val, int index, int c) 1682 // static char StringUTF16.getChar(byte[] val, int index) 1683 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1684 Node* value = argument(0); 1685 Node* index = argument(1); 1686 Node* ch = is_store ? argument(2) : nullptr; 1687 1688 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1689 // correctly requires matched array shapes. 1690 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1691 "sanity: byte[] and char[] bases agree"); 1692 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1693 "sanity: byte[] and char[] scales agree"); 1694 1695 // Bail when getChar over constants is requested: constant folding would 1696 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1697 // Java method would constant fold nicely instead. 1698 if (!is_store && value->is_Con() && index->is_Con()) { 1699 return false; 1700 } 1701 1702 // Save state and restore on bailout 1703 uint old_sp = sp(); 1704 SafePointNode* old_map = clone_map(); 1705 1706 value = must_be_not_null(value, true); 1707 1708 Node* adr = array_element_address(value, index, T_CHAR); 1709 if (adr->is_top()) { 1710 set_map(old_map); 1711 set_sp(old_sp); 1712 return false; 1713 } 1714 destruct_map_clone(old_map); 1715 if (is_store) { 1716 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1717 } else { 1718 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1719 set_result(ch); 1720 } 1721 return true; 1722 } 1723 1724 1725 //------------------------------inline_math----------------------------------- 1726 // public static double Math.abs(double) 1727 // public static double Math.sqrt(double) 1728 // public static double Math.log(double) 1729 // public static double Math.log10(double) 1730 // public static double Math.round(double) 1731 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1732 Node* arg = argument(0); 1733 Node* n = nullptr; 1734 switch (id) { 1735 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1736 case vmIntrinsics::_dsqrt: 1737 case vmIntrinsics::_dsqrt_strict: 1738 n = new SqrtDNode(C, control(), arg); break; 1739 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1740 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1741 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1742 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1743 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1744 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1745 default: fatal_unexpected_iid(id); break; 1746 } 1747 set_result(_gvn.transform(n)); 1748 return true; 1749 } 1750 1751 //------------------------------inline_math----------------------------------- 1752 // public static float Math.abs(float) 1753 // public static int Math.abs(int) 1754 // public static long Math.abs(long) 1755 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1756 Node* arg = argument(0); 1757 Node* n = nullptr; 1758 switch (id) { 1759 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1760 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1761 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1762 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1763 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1764 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1765 default: fatal_unexpected_iid(id); break; 1766 } 1767 set_result(_gvn.transform(n)); 1768 return true; 1769 } 1770 1771 //------------------------------runtime_math----------------------------- 1772 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1773 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1774 "must be (DD)D or (D)D type"); 1775 1776 // Inputs 1777 Node* a = argument(0); 1778 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1779 1780 const TypePtr* no_memory_effects = nullptr; 1781 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1782 no_memory_effects, 1783 a, top(), b, b ? top() : nullptr); 1784 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1785 #ifdef ASSERT 1786 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1787 assert(value_top == top(), "second value must be top"); 1788 #endif 1789 1790 set_result(value); 1791 return true; 1792 } 1793 1794 //------------------------------inline_math_pow----------------------------- 1795 bool LibraryCallKit::inline_math_pow() { 1796 Node* exp = argument(2); 1797 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1798 if (d != nullptr) { 1799 if (d->getd() == 2.0) { 1800 // Special case: pow(x, 2.0) => x * x 1801 Node* base = argument(0); 1802 set_result(_gvn.transform(new MulDNode(base, base))); 1803 return true; 1804 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1805 // Special case: pow(x, 0.5) => sqrt(x) 1806 Node* base = argument(0); 1807 Node* zero = _gvn.zerocon(T_DOUBLE); 1808 1809 RegionNode* region = new RegionNode(3); 1810 Node* phi = new PhiNode(region, Type::DOUBLE); 1811 1812 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1813 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1814 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1815 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1816 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1817 1818 Node* if_pow = generate_slow_guard(test, nullptr); 1819 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1820 phi->init_req(1, value_sqrt); 1821 region->init_req(1, control()); 1822 1823 if (if_pow != nullptr) { 1824 set_control(if_pow); 1825 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1826 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1827 const TypePtr* no_memory_effects = nullptr; 1828 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1829 no_memory_effects, base, top(), exp, top()); 1830 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1831 #ifdef ASSERT 1832 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1833 assert(value_top == top(), "second value must be top"); 1834 #endif 1835 phi->init_req(2, value_pow); 1836 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1837 } 1838 1839 C->set_has_split_ifs(true); // Has chance for split-if optimization 1840 set_control(_gvn.transform(region)); 1841 record_for_igvn(region); 1842 set_result(_gvn.transform(phi)); 1843 1844 return true; 1845 } 1846 } 1847 1848 return StubRoutines::dpow() != nullptr ? 1849 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1850 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1851 } 1852 1853 //------------------------------inline_math_native----------------------------- 1854 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1855 switch (id) { 1856 case vmIntrinsics::_dsin: 1857 return StubRoutines::dsin() != nullptr ? 1858 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1859 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1860 case vmIntrinsics::_dcos: 1861 return StubRoutines::dcos() != nullptr ? 1862 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1863 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1864 case vmIntrinsics::_dtan: 1865 return StubRoutines::dtan() != nullptr ? 1866 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1867 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1868 case vmIntrinsics::_dtanh: 1869 return StubRoutines::dtanh() != nullptr ? 1870 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1871 case vmIntrinsics::_dexp: 1872 return StubRoutines::dexp() != nullptr ? 1873 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1874 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1875 case vmIntrinsics::_dlog: 1876 return StubRoutines::dlog() != nullptr ? 1877 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1878 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1879 case vmIntrinsics::_dlog10: 1880 return StubRoutines::dlog10() != nullptr ? 1881 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1882 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1883 1884 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1885 case vmIntrinsics::_ceil: 1886 case vmIntrinsics::_floor: 1887 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1888 1889 case vmIntrinsics::_dsqrt: 1890 case vmIntrinsics::_dsqrt_strict: 1891 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1892 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1893 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1894 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1895 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1896 1897 case vmIntrinsics::_dpow: return inline_math_pow(); 1898 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1899 case vmIntrinsics::_fcopySign: return inline_math(id); 1900 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1901 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1902 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1903 1904 // These intrinsics are not yet correctly implemented 1905 case vmIntrinsics::_datan2: 1906 return false; 1907 1908 default: 1909 fatal_unexpected_iid(id); 1910 return false; 1911 } 1912 } 1913 1914 //----------------------------inline_notify-----------------------------------* 1915 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1916 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1917 address func; 1918 if (id == vmIntrinsics::_notify) { 1919 func = OptoRuntime::monitor_notify_Java(); 1920 } else { 1921 func = OptoRuntime::monitor_notifyAll_Java(); 1922 } 1923 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1924 make_slow_call_ex(call, env()->Throwable_klass(), false); 1925 return true; 1926 } 1927 1928 1929 //----------------------------inline_min_max----------------------------------- 1930 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1931 Node* a = nullptr; 1932 Node* b = nullptr; 1933 Node* n = nullptr; 1934 switch (id) { 1935 case vmIntrinsics::_min: 1936 case vmIntrinsics::_max: 1937 case vmIntrinsics::_minF: 1938 case vmIntrinsics::_maxF: 1939 case vmIntrinsics::_minF_strict: 1940 case vmIntrinsics::_maxF_strict: 1941 case vmIntrinsics::_min_strict: 1942 case vmIntrinsics::_max_strict: 1943 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1944 a = argument(0); 1945 b = argument(1); 1946 break; 1947 case vmIntrinsics::_minD: 1948 case vmIntrinsics::_maxD: 1949 case vmIntrinsics::_minD_strict: 1950 case vmIntrinsics::_maxD_strict: 1951 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1952 a = argument(0); 1953 b = argument(2); 1954 break; 1955 case vmIntrinsics::_minL: 1956 case vmIntrinsics::_maxL: 1957 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1958 a = argument(0); 1959 b = argument(2); 1960 break; 1961 default: 1962 fatal_unexpected_iid(id); 1963 break; 1964 } 1965 1966 switch (id) { 1967 case vmIntrinsics::_min: 1968 case vmIntrinsics::_min_strict: 1969 n = new MinINode(a, b); 1970 break; 1971 case vmIntrinsics::_max: 1972 case vmIntrinsics::_max_strict: 1973 n = new MaxINode(a, b); 1974 break; 1975 case vmIntrinsics::_minF: 1976 case vmIntrinsics::_minF_strict: 1977 n = new MinFNode(a, b); 1978 break; 1979 case vmIntrinsics::_maxF: 1980 case vmIntrinsics::_maxF_strict: 1981 n = new MaxFNode(a, b); 1982 break; 1983 case vmIntrinsics::_minD: 1984 case vmIntrinsics::_minD_strict: 1985 n = new MinDNode(a, b); 1986 break; 1987 case vmIntrinsics::_maxD: 1988 case vmIntrinsics::_maxD_strict: 1989 n = new MaxDNode(a, b); 1990 break; 1991 case vmIntrinsics::_minL: 1992 n = new MinLNode(_gvn.C, a, b); 1993 break; 1994 case vmIntrinsics::_maxL: 1995 n = new MaxLNode(_gvn.C, a, b); 1996 break; 1997 default: 1998 fatal_unexpected_iid(id); 1999 break; 2000 } 2001 2002 set_result(_gvn.transform(n)); 2003 return true; 2004 } 2005 2006 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 2007 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2008 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2009 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2010 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2011 2012 { 2013 PreserveJVMState pjvms(this); 2014 PreserveReexecuteState preexecs(this); 2015 jvms()->set_should_reexecute(true); 2016 2017 set_control(slow_path); 2018 set_i_o(i_o()); 2019 2020 uncommon_trap(Deoptimization::Reason_intrinsic, 2021 Deoptimization::Action_none); 2022 } 2023 2024 set_control(fast_path); 2025 set_result(math); 2026 } 2027 2028 template <typename OverflowOp> 2029 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2030 typedef typename OverflowOp::MathOp MathOp; 2031 2032 MathOp* mathOp = new MathOp(arg1, arg2); 2033 Node* operation = _gvn.transform( mathOp ); 2034 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2035 inline_math_mathExact(operation, ofcheck); 2036 return true; 2037 } 2038 2039 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2040 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2041 } 2042 2043 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2044 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2045 } 2046 2047 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2048 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2049 } 2050 2051 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2052 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2053 } 2054 2055 bool LibraryCallKit::inline_math_negateExactI() { 2056 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2057 } 2058 2059 bool LibraryCallKit::inline_math_negateExactL() { 2060 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2061 } 2062 2063 bool LibraryCallKit::inline_math_multiplyExactI() { 2064 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2065 } 2066 2067 bool LibraryCallKit::inline_math_multiplyExactL() { 2068 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2069 } 2070 2071 bool LibraryCallKit::inline_math_multiplyHigh() { 2072 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2073 return true; 2074 } 2075 2076 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2077 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2078 return true; 2079 } 2080 2081 inline int 2082 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2083 const TypePtr* base_type = TypePtr::NULL_PTR; 2084 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2085 if (base_type == nullptr) { 2086 // Unknown type. 2087 return Type::AnyPtr; 2088 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2089 // Since this is a null+long form, we have to switch to a rawptr. 2090 base = _gvn.transform(new CastX2PNode(offset)); 2091 offset = MakeConX(0); 2092 return Type::RawPtr; 2093 } else if (base_type->base() == Type::RawPtr) { 2094 return Type::RawPtr; 2095 } else if (base_type->isa_oopptr()) { 2096 // Base is never null => always a heap address. 2097 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2098 return Type::OopPtr; 2099 } 2100 // Offset is small => always a heap address. 2101 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2102 if (offset_type != nullptr && 2103 base_type->offset() == 0 && // (should always be?) 2104 offset_type->_lo >= 0 && 2105 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2106 return Type::OopPtr; 2107 } else if (type == T_OBJECT) { 2108 // off heap access to an oop doesn't make any sense. Has to be on 2109 // heap. 2110 return Type::OopPtr; 2111 } 2112 // Otherwise, it might either be oop+off or null+addr. 2113 return Type::AnyPtr; 2114 } else { 2115 // No information: 2116 return Type::AnyPtr; 2117 } 2118 } 2119 2120 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2121 Node* uncasted_base = base; 2122 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2123 if (kind == Type::RawPtr) { 2124 return basic_plus_adr(top(), uncasted_base, offset); 2125 } else if (kind == Type::AnyPtr) { 2126 assert(base == uncasted_base, "unexpected base change"); 2127 if (can_cast) { 2128 if (!_gvn.type(base)->speculative_maybe_null() && 2129 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2130 // According to profiling, this access is always on 2131 // heap. Casting the base to not null and thus avoiding membars 2132 // around the access should allow better optimizations 2133 Node* null_ctl = top(); 2134 base = null_check_oop(base, &null_ctl, true, true, true); 2135 assert(null_ctl->is_top(), "no null control here"); 2136 return basic_plus_adr(base, offset); 2137 } else if (_gvn.type(base)->speculative_always_null() && 2138 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2139 // According to profiling, this access is always off 2140 // heap. 2141 base = null_assert(base); 2142 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2143 offset = MakeConX(0); 2144 return basic_plus_adr(top(), raw_base, offset); 2145 } 2146 } 2147 // We don't know if it's an on heap or off heap access. Fall back 2148 // to raw memory access. 2149 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2150 return basic_plus_adr(top(), raw, offset); 2151 } else { 2152 assert(base == uncasted_base, "unexpected base change"); 2153 // We know it's an on heap access so base can't be null 2154 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2155 base = must_be_not_null(base, true); 2156 } 2157 return basic_plus_adr(base, offset); 2158 } 2159 } 2160 2161 //--------------------------inline_number_methods----------------------------- 2162 // inline int Integer.numberOfLeadingZeros(int) 2163 // inline int Long.numberOfLeadingZeros(long) 2164 // 2165 // inline int Integer.numberOfTrailingZeros(int) 2166 // inline int Long.numberOfTrailingZeros(long) 2167 // 2168 // inline int Integer.bitCount(int) 2169 // inline int Long.bitCount(long) 2170 // 2171 // inline char Character.reverseBytes(char) 2172 // inline short Short.reverseBytes(short) 2173 // inline int Integer.reverseBytes(int) 2174 // inline long Long.reverseBytes(long) 2175 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2176 Node* arg = argument(0); 2177 Node* n = nullptr; 2178 switch (id) { 2179 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2180 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2181 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2182 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2183 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2184 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2185 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2186 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2187 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2188 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2189 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2190 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2191 default: fatal_unexpected_iid(id); break; 2192 } 2193 set_result(_gvn.transform(n)); 2194 return true; 2195 } 2196 2197 //--------------------------inline_bitshuffle_methods----------------------------- 2198 // inline int Integer.compress(int, int) 2199 // inline int Integer.expand(int, int) 2200 // inline long Long.compress(long, long) 2201 // inline long Long.expand(long, long) 2202 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2203 Node* n = nullptr; 2204 switch (id) { 2205 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2206 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2207 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2208 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2209 default: fatal_unexpected_iid(id); break; 2210 } 2211 set_result(_gvn.transform(n)); 2212 return true; 2213 } 2214 2215 //--------------------------inline_number_methods----------------------------- 2216 // inline int Integer.compareUnsigned(int, int) 2217 // inline int Long.compareUnsigned(long, long) 2218 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2219 Node* arg1 = argument(0); 2220 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2221 Node* n = nullptr; 2222 switch (id) { 2223 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2224 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2225 default: fatal_unexpected_iid(id); break; 2226 } 2227 set_result(_gvn.transform(n)); 2228 return true; 2229 } 2230 2231 //--------------------------inline_unsigned_divmod_methods----------------------------- 2232 // inline int Integer.divideUnsigned(int, int) 2233 // inline int Integer.remainderUnsigned(int, int) 2234 // inline long Long.divideUnsigned(long, long) 2235 // inline long Long.remainderUnsigned(long, long) 2236 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2237 Node* n = nullptr; 2238 switch (id) { 2239 case vmIntrinsics::_divideUnsigned_i: { 2240 zero_check_int(argument(1)); 2241 // Compile-time detect of null-exception 2242 if (stopped()) { 2243 return true; // keep the graph constructed so far 2244 } 2245 n = new UDivINode(control(), argument(0), argument(1)); 2246 break; 2247 } 2248 case vmIntrinsics::_divideUnsigned_l: { 2249 zero_check_long(argument(2)); 2250 // Compile-time detect of null-exception 2251 if (stopped()) { 2252 return true; // keep the graph constructed so far 2253 } 2254 n = new UDivLNode(control(), argument(0), argument(2)); 2255 break; 2256 } 2257 case vmIntrinsics::_remainderUnsigned_i: { 2258 zero_check_int(argument(1)); 2259 // Compile-time detect of null-exception 2260 if (stopped()) { 2261 return true; // keep the graph constructed so far 2262 } 2263 n = new UModINode(control(), argument(0), argument(1)); 2264 break; 2265 } 2266 case vmIntrinsics::_remainderUnsigned_l: { 2267 zero_check_long(argument(2)); 2268 // Compile-time detect of null-exception 2269 if (stopped()) { 2270 return true; // keep the graph constructed so far 2271 } 2272 n = new UModLNode(control(), argument(0), argument(2)); 2273 break; 2274 } 2275 default: fatal_unexpected_iid(id); break; 2276 } 2277 set_result(_gvn.transform(n)); 2278 return true; 2279 } 2280 2281 //----------------------------inline_unsafe_access---------------------------- 2282 2283 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2284 // Attempt to infer a sharper value type from the offset and base type. 2285 ciKlass* sharpened_klass = nullptr; 2286 2287 // See if it is an instance field, with an object type. 2288 if (alias_type->field() != nullptr) { 2289 if (alias_type->field()->type()->is_klass()) { 2290 sharpened_klass = alias_type->field()->type()->as_klass(); 2291 } 2292 } 2293 2294 const TypeOopPtr* result = nullptr; 2295 // See if it is a narrow oop array. 2296 if (adr_type->isa_aryptr()) { 2297 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2298 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2299 if (elem_type != nullptr && elem_type->is_loaded()) { 2300 // Sharpen the value type. 2301 result = elem_type; 2302 } 2303 } 2304 } 2305 2306 // The sharpened class might be unloaded if there is no class loader 2307 // contraint in place. 2308 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2309 // Sharpen the value type. 2310 result = TypeOopPtr::make_from_klass(sharpened_klass); 2311 } 2312 if (result != nullptr) { 2313 #ifndef PRODUCT 2314 if (C->print_intrinsics() || C->print_inlining()) { 2315 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2316 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2317 } 2318 #endif 2319 } 2320 return result; 2321 } 2322 2323 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2324 switch (kind) { 2325 case Relaxed: 2326 return MO_UNORDERED; 2327 case Opaque: 2328 return MO_RELAXED; 2329 case Acquire: 2330 return MO_ACQUIRE; 2331 case Release: 2332 return MO_RELEASE; 2333 case Volatile: 2334 return MO_SEQ_CST; 2335 default: 2336 ShouldNotReachHere(); 2337 return 0; 2338 } 2339 } 2340 2341 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2342 if (callee()->is_static()) return false; // caller must have the capability! 2343 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2344 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2345 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2346 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2347 2348 if (is_reference_type(type)) { 2349 decorators |= ON_UNKNOWN_OOP_REF; 2350 } 2351 2352 if (unaligned) { 2353 decorators |= C2_UNALIGNED; 2354 } 2355 2356 #ifndef PRODUCT 2357 { 2358 ResourceMark rm; 2359 // Check the signatures. 2360 ciSignature* sig = callee()->signature(); 2361 #ifdef ASSERT 2362 if (!is_store) { 2363 // Object getReference(Object base, int/long offset), etc. 2364 BasicType rtype = sig->return_type()->basic_type(); 2365 assert(rtype == type, "getter must return the expected value"); 2366 assert(sig->count() == 2, "oop getter has 2 arguments"); 2367 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2368 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2369 } else { 2370 // void putReference(Object base, int/long offset, Object x), etc. 2371 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2372 assert(sig->count() == 3, "oop putter has 3 arguments"); 2373 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2374 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2375 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2376 assert(vtype == type, "putter must accept the expected value"); 2377 } 2378 #endif // ASSERT 2379 } 2380 #endif //PRODUCT 2381 2382 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2383 2384 Node* receiver = argument(0); // type: oop 2385 2386 // Build address expression. 2387 Node* heap_base_oop = top(); 2388 2389 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2390 Node* base = argument(1); // type: oop 2391 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2392 Node* offset = argument(2); // type: long 2393 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2394 // to be plain byte offsets, which are also the same as those accepted 2395 // by oopDesc::field_addr. 2396 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2397 "fieldOffset must be byte-scaled"); 2398 // 32-bit machines ignore the high half! 2399 offset = ConvL2X(offset); 2400 2401 // Save state and restore on bailout 2402 uint old_sp = sp(); 2403 SafePointNode* old_map = clone_map(); 2404 2405 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2406 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2407 2408 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2409 if (type != T_OBJECT) { 2410 decorators |= IN_NATIVE; // off-heap primitive access 2411 } else { 2412 set_map(old_map); 2413 set_sp(old_sp); 2414 return false; // off-heap oop accesses are not supported 2415 } 2416 } else { 2417 heap_base_oop = base; // on-heap or mixed access 2418 } 2419 2420 // Can base be null? Otherwise, always on-heap access. 2421 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2422 2423 if (!can_access_non_heap) { 2424 decorators |= IN_HEAP; 2425 } 2426 2427 Node* val = is_store ? argument(4) : nullptr; 2428 2429 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2430 if (adr_type == TypePtr::NULL_PTR) { 2431 set_map(old_map); 2432 set_sp(old_sp); 2433 return false; // off-heap access with zero address 2434 } 2435 2436 // Try to categorize the address. 2437 Compile::AliasType* alias_type = C->alias_type(adr_type); 2438 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2439 2440 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2441 alias_type->adr_type() == TypeAryPtr::RANGE) { 2442 set_map(old_map); 2443 set_sp(old_sp); 2444 return false; // not supported 2445 } 2446 2447 bool mismatched = false; 2448 BasicType bt = alias_type->basic_type(); 2449 if (bt != T_ILLEGAL) { 2450 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2451 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2452 // Alias type doesn't differentiate between byte[] and boolean[]). 2453 // Use address type to get the element type. 2454 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2455 } 2456 if (is_reference_type(bt, true)) { 2457 // accessing an array field with getReference is not a mismatch 2458 bt = T_OBJECT; 2459 } 2460 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2461 // Don't intrinsify mismatched object accesses 2462 set_map(old_map); 2463 set_sp(old_sp); 2464 return false; 2465 } 2466 mismatched = (bt != type); 2467 } else if (alias_type->adr_type()->isa_oopptr()) { 2468 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2469 } 2470 2471 destruct_map_clone(old_map); 2472 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2473 2474 if (mismatched) { 2475 decorators |= C2_MISMATCHED; 2476 } 2477 2478 // First guess at the value type. 2479 const Type *value_type = Type::get_const_basic_type(type); 2480 2481 // Figure out the memory ordering. 2482 decorators |= mo_decorator_for_access_kind(kind); 2483 2484 if (!is_store && type == T_OBJECT) { 2485 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2486 if (tjp != nullptr) { 2487 value_type = tjp; 2488 } 2489 } 2490 2491 receiver = null_check(receiver); 2492 if (stopped()) { 2493 return true; 2494 } 2495 // Heap pointers get a null-check from the interpreter, 2496 // as a courtesy. However, this is not guaranteed by Unsafe, 2497 // and it is not possible to fully distinguish unintended nulls 2498 // from intended ones in this API. 2499 2500 if (!is_store) { 2501 Node* p = nullptr; 2502 // Try to constant fold a load from a constant field 2503 ciField* field = alias_type->field(); 2504 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2505 // final or stable field 2506 p = make_constant_from_field(field, heap_base_oop); 2507 } 2508 2509 if (p == nullptr) { // Could not constant fold the load 2510 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2511 // Normalize the value returned by getBoolean in the following cases 2512 if (type == T_BOOLEAN && 2513 (mismatched || 2514 heap_base_oop == top() || // - heap_base_oop is null or 2515 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2516 // and the unsafe access is made to large offset 2517 // (i.e., larger than the maximum offset necessary for any 2518 // field access) 2519 ) { 2520 IdealKit ideal = IdealKit(this); 2521 #define __ ideal. 2522 IdealVariable normalized_result(ideal); 2523 __ declarations_done(); 2524 __ set(normalized_result, p); 2525 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2526 __ set(normalized_result, ideal.ConI(1)); 2527 ideal.end_if(); 2528 final_sync(ideal); 2529 p = __ value(normalized_result); 2530 #undef __ 2531 } 2532 } 2533 if (type == T_ADDRESS) { 2534 p = gvn().transform(new CastP2XNode(nullptr, p)); 2535 p = ConvX2UL(p); 2536 } 2537 // The load node has the control of the preceding MemBarCPUOrder. All 2538 // following nodes will have the control of the MemBarCPUOrder inserted at 2539 // the end of this method. So, pushing the load onto the stack at a later 2540 // point is fine. 2541 set_result(p); 2542 } else { 2543 if (bt == T_ADDRESS) { 2544 // Repackage the long as a pointer. 2545 val = ConvL2X(val); 2546 val = gvn().transform(new CastX2PNode(val)); 2547 } 2548 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2549 } 2550 2551 return true; 2552 } 2553 2554 //----------------------------inline_unsafe_load_store---------------------------- 2555 // This method serves a couple of different customers (depending on LoadStoreKind): 2556 // 2557 // LS_cmp_swap: 2558 // 2559 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2560 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2561 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2562 // 2563 // LS_cmp_swap_weak: 2564 // 2565 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2566 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2567 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2568 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2569 // 2570 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2571 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2572 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2573 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2574 // 2575 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2576 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2577 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2578 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2579 // 2580 // LS_cmp_exchange: 2581 // 2582 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2583 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2584 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2585 // 2586 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2587 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2588 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2589 // 2590 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2591 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2592 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2593 // 2594 // LS_get_add: 2595 // 2596 // int getAndAddInt( Object o, long offset, int delta) 2597 // long getAndAddLong(Object o, long offset, long delta) 2598 // 2599 // LS_get_set: 2600 // 2601 // int getAndSet(Object o, long offset, int newValue) 2602 // long getAndSet(Object o, long offset, long newValue) 2603 // Object getAndSet(Object o, long offset, Object newValue) 2604 // 2605 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2606 // This basic scheme here is the same as inline_unsafe_access, but 2607 // differs in enough details that combining them would make the code 2608 // overly confusing. (This is a true fact! I originally combined 2609 // them, but even I was confused by it!) As much code/comments as 2610 // possible are retained from inline_unsafe_access though to make 2611 // the correspondences clearer. - dl 2612 2613 if (callee()->is_static()) return false; // caller must have the capability! 2614 2615 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2616 decorators |= mo_decorator_for_access_kind(access_kind); 2617 2618 #ifndef PRODUCT 2619 BasicType rtype; 2620 { 2621 ResourceMark rm; 2622 // Check the signatures. 2623 ciSignature* sig = callee()->signature(); 2624 rtype = sig->return_type()->basic_type(); 2625 switch(kind) { 2626 case LS_get_add: 2627 case LS_get_set: { 2628 // Check the signatures. 2629 #ifdef ASSERT 2630 assert(rtype == type, "get and set must return the expected type"); 2631 assert(sig->count() == 3, "get and set has 3 arguments"); 2632 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2633 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2634 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2635 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2636 #endif // ASSERT 2637 break; 2638 } 2639 case LS_cmp_swap: 2640 case LS_cmp_swap_weak: { 2641 // Check the signatures. 2642 #ifdef ASSERT 2643 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2644 assert(sig->count() == 4, "CAS has 4 arguments"); 2645 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2646 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2647 #endif // ASSERT 2648 break; 2649 } 2650 case LS_cmp_exchange: { 2651 // Check the signatures. 2652 #ifdef ASSERT 2653 assert(rtype == type, "CAS must return the expected type"); 2654 assert(sig->count() == 4, "CAS has 4 arguments"); 2655 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2656 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2657 #endif // ASSERT 2658 break; 2659 } 2660 default: 2661 ShouldNotReachHere(); 2662 } 2663 } 2664 #endif //PRODUCT 2665 2666 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2667 2668 // Get arguments: 2669 Node* receiver = nullptr; 2670 Node* base = nullptr; 2671 Node* offset = nullptr; 2672 Node* oldval = nullptr; 2673 Node* newval = nullptr; 2674 switch(kind) { 2675 case LS_cmp_swap: 2676 case LS_cmp_swap_weak: 2677 case LS_cmp_exchange: { 2678 const bool two_slot_type = type2size[type] == 2; 2679 receiver = argument(0); // type: oop 2680 base = argument(1); // type: oop 2681 offset = argument(2); // type: long 2682 oldval = argument(4); // type: oop, int, or long 2683 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2684 break; 2685 } 2686 case LS_get_add: 2687 case LS_get_set: { 2688 receiver = argument(0); // type: oop 2689 base = argument(1); // type: oop 2690 offset = argument(2); // type: long 2691 oldval = nullptr; 2692 newval = argument(4); // type: oop, int, or long 2693 break; 2694 } 2695 default: 2696 ShouldNotReachHere(); 2697 } 2698 2699 // Build field offset expression. 2700 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2701 // to be plain byte offsets, which are also the same as those accepted 2702 // by oopDesc::field_addr. 2703 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2704 // 32-bit machines ignore the high half of long offsets 2705 offset = ConvL2X(offset); 2706 // Save state and restore on bailout 2707 uint old_sp = sp(); 2708 SafePointNode* old_map = clone_map(); 2709 Node* adr = make_unsafe_address(base, offset,type, false); 2710 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2711 2712 Compile::AliasType* alias_type = C->alias_type(adr_type); 2713 BasicType bt = alias_type->basic_type(); 2714 if (bt != T_ILLEGAL && 2715 (is_reference_type(bt) != (type == T_OBJECT))) { 2716 // Don't intrinsify mismatched object accesses. 2717 set_map(old_map); 2718 set_sp(old_sp); 2719 return false; 2720 } 2721 2722 destruct_map_clone(old_map); 2723 2724 // For CAS, unlike inline_unsafe_access, there seems no point in 2725 // trying to refine types. Just use the coarse types here. 2726 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2727 const Type *value_type = Type::get_const_basic_type(type); 2728 2729 switch (kind) { 2730 case LS_get_set: 2731 case LS_cmp_exchange: { 2732 if (type == T_OBJECT) { 2733 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2734 if (tjp != nullptr) { 2735 value_type = tjp; 2736 } 2737 } 2738 break; 2739 } 2740 case LS_cmp_swap: 2741 case LS_cmp_swap_weak: 2742 case LS_get_add: 2743 break; 2744 default: 2745 ShouldNotReachHere(); 2746 } 2747 2748 // Null check receiver. 2749 receiver = null_check(receiver); 2750 if (stopped()) { 2751 return true; 2752 } 2753 2754 int alias_idx = C->get_alias_index(adr_type); 2755 2756 if (is_reference_type(type)) { 2757 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2758 2759 // Transformation of a value which could be null pointer (CastPP #null) 2760 // could be delayed during Parse (for example, in adjust_map_after_if()). 2761 // Execute transformation here to avoid barrier generation in such case. 2762 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2763 newval = _gvn.makecon(TypePtr::NULL_PTR); 2764 2765 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2766 // Refine the value to a null constant, when it is known to be null 2767 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2768 } 2769 } 2770 2771 Node* result = nullptr; 2772 switch (kind) { 2773 case LS_cmp_exchange: { 2774 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2775 oldval, newval, value_type, type, decorators); 2776 break; 2777 } 2778 case LS_cmp_swap_weak: 2779 decorators |= C2_WEAK_CMPXCHG; 2780 case LS_cmp_swap: { 2781 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2782 oldval, newval, value_type, type, decorators); 2783 break; 2784 } 2785 case LS_get_set: { 2786 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2787 newval, value_type, type, decorators); 2788 break; 2789 } 2790 case LS_get_add: { 2791 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2792 newval, value_type, type, decorators); 2793 break; 2794 } 2795 default: 2796 ShouldNotReachHere(); 2797 } 2798 2799 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2800 set_result(result); 2801 return true; 2802 } 2803 2804 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2805 // Regardless of form, don't allow previous ld/st to move down, 2806 // then issue acquire, release, or volatile mem_bar. 2807 insert_mem_bar(Op_MemBarCPUOrder); 2808 switch(id) { 2809 case vmIntrinsics::_loadFence: 2810 insert_mem_bar(Op_LoadFence); 2811 return true; 2812 case vmIntrinsics::_storeFence: 2813 insert_mem_bar(Op_StoreFence); 2814 return true; 2815 case vmIntrinsics::_storeStoreFence: 2816 insert_mem_bar(Op_StoreStoreFence); 2817 return true; 2818 case vmIntrinsics::_fullFence: 2819 insert_mem_bar(Op_MemBarVolatile); 2820 return true; 2821 default: 2822 fatal_unexpected_iid(id); 2823 return false; 2824 } 2825 } 2826 2827 bool LibraryCallKit::inline_onspinwait() { 2828 insert_mem_bar(Op_OnSpinWait); 2829 return true; 2830 } 2831 2832 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2833 if (!kls->is_Con()) { 2834 return true; 2835 } 2836 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2837 if (klsptr == nullptr) { 2838 return true; 2839 } 2840 ciInstanceKlass* ik = klsptr->instance_klass(); 2841 // don't need a guard for a klass that is already initialized 2842 return !ik->is_initialized(); 2843 } 2844 2845 //----------------------------inline_unsafe_writeback0------------------------- 2846 // public native void Unsafe.writeback0(long address) 2847 bool LibraryCallKit::inline_unsafe_writeback0() { 2848 if (!Matcher::has_match_rule(Op_CacheWB)) { 2849 return false; 2850 } 2851 #ifndef PRODUCT 2852 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2853 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2854 ciSignature* sig = callee()->signature(); 2855 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2856 #endif 2857 null_check_receiver(); // null-check, then ignore 2858 Node *addr = argument(1); 2859 addr = new CastX2PNode(addr); 2860 addr = _gvn.transform(addr); 2861 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2862 flush = _gvn.transform(flush); 2863 set_memory(flush, TypeRawPtr::BOTTOM); 2864 return true; 2865 } 2866 2867 //----------------------------inline_unsafe_writeback0------------------------- 2868 // public native void Unsafe.writeback0(long address) 2869 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2870 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2871 return false; 2872 } 2873 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2874 return false; 2875 } 2876 #ifndef PRODUCT 2877 assert(Matcher::has_match_rule(Op_CacheWB), 2878 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2879 : "found match rule for CacheWBPostSync but not CacheWB")); 2880 2881 #endif 2882 null_check_receiver(); // null-check, then ignore 2883 Node *sync; 2884 if (is_pre) { 2885 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2886 } else { 2887 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2888 } 2889 sync = _gvn.transform(sync); 2890 set_memory(sync, TypeRawPtr::BOTTOM); 2891 return true; 2892 } 2893 2894 //----------------------------inline_unsafe_allocate--------------------------- 2895 // public native Object Unsafe.allocateInstance(Class<?> cls); 2896 bool LibraryCallKit::inline_unsafe_allocate() { 2897 2898 #if INCLUDE_JVMTI 2899 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2900 return false; 2901 } 2902 #endif //INCLUDE_JVMTI 2903 2904 if (callee()->is_static()) return false; // caller must have the capability! 2905 2906 null_check_receiver(); // null-check, then ignore 2907 Node* cls = null_check(argument(1)); 2908 if (stopped()) return true; 2909 2910 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2911 kls = null_check(kls); 2912 if (stopped()) return true; // argument was like int.class 2913 2914 #if INCLUDE_JVMTI 2915 // Don't try to access new allocated obj in the intrinsic. 2916 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2917 // Deoptimize and allocate in interpreter instead. 2918 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2919 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2920 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2921 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2922 { 2923 BuildCutout unless(this, tst, PROB_MAX); 2924 uncommon_trap(Deoptimization::Reason_intrinsic, 2925 Deoptimization::Action_make_not_entrant); 2926 } 2927 if (stopped()) { 2928 return true; 2929 } 2930 #endif //INCLUDE_JVMTI 2931 2932 Node* test = nullptr; 2933 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2934 // Note: The argument might still be an illegal value like 2935 // Serializable.class or Object[].class. The runtime will handle it. 2936 // But we must make an explicit check for initialization. 2937 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2938 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2939 // can generate code to load it as unsigned byte. 2940 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2941 Node* bits = intcon(InstanceKlass::fully_initialized); 2942 test = _gvn.transform(new SubINode(inst, bits)); 2943 // The 'test' is non-zero if we need to take a slow path. 2944 } 2945 2946 Node* obj = new_instance(kls, test); 2947 set_result(obj); 2948 return true; 2949 } 2950 2951 //------------------------inline_native_time_funcs-------------- 2952 // inline code for System.currentTimeMillis() and System.nanoTime() 2953 // these have the same type and signature 2954 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2955 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2956 const TypePtr* no_memory_effects = nullptr; 2957 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2958 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2959 #ifdef ASSERT 2960 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2961 assert(value_top == top(), "second value must be top"); 2962 #endif 2963 set_result(value); 2964 return true; 2965 } 2966 2967 2968 #if INCLUDE_JVMTI 2969 2970 // When notifications are disabled then just update the VTMS transition bit and return. 2971 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2972 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2973 if (!DoJVMTIVirtualThreadTransitions) { 2974 return true; 2975 } 2976 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2977 IdealKit ideal(this); 2978 2979 Node* ONE = ideal.ConI(1); 2980 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2981 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2982 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2983 2984 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2985 sync_kit(ideal); 2986 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2987 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2988 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2989 ideal.sync_kit(this); 2990 } ideal.else_(); { 2991 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2992 Node* thread = ideal.thread(); 2993 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2994 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2995 2996 sync_kit(ideal); 2997 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2998 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2999 3000 ideal.sync_kit(this); 3001 } ideal.end_if(); 3002 final_sync(ideal); 3003 3004 return true; 3005 } 3006 3007 // Always update the is_disable_suspend bit. 3008 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3009 if (!DoJVMTIVirtualThreadTransitions) { 3010 return true; 3011 } 3012 IdealKit ideal(this); 3013 3014 { 3015 // unconditionally update the is_disable_suspend bit in current JavaThread 3016 Node* thread = ideal.thread(); 3017 Node* arg = _gvn.transform(argument(0)); // argument for notification 3018 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3019 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3020 3021 sync_kit(ideal); 3022 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3023 ideal.sync_kit(this); 3024 } 3025 final_sync(ideal); 3026 3027 return true; 3028 } 3029 3030 #endif // INCLUDE_JVMTI 3031 3032 #ifdef JFR_HAVE_INTRINSICS 3033 3034 /** 3035 * if oop->klass != null 3036 * // normal class 3037 * epoch = _epoch_state ? 2 : 1 3038 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3039 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3040 * } 3041 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3042 * else 3043 * // primitive class 3044 * if oop->array_klass != null 3045 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3046 * else 3047 * id = LAST_TYPE_ID + 1 // void class path 3048 * if (!signaled) 3049 * signaled = true 3050 */ 3051 bool LibraryCallKit::inline_native_classID() { 3052 Node* cls = argument(0); 3053 3054 IdealKit ideal(this); 3055 #define __ ideal. 3056 IdealVariable result(ideal); __ declarations_done(); 3057 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3058 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3059 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3060 3061 3062 __ if_then(kls, BoolTest::ne, null()); { 3063 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3064 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3065 3066 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3067 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3068 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3069 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3070 mask = _gvn.transform(new OrLNode(mask, epoch)); 3071 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3072 3073 float unlikely = PROB_UNLIKELY(0.999); 3074 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3075 sync_kit(ideal); 3076 make_runtime_call(RC_LEAF, 3077 OptoRuntime::class_id_load_barrier_Type(), 3078 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3079 "class id load barrier", 3080 TypePtr::BOTTOM, 3081 kls); 3082 ideal.sync_kit(this); 3083 } __ end_if(); 3084 3085 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3086 } __ else_(); { 3087 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3088 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3089 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3090 __ if_then(array_kls, BoolTest::ne, null()); { 3091 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3092 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3093 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3094 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3095 } __ else_(); { 3096 // void class case 3097 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3098 } __ end_if(); 3099 3100 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3101 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3102 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3103 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3104 } __ end_if(); 3105 } __ end_if(); 3106 3107 final_sync(ideal); 3108 set_result(ideal.value(result)); 3109 #undef __ 3110 return true; 3111 } 3112 3113 //------------------------inline_native_jvm_commit------------------ 3114 bool LibraryCallKit::inline_native_jvm_commit() { 3115 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3116 3117 // Save input memory and i_o state. 3118 Node* input_memory_state = reset_memory(); 3119 set_all_memory(input_memory_state); 3120 Node* input_io_state = i_o(); 3121 3122 // TLS. 3123 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3124 // Jfr java buffer. 3125 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3126 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3127 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3128 3129 // Load the current value of the notified field in the JfrThreadLocal. 3130 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3131 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3132 3133 // Test for notification. 3134 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3135 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3136 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3137 3138 // True branch, is notified. 3139 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3140 set_control(is_notified); 3141 3142 // Reset notified state. 3143 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3144 Node* notified_reset_memory = reset_memory(); 3145 3146 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3147 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3148 // Convert the machine-word to a long. 3149 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3150 3151 // False branch, not notified. 3152 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3153 set_control(not_notified); 3154 set_all_memory(input_memory_state); 3155 3156 // Arg is the next position as a long. 3157 Node* arg = argument(0); 3158 // Convert long to machine-word. 3159 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3160 3161 // Store the next_position to the underlying jfr java buffer. 3162 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3163 3164 Node* commit_memory = reset_memory(); 3165 set_all_memory(commit_memory); 3166 3167 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3168 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3169 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3170 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3171 3172 // And flags with lease constant. 3173 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3174 3175 // Branch on lease to conditionalize returning the leased java buffer. 3176 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3177 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3178 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3179 3180 // False branch, not a lease. 3181 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3182 3183 // True branch, is lease. 3184 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3185 set_control(is_lease); 3186 3187 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3188 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3189 OptoRuntime::void_void_Type(), 3190 SharedRuntime::jfr_return_lease(), 3191 "return_lease", TypePtr::BOTTOM); 3192 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3193 3194 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3195 record_for_igvn(lease_compare_rgn); 3196 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3197 record_for_igvn(lease_compare_mem); 3198 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3199 record_for_igvn(lease_compare_io); 3200 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3201 record_for_igvn(lease_result_value); 3202 3203 // Update control and phi nodes. 3204 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3205 lease_compare_rgn->init_req(_false_path, not_lease); 3206 3207 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3208 lease_compare_mem->init_req(_false_path, commit_memory); 3209 3210 lease_compare_io->init_req(_true_path, i_o()); 3211 lease_compare_io->init_req(_false_path, input_io_state); 3212 3213 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3214 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3215 3216 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3217 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3218 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3219 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3220 3221 // Update control and phi nodes. 3222 result_rgn->init_req(_true_path, is_notified); 3223 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3224 3225 result_mem->init_req(_true_path, notified_reset_memory); 3226 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3227 3228 result_io->init_req(_true_path, input_io_state); 3229 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3230 3231 result_value->init_req(_true_path, current_pos); 3232 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3233 3234 // Set output state. 3235 set_control(_gvn.transform(result_rgn)); 3236 set_all_memory(_gvn.transform(result_mem)); 3237 set_i_o(_gvn.transform(result_io)); 3238 set_result(result_rgn, result_value); 3239 return true; 3240 } 3241 3242 /* 3243 * The intrinsic is a model of this pseudo-code: 3244 * 3245 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3246 * jobject h_event_writer = tl->java_event_writer(); 3247 * if (h_event_writer == nullptr) { 3248 * return nullptr; 3249 * } 3250 * oop threadObj = Thread::threadObj(); 3251 * oop vthread = java_lang_Thread::vthread(threadObj); 3252 * traceid tid; 3253 * bool pinVirtualThread; 3254 * bool excluded; 3255 * if (vthread != threadObj) { // i.e. current thread is virtual 3256 * tid = java_lang_Thread::tid(vthread); 3257 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3258 * pinVirtualThread = VMContinuations; 3259 * excluded = vthread_epoch_raw & excluded_mask; 3260 * if (!excluded) { 3261 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3262 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3263 * if (vthread_epoch != current_epoch) { 3264 * write_checkpoint(); 3265 * } 3266 * } 3267 * } else { 3268 * tid = java_lang_Thread::tid(threadObj); 3269 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3270 * pinVirtualThread = false; 3271 * excluded = thread_epoch_raw & excluded_mask; 3272 * } 3273 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3274 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3275 * if (tid_in_event_writer != tid) { 3276 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3277 * setField(event_writer, "excluded", excluded); 3278 * setField(event_writer, "threadID", tid); 3279 * } 3280 * return event_writer 3281 */ 3282 bool LibraryCallKit::inline_native_getEventWriter() { 3283 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3284 3285 // Save input memory and i_o state. 3286 Node* input_memory_state = reset_memory(); 3287 set_all_memory(input_memory_state); 3288 Node* input_io_state = i_o(); 3289 3290 // The most significant bit of the u2 is used to denote thread exclusion 3291 Node* excluded_shift = _gvn.intcon(15); 3292 Node* excluded_mask = _gvn.intcon(1 << 15); 3293 // The epoch generation is the range [1-32767] 3294 Node* epoch_mask = _gvn.intcon(32767); 3295 3296 // TLS 3297 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3298 3299 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3300 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3301 3302 // Load the eventwriter jobject handle. 3303 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3304 3305 // Null check the jobject handle. 3306 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3307 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3308 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3309 3310 // False path, jobj is null. 3311 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3312 3313 // True path, jobj is not null. 3314 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3315 3316 set_control(jobj_is_not_null); 3317 3318 // Load the threadObj for the CarrierThread. 3319 Node* threadObj = generate_current_thread(tls_ptr); 3320 3321 // Load the vthread. 3322 Node* vthread = generate_virtual_thread(tls_ptr); 3323 3324 // If vthread != threadObj, this is a virtual thread. 3325 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3326 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3327 IfNode* iff_vthread_not_equal_threadObj = 3328 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3329 3330 // False branch, fallback to threadObj. 3331 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3332 set_control(vthread_equal_threadObj); 3333 3334 // Load the tid field from the vthread object. 3335 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3336 3337 // Load the raw epoch value from the threadObj. 3338 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3339 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3340 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3341 TypeInt::CHAR, T_CHAR, 3342 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3343 3344 // Mask off the excluded information from the epoch. 3345 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3346 3347 // True branch, this is a virtual thread. 3348 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3349 set_control(vthread_not_equal_threadObj); 3350 3351 // Load the tid field from the vthread object. 3352 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3353 3354 // Continuation support determines if a virtual thread should be pinned. 3355 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3356 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3357 3358 // Load the raw epoch value from the vthread. 3359 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3360 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3361 TypeInt::CHAR, T_CHAR, 3362 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3363 3364 // Mask off the excluded information from the epoch. 3365 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3366 3367 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3368 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3369 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3370 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3371 3372 // False branch, vthread is excluded, no need to write epoch info. 3373 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3374 3375 // True branch, vthread is included, update epoch info. 3376 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3377 set_control(included); 3378 3379 // Get epoch value. 3380 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3381 3382 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3383 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3384 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3385 3386 // Compare the epoch in the vthread to the current epoch generation. 3387 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3388 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3389 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3390 3391 // False path, epoch is equal, checkpoint information is valid. 3392 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3393 3394 // True path, epoch is not equal, write a checkpoint for the vthread. 3395 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3396 3397 set_control(epoch_is_not_equal); 3398 3399 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3400 // The call also updates the native thread local thread id and the vthread with the current epoch. 3401 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3402 OptoRuntime::jfr_write_checkpoint_Type(), 3403 SharedRuntime::jfr_write_checkpoint(), 3404 "write_checkpoint", TypePtr::BOTTOM); 3405 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3406 3407 // vthread epoch != current epoch 3408 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3409 record_for_igvn(epoch_compare_rgn); 3410 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3411 record_for_igvn(epoch_compare_mem); 3412 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3413 record_for_igvn(epoch_compare_io); 3414 3415 // Update control and phi nodes. 3416 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3417 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3418 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3419 epoch_compare_mem->init_req(_false_path, input_memory_state); 3420 epoch_compare_io->init_req(_true_path, i_o()); 3421 epoch_compare_io->init_req(_false_path, input_io_state); 3422 3423 // excluded != true 3424 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3425 record_for_igvn(exclude_compare_rgn); 3426 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3427 record_for_igvn(exclude_compare_mem); 3428 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3429 record_for_igvn(exclude_compare_io); 3430 3431 // Update control and phi nodes. 3432 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3433 exclude_compare_rgn->init_req(_false_path, excluded); 3434 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3435 exclude_compare_mem->init_req(_false_path, input_memory_state); 3436 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3437 exclude_compare_io->init_req(_false_path, input_io_state); 3438 3439 // vthread != threadObj 3440 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3441 record_for_igvn(vthread_compare_rgn); 3442 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3443 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3444 record_for_igvn(vthread_compare_io); 3445 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3446 record_for_igvn(tid); 3447 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3448 record_for_igvn(exclusion); 3449 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3450 record_for_igvn(pinVirtualThread); 3451 3452 // Update control and phi nodes. 3453 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3454 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3455 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3456 vthread_compare_mem->init_req(_false_path, input_memory_state); 3457 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3458 vthread_compare_io->init_req(_false_path, input_io_state); 3459 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3460 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3461 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3462 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3463 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3464 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3465 3466 // Update branch state. 3467 set_control(_gvn.transform(vthread_compare_rgn)); 3468 set_all_memory(_gvn.transform(vthread_compare_mem)); 3469 set_i_o(_gvn.transform(vthread_compare_io)); 3470 3471 // Load the event writer oop by dereferencing the jobject handle. 3472 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3473 assert(klass_EventWriter->is_loaded(), "invariant"); 3474 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3475 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3476 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3477 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3478 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3479 3480 // Load the current thread id from the event writer object. 3481 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3482 // Get the field offset to, conditionally, store an updated tid value later. 3483 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3484 // Get the field offset to, conditionally, store an updated exclusion value later. 3485 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3486 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3487 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3488 3489 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3490 record_for_igvn(event_writer_tid_compare_rgn); 3491 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3492 record_for_igvn(event_writer_tid_compare_mem); 3493 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3494 record_for_igvn(event_writer_tid_compare_io); 3495 3496 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3497 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3498 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3499 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3500 3501 // False path, tids are the same. 3502 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3503 3504 // True path, tid is not equal, need to update the tid in the event writer. 3505 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3506 record_for_igvn(tid_is_not_equal); 3507 3508 // Store the pin state to the event writer. 3509 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3510 3511 // Store the exclusion state to the event writer. 3512 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3513 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3514 3515 // Store the tid to the event writer. 3516 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3517 3518 // Update control and phi nodes. 3519 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3520 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3521 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3522 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3523 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3524 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3525 3526 // Result of top level CFG, Memory, IO and Value. 3527 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3528 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3529 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3530 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3531 3532 // Result control. 3533 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3534 result_rgn->init_req(_false_path, jobj_is_null); 3535 3536 // Result memory. 3537 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3538 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3539 3540 // Result IO. 3541 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3542 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3543 3544 // Result value. 3545 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3546 result_value->init_req(_false_path, null()); // return null 3547 3548 // Set output state. 3549 set_control(_gvn.transform(result_rgn)); 3550 set_all_memory(_gvn.transform(result_mem)); 3551 set_i_o(_gvn.transform(result_io)); 3552 set_result(result_rgn, result_value); 3553 return true; 3554 } 3555 3556 /* 3557 * The intrinsic is a model of this pseudo-code: 3558 * 3559 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3560 * if (carrierThread != thread) { // is virtual thread 3561 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3562 * bool excluded = vthread_epoch_raw & excluded_mask; 3563 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3564 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3565 * if (!excluded) { 3566 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3567 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3568 * } 3569 * Atomic::release_store(&tl->_vthread, true); 3570 * return; 3571 * } 3572 * Atomic::release_store(&tl->_vthread, false); 3573 */ 3574 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3575 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3576 3577 Node* input_memory_state = reset_memory(); 3578 set_all_memory(input_memory_state); 3579 3580 // The most significant bit of the u2 is used to denote thread exclusion 3581 Node* excluded_mask = _gvn.intcon(1 << 15); 3582 // The epoch generation is the range [1-32767] 3583 Node* epoch_mask = _gvn.intcon(32767); 3584 3585 Node* const carrierThread = generate_current_thread(jt); 3586 // If thread != carrierThread, this is a virtual thread. 3587 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3588 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3589 IfNode* iff_thread_not_equal_carrierThread = 3590 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3591 3592 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3593 3594 // False branch, is carrierThread. 3595 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3596 // Store release 3597 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3598 3599 set_all_memory(input_memory_state); 3600 3601 // True branch, is virtual thread. 3602 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3603 set_control(thread_not_equal_carrierThread); 3604 3605 // Load the raw epoch value from the vthread. 3606 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3607 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3608 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3609 3610 // Mask off the excluded information from the epoch. 3611 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3612 3613 // Load the tid field from the thread. 3614 Node* tid = load_field_from_object(thread, "tid", "J"); 3615 3616 // Store the vthread tid to the jfr thread local. 3617 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3618 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3619 3620 // Branch is_excluded to conditionalize updating the epoch . 3621 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3622 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3623 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3624 3625 // True branch, vthread is excluded, no need to write epoch info. 3626 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3627 set_control(excluded); 3628 Node* vthread_is_excluded = _gvn.intcon(1); 3629 3630 // False branch, vthread is included, update epoch info. 3631 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3632 set_control(included); 3633 Node* vthread_is_included = _gvn.intcon(0); 3634 3635 // Get epoch value. 3636 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3637 3638 // Store the vthread epoch to the jfr thread local. 3639 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3640 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3641 3642 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3643 record_for_igvn(excluded_rgn); 3644 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3645 record_for_igvn(excluded_mem); 3646 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3647 record_for_igvn(exclusion); 3648 3649 // Merge the excluded control and memory. 3650 excluded_rgn->init_req(_true_path, excluded); 3651 excluded_rgn->init_req(_false_path, included); 3652 excluded_mem->init_req(_true_path, tid_memory); 3653 excluded_mem->init_req(_false_path, included_memory); 3654 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3655 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3656 3657 // Set intermediate state. 3658 set_control(_gvn.transform(excluded_rgn)); 3659 set_all_memory(excluded_mem); 3660 3661 // Store the vthread exclusion state to the jfr thread local. 3662 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3663 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3664 3665 // Store release 3666 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3667 3668 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3669 record_for_igvn(thread_compare_rgn); 3670 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3671 record_for_igvn(thread_compare_mem); 3672 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3673 record_for_igvn(vthread); 3674 3675 // Merge the thread_compare control and memory. 3676 thread_compare_rgn->init_req(_true_path, control()); 3677 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3678 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3679 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3680 3681 // Set output state. 3682 set_control(_gvn.transform(thread_compare_rgn)); 3683 set_all_memory(_gvn.transform(thread_compare_mem)); 3684 } 3685 3686 #endif // JFR_HAVE_INTRINSICS 3687 3688 //------------------------inline_native_currentCarrierThread------------------ 3689 bool LibraryCallKit::inline_native_currentCarrierThread() { 3690 Node* junk = nullptr; 3691 set_result(generate_current_thread(junk)); 3692 return true; 3693 } 3694 3695 //------------------------inline_native_currentThread------------------ 3696 bool LibraryCallKit::inline_native_currentThread() { 3697 Node* junk = nullptr; 3698 set_result(generate_virtual_thread(junk)); 3699 return true; 3700 } 3701 3702 //------------------------inline_native_setVthread------------------ 3703 bool LibraryCallKit::inline_native_setCurrentThread() { 3704 assert(C->method()->changes_current_thread(), 3705 "method changes current Thread but is not annotated ChangesCurrentThread"); 3706 Node* arr = argument(1); 3707 Node* thread = _gvn.transform(new ThreadLocalNode()); 3708 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3709 Node* thread_obj_handle 3710 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3711 thread_obj_handle = _gvn.transform(thread_obj_handle); 3712 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3713 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3714 3715 // Change the _monitor_owner_id of the JavaThread 3716 Node* tid = load_field_from_object(arr, "tid", "J"); 3717 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3718 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3719 3720 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3721 return true; 3722 } 3723 3724 const Type* LibraryCallKit::scopedValueCache_type() { 3725 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3726 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3727 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3728 3729 // Because we create the scopedValue cache lazily we have to make the 3730 // type of the result BotPTR. 3731 bool xk = etype->klass_is_exact(); 3732 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3733 return objects_type; 3734 } 3735 3736 Node* LibraryCallKit::scopedValueCache_helper() { 3737 Node* thread = _gvn.transform(new ThreadLocalNode()); 3738 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3739 // We cannot use immutable_memory() because we might flip onto a 3740 // different carrier thread, at which point we'll need to use that 3741 // carrier thread's cache. 3742 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3743 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3744 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3745 } 3746 3747 //------------------------inline_native_scopedValueCache------------------ 3748 bool LibraryCallKit::inline_native_scopedValueCache() { 3749 Node* cache_obj_handle = scopedValueCache_helper(); 3750 const Type* objects_type = scopedValueCache_type(); 3751 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3752 3753 return true; 3754 } 3755 3756 //------------------------inline_native_setScopedValueCache------------------ 3757 bool LibraryCallKit::inline_native_setScopedValueCache() { 3758 Node* arr = argument(0); 3759 Node* cache_obj_handle = scopedValueCache_helper(); 3760 const Type* objects_type = scopedValueCache_type(); 3761 3762 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3763 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3764 3765 return true; 3766 } 3767 3768 //------------------------inline_native_Continuation_pin and unpin----------- 3769 3770 // Shared implementation routine for both pin and unpin. 3771 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3772 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3773 3774 // Save input memory. 3775 Node* input_memory_state = reset_memory(); 3776 set_all_memory(input_memory_state); 3777 3778 // TLS 3779 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3780 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3781 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3782 3783 // Null check the last continuation object. 3784 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3785 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3786 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3787 3788 // False path, last continuation is null. 3789 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3790 3791 // True path, last continuation is not null. 3792 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3793 3794 set_control(continuation_is_not_null); 3795 3796 // Load the pin count from the last continuation. 3797 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3798 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3799 3800 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3801 Node* pin_count_rhs; 3802 if (unpin) { 3803 pin_count_rhs = _gvn.intcon(0); 3804 } else { 3805 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3806 } 3807 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3808 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3809 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3810 3811 // True branch, pin count over/underflow. 3812 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3813 { 3814 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3815 // which will throw IllegalStateException for pin count over/underflow. 3816 // No memory changed so far - we can use memory create by reset_memory() 3817 // at the beginning of this intrinsic. No need to call reset_memory() again. 3818 PreserveJVMState pjvms(this); 3819 set_control(pin_count_over_underflow); 3820 uncommon_trap(Deoptimization::Reason_intrinsic, 3821 Deoptimization::Action_none); 3822 assert(stopped(), "invariant"); 3823 } 3824 3825 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3826 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3827 set_control(valid_pin_count); 3828 3829 Node* next_pin_count; 3830 if (unpin) { 3831 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3832 } else { 3833 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3834 } 3835 3836 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3837 3838 // Result of top level CFG and Memory. 3839 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3840 record_for_igvn(result_rgn); 3841 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3842 record_for_igvn(result_mem); 3843 3844 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3845 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3846 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3847 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3848 3849 // Set output state. 3850 set_control(_gvn.transform(result_rgn)); 3851 set_all_memory(_gvn.transform(result_mem)); 3852 3853 return true; 3854 } 3855 3856 //---------------------------load_mirror_from_klass---------------------------- 3857 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3858 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3859 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3860 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3861 // mirror = ((OopHandle)mirror)->resolve(); 3862 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3863 } 3864 3865 //-----------------------load_klass_from_mirror_common------------------------- 3866 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3867 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3868 // and branch to the given path on the region. 3869 // If never_see_null, take an uncommon trap on null, so we can optimistically 3870 // compile for the non-null case. 3871 // If the region is null, force never_see_null = true. 3872 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3873 bool never_see_null, 3874 RegionNode* region, 3875 int null_path, 3876 int offset) { 3877 if (region == nullptr) never_see_null = true; 3878 Node* p = basic_plus_adr(mirror, offset); 3879 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3880 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3881 Node* null_ctl = top(); 3882 kls = null_check_oop(kls, &null_ctl, never_see_null); 3883 if (region != nullptr) { 3884 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3885 region->init_req(null_path, null_ctl); 3886 } else { 3887 assert(null_ctl == top(), "no loose ends"); 3888 } 3889 return kls; 3890 } 3891 3892 //--------------------(inline_native_Class_query helpers)--------------------- 3893 // Use this for JVM_ACC_INTERFACE. 3894 // Fall through if (mods & mask) == bits, take the guard otherwise. 3895 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3896 ByteSize offset, const Type* type, BasicType bt) { 3897 // Branch around if the given klass has the given modifier bit set. 3898 // Like generate_guard, adds a new path onto the region. 3899 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3900 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3901 Node* mask = intcon(modifier_mask); 3902 Node* bits = intcon(modifier_bits); 3903 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3904 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3905 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3906 return generate_fair_guard(bol, region); 3907 } 3908 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3909 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3910 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3911 } 3912 3913 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3914 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3915 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3916 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3917 } 3918 3919 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3920 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3921 } 3922 3923 //-------------------------inline_native_Class_query------------------- 3924 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3925 const Type* return_type = TypeInt::BOOL; 3926 Node* prim_return_value = top(); // what happens if it's a primitive class? 3927 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3928 bool expect_prim = false; // most of these guys expect to work on refs 3929 3930 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3931 3932 Node* mirror = argument(0); 3933 Node* obj = top(); 3934 3935 switch (id) { 3936 case vmIntrinsics::_isInstance: 3937 // nothing is an instance of a primitive type 3938 prim_return_value = intcon(0); 3939 obj = argument(1); 3940 break; 3941 case vmIntrinsics::_isHidden: 3942 prim_return_value = intcon(0); 3943 break; 3944 case vmIntrinsics::_getSuperclass: 3945 prim_return_value = null(); 3946 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3947 break; 3948 case vmIntrinsics::_getClassAccessFlags: 3949 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3950 return_type = TypeInt::CHAR; 3951 break; 3952 default: 3953 fatal_unexpected_iid(id); 3954 break; 3955 } 3956 3957 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3958 if (mirror_con == nullptr) return false; // cannot happen? 3959 3960 #ifndef PRODUCT 3961 if (C->print_intrinsics() || C->print_inlining()) { 3962 ciType* k = mirror_con->java_mirror_type(); 3963 if (k) { 3964 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3965 k->print_name(); 3966 tty->cr(); 3967 } 3968 } 3969 #endif 3970 3971 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3972 RegionNode* region = new RegionNode(PATH_LIMIT); 3973 record_for_igvn(region); 3974 PhiNode* phi = new PhiNode(region, return_type); 3975 3976 // The mirror will never be null of Reflection.getClassAccessFlags, however 3977 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3978 // if it is. See bug 4774291. 3979 3980 // For Reflection.getClassAccessFlags(), the null check occurs in 3981 // the wrong place; see inline_unsafe_access(), above, for a similar 3982 // situation. 3983 mirror = null_check(mirror); 3984 // If mirror or obj is dead, only null-path is taken. 3985 if (stopped()) return true; 3986 3987 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3988 3989 // Now load the mirror's klass metaobject, and null-check it. 3990 // Side-effects region with the control path if the klass is null. 3991 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3992 // If kls is null, we have a primitive mirror. 3993 phi->init_req(_prim_path, prim_return_value); 3994 if (stopped()) { set_result(region, phi); return true; } 3995 bool safe_for_replace = (region->in(_prim_path) == top()); 3996 3997 Node* p; // handy temp 3998 Node* null_ctl; 3999 4000 // Now that we have the non-null klass, we can perform the real query. 4001 // For constant classes, the query will constant-fold in LoadNode::Value. 4002 Node* query_value = top(); 4003 switch (id) { 4004 case vmIntrinsics::_isInstance: 4005 // nothing is an instance of a primitive type 4006 query_value = gen_instanceof(obj, kls, safe_for_replace); 4007 break; 4008 4009 case vmIntrinsics::_isHidden: 4010 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4011 if (generate_hidden_class_guard(kls, region) != nullptr) 4012 // A guard was added. If the guard is taken, it was an hidden class. 4013 phi->add_req(intcon(1)); 4014 // If we fall through, it's a plain class. 4015 query_value = intcon(0); 4016 break; 4017 4018 4019 case vmIntrinsics::_getSuperclass: 4020 // The rules here are somewhat unfortunate, but we can still do better 4021 // with random logic than with a JNI call. 4022 // Interfaces store null or Object as _super, but must report null. 4023 // Arrays store an intermediate super as _super, but must report Object. 4024 // Other types can report the actual _super. 4025 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4026 if (generate_interface_guard(kls, region) != nullptr) 4027 // A guard was added. If the guard is taken, it was an interface. 4028 phi->add_req(null()); 4029 if (generate_array_guard(kls, region) != nullptr) 4030 // A guard was added. If the guard is taken, it was an array. 4031 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4032 // If we fall through, it's a plain class. Get its _super. 4033 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4034 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4035 null_ctl = top(); 4036 kls = null_check_oop(kls, &null_ctl); 4037 if (null_ctl != top()) { 4038 // If the guard is taken, Object.superClass is null (both klass and mirror). 4039 region->add_req(null_ctl); 4040 phi ->add_req(null()); 4041 } 4042 if (!stopped()) { 4043 query_value = load_mirror_from_klass(kls); 4044 } 4045 break; 4046 4047 case vmIntrinsics::_getClassAccessFlags: 4048 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4049 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4050 break; 4051 4052 default: 4053 fatal_unexpected_iid(id); 4054 break; 4055 } 4056 4057 // Fall-through is the normal case of a query to a real class. 4058 phi->init_req(1, query_value); 4059 region->init_req(1, control()); 4060 4061 C->set_has_split_ifs(true); // Has chance for split-if optimization 4062 set_result(region, phi); 4063 return true; 4064 } 4065 4066 //-------------------------inline_Class_cast------------------- 4067 bool LibraryCallKit::inline_Class_cast() { 4068 Node* mirror = argument(0); // Class 4069 Node* obj = argument(1); 4070 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4071 if (mirror_con == nullptr) { 4072 return false; // dead path (mirror->is_top()). 4073 } 4074 if (obj == nullptr || obj->is_top()) { 4075 return false; // dead path 4076 } 4077 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4078 4079 // First, see if Class.cast() can be folded statically. 4080 // java_mirror_type() returns non-null for compile-time Class constants. 4081 ciType* tm = mirror_con->java_mirror_type(); 4082 if (tm != nullptr && tm->is_klass() && 4083 tp != nullptr) { 4084 if (!tp->is_loaded()) { 4085 // Don't use intrinsic when class is not loaded. 4086 return false; 4087 } else { 4088 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4089 if (static_res == Compile::SSC_always_true) { 4090 // isInstance() is true - fold the code. 4091 set_result(obj); 4092 return true; 4093 } else if (static_res == Compile::SSC_always_false) { 4094 // Don't use intrinsic, have to throw ClassCastException. 4095 // If the reference is null, the non-intrinsic bytecode will 4096 // be optimized appropriately. 4097 return false; 4098 } 4099 } 4100 } 4101 4102 // Bailout intrinsic and do normal inlining if exception path is frequent. 4103 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4104 return false; 4105 } 4106 4107 // Generate dynamic checks. 4108 // Class.cast() is java implementation of _checkcast bytecode. 4109 // Do checkcast (Parse::do_checkcast()) optimizations here. 4110 4111 mirror = null_check(mirror); 4112 // If mirror is dead, only null-path is taken. 4113 if (stopped()) { 4114 return true; 4115 } 4116 4117 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4118 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4119 RegionNode* region = new RegionNode(PATH_LIMIT); 4120 record_for_igvn(region); 4121 4122 // Now load the mirror's klass metaobject, and null-check it. 4123 // If kls is null, we have a primitive mirror and 4124 // nothing is an instance of a primitive type. 4125 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4126 4127 Node* res = top(); 4128 if (!stopped()) { 4129 Node* bad_type_ctrl = top(); 4130 // Do checkcast optimizations. 4131 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4132 region->init_req(_bad_type_path, bad_type_ctrl); 4133 } 4134 if (region->in(_prim_path) != top() || 4135 region->in(_bad_type_path) != top()) { 4136 // Let Interpreter throw ClassCastException. 4137 PreserveJVMState pjvms(this); 4138 set_control(_gvn.transform(region)); 4139 uncommon_trap(Deoptimization::Reason_intrinsic, 4140 Deoptimization::Action_maybe_recompile); 4141 } 4142 if (!stopped()) { 4143 set_result(res); 4144 } 4145 return true; 4146 } 4147 4148 4149 //--------------------------inline_native_subtype_check------------------------ 4150 // This intrinsic takes the JNI calls out of the heart of 4151 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4152 bool LibraryCallKit::inline_native_subtype_check() { 4153 // Pull both arguments off the stack. 4154 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4155 args[0] = argument(0); 4156 args[1] = argument(1); 4157 Node* klasses[2]; // corresponding Klasses: superk, subk 4158 klasses[0] = klasses[1] = top(); 4159 4160 enum { 4161 // A full decision tree on {superc is prim, subc is prim}: 4162 _prim_0_path = 1, // {P,N} => false 4163 // {P,P} & superc!=subc => false 4164 _prim_same_path, // {P,P} & superc==subc => true 4165 _prim_1_path, // {N,P} => false 4166 _ref_subtype_path, // {N,N} & subtype check wins => true 4167 _both_ref_path, // {N,N} & subtype check loses => false 4168 PATH_LIMIT 4169 }; 4170 4171 RegionNode* region = new RegionNode(PATH_LIMIT); 4172 Node* phi = new PhiNode(region, TypeInt::BOOL); 4173 record_for_igvn(region); 4174 4175 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4176 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4177 int class_klass_offset = java_lang_Class::klass_offset(); 4178 4179 // First null-check both mirrors and load each mirror's klass metaobject. 4180 int which_arg; 4181 for (which_arg = 0; which_arg <= 1; which_arg++) { 4182 Node* arg = args[which_arg]; 4183 arg = null_check(arg); 4184 if (stopped()) break; 4185 args[which_arg] = arg; 4186 4187 Node* p = basic_plus_adr(arg, class_klass_offset); 4188 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4189 klasses[which_arg] = _gvn.transform(kls); 4190 } 4191 4192 // Having loaded both klasses, test each for null. 4193 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4194 for (which_arg = 0; which_arg <= 1; which_arg++) { 4195 Node* kls = klasses[which_arg]; 4196 Node* null_ctl = top(); 4197 kls = null_check_oop(kls, &null_ctl, never_see_null); 4198 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4199 region->init_req(prim_path, null_ctl); 4200 if (stopped()) break; 4201 klasses[which_arg] = kls; 4202 } 4203 4204 if (!stopped()) { 4205 // now we have two reference types, in klasses[0..1] 4206 Node* subk = klasses[1]; // the argument to isAssignableFrom 4207 Node* superk = klasses[0]; // the receiver 4208 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4209 // now we have a successful reference subtype check 4210 region->set_req(_ref_subtype_path, control()); 4211 } 4212 4213 // If both operands are primitive (both klasses null), then 4214 // we must return true when they are identical primitives. 4215 // It is convenient to test this after the first null klass check. 4216 set_control(region->in(_prim_0_path)); // go back to first null check 4217 if (!stopped()) { 4218 // Since superc is primitive, make a guard for the superc==subc case. 4219 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4220 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4221 generate_guard(bol_eq, region, PROB_FAIR); 4222 if (region->req() == PATH_LIMIT+1) { 4223 // A guard was added. If the added guard is taken, superc==subc. 4224 region->swap_edges(PATH_LIMIT, _prim_same_path); 4225 region->del_req(PATH_LIMIT); 4226 } 4227 region->set_req(_prim_0_path, control()); // Not equal after all. 4228 } 4229 4230 // these are the only paths that produce 'true': 4231 phi->set_req(_prim_same_path, intcon(1)); 4232 phi->set_req(_ref_subtype_path, intcon(1)); 4233 4234 // pull together the cases: 4235 assert(region->req() == PATH_LIMIT, "sane region"); 4236 for (uint i = 1; i < region->req(); i++) { 4237 Node* ctl = region->in(i); 4238 if (ctl == nullptr || ctl == top()) { 4239 region->set_req(i, top()); 4240 phi ->set_req(i, top()); 4241 } else if (phi->in(i) == nullptr) { 4242 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4243 } 4244 } 4245 4246 set_control(_gvn.transform(region)); 4247 set_result(_gvn.transform(phi)); 4248 return true; 4249 } 4250 4251 //---------------------generate_array_guard_common------------------------ 4252 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4253 bool obj_array, bool not_array, Node** obj) { 4254 4255 if (stopped()) { 4256 return nullptr; 4257 } 4258 4259 // If obj_array/non_array==false/false: 4260 // Branch around if the given klass is in fact an array (either obj or prim). 4261 // If obj_array/non_array==false/true: 4262 // Branch around if the given klass is not an array klass of any kind. 4263 // If obj_array/non_array==true/true: 4264 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4265 // If obj_array/non_array==true/false: 4266 // Branch around if the kls is an oop array (Object[] or subtype) 4267 // 4268 // Like generate_guard, adds a new path onto the region. 4269 jint layout_con = 0; 4270 Node* layout_val = get_layout_helper(kls, layout_con); 4271 if (layout_val == nullptr) { 4272 bool query = (obj_array 4273 ? Klass::layout_helper_is_objArray(layout_con) 4274 : Klass::layout_helper_is_array(layout_con)); 4275 if (query == not_array) { 4276 return nullptr; // never a branch 4277 } else { // always a branch 4278 Node* always_branch = control(); 4279 if (region != nullptr) 4280 region->add_req(always_branch); 4281 set_control(top()); 4282 return always_branch; 4283 } 4284 } 4285 // Now test the correct condition. 4286 jint nval = (obj_array 4287 ? (jint)(Klass::_lh_array_tag_type_value 4288 << Klass::_lh_array_tag_shift) 4289 : Klass::_lh_neutral_value); 4290 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4291 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4292 // invert the test if we are looking for a non-array 4293 if (not_array) btest = BoolTest(btest).negate(); 4294 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4295 Node* ctrl = generate_fair_guard(bol, region); 4296 Node* is_array_ctrl = not_array ? control() : ctrl; 4297 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4298 // Keep track of the fact that 'obj' is an array to prevent 4299 // array specific accesses from floating above the guard. 4300 Node* cast = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4301 // Check for top because in rare cases, the type system can determine that 4302 // the object can't be an array but the layout helper check is not folded. 4303 if (!cast->is_top()) { 4304 *obj = cast; 4305 } 4306 } 4307 return ctrl; 4308 } 4309 4310 4311 //-----------------------inline_native_newArray-------------------------- 4312 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4313 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4314 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4315 Node* mirror; 4316 Node* count_val; 4317 if (uninitialized) { 4318 null_check_receiver(); 4319 mirror = argument(1); 4320 count_val = argument(2); 4321 } else { 4322 mirror = argument(0); 4323 count_val = argument(1); 4324 } 4325 4326 mirror = null_check(mirror); 4327 // If mirror or obj is dead, only null-path is taken. 4328 if (stopped()) return true; 4329 4330 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4331 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4332 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4333 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4334 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4335 4336 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4337 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4338 result_reg, _slow_path); 4339 Node* normal_ctl = control(); 4340 Node* no_array_ctl = result_reg->in(_slow_path); 4341 4342 // Generate code for the slow case. We make a call to newArray(). 4343 set_control(no_array_ctl); 4344 if (!stopped()) { 4345 // Either the input type is void.class, or else the 4346 // array klass has not yet been cached. Either the 4347 // ensuing call will throw an exception, or else it 4348 // will cache the array klass for next time. 4349 PreserveJVMState pjvms(this); 4350 CallJavaNode* slow_call = nullptr; 4351 if (uninitialized) { 4352 // Generate optimized virtual call (holder class 'Unsafe' is final) 4353 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4354 } else { 4355 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4356 } 4357 Node* slow_result = set_results_for_java_call(slow_call); 4358 // this->control() comes from set_results_for_java_call 4359 result_reg->set_req(_slow_path, control()); 4360 result_val->set_req(_slow_path, slow_result); 4361 result_io ->set_req(_slow_path, i_o()); 4362 result_mem->set_req(_slow_path, reset_memory()); 4363 } 4364 4365 set_control(normal_ctl); 4366 if (!stopped()) { 4367 // Normal case: The array type has been cached in the java.lang.Class. 4368 // The following call works fine even if the array type is polymorphic. 4369 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4370 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4371 result_reg->init_req(_normal_path, control()); 4372 result_val->init_req(_normal_path, obj); 4373 result_io ->init_req(_normal_path, i_o()); 4374 result_mem->init_req(_normal_path, reset_memory()); 4375 4376 if (uninitialized) { 4377 // Mark the allocation so that zeroing is skipped 4378 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4379 alloc->maybe_set_complete(&_gvn); 4380 } 4381 } 4382 4383 // Return the combined state. 4384 set_i_o( _gvn.transform(result_io) ); 4385 set_all_memory( _gvn.transform(result_mem)); 4386 4387 C->set_has_split_ifs(true); // Has chance for split-if optimization 4388 set_result(result_reg, result_val); 4389 return true; 4390 } 4391 4392 //----------------------inline_native_getLength-------------------------- 4393 // public static native int java.lang.reflect.Array.getLength(Object array); 4394 bool LibraryCallKit::inline_native_getLength() { 4395 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4396 4397 Node* array = null_check(argument(0)); 4398 // If array is dead, only null-path is taken. 4399 if (stopped()) return true; 4400 4401 // Deoptimize if it is a non-array. 4402 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4403 4404 if (non_array != nullptr) { 4405 PreserveJVMState pjvms(this); 4406 set_control(non_array); 4407 uncommon_trap(Deoptimization::Reason_intrinsic, 4408 Deoptimization::Action_maybe_recompile); 4409 } 4410 4411 // If control is dead, only non-array-path is taken. 4412 if (stopped()) return true; 4413 4414 // The works fine even if the array type is polymorphic. 4415 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4416 Node* result = load_array_length(array); 4417 4418 C->set_has_split_ifs(true); // Has chance for split-if optimization 4419 set_result(result); 4420 return true; 4421 } 4422 4423 //------------------------inline_array_copyOf---------------------------- 4424 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4425 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4426 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4427 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4428 4429 // Get the arguments. 4430 Node* original = argument(0); 4431 Node* start = is_copyOfRange? argument(1): intcon(0); 4432 Node* end = is_copyOfRange? argument(2): argument(1); 4433 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4434 4435 Node* newcopy = nullptr; 4436 4437 // Set the original stack and the reexecute bit for the interpreter to reexecute 4438 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4439 { PreserveReexecuteState preexecs(this); 4440 jvms()->set_should_reexecute(true); 4441 4442 array_type_mirror = null_check(array_type_mirror); 4443 original = null_check(original); 4444 4445 // Check if a null path was taken unconditionally. 4446 if (stopped()) return true; 4447 4448 Node* orig_length = load_array_length(original); 4449 4450 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4451 klass_node = null_check(klass_node); 4452 4453 RegionNode* bailout = new RegionNode(1); 4454 record_for_igvn(bailout); 4455 4456 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4457 // Bail out if that is so. 4458 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4459 if (not_objArray != nullptr) { 4460 // Improve the klass node's type from the new optimistic assumption: 4461 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4462 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4463 Node* cast = new CastPPNode(control(), klass_node, akls); 4464 klass_node = _gvn.transform(cast); 4465 } 4466 4467 // Bail out if either start or end is negative. 4468 generate_negative_guard(start, bailout, &start); 4469 generate_negative_guard(end, bailout, &end); 4470 4471 Node* length = end; 4472 if (_gvn.type(start) != TypeInt::ZERO) { 4473 length = _gvn.transform(new SubINode(end, start)); 4474 } 4475 4476 // Bail out if length is negative (i.e., if start > end). 4477 // Without this the new_array would throw 4478 // NegativeArraySizeException but IllegalArgumentException is what 4479 // should be thrown 4480 generate_negative_guard(length, bailout, &length); 4481 4482 // Bail out if start is larger than the original length 4483 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4484 generate_negative_guard(orig_tail, bailout, &orig_tail); 4485 4486 if (bailout->req() > 1) { 4487 PreserveJVMState pjvms(this); 4488 set_control(_gvn.transform(bailout)); 4489 uncommon_trap(Deoptimization::Reason_intrinsic, 4490 Deoptimization::Action_maybe_recompile); 4491 } 4492 4493 if (!stopped()) { 4494 // How many elements will we copy from the original? 4495 // The answer is MinI(orig_tail, length). 4496 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4497 4498 // Generate a direct call to the right arraycopy function(s). 4499 // We know the copy is disjoint but we might not know if the 4500 // oop stores need checking. 4501 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4502 // This will fail a store-check if x contains any non-nulls. 4503 4504 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4505 // loads/stores but it is legal only if we're sure the 4506 // Arrays.copyOf would succeed. So we need all input arguments 4507 // to the copyOf to be validated, including that the copy to the 4508 // new array won't trigger an ArrayStoreException. That subtype 4509 // check can be optimized if we know something on the type of 4510 // the input array from type speculation. 4511 if (_gvn.type(klass_node)->singleton()) { 4512 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4513 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4514 4515 int test = C->static_subtype_check(superk, subk); 4516 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4517 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4518 if (t_original->speculative_type() != nullptr) { 4519 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4520 } 4521 } 4522 } 4523 4524 bool validated = false; 4525 // Reason_class_check rather than Reason_intrinsic because we 4526 // want to intrinsify even if this traps. 4527 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4528 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4529 4530 if (not_subtype_ctrl != top()) { 4531 PreserveJVMState pjvms(this); 4532 set_control(not_subtype_ctrl); 4533 uncommon_trap(Deoptimization::Reason_class_check, 4534 Deoptimization::Action_make_not_entrant); 4535 assert(stopped(), "Should be stopped"); 4536 } 4537 validated = true; 4538 } 4539 4540 if (!stopped()) { 4541 newcopy = new_array(klass_node, length, 0); // no arguments to push 4542 4543 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4544 load_object_klass(original), klass_node); 4545 if (!is_copyOfRange) { 4546 ac->set_copyof(validated); 4547 } else { 4548 ac->set_copyofrange(validated); 4549 } 4550 Node* n = _gvn.transform(ac); 4551 if (n == ac) { 4552 ac->connect_outputs(this); 4553 } else { 4554 assert(validated, "shouldn't transform if all arguments not validated"); 4555 set_all_memory(n); 4556 } 4557 } 4558 } 4559 } // original reexecute is set back here 4560 4561 C->set_has_split_ifs(true); // Has chance for split-if optimization 4562 if (!stopped()) { 4563 set_result(newcopy); 4564 } 4565 return true; 4566 } 4567 4568 4569 //----------------------generate_virtual_guard--------------------------- 4570 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4571 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4572 RegionNode* slow_region) { 4573 ciMethod* method = callee(); 4574 int vtable_index = method->vtable_index(); 4575 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4576 "bad index %d", vtable_index); 4577 // Get the Method* out of the appropriate vtable entry. 4578 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4579 vtable_index*vtableEntry::size_in_bytes() + 4580 in_bytes(vtableEntry::method_offset()); 4581 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4582 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4583 4584 // Compare the target method with the expected method (e.g., Object.hashCode). 4585 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4586 4587 Node* native_call = makecon(native_call_addr); 4588 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4589 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4590 4591 return generate_slow_guard(test_native, slow_region); 4592 } 4593 4594 //-----------------------generate_method_call---------------------------- 4595 // Use generate_method_call to make a slow-call to the real 4596 // method if the fast path fails. An alternative would be to 4597 // use a stub like OptoRuntime::slow_arraycopy_Java. 4598 // This only works for expanding the current library call, 4599 // not another intrinsic. (E.g., don't use this for making an 4600 // arraycopy call inside of the copyOf intrinsic.) 4601 CallJavaNode* 4602 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4603 // When compiling the intrinsic method itself, do not use this technique. 4604 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4605 4606 ciMethod* method = callee(); 4607 // ensure the JVMS we have will be correct for this call 4608 guarantee(method_id == method->intrinsic_id(), "must match"); 4609 4610 const TypeFunc* tf = TypeFunc::make(method); 4611 if (res_not_null) { 4612 assert(tf->return_type() == T_OBJECT, ""); 4613 const TypeTuple* range = tf->range(); 4614 const Type** fields = TypeTuple::fields(range->cnt()); 4615 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4616 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4617 tf = TypeFunc::make(tf->domain(), new_range); 4618 } 4619 CallJavaNode* slow_call; 4620 if (is_static) { 4621 assert(!is_virtual, ""); 4622 slow_call = new CallStaticJavaNode(C, tf, 4623 SharedRuntime::get_resolve_static_call_stub(), method); 4624 } else if (is_virtual) { 4625 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4626 int vtable_index = Method::invalid_vtable_index; 4627 if (UseInlineCaches) { 4628 // Suppress the vtable call 4629 } else { 4630 // hashCode and clone are not a miranda methods, 4631 // so the vtable index is fixed. 4632 // No need to use the linkResolver to get it. 4633 vtable_index = method->vtable_index(); 4634 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4635 "bad index %d", vtable_index); 4636 } 4637 slow_call = new CallDynamicJavaNode(tf, 4638 SharedRuntime::get_resolve_virtual_call_stub(), 4639 method, vtable_index); 4640 } else { // neither virtual nor static: opt_virtual 4641 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4642 slow_call = new CallStaticJavaNode(C, tf, 4643 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4644 slow_call->set_optimized_virtual(true); 4645 } 4646 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4647 // To be able to issue a direct call (optimized virtual or virtual) 4648 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4649 // about the method being invoked should be attached to the call site to 4650 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4651 slow_call->set_override_symbolic_info(true); 4652 } 4653 set_arguments_for_java_call(slow_call); 4654 set_edges_for_java_call(slow_call); 4655 return slow_call; 4656 } 4657 4658 4659 /** 4660 * Build special case code for calls to hashCode on an object. This call may 4661 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4662 * slightly different code. 4663 */ 4664 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4665 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4666 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4667 4668 enum { _slow_path = 1, _null_path, _fast_path, _fast_path2, PATH_LIMIT }; 4669 4670 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4671 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4672 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4673 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4674 Node* obj = nullptr; 4675 if (!is_static) { 4676 // Check for hashing null object 4677 obj = null_check_receiver(); 4678 if (stopped()) return true; // unconditionally null 4679 result_reg->init_req(_null_path, top()); 4680 result_val->init_req(_null_path, top()); 4681 } else { 4682 // Do a null check, and return zero if null. 4683 // System.identityHashCode(null) == 0 4684 obj = argument(0); 4685 Node* null_ctl = top(); 4686 obj = null_check_oop(obj, &null_ctl); 4687 result_reg->init_req(_null_path, null_ctl); 4688 result_val->init_req(_null_path, _gvn.intcon(0)); 4689 } 4690 4691 // Unconditionally null? Then return right away. 4692 if (stopped()) { 4693 set_control( result_reg->in(_null_path)); 4694 if (!stopped()) 4695 set_result(result_val->in(_null_path)); 4696 return true; 4697 } 4698 4699 // We only go to the fast case code if we pass a number of guards. The 4700 // paths which do not pass are accumulated in the slow_region. 4701 RegionNode* slow_region = new RegionNode(1); 4702 record_for_igvn(slow_region); 4703 4704 // If this is a virtual call, we generate a funny guard. We pull out 4705 // the vtable entry corresponding to hashCode() from the target object. 4706 // If the target method which we are calling happens to be the native 4707 // Object hashCode() method, we pass the guard. We do not need this 4708 // guard for non-virtual calls -- the caller is known to be the native 4709 // Object hashCode(). 4710 if (is_virtual) { 4711 // After null check, get the object's klass. 4712 Node* obj_klass = load_object_klass(obj); 4713 generate_virtual_guard(obj_klass, slow_region); 4714 } 4715 4716 if (UseCompactObjectHeaders) { 4717 // Get the header out of the object. 4718 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4719 // The control of the load must be null. Otherwise, the load can move before 4720 // the null check after castPP removal. 4721 Node* no_ctrl = nullptr; 4722 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4723 4724 // Test the header to see if the object is in hashed or copied state. 4725 Node* hashctrl_mask = _gvn.MakeConX(markWord::hashctrl_mask_in_place); 4726 Node* masked_header = _gvn.transform(new AndXNode(header, hashctrl_mask)); 4727 4728 // Take slow-path when the object has not been hashed. 4729 Node* not_hashed_val = _gvn.MakeConX(0); 4730 Node* chk_hashed = _gvn.transform(new CmpXNode(masked_header, not_hashed_val)); 4731 Node* test_hashed = _gvn.transform(new BoolNode(chk_hashed, BoolTest::eq)); 4732 4733 generate_slow_guard(test_hashed, slow_region); 4734 4735 // Test whether the object is hashed or hashed&copied. 4736 Node* hashed_copied = _gvn.MakeConX(markWord::hashctrl_expanded_mask_in_place | markWord::hashctrl_hashed_mask_in_place); 4737 Node* chk_copied = _gvn.transform(new CmpXNode(masked_header, hashed_copied)); 4738 // If true, then object has been hashed&copied, otherwise it's only hashed. 4739 Node* test_copied = _gvn.transform(new BoolNode(chk_copied, BoolTest::eq)); 4740 IfNode* if_copied = create_and_map_if(control(), test_copied, PROB_FAIR, COUNT_UNKNOWN); 4741 Node* if_true = _gvn.transform(new IfTrueNode(if_copied)); 4742 Node* if_false = _gvn.transform(new IfFalseNode(if_copied)); 4743 4744 // Hashed&Copied path: read hash-code out of the object. 4745 set_control(if_true); 4746 // result_val->del_req(_fast_path2); 4747 // result_reg->del_req(_fast_path2); 4748 // result_io->del_req(_fast_path2); 4749 // result_mem->del_req(_fast_path2); 4750 4751 Node* obj_klass = load_object_klass(obj); 4752 Node* hash_addr; 4753 const TypeKlassPtr* klass_t = _gvn.type(obj_klass)->isa_klassptr(); 4754 bool load_offset_runtime = true; 4755 4756 if (klass_t != nullptr) { 4757 if (klass_t->klass_is_exact() && klass_t->isa_instklassptr()) { 4758 ciInstanceKlass* ciKlass = reinterpret_cast<ciInstanceKlass*>(klass_t->is_instklassptr()->exact_klass()); 4759 if (!ciKlass->is_mirror_instance_klass() && !ciKlass->is_reference_instance_klass()) { 4760 // We know the InstanceKlass, load hash_offset from there at compile-time. 4761 int hash_offset = ciKlass->hash_offset_in_bytes(); 4762 hash_addr = basic_plus_adr(obj, hash_offset); 4763 Node* loaded_hash = make_load(control(), hash_addr, TypeInt::INT, T_INT, MemNode::unordered); 4764 result_val->init_req(_fast_path2, loaded_hash); 4765 result_reg->init_req(_fast_path2, control()); 4766 load_offset_runtime = false; 4767 } 4768 } 4769 } 4770 4771 //tty->print_cr("Load hash-offset at runtime: %s", BOOL_TO_STR(load_offset_runtime)); 4772 4773 if (load_offset_runtime) { 4774 // We don't know if it is an array or an exact type, figure it out at run-time. 4775 // If not an ordinary instance, then we need to take slow-path. 4776 Node* kind_addr = basic_plus_adr(obj_klass, Klass::kind_offset_in_bytes()); 4777 Node* kind = make_load(control(), kind_addr, TypeInt::INT, T_INT, MemNode::unordered); 4778 Node* instance_val = _gvn.intcon(Klass::InstanceKlassKind); 4779 Node* chk_inst = _gvn.transform(new CmpINode(kind, instance_val)); 4780 Node* test_inst = _gvn.transform(new BoolNode(chk_inst, BoolTest::ne)); 4781 generate_slow_guard(test_inst, slow_region); 4782 4783 // Otherwise it's an instance and we can read the hash_offset from the InstanceKlass. 4784 Node* hash_offset_addr = basic_plus_adr(obj_klass, InstanceKlass::hash_offset_offset_in_bytes()); 4785 Node* hash_offset = make_load(control(), hash_offset_addr, TypeInt::INT, T_INT, MemNode::unordered); 4786 // hash_offset->dump(); 4787 Node* hash_addr = basic_plus_adr(obj, ConvI2X(hash_offset)); 4788 Compile::current()->set_has_unsafe_access(true); 4789 Node* loaded_hash = make_load(control(), hash_addr, TypeInt::INT, T_INT, MemNode::unordered); 4790 result_val->init_req(_fast_path2, loaded_hash); 4791 result_reg->init_req(_fast_path2, control()); 4792 } 4793 4794 // Hashed-only path: recompute hash-code from object address. 4795 set_control(if_false); 4796 // Our constants. 4797 Node* M = _gvn.intcon(0x337954D5); 4798 Node* A = _gvn.intcon(0xAAAAAAAA); 4799 // Split object address into lo and hi 32 bits. 4800 Node* obj_addr = _gvn.transform(new CastP2XNode(nullptr, obj)); 4801 Node* x = _gvn.transform(new ConvL2INode(obj_addr)); 4802 Node* upper_addr = _gvn.transform(new URShiftLNode(obj_addr, _gvn.intcon(32))); 4803 Node* y = _gvn.transform(new ConvL2INode(upper_addr)); 4804 4805 Node* H0 = _gvn.transform(new XorINode(x, y)); 4806 Node* L0 = _gvn.transform(new XorINode(x, A)); 4807 4808 // Full multiplication of two 32 bit values L0 and M into a hi/lo result in two 32 bit values V0 and U0. 4809 Node* L0_64 = _gvn.transform(new ConvI2LNode(L0)); 4810 L0_64 = _gvn.transform(new AndLNode(L0_64, _gvn.longcon(0xFFFFFFFF))); 4811 Node* M_64 = _gvn.transform(new ConvI2LNode(M)); 4812 // M_64 = _gvn.transform(new AndLNode(M_64, _gvn.longcon(0xFFFFFFFF))); 4813 Node* prod64 = _gvn.transform(new MulLNode(L0_64, M_64)); 4814 Node* V0 = _gvn.transform(new ConvL2INode(prod64)); 4815 Node* prod_upper = _gvn.transform(new URShiftLNode(prod64, _gvn.intcon(32))); 4816 Node* U0 = _gvn.transform(new ConvL2INode(prod_upper)); 4817 4818 Node* Q0 = _gvn.transform(new MulINode(H0, M)); 4819 Node* L1 = _gvn.transform(new XorINode(Q0, U0)); 4820 4821 // Full multiplication of two 32 bit values L1 and M into a hi/lo result in two 32 bit values V1 and U1. 4822 Node* L1_64 = _gvn.transform(new ConvI2LNode(L1)); 4823 L1_64 = _gvn.transform(new AndLNode(L1_64, _gvn.longcon(0xFFFFFFFF))); 4824 prod64 = _gvn.transform(new MulLNode(L1_64, M_64)); 4825 Node* V1 = _gvn.transform(new ConvL2INode(prod64)); 4826 prod_upper = _gvn.transform(new URShiftLNode(prod64, _gvn.intcon(32))); 4827 Node* U1 = _gvn.transform(new ConvL2INode(prod_upper)); 4828 4829 Node* P1 = _gvn.transform(new XorINode(V0, M)); 4830 4831 // Right rotate P1 by distance L1. 4832 Node* distance = _gvn.transform(new AndINode(L1, _gvn.intcon(32 - 1))); 4833 Node* inverse_distance = _gvn.transform(new SubINode(_gvn.intcon(32), distance)); 4834 Node* ror_part1 = _gvn.transform(new URShiftINode(P1, distance)); 4835 Node* ror_part2 = _gvn.transform(new LShiftINode(P1, inverse_distance)); 4836 Node* Q1 = _gvn.transform(new OrINode(ror_part1, ror_part2)); 4837 4838 Node* L2 = _gvn.transform(new XorINode(Q1, U1)); 4839 Node* hash = _gvn.transform(new XorINode(V1, L2)); 4840 Node* hash_truncated = _gvn.transform(new AndINode(hash, _gvn.intcon(markWord::hash_mask))); 4841 4842 // TODO: We could generate a fast case here under the following conditions: 4843 // - The hashctrl is set to hash_is_copied (see markWord::hash_is_copied()) 4844 // - The type of the object is known 4845 // Then we can load the identity hashcode from the int field at Klass::hash_offset_in_bytes() of the object. 4846 result_val->init_req(_fast_path, hash_truncated); 4847 } else { 4848 // Get the header out of the object, use LoadMarkNode when available 4849 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4850 // The control of the load must be null. Otherwise, the load can move before 4851 // the null check after castPP removal. 4852 Node* no_ctrl = nullptr; 4853 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4854 4855 if (!UseObjectMonitorTable) { 4856 // Test the header to see if it is safe to read w.r.t. locking. 4857 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4858 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4859 if (LockingMode == LM_LIGHTWEIGHT) { 4860 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4861 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4862 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4863 4864 generate_slow_guard(test_monitor, slow_region); 4865 } else { 4866 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4867 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4868 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4869 4870 generate_slow_guard(test_not_unlocked, slow_region); 4871 } 4872 } 4873 4874 // Get the hash value and check to see that it has been properly assigned. 4875 // We depend on hash_mask being at most 32 bits and avoid the use of 4876 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4877 // vm: see markWord.hpp. 4878 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4879 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4880 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4881 // This hack lets the hash bits live anywhere in the mark object now, as long 4882 // as the shift drops the relevant bits into the low 32 bits. Note that 4883 // Java spec says that HashCode is an int so there's no point in capturing 4884 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4885 hshifted_header = ConvX2I(hshifted_header); 4886 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4887 4888 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4889 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4890 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4891 4892 generate_slow_guard(test_assigned, slow_region); 4893 4894 result_val->init_req(_fast_path, hash_val); 4895 4896 // _fast_path2 is not used here. 4897 result_val->del_req(_fast_path2); 4898 result_reg->del_req(_fast_path2); 4899 result_io->del_req(_fast_path2); 4900 result_mem->del_req(_fast_path2); 4901 } 4902 4903 Node* init_mem = reset_memory(); 4904 // fill in the rest of the null path: 4905 result_io ->init_req(_null_path, i_o()); 4906 result_mem->init_req(_null_path, init_mem); 4907 4908 result_reg->init_req(_fast_path, control()); 4909 result_io ->init_req(_fast_path, i_o()); 4910 result_mem->init_req(_fast_path, init_mem); 4911 4912 if (UseCompactObjectHeaders) { 4913 result_io->init_req(_fast_path2, i_o()); 4914 result_mem->init_req(_fast_path2, init_mem); 4915 } 4916 4917 // Generate code for the slow case. We make a call to hashCode(). 4918 assert(slow_region != nullptr, "must have slow_region"); 4919 set_control(_gvn.transform(slow_region)); 4920 if (!stopped()) { 4921 // No need for PreserveJVMState, because we're using up the present state. 4922 set_all_memory(init_mem); 4923 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4924 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4925 Node* slow_result = set_results_for_java_call(slow_call); 4926 // this->control() comes from set_results_for_java_call 4927 result_reg->init_req(_slow_path, control()); 4928 result_val->init_req(_slow_path, slow_result); 4929 result_io ->set_req(_slow_path, i_o()); 4930 result_mem ->set_req(_slow_path, reset_memory()); 4931 } 4932 4933 // Return the combined state. 4934 set_i_o( _gvn.transform(result_io) ); 4935 set_all_memory( _gvn.transform(result_mem)); 4936 4937 set_result(result_reg, result_val); 4938 return true; 4939 } 4940 4941 //---------------------------inline_native_getClass---------------------------- 4942 // public final native Class<?> java.lang.Object.getClass(); 4943 // 4944 // Build special case code for calls to getClass on an object. 4945 bool LibraryCallKit::inline_native_getClass() { 4946 Node* obj = null_check_receiver(); 4947 if (stopped()) return true; 4948 set_result(load_mirror_from_klass(load_object_klass(obj))); 4949 return true; 4950 } 4951 4952 //-----------------inline_native_Reflection_getCallerClass--------------------- 4953 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4954 // 4955 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4956 // 4957 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4958 // in that it must skip particular security frames and checks for 4959 // caller sensitive methods. 4960 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4961 #ifndef PRODUCT 4962 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4963 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4964 } 4965 #endif 4966 4967 if (!jvms()->has_method()) { 4968 #ifndef PRODUCT 4969 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4970 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4971 } 4972 #endif 4973 return false; 4974 } 4975 4976 // Walk back up the JVM state to find the caller at the required 4977 // depth. 4978 JVMState* caller_jvms = jvms(); 4979 4980 // Cf. JVM_GetCallerClass 4981 // NOTE: Start the loop at depth 1 because the current JVM state does 4982 // not include the Reflection.getCallerClass() frame. 4983 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4984 ciMethod* m = caller_jvms->method(); 4985 switch (n) { 4986 case 0: 4987 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4988 break; 4989 case 1: 4990 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4991 if (!m->caller_sensitive()) { 4992 #ifndef PRODUCT 4993 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4994 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4995 } 4996 #endif 4997 return false; // bail-out; let JVM_GetCallerClass do the work 4998 } 4999 break; 5000 default: 5001 if (!m->is_ignored_by_security_stack_walk()) { 5002 // We have reached the desired frame; return the holder class. 5003 // Acquire method holder as java.lang.Class and push as constant. 5004 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 5005 ciInstance* caller_mirror = caller_klass->java_mirror(); 5006 set_result(makecon(TypeInstPtr::make(caller_mirror))); 5007 5008 #ifndef PRODUCT 5009 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5010 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 5011 tty->print_cr(" JVM state at this point:"); 5012 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5013 ciMethod* m = jvms()->of_depth(i)->method(); 5014 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5015 } 5016 } 5017 #endif 5018 return true; 5019 } 5020 break; 5021 } 5022 } 5023 5024 #ifndef PRODUCT 5025 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5026 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 5027 tty->print_cr(" JVM state at this point:"); 5028 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5029 ciMethod* m = jvms()->of_depth(i)->method(); 5030 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5031 } 5032 } 5033 #endif 5034 5035 return false; // bail-out; let JVM_GetCallerClass do the work 5036 } 5037 5038 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 5039 Node* arg = argument(0); 5040 Node* result = nullptr; 5041 5042 switch (id) { 5043 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 5044 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 5045 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 5046 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 5047 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 5048 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 5049 5050 case vmIntrinsics::_doubleToLongBits: { 5051 // two paths (plus control) merge in a wood 5052 RegionNode *r = new RegionNode(3); 5053 Node *phi = new PhiNode(r, TypeLong::LONG); 5054 5055 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 5056 // Build the boolean node 5057 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5058 5059 // Branch either way. 5060 // NaN case is less traveled, which makes all the difference. 5061 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5062 Node *opt_isnan = _gvn.transform(ifisnan); 5063 assert( opt_isnan->is_If(), "Expect an IfNode"); 5064 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5065 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5066 5067 set_control(iftrue); 5068 5069 static const jlong nan_bits = CONST64(0x7ff8000000000000); 5070 Node *slow_result = longcon(nan_bits); // return NaN 5071 phi->init_req(1, _gvn.transform( slow_result )); 5072 r->init_req(1, iftrue); 5073 5074 // Else fall through 5075 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5076 set_control(iffalse); 5077 5078 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 5079 r->init_req(2, iffalse); 5080 5081 // Post merge 5082 set_control(_gvn.transform(r)); 5083 record_for_igvn(r); 5084 5085 C->set_has_split_ifs(true); // Has chance for split-if optimization 5086 result = phi; 5087 assert(result->bottom_type()->isa_long(), "must be"); 5088 break; 5089 } 5090 5091 case vmIntrinsics::_floatToIntBits: { 5092 // two paths (plus control) merge in a wood 5093 RegionNode *r = new RegionNode(3); 5094 Node *phi = new PhiNode(r, TypeInt::INT); 5095 5096 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5097 // Build the boolean node 5098 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5099 5100 // Branch either way. 5101 // NaN case is less traveled, which makes all the difference. 5102 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5103 Node *opt_isnan = _gvn.transform(ifisnan); 5104 assert( opt_isnan->is_If(), "Expect an IfNode"); 5105 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5106 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5107 5108 set_control(iftrue); 5109 5110 static const jint nan_bits = 0x7fc00000; 5111 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5112 phi->init_req(1, _gvn.transform( slow_result )); 5113 r->init_req(1, iftrue); 5114 5115 // Else fall through 5116 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5117 set_control(iffalse); 5118 5119 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5120 r->init_req(2, iffalse); 5121 5122 // Post merge 5123 set_control(_gvn.transform(r)); 5124 record_for_igvn(r); 5125 5126 C->set_has_split_ifs(true); // Has chance for split-if optimization 5127 result = phi; 5128 assert(result->bottom_type()->isa_int(), "must be"); 5129 break; 5130 } 5131 5132 default: 5133 fatal_unexpected_iid(id); 5134 break; 5135 } 5136 set_result(_gvn.transform(result)); 5137 return true; 5138 } 5139 5140 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5141 Node* arg = argument(0); 5142 Node* result = nullptr; 5143 5144 switch (id) { 5145 case vmIntrinsics::_floatIsInfinite: 5146 result = new IsInfiniteFNode(arg); 5147 break; 5148 case vmIntrinsics::_floatIsFinite: 5149 result = new IsFiniteFNode(arg); 5150 break; 5151 case vmIntrinsics::_doubleIsInfinite: 5152 result = new IsInfiniteDNode(arg); 5153 break; 5154 case vmIntrinsics::_doubleIsFinite: 5155 result = new IsFiniteDNode(arg); 5156 break; 5157 default: 5158 fatal_unexpected_iid(id); 5159 break; 5160 } 5161 set_result(_gvn.transform(result)); 5162 return true; 5163 } 5164 5165 //----------------------inline_unsafe_copyMemory------------------------- 5166 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5167 5168 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5169 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5170 const Type* base_t = gvn.type(base); 5171 5172 bool in_native = (base_t == TypePtr::NULL_PTR); 5173 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5174 bool is_mixed = !in_heap && !in_native; 5175 5176 if (is_mixed) { 5177 return true; // mixed accesses can touch both on-heap and off-heap memory 5178 } 5179 if (in_heap) { 5180 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5181 if (!is_prim_array) { 5182 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5183 // there's not enough type information available to determine proper memory slice for it. 5184 return true; 5185 } 5186 } 5187 return false; 5188 } 5189 5190 bool LibraryCallKit::inline_unsafe_copyMemory() { 5191 if (callee()->is_static()) return false; // caller must have the capability! 5192 null_check_receiver(); // null-check receiver 5193 if (stopped()) return true; 5194 5195 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5196 5197 Node* src_base = argument(1); // type: oop 5198 Node* src_off = ConvL2X(argument(2)); // type: long 5199 Node* dst_base = argument(4); // type: oop 5200 Node* dst_off = ConvL2X(argument(5)); // type: long 5201 Node* size = ConvL2X(argument(7)); // type: long 5202 5203 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5204 "fieldOffset must be byte-scaled"); 5205 5206 Node* src_addr = make_unsafe_address(src_base, src_off); 5207 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5208 5209 Node* thread = _gvn.transform(new ThreadLocalNode()); 5210 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5211 BasicType doing_unsafe_access_bt = T_BYTE; 5212 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5213 5214 // update volatile field 5215 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5216 5217 int flags = RC_LEAF | RC_NO_FP; 5218 5219 const TypePtr* dst_type = TypePtr::BOTTOM; 5220 5221 // Adjust memory effects of the runtime call based on input values. 5222 if (!has_wide_mem(_gvn, src_addr, src_base) && 5223 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5224 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5225 5226 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5227 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5228 flags |= RC_NARROW_MEM; // narrow in memory 5229 } 5230 } 5231 5232 // Call it. Note that the length argument is not scaled. 5233 make_runtime_call(flags, 5234 OptoRuntime::fast_arraycopy_Type(), 5235 StubRoutines::unsafe_arraycopy(), 5236 "unsafe_arraycopy", 5237 dst_type, 5238 src_addr, dst_addr, size XTOP); 5239 5240 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5241 5242 return true; 5243 } 5244 5245 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5246 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5247 bool LibraryCallKit::inline_unsafe_setMemory() { 5248 if (callee()->is_static()) return false; // caller must have the capability! 5249 null_check_receiver(); // null-check receiver 5250 if (stopped()) return true; 5251 5252 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5253 5254 Node* dst_base = argument(1); // type: oop 5255 Node* dst_off = ConvL2X(argument(2)); // type: long 5256 Node* size = ConvL2X(argument(4)); // type: long 5257 Node* byte = argument(6); // type: byte 5258 5259 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5260 "fieldOffset must be byte-scaled"); 5261 5262 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5263 5264 Node* thread = _gvn.transform(new ThreadLocalNode()); 5265 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5266 BasicType doing_unsafe_access_bt = T_BYTE; 5267 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5268 5269 // update volatile field 5270 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5271 5272 int flags = RC_LEAF | RC_NO_FP; 5273 5274 const TypePtr* dst_type = TypePtr::BOTTOM; 5275 5276 // Adjust memory effects of the runtime call based on input values. 5277 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5278 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5279 5280 flags |= RC_NARROW_MEM; // narrow in memory 5281 } 5282 5283 // Call it. Note that the length argument is not scaled. 5284 make_runtime_call(flags, 5285 OptoRuntime::unsafe_setmemory_Type(), 5286 StubRoutines::unsafe_setmemory(), 5287 "unsafe_setmemory", 5288 dst_type, 5289 dst_addr, size XTOP, byte); 5290 5291 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5292 5293 return true; 5294 } 5295 5296 #undef XTOP 5297 5298 //------------------------clone_coping----------------------------------- 5299 // Helper function for inline_native_clone. 5300 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5301 assert(obj_size != nullptr, ""); 5302 Node* raw_obj = alloc_obj->in(1); 5303 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5304 5305 AllocateNode* alloc = nullptr; 5306 if (ReduceBulkZeroing && 5307 // If we are implementing an array clone without knowing its source type 5308 // (can happen when compiling the array-guarded branch of a reflective 5309 // Object.clone() invocation), initialize the array within the allocation. 5310 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5311 // to a runtime clone call that assumes fully initialized source arrays. 5312 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5313 // We will be completely responsible for initializing this object - 5314 // mark Initialize node as complete. 5315 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5316 // The object was just allocated - there should be no any stores! 5317 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5318 // Mark as complete_with_arraycopy so that on AllocateNode 5319 // expansion, we know this AllocateNode is initialized by an array 5320 // copy and a StoreStore barrier exists after the array copy. 5321 alloc->initialization()->set_complete_with_arraycopy(); 5322 } 5323 5324 Node* size = _gvn.transform(obj_size); 5325 access_clone(obj, alloc_obj, size, is_array); 5326 5327 // Do not let reads from the cloned object float above the arraycopy. 5328 if (alloc != nullptr) { 5329 // Do not let stores that initialize this object be reordered with 5330 // a subsequent store that would make this object accessible by 5331 // other threads. 5332 // Record what AllocateNode this StoreStore protects so that 5333 // escape analysis can go from the MemBarStoreStoreNode to the 5334 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5335 // based on the escape status of the AllocateNode. 5336 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5337 } else { 5338 insert_mem_bar(Op_MemBarCPUOrder); 5339 } 5340 } 5341 5342 //------------------------inline_native_clone---------------------------- 5343 // protected native Object java.lang.Object.clone(); 5344 // 5345 // Here are the simple edge cases: 5346 // null receiver => normal trap 5347 // virtual and clone was overridden => slow path to out-of-line clone 5348 // not cloneable or finalizer => slow path to out-of-line Object.clone 5349 // 5350 // The general case has two steps, allocation and copying. 5351 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5352 // 5353 // Copying also has two cases, oop arrays and everything else. 5354 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5355 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5356 // 5357 // These steps fold up nicely if and when the cloned object's klass 5358 // can be sharply typed as an object array, a type array, or an instance. 5359 // 5360 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5361 PhiNode* result_val; 5362 5363 // Set the reexecute bit for the interpreter to reexecute 5364 // the bytecode that invokes Object.clone if deoptimization happens. 5365 { PreserveReexecuteState preexecs(this); 5366 jvms()->set_should_reexecute(true); 5367 5368 Node* obj = null_check_receiver(); 5369 if (stopped()) return true; 5370 5371 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5372 5373 // If we are going to clone an instance, we need its exact type to 5374 // know the number and types of fields to convert the clone to 5375 // loads/stores. Maybe a speculative type can help us. 5376 if (!obj_type->klass_is_exact() && 5377 obj_type->speculative_type() != nullptr && 5378 obj_type->speculative_type()->is_instance_klass()) { 5379 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5380 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5381 !spec_ik->has_injected_fields()) { 5382 if (!obj_type->isa_instptr() || 5383 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5384 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5385 } 5386 } 5387 } 5388 5389 // Conservatively insert a memory barrier on all memory slices. 5390 // Do not let writes into the original float below the clone. 5391 insert_mem_bar(Op_MemBarCPUOrder); 5392 5393 // paths into result_reg: 5394 enum { 5395 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5396 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5397 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5398 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5399 PATH_LIMIT 5400 }; 5401 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5402 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5403 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5404 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5405 record_for_igvn(result_reg); 5406 5407 Node* obj_klass = load_object_klass(obj); 5408 Node* array_obj = obj; 5409 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5410 if (array_ctl != nullptr) { 5411 // It's an array. 5412 PreserveJVMState pjvms(this); 5413 set_control(array_ctl); 5414 Node* obj_length = load_array_length(array_obj); 5415 Node* array_size = nullptr; // Size of the array without object alignment padding. 5416 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5417 5418 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5419 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5420 // If it is an oop array, it requires very special treatment, 5421 // because gc barriers are required when accessing the array. 5422 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5423 if (is_obja != nullptr) { 5424 PreserveJVMState pjvms2(this); 5425 set_control(is_obja); 5426 // Generate a direct call to the right arraycopy function(s). 5427 // Clones are always tightly coupled. 5428 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5429 ac->set_clone_oop_array(); 5430 Node* n = _gvn.transform(ac); 5431 assert(n == ac, "cannot disappear"); 5432 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5433 5434 result_reg->init_req(_objArray_path, control()); 5435 result_val->init_req(_objArray_path, alloc_obj); 5436 result_i_o ->set_req(_objArray_path, i_o()); 5437 result_mem ->set_req(_objArray_path, reset_memory()); 5438 } 5439 } 5440 // Otherwise, there are no barriers to worry about. 5441 // (We can dispense with card marks if we know the allocation 5442 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5443 // causes the non-eden paths to take compensating steps to 5444 // simulate a fresh allocation, so that no further 5445 // card marks are required in compiled code to initialize 5446 // the object.) 5447 5448 if (!stopped()) { 5449 copy_to_clone(array_obj, alloc_obj, array_size, true); 5450 5451 // Present the results of the copy. 5452 result_reg->init_req(_array_path, control()); 5453 result_val->init_req(_array_path, alloc_obj); 5454 result_i_o ->set_req(_array_path, i_o()); 5455 result_mem ->set_req(_array_path, reset_memory()); 5456 } 5457 } 5458 5459 // We only go to the instance fast case code if we pass a number of guards. 5460 // The paths which do not pass are accumulated in the slow_region. 5461 RegionNode* slow_region = new RegionNode(1); 5462 record_for_igvn(slow_region); 5463 if (!stopped()) { 5464 // It's an instance (we did array above). Make the slow-path tests. 5465 // If this is a virtual call, we generate a funny guard. We grab 5466 // the vtable entry corresponding to clone() from the target object. 5467 // If the target method which we are calling happens to be the 5468 // Object clone() method, we pass the guard. We do not need this 5469 // guard for non-virtual calls; the caller is known to be the native 5470 // Object clone(). 5471 if (is_virtual) { 5472 generate_virtual_guard(obj_klass, slow_region); 5473 } 5474 5475 // The object must be easily cloneable and must not have a finalizer. 5476 // Both of these conditions may be checked in a single test. 5477 // We could optimize the test further, but we don't care. 5478 generate_misc_flags_guard(obj_klass, 5479 // Test both conditions: 5480 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5481 // Must be cloneable but not finalizer: 5482 KlassFlags::_misc_is_cloneable_fast, 5483 slow_region); 5484 } 5485 5486 if (!stopped()) { 5487 // It's an instance, and it passed the slow-path tests. 5488 PreserveJVMState pjvms(this); 5489 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5490 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5491 // is reexecuted if deoptimization occurs and there could be problems when merging 5492 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5493 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5494 5495 copy_to_clone(obj, alloc_obj, obj_size, false); 5496 5497 // Present the results of the slow call. 5498 result_reg->init_req(_instance_path, control()); 5499 result_val->init_req(_instance_path, alloc_obj); 5500 result_i_o ->set_req(_instance_path, i_o()); 5501 result_mem ->set_req(_instance_path, reset_memory()); 5502 } 5503 5504 // Generate code for the slow case. We make a call to clone(). 5505 set_control(_gvn.transform(slow_region)); 5506 if (!stopped()) { 5507 PreserveJVMState pjvms(this); 5508 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5509 // We need to deoptimize on exception (see comment above) 5510 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5511 // this->control() comes from set_results_for_java_call 5512 result_reg->init_req(_slow_path, control()); 5513 result_val->init_req(_slow_path, slow_result); 5514 result_i_o ->set_req(_slow_path, i_o()); 5515 result_mem ->set_req(_slow_path, reset_memory()); 5516 } 5517 5518 // Return the combined state. 5519 set_control( _gvn.transform(result_reg)); 5520 set_i_o( _gvn.transform(result_i_o)); 5521 set_all_memory( _gvn.transform(result_mem)); 5522 } // original reexecute is set back here 5523 5524 set_result(_gvn.transform(result_val)); 5525 return true; 5526 } 5527 5528 // If we have a tightly coupled allocation, the arraycopy may take care 5529 // of the array initialization. If one of the guards we insert between 5530 // the allocation and the arraycopy causes a deoptimization, an 5531 // uninitialized array will escape the compiled method. To prevent that 5532 // we set the JVM state for uncommon traps between the allocation and 5533 // the arraycopy to the state before the allocation so, in case of 5534 // deoptimization, we'll reexecute the allocation and the 5535 // initialization. 5536 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5537 if (alloc != nullptr) { 5538 ciMethod* trap_method = alloc->jvms()->method(); 5539 int trap_bci = alloc->jvms()->bci(); 5540 5541 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5542 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5543 // Make sure there's no store between the allocation and the 5544 // arraycopy otherwise visible side effects could be rexecuted 5545 // in case of deoptimization and cause incorrect execution. 5546 bool no_interfering_store = true; 5547 Node* mem = alloc->in(TypeFunc::Memory); 5548 if (mem->is_MergeMem()) { 5549 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5550 Node* n = mms.memory(); 5551 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5552 assert(n->is_Store(), "what else?"); 5553 no_interfering_store = false; 5554 break; 5555 } 5556 } 5557 } else { 5558 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5559 Node* n = mms.memory(); 5560 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5561 assert(n->is_Store(), "what else?"); 5562 no_interfering_store = false; 5563 break; 5564 } 5565 } 5566 } 5567 5568 if (no_interfering_store) { 5569 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5570 5571 JVMState* saved_jvms = jvms(); 5572 saved_reexecute_sp = _reexecute_sp; 5573 5574 set_jvms(sfpt->jvms()); 5575 _reexecute_sp = jvms()->sp(); 5576 5577 return saved_jvms; 5578 } 5579 } 5580 } 5581 return nullptr; 5582 } 5583 5584 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5585 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5586 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5587 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5588 uint size = alloc->req(); 5589 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5590 old_jvms->set_map(sfpt); 5591 for (uint i = 0; i < size; i++) { 5592 sfpt->init_req(i, alloc->in(i)); 5593 } 5594 // re-push array length for deoptimization 5595 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5596 old_jvms->set_sp(old_jvms->sp()+1); 5597 old_jvms->set_monoff(old_jvms->monoff()+1); 5598 old_jvms->set_scloff(old_jvms->scloff()+1); 5599 old_jvms->set_endoff(old_jvms->endoff()+1); 5600 old_jvms->set_should_reexecute(true); 5601 5602 sfpt->set_i_o(map()->i_o()); 5603 sfpt->set_memory(map()->memory()); 5604 sfpt->set_control(map()->control()); 5605 return sfpt; 5606 } 5607 5608 // In case of a deoptimization, we restart execution at the 5609 // allocation, allocating a new array. We would leave an uninitialized 5610 // array in the heap that GCs wouldn't expect. Move the allocation 5611 // after the traps so we don't allocate the array if we 5612 // deoptimize. This is possible because tightly_coupled_allocation() 5613 // guarantees there's no observer of the allocated array at this point 5614 // and the control flow is simple enough. 5615 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5616 int saved_reexecute_sp, uint new_idx) { 5617 if (saved_jvms_before_guards != nullptr && !stopped()) { 5618 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5619 5620 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5621 // restore JVM state to the state at the arraycopy 5622 saved_jvms_before_guards->map()->set_control(map()->control()); 5623 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5624 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5625 // If we've improved the types of some nodes (null check) while 5626 // emitting the guards, propagate them to the current state 5627 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5628 set_jvms(saved_jvms_before_guards); 5629 _reexecute_sp = saved_reexecute_sp; 5630 5631 // Remove the allocation from above the guards 5632 CallProjections callprojs; 5633 alloc->extract_projections(&callprojs, true); 5634 InitializeNode* init = alloc->initialization(); 5635 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5636 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5637 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5638 5639 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5640 // the allocation (i.e. is only valid if the allocation succeeds): 5641 // 1) replace CastIINode with AllocateArrayNode's length here 5642 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5643 // 5644 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5645 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5646 Node* init_control = init->proj_out(TypeFunc::Control); 5647 Node* alloc_length = alloc->Ideal_length(); 5648 #ifdef ASSERT 5649 Node* prev_cast = nullptr; 5650 #endif 5651 for (uint i = 0; i < init_control->outcnt(); i++) { 5652 Node* init_out = init_control->raw_out(i); 5653 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5654 #ifdef ASSERT 5655 if (prev_cast == nullptr) { 5656 prev_cast = init_out; 5657 } else { 5658 if (prev_cast->cmp(*init_out) == false) { 5659 prev_cast->dump(); 5660 init_out->dump(); 5661 assert(false, "not equal CastIINode"); 5662 } 5663 } 5664 #endif 5665 C->gvn_replace_by(init_out, alloc_length); 5666 } 5667 } 5668 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5669 5670 // move the allocation here (after the guards) 5671 _gvn.hash_delete(alloc); 5672 alloc->set_req(TypeFunc::Control, control()); 5673 alloc->set_req(TypeFunc::I_O, i_o()); 5674 Node *mem = reset_memory(); 5675 set_all_memory(mem); 5676 alloc->set_req(TypeFunc::Memory, mem); 5677 set_control(init->proj_out_or_null(TypeFunc::Control)); 5678 set_i_o(callprojs.fallthrough_ioproj); 5679 5680 // Update memory as done in GraphKit::set_output_for_allocation() 5681 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5682 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5683 if (ary_type->isa_aryptr() && length_type != nullptr) { 5684 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5685 } 5686 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5687 int elemidx = C->get_alias_index(telemref); 5688 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5689 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5690 5691 Node* allocx = _gvn.transform(alloc); 5692 assert(allocx == alloc, "where has the allocation gone?"); 5693 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5694 5695 _gvn.hash_delete(dest); 5696 dest->set_req(0, control()); 5697 Node* destx = _gvn.transform(dest); 5698 assert(destx == dest, "where has the allocation result gone?"); 5699 5700 array_ideal_length(alloc, ary_type, true); 5701 } 5702 } 5703 5704 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5705 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5706 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5707 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5708 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5709 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5710 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5711 JVMState* saved_jvms_before_guards) { 5712 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5713 // There is at least one unrelated uncommon trap which needs to be replaced. 5714 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5715 5716 JVMState* saved_jvms = jvms(); 5717 const int saved_reexecute_sp = _reexecute_sp; 5718 set_jvms(sfpt->jvms()); 5719 _reexecute_sp = jvms()->sp(); 5720 5721 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5722 5723 // Restore state 5724 set_jvms(saved_jvms); 5725 _reexecute_sp = saved_reexecute_sp; 5726 } 5727 } 5728 5729 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5730 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5731 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5732 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5733 while (if_proj->is_IfProj()) { 5734 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5735 if (uncommon_trap != nullptr) { 5736 create_new_uncommon_trap(uncommon_trap); 5737 } 5738 assert(if_proj->in(0)->is_If(), "must be If"); 5739 if_proj = if_proj->in(0)->in(0); 5740 } 5741 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5742 "must have reached control projection of init node"); 5743 } 5744 5745 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5746 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5747 assert(trap_request != 0, "no valid UCT trap request"); 5748 PreserveJVMState pjvms(this); 5749 set_control(uncommon_trap_call->in(0)); 5750 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5751 Deoptimization::trap_request_action(trap_request)); 5752 assert(stopped(), "Should be stopped"); 5753 _gvn.hash_delete(uncommon_trap_call); 5754 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5755 } 5756 5757 // Common checks for array sorting intrinsics arguments. 5758 // Returns `true` if checks passed. 5759 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5760 // check address of the class 5761 if (elementType == nullptr || elementType->is_top()) { 5762 return false; // dead path 5763 } 5764 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5765 if (elem_klass == nullptr) { 5766 return false; // dead path 5767 } 5768 // java_mirror_type() returns non-null for compile-time Class constants only 5769 ciType* elem_type = elem_klass->java_mirror_type(); 5770 if (elem_type == nullptr) { 5771 return false; 5772 } 5773 bt = elem_type->basic_type(); 5774 // Disable the intrinsic if the CPU does not support SIMD sort 5775 if (!Matcher::supports_simd_sort(bt)) { 5776 return false; 5777 } 5778 // check address of the array 5779 if (obj == nullptr || obj->is_top()) { 5780 return false; // dead path 5781 } 5782 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5783 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5784 return false; // failed input validation 5785 } 5786 return true; 5787 } 5788 5789 //------------------------------inline_array_partition----------------------- 5790 bool LibraryCallKit::inline_array_partition() { 5791 address stubAddr = StubRoutines::select_array_partition_function(); 5792 if (stubAddr == nullptr) { 5793 return false; // Intrinsic's stub is not implemented on this platform 5794 } 5795 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5796 5797 // no receiver because it is a static method 5798 Node* elementType = argument(0); 5799 Node* obj = argument(1); 5800 Node* offset = argument(2); // long 5801 Node* fromIndex = argument(4); 5802 Node* toIndex = argument(5); 5803 Node* indexPivot1 = argument(6); 5804 Node* indexPivot2 = argument(7); 5805 // PartitionOperation: argument(8) is ignored 5806 5807 Node* pivotIndices = nullptr; 5808 BasicType bt = T_ILLEGAL; 5809 5810 if (!check_array_sort_arguments(elementType, obj, bt)) { 5811 return false; 5812 } 5813 null_check(obj); 5814 // If obj is dead, only null-path is taken. 5815 if (stopped()) { 5816 return true; 5817 } 5818 // Set the original stack and the reexecute bit for the interpreter to reexecute 5819 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5820 { PreserveReexecuteState preexecs(this); 5821 jvms()->set_should_reexecute(true); 5822 5823 Node* obj_adr = make_unsafe_address(obj, offset); 5824 5825 // create the pivotIndices array of type int and size = 2 5826 Node* size = intcon(2); 5827 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5828 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5829 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5830 guarantee(alloc != nullptr, "created above"); 5831 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5832 5833 // pass the basic type enum to the stub 5834 Node* elemType = intcon(bt); 5835 5836 // Call the stub 5837 const char *stubName = "array_partition_stub"; 5838 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5839 stubAddr, stubName, TypePtr::BOTTOM, 5840 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5841 indexPivot1, indexPivot2); 5842 5843 } // original reexecute is set back here 5844 5845 if (!stopped()) { 5846 set_result(pivotIndices); 5847 } 5848 5849 return true; 5850 } 5851 5852 5853 //------------------------------inline_array_sort----------------------- 5854 bool LibraryCallKit::inline_array_sort() { 5855 address stubAddr = StubRoutines::select_arraysort_function(); 5856 if (stubAddr == nullptr) { 5857 return false; // Intrinsic's stub is not implemented on this platform 5858 } 5859 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5860 5861 // no receiver because it is a static method 5862 Node* elementType = argument(0); 5863 Node* obj = argument(1); 5864 Node* offset = argument(2); // long 5865 Node* fromIndex = argument(4); 5866 Node* toIndex = argument(5); 5867 // SortOperation: argument(6) is ignored 5868 5869 BasicType bt = T_ILLEGAL; 5870 5871 if (!check_array_sort_arguments(elementType, obj, bt)) { 5872 return false; 5873 } 5874 null_check(obj); 5875 // If obj is dead, only null-path is taken. 5876 if (stopped()) { 5877 return true; 5878 } 5879 Node* obj_adr = make_unsafe_address(obj, offset); 5880 5881 // pass the basic type enum to the stub 5882 Node* elemType = intcon(bt); 5883 5884 // Call the stub. 5885 const char *stubName = "arraysort_stub"; 5886 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5887 stubAddr, stubName, TypePtr::BOTTOM, 5888 obj_adr, elemType, fromIndex, toIndex); 5889 5890 return true; 5891 } 5892 5893 5894 //------------------------------inline_arraycopy----------------------- 5895 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5896 // Object dest, int destPos, 5897 // int length); 5898 bool LibraryCallKit::inline_arraycopy() { 5899 // Get the arguments. 5900 Node* src = argument(0); // type: oop 5901 Node* src_offset = argument(1); // type: int 5902 Node* dest = argument(2); // type: oop 5903 Node* dest_offset = argument(3); // type: int 5904 Node* length = argument(4); // type: int 5905 5906 uint new_idx = C->unique(); 5907 5908 // Check for allocation before we add nodes that would confuse 5909 // tightly_coupled_allocation() 5910 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5911 5912 int saved_reexecute_sp = -1; 5913 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5914 // See arraycopy_restore_alloc_state() comment 5915 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5916 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5917 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5918 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5919 5920 // The following tests must be performed 5921 // (1) src and dest are arrays. 5922 // (2) src and dest arrays must have elements of the same BasicType 5923 // (3) src and dest must not be null. 5924 // (4) src_offset must not be negative. 5925 // (5) dest_offset must not be negative. 5926 // (6) length must not be negative. 5927 // (7) src_offset + length must not exceed length of src. 5928 // (8) dest_offset + length must not exceed length of dest. 5929 // (9) each element of an oop array must be assignable 5930 5931 // (3) src and dest must not be null. 5932 // always do this here because we need the JVM state for uncommon traps 5933 Node* null_ctl = top(); 5934 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5935 assert(null_ctl->is_top(), "no null control here"); 5936 dest = null_check(dest, T_ARRAY); 5937 5938 if (!can_emit_guards) { 5939 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5940 // guards but the arraycopy node could still take advantage of a 5941 // tightly allocated allocation. tightly_coupled_allocation() is 5942 // called again to make sure it takes the null check above into 5943 // account: the null check is mandatory and if it caused an 5944 // uncommon trap to be emitted then the allocation can't be 5945 // considered tightly coupled in this context. 5946 alloc = tightly_coupled_allocation(dest); 5947 } 5948 5949 bool validated = false; 5950 5951 const Type* src_type = _gvn.type(src); 5952 const Type* dest_type = _gvn.type(dest); 5953 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5954 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5955 5956 // Do we have the type of src? 5957 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5958 // Do we have the type of dest? 5959 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5960 // Is the type for src from speculation? 5961 bool src_spec = false; 5962 // Is the type for dest from speculation? 5963 bool dest_spec = false; 5964 5965 if ((!has_src || !has_dest) && can_emit_guards) { 5966 // We don't have sufficient type information, let's see if 5967 // speculative types can help. We need to have types for both src 5968 // and dest so that it pays off. 5969 5970 // Do we already have or could we have type information for src 5971 bool could_have_src = has_src; 5972 // Do we already have or could we have type information for dest 5973 bool could_have_dest = has_dest; 5974 5975 ciKlass* src_k = nullptr; 5976 if (!has_src) { 5977 src_k = src_type->speculative_type_not_null(); 5978 if (src_k != nullptr && src_k->is_array_klass()) { 5979 could_have_src = true; 5980 } 5981 } 5982 5983 ciKlass* dest_k = nullptr; 5984 if (!has_dest) { 5985 dest_k = dest_type->speculative_type_not_null(); 5986 if (dest_k != nullptr && dest_k->is_array_klass()) { 5987 could_have_dest = true; 5988 } 5989 } 5990 5991 if (could_have_src && could_have_dest) { 5992 // This is going to pay off so emit the required guards 5993 if (!has_src) { 5994 src = maybe_cast_profiled_obj(src, src_k, true); 5995 src_type = _gvn.type(src); 5996 top_src = src_type->isa_aryptr(); 5997 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5998 src_spec = true; 5999 } 6000 if (!has_dest) { 6001 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6002 dest_type = _gvn.type(dest); 6003 top_dest = dest_type->isa_aryptr(); 6004 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6005 dest_spec = true; 6006 } 6007 } 6008 } 6009 6010 if (has_src && has_dest && can_emit_guards) { 6011 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 6012 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 6013 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 6014 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 6015 6016 if (src_elem == dest_elem && src_elem == T_OBJECT) { 6017 // If both arrays are object arrays then having the exact types 6018 // for both will remove the need for a subtype check at runtime 6019 // before the call and may make it possible to pick a faster copy 6020 // routine (without a subtype check on every element) 6021 // Do we have the exact type of src? 6022 bool could_have_src = src_spec; 6023 // Do we have the exact type of dest? 6024 bool could_have_dest = dest_spec; 6025 ciKlass* src_k = nullptr; 6026 ciKlass* dest_k = nullptr; 6027 if (!src_spec) { 6028 src_k = src_type->speculative_type_not_null(); 6029 if (src_k != nullptr && src_k->is_array_klass()) { 6030 could_have_src = true; 6031 } 6032 } 6033 if (!dest_spec) { 6034 dest_k = dest_type->speculative_type_not_null(); 6035 if (dest_k != nullptr && dest_k->is_array_klass()) { 6036 could_have_dest = true; 6037 } 6038 } 6039 if (could_have_src && could_have_dest) { 6040 // If we can have both exact types, emit the missing guards 6041 if (could_have_src && !src_spec) { 6042 src = maybe_cast_profiled_obj(src, src_k, true); 6043 } 6044 if (could_have_dest && !dest_spec) { 6045 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6046 } 6047 } 6048 } 6049 } 6050 6051 ciMethod* trap_method = method(); 6052 int trap_bci = bci(); 6053 if (saved_jvms_before_guards != nullptr) { 6054 trap_method = alloc->jvms()->method(); 6055 trap_bci = alloc->jvms()->bci(); 6056 } 6057 6058 bool negative_length_guard_generated = false; 6059 6060 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 6061 can_emit_guards && 6062 !src->is_top() && !dest->is_top()) { 6063 // validate arguments: enables transformation the ArrayCopyNode 6064 validated = true; 6065 6066 RegionNode* slow_region = new RegionNode(1); 6067 record_for_igvn(slow_region); 6068 6069 // (1) src and dest are arrays. 6070 generate_non_array_guard(load_object_klass(src), slow_region, &src); 6071 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 6072 6073 // (2) src and dest arrays must have elements of the same BasicType 6074 // done at macro expansion or at Ideal transformation time 6075 6076 // (4) src_offset must not be negative. 6077 generate_negative_guard(src_offset, slow_region); 6078 6079 // (5) dest_offset must not be negative. 6080 generate_negative_guard(dest_offset, slow_region); 6081 6082 // (7) src_offset + length must not exceed length of src. 6083 generate_limit_guard(src_offset, length, 6084 load_array_length(src), 6085 slow_region); 6086 6087 // (8) dest_offset + length must not exceed length of dest. 6088 generate_limit_guard(dest_offset, length, 6089 load_array_length(dest), 6090 slow_region); 6091 6092 // (6) length must not be negative. 6093 // This is also checked in generate_arraycopy() during macro expansion, but 6094 // we also have to check it here for the case where the ArrayCopyNode will 6095 // be eliminated by Escape Analysis. 6096 if (EliminateAllocations) { 6097 generate_negative_guard(length, slow_region); 6098 negative_length_guard_generated = true; 6099 } 6100 6101 // (9) each element of an oop array must be assignable 6102 Node* dest_klass = load_object_klass(dest); 6103 if (src != dest) { 6104 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 6105 6106 if (not_subtype_ctrl != top()) { 6107 PreserveJVMState pjvms(this); 6108 set_control(not_subtype_ctrl); 6109 uncommon_trap(Deoptimization::Reason_intrinsic, 6110 Deoptimization::Action_make_not_entrant); 6111 assert(stopped(), "Should be stopped"); 6112 } 6113 } 6114 { 6115 PreserveJVMState pjvms(this); 6116 set_control(_gvn.transform(slow_region)); 6117 uncommon_trap(Deoptimization::Reason_intrinsic, 6118 Deoptimization::Action_make_not_entrant); 6119 assert(stopped(), "Should be stopped"); 6120 } 6121 6122 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6123 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6124 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6125 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6126 } 6127 6128 if (stopped()) { 6129 return true; 6130 } 6131 6132 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6133 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6134 // so the compiler has a chance to eliminate them: during macro expansion, 6135 // we have to set their control (CastPP nodes are eliminated). 6136 load_object_klass(src), load_object_klass(dest), 6137 load_array_length(src), load_array_length(dest)); 6138 6139 ac->set_arraycopy(validated); 6140 6141 Node* n = _gvn.transform(ac); 6142 if (n == ac) { 6143 ac->connect_outputs(this); 6144 } else { 6145 assert(validated, "shouldn't transform if all arguments not validated"); 6146 set_all_memory(n); 6147 } 6148 clear_upper_avx(); 6149 6150 6151 return true; 6152 } 6153 6154 6155 // Helper function which determines if an arraycopy immediately follows 6156 // an allocation, with no intervening tests or other escapes for the object. 6157 AllocateArrayNode* 6158 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6159 if (stopped()) return nullptr; // no fast path 6160 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6161 6162 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6163 if (alloc == nullptr) return nullptr; 6164 6165 Node* rawmem = memory(Compile::AliasIdxRaw); 6166 // Is the allocation's memory state untouched? 6167 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6168 // Bail out if there have been raw-memory effects since the allocation. 6169 // (Example: There might have been a call or safepoint.) 6170 return nullptr; 6171 } 6172 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6173 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6174 return nullptr; 6175 } 6176 6177 // There must be no unexpected observers of this allocation. 6178 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6179 Node* obs = ptr->fast_out(i); 6180 if (obs != this->map()) { 6181 return nullptr; 6182 } 6183 } 6184 6185 // This arraycopy must unconditionally follow the allocation of the ptr. 6186 Node* alloc_ctl = ptr->in(0); 6187 Node* ctl = control(); 6188 while (ctl != alloc_ctl) { 6189 // There may be guards which feed into the slow_region. 6190 // Any other control flow means that we might not get a chance 6191 // to finish initializing the allocated object. 6192 // Various low-level checks bottom out in uncommon traps. These 6193 // are considered safe since we've already checked above that 6194 // there is no unexpected observer of this allocation. 6195 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6196 assert(ctl->in(0)->is_If(), "must be If"); 6197 ctl = ctl->in(0)->in(0); 6198 } else { 6199 return nullptr; 6200 } 6201 } 6202 6203 // If we get this far, we have an allocation which immediately 6204 // precedes the arraycopy, and we can take over zeroing the new object. 6205 // The arraycopy will finish the initialization, and provide 6206 // a new control state to which we will anchor the destination pointer. 6207 6208 return alloc; 6209 } 6210 6211 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6212 if (node->is_IfProj()) { 6213 Node* other_proj = node->as_IfProj()->other_if_proj(); 6214 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6215 Node* obs = other_proj->fast_out(j); 6216 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6217 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6218 return obs->as_CallStaticJava(); 6219 } 6220 } 6221 } 6222 return nullptr; 6223 } 6224 6225 //-------------inline_encodeISOArray----------------------------------- 6226 // encode char[] to byte[] in ISO_8859_1 or ASCII 6227 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6228 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6229 // no receiver since it is static method 6230 Node *src = argument(0); 6231 Node *src_offset = argument(1); 6232 Node *dst = argument(2); 6233 Node *dst_offset = argument(3); 6234 Node *length = argument(4); 6235 6236 src = must_be_not_null(src, true); 6237 dst = must_be_not_null(dst, true); 6238 6239 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6240 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6241 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6242 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6243 // failed array check 6244 return false; 6245 } 6246 6247 // Figure out the size and type of the elements we will be copying. 6248 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6249 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6250 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6251 return false; 6252 } 6253 6254 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6255 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6256 // 'src_start' points to src array + scaled offset 6257 // 'dst_start' points to dst array + scaled offset 6258 6259 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6260 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6261 enc = _gvn.transform(enc); 6262 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6263 set_memory(res_mem, mtype); 6264 set_result(enc); 6265 clear_upper_avx(); 6266 6267 return true; 6268 } 6269 6270 //-------------inline_multiplyToLen----------------------------------- 6271 bool LibraryCallKit::inline_multiplyToLen() { 6272 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6273 6274 address stubAddr = StubRoutines::multiplyToLen(); 6275 if (stubAddr == nullptr) { 6276 return false; // Intrinsic's stub is not implemented on this platform 6277 } 6278 const char* stubName = "multiplyToLen"; 6279 6280 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6281 6282 // no receiver because it is a static method 6283 Node* x = argument(0); 6284 Node* xlen = argument(1); 6285 Node* y = argument(2); 6286 Node* ylen = argument(3); 6287 Node* z = argument(4); 6288 6289 x = must_be_not_null(x, true); 6290 y = must_be_not_null(y, true); 6291 6292 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6293 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6294 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6295 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6296 // failed array check 6297 return false; 6298 } 6299 6300 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6301 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6302 if (x_elem != T_INT || y_elem != T_INT) { 6303 return false; 6304 } 6305 6306 Node* x_start = array_element_address(x, intcon(0), x_elem); 6307 Node* y_start = array_element_address(y, intcon(0), y_elem); 6308 // 'x_start' points to x array + scaled xlen 6309 // 'y_start' points to y array + scaled ylen 6310 6311 Node* z_start = array_element_address(z, intcon(0), T_INT); 6312 6313 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6314 OptoRuntime::multiplyToLen_Type(), 6315 stubAddr, stubName, TypePtr::BOTTOM, 6316 x_start, xlen, y_start, ylen, z_start); 6317 6318 C->set_has_split_ifs(true); // Has chance for split-if optimization 6319 set_result(z); 6320 return true; 6321 } 6322 6323 //-------------inline_squareToLen------------------------------------ 6324 bool LibraryCallKit::inline_squareToLen() { 6325 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6326 6327 address stubAddr = StubRoutines::squareToLen(); 6328 if (stubAddr == nullptr) { 6329 return false; // Intrinsic's stub is not implemented on this platform 6330 } 6331 const char* stubName = "squareToLen"; 6332 6333 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6334 6335 Node* x = argument(0); 6336 Node* len = argument(1); 6337 Node* z = argument(2); 6338 Node* zlen = argument(3); 6339 6340 x = must_be_not_null(x, true); 6341 z = must_be_not_null(z, true); 6342 6343 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6344 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6345 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6346 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6347 // failed array check 6348 return false; 6349 } 6350 6351 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6352 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6353 if (x_elem != T_INT || z_elem != T_INT) { 6354 return false; 6355 } 6356 6357 6358 Node* x_start = array_element_address(x, intcon(0), x_elem); 6359 Node* z_start = array_element_address(z, intcon(0), z_elem); 6360 6361 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6362 OptoRuntime::squareToLen_Type(), 6363 stubAddr, stubName, TypePtr::BOTTOM, 6364 x_start, len, z_start, zlen); 6365 6366 set_result(z); 6367 return true; 6368 } 6369 6370 //-------------inline_mulAdd------------------------------------------ 6371 bool LibraryCallKit::inline_mulAdd() { 6372 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6373 6374 address stubAddr = StubRoutines::mulAdd(); 6375 if (stubAddr == nullptr) { 6376 return false; // Intrinsic's stub is not implemented on this platform 6377 } 6378 const char* stubName = "mulAdd"; 6379 6380 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6381 6382 Node* out = argument(0); 6383 Node* in = argument(1); 6384 Node* offset = argument(2); 6385 Node* len = argument(3); 6386 Node* k = argument(4); 6387 6388 in = must_be_not_null(in, true); 6389 out = must_be_not_null(out, true); 6390 6391 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6392 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6393 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6394 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6395 // failed array check 6396 return false; 6397 } 6398 6399 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6400 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6401 if (out_elem != T_INT || in_elem != T_INT) { 6402 return false; 6403 } 6404 6405 Node* outlen = load_array_length(out); 6406 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6407 Node* out_start = array_element_address(out, intcon(0), out_elem); 6408 Node* in_start = array_element_address(in, intcon(0), in_elem); 6409 6410 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6411 OptoRuntime::mulAdd_Type(), 6412 stubAddr, stubName, TypePtr::BOTTOM, 6413 out_start,in_start, new_offset, len, k); 6414 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6415 set_result(result); 6416 return true; 6417 } 6418 6419 //-------------inline_montgomeryMultiply----------------------------------- 6420 bool LibraryCallKit::inline_montgomeryMultiply() { 6421 address stubAddr = StubRoutines::montgomeryMultiply(); 6422 if (stubAddr == nullptr) { 6423 return false; // Intrinsic's stub is not implemented on this platform 6424 } 6425 6426 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6427 const char* stubName = "montgomery_multiply"; 6428 6429 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6430 6431 Node* a = argument(0); 6432 Node* b = argument(1); 6433 Node* n = argument(2); 6434 Node* len = argument(3); 6435 Node* inv = argument(4); 6436 Node* m = argument(6); 6437 6438 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6439 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6440 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6441 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6442 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6443 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6444 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6445 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6446 // failed array check 6447 return false; 6448 } 6449 6450 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6451 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6452 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6453 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6454 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6455 return false; 6456 } 6457 6458 // Make the call 6459 { 6460 Node* a_start = array_element_address(a, intcon(0), a_elem); 6461 Node* b_start = array_element_address(b, intcon(0), b_elem); 6462 Node* n_start = array_element_address(n, intcon(0), n_elem); 6463 Node* m_start = array_element_address(m, intcon(0), m_elem); 6464 6465 Node* call = make_runtime_call(RC_LEAF, 6466 OptoRuntime::montgomeryMultiply_Type(), 6467 stubAddr, stubName, TypePtr::BOTTOM, 6468 a_start, b_start, n_start, len, inv, top(), 6469 m_start); 6470 set_result(m); 6471 } 6472 6473 return true; 6474 } 6475 6476 bool LibraryCallKit::inline_montgomerySquare() { 6477 address stubAddr = StubRoutines::montgomerySquare(); 6478 if (stubAddr == nullptr) { 6479 return false; // Intrinsic's stub is not implemented on this platform 6480 } 6481 6482 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6483 const char* stubName = "montgomery_square"; 6484 6485 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6486 6487 Node* a = argument(0); 6488 Node* n = argument(1); 6489 Node* len = argument(2); 6490 Node* inv = argument(3); 6491 Node* m = argument(5); 6492 6493 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6494 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6495 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6496 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6497 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6498 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6499 // failed array check 6500 return false; 6501 } 6502 6503 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6504 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6505 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6506 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6507 return false; 6508 } 6509 6510 // Make the call 6511 { 6512 Node* a_start = array_element_address(a, intcon(0), a_elem); 6513 Node* n_start = array_element_address(n, intcon(0), n_elem); 6514 Node* m_start = array_element_address(m, intcon(0), m_elem); 6515 6516 Node* call = make_runtime_call(RC_LEAF, 6517 OptoRuntime::montgomerySquare_Type(), 6518 stubAddr, stubName, TypePtr::BOTTOM, 6519 a_start, n_start, len, inv, top(), 6520 m_start); 6521 set_result(m); 6522 } 6523 6524 return true; 6525 } 6526 6527 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6528 address stubAddr = nullptr; 6529 const char* stubName = nullptr; 6530 6531 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6532 if (stubAddr == nullptr) { 6533 return false; // Intrinsic's stub is not implemented on this platform 6534 } 6535 6536 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6537 6538 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6539 6540 Node* newArr = argument(0); 6541 Node* oldArr = argument(1); 6542 Node* newIdx = argument(2); 6543 Node* shiftCount = argument(3); 6544 Node* numIter = argument(4); 6545 6546 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6547 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6548 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6549 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6550 return false; 6551 } 6552 6553 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6554 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6555 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6556 return false; 6557 } 6558 6559 // Make the call 6560 { 6561 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6562 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6563 6564 Node* call = make_runtime_call(RC_LEAF, 6565 OptoRuntime::bigIntegerShift_Type(), 6566 stubAddr, 6567 stubName, 6568 TypePtr::BOTTOM, 6569 newArr_start, 6570 oldArr_start, 6571 newIdx, 6572 shiftCount, 6573 numIter); 6574 } 6575 6576 return true; 6577 } 6578 6579 //-------------inline_vectorizedMismatch------------------------------ 6580 bool LibraryCallKit::inline_vectorizedMismatch() { 6581 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6582 6583 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6584 Node* obja = argument(0); // Object 6585 Node* aoffset = argument(1); // long 6586 Node* objb = argument(3); // Object 6587 Node* boffset = argument(4); // long 6588 Node* length = argument(6); // int 6589 Node* scale = argument(7); // int 6590 6591 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6592 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6593 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6594 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6595 scale == top()) { 6596 return false; // failed input validation 6597 } 6598 6599 Node* obja_adr = make_unsafe_address(obja, aoffset); 6600 Node* objb_adr = make_unsafe_address(objb, boffset); 6601 6602 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6603 // 6604 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6605 // if (length <= inline_limit) { 6606 // inline_path: 6607 // vmask = VectorMaskGen length 6608 // vload1 = LoadVectorMasked obja, vmask 6609 // vload2 = LoadVectorMasked objb, vmask 6610 // result1 = VectorCmpMasked vload1, vload2, vmask 6611 // } else { 6612 // call_stub_path: 6613 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6614 // } 6615 // exit_block: 6616 // return Phi(result1, result2); 6617 // 6618 enum { inline_path = 1, // input is small enough to process it all at once 6619 stub_path = 2, // input is too large; call into the VM 6620 PATH_LIMIT = 3 6621 }; 6622 6623 Node* exit_block = new RegionNode(PATH_LIMIT); 6624 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6625 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6626 6627 Node* call_stub_path = control(); 6628 6629 BasicType elem_bt = T_ILLEGAL; 6630 6631 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6632 if (scale_t->is_con()) { 6633 switch (scale_t->get_con()) { 6634 case 0: elem_bt = T_BYTE; break; 6635 case 1: elem_bt = T_SHORT; break; 6636 case 2: elem_bt = T_INT; break; 6637 case 3: elem_bt = T_LONG; break; 6638 6639 default: elem_bt = T_ILLEGAL; break; // not supported 6640 } 6641 } 6642 6643 int inline_limit = 0; 6644 bool do_partial_inline = false; 6645 6646 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6647 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6648 do_partial_inline = inline_limit >= 16; 6649 } 6650 6651 if (do_partial_inline) { 6652 assert(elem_bt != T_ILLEGAL, "sanity"); 6653 6654 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6655 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6656 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6657 6658 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6659 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6660 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6661 6662 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6663 6664 if (!stopped()) { 6665 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6666 6667 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6668 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6669 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6670 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6671 6672 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6673 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6674 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6675 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6676 6677 exit_block->init_req(inline_path, control()); 6678 memory_phi->init_req(inline_path, map()->memory()); 6679 result_phi->init_req(inline_path, result); 6680 6681 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6682 clear_upper_avx(); 6683 } 6684 } 6685 } 6686 6687 if (call_stub_path != nullptr) { 6688 set_control(call_stub_path); 6689 6690 Node* call = make_runtime_call(RC_LEAF, 6691 OptoRuntime::vectorizedMismatch_Type(), 6692 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6693 obja_adr, objb_adr, length, scale); 6694 6695 exit_block->init_req(stub_path, control()); 6696 memory_phi->init_req(stub_path, map()->memory()); 6697 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6698 } 6699 6700 exit_block = _gvn.transform(exit_block); 6701 memory_phi = _gvn.transform(memory_phi); 6702 result_phi = _gvn.transform(result_phi); 6703 6704 set_control(exit_block); 6705 set_all_memory(memory_phi); 6706 set_result(result_phi); 6707 6708 return true; 6709 } 6710 6711 //------------------------------inline_vectorizedHashcode---------------------------- 6712 bool LibraryCallKit::inline_vectorizedHashCode() { 6713 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6714 6715 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6716 Node* array = argument(0); 6717 Node* offset = argument(1); 6718 Node* length = argument(2); 6719 Node* initialValue = argument(3); 6720 Node* basic_type = argument(4); 6721 6722 if (basic_type == top()) { 6723 return false; // failed input validation 6724 } 6725 6726 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6727 if (!basic_type_t->is_con()) { 6728 return false; // Only intrinsify if mode argument is constant 6729 } 6730 6731 array = must_be_not_null(array, true); 6732 6733 BasicType bt = (BasicType)basic_type_t->get_con(); 6734 6735 // Resolve address of first element 6736 Node* array_start = array_element_address(array, offset, bt); 6737 6738 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6739 array_start, length, initialValue, basic_type))); 6740 clear_upper_avx(); 6741 6742 return true; 6743 } 6744 6745 /** 6746 * Calculate CRC32 for byte. 6747 * int java.util.zip.CRC32.update(int crc, int b) 6748 */ 6749 bool LibraryCallKit::inline_updateCRC32() { 6750 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6751 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6752 // no receiver since it is static method 6753 Node* crc = argument(0); // type: int 6754 Node* b = argument(1); // type: int 6755 6756 /* 6757 * int c = ~ crc; 6758 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6759 * b = b ^ (c >>> 8); 6760 * crc = ~b; 6761 */ 6762 6763 Node* M1 = intcon(-1); 6764 crc = _gvn.transform(new XorINode(crc, M1)); 6765 Node* result = _gvn.transform(new XorINode(crc, b)); 6766 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6767 6768 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6769 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6770 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6771 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6772 6773 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6774 result = _gvn.transform(new XorINode(crc, result)); 6775 result = _gvn.transform(new XorINode(result, M1)); 6776 set_result(result); 6777 return true; 6778 } 6779 6780 /** 6781 * Calculate CRC32 for byte[] array. 6782 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6783 */ 6784 bool LibraryCallKit::inline_updateBytesCRC32() { 6785 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6786 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6787 // no receiver since it is static method 6788 Node* crc = argument(0); // type: int 6789 Node* src = argument(1); // type: oop 6790 Node* offset = argument(2); // type: int 6791 Node* length = argument(3); // type: int 6792 6793 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6794 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6795 // failed array check 6796 return false; 6797 } 6798 6799 // Figure out the size and type of the elements we will be copying. 6800 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6801 if (src_elem != T_BYTE) { 6802 return false; 6803 } 6804 6805 // 'src_start' points to src array + scaled offset 6806 src = must_be_not_null(src, true); 6807 Node* src_start = array_element_address(src, offset, src_elem); 6808 6809 // We assume that range check is done by caller. 6810 // TODO: generate range check (offset+length < src.length) in debug VM. 6811 6812 // Call the stub. 6813 address stubAddr = StubRoutines::updateBytesCRC32(); 6814 const char *stubName = "updateBytesCRC32"; 6815 6816 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6817 stubAddr, stubName, TypePtr::BOTTOM, 6818 crc, src_start, length); 6819 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6820 set_result(result); 6821 return true; 6822 } 6823 6824 /** 6825 * Calculate CRC32 for ByteBuffer. 6826 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6827 */ 6828 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6829 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6830 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6831 // no receiver since it is static method 6832 Node* crc = argument(0); // type: int 6833 Node* src = argument(1); // type: long 6834 Node* offset = argument(3); // type: int 6835 Node* length = argument(4); // type: int 6836 6837 src = ConvL2X(src); // adjust Java long to machine word 6838 Node* base = _gvn.transform(new CastX2PNode(src)); 6839 offset = ConvI2X(offset); 6840 6841 // 'src_start' points to src array + scaled offset 6842 Node* src_start = basic_plus_adr(top(), base, offset); 6843 6844 // Call the stub. 6845 address stubAddr = StubRoutines::updateBytesCRC32(); 6846 const char *stubName = "updateBytesCRC32"; 6847 6848 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6849 stubAddr, stubName, TypePtr::BOTTOM, 6850 crc, src_start, length); 6851 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6852 set_result(result); 6853 return true; 6854 } 6855 6856 //------------------------------get_table_from_crc32c_class----------------------- 6857 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6858 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6859 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6860 6861 return table; 6862 } 6863 6864 //------------------------------inline_updateBytesCRC32C----------------------- 6865 // 6866 // Calculate CRC32C for byte[] array. 6867 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6868 // 6869 bool LibraryCallKit::inline_updateBytesCRC32C() { 6870 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6871 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6872 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6873 // no receiver since it is a static method 6874 Node* crc = argument(0); // type: int 6875 Node* src = argument(1); // type: oop 6876 Node* offset = argument(2); // type: int 6877 Node* end = argument(3); // type: int 6878 6879 Node* length = _gvn.transform(new SubINode(end, offset)); 6880 6881 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6882 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6883 // failed array check 6884 return false; 6885 } 6886 6887 // Figure out the size and type of the elements we will be copying. 6888 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6889 if (src_elem != T_BYTE) { 6890 return false; 6891 } 6892 6893 // 'src_start' points to src array + scaled offset 6894 src = must_be_not_null(src, true); 6895 Node* src_start = array_element_address(src, offset, src_elem); 6896 6897 // static final int[] byteTable in class CRC32C 6898 Node* table = get_table_from_crc32c_class(callee()->holder()); 6899 table = must_be_not_null(table, true); 6900 Node* table_start = array_element_address(table, intcon(0), T_INT); 6901 6902 // We assume that range check is done by caller. 6903 // TODO: generate range check (offset+length < src.length) in debug VM. 6904 6905 // Call the stub. 6906 address stubAddr = StubRoutines::updateBytesCRC32C(); 6907 const char *stubName = "updateBytesCRC32C"; 6908 6909 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6910 stubAddr, stubName, TypePtr::BOTTOM, 6911 crc, src_start, length, table_start); 6912 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6913 set_result(result); 6914 return true; 6915 } 6916 6917 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6918 // 6919 // Calculate CRC32C for DirectByteBuffer. 6920 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6921 // 6922 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6923 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6924 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6925 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6926 // no receiver since it is a static method 6927 Node* crc = argument(0); // type: int 6928 Node* src = argument(1); // type: long 6929 Node* offset = argument(3); // type: int 6930 Node* end = argument(4); // type: int 6931 6932 Node* length = _gvn.transform(new SubINode(end, offset)); 6933 6934 src = ConvL2X(src); // adjust Java long to machine word 6935 Node* base = _gvn.transform(new CastX2PNode(src)); 6936 offset = ConvI2X(offset); 6937 6938 // 'src_start' points to src array + scaled offset 6939 Node* src_start = basic_plus_adr(top(), base, offset); 6940 6941 // static final int[] byteTable in class CRC32C 6942 Node* table = get_table_from_crc32c_class(callee()->holder()); 6943 table = must_be_not_null(table, true); 6944 Node* table_start = array_element_address(table, intcon(0), T_INT); 6945 6946 // Call the stub. 6947 address stubAddr = StubRoutines::updateBytesCRC32C(); 6948 const char *stubName = "updateBytesCRC32C"; 6949 6950 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6951 stubAddr, stubName, TypePtr::BOTTOM, 6952 crc, src_start, length, table_start); 6953 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6954 set_result(result); 6955 return true; 6956 } 6957 6958 //------------------------------inline_updateBytesAdler32---------------------- 6959 // 6960 // Calculate Adler32 checksum for byte[] array. 6961 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6962 // 6963 bool LibraryCallKit::inline_updateBytesAdler32() { 6964 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6965 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6966 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6967 // no receiver since it is static method 6968 Node* crc = argument(0); // type: int 6969 Node* src = argument(1); // type: oop 6970 Node* offset = argument(2); // type: int 6971 Node* length = argument(3); // type: int 6972 6973 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6974 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6975 // failed array check 6976 return false; 6977 } 6978 6979 // Figure out the size and type of the elements we will be copying. 6980 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6981 if (src_elem != T_BYTE) { 6982 return false; 6983 } 6984 6985 // 'src_start' points to src array + scaled offset 6986 Node* src_start = array_element_address(src, offset, src_elem); 6987 6988 // We assume that range check is done by caller. 6989 // TODO: generate range check (offset+length < src.length) in debug VM. 6990 6991 // Call the stub. 6992 address stubAddr = StubRoutines::updateBytesAdler32(); 6993 const char *stubName = "updateBytesAdler32"; 6994 6995 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6996 stubAddr, stubName, TypePtr::BOTTOM, 6997 crc, src_start, length); 6998 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6999 set_result(result); 7000 return true; 7001 } 7002 7003 //------------------------------inline_updateByteBufferAdler32--------------- 7004 // 7005 // Calculate Adler32 checksum for DirectByteBuffer. 7006 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 7007 // 7008 bool LibraryCallKit::inline_updateByteBufferAdler32() { 7009 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7010 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7011 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7012 // no receiver since it is static method 7013 Node* crc = argument(0); // type: int 7014 Node* src = argument(1); // type: long 7015 Node* offset = argument(3); // type: int 7016 Node* length = argument(4); // type: int 7017 7018 src = ConvL2X(src); // adjust Java long to machine word 7019 Node* base = _gvn.transform(new CastX2PNode(src)); 7020 offset = ConvI2X(offset); 7021 7022 // 'src_start' points to src array + scaled offset 7023 Node* src_start = basic_plus_adr(top(), base, offset); 7024 7025 // Call the stub. 7026 address stubAddr = StubRoutines::updateBytesAdler32(); 7027 const char *stubName = "updateBytesAdler32"; 7028 7029 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7030 stubAddr, stubName, TypePtr::BOTTOM, 7031 crc, src_start, length); 7032 7033 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7034 set_result(result); 7035 return true; 7036 } 7037 7038 //----------------------------inline_reference_get---------------------------- 7039 // public T java.lang.ref.Reference.get(); 7040 bool LibraryCallKit::inline_reference_get() { 7041 const int referent_offset = java_lang_ref_Reference::referent_offset(); 7042 7043 // Get the argument: 7044 Node* reference_obj = null_check_receiver(); 7045 if (stopped()) return true; 7046 7047 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 7048 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7049 decorators, /*is_static*/ false, nullptr); 7050 if (result == nullptr) return false; 7051 7052 // Add memory barrier to prevent commoning reads from this field 7053 // across safepoint since GC can change its value. 7054 insert_mem_bar(Op_MemBarCPUOrder); 7055 7056 set_result(result); 7057 return true; 7058 } 7059 7060 //----------------------------inline_reference_refersTo0---------------------------- 7061 // bool java.lang.ref.Reference.refersTo0(); 7062 // bool java.lang.ref.PhantomReference.refersTo0(); 7063 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 7064 // Get arguments: 7065 Node* reference_obj = null_check_receiver(); 7066 Node* other_obj = argument(1); 7067 if (stopped()) return true; 7068 7069 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7070 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7071 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7072 decorators, /*is_static*/ false, nullptr); 7073 if (referent == nullptr) return false; 7074 7075 // Add memory barrier to prevent commoning reads from this field 7076 // across safepoint since GC can change its value. 7077 insert_mem_bar(Op_MemBarCPUOrder); 7078 7079 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7080 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7081 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7082 7083 RegionNode* region = new RegionNode(3); 7084 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7085 7086 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7087 region->init_req(1, if_true); 7088 phi->init_req(1, intcon(1)); 7089 7090 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7091 region->init_req(2, if_false); 7092 phi->init_req(2, intcon(0)); 7093 7094 set_control(_gvn.transform(region)); 7095 record_for_igvn(region); 7096 set_result(_gvn.transform(phi)); 7097 return true; 7098 } 7099 7100 //----------------------------inline_reference_clear0---------------------------- 7101 // void java.lang.ref.Reference.clear0(); 7102 // void java.lang.ref.PhantomReference.clear0(); 7103 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 7104 // This matches the implementation in JVM_ReferenceClear, see the comments there. 7105 7106 // Get arguments 7107 Node* reference_obj = null_check_receiver(); 7108 if (stopped()) return true; 7109 7110 // Common access parameters 7111 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7112 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7113 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7114 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7115 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7116 7117 Node* referent = access_load_at(reference_obj, 7118 referent_field_addr, 7119 referent_field_addr_type, 7120 val_type, 7121 T_OBJECT, 7122 decorators); 7123 7124 IdealKit ideal(this); 7125 #define __ ideal. 7126 __ if_then(referent, BoolTest::ne, null()); 7127 sync_kit(ideal); 7128 access_store_at(reference_obj, 7129 referent_field_addr, 7130 referent_field_addr_type, 7131 null(), 7132 val_type, 7133 T_OBJECT, 7134 decorators); 7135 __ sync_kit(this); 7136 __ end_if(); 7137 final_sync(ideal); 7138 #undef __ 7139 7140 return true; 7141 } 7142 7143 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7144 DecoratorSet decorators, bool is_static, 7145 ciInstanceKlass* fromKls) { 7146 if (fromKls == nullptr) { 7147 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7148 assert(tinst != nullptr, "obj is null"); 7149 assert(tinst->is_loaded(), "obj is not loaded"); 7150 fromKls = tinst->instance_klass(); 7151 } else { 7152 assert(is_static, "only for static field access"); 7153 } 7154 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7155 ciSymbol::make(fieldTypeString), 7156 is_static); 7157 7158 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7159 if (field == nullptr) return (Node *) nullptr; 7160 7161 if (is_static) { 7162 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7163 fromObj = makecon(tip); 7164 } 7165 7166 // Next code copied from Parse::do_get_xxx(): 7167 7168 // Compute address and memory type. 7169 int offset = field->offset_in_bytes(); 7170 bool is_vol = field->is_volatile(); 7171 ciType* field_klass = field->type(); 7172 assert(field_klass->is_loaded(), "should be loaded"); 7173 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7174 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7175 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7176 "slice of address and input slice don't match"); 7177 BasicType bt = field->layout_type(); 7178 7179 // Build the resultant type of the load 7180 const Type *type; 7181 if (bt == T_OBJECT) { 7182 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7183 } else { 7184 type = Type::get_const_basic_type(bt); 7185 } 7186 7187 if (is_vol) { 7188 decorators |= MO_SEQ_CST; 7189 } 7190 7191 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7192 } 7193 7194 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7195 bool is_exact /* true */, bool is_static /* false */, 7196 ciInstanceKlass * fromKls /* nullptr */) { 7197 if (fromKls == nullptr) { 7198 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7199 assert(tinst != nullptr, "obj is null"); 7200 assert(tinst->is_loaded(), "obj is not loaded"); 7201 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7202 fromKls = tinst->instance_klass(); 7203 } 7204 else { 7205 assert(is_static, "only for static field access"); 7206 } 7207 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7208 ciSymbol::make(fieldTypeString), 7209 is_static); 7210 7211 assert(field != nullptr, "undefined field"); 7212 assert(!field->is_volatile(), "not defined for volatile fields"); 7213 7214 if (is_static) { 7215 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7216 fromObj = makecon(tip); 7217 } 7218 7219 // Next code copied from Parse::do_get_xxx(): 7220 7221 // Compute address and memory type. 7222 int offset = field->offset_in_bytes(); 7223 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7224 7225 return adr; 7226 } 7227 7228 //------------------------------inline_aescrypt_Block----------------------- 7229 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7230 address stubAddr = nullptr; 7231 const char *stubName; 7232 assert(UseAES, "need AES instruction support"); 7233 7234 switch(id) { 7235 case vmIntrinsics::_aescrypt_encryptBlock: 7236 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7237 stubName = "aescrypt_encryptBlock"; 7238 break; 7239 case vmIntrinsics::_aescrypt_decryptBlock: 7240 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7241 stubName = "aescrypt_decryptBlock"; 7242 break; 7243 default: 7244 break; 7245 } 7246 if (stubAddr == nullptr) return false; 7247 7248 Node* aescrypt_object = argument(0); 7249 Node* src = argument(1); 7250 Node* src_offset = argument(2); 7251 Node* dest = argument(3); 7252 Node* dest_offset = argument(4); 7253 7254 src = must_be_not_null(src, true); 7255 dest = must_be_not_null(dest, true); 7256 7257 // (1) src and dest are arrays. 7258 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7259 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7260 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7261 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7262 7263 // for the quick and dirty code we will skip all the checks. 7264 // we are just trying to get the call to be generated. 7265 Node* src_start = src; 7266 Node* dest_start = dest; 7267 if (src_offset != nullptr || dest_offset != nullptr) { 7268 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7269 src_start = array_element_address(src, src_offset, T_BYTE); 7270 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7271 } 7272 7273 // now need to get the start of its expanded key array 7274 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7275 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7276 if (k_start == nullptr) return false; 7277 7278 // Call the stub. 7279 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7280 stubAddr, stubName, TypePtr::BOTTOM, 7281 src_start, dest_start, k_start); 7282 7283 return true; 7284 } 7285 7286 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7287 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7288 address stubAddr = nullptr; 7289 const char *stubName = nullptr; 7290 7291 assert(UseAES, "need AES instruction support"); 7292 7293 switch(id) { 7294 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7295 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7296 stubName = "cipherBlockChaining_encryptAESCrypt"; 7297 break; 7298 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7299 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7300 stubName = "cipherBlockChaining_decryptAESCrypt"; 7301 break; 7302 default: 7303 break; 7304 } 7305 if (stubAddr == nullptr) return false; 7306 7307 Node* cipherBlockChaining_object = argument(0); 7308 Node* src = argument(1); 7309 Node* src_offset = argument(2); 7310 Node* len = argument(3); 7311 Node* dest = argument(4); 7312 Node* dest_offset = argument(5); 7313 7314 src = must_be_not_null(src, false); 7315 dest = must_be_not_null(dest, false); 7316 7317 // (1) src and dest are arrays. 7318 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7319 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7320 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7321 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7322 7323 // checks are the responsibility of the caller 7324 Node* src_start = src; 7325 Node* dest_start = dest; 7326 if (src_offset != nullptr || dest_offset != nullptr) { 7327 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7328 src_start = array_element_address(src, src_offset, T_BYTE); 7329 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7330 } 7331 7332 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7333 // (because of the predicated logic executed earlier). 7334 // so we cast it here safely. 7335 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7336 7337 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7338 if (embeddedCipherObj == nullptr) return false; 7339 7340 // cast it to what we know it will be at runtime 7341 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7342 assert(tinst != nullptr, "CBC obj is null"); 7343 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7344 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7345 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7346 7347 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7348 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7349 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7350 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7351 aescrypt_object = _gvn.transform(aescrypt_object); 7352 7353 // we need to get the start of the aescrypt_object's expanded key array 7354 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7355 if (k_start == nullptr) return false; 7356 7357 // similarly, get the start address of the r vector 7358 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7359 if (objRvec == nullptr) return false; 7360 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7361 7362 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7363 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7364 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7365 stubAddr, stubName, TypePtr::BOTTOM, 7366 src_start, dest_start, k_start, r_start, len); 7367 7368 // return cipher length (int) 7369 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7370 set_result(retvalue); 7371 return true; 7372 } 7373 7374 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7375 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7376 address stubAddr = nullptr; 7377 const char *stubName = nullptr; 7378 7379 assert(UseAES, "need AES instruction support"); 7380 7381 switch (id) { 7382 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7383 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7384 stubName = "electronicCodeBook_encryptAESCrypt"; 7385 break; 7386 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7387 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7388 stubName = "electronicCodeBook_decryptAESCrypt"; 7389 break; 7390 default: 7391 break; 7392 } 7393 7394 if (stubAddr == nullptr) return false; 7395 7396 Node* electronicCodeBook_object = argument(0); 7397 Node* src = argument(1); 7398 Node* src_offset = argument(2); 7399 Node* len = argument(3); 7400 Node* dest = argument(4); 7401 Node* dest_offset = argument(5); 7402 7403 // (1) src and dest are arrays. 7404 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7405 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7406 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7407 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7408 7409 // checks are the responsibility of the caller 7410 Node* src_start = src; 7411 Node* dest_start = dest; 7412 if (src_offset != nullptr || dest_offset != nullptr) { 7413 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7414 src_start = array_element_address(src, src_offset, T_BYTE); 7415 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7416 } 7417 7418 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7419 // (because of the predicated logic executed earlier). 7420 // so we cast it here safely. 7421 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7422 7423 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7424 if (embeddedCipherObj == nullptr) return false; 7425 7426 // cast it to what we know it will be at runtime 7427 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7428 assert(tinst != nullptr, "ECB obj is null"); 7429 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7430 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7431 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7432 7433 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7434 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7435 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7436 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7437 aescrypt_object = _gvn.transform(aescrypt_object); 7438 7439 // we need to get the start of the aescrypt_object's expanded key array 7440 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7441 if (k_start == nullptr) return false; 7442 7443 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7444 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7445 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7446 stubAddr, stubName, TypePtr::BOTTOM, 7447 src_start, dest_start, k_start, len); 7448 7449 // return cipher length (int) 7450 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7451 set_result(retvalue); 7452 return true; 7453 } 7454 7455 //------------------------------inline_counterMode_AESCrypt----------------------- 7456 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7457 assert(UseAES, "need AES instruction support"); 7458 if (!UseAESCTRIntrinsics) return false; 7459 7460 address stubAddr = nullptr; 7461 const char *stubName = nullptr; 7462 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7463 stubAddr = StubRoutines::counterMode_AESCrypt(); 7464 stubName = "counterMode_AESCrypt"; 7465 } 7466 if (stubAddr == nullptr) return false; 7467 7468 Node* counterMode_object = argument(0); 7469 Node* src = argument(1); 7470 Node* src_offset = argument(2); 7471 Node* len = argument(3); 7472 Node* dest = argument(4); 7473 Node* dest_offset = argument(5); 7474 7475 // (1) src and dest are arrays. 7476 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7477 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7478 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7479 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7480 7481 // checks are the responsibility of the caller 7482 Node* src_start = src; 7483 Node* dest_start = dest; 7484 if (src_offset != nullptr || dest_offset != nullptr) { 7485 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7486 src_start = array_element_address(src, src_offset, T_BYTE); 7487 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7488 } 7489 7490 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7491 // (because of the predicated logic executed earlier). 7492 // so we cast it here safely. 7493 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7494 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7495 if (embeddedCipherObj == nullptr) return false; 7496 // cast it to what we know it will be at runtime 7497 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7498 assert(tinst != nullptr, "CTR obj is null"); 7499 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7500 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7501 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7502 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7503 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7504 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7505 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7506 aescrypt_object = _gvn.transform(aescrypt_object); 7507 // we need to get the start of the aescrypt_object's expanded key array 7508 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7509 if (k_start == nullptr) return false; 7510 // similarly, get the start address of the r vector 7511 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7512 if (obj_counter == nullptr) return false; 7513 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7514 7515 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7516 if (saved_encCounter == nullptr) return false; 7517 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7518 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7519 7520 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7521 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7522 OptoRuntime::counterMode_aescrypt_Type(), 7523 stubAddr, stubName, TypePtr::BOTTOM, 7524 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7525 7526 // return cipher length (int) 7527 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7528 set_result(retvalue); 7529 return true; 7530 } 7531 7532 //------------------------------get_key_start_from_aescrypt_object----------------------- 7533 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7534 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7535 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7536 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7537 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7538 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7539 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7540 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7541 if (objSessionK == nullptr) { 7542 return (Node *) nullptr; 7543 } 7544 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7545 #else 7546 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7547 #endif // PPC64 7548 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7549 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7550 7551 // now have the array, need to get the start address of the K array 7552 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7553 return k_start; 7554 } 7555 7556 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7557 // Return node representing slow path of predicate check. 7558 // the pseudo code we want to emulate with this predicate is: 7559 // for encryption: 7560 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7561 // for decryption: 7562 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7563 // note cipher==plain is more conservative than the original java code but that's OK 7564 // 7565 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7566 // The receiver was checked for null already. 7567 Node* objCBC = argument(0); 7568 7569 Node* src = argument(1); 7570 Node* dest = argument(4); 7571 7572 // Load embeddedCipher field of CipherBlockChaining object. 7573 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7574 7575 // get AESCrypt klass for instanceOf check 7576 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7577 // will have same classloader as CipherBlockChaining object 7578 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7579 assert(tinst != nullptr, "CBCobj is null"); 7580 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7581 7582 // we want to do an instanceof comparison against the AESCrypt class 7583 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7584 if (!klass_AESCrypt->is_loaded()) { 7585 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7586 Node* ctrl = control(); 7587 set_control(top()); // no regular fast path 7588 return ctrl; 7589 } 7590 7591 src = must_be_not_null(src, true); 7592 dest = must_be_not_null(dest, true); 7593 7594 // Resolve oops to stable for CmpP below. 7595 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7596 7597 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7598 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7599 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7600 7601 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7602 7603 // for encryption, we are done 7604 if (!decrypting) 7605 return instof_false; // even if it is null 7606 7607 // for decryption, we need to add a further check to avoid 7608 // taking the intrinsic path when cipher and plain are the same 7609 // see the original java code for why. 7610 RegionNode* region = new RegionNode(3); 7611 region->init_req(1, instof_false); 7612 7613 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7614 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7615 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7616 region->init_req(2, src_dest_conjoint); 7617 7618 record_for_igvn(region); 7619 return _gvn.transform(region); 7620 } 7621 7622 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7623 // Return node representing slow path of predicate check. 7624 // the pseudo code we want to emulate with this predicate is: 7625 // for encryption: 7626 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7627 // for decryption: 7628 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7629 // note cipher==plain is more conservative than the original java code but that's OK 7630 // 7631 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7632 // The receiver was checked for null already. 7633 Node* objECB = argument(0); 7634 7635 // Load embeddedCipher field of ElectronicCodeBook object. 7636 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7637 7638 // get AESCrypt klass for instanceOf check 7639 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7640 // will have same classloader as ElectronicCodeBook object 7641 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7642 assert(tinst != nullptr, "ECBobj is null"); 7643 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7644 7645 // we want to do an instanceof comparison against the AESCrypt class 7646 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7647 if (!klass_AESCrypt->is_loaded()) { 7648 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7649 Node* ctrl = control(); 7650 set_control(top()); // no regular fast path 7651 return ctrl; 7652 } 7653 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7654 7655 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7656 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7657 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7658 7659 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7660 7661 // for encryption, we are done 7662 if (!decrypting) 7663 return instof_false; // even if it is null 7664 7665 // for decryption, we need to add a further check to avoid 7666 // taking the intrinsic path when cipher and plain are the same 7667 // see the original java code for why. 7668 RegionNode* region = new RegionNode(3); 7669 region->init_req(1, instof_false); 7670 Node* src = argument(1); 7671 Node* dest = argument(4); 7672 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7673 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7674 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7675 region->init_req(2, src_dest_conjoint); 7676 7677 record_for_igvn(region); 7678 return _gvn.transform(region); 7679 } 7680 7681 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7682 // Return node representing slow path of predicate check. 7683 // the pseudo code we want to emulate with this predicate is: 7684 // for encryption: 7685 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7686 // for decryption: 7687 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7688 // note cipher==plain is more conservative than the original java code but that's OK 7689 // 7690 7691 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7692 // The receiver was checked for null already. 7693 Node* objCTR = argument(0); 7694 7695 // Load embeddedCipher field of CipherBlockChaining object. 7696 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7697 7698 // get AESCrypt klass for instanceOf check 7699 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7700 // will have same classloader as CipherBlockChaining object 7701 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7702 assert(tinst != nullptr, "CTRobj is null"); 7703 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7704 7705 // we want to do an instanceof comparison against the AESCrypt class 7706 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7707 if (!klass_AESCrypt->is_loaded()) { 7708 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7709 Node* ctrl = control(); 7710 set_control(top()); // no regular fast path 7711 return ctrl; 7712 } 7713 7714 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7715 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7716 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7717 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7718 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7719 7720 return instof_false; // even if it is null 7721 } 7722 7723 //------------------------------inline_ghash_processBlocks 7724 bool LibraryCallKit::inline_ghash_processBlocks() { 7725 address stubAddr; 7726 const char *stubName; 7727 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7728 7729 stubAddr = StubRoutines::ghash_processBlocks(); 7730 stubName = "ghash_processBlocks"; 7731 7732 Node* data = argument(0); 7733 Node* offset = argument(1); 7734 Node* len = argument(2); 7735 Node* state = argument(3); 7736 Node* subkeyH = argument(4); 7737 7738 state = must_be_not_null(state, true); 7739 subkeyH = must_be_not_null(subkeyH, true); 7740 data = must_be_not_null(data, true); 7741 7742 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7743 assert(state_start, "state is null"); 7744 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7745 assert(subkeyH_start, "subkeyH is null"); 7746 Node* data_start = array_element_address(data, offset, T_BYTE); 7747 assert(data_start, "data is null"); 7748 7749 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7750 OptoRuntime::ghash_processBlocks_Type(), 7751 stubAddr, stubName, TypePtr::BOTTOM, 7752 state_start, subkeyH_start, data_start, len); 7753 return true; 7754 } 7755 7756 //------------------------------inline_chacha20Block 7757 bool LibraryCallKit::inline_chacha20Block() { 7758 address stubAddr; 7759 const char *stubName; 7760 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7761 7762 stubAddr = StubRoutines::chacha20Block(); 7763 stubName = "chacha20Block"; 7764 7765 Node* state = argument(0); 7766 Node* result = argument(1); 7767 7768 state = must_be_not_null(state, true); 7769 result = must_be_not_null(result, true); 7770 7771 Node* state_start = array_element_address(state, intcon(0), T_INT); 7772 assert(state_start, "state is null"); 7773 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7774 assert(result_start, "result is null"); 7775 7776 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7777 OptoRuntime::chacha20Block_Type(), 7778 stubAddr, stubName, TypePtr::BOTTOM, 7779 state_start, result_start); 7780 // return key stream length (int) 7781 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7782 set_result(retvalue); 7783 return true; 7784 } 7785 7786 //------------------------------inline_dilithiumAlmostNtt 7787 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 7788 address stubAddr; 7789 const char *stubName; 7790 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7791 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 7792 7793 stubAddr = StubRoutines::dilithiumAlmostNtt(); 7794 stubName = "dilithiumAlmostNtt"; 7795 if (!stubAddr) return false; 7796 7797 Node* coeffs = argument(0); 7798 Node* ntt_zetas = argument(1); 7799 7800 coeffs = must_be_not_null(coeffs, true); 7801 ntt_zetas = must_be_not_null(ntt_zetas, true); 7802 7803 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7804 assert(coeffs_start, "coeffs is null"); 7805 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 7806 assert(ntt_zetas_start, "ntt_zetas is null"); 7807 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7808 OptoRuntime::dilithiumAlmostNtt_Type(), 7809 stubAddr, stubName, TypePtr::BOTTOM, 7810 coeffs_start, ntt_zetas_start); 7811 // return an int 7812 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 7813 set_result(retvalue); 7814 return true; 7815 } 7816 7817 //------------------------------inline_dilithiumAlmostInverseNtt 7818 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 7819 address stubAddr; 7820 const char *stubName; 7821 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7822 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 7823 7824 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 7825 stubName = "dilithiumAlmostInverseNtt"; 7826 if (!stubAddr) return false; 7827 7828 Node* coeffs = argument(0); 7829 Node* zetas = argument(1); 7830 7831 coeffs = must_be_not_null(coeffs, true); 7832 zetas = must_be_not_null(zetas, true); 7833 7834 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7835 assert(coeffs_start, "coeffs is null"); 7836 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 7837 assert(zetas_start, "inverseNtt_zetas is null"); 7838 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7839 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 7840 stubAddr, stubName, TypePtr::BOTTOM, 7841 coeffs_start, zetas_start); 7842 7843 // return an int 7844 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 7845 set_result(retvalue); 7846 return true; 7847 } 7848 7849 //------------------------------inline_dilithiumNttMult 7850 bool LibraryCallKit::inline_dilithiumNttMult() { 7851 address stubAddr; 7852 const char *stubName; 7853 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7854 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 7855 7856 stubAddr = StubRoutines::dilithiumNttMult(); 7857 stubName = "dilithiumNttMult"; 7858 if (!stubAddr) return false; 7859 7860 Node* result = argument(0); 7861 Node* ntta = argument(1); 7862 Node* nttb = argument(2); 7863 7864 result = must_be_not_null(result, true); 7865 ntta = must_be_not_null(ntta, true); 7866 nttb = must_be_not_null(nttb, true); 7867 7868 Node* result_start = array_element_address(result, intcon(0), T_INT); 7869 assert(result_start, "result is null"); 7870 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 7871 assert(ntta_start, "ntta is null"); 7872 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 7873 assert(nttb_start, "nttb is null"); 7874 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7875 OptoRuntime::dilithiumNttMult_Type(), 7876 stubAddr, stubName, TypePtr::BOTTOM, 7877 result_start, ntta_start, nttb_start); 7878 7879 // return an int 7880 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 7881 set_result(retvalue); 7882 7883 return true; 7884 } 7885 7886 //------------------------------inline_dilithiumMontMulByConstant 7887 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 7888 address stubAddr; 7889 const char *stubName; 7890 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7891 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 7892 7893 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 7894 stubName = "dilithiumMontMulByConstant"; 7895 if (!stubAddr) return false; 7896 7897 Node* coeffs = argument(0); 7898 Node* constant = argument(1); 7899 7900 coeffs = must_be_not_null(coeffs, true); 7901 7902 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7903 assert(coeffs_start, "coeffs is null"); 7904 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 7905 OptoRuntime::dilithiumMontMulByConstant_Type(), 7906 stubAddr, stubName, TypePtr::BOTTOM, 7907 coeffs_start, constant); 7908 7909 // return an int 7910 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 7911 set_result(retvalue); 7912 return true; 7913 } 7914 7915 7916 //------------------------------inline_dilithiumDecomposePoly 7917 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 7918 address stubAddr; 7919 const char *stubName; 7920 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7921 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 7922 7923 stubAddr = StubRoutines::dilithiumDecomposePoly(); 7924 stubName = "dilithiumDecomposePoly"; 7925 if (!stubAddr) return false; 7926 7927 Node* input = argument(0); 7928 Node* lowPart = argument(1); 7929 Node* highPart = argument(2); 7930 Node* twoGamma2 = argument(3); 7931 Node* multiplier = argument(4); 7932 7933 input = must_be_not_null(input, true); 7934 lowPart = must_be_not_null(lowPart, true); 7935 highPart = must_be_not_null(highPart, true); 7936 7937 Node* input_start = array_element_address(input, intcon(0), T_INT); 7938 assert(input_start, "input is null"); 7939 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 7940 assert(lowPart_start, "lowPart is null"); 7941 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 7942 assert(highPart_start, "highPart is null"); 7943 7944 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 7945 OptoRuntime::dilithiumDecomposePoly_Type(), 7946 stubAddr, stubName, TypePtr::BOTTOM, 7947 input_start, lowPart_start, highPart_start, 7948 twoGamma2, multiplier); 7949 7950 // return an int 7951 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 7952 set_result(retvalue); 7953 return true; 7954 } 7955 7956 bool LibraryCallKit::inline_base64_encodeBlock() { 7957 address stubAddr; 7958 const char *stubName; 7959 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7960 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7961 stubAddr = StubRoutines::base64_encodeBlock(); 7962 stubName = "encodeBlock"; 7963 7964 if (!stubAddr) return false; 7965 Node* base64obj = argument(0); 7966 Node* src = argument(1); 7967 Node* offset = argument(2); 7968 Node* len = argument(3); 7969 Node* dest = argument(4); 7970 Node* dp = argument(5); 7971 Node* isURL = argument(6); 7972 7973 src = must_be_not_null(src, true); 7974 dest = must_be_not_null(dest, true); 7975 7976 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7977 assert(src_start, "source array is null"); 7978 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7979 assert(dest_start, "destination array is null"); 7980 7981 Node* base64 = make_runtime_call(RC_LEAF, 7982 OptoRuntime::base64_encodeBlock_Type(), 7983 stubAddr, stubName, TypePtr::BOTTOM, 7984 src_start, offset, len, dest_start, dp, isURL); 7985 return true; 7986 } 7987 7988 bool LibraryCallKit::inline_base64_decodeBlock() { 7989 address stubAddr; 7990 const char *stubName; 7991 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7992 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7993 stubAddr = StubRoutines::base64_decodeBlock(); 7994 stubName = "decodeBlock"; 7995 7996 if (!stubAddr) return false; 7997 Node* base64obj = argument(0); 7998 Node* src = argument(1); 7999 Node* src_offset = argument(2); 8000 Node* len = argument(3); 8001 Node* dest = argument(4); 8002 Node* dest_offset = argument(5); 8003 Node* isURL = argument(6); 8004 Node* isMIME = argument(7); 8005 8006 src = must_be_not_null(src, true); 8007 dest = must_be_not_null(dest, true); 8008 8009 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8010 assert(src_start, "source array is null"); 8011 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8012 assert(dest_start, "destination array is null"); 8013 8014 Node* call = make_runtime_call(RC_LEAF, 8015 OptoRuntime::base64_decodeBlock_Type(), 8016 stubAddr, stubName, TypePtr::BOTTOM, 8017 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8018 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8019 set_result(result); 8020 return true; 8021 } 8022 8023 bool LibraryCallKit::inline_poly1305_processBlocks() { 8024 address stubAddr; 8025 const char *stubName; 8026 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8027 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8028 stubAddr = StubRoutines::poly1305_processBlocks(); 8029 stubName = "poly1305_processBlocks"; 8030 8031 if (!stubAddr) return false; 8032 null_check_receiver(); // null-check receiver 8033 if (stopped()) return true; 8034 8035 Node* input = argument(1); 8036 Node* input_offset = argument(2); 8037 Node* len = argument(3); 8038 Node* alimbs = argument(4); 8039 Node* rlimbs = argument(5); 8040 8041 input = must_be_not_null(input, true); 8042 alimbs = must_be_not_null(alimbs, true); 8043 rlimbs = must_be_not_null(rlimbs, true); 8044 8045 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8046 assert(input_start, "input array is null"); 8047 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8048 assert(acc_start, "acc array is null"); 8049 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8050 assert(r_start, "r array is null"); 8051 8052 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8053 OptoRuntime::poly1305_processBlocks_Type(), 8054 stubAddr, stubName, TypePtr::BOTTOM, 8055 input_start, len, acc_start, r_start); 8056 return true; 8057 } 8058 8059 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8060 address stubAddr; 8061 const char *stubName; 8062 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8063 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8064 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8065 stubName = "intpoly_montgomeryMult_P256"; 8066 8067 if (!stubAddr) return false; 8068 null_check_receiver(); // null-check receiver 8069 if (stopped()) return true; 8070 8071 Node* a = argument(1); 8072 Node* b = argument(2); 8073 Node* r = argument(3); 8074 8075 a = must_be_not_null(a, true); 8076 b = must_be_not_null(b, true); 8077 r = must_be_not_null(r, true); 8078 8079 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8080 assert(a_start, "a array is null"); 8081 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8082 assert(b_start, "b array is null"); 8083 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8084 assert(r_start, "r array is null"); 8085 8086 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8087 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8088 stubAddr, stubName, TypePtr::BOTTOM, 8089 a_start, b_start, r_start); 8090 return true; 8091 } 8092 8093 bool LibraryCallKit::inline_intpoly_assign() { 8094 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8095 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8096 const char *stubName = "intpoly_assign"; 8097 address stubAddr = StubRoutines::intpoly_assign(); 8098 if (!stubAddr) return false; 8099 8100 Node* set = argument(0); 8101 Node* a = argument(1); 8102 Node* b = argument(2); 8103 Node* arr_length = load_array_length(a); 8104 8105 a = must_be_not_null(a, true); 8106 b = must_be_not_null(b, true); 8107 8108 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8109 assert(a_start, "a array is null"); 8110 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8111 assert(b_start, "b array is null"); 8112 8113 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8114 OptoRuntime::intpoly_assign_Type(), 8115 stubAddr, stubName, TypePtr::BOTTOM, 8116 set, a_start, b_start, arr_length); 8117 return true; 8118 } 8119 8120 //------------------------------inline_digestBase_implCompress----------------------- 8121 // 8122 // Calculate MD5 for single-block byte[] array. 8123 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8124 // 8125 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8126 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8127 // 8128 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8129 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8130 // 8131 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8132 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8133 // 8134 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8135 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8136 // 8137 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8138 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8139 8140 Node* digestBase_obj = argument(0); 8141 Node* src = argument(1); // type oop 8142 Node* ofs = argument(2); // type int 8143 8144 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8145 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8146 // failed array check 8147 return false; 8148 } 8149 // Figure out the size and type of the elements we will be copying. 8150 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8151 if (src_elem != T_BYTE) { 8152 return false; 8153 } 8154 // 'src_start' points to src array + offset 8155 src = must_be_not_null(src, true); 8156 Node* src_start = array_element_address(src, ofs, src_elem); 8157 Node* state = nullptr; 8158 Node* block_size = nullptr; 8159 address stubAddr; 8160 const char *stubName; 8161 8162 switch(id) { 8163 case vmIntrinsics::_md5_implCompress: 8164 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8165 state = get_state_from_digest_object(digestBase_obj, T_INT); 8166 stubAddr = StubRoutines::md5_implCompress(); 8167 stubName = "md5_implCompress"; 8168 break; 8169 case vmIntrinsics::_sha_implCompress: 8170 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8171 state = get_state_from_digest_object(digestBase_obj, T_INT); 8172 stubAddr = StubRoutines::sha1_implCompress(); 8173 stubName = "sha1_implCompress"; 8174 break; 8175 case vmIntrinsics::_sha2_implCompress: 8176 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8177 state = get_state_from_digest_object(digestBase_obj, T_INT); 8178 stubAddr = StubRoutines::sha256_implCompress(); 8179 stubName = "sha256_implCompress"; 8180 break; 8181 case vmIntrinsics::_sha5_implCompress: 8182 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8183 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8184 stubAddr = StubRoutines::sha512_implCompress(); 8185 stubName = "sha512_implCompress"; 8186 break; 8187 case vmIntrinsics::_sha3_implCompress: 8188 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8189 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8190 stubAddr = StubRoutines::sha3_implCompress(); 8191 stubName = "sha3_implCompress"; 8192 block_size = get_block_size_from_digest_object(digestBase_obj); 8193 if (block_size == nullptr) return false; 8194 break; 8195 default: 8196 fatal_unexpected_iid(id); 8197 return false; 8198 } 8199 if (state == nullptr) return false; 8200 8201 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8202 if (stubAddr == nullptr) return false; 8203 8204 // Call the stub. 8205 Node* call; 8206 if (block_size == nullptr) { 8207 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8208 stubAddr, stubName, TypePtr::BOTTOM, 8209 src_start, state); 8210 } else { 8211 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8212 stubAddr, stubName, TypePtr::BOTTOM, 8213 src_start, state, block_size); 8214 } 8215 8216 return true; 8217 } 8218 8219 //------------------------------inline_double_keccak 8220 bool LibraryCallKit::inline_double_keccak() { 8221 address stubAddr; 8222 const char *stubName; 8223 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8224 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8225 8226 stubAddr = StubRoutines::double_keccak(); 8227 stubName = "double_keccak"; 8228 if (!stubAddr) return false; 8229 8230 Node* status0 = argument(0); 8231 Node* status1 = argument(1); 8232 8233 status0 = must_be_not_null(status0, true); 8234 status1 = must_be_not_null(status1, true); 8235 8236 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8237 assert(status0_start, "status0 is null"); 8238 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8239 assert(status1_start, "status1 is null"); 8240 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8241 OptoRuntime::double_keccak_Type(), 8242 stubAddr, stubName, TypePtr::BOTTOM, 8243 status0_start, status1_start); 8244 // return an int 8245 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8246 set_result(retvalue); 8247 return true; 8248 } 8249 8250 8251 //------------------------------inline_digestBase_implCompressMB----------------------- 8252 // 8253 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8254 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8255 // 8256 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8257 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8258 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8259 assert((uint)predicate < 5, "sanity"); 8260 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8261 8262 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8263 Node* src = argument(1); // byte[] array 8264 Node* ofs = argument(2); // type int 8265 Node* limit = argument(3); // type int 8266 8267 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8268 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8269 // failed array check 8270 return false; 8271 } 8272 // Figure out the size and type of the elements we will be copying. 8273 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8274 if (src_elem != T_BYTE) { 8275 return false; 8276 } 8277 // 'src_start' points to src array + offset 8278 src = must_be_not_null(src, false); 8279 Node* src_start = array_element_address(src, ofs, src_elem); 8280 8281 const char* klass_digestBase_name = nullptr; 8282 const char* stub_name = nullptr; 8283 address stub_addr = nullptr; 8284 BasicType elem_type = T_INT; 8285 8286 switch (predicate) { 8287 case 0: 8288 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8289 klass_digestBase_name = "sun/security/provider/MD5"; 8290 stub_name = "md5_implCompressMB"; 8291 stub_addr = StubRoutines::md5_implCompressMB(); 8292 } 8293 break; 8294 case 1: 8295 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8296 klass_digestBase_name = "sun/security/provider/SHA"; 8297 stub_name = "sha1_implCompressMB"; 8298 stub_addr = StubRoutines::sha1_implCompressMB(); 8299 } 8300 break; 8301 case 2: 8302 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8303 klass_digestBase_name = "sun/security/provider/SHA2"; 8304 stub_name = "sha256_implCompressMB"; 8305 stub_addr = StubRoutines::sha256_implCompressMB(); 8306 } 8307 break; 8308 case 3: 8309 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8310 klass_digestBase_name = "sun/security/provider/SHA5"; 8311 stub_name = "sha512_implCompressMB"; 8312 stub_addr = StubRoutines::sha512_implCompressMB(); 8313 elem_type = T_LONG; 8314 } 8315 break; 8316 case 4: 8317 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8318 klass_digestBase_name = "sun/security/provider/SHA3"; 8319 stub_name = "sha3_implCompressMB"; 8320 stub_addr = StubRoutines::sha3_implCompressMB(); 8321 elem_type = T_LONG; 8322 } 8323 break; 8324 default: 8325 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8326 } 8327 if (klass_digestBase_name != nullptr) { 8328 assert(stub_addr != nullptr, "Stub is generated"); 8329 if (stub_addr == nullptr) return false; 8330 8331 // get DigestBase klass to lookup for SHA klass 8332 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8333 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8334 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8335 8336 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8337 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8338 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8339 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8340 } 8341 return false; 8342 } 8343 8344 //------------------------------inline_digestBase_implCompressMB----------------------- 8345 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8346 BasicType elem_type, address stubAddr, const char *stubName, 8347 Node* src_start, Node* ofs, Node* limit) { 8348 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8349 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8350 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8351 digest_obj = _gvn.transform(digest_obj); 8352 8353 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8354 if (state == nullptr) return false; 8355 8356 Node* block_size = nullptr; 8357 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8358 block_size = get_block_size_from_digest_object(digest_obj); 8359 if (block_size == nullptr) return false; 8360 } 8361 8362 // Call the stub. 8363 Node* call; 8364 if (block_size == nullptr) { 8365 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8366 OptoRuntime::digestBase_implCompressMB_Type(false), 8367 stubAddr, stubName, TypePtr::BOTTOM, 8368 src_start, state, ofs, limit); 8369 } else { 8370 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8371 OptoRuntime::digestBase_implCompressMB_Type(true), 8372 stubAddr, stubName, TypePtr::BOTTOM, 8373 src_start, state, block_size, ofs, limit); 8374 } 8375 8376 // return ofs (int) 8377 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8378 set_result(result); 8379 8380 return true; 8381 } 8382 8383 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8384 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8385 assert(UseAES, "need AES instruction support"); 8386 address stubAddr = nullptr; 8387 const char *stubName = nullptr; 8388 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8389 stubName = "galoisCounterMode_AESCrypt"; 8390 8391 if (stubAddr == nullptr) return false; 8392 8393 Node* in = argument(0); 8394 Node* inOfs = argument(1); 8395 Node* len = argument(2); 8396 Node* ct = argument(3); 8397 Node* ctOfs = argument(4); 8398 Node* out = argument(5); 8399 Node* outOfs = argument(6); 8400 Node* gctr_object = argument(7); 8401 Node* ghash_object = argument(8); 8402 8403 // (1) in, ct and out are arrays. 8404 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8405 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8406 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8407 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8408 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8409 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8410 8411 // checks are the responsibility of the caller 8412 Node* in_start = in; 8413 Node* ct_start = ct; 8414 Node* out_start = out; 8415 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8416 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8417 in_start = array_element_address(in, inOfs, T_BYTE); 8418 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8419 out_start = array_element_address(out, outOfs, T_BYTE); 8420 } 8421 8422 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8423 // (because of the predicated logic executed earlier). 8424 // so we cast it here safely. 8425 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8426 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8427 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8428 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8429 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8430 8431 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8432 return false; 8433 } 8434 // cast it to what we know it will be at runtime 8435 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8436 assert(tinst != nullptr, "GCTR obj is null"); 8437 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8438 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8439 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8440 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8441 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8442 const TypeOopPtr* xtype = aklass->as_instance_type(); 8443 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8444 aescrypt_object = _gvn.transform(aescrypt_object); 8445 // we need to get the start of the aescrypt_object's expanded key array 8446 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8447 if (k_start == nullptr) return false; 8448 // similarly, get the start address of the r vector 8449 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8450 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8451 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8452 8453 8454 // Call the stub, passing params 8455 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8456 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8457 stubAddr, stubName, TypePtr::BOTTOM, 8458 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8459 8460 // return cipher length (int) 8461 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8462 set_result(retvalue); 8463 8464 return true; 8465 } 8466 8467 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8468 // Return node representing slow path of predicate check. 8469 // the pseudo code we want to emulate with this predicate is: 8470 // for encryption: 8471 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8472 // for decryption: 8473 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8474 // note cipher==plain is more conservative than the original java code but that's OK 8475 // 8476 8477 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8478 // The receiver was checked for null already. 8479 Node* objGCTR = argument(7); 8480 // Load embeddedCipher field of GCTR object. 8481 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8482 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8483 8484 // get AESCrypt klass for instanceOf check 8485 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8486 // will have same classloader as CipherBlockChaining object 8487 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8488 assert(tinst != nullptr, "GCTR obj is null"); 8489 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8490 8491 // we want to do an instanceof comparison against the AESCrypt class 8492 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8493 if (!klass_AESCrypt->is_loaded()) { 8494 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8495 Node* ctrl = control(); 8496 set_control(top()); // no regular fast path 8497 return ctrl; 8498 } 8499 8500 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8501 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8502 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8503 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8504 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8505 8506 return instof_false; // even if it is null 8507 } 8508 8509 //------------------------------get_state_from_digest_object----------------------- 8510 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8511 const char* state_type; 8512 switch (elem_type) { 8513 case T_BYTE: state_type = "[B"; break; 8514 case T_INT: state_type = "[I"; break; 8515 case T_LONG: state_type = "[J"; break; 8516 default: ShouldNotReachHere(); 8517 } 8518 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8519 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8520 if (digest_state == nullptr) return (Node *) nullptr; 8521 8522 // now have the array, need to get the start address of the state array 8523 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8524 return state; 8525 } 8526 8527 //------------------------------get_block_size_from_sha3_object---------------------------------- 8528 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8529 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8530 assert (block_size != nullptr, "sanity"); 8531 return block_size; 8532 } 8533 8534 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8535 // Return node representing slow path of predicate check. 8536 // the pseudo code we want to emulate with this predicate is: 8537 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8538 // 8539 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8540 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8541 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8542 assert((uint)predicate < 5, "sanity"); 8543 8544 // The receiver was checked for null already. 8545 Node* digestBaseObj = argument(0); 8546 8547 // get DigestBase klass for instanceOf check 8548 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8549 assert(tinst != nullptr, "digestBaseObj is null"); 8550 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8551 8552 const char* klass_name = nullptr; 8553 switch (predicate) { 8554 case 0: 8555 if (UseMD5Intrinsics) { 8556 // we want to do an instanceof comparison against the MD5 class 8557 klass_name = "sun/security/provider/MD5"; 8558 } 8559 break; 8560 case 1: 8561 if (UseSHA1Intrinsics) { 8562 // we want to do an instanceof comparison against the SHA class 8563 klass_name = "sun/security/provider/SHA"; 8564 } 8565 break; 8566 case 2: 8567 if (UseSHA256Intrinsics) { 8568 // we want to do an instanceof comparison against the SHA2 class 8569 klass_name = "sun/security/provider/SHA2"; 8570 } 8571 break; 8572 case 3: 8573 if (UseSHA512Intrinsics) { 8574 // we want to do an instanceof comparison against the SHA5 class 8575 klass_name = "sun/security/provider/SHA5"; 8576 } 8577 break; 8578 case 4: 8579 if (UseSHA3Intrinsics) { 8580 // we want to do an instanceof comparison against the SHA3 class 8581 klass_name = "sun/security/provider/SHA3"; 8582 } 8583 break; 8584 default: 8585 fatal("unknown SHA intrinsic predicate: %d", predicate); 8586 } 8587 8588 ciKlass* klass = nullptr; 8589 if (klass_name != nullptr) { 8590 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8591 } 8592 if ((klass == nullptr) || !klass->is_loaded()) { 8593 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8594 Node* ctrl = control(); 8595 set_control(top()); // no intrinsic path 8596 return ctrl; 8597 } 8598 ciInstanceKlass* instklass = klass->as_instance_klass(); 8599 8600 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8601 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8602 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8603 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8604 8605 return instof_false; // even if it is null 8606 } 8607 8608 //-------------inline_fma----------------------------------- 8609 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8610 Node *a = nullptr; 8611 Node *b = nullptr; 8612 Node *c = nullptr; 8613 Node* result = nullptr; 8614 switch (id) { 8615 case vmIntrinsics::_fmaD: 8616 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8617 // no receiver since it is static method 8618 a = argument(0); 8619 b = argument(2); 8620 c = argument(4); 8621 result = _gvn.transform(new FmaDNode(a, b, c)); 8622 break; 8623 case vmIntrinsics::_fmaF: 8624 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8625 a = argument(0); 8626 b = argument(1); 8627 c = argument(2); 8628 result = _gvn.transform(new FmaFNode(a, b, c)); 8629 break; 8630 default: 8631 fatal_unexpected_iid(id); break; 8632 } 8633 set_result(result); 8634 return true; 8635 } 8636 8637 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8638 // argument(0) is receiver 8639 Node* codePoint = argument(1); 8640 Node* n = nullptr; 8641 8642 switch (id) { 8643 case vmIntrinsics::_isDigit : 8644 n = new DigitNode(control(), codePoint); 8645 break; 8646 case vmIntrinsics::_isLowerCase : 8647 n = new LowerCaseNode(control(), codePoint); 8648 break; 8649 case vmIntrinsics::_isUpperCase : 8650 n = new UpperCaseNode(control(), codePoint); 8651 break; 8652 case vmIntrinsics::_isWhitespace : 8653 n = new WhitespaceNode(control(), codePoint); 8654 break; 8655 default: 8656 fatal_unexpected_iid(id); 8657 } 8658 8659 set_result(_gvn.transform(n)); 8660 return true; 8661 } 8662 8663 bool LibraryCallKit::inline_profileBoolean() { 8664 Node* counts = argument(1); 8665 const TypeAryPtr* ary = nullptr; 8666 ciArray* aobj = nullptr; 8667 if (counts->is_Con() 8668 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8669 && (aobj = ary->const_oop()->as_array()) != nullptr 8670 && (aobj->length() == 2)) { 8671 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8672 jint false_cnt = aobj->element_value(0).as_int(); 8673 jint true_cnt = aobj->element_value(1).as_int(); 8674 8675 if (C->log() != nullptr) { 8676 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8677 false_cnt, true_cnt); 8678 } 8679 8680 if (false_cnt + true_cnt == 0) { 8681 // According to profile, never executed. 8682 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8683 Deoptimization::Action_reinterpret); 8684 return true; 8685 } 8686 8687 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8688 // is a number of each value occurrences. 8689 Node* result = argument(0); 8690 if (false_cnt == 0 || true_cnt == 0) { 8691 // According to profile, one value has been never seen. 8692 int expected_val = (false_cnt == 0) ? 1 : 0; 8693 8694 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8695 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8696 8697 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8698 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8699 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8700 8701 { // Slow path: uncommon trap for never seen value and then reexecute 8702 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8703 // the value has been seen at least once. 8704 PreserveJVMState pjvms(this); 8705 PreserveReexecuteState preexecs(this); 8706 jvms()->set_should_reexecute(true); 8707 8708 set_control(slow_path); 8709 set_i_o(i_o()); 8710 8711 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8712 Deoptimization::Action_reinterpret); 8713 } 8714 // The guard for never seen value enables sharpening of the result and 8715 // returning a constant. It allows to eliminate branches on the same value 8716 // later on. 8717 set_control(fast_path); 8718 result = intcon(expected_val); 8719 } 8720 // Stop profiling. 8721 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8722 // By replacing method body with profile data (represented as ProfileBooleanNode 8723 // on IR level) we effectively disable profiling. 8724 // It enables full speed execution once optimized code is generated. 8725 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8726 C->record_for_igvn(profile); 8727 set_result(profile); 8728 return true; 8729 } else { 8730 // Continue profiling. 8731 // Profile data isn't available at the moment. So, execute method's bytecode version. 8732 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8733 // is compiled and counters aren't available since corresponding MethodHandle 8734 // isn't a compile-time constant. 8735 return false; 8736 } 8737 } 8738 8739 bool LibraryCallKit::inline_isCompileConstant() { 8740 Node* n = argument(0); 8741 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8742 return true; 8743 } 8744 8745 //------------------------------- inline_getObjectSize -------------------------------------- 8746 // 8747 // Calculate the runtime size of the object/array. 8748 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8749 // 8750 bool LibraryCallKit::inline_getObjectSize() { 8751 Node* obj = argument(3); 8752 Node* klass_node = load_object_klass(obj); 8753 8754 jint layout_con = Klass::_lh_neutral_value; 8755 Node* layout_val = get_layout_helper(klass_node, layout_con); 8756 int layout_is_con = (layout_val == nullptr); 8757 8758 if (layout_is_con) { 8759 // Layout helper is constant, can figure out things at compile time. 8760 8761 if (Klass::layout_helper_is_instance(layout_con)) { 8762 // Instance case: layout_con contains the size itself. 8763 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8764 set_result(size); 8765 } else { 8766 // Array case: size is round(header + element_size*arraylength). 8767 // Since arraylength is different for every array instance, we have to 8768 // compute the whole thing at runtime. 8769 8770 Node* arr_length = load_array_length(obj); 8771 8772 int round_mask = MinObjAlignmentInBytes - 1; 8773 int hsize = Klass::layout_helper_header_size(layout_con); 8774 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8775 8776 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8777 round_mask = 0; // strength-reduce it if it goes away completely 8778 } 8779 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8780 Node* header_size = intcon(hsize + round_mask); 8781 8782 Node* lengthx = ConvI2X(arr_length); 8783 Node* headerx = ConvI2X(header_size); 8784 8785 Node* abody = lengthx; 8786 if (eshift != 0) { 8787 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8788 } 8789 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8790 if (round_mask != 0) { 8791 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8792 } 8793 size = ConvX2L(size); 8794 set_result(size); 8795 } 8796 } else { 8797 // Layout helper is not constant, need to test for array-ness at runtime. 8798 8799 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8800 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8801 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8802 record_for_igvn(result_reg); 8803 8804 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8805 if (array_ctl != nullptr) { 8806 // Array case: size is round(header + element_size*arraylength). 8807 // Since arraylength is different for every array instance, we have to 8808 // compute the whole thing at runtime. 8809 8810 PreserveJVMState pjvms(this); 8811 set_control(array_ctl); 8812 Node* arr_length = load_array_length(obj); 8813 8814 int round_mask = MinObjAlignmentInBytes - 1; 8815 Node* mask = intcon(round_mask); 8816 8817 Node* hss = intcon(Klass::_lh_header_size_shift); 8818 Node* hsm = intcon(Klass::_lh_header_size_mask); 8819 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8820 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8821 header_size = _gvn.transform(new AddINode(header_size, mask)); 8822 8823 // There is no need to mask or shift this value. 8824 // The semantics of LShiftINode include an implicit mask to 0x1F. 8825 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8826 Node* elem_shift = layout_val; 8827 8828 Node* lengthx = ConvI2X(arr_length); 8829 Node* headerx = ConvI2X(header_size); 8830 8831 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8832 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8833 if (round_mask != 0) { 8834 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8835 } 8836 size = ConvX2L(size); 8837 8838 result_reg->init_req(_array_path, control()); 8839 result_val->init_req(_array_path, size); 8840 } 8841 8842 if (!stopped()) { 8843 // Instance case: the layout helper gives us instance size almost directly, 8844 // but we need to mask out the _lh_instance_slow_path_bit. 8845 Node* size = ConvI2X(layout_val); 8846 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8847 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8848 size = _gvn.transform(new AndXNode(size, mask)); 8849 size = ConvX2L(size); 8850 8851 result_reg->init_req(_instance_path, control()); 8852 result_val->init_req(_instance_path, size); 8853 } 8854 8855 set_result(result_reg, result_val); 8856 } 8857 8858 return true; 8859 } 8860 8861 //------------------------------- inline_blackhole -------------------------------------- 8862 // 8863 // Make sure all arguments to this node are alive. 8864 // This matches methods that were requested to be blackholed through compile commands. 8865 // 8866 bool LibraryCallKit::inline_blackhole() { 8867 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8868 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8869 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8870 8871 // Blackhole node pinches only the control, not memory. This allows 8872 // the blackhole to be pinned in the loop that computes blackholed 8873 // values, but have no other side effects, like breaking the optimizations 8874 // across the blackhole. 8875 8876 Node* bh = _gvn.transform(new BlackholeNode(control())); 8877 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8878 8879 // Bind call arguments as blackhole arguments to keep them alive 8880 uint nargs = callee()->arg_size(); 8881 for (uint i = 0; i < nargs; i++) { 8882 bh->add_req(argument(i)); 8883 } 8884 8885 return true; 8886 } 8887 8888 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 8889 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 8890 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 8891 return nullptr; // box klass is not Float16 8892 } 8893 8894 // Null check; get notnull casted pointer 8895 Node* null_ctl = top(); 8896 Node* not_null_box = null_check_oop(box, &null_ctl, true); 8897 // If not_null_box is dead, only null-path is taken 8898 if (stopped()) { 8899 set_control(null_ctl); 8900 return nullptr; 8901 } 8902 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 8903 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 8904 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 8905 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 8906 } 8907 8908 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 8909 PreserveReexecuteState preexecs(this); 8910 jvms()->set_should_reexecute(true); 8911 8912 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 8913 Node* klass_node = makecon(klass_type); 8914 Node* box = new_instance(klass_node); 8915 8916 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 8917 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 8918 8919 Node* field_store = _gvn.transform(access_store_at(box, 8920 value_field, 8921 value_adr_type, 8922 value, 8923 TypeInt::SHORT, 8924 T_SHORT, 8925 IN_HEAP)); 8926 set_memory(field_store, value_adr_type); 8927 return box; 8928 } 8929 8930 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 8931 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 8932 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 8933 return false; 8934 } 8935 8936 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 8937 if (box_type == nullptr || box_type->const_oop() == nullptr) { 8938 return false; 8939 } 8940 8941 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 8942 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 8943 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 8944 ciSymbols::short_signature(), 8945 false); 8946 assert(field != nullptr, ""); 8947 8948 // Transformed nodes 8949 Node* fld1 = nullptr; 8950 Node* fld2 = nullptr; 8951 Node* fld3 = nullptr; 8952 switch(num_args) { 8953 case 3: 8954 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 8955 if (fld3 == nullptr) { 8956 return false; 8957 } 8958 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 8959 // fall-through 8960 case 2: 8961 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 8962 if (fld2 == nullptr) { 8963 return false; 8964 } 8965 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 8966 // fall-through 8967 case 1: 8968 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 8969 if (fld1 == nullptr) { 8970 return false; 8971 } 8972 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 8973 break; 8974 default: fatal("Unsupported number of arguments %d", num_args); 8975 } 8976 8977 Node* result = nullptr; 8978 switch (id) { 8979 // Unary operations 8980 case vmIntrinsics::_sqrt_float16: 8981 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 8982 break; 8983 // Ternary operations 8984 case vmIntrinsics::_fma_float16: 8985 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 8986 break; 8987 default: 8988 fatal_unexpected_iid(id); 8989 break; 8990 } 8991 result = _gvn.transform(new ReinterpretHF2SNode(result)); 8992 set_result(box_fp16_value(float16_box_type, field, result)); 8993 return true; 8994 } 8995