1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciMethodData.hpp"
  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/callnode.hpp"
  39 #include "opto/arraycopynode.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/runtime.hpp"
  44 #include "opto/type.hpp"
  45 #include "utilities/checkedCast.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 
  50 // Portions of code courtesy of Clifford Click
  51 
  52 // Optimization - Graph Style
  53 
  54 // Dictionary of types shared among compilations.
  55 Dict* Type::_shared_type_dict = nullptr;
  56 
  57 // Array which maps compiler types to Basic Types
  58 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  59   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  60   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  61   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  62   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  63   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  64   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  65   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  66   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  67   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  68   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  69   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  70 
  71 #if defined(PPC64)
  72   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  73   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  74   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  75   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  76   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  77   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  78   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  79 #elif defined(S390)
  80   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  81   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  82   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  83   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  84   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  85   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  86   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  87 #else // all other
  88   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  89   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  90   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  91   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  92   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  93   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  94   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  95 #endif
  96   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  97   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  98   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  99   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 100   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 101   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 102   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 103   { Bad,             T_METADATA,   "instklass:",    false, Op_RegP,              relocInfo::metadata_type },  // InstKlassPtr
 104   { Bad,             T_METADATA,   "aryklass:",     false, Op_RegP,              relocInfo::metadata_type },  // AryKlassPtr
 105   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 106   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 107   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 108   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 109   { HalfFloatBot,    T_SHORT,      "halffloat_top", false, Op_RegF,              relocInfo::none          },  // HalfFloatTop
 110   { HalfFloatCon,    T_SHORT,      "hfcon:",        false, Op_RegF,              relocInfo::none          },  // HalfFloatCon
 111   { HalfFloatTop,    T_SHORT,      "short",         false, Op_RegF,              relocInfo::none          },  // HalfFloatBot
 112   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 113   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 114   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 115   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 116   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 117   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 118   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 119 };
 120 
 121 // Map ideal registers (machine types) to ideal types
 122 const Type *Type::mreg2type[_last_machine_leaf];
 123 
 124 // Map basic types to canonical Type* pointers.
 125 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 126 
 127 // Map basic types to constant-zero Types.
 128 const Type* Type::            _zero_type[T_CONFLICT+1];
 129 
 130 // Map basic types to array-body alias types.
 131 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 132 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr;
 133 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr;
 134 
 135 //=============================================================================
 136 // Convenience common pre-built types.
 137 const Type *Type::ABIO;         // State-of-machine only
 138 const Type *Type::BOTTOM;       // All values
 139 const Type *Type::CONTROL;      // Control only
 140 const Type *Type::DOUBLE;       // All doubles
 141 const Type *Type::HALF_FLOAT;   // All half floats
 142 const Type *Type::FLOAT;        // All floats
 143 const Type *Type::HALF;         // Placeholder half of doublewide type
 144 const Type *Type::MEMORY;       // Abstract store only
 145 const Type *Type::RETURN_ADDRESS;
 146 const Type *Type::TOP;          // No values in set
 147 
 148 //------------------------------get_const_type---------------------------
 149 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
 150   if (type == nullptr) {
 151     return nullptr;
 152   } else if (type->is_primitive_type()) {
 153     return get_const_basic_type(type->basic_type());
 154   } else {
 155     return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
 156   }
 157 }
 158 
 159 //---------------------------array_element_basic_type---------------------------------
 160 // Mapping to the array element's basic type.
 161 BasicType Type::array_element_basic_type() const {
 162   BasicType bt = basic_type();
 163   if (bt == T_INT) {
 164     if (this == TypeInt::INT)   return T_INT;
 165     if (this == TypeInt::CHAR)  return T_CHAR;
 166     if (this == TypeInt::BYTE)  return T_BYTE;
 167     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 168     if (this == TypeInt::SHORT) return T_SHORT;
 169     return T_VOID;
 170   }
 171   return bt;
 172 }
 173 
 174 // For two instance arrays of same dimension, return the base element types.
 175 // Otherwise or if the arrays have different dimensions, return null.
 176 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 177                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 178 
 179   if (e1) *e1 = nullptr;
 180   if (e2) *e2 = nullptr;
 181   const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
 182   const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
 183 
 184   if (a1tap != nullptr && a2tap != nullptr) {
 185     // Handle multidimensional arrays
 186     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 187     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 188     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 189       a1tap = a1tp->is_aryptr();
 190       a2tap = a2tp->is_aryptr();
 191       a1tp = a1tap->elem()->make_ptr();
 192       a2tp = a2tap->elem()->make_ptr();
 193     }
 194     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 195       if (e1) *e1 = a1tp->is_instptr();
 196       if (e2) *e2 = a2tp->is_instptr();
 197     }
 198   }
 199 }
 200 
 201 //---------------------------get_typeflow_type---------------------------------
 202 // Import a type produced by ciTypeFlow.
 203 const Type* Type::get_typeflow_type(ciType* type) {
 204   switch (type->basic_type()) {
 205 
 206   case ciTypeFlow::StateVector::T_BOTTOM:
 207     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 208     return Type::BOTTOM;
 209 
 210   case ciTypeFlow::StateVector::T_TOP:
 211     assert(type == ciTypeFlow::StateVector::top_type(), "");
 212     return Type::TOP;
 213 
 214   case ciTypeFlow::StateVector::T_NULL:
 215     assert(type == ciTypeFlow::StateVector::null_type(), "");
 216     return TypePtr::NULL_PTR;
 217 
 218   case ciTypeFlow::StateVector::T_LONG2:
 219     // The ciTypeFlow pass pushes a long, then the half.
 220     // We do the same.
 221     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 222     return TypeInt::TOP;
 223 
 224   case ciTypeFlow::StateVector::T_DOUBLE2:
 225     // The ciTypeFlow pass pushes double, then the half.
 226     // Our convention is the same.
 227     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 228     return Type::TOP;
 229 
 230   case T_ADDRESS:
 231     assert(type->is_return_address(), "");
 232     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 233 
 234   default:
 235     // make sure we did not mix up the cases:
 236     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 237     assert(type != ciTypeFlow::StateVector::top_type(), "");
 238     assert(type != ciTypeFlow::StateVector::null_type(), "");
 239     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 240     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 241     assert(!type->is_return_address(), "");
 242 
 243     return Type::get_const_type(type);
 244   }
 245 }
 246 
 247 
 248 //-----------------------make_from_constant------------------------------------
 249 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 250                                      int stable_dimension, bool is_narrow_oop,
 251                                      bool is_autobox_cache) {
 252   switch (constant.basic_type()) {
 253     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 254     case T_CHAR:     return TypeInt::make(constant.as_char());
 255     case T_BYTE:     return TypeInt::make(constant.as_byte());
 256     case T_SHORT:    return TypeInt::make(constant.as_short());
 257     case T_INT:      return TypeInt::make(constant.as_int());
 258     case T_LONG:     return TypeLong::make(constant.as_long());
 259     case T_FLOAT:    return TypeF::make(constant.as_float());
 260     case T_DOUBLE:   return TypeD::make(constant.as_double());
 261     case T_ARRAY:
 262     case T_OBJECT: {
 263         const Type* con_type = nullptr;
 264         ciObject* oop_constant = constant.as_object();
 265         if (oop_constant->is_null_object()) {
 266           con_type = Type::get_zero_type(T_OBJECT);
 267         } else {
 268           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 269           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 270           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 271             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 272           }
 273           if (stable_dimension > 0) {
 274             assert(FoldStableValues, "sanity");
 275             assert(!con_type->is_zero_type(), "default value for stable field");
 276             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 277           }
 278         }
 279         if (is_narrow_oop) {
 280           con_type = con_type->make_narrowoop();
 281         }
 282         return con_type;
 283       }
 284     case T_ILLEGAL:
 285       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 286       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 287       return nullptr;
 288     default:
 289       // Fall through to failure
 290       return nullptr;
 291   }
 292 }
 293 
 294 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 295   BasicType conbt = con.basic_type();
 296   switch (conbt) {
 297     case T_BOOLEAN: conbt = T_BYTE;   break;
 298     case T_ARRAY:   conbt = T_OBJECT; break;
 299     default:                          break;
 300   }
 301   switch (loadbt) {
 302     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 303     case T_NARROWOOP: loadbt = T_OBJECT; break;
 304     case T_ARRAY:     loadbt = T_OBJECT; break;
 305     case T_ADDRESS:   loadbt = T_OBJECT; break;
 306     default:                             break;
 307   }
 308   if (conbt == loadbt) {
 309     if (is_unsigned && conbt == T_BYTE) {
 310       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 311       return ciConstant(T_INT, con.as_int() & 0xFF);
 312     } else {
 313       return con;
 314     }
 315   }
 316   if (conbt == T_SHORT && loadbt == T_CHAR) {
 317     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 318     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 319   }
 320   return ciConstant(); // T_ILLEGAL
 321 }
 322 
 323 // Try to constant-fold a stable array element.
 324 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 325                                                    BasicType loadbt, bool is_unsigned_load) {
 326   // Decode the results of GraphKit::array_element_address.
 327   ciConstant element_value = array->element_value_by_offset(off);
 328   if (element_value.basic_type() == T_ILLEGAL) {
 329     return nullptr; // wrong offset
 330   }
 331   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 332 
 333   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 334          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 335 
 336   if (con.is_valid() &&          // not a mismatched access
 337       !con.is_null_or_zero()) {  // not a default value
 338     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 339     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 340   }
 341   return nullptr;
 342 }
 343 
 344 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 345   ciField* field;
 346   ciType* type = holder->java_mirror_type();
 347   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 348     // Static field
 349     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 350   } else {
 351     // Instance field
 352     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 353   }
 354   if (field == nullptr) {
 355     return nullptr; // Wrong offset
 356   }
 357   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 358 }
 359 
 360 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 361                                            BasicType loadbt, bool is_unsigned_load) {
 362   if (!field->is_constant()) {
 363     return nullptr; // Non-constant field
 364   }
 365   ciConstant field_value;
 366   if (field->is_static()) {
 367     // final static field
 368     field_value = field->constant_value();
 369   } else if (holder != nullptr) {
 370     // final or stable non-static field
 371     // Treat final non-static fields of trusted classes (classes in
 372     // java.lang.invoke and sun.invoke packages and subpackages) as
 373     // compile time constants.
 374     field_value = field->constant_value_of(holder);
 375   }
 376   if (!field_value.is_valid()) {
 377     return nullptr; // Not a constant
 378   }
 379 
 380   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 381 
 382   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 383          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 384 
 385   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 386   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 387   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 388 
 389   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 390                                             stable_dimension, is_narrow_oop,
 391                                             field->is_autobox_cache());
 392   if (con_type != nullptr && field->is_call_site_target()) {
 393     ciCallSite* call_site = holder->as_call_site();
 394     if (!call_site->is_fully_initialized_constant_call_site()) {
 395       ciMethodHandle* target = con.as_object()->as_method_handle();
 396       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 397     }
 398   }
 399   return con_type;
 400 }
 401 
 402 //------------------------------make-------------------------------------------
 403 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 404 // and look for an existing copy in the type dictionary.
 405 const Type *Type::make( enum TYPES t ) {
 406   return (new Type(t))->hashcons();
 407 }
 408 
 409 //------------------------------cmp--------------------------------------------
 410 bool Type::equals(const Type* t1, const Type* t2) {
 411   if (t1->_base != t2->_base) {
 412     return false; // Missed badly
 413   }
 414 
 415   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 416   return t1->eq(t2);
 417 }
 418 
 419 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 420   if (!include_speculative) {
 421     return remove_speculative();
 422   }
 423   return this;
 424 }
 425 
 426 //------------------------------hash-------------------------------------------
 427 int Type::uhash( const Type *const t ) {
 428   return (int)t->hash();
 429 }
 430 
 431 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 432 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 433 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 434 
 435 //--------------------------Initialize_shared----------------------------------
 436 void Type::Initialize_shared(Compile* current) {
 437   // This method does not need to be locked because the first system
 438   // compilations (stub compilations) occur serially.  If they are
 439   // changed to proceed in parallel, then this section will need
 440   // locking.
 441 
 442   Arena* save = current->type_arena();
 443   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler, Arena::Tag::tag_type);
 444 
 445   current->set_type_arena(shared_type_arena);
 446 
 447   // Map the boolean result of Type::equals into a comparator result that CmpKey expects.
 448   CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t {
 449     return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1;
 450   };
 451 
 452   _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128);
 453   current->set_type_dict(_shared_type_dict);
 454 
 455   // Make shared pre-built types.
 456   CONTROL = make(Control);      // Control only
 457   TOP     = make(Top);          // No values in set
 458   MEMORY  = make(Memory);       // Abstract store only
 459   ABIO    = make(Abio);         // State-of-machine only
 460   RETURN_ADDRESS=make(Return_Address);
 461   FLOAT   = make(FloatBot);     // All floats
 462   HALF_FLOAT = make(HalfFloatBot); // All half floats
 463   DOUBLE  = make(DoubleBot);    // All doubles
 464   BOTTOM  = make(Bottom);       // Everything
 465   HALF    = make(Half);         // Placeholder half of doublewide type
 466 
 467   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 468   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 469   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 470   TypeF::ONE  = TypeF::make(1.0); // Float 1
 471   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 472   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 473 
 474   TypeH::MAX = TypeH::make(max_jfloat16); // HalfFloat MAX
 475   TypeH::MIN = TypeH::make(min_jfloat16); // HalfFloat MIN
 476   TypeH::ZERO = TypeH::make((jshort)0); // HalfFloat 0 (positive zero)
 477   TypeH::ONE  = TypeH::make(one_jfloat16); // HalfFloat 1
 478   TypeH::POS_INF = TypeH::make(pos_inf_jfloat16);
 479   TypeH::NEG_INF = TypeH::make(neg_inf_jfloat16);
 480 
 481   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 482   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 483   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 484   TypeD::ONE  = TypeD::make(1.0); // Double 1
 485   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 486   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 487 
 488   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 489   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 490   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 491   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 492   TypeInt::ONE     = TypeInt::make( 1);  //  1
 493   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 494   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 495   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 496   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 497   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 498   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 499   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 500   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 501   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 502   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 503   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 504   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 505   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 506   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 507   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 508   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 509   // CmpL is overloaded both as the bytecode computation returning
 510   // a trinary (-1,0,+1) integer result AND as an efficient long
 511   // compare returning optimizer ideal-type flags.
 512   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 513   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 514   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 515   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 516   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 517 
 518   TypeLong::MAX = TypeLong::make(max_jlong);  // Long MAX
 519   TypeLong::MIN = TypeLong::make(min_jlong);  // Long MIN
 520   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 521   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 522   TypeLong::ONE     = TypeLong::make( 1);        //  1
 523   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 524   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 525   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 526   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 527   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 528 
 529   const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 530   fboth[0] = Type::CONTROL;
 531   fboth[1] = Type::CONTROL;
 532   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 533 
 534   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 535   ffalse[0] = Type::CONTROL;
 536   ffalse[1] = Type::TOP;
 537   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 538 
 539   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 540   fneither[0] = Type::TOP;
 541   fneither[1] = Type::TOP;
 542   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 543 
 544   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 545   ftrue[0] = Type::TOP;
 546   ftrue[1] = Type::CONTROL;
 547   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 548 
 549   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 550   floop[0] = Type::CONTROL;
 551   floop[1] = TypeInt::INT;
 552   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 553 
 554   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 555   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 556   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 557 
 558   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 559   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 560 
 561   const Type **fmembar = TypeTuple::fields(0);
 562   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 563 
 564   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 565   fsc[0] = TypeInt::CC;
 566   fsc[1] = Type::MEMORY;
 567   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 568 
 569   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 570   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 571   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 572   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 573                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 574   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 575                                            false, nullptr, Type::klass_offset());
 576   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 577 
 578   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 579 
 580   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 581   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 582 
 583   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 584 
 585   mreg2type[Op_Node] = Type::BOTTOM;
 586   mreg2type[Op_Set ] = nullptr;
 587   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 588   mreg2type[Op_RegI] = TypeInt::INT;
 589   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 590   mreg2type[Op_RegF] = Type::FLOAT;
 591   mreg2type[Op_RegD] = Type::DOUBLE;
 592   mreg2type[Op_RegL] = TypeLong::LONG;
 593   mreg2type[Op_RegFlags] = TypeInt::CC;
 594 
 595   GrowableArray<ciInstanceKlass*> array_interfaces;
 596   array_interfaces.push(current->env()->Cloneable_klass());
 597   array_interfaces.push(current->env()->Serializable_klass());
 598   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 599   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 600 
 601   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
 602   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 603 
 604   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 605 
 606 #ifdef _LP64
 607   if (UseCompressedOops) {
 608     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 609     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 610   } else
 611 #endif
 612   {
 613     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 614     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 615   }
 616   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 617   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 618   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 619   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 620   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 621   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 622   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 623 
 624   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 625   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 626   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 627   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 628   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 629   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 630   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 631   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 632   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 633   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 634   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 635   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 636 
 637   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 638   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 639 
 640   const Type **fi2c = TypeTuple::fields(2);
 641   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 642   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 643   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 644 
 645   const Type **intpair = TypeTuple::fields(2);
 646   intpair[0] = TypeInt::INT;
 647   intpair[1] = TypeInt::INT;
 648   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 649 
 650   const Type **longpair = TypeTuple::fields(2);
 651   longpair[0] = TypeLong::LONG;
 652   longpair[1] = TypeLong::LONG;
 653   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 654 
 655   const Type **intccpair = TypeTuple::fields(2);
 656   intccpair[0] = TypeInt::INT;
 657   intccpair[1] = TypeInt::CC;
 658   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 659 
 660   const Type **longccpair = TypeTuple::fields(2);
 661   longccpair[0] = TypeLong::LONG;
 662   longccpair[1] = TypeInt::CC;
 663   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 664 
 665   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 666   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 667   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 668   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 669   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 670   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 671   _const_basic_type[T_INT]         = TypeInt::INT;
 672   _const_basic_type[T_LONG]        = TypeLong::LONG;
 673   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 674   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 675   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 676   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 677   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 678   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 679   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 680 
 681   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 682   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 683   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 684   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 685   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 686   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 687   _zero_type[T_INT]         = TypeInt::ZERO;
 688   _zero_type[T_LONG]        = TypeLong::ZERO;
 689   _zero_type[T_FLOAT]       = TypeF::ZERO;
 690   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 691   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 692   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 693   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 694   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 695 
 696   // get_zero_type() should not happen for T_CONFLICT
 697   _zero_type[T_CONFLICT]= nullptr;
 698 
 699   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 700   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 701 
 702   if (Matcher::supports_scalable_vector()) {
 703     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 704   }
 705 
 706   // Vector predefined types, it needs initialized _const_basic_type[].
 707   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 708     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 709   }
 710   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 711     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 712   }
 713   if (Matcher::vector_size_supported(T_FLOAT, 4)) {
 714     TypeVect::VECTX = TypeVect::make(T_FLOAT, 4);
 715   }
 716   if (Matcher::vector_size_supported(T_FLOAT, 8)) {
 717     TypeVect::VECTY = TypeVect::make(T_FLOAT, 8);
 718   }
 719   if (Matcher::vector_size_supported(T_FLOAT, 16)) {
 720     TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16);
 721   }
 722 
 723   mreg2type[Op_VecA] = TypeVect::VECTA;
 724   mreg2type[Op_VecS] = TypeVect::VECTS;
 725   mreg2type[Op_VecD] = TypeVect::VECTD;
 726   mreg2type[Op_VecX] = TypeVect::VECTX;
 727   mreg2type[Op_VecY] = TypeVect::VECTY;
 728   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 729 
 730   LockNode::initialize_lock_Type();
 731   ArrayCopyNode::initialize_arraycopy_Type();
 732   OptoRuntime::initialize_types();
 733 
 734   // Restore working type arena.
 735   current->set_type_arena(save);
 736   current->set_type_dict(nullptr);
 737 }
 738 
 739 //------------------------------Initialize-------------------------------------
 740 void Type::Initialize(Compile* current) {
 741   assert(current->type_arena() != nullptr, "must have created type arena");
 742 
 743   if (_shared_type_dict == nullptr) {
 744     Initialize_shared(current);
 745   }
 746 
 747   Arena* type_arena = current->type_arena();
 748 
 749   // Create the hash-cons'ing dictionary with top-level storage allocation
 750   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
 751   current->set_type_dict(tdic);
 752 }
 753 
 754 //------------------------------hashcons---------------------------------------
 755 // Do the hash-cons trick.  If the Type already exists in the type table,
 756 // delete the current Type and return the existing Type.  Otherwise stick the
 757 // current Type in the Type table.
 758 const Type *Type::hashcons(void) {
 759   debug_only(base());           // Check the assertion in Type::base().
 760   // Look up the Type in the Type dictionary
 761   Dict *tdic = type_dict();
 762   Type* old = (Type*)(tdic->Insert(this, this, false));
 763   if( old ) {                   // Pre-existing Type?
 764     if( old != this )           // Yes, this guy is not the pre-existing?
 765       delete this;              // Yes, Nuke this guy
 766     assert( old->_dual, "" );
 767     return old;                 // Return pre-existing
 768   }
 769 
 770   // Every type has a dual (to make my lattice symmetric).
 771   // Since we just discovered a new Type, compute its dual right now.
 772   assert( !_dual, "" );         // No dual yet
 773   _dual = xdual();              // Compute the dual
 774   if (equals(this, _dual)) {    // Handle self-symmetric
 775     if (_dual != this) {
 776       delete _dual;
 777       _dual = this;
 778     }
 779     return this;
 780   }
 781   assert( !_dual->_dual, "" );  // No reverse dual yet
 782   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 783   // New Type, insert into Type table
 784   tdic->Insert((void*)_dual,(void*)_dual);
 785   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 786 #ifdef ASSERT
 787   Type *dual_dual = (Type*)_dual->xdual();
 788   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 789   delete dual_dual;
 790 #endif
 791   return this;                  // Return new Type
 792 }
 793 
 794 //------------------------------eq---------------------------------------------
 795 // Structural equality check for Type representations
 796 bool Type::eq( const Type * ) const {
 797   return true;                  // Nothing else can go wrong
 798 }
 799 
 800 //------------------------------hash-------------------------------------------
 801 // Type-specific hashing function.
 802 uint Type::hash(void) const {
 803   return _base;
 804 }
 805 
 806 //------------------------------is_finite--------------------------------------
 807 // Has a finite value
 808 bool Type::is_finite() const {
 809   return false;
 810 }
 811 
 812 //------------------------------is_nan-----------------------------------------
 813 // Is not a number (NaN)
 814 bool Type::is_nan()    const {
 815   return false;
 816 }
 817 
 818 #ifdef ASSERT
 819 class VerifyMeet;
 820 class VerifyMeetResult : public ArenaObj {
 821   friend class VerifyMeet;
 822   friend class Type;
 823 private:
 824   class VerifyMeetResultEntry {
 825   private:
 826     const Type* _in1;
 827     const Type* _in2;
 828     const Type* _res;
 829   public:
 830     VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res):
 831             _in1(in1), _in2(in2), _res(res) {
 832     }
 833     VerifyMeetResultEntry():
 834             _in1(nullptr), _in2(nullptr), _res(nullptr) {
 835     }
 836 
 837     bool operator==(const VerifyMeetResultEntry& rhs) const {
 838       return _in1 == rhs._in1 &&
 839              _in2 == rhs._in2 &&
 840              _res == rhs._res;
 841     }
 842 
 843     bool operator!=(const VerifyMeetResultEntry& rhs) const {
 844       return !(rhs == *this);
 845     }
 846 
 847     static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) {
 848       if ((intptr_t) v1._in1 < (intptr_t) v2._in1) {
 849         return -1;
 850       } else if (v1._in1 == v2._in1) {
 851         if ((intptr_t) v1._in2 < (intptr_t) v2._in2) {
 852           return -1;
 853         } else if (v1._in2 == v2._in2) {
 854           assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result");
 855           return 0;
 856         }
 857         return 1;
 858       }
 859       return 1;
 860     }
 861     const Type* res() const { return _res; }
 862   };
 863   uint _depth;
 864   GrowableArray<VerifyMeetResultEntry> _cache;
 865 
 866   // With verification code, the meet of A and B causes the computation of:
 867   // 1- meet(A, B)
 868   // 2- meet(B, A)
 869   // 3- meet(dual(meet(A, B)), dual(A))
 870   // 4- meet(dual(meet(A, B)), dual(B))
 871   // 5- meet(dual(A), dual(B))
 872   // 6- meet(dual(B), dual(A))
 873   // 7- meet(dual(meet(dual(A), dual(B))), A)
 874   // 8- meet(dual(meet(dual(A), dual(B))), B)
 875   //
 876   // In addition the meet of A[] and B[] requires the computation of the meet of A and B.
 877   //
 878   // The meet of A[] and B[] triggers the computation of:
 879   // 1- meet(A[], B[][)
 880   //   1.1- meet(A, B)
 881   //   1.2- meet(B, A)
 882   //   1.3- meet(dual(meet(A, B)), dual(A))
 883   //   1.4- meet(dual(meet(A, B)), dual(B))
 884   //   1.5- meet(dual(A), dual(B))
 885   //   1.6- meet(dual(B), dual(A))
 886   //   1.7- meet(dual(meet(dual(A), dual(B))), A)
 887   //   1.8- meet(dual(meet(dual(A), dual(B))), B)
 888   // 2- meet(B[], A[])
 889   //   2.1- meet(B, A) = 1.2
 890   //   2.2- meet(A, B) = 1.1
 891   //   2.3- meet(dual(meet(B, A)), dual(B)) = 1.4
 892   //   2.4- meet(dual(meet(B, A)), dual(A)) = 1.3
 893   //   2.5- meet(dual(B), dual(A)) = 1.6
 894   //   2.6- meet(dual(A), dual(B)) = 1.5
 895   //   2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8
 896   //   2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7
 897   // etc.
 898   // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number
 899   // of different meet operations is linear in the number of dimensions. The function below caches meet results for the
 900   // duration of the meet at the root of the recursive calls.
 901   //
 902   const Type* meet(const Type* t1, const Type* t2) {
 903     bool found = false;
 904     const VerifyMeetResultEntry meet(t1, t2, nullptr);
 905     int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 906     const Type* res = nullptr;
 907     if (found) {
 908       res = _cache.at(pos).res();
 909     } else {
 910       res = t1->xmeet(t2);
 911       _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 912       found = false;
 913       _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 914       assert(found, "should be in table after it's added");
 915     }
 916     return res;
 917   }
 918 
 919   void add(const Type* t1, const Type* t2, const Type* res) {
 920     _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 921   }
 922 
 923   bool empty_cache() const {
 924     return _cache.length() == 0;
 925   }
 926 public:
 927   VerifyMeetResult(Compile* C) :
 928           _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) {
 929   }
 930 };
 931 
 932 void Type::assert_type_verify_empty() const {
 933   assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded");
 934 }
 935 
 936 class VerifyMeet {
 937 private:
 938   Compile* _C;
 939 public:
 940   VerifyMeet(Compile* C) : _C(C) {
 941     if (C->_type_verify == nullptr) {
 942       C->_type_verify = new (C->comp_arena())VerifyMeetResult(C);
 943     }
 944     _C->_type_verify->_depth++;
 945   }
 946 
 947   ~VerifyMeet() {
 948     assert(_C->_type_verify->_depth != 0, "");
 949     _C->_type_verify->_depth--;
 950     if (_C->_type_verify->_depth == 0) {
 951       _C->_type_verify->_cache.trunc_to(0);
 952     }
 953   }
 954 
 955   const Type* meet(const Type* t1, const Type* t2) const {
 956     return _C->_type_verify->meet(t1, t2);
 957   }
 958 
 959   void add(const Type* t1, const Type* t2, const Type* res) const {
 960     _C->_type_verify->add(t1, t2, res);
 961   }
 962 };
 963 
 964 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 965   Compile* C = Compile::current();
 966   const Type* mt2 = verify.meet(t, this);
 967   if (mt != mt2) {
 968     tty->print_cr("=== Meet Not Commutative ===");
 969     tty->print("t           = ");   t->dump(); tty->cr();
 970     tty->print("this        = ");      dump(); tty->cr();
 971     tty->print("t meet this = "); mt2->dump(); tty->cr();
 972     tty->print("this meet t = ");  mt->dump(); tty->cr();
 973     fatal("meet not commutative");
 974   }
 975   const Type* dual_join = mt->_dual;
 976   const Type* t2t    = verify.meet(dual_join,t->_dual);
 977   const Type* t2this = verify.meet(dual_join,this->_dual);
 978 
 979   // Interface meet Oop is Not Symmetric:
 980   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 981   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 982 
 983   if (t2t != t->_dual || t2this != this->_dual) {
 984     tty->print_cr("=== Meet Not Symmetric ===");
 985     tty->print("t   =                   ");              t->dump(); tty->cr();
 986     tty->print("this=                   ");                 dump(); tty->cr();
 987     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 988 
 989     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 990     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 991     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 992 
 993     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 994     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 995 
 996     fatal("meet not symmetric");
 997   }
 998 }
 999 #endif
1000 
1001 //------------------------------meet-------------------------------------------
1002 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1003 // commutative and the lattice is symmetric.
1004 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1005   if (isa_narrowoop() && t->isa_narrowoop()) {
1006     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1007     return result->make_narrowoop();
1008   }
1009   if (isa_narrowklass() && t->isa_narrowklass()) {
1010     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1011     return result->make_narrowklass();
1012   }
1013 
1014 #ifdef ASSERT
1015   Compile* C = Compile::current();
1016   VerifyMeet verify(C);
1017 #endif
1018 
1019   const Type *this_t = maybe_remove_speculative(include_speculative);
1020   t = t->maybe_remove_speculative(include_speculative);
1021 
1022   const Type *mt = this_t->xmeet(t);
1023 #ifdef ASSERT
1024   verify.add(this_t, t, mt);
1025   if (isa_narrowoop() || t->isa_narrowoop()) {
1026     return mt;
1027   }
1028   if (isa_narrowklass() || t->isa_narrowklass()) {
1029     return mt;
1030   }
1031   this_t->check_symmetrical(t, mt, verify);
1032   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1033   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1034 #endif
1035   return mt;
1036 }
1037 
1038 //------------------------------xmeet------------------------------------------
1039 // Compute the MEET of two types.  It returns a new Type object.
1040 const Type *Type::xmeet( const Type *t ) const {
1041   // Perform a fast test for common case; meeting the same types together.
1042   if( this == t ) return this;  // Meeting same type-rep?
1043 
1044   // Meeting TOP with anything?
1045   if( _base == Top ) return t;
1046 
1047   // Meeting BOTTOM with anything?
1048   if( _base == Bottom ) return BOTTOM;
1049 
1050   // Current "this->_base" is one of: Bad, Multi, Control, Top,
1051   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
1052   switch (t->base()) {  // Switch on original type
1053 
1054   // Cut in half the number of cases I must handle.  Only need cases for when
1055   // the given enum "t->type" is less than or equal to the local enum "type".
1056   case HalfFloatCon:
1057   case FloatCon:
1058   case DoubleCon:
1059   case Int:
1060   case Long:
1061     return t->xmeet(this);
1062 
1063   case OopPtr:
1064     return t->xmeet(this);
1065 
1066   case InstPtr:
1067     return t->xmeet(this);
1068 
1069   case MetadataPtr:
1070   case KlassPtr:
1071   case InstKlassPtr:
1072   case AryKlassPtr:
1073     return t->xmeet(this);
1074 
1075   case AryPtr:
1076     return t->xmeet(this);
1077 
1078   case NarrowOop:
1079     return t->xmeet(this);
1080 
1081   case NarrowKlass:
1082     return t->xmeet(this);
1083 
1084   case Bad:                     // Type check
1085   default:                      // Bogus type not in lattice
1086     typerr(t);
1087     return Type::BOTTOM;
1088 
1089   case Bottom:                  // Ye Olde Default
1090     return t;
1091 
1092   case HalfFloatTop:
1093     if (_base == HalfFloatTop) { return this; }
1094   case HalfFloatBot:            // Half Float
1095     if (_base == HalfFloatBot || _base == HalfFloatTop) { return HALF_FLOAT; }
1096     if (_base == FloatBot || _base == FloatTop) { return Type::BOTTOM; }
1097     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1098     typerr(t);
1099     return Type::BOTTOM;
1100 
1101   case FloatTop:
1102     if (_base == FloatTop ) { return this; }
1103   case FloatBot:                // Float
1104     if (_base == FloatBot || _base == FloatTop) { return FLOAT; }
1105     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1106     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1107     typerr(t);
1108     return Type::BOTTOM;
1109 
1110   case DoubleTop:
1111     if (_base == DoubleTop) { return this; }
1112   case DoubleBot:               // Double
1113     if (_base == DoubleBot || _base == DoubleTop) { return DOUBLE; }
1114     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1115     if (_base == FloatTop || _base == FloatBot) { return Type::BOTTOM; }
1116     typerr(t);
1117     return Type::BOTTOM;
1118 
1119   // These next few cases must match exactly or it is a compile-time error.
1120   case Control:                 // Control of code
1121   case Abio:                    // State of world outside of program
1122   case Memory:
1123     if (_base == t->_base)  { return this; }
1124     typerr(t);
1125     return Type::BOTTOM;
1126 
1127   case Top:                     // Top of the lattice
1128     return this;
1129   }
1130 
1131   // The type is unchanged
1132   return this;
1133 }
1134 
1135 //-----------------------------filter------------------------------------------
1136 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1137   const Type* ft = join_helper(kills, include_speculative);
1138   if (ft->empty())
1139     return Type::TOP;           // Canonical empty value
1140   return ft;
1141 }
1142 
1143 //------------------------------xdual------------------------------------------
1144 const Type *Type::xdual() const {
1145   // Note: the base() accessor asserts the sanity of _base.
1146   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1147   return new Type(_type_info[_base].dual_type);
1148 }
1149 
1150 //------------------------------has_memory-------------------------------------
1151 bool Type::has_memory() const {
1152   Type::TYPES tx = base();
1153   if (tx == Memory) return true;
1154   if (tx == Tuple) {
1155     const TypeTuple *t = is_tuple();
1156     for (uint i=0; i < t->cnt(); i++) {
1157       tx = t->field_at(i)->base();
1158       if (tx == Memory)  return true;
1159     }
1160   }
1161   return false;
1162 }
1163 
1164 #ifndef PRODUCT
1165 //------------------------------dump2------------------------------------------
1166 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1167   st->print("%s", _type_info[_base].msg);
1168 }
1169 
1170 //------------------------------dump-------------------------------------------
1171 void Type::dump_on(outputStream *st) const {
1172   ResourceMark rm;
1173   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1174   dump2(d,1, st);
1175   if (is_ptr_to_narrowoop()) {
1176     st->print(" [narrow]");
1177   } else if (is_ptr_to_narrowklass()) {
1178     st->print(" [narrowklass]");
1179   }
1180 }
1181 
1182 //-----------------------------------------------------------------------------
1183 const char* Type::str(const Type* t) {
1184   stringStream ss;
1185   t->dump_on(&ss);
1186   return ss.as_string();
1187 }
1188 #endif
1189 
1190 //------------------------------singleton--------------------------------------
1191 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1192 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1193 bool Type::singleton(void) const {
1194   return _base == Top || _base == Half;
1195 }
1196 
1197 //------------------------------empty------------------------------------------
1198 // TRUE if Type is a type with no values, FALSE otherwise.
1199 bool Type::empty(void) const {
1200   switch (_base) {
1201   case DoubleTop:
1202   case FloatTop:
1203   case HalfFloatTop:
1204   case Top:
1205     return true;
1206 
1207   case Half:
1208   case Abio:
1209   case Return_Address:
1210   case Memory:
1211   case Bottom:
1212   case HalfFloatBot:
1213   case FloatBot:
1214   case DoubleBot:
1215     return false;  // never a singleton, therefore never empty
1216 
1217   default:
1218     ShouldNotReachHere();
1219     return false;
1220   }
1221 }
1222 
1223 //------------------------------dump_stats-------------------------------------
1224 // Dump collected statistics to stderr
1225 #ifndef PRODUCT
1226 void Type::dump_stats() {
1227   tty->print("Types made: %d\n", type_dict()->Size());
1228 }
1229 #endif
1230 
1231 //------------------------------category---------------------------------------
1232 #ifndef PRODUCT
1233 Type::Category Type::category() const {
1234   const TypeTuple* tuple;
1235   switch (base()) {
1236     case Type::Int:
1237     case Type::Long:
1238     case Type::Half:
1239     case Type::NarrowOop:
1240     case Type::NarrowKlass:
1241     case Type::Array:
1242     case Type::VectorA:
1243     case Type::VectorS:
1244     case Type::VectorD:
1245     case Type::VectorX:
1246     case Type::VectorY:
1247     case Type::VectorZ:
1248     case Type::VectorMask:
1249     case Type::AnyPtr:
1250     case Type::RawPtr:
1251     case Type::OopPtr:
1252     case Type::InstPtr:
1253     case Type::AryPtr:
1254     case Type::MetadataPtr:
1255     case Type::KlassPtr:
1256     case Type::InstKlassPtr:
1257     case Type::AryKlassPtr:
1258     case Type::Function:
1259     case Type::Return_Address:
1260     case Type::HalfFloatTop:
1261     case Type::HalfFloatCon:
1262     case Type::HalfFloatBot:
1263     case Type::FloatTop:
1264     case Type::FloatCon:
1265     case Type::FloatBot:
1266     case Type::DoubleTop:
1267     case Type::DoubleCon:
1268     case Type::DoubleBot:
1269       return Category::Data;
1270     case Type::Memory:
1271       return Category::Memory;
1272     case Type::Control:
1273       return Category::Control;
1274     case Type::Top:
1275     case Type::Abio:
1276     case Type::Bottom:
1277       return Category::Other;
1278     case Type::Bad:
1279     case Type::lastype:
1280       return Category::Undef;
1281     case Type::Tuple:
1282       // Recursive case. Return CatMixed if the tuple contains types of
1283       // different categories (e.g. CallStaticJavaNode's type), or the specific
1284       // category if all types are of the same category (e.g. IfNode's type).
1285       tuple = is_tuple();
1286       if (tuple->cnt() == 0) {
1287         return Category::Undef;
1288       } else {
1289         Category first = tuple->field_at(0)->category();
1290         for (uint i = 1; i < tuple->cnt(); i++) {
1291           if (tuple->field_at(i)->category() != first) {
1292             return Category::Mixed;
1293           }
1294         }
1295         return first;
1296       }
1297     default:
1298       assert(false, "unmatched base type: all base types must be categorized");
1299   }
1300   return Category::Undef;
1301 }
1302 
1303 bool Type::has_category(Type::Category cat) const {
1304   if (category() == cat) {
1305     return true;
1306   }
1307   if (category() == Category::Mixed) {
1308     const TypeTuple* tuple = is_tuple();
1309     for (uint i = 0; i < tuple->cnt(); i++) {
1310       if (tuple->field_at(i)->has_category(cat)) {
1311         return true;
1312       }
1313     }
1314   }
1315   return false;
1316 }
1317 #endif
1318 
1319 //------------------------------typerr-----------------------------------------
1320 void Type::typerr( const Type *t ) const {
1321 #ifndef PRODUCT
1322   tty->print("\nError mixing types: ");
1323   dump();
1324   tty->print(" and ");
1325   t->dump();
1326   tty->print("\n");
1327 #endif
1328   ShouldNotReachHere();
1329 }
1330 
1331 
1332 //=============================================================================
1333 // Convenience common pre-built types.
1334 const TypeF *TypeF::MAX;        // Floating point max
1335 const TypeF *TypeF::MIN;        // Floating point min
1336 const TypeF *TypeF::ZERO;       // Floating point zero
1337 const TypeF *TypeF::ONE;        // Floating point one
1338 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1339 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1340 
1341 //------------------------------make-------------------------------------------
1342 // Create a float constant
1343 const TypeF *TypeF::make(float f) {
1344   return (TypeF*)(new TypeF(f))->hashcons();
1345 }
1346 
1347 //------------------------------meet-------------------------------------------
1348 // Compute the MEET of two types.  It returns a new Type object.
1349 const Type *TypeF::xmeet( const Type *t ) const {
1350   // Perform a fast test for common case; meeting the same types together.
1351   if( this == t ) return this;  // Meeting same type-rep?
1352 
1353   // Current "this->_base" is FloatCon
1354   switch (t->base()) {          // Switch on original type
1355   case AnyPtr:                  // Mixing with oops happens when javac
1356   case RawPtr:                  // reuses local variables
1357   case OopPtr:
1358   case InstPtr:
1359   case AryPtr:
1360   case MetadataPtr:
1361   case KlassPtr:
1362   case InstKlassPtr:
1363   case AryKlassPtr:
1364   case NarrowOop:
1365   case NarrowKlass:
1366   case Int:
1367   case Long:
1368   case HalfFloatTop:
1369   case HalfFloatCon:
1370   case HalfFloatBot:
1371   case DoubleTop:
1372   case DoubleCon:
1373   case DoubleBot:
1374   case Bottom:                  // Ye Olde Default
1375     return Type::BOTTOM;
1376 
1377   case FloatBot:
1378     return t;
1379 
1380   default:                      // All else is a mistake
1381     typerr(t);
1382 
1383   case FloatCon:                // Float-constant vs Float-constant?
1384     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1385                                 // must compare bitwise as positive zero, negative zero and NaN have
1386                                 // all the same representation in C++
1387       return FLOAT;             // Return generic float
1388                                 // Equal constants
1389   case Top:
1390   case FloatTop:
1391     break;                      // Return the float constant
1392   }
1393   return this;                  // Return the float constant
1394 }
1395 
1396 //------------------------------xdual------------------------------------------
1397 // Dual: symmetric
1398 const Type *TypeF::xdual() const {
1399   return this;
1400 }
1401 
1402 //------------------------------eq---------------------------------------------
1403 // Structural equality check for Type representations
1404 bool TypeF::eq(const Type *t) const {
1405   // Bitwise comparison to distinguish between +/-0. These values must be treated
1406   // as different to be consistent with C1 and the interpreter.
1407   return (jint_cast(_f) == jint_cast(t->getf()));
1408 }
1409 
1410 //------------------------------hash-------------------------------------------
1411 // Type-specific hashing function.
1412 uint TypeF::hash(void) const {
1413   return *(uint*)(&_f);
1414 }
1415 
1416 //------------------------------is_finite--------------------------------------
1417 // Has a finite value
1418 bool TypeF::is_finite() const {
1419   return g_isfinite(getf()) != 0;
1420 }
1421 
1422 //------------------------------is_nan-----------------------------------------
1423 // Is not a number (NaN)
1424 bool TypeF::is_nan()    const {
1425   return g_isnan(getf()) != 0;
1426 }
1427 
1428 //------------------------------dump2------------------------------------------
1429 // Dump float constant Type
1430 #ifndef PRODUCT
1431 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1432   Type::dump2(d,depth, st);
1433   st->print("%f", _f);
1434 }
1435 #endif
1436 
1437 //------------------------------singleton--------------------------------------
1438 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1439 // constants (Ldi nodes).  Singletons are integer, float or double constants
1440 // or a single symbol.
1441 bool TypeF::singleton(void) const {
1442   return true;                  // Always a singleton
1443 }
1444 
1445 bool TypeF::empty(void) const {
1446   return false;                 // always exactly a singleton
1447 }
1448 
1449 //=============================================================================
1450 // Convenience common pre-built types.
1451 const TypeH* TypeH::MAX;        // Half float max
1452 const TypeH* TypeH::MIN;        // Half float min
1453 const TypeH* TypeH::ZERO;       // Half float zero
1454 const TypeH* TypeH::ONE;        // Half float one
1455 const TypeH* TypeH::POS_INF;    // Half float positive infinity
1456 const TypeH* TypeH::NEG_INF;    // Half float negative infinity
1457 
1458 //------------------------------make-------------------------------------------
1459 // Create a halffloat constant
1460 const TypeH* TypeH::make(short f) {
1461   return (TypeH*)(new TypeH(f))->hashcons();
1462 }
1463 
1464 const TypeH* TypeH::make(float f) {
1465   assert(StubRoutines::f2hf_adr() != nullptr, "");
1466   short hf = StubRoutines::f2hf(f);
1467   return (TypeH*)(new TypeH(hf))->hashcons();
1468 }
1469 
1470 //------------------------------xmeet-------------------------------------------
1471 // Compute the MEET of two types.  It returns a new Type object.
1472 const Type* TypeH::xmeet(const Type* t) const {
1473   // Perform a fast test for common case; meeting the same types together.
1474   if (this == t) return this;  // Meeting same type-rep?
1475 
1476   // Current "this->_base" is FloatCon
1477   switch (t->base()) {          // Switch on original type
1478   case AnyPtr:                  // Mixing with oops happens when javac
1479   case RawPtr:                  // reuses local variables
1480   case OopPtr:
1481   case InstPtr:
1482   case AryPtr:
1483   case MetadataPtr:
1484   case KlassPtr:
1485   case InstKlassPtr:
1486   case AryKlassPtr:
1487   case NarrowOop:
1488   case NarrowKlass:
1489   case Int:
1490   case Long:
1491   case FloatTop:
1492   case FloatCon:
1493   case FloatBot:
1494   case DoubleTop:
1495   case DoubleCon:
1496   case DoubleBot:
1497   case Bottom:                  // Ye Olde Default
1498     return Type::BOTTOM;
1499 
1500   case HalfFloatBot:
1501     return t;
1502 
1503   default:                      // All else is a mistake
1504     typerr(t);
1505 
1506   case HalfFloatCon:            // Half float-constant vs Half float-constant?
1507     if (_f != t->geth()) {      // unequal constants?
1508                                 // must compare bitwise as positive zero, negative zero and NaN have
1509                                 // all the same representation in C++
1510       return HALF_FLOAT;        // Return generic float
1511     }                           // Equal constants
1512   case Top:
1513   case HalfFloatTop:
1514     break;                      // Return the Half float constant
1515   }
1516   return this;                  // Return the Half float constant
1517 }
1518 
1519 //------------------------------xdual------------------------------------------
1520 // Dual: symmetric
1521 const Type* TypeH::xdual() const {
1522   return this;
1523 }
1524 
1525 //------------------------------eq---------------------------------------------
1526 // Structural equality check for Type representations
1527 bool TypeH::eq(const Type* t) const {
1528   // Bitwise comparison to distinguish between +/-0. These values must be treated
1529   // as different to be consistent with C1 and the interpreter.
1530   return (_f == t->geth());
1531 }
1532 
1533 //------------------------------hash-------------------------------------------
1534 // Type-specific hashing function.
1535 uint TypeH::hash(void) const {
1536   return *(jshort*)(&_f);
1537 }
1538 
1539 //------------------------------is_finite--------------------------------------
1540 // Has a finite value
1541 bool TypeH::is_finite() const {
1542   assert(StubRoutines::hf2f_adr() != nullptr, "");
1543   float f = StubRoutines::hf2f(geth());
1544   return g_isfinite(f) != 0;
1545 }
1546 
1547 float TypeH::getf() const {
1548   assert(StubRoutines::hf2f_adr() != nullptr, "");
1549   return StubRoutines::hf2f(geth());
1550 }
1551 
1552 //------------------------------is_nan-----------------------------------------
1553 // Is not a number (NaN)
1554 bool TypeH::is_nan() const {
1555   assert(StubRoutines::hf2f_adr() != nullptr, "");
1556   float f = StubRoutines::hf2f(geth());
1557   return g_isnan(f) != 0;
1558 }
1559 
1560 //------------------------------dump2------------------------------------------
1561 // Dump float constant Type
1562 #ifndef PRODUCT
1563 void TypeH::dump2(Dict &d, uint depth, outputStream* st) const {
1564   Type::dump2(d,depth, st);
1565   st->print("%f", getf());
1566 }
1567 #endif
1568 
1569 //------------------------------singleton--------------------------------------
1570 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1571 // constants (Ldi nodes).  Singletons are integer, half float, float or double constants
1572 // or a single symbol.
1573 bool TypeH::singleton(void) const {
1574   return true;                  // Always a singleton
1575 }
1576 
1577 bool TypeH::empty(void) const {
1578   return false;                 // always exactly a singleton
1579 }
1580 
1581 //=============================================================================
1582 // Convenience common pre-built types.
1583 const TypeD *TypeD::MAX;        // Floating point max
1584 const TypeD *TypeD::MIN;        // Floating point min
1585 const TypeD *TypeD::ZERO;       // Floating point zero
1586 const TypeD *TypeD::ONE;        // Floating point one
1587 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1588 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1589 
1590 //------------------------------make-------------------------------------------
1591 const TypeD *TypeD::make(double d) {
1592   return (TypeD*)(new TypeD(d))->hashcons();
1593 }
1594 
1595 //------------------------------meet-------------------------------------------
1596 // Compute the MEET of two types.  It returns a new Type object.
1597 const Type *TypeD::xmeet( const Type *t ) const {
1598   // Perform a fast test for common case; meeting the same types together.
1599   if( this == t ) return this;  // Meeting same type-rep?
1600 
1601   // Current "this->_base" is DoubleCon
1602   switch (t->base()) {          // Switch on original type
1603   case AnyPtr:                  // Mixing with oops happens when javac
1604   case RawPtr:                  // reuses local variables
1605   case OopPtr:
1606   case InstPtr:
1607   case AryPtr:
1608   case MetadataPtr:
1609   case KlassPtr:
1610   case InstKlassPtr:
1611   case AryKlassPtr:
1612   case NarrowOop:
1613   case NarrowKlass:
1614   case Int:
1615   case Long:
1616   case HalfFloatTop:
1617   case HalfFloatCon:
1618   case HalfFloatBot:
1619   case FloatTop:
1620   case FloatCon:
1621   case FloatBot:
1622   case Bottom:                  // Ye Olde Default
1623     return Type::BOTTOM;
1624 
1625   case DoubleBot:
1626     return t;
1627 
1628   default:                      // All else is a mistake
1629     typerr(t);
1630 
1631   case DoubleCon:               // Double-constant vs Double-constant?
1632     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1633       return DOUBLE;            // Return generic double
1634   case Top:
1635   case DoubleTop:
1636     break;
1637   }
1638   return this;                  // Return the double constant
1639 }
1640 
1641 //------------------------------xdual------------------------------------------
1642 // Dual: symmetric
1643 const Type *TypeD::xdual() const {
1644   return this;
1645 }
1646 
1647 //------------------------------eq---------------------------------------------
1648 // Structural equality check for Type representations
1649 bool TypeD::eq(const Type *t) const {
1650   // Bitwise comparison to distinguish between +/-0. These values must be treated
1651   // as different to be consistent with C1 and the interpreter.
1652   return (jlong_cast(_d) == jlong_cast(t->getd()));
1653 }
1654 
1655 //------------------------------hash-------------------------------------------
1656 // Type-specific hashing function.
1657 uint TypeD::hash(void) const {
1658   return *(uint*)(&_d);
1659 }
1660 
1661 //------------------------------is_finite--------------------------------------
1662 // Has a finite value
1663 bool TypeD::is_finite() const {
1664   return g_isfinite(getd()) != 0;
1665 }
1666 
1667 //------------------------------is_nan-----------------------------------------
1668 // Is not a number (NaN)
1669 bool TypeD::is_nan()    const {
1670   return g_isnan(getd()) != 0;
1671 }
1672 
1673 //------------------------------dump2------------------------------------------
1674 // Dump double constant Type
1675 #ifndef PRODUCT
1676 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1677   Type::dump2(d,depth,st);
1678   st->print("%f", _d);
1679 }
1680 #endif
1681 
1682 //------------------------------singleton--------------------------------------
1683 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1684 // constants (Ldi nodes).  Singletons are integer, float or double constants
1685 // or a single symbol.
1686 bool TypeD::singleton(void) const {
1687   return true;                  // Always a singleton
1688 }
1689 
1690 bool TypeD::empty(void) const {
1691   return false;                 // always exactly a singleton
1692 }
1693 
1694 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1695   if (bt == T_INT) {
1696     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1697   }
1698   assert(bt == T_LONG, "basic type not an int or long");
1699   return TypeLong::make(lo, hi, w);
1700 }
1701 
1702 const TypeInteger* TypeInteger::make(jlong con, BasicType bt) {
1703   return make(con, con, WidenMin, bt);
1704 }
1705 
1706 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1707   if (bt == T_INT) {
1708     return is_int()->get_con();
1709   }
1710   assert(bt == T_LONG, "basic type not an int or long");
1711   return is_long()->get_con();
1712 }
1713 
1714 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1715   if (bt == T_INT) {
1716     return TypeInt::INT;
1717   }
1718   assert(bt == T_LONG, "basic type not an int or long");
1719   return TypeLong::LONG;
1720 }
1721 
1722 const TypeInteger* TypeInteger::zero(BasicType bt) {
1723   if (bt == T_INT) {
1724     return TypeInt::ZERO;
1725   }
1726   assert(bt == T_LONG, "basic type not an int or long");
1727   return TypeLong::ZERO;
1728 }
1729 
1730 const TypeInteger* TypeInteger::one(BasicType bt) {
1731   if (bt == T_INT) {
1732     return TypeInt::ONE;
1733   }
1734   assert(bt == T_LONG, "basic type not an int or long");
1735   return TypeLong::ONE;
1736 }
1737 
1738 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1739   if (bt == T_INT) {
1740     return TypeInt::MINUS_1;
1741   }
1742   assert(bt == T_LONG, "basic type not an int or long");
1743   return TypeLong::MINUS_1;
1744 }
1745 
1746 //=============================================================================
1747 // Convenience common pre-built types.
1748 const TypeInt *TypeInt::MAX;    // INT_MAX
1749 const TypeInt *TypeInt::MIN;    // INT_MIN
1750 const TypeInt *TypeInt::MINUS_1;// -1
1751 const TypeInt *TypeInt::ZERO;   // 0
1752 const TypeInt *TypeInt::ONE;    // 1
1753 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1754 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1755 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1756 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1757 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1758 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1759 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1760 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1761 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1762 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1763 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1764 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1765 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1766 const TypeInt *TypeInt::INT;    // 32-bit integers
1767 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1768 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1769 
1770 //------------------------------TypeInt----------------------------------------
1771 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) {
1772 }
1773 
1774 //------------------------------make-------------------------------------------
1775 const TypeInt *TypeInt::make( jint lo ) {
1776   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1777 }
1778 
1779 static int normalize_int_widen( jint lo, jint hi, int w ) {
1780   // Certain normalizations keep us sane when comparing types.
1781   // The 'SMALLINT' covers constants and also CC and its relatives.
1782   if (lo <= hi) {
1783     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1784     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1785   } else {
1786     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1787     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1788   }
1789   return w;
1790 }
1791 
1792 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1793   w = normalize_int_widen(lo, hi, w);
1794   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1795 }
1796 
1797 //------------------------------meet-------------------------------------------
1798 // Compute the MEET of two types.  It returns a new Type representation object
1799 // with reference count equal to the number of Types pointing at it.
1800 // Caller should wrap a Types around it.
1801 const Type *TypeInt::xmeet( const Type *t ) const {
1802   // Perform a fast test for common case; meeting the same types together.
1803   if( this == t ) return this;  // Meeting same type?
1804 
1805   // Currently "this->_base" is a TypeInt
1806   switch (t->base()) {          // Switch on original type
1807   case AnyPtr:                  // Mixing with oops happens when javac
1808   case RawPtr:                  // reuses local variables
1809   case OopPtr:
1810   case InstPtr:
1811   case AryPtr:
1812   case MetadataPtr:
1813   case KlassPtr:
1814   case InstKlassPtr:
1815   case AryKlassPtr:
1816   case NarrowOop:
1817   case NarrowKlass:
1818   case Long:
1819   case HalfFloatTop:
1820   case HalfFloatCon:
1821   case HalfFloatBot:
1822   case FloatTop:
1823   case FloatCon:
1824   case FloatBot:
1825   case DoubleTop:
1826   case DoubleCon:
1827   case DoubleBot:
1828   case Bottom:                  // Ye Olde Default
1829     return Type::BOTTOM;
1830   default:                      // All else is a mistake
1831     typerr(t);
1832   case Top:                     // No change
1833     return this;
1834   case Int:                     // Int vs Int?
1835     break;
1836   }
1837 
1838   // Expand covered set
1839   const TypeInt *r = t->is_int();
1840   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1841 }
1842 
1843 //------------------------------xdual------------------------------------------
1844 // Dual: reverse hi & lo; flip widen
1845 const Type *TypeInt::xdual() const {
1846   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1847   return new TypeInt(_hi,_lo,w);
1848 }
1849 
1850 //------------------------------widen------------------------------------------
1851 // Only happens for optimistic top-down optimizations.
1852 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1853   // Coming from TOP or such; no widening
1854   if( old->base() != Int ) return this;
1855   const TypeInt *ot = old->is_int();
1856 
1857   // If new guy is equal to old guy, no widening
1858   if( _lo == ot->_lo && _hi == ot->_hi )
1859     return old;
1860 
1861   // If new guy contains old, then we widened
1862   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1863     // New contains old
1864     // If new guy is already wider than old, no widening
1865     if( _widen > ot->_widen ) return this;
1866     // If old guy was a constant, do not bother
1867     if (ot->_lo == ot->_hi)  return this;
1868     // Now widen new guy.
1869     // Check for widening too far
1870     if (_widen == WidenMax) {
1871       int max = max_jint;
1872       int min = min_jint;
1873       if (limit->isa_int()) {
1874         max = limit->is_int()->_hi;
1875         min = limit->is_int()->_lo;
1876       }
1877       if (min < _lo && _hi < max) {
1878         // If neither endpoint is extremal yet, push out the endpoint
1879         // which is closer to its respective limit.
1880         if (_lo >= 0 ||                 // easy common case
1881             ((juint)_lo - min) >= ((juint)max - _hi)) {
1882           // Try to widen to an unsigned range type of 31 bits:
1883           return make(_lo, max, WidenMax);
1884         } else {
1885           return make(min, _hi, WidenMax);
1886         }
1887       }
1888       return TypeInt::INT;
1889     }
1890     // Returned widened new guy
1891     return make(_lo,_hi,_widen+1);
1892   }
1893 
1894   // If old guy contains new, then we probably widened too far & dropped to
1895   // bottom.  Return the wider fellow.
1896   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1897     return old;
1898 
1899   //fatal("Integer value range is not subset");
1900   //return this;
1901   return TypeInt::INT;
1902 }
1903 
1904 //------------------------------narrow---------------------------------------
1905 // Only happens for pessimistic optimizations.
1906 const Type *TypeInt::narrow( const Type *old ) const {
1907   if (_lo >= _hi)  return this;   // already narrow enough
1908   if (old == nullptr)  return this;
1909   const TypeInt* ot = old->isa_int();
1910   if (ot == nullptr)  return this;
1911   jint olo = ot->_lo;
1912   jint ohi = ot->_hi;
1913 
1914   // If new guy is equal to old guy, no narrowing
1915   if (_lo == olo && _hi == ohi)  return old;
1916 
1917   // If old guy was maximum range, allow the narrowing
1918   if (olo == min_jint && ohi == max_jint)  return this;
1919 
1920   if (_lo < olo || _hi > ohi)
1921     return this;                // doesn't narrow; pretty weird
1922 
1923   // The new type narrows the old type, so look for a "death march".
1924   // See comments on PhaseTransform::saturate.
1925   juint nrange = (juint)_hi - _lo;
1926   juint orange = (juint)ohi - olo;
1927   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1928     // Use the new type only if the range shrinks a lot.
1929     // We do not want the optimizer computing 2^31 point by point.
1930     return old;
1931   }
1932 
1933   return this;
1934 }
1935 
1936 //-----------------------------filter------------------------------------------
1937 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1938   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1939   if (ft == nullptr || ft->empty())
1940     return Type::TOP;           // Canonical empty value
1941   if (ft->_widen < this->_widen) {
1942     // Do not allow the value of kill->_widen to affect the outcome.
1943     // The widen bits must be allowed to run freely through the graph.
1944     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1945   }
1946   return ft;
1947 }
1948 
1949 //------------------------------eq---------------------------------------------
1950 // Structural equality check for Type representations
1951 bool TypeInt::eq( const Type *t ) const {
1952   const TypeInt *r = t->is_int(); // Handy access
1953   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1954 }
1955 
1956 //------------------------------hash-------------------------------------------
1957 // Type-specific hashing function.
1958 uint TypeInt::hash(void) const {
1959   return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Int;
1960 }
1961 
1962 //------------------------------is_finite--------------------------------------
1963 // Has a finite value
1964 bool TypeInt::is_finite() const {
1965   return true;
1966 }
1967 
1968 //------------------------------dump2------------------------------------------
1969 // Dump TypeInt
1970 #ifndef PRODUCT
1971 static const char* intname(char* buf, size_t buf_size, jint n) {
1972   if (n == min_jint)
1973     return "min";
1974   else if (n < min_jint + 10000)
1975     os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint);
1976   else if (n == max_jint)
1977     return "max";
1978   else if (n > max_jint - 10000)
1979     os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n);
1980   else
1981     os::snprintf_checked(buf, buf_size, INT32_FORMAT, n);
1982   return buf;
1983 }
1984 
1985 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1986   char buf[40], buf2[40];
1987   if (_lo == min_jint && _hi == max_jint)
1988     st->print("int");
1989   else if (is_con())
1990     st->print("int:%s", intname(buf, sizeof(buf), get_con()));
1991   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1992     st->print("bool");
1993   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1994     st->print("byte");
1995   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1996     st->print("char");
1997   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1998     st->print("short");
1999   else if (_hi == max_jint)
2000     st->print("int:>=%s", intname(buf, sizeof(buf), _lo));
2001   else if (_lo == min_jint)
2002     st->print("int:<=%s", intname(buf, sizeof(buf), _hi));
2003   else
2004     st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi));
2005 
2006   if (_widen != 0 && this != TypeInt::INT)
2007     st->print(":%.*s", _widen, "wwww");
2008 }
2009 #endif
2010 
2011 //------------------------------singleton--------------------------------------
2012 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2013 // constants.
2014 bool TypeInt::singleton(void) const {
2015   return _lo >= _hi;
2016 }
2017 
2018 bool TypeInt::empty(void) const {
2019   return _lo > _hi;
2020 }
2021 
2022 //=============================================================================
2023 // Convenience common pre-built types.
2024 const TypeLong *TypeLong::MAX;
2025 const TypeLong *TypeLong::MIN;
2026 const TypeLong *TypeLong::MINUS_1;// -1
2027 const TypeLong *TypeLong::ZERO; // 0
2028 const TypeLong *TypeLong::ONE;  // 1
2029 const TypeLong *TypeLong::POS;  // >=0
2030 const TypeLong *TypeLong::LONG; // 64-bit integers
2031 const TypeLong *TypeLong::INT;  // 32-bit subrange
2032 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
2033 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
2034 
2035 //------------------------------TypeLong---------------------------------------
2036 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) {
2037 }
2038 
2039 //------------------------------make-------------------------------------------
2040 const TypeLong *TypeLong::make( jlong lo ) {
2041   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
2042 }
2043 
2044 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
2045   // Certain normalizations keep us sane when comparing types.
2046   // The 'SMALLINT' covers constants.
2047   if (lo <= hi) {
2048     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
2049     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
2050   } else {
2051     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
2052     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
2053   }
2054   return w;
2055 }
2056 
2057 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
2058   w = normalize_long_widen(lo, hi, w);
2059   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
2060 }
2061 
2062 
2063 //------------------------------meet-------------------------------------------
2064 // Compute the MEET of two types.  It returns a new Type representation object
2065 // with reference count equal to the number of Types pointing at it.
2066 // Caller should wrap a Types around it.
2067 const Type *TypeLong::xmeet( const Type *t ) const {
2068   // Perform a fast test for common case; meeting the same types together.
2069   if( this == t ) return this;  // Meeting same type?
2070 
2071   // Currently "this->_base" is a TypeLong
2072   switch (t->base()) {          // Switch on original type
2073   case AnyPtr:                  // Mixing with oops happens when javac
2074   case RawPtr:                  // reuses local variables
2075   case OopPtr:
2076   case InstPtr:
2077   case AryPtr:
2078   case MetadataPtr:
2079   case KlassPtr:
2080   case InstKlassPtr:
2081   case AryKlassPtr:
2082   case NarrowOop:
2083   case NarrowKlass:
2084   case Int:
2085   case HalfFloatTop:
2086   case HalfFloatCon:
2087   case HalfFloatBot:
2088   case FloatTop:
2089   case FloatCon:
2090   case FloatBot:
2091   case DoubleTop:
2092   case DoubleCon:
2093   case DoubleBot:
2094   case Bottom:                  // Ye Olde Default
2095     return Type::BOTTOM;
2096   default:                      // All else is a mistake
2097     typerr(t);
2098   case Top:                     // No change
2099     return this;
2100   case Long:                    // Long vs Long?
2101     break;
2102   }
2103 
2104   // Expand covered set
2105   const TypeLong *r = t->is_long(); // Turn into a TypeLong
2106   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
2107 }
2108 
2109 //------------------------------xdual------------------------------------------
2110 // Dual: reverse hi & lo; flip widen
2111 const Type *TypeLong::xdual() const {
2112   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
2113   return new TypeLong(_hi,_lo,w);
2114 }
2115 
2116 //------------------------------widen------------------------------------------
2117 // Only happens for optimistic top-down optimizations.
2118 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
2119   // Coming from TOP or such; no widening
2120   if( old->base() != Long ) return this;
2121   const TypeLong *ot = old->is_long();
2122 
2123   // If new guy is equal to old guy, no widening
2124   if( _lo == ot->_lo && _hi == ot->_hi )
2125     return old;
2126 
2127   // If new guy contains old, then we widened
2128   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
2129     // New contains old
2130     // If new guy is already wider than old, no widening
2131     if( _widen > ot->_widen ) return this;
2132     // If old guy was a constant, do not bother
2133     if (ot->_lo == ot->_hi)  return this;
2134     // Now widen new guy.
2135     // Check for widening too far
2136     if (_widen == WidenMax) {
2137       jlong max = max_jlong;
2138       jlong min = min_jlong;
2139       if (limit->isa_long()) {
2140         max = limit->is_long()->_hi;
2141         min = limit->is_long()->_lo;
2142       }
2143       if (min < _lo && _hi < max) {
2144         // If neither endpoint is extremal yet, push out the endpoint
2145         // which is closer to its respective limit.
2146         if (_lo >= 0 ||                 // easy common case
2147             ((julong)_lo - min) >= ((julong)max - _hi)) {
2148           // Try to widen to an unsigned range type of 32/63 bits:
2149           if (max >= max_juint && _hi < max_juint)
2150             return make(_lo, max_juint, WidenMax);
2151           else
2152             return make(_lo, max, WidenMax);
2153         } else {
2154           return make(min, _hi, WidenMax);
2155         }
2156       }
2157       return TypeLong::LONG;
2158     }
2159     // Returned widened new guy
2160     return make(_lo,_hi,_widen+1);
2161   }
2162 
2163   // If old guy contains new, then we probably widened too far & dropped to
2164   // bottom.  Return the wider fellow.
2165   if ( ot->_lo <= _lo && ot->_hi >= _hi )
2166     return old;
2167 
2168   //  fatal("Long value range is not subset");
2169   // return this;
2170   return TypeLong::LONG;
2171 }
2172 
2173 //------------------------------narrow----------------------------------------
2174 // Only happens for pessimistic optimizations.
2175 const Type *TypeLong::narrow( const Type *old ) const {
2176   if (_lo >= _hi)  return this;   // already narrow enough
2177   if (old == nullptr)  return this;
2178   const TypeLong* ot = old->isa_long();
2179   if (ot == nullptr)  return this;
2180   jlong olo = ot->_lo;
2181   jlong ohi = ot->_hi;
2182 
2183   // If new guy is equal to old guy, no narrowing
2184   if (_lo == olo && _hi == ohi)  return old;
2185 
2186   // If old guy was maximum range, allow the narrowing
2187   if (olo == min_jlong && ohi == max_jlong)  return this;
2188 
2189   if (_lo < olo || _hi > ohi)
2190     return this;                // doesn't narrow; pretty weird
2191 
2192   // The new type narrows the old type, so look for a "death march".
2193   // See comments on PhaseTransform::saturate.
2194   julong nrange = (julong)_hi - _lo;
2195   julong orange = (julong)ohi - olo;
2196   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
2197     // Use the new type only if the range shrinks a lot.
2198     // We do not want the optimizer computing 2^31 point by point.
2199     return old;
2200   }
2201 
2202   return this;
2203 }
2204 
2205 //-----------------------------filter------------------------------------------
2206 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
2207   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
2208   if (ft == nullptr || ft->empty())
2209     return Type::TOP;           // Canonical empty value
2210   if (ft->_widen < this->_widen) {
2211     // Do not allow the value of kill->_widen to affect the outcome.
2212     // The widen bits must be allowed to run freely through the graph.
2213     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
2214   }
2215   return ft;
2216 }
2217 
2218 //------------------------------eq---------------------------------------------
2219 // Structural equality check for Type representations
2220 bool TypeLong::eq( const Type *t ) const {
2221   const TypeLong *r = t->is_long(); // Handy access
2222   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
2223 }
2224 
2225 //------------------------------hash-------------------------------------------
2226 // Type-specific hashing function.
2227 uint TypeLong::hash(void) const {
2228   return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Long;
2229 }
2230 
2231 //------------------------------is_finite--------------------------------------
2232 // Has a finite value
2233 bool TypeLong::is_finite() const {
2234   return true;
2235 }
2236 
2237 //------------------------------dump2------------------------------------------
2238 // Dump TypeLong
2239 #ifndef PRODUCT
2240 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) {
2241   if (n > x) {
2242     if (n >= x + 10000)  return nullptr;
2243     os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x);
2244   } else if (n < x) {
2245     if (n <= x - 10000)  return nullptr;
2246     os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n);
2247   } else {
2248     return xname;
2249   }
2250   return buf;
2251 }
2252 
2253 static const char* longname(char* buf, size_t buf_size, jlong n) {
2254   const char* str;
2255   if (n == min_jlong)
2256     return "min";
2257   else if (n < min_jlong + 10000)
2258     os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong);
2259   else if (n == max_jlong)
2260     return "max";
2261   else if (n > max_jlong - 10000)
2262     os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n);
2263   else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != nullptr)
2264     return str;
2265   else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != nullptr)
2266     return str;
2267   else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != nullptr)
2268     return str;
2269   else
2270     os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n);
2271   return buf;
2272 }
2273 
2274 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
2275   char buf[80], buf2[80];
2276   if (_lo == min_jlong && _hi == max_jlong)
2277     st->print("long");
2278   else if (is_con())
2279     st->print("long:%s", longname(buf, sizeof(buf), get_con()));
2280   else if (_hi == max_jlong)
2281     st->print("long:>=%s", longname(buf, sizeof(buf), _lo));
2282   else if (_lo == min_jlong)
2283     st->print("long:<=%s", longname(buf, sizeof(buf), _hi));
2284   else
2285     st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2),  _hi));
2286 
2287   if (_widen != 0 && this != TypeLong::LONG)
2288     st->print(":%.*s", _widen, "wwww");
2289 }
2290 #endif
2291 
2292 //------------------------------singleton--------------------------------------
2293 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2294 // constants
2295 bool TypeLong::singleton(void) const {
2296   return _lo >= _hi;
2297 }
2298 
2299 bool TypeLong::empty(void) const {
2300   return _lo > _hi;
2301 }
2302 
2303 //=============================================================================
2304 // Convenience common pre-built types.
2305 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2306 const TypeTuple *TypeTuple::IFFALSE;
2307 const TypeTuple *TypeTuple::IFTRUE;
2308 const TypeTuple *TypeTuple::IFNEITHER;
2309 const TypeTuple *TypeTuple::LOOPBODY;
2310 const TypeTuple *TypeTuple::MEMBAR;
2311 const TypeTuple *TypeTuple::STORECONDITIONAL;
2312 const TypeTuple *TypeTuple::START_I2C;
2313 const TypeTuple *TypeTuple::INT_PAIR;
2314 const TypeTuple *TypeTuple::LONG_PAIR;
2315 const TypeTuple *TypeTuple::INT_CC_PAIR;
2316 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2317 
2318 //------------------------------make-------------------------------------------
2319 // Make a TypeTuple from the range of a method signature
2320 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2321   ciType* return_type = sig->return_type();
2322   uint arg_cnt = return_type->size();
2323   const Type **field_array = fields(arg_cnt);
2324   switch (return_type->basic_type()) {
2325   case T_LONG:
2326     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2327     field_array[TypeFunc::Parms+1] = Type::HALF;
2328     break;
2329   case T_DOUBLE:
2330     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2331     field_array[TypeFunc::Parms+1] = Type::HALF;
2332     break;
2333   case T_OBJECT:
2334   case T_ARRAY:
2335   case T_BOOLEAN:
2336   case T_CHAR:
2337   case T_FLOAT:
2338   case T_BYTE:
2339   case T_SHORT:
2340   case T_INT:
2341     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2342     break;
2343   case T_VOID:
2344     break;
2345   default:
2346     ShouldNotReachHere();
2347   }
2348   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2349 }
2350 
2351 // Make a TypeTuple from the domain of a method signature
2352 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2353   uint arg_cnt = sig->size();
2354 
2355   uint pos = TypeFunc::Parms;
2356   const Type **field_array;
2357   if (recv != nullptr) {
2358     arg_cnt++;
2359     field_array = fields(arg_cnt);
2360     // Use get_const_type here because it respects UseUniqueSubclasses:
2361     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2362   } else {
2363     field_array = fields(arg_cnt);
2364   }
2365 
2366   int i = 0;
2367   while (pos < TypeFunc::Parms + arg_cnt) {
2368     ciType* type = sig->type_at(i);
2369 
2370     switch (type->basic_type()) {
2371     case T_LONG:
2372       field_array[pos++] = TypeLong::LONG;
2373       field_array[pos++] = Type::HALF;
2374       break;
2375     case T_DOUBLE:
2376       field_array[pos++] = Type::DOUBLE;
2377       field_array[pos++] = Type::HALF;
2378       break;
2379     case T_OBJECT:
2380     case T_ARRAY:
2381     case T_FLOAT:
2382     case T_INT:
2383       field_array[pos++] = get_const_type(type, interface_handling);
2384       break;
2385     case T_BOOLEAN:
2386     case T_CHAR:
2387     case T_BYTE:
2388     case T_SHORT:
2389       field_array[pos++] = TypeInt::INT;
2390       break;
2391     default:
2392       ShouldNotReachHere();
2393     }
2394     i++;
2395   }
2396 
2397   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2398 }
2399 
2400 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2401   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2402 }
2403 
2404 //------------------------------fields-----------------------------------------
2405 // Subroutine call type with space allocated for argument types
2406 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2407 const Type **TypeTuple::fields( uint arg_cnt ) {
2408   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2409   flds[TypeFunc::Control  ] = Type::CONTROL;
2410   flds[TypeFunc::I_O      ] = Type::ABIO;
2411   flds[TypeFunc::Memory   ] = Type::MEMORY;
2412   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2413   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2414 
2415   return flds;
2416 }
2417 
2418 //------------------------------meet-------------------------------------------
2419 // Compute the MEET of two types.  It returns a new Type object.
2420 const Type *TypeTuple::xmeet( const Type *t ) const {
2421   // Perform a fast test for common case; meeting the same types together.
2422   if( this == t ) return this;  // Meeting same type-rep?
2423 
2424   // Current "this->_base" is Tuple
2425   switch (t->base()) {          // switch on original type
2426 
2427   case Bottom:                  // Ye Olde Default
2428     return t;
2429 
2430   default:                      // All else is a mistake
2431     typerr(t);
2432 
2433   case Tuple: {                 // Meeting 2 signatures?
2434     const TypeTuple *x = t->is_tuple();
2435     assert( _cnt == x->_cnt, "" );
2436     const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2437     for( uint i=0; i<_cnt; i++ )
2438       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2439     return TypeTuple::make(_cnt,fields);
2440   }
2441   case Top:
2442     break;
2443   }
2444   return this;                  // Return the double constant
2445 }
2446 
2447 //------------------------------xdual------------------------------------------
2448 // Dual: compute field-by-field dual
2449 const Type *TypeTuple::xdual() const {
2450   const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2451   for( uint i=0; i<_cnt; i++ )
2452     fields[i] = _fields[i]->dual();
2453   return new TypeTuple(_cnt,fields);
2454 }
2455 
2456 //------------------------------eq---------------------------------------------
2457 // Structural equality check for Type representations
2458 bool TypeTuple::eq( const Type *t ) const {
2459   const TypeTuple *s = (const TypeTuple *)t;
2460   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2461   for (uint i = 0; i < _cnt; i++)
2462     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2463       return false;             // Missed
2464   return true;
2465 }
2466 
2467 //------------------------------hash-------------------------------------------
2468 // Type-specific hashing function.
2469 uint TypeTuple::hash(void) const {
2470   uintptr_t sum = _cnt;
2471   for( uint i=0; i<_cnt; i++ )
2472     sum += (uintptr_t)_fields[i];     // Hash on pointers directly
2473   return (uint)sum;
2474 }
2475 
2476 //------------------------------dump2------------------------------------------
2477 // Dump signature Type
2478 #ifndef PRODUCT
2479 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2480   st->print("{");
2481   if( !depth || d[this] ) {     // Check for recursive print
2482     st->print("...}");
2483     return;
2484   }
2485   d.Insert((void*)this, (void*)this);   // Stop recursion
2486   if( _cnt ) {
2487     uint i;
2488     for( i=0; i<_cnt-1; i++ ) {
2489       st->print("%d:", i);
2490       _fields[i]->dump2(d, depth-1, st);
2491       st->print(", ");
2492     }
2493     st->print("%d:", i);
2494     _fields[i]->dump2(d, depth-1, st);
2495   }
2496   st->print("}");
2497 }
2498 #endif
2499 
2500 //------------------------------singleton--------------------------------------
2501 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2502 // constants (Ldi nodes).  Singletons are integer, float or double constants
2503 // or a single symbol.
2504 bool TypeTuple::singleton(void) const {
2505   return false;                 // Never a singleton
2506 }
2507 
2508 bool TypeTuple::empty(void) const {
2509   for( uint i=0; i<_cnt; i++ ) {
2510     if (_fields[i]->empty())  return true;
2511   }
2512   return false;
2513 }
2514 
2515 //=============================================================================
2516 // Convenience common pre-built types.
2517 
2518 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2519   // Certain normalizations keep us sane when comparing types.
2520   // We do not want arrayOop variables to differ only by the wideness
2521   // of their index types.  Pick minimum wideness, since that is the
2522   // forced wideness of small ranges anyway.
2523   if (size->_widen != Type::WidenMin)
2524     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2525   else
2526     return size;
2527 }
2528 
2529 //------------------------------make-------------------------------------------
2530 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2531   if (UseCompressedOops && elem->isa_oopptr()) {
2532     elem = elem->make_narrowoop();
2533   }
2534   size = normalize_array_size(size);
2535   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2536 }
2537 
2538 //------------------------------meet-------------------------------------------
2539 // Compute the MEET of two types.  It returns a new Type object.
2540 const Type *TypeAry::xmeet( const Type *t ) const {
2541   // Perform a fast test for common case; meeting the same types together.
2542   if( this == t ) return this;  // Meeting same type-rep?
2543 
2544   // Current "this->_base" is Ary
2545   switch (t->base()) {          // switch on original type
2546 
2547   case Bottom:                  // Ye Olde Default
2548     return t;
2549 
2550   default:                      // All else is a mistake
2551     typerr(t);
2552 
2553   case Array: {                 // Meeting 2 arrays?
2554     const TypeAry *a = t->is_ary();
2555     return TypeAry::make(_elem->meet_speculative(a->_elem),
2556                          _size->xmeet(a->_size)->is_int(),
2557                          _stable && a->_stable);
2558   }
2559   case Top:
2560     break;
2561   }
2562   return this;                  // Return the double constant
2563 }
2564 
2565 //------------------------------xdual------------------------------------------
2566 // Dual: compute field-by-field dual
2567 const Type *TypeAry::xdual() const {
2568   const TypeInt* size_dual = _size->dual()->is_int();
2569   size_dual = normalize_array_size(size_dual);
2570   return new TypeAry(_elem->dual(), size_dual, !_stable);
2571 }
2572 
2573 //------------------------------eq---------------------------------------------
2574 // Structural equality check for Type representations
2575 bool TypeAry::eq( const Type *t ) const {
2576   const TypeAry *a = (const TypeAry*)t;
2577   return _elem == a->_elem &&
2578     _stable == a->_stable &&
2579     _size == a->_size;
2580 }
2581 
2582 //------------------------------hash-------------------------------------------
2583 // Type-specific hashing function.
2584 uint TypeAry::hash(void) const {
2585   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);
2586 }
2587 
2588 /**
2589  * Return same type without a speculative part in the element
2590  */
2591 const TypeAry* TypeAry::remove_speculative() const {
2592   return make(_elem->remove_speculative(), _size, _stable);
2593 }
2594 
2595 /**
2596  * Return same type with cleaned up speculative part of element
2597  */
2598 const Type* TypeAry::cleanup_speculative() const {
2599   return make(_elem->cleanup_speculative(), _size, _stable);
2600 }
2601 
2602 /**
2603  * Return same type but with a different inline depth (used for speculation)
2604  *
2605  * @param depth  depth to meet with
2606  */
2607 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2608   if (!UseInlineDepthForSpeculativeTypes) {
2609     return this;
2610   }
2611   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2612 }
2613 
2614 //------------------------------dump2------------------------------------------
2615 #ifndef PRODUCT
2616 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2617   if (_stable)  st->print("stable:");
2618   _elem->dump2(d, depth, st);
2619   st->print("[");
2620   _size->dump2(d, depth, st);
2621   st->print("]");
2622 }
2623 #endif
2624 
2625 //------------------------------singleton--------------------------------------
2626 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2627 // constants (Ldi nodes).  Singletons are integer, float or double constants
2628 // or a single symbol.
2629 bool TypeAry::singleton(void) const {
2630   return false;                 // Never a singleton
2631 }
2632 
2633 bool TypeAry::empty(void) const {
2634   return _elem->empty() || _size->empty();
2635 }
2636 
2637 //--------------------------ary_must_be_exact----------------------------------
2638 bool TypeAry::ary_must_be_exact() const {
2639   // This logic looks at the element type of an array, and returns true
2640   // if the element type is either a primitive or a final instance class.
2641   // In such cases, an array built on this ary must have no subclasses.
2642   if (_elem == BOTTOM)      return false;  // general array not exact
2643   if (_elem == TOP   )      return false;  // inverted general array not exact
2644   const TypeOopPtr*  toop = nullptr;
2645   if (UseCompressedOops && _elem->isa_narrowoop()) {
2646     toop = _elem->make_ptr()->isa_oopptr();
2647   } else {
2648     toop = _elem->isa_oopptr();
2649   }
2650   if (!toop)                return true;   // a primitive type, like int
2651   if (!toop->is_loaded())   return false;  // unloaded class
2652   const TypeInstPtr* tinst;
2653   if (_elem->isa_narrowoop())
2654     tinst = _elem->make_ptr()->isa_instptr();
2655   else
2656     tinst = _elem->isa_instptr();
2657   if (tinst)
2658     return tinst->instance_klass()->is_final();
2659   const TypeAryPtr*  tap;
2660   if (_elem->isa_narrowoop())
2661     tap = _elem->make_ptr()->isa_aryptr();
2662   else
2663     tap = _elem->isa_aryptr();
2664   if (tap)
2665     return tap->ary()->ary_must_be_exact();
2666   return false;
2667 }
2668 
2669 //==============================TypeVect=======================================
2670 // Convenience common pre-built types.
2671 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2672 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2673 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2674 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2675 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2676 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2677 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2678 
2679 //------------------------------make-------------------------------------------
2680 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) {
2681   if (is_mask) {
2682     return makemask(elem_bt, length);
2683   }
2684   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2685   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2686   int size = length * type2aelembytes(elem_bt);
2687   switch (Matcher::vector_ideal_reg(size)) {
2688   case Op_VecA:
2689     return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons();
2690   case Op_VecS:
2691     return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons();
2692   case Op_RegL:
2693   case Op_VecD:
2694   case Op_RegD:
2695     return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons();
2696   case Op_VecX:
2697     return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons();
2698   case Op_VecY:
2699     return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons();
2700   case Op_VecZ:
2701     return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons();
2702   }
2703  ShouldNotReachHere();
2704   return nullptr;
2705 }
2706 
2707 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) {
2708   if (Matcher::has_predicated_vectors() &&
2709       Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2710     return TypeVectMask::make(elem_bt, length);
2711   } else {
2712     return make(elem_bt, length);
2713   }
2714 }
2715 
2716 //------------------------------meet-------------------------------------------
2717 // Compute the MEET of two types. Since each TypeVect is the only instance of
2718 // its species, meeting often returns itself
2719 const Type* TypeVect::xmeet(const Type* t) const {
2720   // Perform a fast test for common case; meeting the same types together.
2721   if (this == t) {
2722     return this;
2723   }
2724 
2725   // Current "this->_base" is Vector
2726   switch (t->base()) {          // switch on original type
2727 
2728   case Bottom:                  // Ye Olde Default
2729     return t;
2730 
2731   default:                      // All else is a mistake
2732     typerr(t);
2733   case VectorMask:
2734   case VectorA:
2735   case VectorS:
2736   case VectorD:
2737   case VectorX:
2738   case VectorY:
2739   case VectorZ: {                // Meeting 2 vectors?
2740     const TypeVect* v = t->is_vect();
2741     assert(base() == v->base(), "");
2742     assert(length() == v->length(), "");
2743     assert(element_basic_type() == v->element_basic_type(), "");
2744     return this;
2745   }
2746   case Top:
2747     break;
2748   }
2749   return this;
2750 }
2751 
2752 //------------------------------xdual------------------------------------------
2753 // Since each TypeVect is the only instance of its species, it is self-dual
2754 const Type* TypeVect::xdual() const {
2755   return this;
2756 }
2757 
2758 //------------------------------eq---------------------------------------------
2759 // Structural equality check for Type representations
2760 bool TypeVect::eq(const Type* t) const {
2761   const TypeVect* v = t->is_vect();
2762   return (element_basic_type() == v->element_basic_type()) && (length() == v->length());
2763 }
2764 
2765 //------------------------------hash-------------------------------------------
2766 // Type-specific hashing function.
2767 uint TypeVect::hash(void) const {
2768   return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length;
2769 }
2770 
2771 //------------------------------singleton--------------------------------------
2772 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2773 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2774 // constant value (when vector is created with Replicate code).
2775 bool TypeVect::singleton(void) const {
2776 // There is no Con node for vectors yet.
2777 //  return _elem->singleton();
2778   return false;
2779 }
2780 
2781 bool TypeVect::empty(void) const {
2782   return false;
2783 }
2784 
2785 //------------------------------dump2------------------------------------------
2786 #ifndef PRODUCT
2787 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const {
2788   switch (base()) {
2789   case VectorA:
2790     st->print("vectora"); break;
2791   case VectorS:
2792     st->print("vectors"); break;
2793   case VectorD:
2794     st->print("vectord"); break;
2795   case VectorX:
2796     st->print("vectorx"); break;
2797   case VectorY:
2798     st->print("vectory"); break;
2799   case VectorZ:
2800     st->print("vectorz"); break;
2801   case VectorMask:
2802     st->print("vectormask"); break;
2803   default:
2804     ShouldNotReachHere();
2805   }
2806   st->print("<%c,%u>", type2char(element_basic_type()), length());
2807 }
2808 #endif
2809 
2810 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) {
2811   return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons();
2812 }
2813 
2814 //=============================================================================
2815 // Convenience common pre-built types.
2816 const TypePtr *TypePtr::NULL_PTR;
2817 const TypePtr *TypePtr::NOTNULL;
2818 const TypePtr *TypePtr::BOTTOM;
2819 
2820 //------------------------------meet-------------------------------------------
2821 // Meet over the PTR enum
2822 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2823   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2824   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2825   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2826   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2827   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2828   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2829   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2830 };
2831 
2832 //------------------------------make-------------------------------------------
2833 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2834   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2835 }
2836 
2837 //------------------------------cast_to_ptr_type-------------------------------
2838 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2839   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2840   if( ptr == _ptr ) return this;
2841   return make(_base, ptr, _offset, _speculative, _inline_depth);
2842 }
2843 
2844 //------------------------------get_con----------------------------------------
2845 intptr_t TypePtr::get_con() const {
2846   assert( _ptr == Null, "" );
2847   return _offset;
2848 }
2849 
2850 //------------------------------meet-------------------------------------------
2851 // Compute the MEET of two types.  It returns a new Type object.
2852 const Type *TypePtr::xmeet(const Type *t) const {
2853   const Type* res = xmeet_helper(t);
2854   if (res->isa_ptr() == nullptr) {
2855     return res;
2856   }
2857 
2858   const TypePtr* res_ptr = res->is_ptr();
2859   if (res_ptr->speculative() != nullptr) {
2860     // type->speculative() is null means that speculation is no better
2861     // than type, i.e. type->speculative() == type. So there are 2
2862     // ways to represent the fact that we have no useful speculative
2863     // data and we should use a single one to be able to test for
2864     // equality between types. Check whether type->speculative() ==
2865     // type and set speculative to null if it is the case.
2866     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2867       return res_ptr->remove_speculative();
2868     }
2869   }
2870 
2871   return res;
2872 }
2873 
2874 const Type *TypePtr::xmeet_helper(const Type *t) const {
2875   // Perform a fast test for common case; meeting the same types together.
2876   if( this == t ) return this;  // Meeting same type-rep?
2877 
2878   // Current "this->_base" is AnyPtr
2879   switch (t->base()) {          // switch on original type
2880   case Int:                     // Mixing ints & oops happens when javac
2881   case Long:                    // reuses local variables
2882   case HalfFloatTop:
2883   case HalfFloatCon:
2884   case HalfFloatBot:
2885   case FloatTop:
2886   case FloatCon:
2887   case FloatBot:
2888   case DoubleTop:
2889   case DoubleCon:
2890   case DoubleBot:
2891   case NarrowOop:
2892   case NarrowKlass:
2893   case Bottom:                  // Ye Olde Default
2894     return Type::BOTTOM;
2895   case Top:
2896     return this;
2897 
2898   case AnyPtr: {                // Meeting to AnyPtrs
2899     const TypePtr *tp = t->is_ptr();
2900     const TypePtr* speculative = xmeet_speculative(tp);
2901     int depth = meet_inline_depth(tp->inline_depth());
2902     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2903   }
2904   case RawPtr:                  // For these, flip the call around to cut down
2905   case OopPtr:
2906   case InstPtr:                 // on the cases I have to handle.
2907   case AryPtr:
2908   case MetadataPtr:
2909   case KlassPtr:
2910   case InstKlassPtr:
2911   case AryKlassPtr:
2912     return t->xmeet(this);      // Call in reverse direction
2913   default:                      // All else is a mistake
2914     typerr(t);
2915 
2916   }
2917   return this;
2918 }
2919 
2920 //------------------------------meet_offset------------------------------------
2921 int TypePtr::meet_offset( int offset ) const {
2922   // Either is 'TOP' offset?  Return the other offset!
2923   if( _offset == OffsetTop ) return offset;
2924   if( offset == OffsetTop ) return _offset;
2925   // If either is different, return 'BOTTOM' offset
2926   if( _offset != offset ) return OffsetBot;
2927   return _offset;
2928 }
2929 
2930 //------------------------------dual_offset------------------------------------
2931 int TypePtr::dual_offset( ) const {
2932   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2933   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2934   return _offset;               // Map everything else into self
2935 }
2936 
2937 //------------------------------xdual------------------------------------------
2938 // Dual: compute field-by-field dual
2939 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2940   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2941 };
2942 const Type *TypePtr::xdual() const {
2943   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2944 }
2945 
2946 //------------------------------xadd_offset------------------------------------
2947 int TypePtr::xadd_offset( intptr_t offset ) const {
2948   // Adding to 'TOP' offset?  Return 'TOP'!
2949   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2950   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2951   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2952   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2953   offset += (intptr_t)_offset;
2954   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2955 
2956   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2957   // It is possible to construct a negative offset during PhaseCCP
2958 
2959   return (int)offset;        // Sum valid offsets
2960 }
2961 
2962 //------------------------------add_offset-------------------------------------
2963 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2964   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2965 }
2966 
2967 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2968   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2969 }
2970 
2971 //------------------------------eq---------------------------------------------
2972 // Structural equality check for Type representations
2973 bool TypePtr::eq( const Type *t ) const {
2974   const TypePtr *a = (const TypePtr*)t;
2975   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2976 }
2977 
2978 //------------------------------hash-------------------------------------------
2979 // Type-specific hashing function.
2980 uint TypePtr::hash(void) const {
2981   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2982 }
2983 
2984 /**
2985  * Return same type without a speculative part
2986  */
2987 const TypePtr* TypePtr::remove_speculative() const {
2988   if (_speculative == nullptr) {
2989     return this;
2990   }
2991   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2992   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2993 }
2994 
2995 /**
2996  * Return same type but drop speculative part if we know we won't use
2997  * it
2998  */
2999 const Type* TypePtr::cleanup_speculative() const {
3000   if (speculative() == nullptr) {
3001     return this;
3002   }
3003   const Type* no_spec = remove_speculative();
3004   // If this is NULL_PTR then we don't need the speculative type
3005   // (with_inline_depth in case the current type inline depth is
3006   // InlineDepthTop)
3007   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
3008     return no_spec;
3009   }
3010   if (above_centerline(speculative()->ptr())) {
3011     return no_spec;
3012   }
3013   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
3014   // If the speculative may be null and is an inexact klass then it
3015   // doesn't help
3016   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
3017       (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
3018     return no_spec;
3019   }
3020   return this;
3021 }
3022 
3023 /**
3024  * dual of the speculative part of the type
3025  */
3026 const TypePtr* TypePtr::dual_speculative() const {
3027   if (_speculative == nullptr) {
3028     return nullptr;
3029   }
3030   return _speculative->dual()->is_ptr();
3031 }
3032 
3033 /**
3034  * meet of the speculative parts of 2 types
3035  *
3036  * @param other  type to meet with
3037  */
3038 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
3039   bool this_has_spec = (_speculative != nullptr);
3040   bool other_has_spec = (other->speculative() != nullptr);
3041 
3042   if (!this_has_spec && !other_has_spec) {
3043     return nullptr;
3044   }
3045 
3046   // If we are at a point where control flow meets and one branch has
3047   // a speculative type and the other has not, we meet the speculative
3048   // type of one branch with the actual type of the other. If the
3049   // actual type is exact and the speculative is as well, then the
3050   // result is a speculative type which is exact and we can continue
3051   // speculation further.
3052   const TypePtr* this_spec = _speculative;
3053   const TypePtr* other_spec = other->speculative();
3054 
3055   if (!this_has_spec) {
3056     this_spec = this;
3057   }
3058 
3059   if (!other_has_spec) {
3060     other_spec = other;
3061   }
3062 
3063   return this_spec->meet(other_spec)->is_ptr();
3064 }
3065 
3066 /**
3067  * dual of the inline depth for this type (used for speculation)
3068  */
3069 int TypePtr::dual_inline_depth() const {
3070   return -inline_depth();
3071 }
3072 
3073 /**
3074  * meet of 2 inline depths (used for speculation)
3075  *
3076  * @param depth  depth to meet with
3077  */
3078 int TypePtr::meet_inline_depth(int depth) const {
3079   return MAX2(inline_depth(), depth);
3080 }
3081 
3082 /**
3083  * Are the speculative parts of 2 types equal?
3084  *
3085  * @param other  type to compare this one to
3086  */
3087 bool TypePtr::eq_speculative(const TypePtr* other) const {
3088   if (_speculative == nullptr || other->speculative() == nullptr) {
3089     return _speculative == other->speculative();
3090   }
3091 
3092   if (_speculative->base() != other->speculative()->base()) {
3093     return false;
3094   }
3095 
3096   return _speculative->eq(other->speculative());
3097 }
3098 
3099 /**
3100  * Hash of the speculative part of the type
3101  */
3102 int TypePtr::hash_speculative() const {
3103   if (_speculative == nullptr) {
3104     return 0;
3105   }
3106 
3107   return _speculative->hash();
3108 }
3109 
3110 /**
3111  * add offset to the speculative part of the type
3112  *
3113  * @param offset  offset to add
3114  */
3115 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
3116   if (_speculative == nullptr) {
3117     return nullptr;
3118   }
3119   return _speculative->add_offset(offset)->is_ptr();
3120 }
3121 
3122 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
3123   if (_speculative == nullptr) {
3124     return nullptr;
3125   }
3126   return _speculative->with_offset(offset)->is_ptr();
3127 }
3128 
3129 /**
3130  * return exact klass from the speculative type if there's one
3131  */
3132 ciKlass* TypePtr::speculative_type() const {
3133   if (_speculative != nullptr && _speculative->isa_oopptr()) {
3134     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
3135     if (speculative->klass_is_exact()) {
3136       return speculative->exact_klass();
3137     }
3138   }
3139   return nullptr;
3140 }
3141 
3142 /**
3143  * return true if speculative type may be null
3144  */
3145 bool TypePtr::speculative_maybe_null() const {
3146   if (_speculative != nullptr) {
3147     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3148     return speculative->maybe_null();
3149   }
3150   return true;
3151 }
3152 
3153 bool TypePtr::speculative_always_null() const {
3154   if (_speculative != nullptr) {
3155     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3156     return speculative == TypePtr::NULL_PTR;
3157   }
3158   return false;
3159 }
3160 
3161 /**
3162  * Same as TypePtr::speculative_type() but return the klass only if
3163  * the speculative tells us is not null
3164  */
3165 ciKlass* TypePtr::speculative_type_not_null() const {
3166   if (speculative_maybe_null()) {
3167     return nullptr;
3168   }
3169   return speculative_type();
3170 }
3171 
3172 /**
3173  * Check whether new profiling would improve speculative type
3174  *
3175  * @param   exact_kls    class from profiling
3176  * @param   inline_depth inlining depth of profile point
3177  *
3178  * @return  true if type profile is valuable
3179  */
3180 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3181   // no profiling?
3182   if (exact_kls == nullptr) {
3183     return false;
3184   }
3185   if (speculative() == TypePtr::NULL_PTR) {
3186     return false;
3187   }
3188   // no speculative type or non exact speculative type?
3189   if (speculative_type() == nullptr) {
3190     return true;
3191   }
3192   // If the node already has an exact speculative type keep it,
3193   // unless it was provided by profiling that is at a deeper
3194   // inlining level. Profiling at a higher inlining depth is
3195   // expected to be less accurate.
3196   if (_speculative->inline_depth() == InlineDepthBottom) {
3197     return false;
3198   }
3199   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
3200   return inline_depth < _speculative->inline_depth();
3201 }
3202 
3203 /**
3204  * Check whether new profiling would improve ptr (= tells us it is non
3205  * null)
3206  *
3207  * @param   ptr_kind always null or not null?
3208  *
3209  * @return  true if ptr profile is valuable
3210  */
3211 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
3212   // profiling doesn't tell us anything useful
3213   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
3214     return false;
3215   }
3216   // We already know this is not null
3217   if (!this->maybe_null()) {
3218     return false;
3219   }
3220   // We already know the speculative type cannot be null
3221   if (!speculative_maybe_null()) {
3222     return false;
3223   }
3224   // We already know this is always null
3225   if (this == TypePtr::NULL_PTR) {
3226     return false;
3227   }
3228   // We already know the speculative type is always null
3229   if (speculative_always_null()) {
3230     return false;
3231   }
3232   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3233     return false;
3234   }
3235   return true;
3236 }
3237 
3238 //------------------------------dump2------------------------------------------
3239 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3240   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3241 };
3242 
3243 #ifndef PRODUCT
3244 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3245   if( _ptr == Null ) st->print("null");
3246   else st->print("%s *", ptr_msg[_ptr]);
3247   if( _offset == OffsetTop ) st->print("+top");
3248   else if( _offset == OffsetBot ) st->print("+bot");
3249   else if( _offset ) st->print("+%d", _offset);
3250   dump_inline_depth(st);
3251   dump_speculative(st);
3252 }
3253 
3254 /**
3255  *dump the speculative part of the type
3256  */
3257 void TypePtr::dump_speculative(outputStream *st) const {
3258   if (_speculative != nullptr) {
3259     st->print(" (speculative=");
3260     _speculative->dump_on(st);
3261     st->print(")");
3262   }
3263 }
3264 
3265 /**
3266  *dump the inline depth of the type
3267  */
3268 void TypePtr::dump_inline_depth(outputStream *st) const {
3269   if (_inline_depth != InlineDepthBottom) {
3270     if (_inline_depth == InlineDepthTop) {
3271       st->print(" (inline_depth=InlineDepthTop)");
3272     } else {
3273       st->print(" (inline_depth=%d)", _inline_depth);
3274     }
3275   }
3276 }
3277 #endif
3278 
3279 //------------------------------singleton--------------------------------------
3280 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3281 // constants
3282 bool TypePtr::singleton(void) const {
3283   // TopPTR, Null, AnyNull, Constant are all singletons
3284   return (_offset != OffsetBot) && !below_centerline(_ptr);
3285 }
3286 
3287 bool TypePtr::empty(void) const {
3288   return (_offset == OffsetTop) || above_centerline(_ptr);
3289 }
3290 
3291 //=============================================================================
3292 // Convenience common pre-built types.
3293 const TypeRawPtr *TypeRawPtr::BOTTOM;
3294 const TypeRawPtr *TypeRawPtr::NOTNULL;
3295 
3296 //------------------------------make-------------------------------------------
3297 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3298   assert( ptr != Constant, "what is the constant?" );
3299   assert( ptr != Null, "Use TypePtr for null" );
3300   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3301 }
3302 
3303 const TypeRawPtr *TypeRawPtr::make(address bits) {
3304   assert(bits != nullptr, "Use TypePtr for null");
3305   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3306 }
3307 
3308 //------------------------------cast_to_ptr_type-------------------------------
3309 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3310   assert( ptr != Constant, "what is the constant?" );
3311   assert( ptr != Null, "Use TypePtr for null" );
3312   assert( _bits == nullptr, "Why cast a constant address?");
3313   if( ptr == _ptr ) return this;
3314   return make(ptr);
3315 }
3316 
3317 //------------------------------get_con----------------------------------------
3318 intptr_t TypeRawPtr::get_con() const {
3319   assert( _ptr == Null || _ptr == Constant, "" );
3320   return (intptr_t)_bits;
3321 }
3322 
3323 //------------------------------meet-------------------------------------------
3324 // Compute the MEET of two types.  It returns a new Type object.
3325 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3326   // Perform a fast test for common case; meeting the same types together.
3327   if( this == t ) return this;  // Meeting same type-rep?
3328 
3329   // Current "this->_base" is RawPtr
3330   switch( t->base() ) {         // switch on original type
3331   case Bottom:                  // Ye Olde Default
3332     return t;
3333   case Top:
3334     return this;
3335   case AnyPtr:                  // Meeting to AnyPtrs
3336     break;
3337   case RawPtr: {                // might be top, bot, any/not or constant
3338     enum PTR tptr = t->is_ptr()->ptr();
3339     enum PTR ptr = meet_ptr( tptr );
3340     if( ptr == Constant ) {     // Cannot be equal constants, so...
3341       if( tptr == Constant && _ptr != Constant)  return t;
3342       if( _ptr == Constant && tptr != Constant)  return this;
3343       ptr = NotNull;            // Fall down in lattice
3344     }
3345     return make( ptr );
3346   }
3347 
3348   case OopPtr:
3349   case InstPtr:
3350   case AryPtr:
3351   case MetadataPtr:
3352   case KlassPtr:
3353   case InstKlassPtr:
3354   case AryKlassPtr:
3355     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3356   default:                      // All else is a mistake
3357     typerr(t);
3358   }
3359 
3360   // Found an AnyPtr type vs self-RawPtr type
3361   const TypePtr *tp = t->is_ptr();
3362   switch (tp->ptr()) {
3363   case TypePtr::TopPTR:  return this;
3364   case TypePtr::BotPTR:  return t;
3365   case TypePtr::Null:
3366     if( _ptr == TypePtr::TopPTR ) return t;
3367     return TypeRawPtr::BOTTOM;
3368   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3369   case TypePtr::AnyNull:
3370     if( _ptr == TypePtr::Constant) return this;
3371     return make( meet_ptr(TypePtr::AnyNull) );
3372   default: ShouldNotReachHere();
3373   }
3374   return this;
3375 }
3376 
3377 //------------------------------xdual------------------------------------------
3378 // Dual: compute field-by-field dual
3379 const Type *TypeRawPtr::xdual() const {
3380   return new TypeRawPtr( dual_ptr(), _bits );
3381 }
3382 
3383 //------------------------------add_offset-------------------------------------
3384 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3385   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3386   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3387   if( offset == 0 ) return this; // No change
3388   switch (_ptr) {
3389   case TypePtr::TopPTR:
3390   case TypePtr::BotPTR:
3391   case TypePtr::NotNull:
3392     return this;
3393   case TypePtr::Constant: {
3394     uintptr_t bits = (uintptr_t)_bits;
3395     uintptr_t sum = bits + offset;
3396     if (( offset < 0 )
3397         ? ( sum > bits )        // Underflow?
3398         : ( sum < bits )) {     // Overflow?
3399       return BOTTOM;
3400     } else if ( sum == 0 ) {
3401       return TypePtr::NULL_PTR;
3402     } else {
3403       return make( (address)sum );
3404     }
3405   }
3406   default:  ShouldNotReachHere();
3407   }
3408 }
3409 
3410 //------------------------------eq---------------------------------------------
3411 // Structural equality check for Type representations
3412 bool TypeRawPtr::eq( const Type *t ) const {
3413   const TypeRawPtr *a = (const TypeRawPtr*)t;
3414   return _bits == a->_bits && TypePtr::eq(t);
3415 }
3416 
3417 //------------------------------hash-------------------------------------------
3418 // Type-specific hashing function.
3419 uint TypeRawPtr::hash(void) const {
3420   return (uint)(uintptr_t)_bits + (uint)TypePtr::hash();
3421 }
3422 
3423 //------------------------------dump2------------------------------------------
3424 #ifndef PRODUCT
3425 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3426   if( _ptr == Constant )
3427     st->print(INTPTR_FORMAT, p2i(_bits));
3428   else
3429     st->print("rawptr:%s", ptr_msg[_ptr]);
3430 }
3431 #endif
3432 
3433 //=============================================================================
3434 // Convenience common pre-built type.
3435 const TypeOopPtr *TypeOopPtr::BOTTOM;
3436 
3437 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces)
3438         : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces),
3439           _hash(0), _exact_klass(nullptr) {
3440   _interfaces.sort(compare);
3441   initialize();
3442 }
3443 
3444 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) {
3445   // hashcons() can only delete the last thing that was allocated: to
3446   // make sure all memory for the newly created TypeInterfaces can be
3447   // freed if an identical one exists, allocate space for the array of
3448   // interfaces right after the TypeInterfaces object so that they
3449   // form a contiguous piece of memory.
3450   int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length();
3451   size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*);
3452 
3453   void* allocated_mem = operator new(total_size);
3454   ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces));
3455   for (int i = 0; i < nb_interfaces; ++i) {
3456     interfaces_base[i] = interfaces->at(i);
3457   }
3458   TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces);
3459   return (const TypeInterfaces*)result->hashcons();
3460 }
3461 
3462 void TypeInterfaces::initialize() {
3463   compute_hash();
3464   compute_exact_klass();
3465   DEBUG_ONLY(_initialized = true;)
3466 }
3467 
3468 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) {
3469   if ((intptr_t)k1 < (intptr_t)k2) {
3470     return -1;
3471   } else if ((intptr_t)k1 > (intptr_t)k2) {
3472     return 1;
3473   }
3474   return 0;
3475 }
3476 
3477 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3478   return compare(*k1, *k2);
3479 }
3480 
3481 bool TypeInterfaces::eq(const Type* t) const {
3482   const TypeInterfaces* other = (const TypeInterfaces*)t;
3483   if (_interfaces.length() != other->_interfaces.length()) {
3484     return false;
3485   }
3486   for (int i = 0; i < _interfaces.length(); i++) {
3487     ciKlass* k1 = _interfaces.at(i);
3488     ciKlass* k2 = other->_interfaces.at(i);
3489     if (!k1->equals(k2)) {
3490       return false;
3491     }
3492   }
3493   return true;
3494 }
3495 
3496 bool TypeInterfaces::eq(ciInstanceKlass* k) const {
3497   assert(k->is_loaded(), "should be loaded");
3498   GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces();
3499   if (_interfaces.length() != interfaces->length()) {
3500     return false;
3501   }
3502   for (int i = 0; i < interfaces->length(); i++) {
3503     bool found = false;
3504     _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found);
3505     if (!found) {
3506       return false;
3507     }
3508   }
3509   return true;
3510 }
3511 
3512 
3513 uint TypeInterfaces::hash() const {
3514   assert(_initialized, "must be");
3515   return _hash;
3516 }
3517 
3518 const Type* TypeInterfaces::xdual() const {
3519   return this;
3520 }
3521 
3522 void TypeInterfaces::compute_hash() {
3523   uint hash = 0;
3524   for (int i = 0; i < _interfaces.length(); i++) {
3525     ciKlass* k = _interfaces.at(i);
3526     hash += k->hash();
3527   }
3528   _hash = hash;
3529 }
3530 
3531 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3532   return (int)((*k1)->ident() - (*k2)->ident());
3533 }
3534 
3535 void TypeInterfaces::dump(outputStream* st) const {
3536   if (_interfaces.length() == 0) {
3537     return;
3538   }
3539   ResourceMark rm;
3540   st->print(" (");
3541   GrowableArray<ciInstanceKlass*> interfaces;
3542   interfaces.appendAll(&_interfaces);
3543   // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3544   interfaces.sort(compare_interfaces);
3545   for (int i = 0; i < interfaces.length(); i++) {
3546     if (i > 0) {
3547       st->print(",");
3548     }
3549     ciKlass* k = interfaces.at(i);
3550     k->print_name_on(st);
3551   }
3552   st->print(")");
3553 }
3554 
3555 #ifdef ASSERT
3556 void TypeInterfaces::verify() const {
3557   for (int i = 1; i < _interfaces.length(); i++) {
3558     ciInstanceKlass* k1 = _interfaces.at(i-1);
3559     ciInstanceKlass* k2 = _interfaces.at(i);
3560     assert(compare(k2, k1) > 0, "should be ordered");
3561     assert(k1 != k2, "no duplicate");
3562   }
3563 }
3564 #endif
3565 
3566 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const {
3567   GrowableArray<ciInstanceKlass*> result_list;
3568   int i = 0;
3569   int j = 0;
3570   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3571     while (i < _interfaces.length() &&
3572            (j >= other->_interfaces.length() ||
3573             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3574       result_list.push(_interfaces.at(i));
3575       i++;
3576     }
3577     while (j < other->_interfaces.length() &&
3578            (i >= _interfaces.length() ||
3579             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3580       result_list.push(other->_interfaces.at(j));
3581       j++;
3582     }
3583     if (i < _interfaces.length() &&
3584         j < other->_interfaces.length() &&
3585         _interfaces.at(i) == other->_interfaces.at(j)) {
3586       result_list.push(_interfaces.at(i));
3587       i++;
3588       j++;
3589     }
3590   }
3591   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3592 #ifdef ASSERT
3593   result->verify();
3594   for (int i = 0; i < _interfaces.length(); i++) {
3595     assert(result->_interfaces.contains(_interfaces.at(i)), "missing");
3596   }
3597   for (int i = 0; i < other->_interfaces.length(); i++) {
3598     assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3599   }
3600   for (int i = 0; i < result->_interfaces.length(); i++) {
3601     assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3602   }
3603 #endif
3604   return result;
3605 }
3606 
3607 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const {
3608   GrowableArray<ciInstanceKlass*> result_list;
3609   int i = 0;
3610   int j = 0;
3611   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3612     while (i < _interfaces.length() &&
3613            (j >= other->_interfaces.length() ||
3614             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3615       i++;
3616     }
3617     while (j < other->_interfaces.length() &&
3618            (i >= _interfaces.length() ||
3619             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3620       j++;
3621     }
3622     if (i < _interfaces.length() &&
3623         j < other->_interfaces.length() &&
3624         _interfaces.at(i) == other->_interfaces.at(j)) {
3625       result_list.push(_interfaces.at(i));
3626       i++;
3627       j++;
3628     }
3629   }
3630   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3631 #ifdef ASSERT
3632   result->verify();
3633   for (int i = 0; i < _interfaces.length(); i++) {
3634     assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing");
3635   }
3636   for (int i = 0; i < other->_interfaces.length(); i++) {
3637     assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3638   }
3639   for (int i = 0; i < result->_interfaces.length(); i++) {
3640     assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3641   }
3642 #endif
3643   return result;
3644 }
3645 
3646 // Is there a single ciKlass* that can represent the interface set?
3647 ciInstanceKlass* TypeInterfaces::exact_klass() const {
3648   assert(_initialized, "must be");
3649   return _exact_klass;
3650 }
3651 
3652 void TypeInterfaces::compute_exact_klass() {
3653   if (_interfaces.length() == 0) {
3654     _exact_klass = nullptr;
3655     return;
3656   }
3657   ciInstanceKlass* res = nullptr;
3658   for (int i = 0; i < _interfaces.length(); i++) {
3659     ciInstanceKlass* interface = _interfaces.at(i);
3660     if (eq(interface)) {
3661       assert(res == nullptr, "");
3662       res = interface;
3663     }
3664   }
3665   _exact_klass = res;
3666 }
3667 
3668 #ifdef ASSERT
3669 void TypeInterfaces::verify_is_loaded() const {
3670   for (int i = 0; i < _interfaces.length(); i++) {
3671     ciKlass* interface = _interfaces.at(i);
3672     assert(interface->is_loaded(), "Interface not loaded");
3673   }
3674 }
3675 #endif
3676 
3677 // Can't be implemented because there's no way to know if the type is above or below the center line.
3678 const Type* TypeInterfaces::xmeet(const Type* t) const {
3679   ShouldNotReachHere();
3680   return Type::xmeet(t);
3681 }
3682 
3683 bool TypeInterfaces::singleton(void) const {
3684   ShouldNotReachHere();
3685   return Type::singleton();
3686 }
3687 
3688 //------------------------------TypeOopPtr-------------------------------------
3689 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3690                        int instance_id, const TypePtr* speculative, int inline_depth)
3691   : TypePtr(t, ptr, offset, speculative, inline_depth),
3692     _const_oop(o), _klass(k),
3693     _interfaces(interfaces),
3694     _klass_is_exact(xk),
3695     _is_ptr_to_narrowoop(false),
3696     _is_ptr_to_narrowklass(false),
3697     _is_ptr_to_boxed_value(false),
3698     _instance_id(instance_id) {
3699 #ifdef ASSERT
3700   if (klass() != nullptr && klass()->is_loaded()) {
3701     interfaces->verify_is_loaded();
3702   }
3703 #endif
3704   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3705       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3706     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3707   }
3708 #ifdef _LP64
3709   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3710     if (_offset == Type::klass_offset()) {
3711       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3712     } else if (klass() == nullptr) {
3713       // Array with unknown body type
3714       assert(this->isa_aryptr(), "only arrays without klass");
3715       _is_ptr_to_narrowoop = UseCompressedOops;
3716     } else if (this->isa_aryptr()) {
3717       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3718                              _offset != arrayOopDesc::length_offset_in_bytes());
3719     } else if (klass()->is_instance_klass()) {
3720       ciInstanceKlass* ik = klass()->as_instance_klass();
3721       if (this->isa_klassptr()) {
3722         // Perm objects don't use compressed references
3723       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3724         // unsafe access
3725         _is_ptr_to_narrowoop = UseCompressedOops;
3726       } else {
3727         assert(this->isa_instptr(), "must be an instance ptr.");
3728 
3729         if (klass() == ciEnv::current()->Class_klass() &&
3730             (_offset == java_lang_Class::klass_offset() ||
3731              _offset == java_lang_Class::array_klass_offset())) {
3732           // Special hidden fields from the Class.
3733           assert(this->isa_instptr(), "must be an instance ptr.");
3734           _is_ptr_to_narrowoop = false;
3735         } else if (klass() == ciEnv::current()->Class_klass() &&
3736                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3737           // Static fields
3738           ciField* field = nullptr;
3739           if (const_oop() != nullptr) {
3740             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3741             field = k->get_field_by_offset(_offset, true);
3742           }
3743           if (field != nullptr) {
3744             BasicType basic_elem_type = field->layout_type();
3745             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3746           } else {
3747             // unsafe access
3748             _is_ptr_to_narrowoop = UseCompressedOops;
3749           }
3750         } else {
3751           // Instance fields which contains a compressed oop references.
3752           ciField* field = ik->get_field_by_offset(_offset, false);
3753           if (field != nullptr) {
3754             BasicType basic_elem_type = field->layout_type();
3755             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3756           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3757             // Compile::find_alias_type() cast exactness on all types to verify
3758             // that it does not affect alias type.
3759             _is_ptr_to_narrowoop = UseCompressedOops;
3760           } else {
3761             // Type for the copy start in LibraryCallKit::inline_native_clone().
3762             _is_ptr_to_narrowoop = UseCompressedOops;
3763           }
3764         }
3765       }
3766     }
3767   }
3768 #endif
3769 }
3770 
3771 //------------------------------make-------------------------------------------
3772 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3773                                      const TypePtr* speculative, int inline_depth) {
3774   assert(ptr != Constant, "no constant generic pointers");
3775   ciKlass*  k = Compile::current()->env()->Object_klass();
3776   bool      xk = false;
3777   ciObject* o = nullptr;
3778   const TypeInterfaces* interfaces = TypeInterfaces::make();
3779   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3780 }
3781 
3782 
3783 //------------------------------cast_to_ptr_type-------------------------------
3784 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3785   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3786   if( ptr == _ptr ) return this;
3787   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3788 }
3789 
3790 //-----------------------------cast_to_instance_id----------------------------
3791 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3792   // There are no instances of a general oop.
3793   // Return self unchanged.
3794   return this;
3795 }
3796 
3797 //-----------------------------cast_to_exactness-------------------------------
3798 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3799   // There is no such thing as an exact general oop.
3800   // Return self unchanged.
3801   return this;
3802 }
3803 
3804 
3805 //------------------------------as_klass_type----------------------------------
3806 // Return the klass type corresponding to this instance or array type.
3807 // It is the type that is loaded from an object of this type.
3808 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3809   ShouldNotReachHere();
3810   return nullptr;
3811 }
3812 
3813 //------------------------------meet-------------------------------------------
3814 // Compute the MEET of two types.  It returns a new Type object.
3815 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3816   // Perform a fast test for common case; meeting the same types together.
3817   if( this == t ) return this;  // Meeting same type-rep?
3818 
3819   // Current "this->_base" is OopPtr
3820   switch (t->base()) {          // switch on original type
3821 
3822   case Int:                     // Mixing ints & oops happens when javac
3823   case Long:                    // reuses local variables
3824   case HalfFloatTop:
3825   case HalfFloatCon:
3826   case HalfFloatBot:
3827   case FloatTop:
3828   case FloatCon:
3829   case FloatBot:
3830   case DoubleTop:
3831   case DoubleCon:
3832   case DoubleBot:
3833   case NarrowOop:
3834   case NarrowKlass:
3835   case Bottom:                  // Ye Olde Default
3836     return Type::BOTTOM;
3837   case Top:
3838     return this;
3839 
3840   default:                      // All else is a mistake
3841     typerr(t);
3842 
3843   case RawPtr:
3844   case MetadataPtr:
3845   case KlassPtr:
3846   case InstKlassPtr:
3847   case AryKlassPtr:
3848     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3849 
3850   case AnyPtr: {
3851     // Found an AnyPtr type vs self-OopPtr type
3852     const TypePtr *tp = t->is_ptr();
3853     int offset = meet_offset(tp->offset());
3854     PTR ptr = meet_ptr(tp->ptr());
3855     const TypePtr* speculative = xmeet_speculative(tp);
3856     int depth = meet_inline_depth(tp->inline_depth());
3857     switch (tp->ptr()) {
3858     case Null:
3859       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3860       // else fall through:
3861     case TopPTR:
3862     case AnyNull: {
3863       int instance_id = meet_instance_id(InstanceTop);
3864       return make(ptr, offset, instance_id, speculative, depth);
3865     }
3866     case BotPTR:
3867     case NotNull:
3868       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3869     default: typerr(t);
3870     }
3871   }
3872 
3873   case OopPtr: {                 // Meeting to other OopPtrs
3874     const TypeOopPtr *tp = t->is_oopptr();
3875     int instance_id = meet_instance_id(tp->instance_id());
3876     const TypePtr* speculative = xmeet_speculative(tp);
3877     int depth = meet_inline_depth(tp->inline_depth());
3878     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3879   }
3880 
3881   case InstPtr:                  // For these, flip the call around to cut down
3882   case AryPtr:
3883     return t->xmeet(this);      // Call in reverse direction
3884 
3885   } // End of switch
3886   return this;                  // Return the double constant
3887 }
3888 
3889 
3890 //------------------------------xdual------------------------------------------
3891 // Dual of a pure heap pointer.  No relevant klass or oop information.
3892 const Type *TypeOopPtr::xdual() const {
3893   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3894   assert(const_oop() == nullptr,             "no constants here");
3895   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3896 }
3897 
3898 //--------------------------make_from_klass_common-----------------------------
3899 // Computes the element-type given a klass.
3900 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3901   if (klass->is_instance_klass()) {
3902     Compile* C = Compile::current();
3903     Dependencies* deps = C->dependencies();
3904     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3905     // Element is an instance
3906     bool klass_is_exact = false;
3907     if (klass->is_loaded()) {
3908       // Try to set klass_is_exact.
3909       ciInstanceKlass* ik = klass->as_instance_klass();
3910       klass_is_exact = ik->is_final();
3911       if (!klass_is_exact && klass_change
3912           && deps != nullptr && UseUniqueSubclasses) {
3913         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3914         if (sub != nullptr) {
3915           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3916           klass = ik = sub;
3917           klass_is_exact = sub->is_final();
3918         }
3919       }
3920       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3921           !ik->is_interface() && !ik->has_subklass()) {
3922         // Add a dependence; if concrete subclass added we need to recompile
3923         deps->assert_leaf_type(ik);
3924         klass_is_exact = true;
3925       }
3926     }
3927     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3928     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3929   } else if (klass->is_obj_array_klass()) {
3930     // Element is an object array. Recursively call ourself.
3931     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3932     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3933     bool xk = etype->klass_is_exact();
3934     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3935     // We used to pass NotNull in here, asserting that the sub-arrays
3936     // are all not-null.  This is not true in generally, as code can
3937     // slam nulls down in the subarrays.
3938     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3939     return arr;
3940   } else if (klass->is_type_array_klass()) {
3941     // Element is an typeArray
3942     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3943     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3944     // We used to pass NotNull in here, asserting that the array pointer
3945     // is not-null. That was not true in general.
3946     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3947     return arr;
3948   } else {
3949     ShouldNotReachHere();
3950     return nullptr;
3951   }
3952 }
3953 
3954 //------------------------------make_from_constant-----------------------------
3955 // Make a java pointer from an oop constant
3956 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3957   assert(!o->is_null_object(), "null object not yet handled here.");
3958 
3959   const bool make_constant = require_constant || o->should_be_constant();
3960 
3961   ciKlass* klass = o->klass();
3962   if (klass->is_instance_klass()) {
3963     // Element is an instance
3964     if (make_constant) {
3965       return TypeInstPtr::make(o);
3966     } else {
3967       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3968     }
3969   } else if (klass->is_obj_array_klass()) {
3970     // Element is an object array. Recursively call ourself.
3971     const TypeOopPtr *etype =
3972       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3973     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3974     // We used to pass NotNull in here, asserting that the sub-arrays
3975     // are all not-null.  This is not true in generally, as code can
3976     // slam nulls down in the subarrays.
3977     if (make_constant) {
3978       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3979     } else {
3980       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3981     }
3982   } else if (klass->is_type_array_klass()) {
3983     // Element is an typeArray
3984     const Type* etype =
3985       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3986     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3987     // We used to pass NotNull in here, asserting that the array pointer
3988     // is not-null. That was not true in general.
3989     if (make_constant) {
3990       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3991     } else {
3992       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3993     }
3994   }
3995 
3996   fatal("unhandled object type");
3997   return nullptr;
3998 }
3999 
4000 //------------------------------get_con----------------------------------------
4001 intptr_t TypeOopPtr::get_con() const {
4002   assert( _ptr == Null || _ptr == Constant, "" );
4003   assert( _offset >= 0, "" );
4004 
4005   if (_offset != 0) {
4006     // After being ported to the compiler interface, the compiler no longer
4007     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4008     // to a handle at compile time.  This handle is embedded in the generated
4009     // code and dereferenced at the time the nmethod is made.  Until that time,
4010     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4011     // have access to the addresses!).  This does not seem to currently happen,
4012     // but this assertion here is to help prevent its occurrence.
4013     tty->print_cr("Found oop constant with non-zero offset");
4014     ShouldNotReachHere();
4015   }
4016 
4017   return (intptr_t)const_oop()->constant_encoding();
4018 }
4019 
4020 
4021 //-----------------------------filter------------------------------------------
4022 // Do not allow interface-vs.-noninterface joins to collapse to top.
4023 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
4024 
4025   const Type* ft = join_helper(kills, include_speculative);
4026 
4027   if (ft->empty()) {
4028     return Type::TOP;           // Canonical empty value
4029   }
4030 
4031   return ft;
4032 }
4033 
4034 //------------------------------eq---------------------------------------------
4035 // Structural equality check for Type representations
4036 bool TypeOopPtr::eq( const Type *t ) const {
4037   const TypeOopPtr *a = (const TypeOopPtr*)t;
4038   if (_klass_is_exact != a->_klass_is_exact ||
4039       _instance_id != a->_instance_id)  return false;
4040   ciObject* one = const_oop();
4041   ciObject* two = a->const_oop();
4042   if (one == nullptr || two == nullptr) {
4043     return (one == two) && TypePtr::eq(t);
4044   } else {
4045     return one->equals(two) && TypePtr::eq(t);
4046   }
4047 }
4048 
4049 //------------------------------hash-------------------------------------------
4050 // Type-specific hashing function.
4051 uint TypeOopPtr::hash(void) const {
4052   return
4053     (uint)(const_oop() ? const_oop()->hash() : 0) +
4054     (uint)_klass_is_exact +
4055     (uint)_instance_id + TypePtr::hash();
4056 }
4057 
4058 //------------------------------dump2------------------------------------------
4059 #ifndef PRODUCT
4060 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4061   st->print("oopptr:%s", ptr_msg[_ptr]);
4062   if( _klass_is_exact ) st->print(":exact");
4063   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4064   switch( _offset ) {
4065   case OffsetTop: st->print("+top"); break;
4066   case OffsetBot: st->print("+any"); break;
4067   case         0: break;
4068   default:        st->print("+%d",_offset); break;
4069   }
4070   if (_instance_id == InstanceTop)
4071     st->print(",iid=top");
4072   else if (_instance_id != InstanceBot)
4073     st->print(",iid=%d",_instance_id);
4074 
4075   dump_inline_depth(st);
4076   dump_speculative(st);
4077 }
4078 #endif
4079 
4080 //------------------------------singleton--------------------------------------
4081 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4082 // constants
4083 bool TypeOopPtr::singleton(void) const {
4084   // detune optimizer to not generate constant oop + constant offset as a constant!
4085   // TopPTR, Null, AnyNull, Constant are all singletons
4086   return (_offset == 0) && !below_centerline(_ptr);
4087 }
4088 
4089 //------------------------------add_offset-------------------------------------
4090 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4091   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4092 }
4093 
4094 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4095   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
4096 }
4097 
4098 /**
4099  * Return same type without a speculative part
4100  */
4101 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4102   if (_speculative == nullptr) {
4103     return this;
4104   }
4105   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4106   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4107 }
4108 
4109 /**
4110  * Return same type but drop speculative part if we know we won't use
4111  * it
4112  */
4113 const Type* TypeOopPtr::cleanup_speculative() const {
4114   // If the klass is exact and the ptr is not null then there's
4115   // nothing that the speculative type can help us with
4116   if (klass_is_exact() && !maybe_null()) {
4117     return remove_speculative();
4118   }
4119   return TypePtr::cleanup_speculative();
4120 }
4121 
4122 /**
4123  * Return same type but with a different inline depth (used for speculation)
4124  *
4125  * @param depth  depth to meet with
4126  */
4127 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
4128   if (!UseInlineDepthForSpeculativeTypes) {
4129     return this;
4130   }
4131   return make(_ptr, _offset, _instance_id, _speculative, depth);
4132 }
4133 
4134 //------------------------------with_instance_id--------------------------------
4135 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
4136   assert(_instance_id != -1, "should be known");
4137   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
4138 }
4139 
4140 //------------------------------meet_instance_id--------------------------------
4141 int TypeOopPtr::meet_instance_id( int instance_id ) const {
4142   // Either is 'TOP' instance?  Return the other instance!
4143   if( _instance_id == InstanceTop ) return  instance_id;
4144   if(  instance_id == InstanceTop ) return _instance_id;
4145   // If either is different, return 'BOTTOM' instance
4146   if( _instance_id != instance_id ) return InstanceBot;
4147   return _instance_id;
4148 }
4149 
4150 //------------------------------dual_instance_id--------------------------------
4151 int TypeOopPtr::dual_instance_id( ) const {
4152   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
4153   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
4154   return _instance_id;              // Map everything else into self
4155 }
4156 
4157 
4158 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
4159   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
4160     return _interfaces->union_with(other->_interfaces);
4161   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
4162     return other->_interfaces;
4163   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
4164     return _interfaces;
4165   }
4166   return _interfaces->intersection_with(other->_interfaces);
4167 }
4168 
4169 /**
4170  * Check whether new profiling would improve speculative type
4171  *
4172  * @param   exact_kls    class from profiling
4173  * @param   inline_depth inlining depth of profile point
4174  *
4175  * @return  true if type profile is valuable
4176  */
4177 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
4178   // no way to improve an already exact type
4179   if (klass_is_exact()) {
4180     return false;
4181   }
4182   return TypePtr::would_improve_type(exact_kls, inline_depth);
4183 }
4184 
4185 //=============================================================================
4186 // Convenience common pre-built types.
4187 const TypeInstPtr *TypeInstPtr::NOTNULL;
4188 const TypeInstPtr *TypeInstPtr::BOTTOM;
4189 const TypeInstPtr *TypeInstPtr::MIRROR;
4190 const TypeInstPtr *TypeInstPtr::MARK;
4191 const TypeInstPtr *TypeInstPtr::KLASS;
4192 
4193 // Is there a single ciKlass* that can represent that type?
4194 ciKlass* TypeInstPtr::exact_klass_helper() const {
4195   if (_interfaces->empty()) {
4196     return _klass;
4197   }
4198   if (_klass != ciEnv::current()->Object_klass()) {
4199     if (_interfaces->eq(_klass->as_instance_klass())) {
4200       return _klass;
4201     }
4202     return nullptr;
4203   }
4204   return _interfaces->exact_klass();
4205 }
4206 
4207 //------------------------------TypeInstPtr-------------------------------------
4208 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
4209                          int instance_id, const TypePtr* speculative, int inline_depth)
4210   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {
4211   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4212   assert(k != nullptr &&
4213          (k->is_loaded() || o == nullptr),
4214          "cannot have constants with non-loaded klass");
4215 };
4216 
4217 //------------------------------make-------------------------------------------
4218 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4219                                      ciKlass* k,
4220                                      const TypeInterfaces* interfaces,
4221                                      bool xk,
4222                                      ciObject* o,
4223                                      int offset,
4224                                      int instance_id,
4225                                      const TypePtr* speculative,
4226                                      int inline_depth) {
4227   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4228   // Either const_oop() is null or else ptr is Constant
4229   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4230           "constant pointers must have a value supplied" );
4231   // Ptr is never Null
4232   assert( ptr != Null, "null pointers are not typed" );
4233 
4234   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4235   if (ptr == Constant) {
4236     // Note:  This case includes meta-object constants, such as methods.
4237     xk = true;
4238   } else if (k->is_loaded()) {
4239     ciInstanceKlass* ik = k->as_instance_klass();
4240     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4241     assert(!ik->is_interface(), "no interface here");
4242     if (xk && ik->is_interface())  xk = false;  // no exact interface
4243   }
4244 
4245   // Now hash this baby
4246   TypeInstPtr *result =
4247     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4248 
4249   return result;
4250 }
4251 
4252 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4253   if (k->is_instance_klass()) {
4254     if (k->is_loaded()) {
4255       if (k->is_interface() && interface_handling == ignore_interfaces) {
4256         assert(interface, "no interface expected");
4257         k = ciEnv::current()->Object_klass();
4258         const TypeInterfaces* interfaces = TypeInterfaces::make();
4259         return interfaces;
4260       }
4261       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4262       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4263       if (k->is_interface()) {
4264         assert(interface, "no interface expected");
4265         k = ciEnv::current()->Object_klass();
4266       } else {
4267         assert(klass, "no instance klass expected");
4268       }
4269       return interfaces;
4270     }
4271     const TypeInterfaces* interfaces = TypeInterfaces::make();
4272     return interfaces;
4273   }
4274   assert(array, "no array expected");
4275   assert(k->is_array_klass(), "Not an array?");
4276   ciType* e = k->as_array_klass()->base_element_type();
4277   if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
4278     if (interface_handling == ignore_interfaces) {
4279       k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
4280     }
4281   }
4282   return TypeAryPtr::_array_interfaces;
4283 }
4284 
4285 /**
4286  *  Create constant type for a constant boxed value
4287  */
4288 const Type* TypeInstPtr::get_const_boxed_value() const {
4289   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
4290   assert((const_oop() != nullptr), "should be called only for constant object");
4291   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
4292   BasicType bt = constant.basic_type();
4293   switch (bt) {
4294     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4295     case T_INT:      return TypeInt::make(constant.as_int());
4296     case T_CHAR:     return TypeInt::make(constant.as_char());
4297     case T_BYTE:     return TypeInt::make(constant.as_byte());
4298     case T_SHORT:    return TypeInt::make(constant.as_short());
4299     case T_FLOAT:    return TypeF::make(constant.as_float());
4300     case T_DOUBLE:   return TypeD::make(constant.as_double());
4301     case T_LONG:     return TypeLong::make(constant.as_long());
4302     default:         break;
4303   }
4304   fatal("Invalid boxed value type '%s'", type2name(bt));
4305   return nullptr;
4306 }
4307 
4308 //------------------------------cast_to_ptr_type-------------------------------
4309 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4310   if( ptr == _ptr ) return this;
4311   // Reconstruct _sig info here since not a problem with later lazy
4312   // construction, _sig will show up on demand.
4313   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4314 }
4315 
4316 
4317 //-----------------------------cast_to_exactness-------------------------------
4318 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4319   if( klass_is_exact == _klass_is_exact ) return this;
4320   if (!_klass->is_loaded())  return this;
4321   ciInstanceKlass* ik = _klass->as_instance_klass();
4322   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4323   assert(!ik->is_interface(), "no interface here");
4324   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4325 }
4326 
4327 //-----------------------------cast_to_instance_id----------------------------
4328 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4329   if( instance_id == _instance_id ) return this;
4330   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4331 }
4332 
4333 //------------------------------xmeet_unloaded---------------------------------
4334 // Compute the MEET of two InstPtrs when at least one is unloaded.
4335 // Assume classes are different since called after check for same name/class-loader
4336 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4337   int off = meet_offset(tinst->offset());
4338   PTR ptr = meet_ptr(tinst->ptr());
4339   int instance_id = meet_instance_id(tinst->instance_id());
4340   const TypePtr* speculative = xmeet_speculative(tinst);
4341   int depth = meet_inline_depth(tinst->inline_depth());
4342 
4343   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4344   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4345   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4346     //
4347     // Meet unloaded class with java/lang/Object
4348     //
4349     // Meet
4350     //          |                     Unloaded Class
4351     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4352     //  ===================================================================
4353     //   TOP    | ..........................Unloaded......................|
4354     //  AnyNull |  U-AN    |................Unloaded......................|
4355     // Constant | ... O-NN .................................. |   O-BOT   |
4356     //  NotNull | ... O-NN .................................. |   O-BOT   |
4357     //  BOTTOM  | ........................Object-BOTTOM ..................|
4358     //
4359     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4360     //
4361     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4362     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4363     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4364     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4365       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4366       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4367     }
4368     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4369 
4370     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4371   }
4372 
4373   // Both are unloaded, not the same class, not Object
4374   // Or meet unloaded with a different loaded class, not java/lang/Object
4375   if (ptr != TypePtr::BotPTR) {
4376     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4377   }
4378   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4379 }
4380 
4381 
4382 //------------------------------meet-------------------------------------------
4383 // Compute the MEET of two types.  It returns a new Type object.
4384 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4385   // Perform a fast test for common case; meeting the same types together.
4386   if( this == t ) return this;  // Meeting same type-rep?
4387 
4388   // Current "this->_base" is Pointer
4389   switch (t->base()) {          // switch on original type
4390 
4391   case Int:                     // Mixing ints & oops happens when javac
4392   case Long:                    // reuses local variables
4393   case HalfFloatTop:
4394   case HalfFloatCon:
4395   case HalfFloatBot:
4396   case FloatTop:
4397   case FloatCon:
4398   case FloatBot:
4399   case DoubleTop:
4400   case DoubleCon:
4401   case DoubleBot:
4402   case NarrowOop:
4403   case NarrowKlass:
4404   case Bottom:                  // Ye Olde Default
4405     return Type::BOTTOM;
4406   case Top:
4407     return this;
4408 
4409   default:                      // All else is a mistake
4410     typerr(t);
4411 
4412   case MetadataPtr:
4413   case KlassPtr:
4414   case InstKlassPtr:
4415   case AryKlassPtr:
4416   case RawPtr: return TypePtr::BOTTOM;
4417 
4418   case AryPtr: {                // All arrays inherit from Object class
4419     // Call in reverse direction to avoid duplication
4420     return t->is_aryptr()->xmeet_helper(this);
4421   }
4422 
4423   case OopPtr: {                // Meeting to OopPtrs
4424     // Found a OopPtr type vs self-InstPtr type
4425     const TypeOopPtr *tp = t->is_oopptr();
4426     int offset = meet_offset(tp->offset());
4427     PTR ptr = meet_ptr(tp->ptr());
4428     switch (tp->ptr()) {
4429     case TopPTR:
4430     case AnyNull: {
4431       int instance_id = meet_instance_id(InstanceTop);
4432       const TypePtr* speculative = xmeet_speculative(tp);
4433       int depth = meet_inline_depth(tp->inline_depth());
4434       return make(ptr, klass(), _interfaces, klass_is_exact(),
4435                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4436     }
4437     case NotNull:
4438     case BotPTR: {
4439       int instance_id = meet_instance_id(tp->instance_id());
4440       const TypePtr* speculative = xmeet_speculative(tp);
4441       int depth = meet_inline_depth(tp->inline_depth());
4442       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4443     }
4444     default: typerr(t);
4445     }
4446   }
4447 
4448   case AnyPtr: {                // Meeting to AnyPtrs
4449     // Found an AnyPtr type vs self-InstPtr type
4450     const TypePtr *tp = t->is_ptr();
4451     int offset = meet_offset(tp->offset());
4452     PTR ptr = meet_ptr(tp->ptr());
4453     int instance_id = meet_instance_id(InstanceTop);
4454     const TypePtr* speculative = xmeet_speculative(tp);
4455     int depth = meet_inline_depth(tp->inline_depth());
4456     switch (tp->ptr()) {
4457     case Null:
4458       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4459       // else fall through to AnyNull
4460     case TopPTR:
4461     case AnyNull: {
4462       return make(ptr, klass(), _interfaces, klass_is_exact(),
4463                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4464     }
4465     case NotNull:
4466     case BotPTR:
4467       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4468     default: typerr(t);
4469     }
4470   }
4471 
4472   /*
4473                  A-top         }
4474                /   |   \       }  Tops
4475            B-top A-any C-top   }
4476               | /  |  \ |      }  Any-nulls
4477            B-any   |   C-any   }
4478               |    |    |
4479            B-con A-con C-con   } constants; not comparable across classes
4480               |    |    |
4481            B-not   |   C-not   }
4482               | \  |  / |      }  not-nulls
4483            B-bot A-not C-bot   }
4484                \   |   /       }  Bottoms
4485                  A-bot         }
4486   */
4487 
4488   case InstPtr: {                // Meeting 2 Oops?
4489     // Found an InstPtr sub-type vs self-InstPtr type
4490     const TypeInstPtr *tinst = t->is_instptr();
4491     int off = meet_offset(tinst->offset());
4492     PTR ptr = meet_ptr(tinst->ptr());
4493     int instance_id = meet_instance_id(tinst->instance_id());
4494     const TypePtr* speculative = xmeet_speculative(tinst);
4495     int depth = meet_inline_depth(tinst->inline_depth());
4496     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4497 
4498     ciKlass* tinst_klass = tinst->klass();
4499     ciKlass* this_klass  = klass();
4500 
4501     ciKlass* res_klass = nullptr;
4502     bool res_xk = false;
4503     const Type* res;
4504     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4505 
4506     if (kind == UNLOADED) {
4507       // One of these classes has not been loaded
4508       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4509 #ifndef PRODUCT
4510       if (PrintOpto && Verbose) {
4511         tty->print("meet of unloaded classes resulted in: ");
4512         unloaded_meet->dump();
4513         tty->cr();
4514         tty->print("  this == ");
4515         dump();
4516         tty->cr();
4517         tty->print(" tinst == ");
4518         tinst->dump();
4519         tty->cr();
4520       }
4521 #endif
4522       res = unloaded_meet;
4523     } else {
4524       if (kind == NOT_SUBTYPE && instance_id > 0) {
4525         instance_id = InstanceBot;
4526       } else if (kind == LCA) {
4527         instance_id = InstanceBot;
4528       }
4529       ciObject* o = nullptr;             // Assume not constant when done
4530       ciObject* this_oop = const_oop();
4531       ciObject* tinst_oop = tinst->const_oop();
4532       if (ptr == Constant) {
4533         if (this_oop != nullptr && tinst_oop != nullptr &&
4534             this_oop->equals(tinst_oop))
4535           o = this_oop;
4536         else if (above_centerline(_ptr)) {
4537           assert(!tinst_klass->is_interface(), "");
4538           o = tinst_oop;
4539         } else if (above_centerline(tinst->_ptr)) {
4540           assert(!this_klass->is_interface(), "");
4541           o = this_oop;
4542         } else
4543           ptr = NotNull;
4544       }
4545       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4546     }
4547 
4548     return res;
4549 
4550   } // End of case InstPtr
4551 
4552   } // End of switch
4553   return this;                  // Return the double constant
4554 }
4555 
4556 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4557                                                             ciKlass*& res_klass, bool& res_xk) {
4558   ciKlass* this_klass = this_type->klass();
4559   ciKlass* other_klass = other_type->klass();
4560   bool this_xk = this_type->klass_is_exact();
4561   bool other_xk = other_type->klass_is_exact();
4562   PTR this_ptr = this_type->ptr();
4563   PTR other_ptr = other_type->ptr();
4564   const TypeInterfaces* this_interfaces = this_type->interfaces();
4565   const TypeInterfaces* other_interfaces = other_type->interfaces();
4566   // Check for easy case; klasses are equal (and perhaps not loaded!)
4567   // If we have constants, then we created oops so classes are loaded
4568   // and we can handle the constants further down.  This case handles
4569   // both-not-loaded or both-loaded classes
4570   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4571     res_klass = this_klass;
4572     res_xk = this_xk;
4573     return QUICK;
4574   }
4575 
4576   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4577   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4578     return UNLOADED;
4579   }
4580 
4581   // !!! Here's how the symmetry requirement breaks down into invariants:
4582   // If we split one up & one down AND they subtype, take the down man.
4583   // If we split one up & one down AND they do NOT subtype, "fall hard".
4584   // If both are up and they subtype, take the subtype class.
4585   // If both are up and they do NOT subtype, "fall hard".
4586   // If both are down and they subtype, take the supertype class.
4587   // If both are down and they do NOT subtype, "fall hard".
4588   // Constants treated as down.
4589 
4590   // Now, reorder the above list; observe that both-down+subtype is also
4591   // "fall hard"; "fall hard" becomes the default case:
4592   // If we split one up & one down AND they subtype, take the down man.
4593   // If both are up and they subtype, take the subtype class.
4594 
4595   // If both are down and they subtype, "fall hard".
4596   // If both are down and they do NOT subtype, "fall hard".
4597   // If both are up and they do NOT subtype, "fall hard".
4598   // If we split one up & one down AND they do NOT subtype, "fall hard".
4599 
4600   // If a proper subtype is exact, and we return it, we return it exactly.
4601   // If a proper supertype is exact, there can be no subtyping relationship!
4602   // If both types are equal to the subtype, exactness is and-ed below the
4603   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4604 
4605   // Check for subtyping:
4606   const T* subtype = nullptr;
4607   bool subtype_exact = false;
4608   if (this_type->is_same_java_type_as(other_type)) {
4609     subtype = this_type;
4610     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4611   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4612     subtype = this_type;     // Pick subtyping class
4613     subtype_exact = this_xk;
4614   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4615     subtype = other_type;    // Pick subtyping class
4616     subtype_exact = other_xk;
4617   }
4618 
4619   if (subtype) {
4620     if (above_centerline(ptr)) { // both are up?
4621       this_type = other_type = subtype;
4622       this_xk = other_xk = subtype_exact;
4623     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4624       this_type = other_type; // tinst is down; keep down man
4625       this_xk = other_xk;
4626     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4627       other_type = this_type; // this is down; keep down man
4628       other_xk = this_xk;
4629     } else {
4630       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4631     }
4632   }
4633 
4634   // Check for classes now being equal
4635   if (this_type->is_same_java_type_as(other_type)) {
4636     // If the klasses are equal, the constants may still differ.  Fall to
4637     // NotNull if they do (neither constant is null; that is a special case
4638     // handled elsewhere).
4639     res_klass = this_type->klass();
4640     res_xk = this_xk;
4641     return SUBTYPE;
4642   } // Else classes are not equal
4643 
4644   // Since klasses are different, we require a LCA in the Java
4645   // class hierarchy - which means we have to fall to at least NotNull.
4646   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4647     ptr = NotNull;
4648   }
4649 
4650   interfaces = this_interfaces->intersection_with(other_interfaces);
4651 
4652   // Now we find the LCA of Java classes
4653   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4654 
4655   res_klass = k;
4656   res_xk = false;
4657 
4658   return LCA;
4659 }
4660 
4661 //------------------------java_mirror_type--------------------------------------
4662 ciType* TypeInstPtr::java_mirror_type() const {
4663   // must be a singleton type
4664   if( const_oop() == nullptr )  return nullptr;
4665 
4666   // must be of type java.lang.Class
4667   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4668 
4669   return const_oop()->as_instance()->java_mirror_type();
4670 }
4671 
4672 
4673 //------------------------------xdual------------------------------------------
4674 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4675 // inheritance mechanism.
4676 const Type *TypeInstPtr::xdual() const {
4677   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4678 }
4679 
4680 //------------------------------eq---------------------------------------------
4681 // Structural equality check for Type representations
4682 bool TypeInstPtr::eq( const Type *t ) const {
4683   const TypeInstPtr *p = t->is_instptr();
4684   return
4685     klass()->equals(p->klass()) &&
4686     _interfaces->eq(p->_interfaces) &&
4687     TypeOopPtr::eq(p);          // Check sub-type stuff
4688 }
4689 
4690 //------------------------------hash-------------------------------------------
4691 // Type-specific hashing function.
4692 uint TypeInstPtr::hash(void) const {
4693   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4694 }
4695 
4696 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4697   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4698 }
4699 
4700 
4701 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4702   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4703 }
4704 
4705 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4706   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4707 }
4708 
4709 
4710 //------------------------------dump2------------------------------------------
4711 // Dump oop Type
4712 #ifndef PRODUCT
4713 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4714   // Print the name of the klass.
4715   klass()->print_name_on(st);
4716   _interfaces->dump(st);
4717 
4718   switch( _ptr ) {
4719   case Constant:
4720     if (WizardMode || Verbose) {
4721       ResourceMark rm;
4722       stringStream ss;
4723 
4724       st->print(" ");
4725       const_oop()->print_oop(&ss);
4726       // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4727       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4728       char* buf = ss.as_string(/* c_heap= */false);
4729       StringUtils::replace_no_expand(buf, "\n", "");
4730       st->print_raw(buf);
4731     }
4732   case BotPTR:
4733     if (!WizardMode && !Verbose) {
4734       if( _klass_is_exact ) st->print(":exact");
4735       break;
4736     }
4737   case TopPTR:
4738   case AnyNull:
4739   case NotNull:
4740     st->print(":%s", ptr_msg[_ptr]);
4741     if( _klass_is_exact ) st->print(":exact");
4742     break;
4743   default:
4744     break;
4745   }
4746 
4747   if( _offset ) {               // Dump offset, if any
4748     if( _offset == OffsetBot )      st->print("+any");
4749     else if( _offset == OffsetTop ) st->print("+unknown");
4750     else st->print("+%d", _offset);
4751   }
4752 
4753   st->print(" *");
4754   if (_instance_id == InstanceTop)
4755     st->print(",iid=top");
4756   else if (_instance_id != InstanceBot)
4757     st->print(",iid=%d",_instance_id);
4758 
4759   dump_inline_depth(st);
4760   dump_speculative(st);
4761 }
4762 #endif
4763 
4764 //------------------------------add_offset-------------------------------------
4765 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4766   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4767               _instance_id, add_offset_speculative(offset), _inline_depth);
4768 }
4769 
4770 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4771   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4772               _instance_id, with_offset_speculative(offset), _inline_depth);
4773 }
4774 
4775 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4776   if (_speculative == nullptr) {
4777     return this;
4778   }
4779   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4780   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4781               _instance_id, nullptr, _inline_depth);
4782 }
4783 
4784 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4785   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4786 }
4787 
4788 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4789   if (!UseInlineDepthForSpeculativeTypes) {
4790     return this;
4791   }
4792   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4793 }
4794 
4795 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4796   assert(is_known_instance(), "should be known");
4797   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4798 }
4799 
4800 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4801   bool xk = klass_is_exact();
4802   ciInstanceKlass* ik = klass()->as_instance_klass();
4803   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4804     if (_interfaces->eq(ik)) {
4805       Compile* C = Compile::current();
4806       Dependencies* deps = C->dependencies();
4807       deps->assert_leaf_type(ik);
4808       xk = true;
4809     }
4810   }
4811   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4812 }
4813 
4814 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4815   static_assert(std::is_base_of<T2, T1>::value, "");
4816 
4817   if (!this_one->is_instance_type(other)) {
4818     return false;
4819   }
4820 
4821   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4822     return true;
4823   }
4824 
4825   return this_one->klass()->is_subtype_of(other->klass()) &&
4826          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4827 }
4828 
4829 
4830 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4831   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4832 }
4833 
4834 template <class T1, class T2>  bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4835   static_assert(std::is_base_of<T2, T1>::value, "");
4836   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4837     return true;
4838   }
4839 
4840   if (this_one->is_instance_type(other)) {
4841     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4842   }
4843 
4844   int dummy;
4845   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4846   if (this_top_or_bottom) {
4847     return false;
4848   }
4849 
4850   const T1* other_ary = this_one->is_array_type(other);
4851   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4852   const TypePtr* this_elem = this_one->elem()->make_ptr();
4853   if (other_elem != nullptr && this_elem != nullptr) {
4854     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4855   }
4856 
4857   if (other_elem == nullptr && this_elem == nullptr) {
4858     return this_one->klass()->is_subtype_of(other->klass());
4859   }
4860 
4861   return false;
4862 }
4863 
4864 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4865   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4866 }
4867 
4868 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4869   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4870 }
4871 
4872 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4873   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4874 }
4875 
4876 //=============================================================================
4877 // Convenience common pre-built types.
4878 const TypeAryPtr* TypeAryPtr::BOTTOM;
4879 const TypeAryPtr* TypeAryPtr::RANGE;
4880 const TypeAryPtr* TypeAryPtr::OOPS;
4881 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4882 const TypeAryPtr* TypeAryPtr::BYTES;
4883 const TypeAryPtr* TypeAryPtr::SHORTS;
4884 const TypeAryPtr* TypeAryPtr::CHARS;
4885 const TypeAryPtr* TypeAryPtr::INTS;
4886 const TypeAryPtr* TypeAryPtr::LONGS;
4887 const TypeAryPtr* TypeAryPtr::FLOATS;
4888 const TypeAryPtr* TypeAryPtr::DOUBLES;
4889 
4890 //------------------------------make-------------------------------------------
4891 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4892                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4893   assert(!(k == nullptr && ary->_elem->isa_int()),
4894          "integral arrays must be pre-equipped with a class");
4895   if (!xk)  xk = ary->ary_must_be_exact();
4896   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4897   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4898       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4899     k = nullptr;
4900   }
4901   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4902 }
4903 
4904 //------------------------------make-------------------------------------------
4905 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4906                                    int instance_id, const TypePtr* speculative, int inline_depth,
4907                                    bool is_autobox_cache) {
4908   assert(!(k == nullptr && ary->_elem->isa_int()),
4909          "integral arrays must be pre-equipped with a class");
4910   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4911   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4912   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4913   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4914       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4915     k = nullptr;
4916   }
4917   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4918 }
4919 
4920 //------------------------------cast_to_ptr_type-------------------------------
4921 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4922   if( ptr == _ptr ) return this;
4923   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4924 }
4925 
4926 
4927 //-----------------------------cast_to_exactness-------------------------------
4928 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4929   if( klass_is_exact == _klass_is_exact ) return this;
4930   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4931   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4932 }
4933 
4934 //-----------------------------cast_to_instance_id----------------------------
4935 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4936   if( instance_id == _instance_id ) return this;
4937   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4938 }
4939 
4940 
4941 //-----------------------------max_array_length-------------------------------
4942 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4943 jint TypeAryPtr::max_array_length(BasicType etype) {
4944   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4945     if (etype == T_NARROWOOP) {
4946       etype = T_OBJECT;
4947     } else if (etype == T_ILLEGAL) { // bottom[]
4948       etype = T_BYTE; // will produce conservatively high value
4949     } else {
4950       fatal("not an element type: %s", type2name(etype));
4951     }
4952   }
4953   return arrayOopDesc::max_array_length(etype);
4954 }
4955 
4956 //-----------------------------narrow_size_type-------------------------------
4957 // Narrow the given size type to the index range for the given array base type.
4958 // Return null if the resulting int type becomes empty.
4959 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4960   jint hi = size->_hi;
4961   jint lo = size->_lo;
4962   jint min_lo = 0;
4963   jint max_hi = max_array_length(elem()->array_element_basic_type());
4964   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4965   bool chg = false;
4966   if (lo < min_lo) {
4967     lo = min_lo;
4968     if (size->is_con()) {
4969       hi = lo;
4970     }
4971     chg = true;
4972   }
4973   if (hi > max_hi) {
4974     hi = max_hi;
4975     if (size->is_con()) {
4976       lo = hi;
4977     }
4978     chg = true;
4979   }
4980   // Negative length arrays will produce weird intermediate dead fast-path code
4981   if (lo > hi)
4982     return TypeInt::ZERO;
4983   if (!chg)
4984     return size;
4985   return TypeInt::make(lo, hi, Type::WidenMin);
4986 }
4987 
4988 //-------------------------------cast_to_size----------------------------------
4989 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4990   assert(new_size != nullptr, "");
4991   new_size = narrow_size_type(new_size);
4992   if (new_size == size())  return this;
4993   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4994   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4995 }
4996 
4997 //------------------------------cast_to_stable---------------------------------
4998 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4999   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5000     return this;
5001 
5002   const Type* elem = this->elem();
5003   const TypePtr* elem_ptr = elem->make_ptr();
5004 
5005   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5006     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5007     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5008   }
5009 
5010   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
5011 
5012   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
5013 }
5014 
5015 //-----------------------------stable_dimension--------------------------------
5016 int TypeAryPtr::stable_dimension() const {
5017   if (!is_stable())  return 0;
5018   int dim = 1;
5019   const TypePtr* elem_ptr = elem()->make_ptr();
5020   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5021     dim += elem_ptr->is_aryptr()->stable_dimension();
5022   return dim;
5023 }
5024 
5025 //----------------------cast_to_autobox_cache-----------------------------------
5026 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5027   if (is_autobox_cache())  return this;
5028   const TypeOopPtr* etype = elem()->make_oopptr();
5029   if (etype == nullptr)  return this;
5030   // The pointers in the autobox arrays are always non-null.
5031   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5032   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
5033   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5034 }
5035 
5036 //------------------------------eq---------------------------------------------
5037 // Structural equality check for Type representations
5038 bool TypeAryPtr::eq( const Type *t ) const {
5039   const TypeAryPtr *p = t->is_aryptr();
5040   return
5041     _ary == p->_ary &&  // Check array
5042     TypeOopPtr::eq(p);  // Check sub-parts
5043 }
5044 
5045 //------------------------------hash-------------------------------------------
5046 // Type-specific hashing function.
5047 uint TypeAryPtr::hash(void) const {
5048   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
5049 }
5050 
5051 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5052   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5053 }
5054 
5055 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5056   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5057 }
5058 
5059 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5060   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5061 }
5062 //------------------------------meet-------------------------------------------
5063 // Compute the MEET of two types.  It returns a new Type object.
5064 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5065   // Perform a fast test for common case; meeting the same types together.
5066   if( this == t ) return this;  // Meeting same type-rep?
5067   // Current "this->_base" is Pointer
5068   switch (t->base()) {          // switch on original type
5069 
5070   // Mixing ints & oops happens when javac reuses local variables
5071   case Int:
5072   case Long:
5073   case HalfFloatTop:
5074   case HalfFloatCon:
5075   case HalfFloatBot:
5076   case FloatTop:
5077   case FloatCon:
5078   case FloatBot:
5079   case DoubleTop:
5080   case DoubleCon:
5081   case DoubleBot:
5082   case NarrowOop:
5083   case NarrowKlass:
5084   case Bottom:                  // Ye Olde Default
5085     return Type::BOTTOM;
5086   case Top:
5087     return this;
5088 
5089   default:                      // All else is a mistake
5090     typerr(t);
5091 
5092   case OopPtr: {                // Meeting to OopPtrs
5093     // Found a OopPtr type vs self-AryPtr type
5094     const TypeOopPtr *tp = t->is_oopptr();
5095     int offset = meet_offset(tp->offset());
5096     PTR ptr = meet_ptr(tp->ptr());
5097     int depth = meet_inline_depth(tp->inline_depth());
5098     const TypePtr* speculative = xmeet_speculative(tp);
5099     switch (tp->ptr()) {
5100     case TopPTR:
5101     case AnyNull: {
5102       int instance_id = meet_instance_id(InstanceTop);
5103       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5104                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5105     }
5106     case BotPTR:
5107     case NotNull: {
5108       int instance_id = meet_instance_id(tp->instance_id());
5109       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5110     }
5111     default: ShouldNotReachHere();
5112     }
5113   }
5114 
5115   case AnyPtr: {                // Meeting two AnyPtrs
5116     // Found an AnyPtr type vs self-AryPtr type
5117     const TypePtr *tp = t->is_ptr();
5118     int offset = meet_offset(tp->offset());
5119     PTR ptr = meet_ptr(tp->ptr());
5120     const TypePtr* speculative = xmeet_speculative(tp);
5121     int depth = meet_inline_depth(tp->inline_depth());
5122     switch (tp->ptr()) {
5123     case TopPTR:
5124       return this;
5125     case BotPTR:
5126     case NotNull:
5127       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5128     case Null:
5129       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5130       // else fall through to AnyNull
5131     case AnyNull: {
5132       int instance_id = meet_instance_id(InstanceTop);
5133       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5134                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5135     }
5136     default: ShouldNotReachHere();
5137     }
5138   }
5139 
5140   case MetadataPtr:
5141   case KlassPtr:
5142   case InstKlassPtr:
5143   case AryKlassPtr:
5144   case RawPtr: return TypePtr::BOTTOM;
5145 
5146   case AryPtr: {                // Meeting 2 references?
5147     const TypeAryPtr *tap = t->is_aryptr();
5148     int off = meet_offset(tap->offset());
5149     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
5150     PTR ptr = meet_ptr(tap->ptr());
5151     int instance_id = meet_instance_id(tap->instance_id());
5152     const TypePtr* speculative = xmeet_speculative(tap);
5153     int depth = meet_inline_depth(tap->inline_depth());
5154 
5155     ciKlass* res_klass = nullptr;
5156     bool res_xk = false;
5157     const Type* elem = tary->_elem;
5158     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
5159       instance_id = InstanceBot;
5160     }
5161 
5162     ciObject* o = nullptr;             // Assume not constant when done
5163     ciObject* this_oop = const_oop();
5164     ciObject* tap_oop = tap->const_oop();
5165     if (ptr == Constant) {
5166       if (this_oop != nullptr && tap_oop != nullptr &&
5167           this_oop->equals(tap_oop)) {
5168         o = tap_oop;
5169       } else if (above_centerline(_ptr)) {
5170         o = tap_oop;
5171       } else if (above_centerline(tap->_ptr)) {
5172         o = this_oop;
5173       } else {
5174         ptr = NotNull;
5175       }
5176     }
5177     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
5178   }
5179 
5180   // All arrays inherit from Object class
5181   case InstPtr: {
5182     const TypeInstPtr *tp = t->is_instptr();
5183     int offset = meet_offset(tp->offset());
5184     PTR ptr = meet_ptr(tp->ptr());
5185     int instance_id = meet_instance_id(tp->instance_id());
5186     const TypePtr* speculative = xmeet_speculative(tp);
5187     int depth = meet_inline_depth(tp->inline_depth());
5188     const TypeInterfaces* interfaces = meet_interfaces(tp);
5189     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5190     const TypeInterfaces* this_interfaces = _interfaces;
5191 
5192     switch (ptr) {
5193     case TopPTR:
5194     case AnyNull:                // Fall 'down' to dual of object klass
5195       // For instances when a subclass meets a superclass we fall
5196       // below the centerline when the superclass is exact. We need to
5197       // do the same here.
5198       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5199         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5200       } else {
5201         // cannot subclass, so the meet has to fall badly below the centerline
5202         ptr = NotNull;
5203         instance_id = InstanceBot;
5204         interfaces = this_interfaces->intersection_with(tp_interfaces);
5205         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
5206       }
5207     case Constant:
5208     case NotNull:
5209     case BotPTR:                // Fall down to object klass
5210       // LCA is object_klass, but if we subclass from the top we can do better
5211       if (above_centerline(tp->ptr())) {
5212         // If 'tp'  is above the centerline and it is Object class
5213         // then we can subclass in the Java class hierarchy.
5214         // For instances when a subclass meets a superclass we fall
5215         // below the centerline when the superclass is exact. We need
5216         // to do the same here.
5217         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
5218           // that is, my array type is a subtype of 'tp' klass
5219           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5220                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
5221         }
5222       }
5223       // The other case cannot happen, since t cannot be a subtype of an array.
5224       // The meet falls down to Object class below centerline.
5225       if (ptr == Constant) {
5226          ptr = NotNull;
5227       }
5228       if (instance_id > 0) {
5229         instance_id = InstanceBot;
5230       }
5231       interfaces = this_interfaces->intersection_with(tp_interfaces);
5232       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
5233     default: typerr(t);
5234     }
5235   }
5236   }
5237   return this;                  // Lint noise
5238 }
5239 
5240 
5241 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5242                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5243   int dummy;
5244   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5245   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5246   ciKlass* this_klass = this_ary->klass();
5247   ciKlass* other_klass = other_ary->klass();
5248   bool this_xk = this_ary->klass_is_exact();
5249   bool other_xk = other_ary->klass_is_exact();
5250   PTR this_ptr = this_ary->ptr();
5251   PTR other_ptr = other_ary->ptr();
5252   res_klass = nullptr;
5253   MeetResult result = SUBTYPE;
5254   if (elem->isa_int()) {
5255     // Integral array element types have irrelevant lattice relations.
5256     // It is the klass that determines array layout, not the element type.
5257     if (this_top_or_bottom)
5258       res_klass = other_klass;
5259     else if (other_top_or_bottom || other_klass == this_klass) {
5260       res_klass = this_klass;
5261     } else {
5262       // Something like byte[int+] meets char[int+].
5263       // This must fall to bottom, not (int[-128..65535])[int+].
5264       // instance_id = InstanceBot;
5265       elem = Type::BOTTOM;
5266       result = NOT_SUBTYPE;
5267       if (above_centerline(ptr) || ptr == Constant) {
5268         ptr = NotNull;
5269         res_xk = false;
5270         return NOT_SUBTYPE;
5271       }
5272     }
5273   } else {// Non integral arrays.
5274     // Must fall to bottom if exact klasses in upper lattice
5275     // are not equal or super klass is exact.
5276     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5277         // meet with top[] and bottom[] are processed further down:
5278         !this_top_or_bottom && !other_top_or_bottom &&
5279         // both are exact and not equal:
5280         ((other_xk && this_xk) ||
5281          // 'tap'  is exact and super or unrelated:
5282          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5283          // 'this' is exact and super or unrelated:
5284          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5285       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5286         elem = Type::BOTTOM;
5287       }
5288       ptr = NotNull;
5289       res_xk = false;
5290       return NOT_SUBTYPE;
5291     }
5292   }
5293 
5294   res_xk = false;
5295   switch (other_ptr) {
5296     case AnyNull:
5297     case TopPTR:
5298       // Compute new klass on demand, do not use tap->_klass
5299       if (below_centerline(this_ptr)) {
5300         res_xk = this_xk;
5301       } else {
5302         res_xk = (other_xk || this_xk);
5303       }
5304       return result;
5305     case Constant: {
5306       if (this_ptr == Constant) {
5307         res_xk = true;
5308       } else if(above_centerline(this_ptr)) {
5309         res_xk = true;
5310       } else {
5311         // Only precise for identical arrays
5312         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5313       }
5314       return result;
5315     }
5316     case NotNull:
5317     case BotPTR:
5318       // Compute new klass on demand, do not use tap->_klass
5319       if (above_centerline(this_ptr)) {
5320         res_xk = other_xk;
5321       } else {
5322         res_xk = (other_xk && this_xk) &&
5323                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5324       }
5325       return result;
5326     default:  {
5327       ShouldNotReachHere();
5328       return result;
5329     }
5330   }
5331   return result;
5332 }
5333 
5334 
5335 //------------------------------xdual------------------------------------------
5336 // Dual: compute field-by-field dual
5337 const Type *TypeAryPtr::xdual() const {
5338   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5339 }
5340 
5341 //------------------------------dump2------------------------------------------
5342 #ifndef PRODUCT
5343 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5344   _ary->dump2(d,depth,st);
5345   _interfaces->dump(st);
5346 
5347   switch( _ptr ) {
5348   case Constant:
5349     const_oop()->print(st);
5350     break;
5351   case BotPTR:
5352     if (!WizardMode && !Verbose) {
5353       if( _klass_is_exact ) st->print(":exact");
5354       break;
5355     }
5356   case TopPTR:
5357   case AnyNull:
5358   case NotNull:
5359     st->print(":%s", ptr_msg[_ptr]);
5360     if( _klass_is_exact ) st->print(":exact");
5361     break;
5362   default:
5363     break;
5364   }
5365 
5366   if( _offset != 0 ) {
5367     BasicType basic_elem_type = elem()->basic_type();
5368     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5369     if( _offset == OffsetTop )       st->print("+undefined");
5370     else if( _offset == OffsetBot )  st->print("+any");
5371     else if( _offset < header_size ) st->print("+%d", _offset);
5372     else {
5373       if (basic_elem_type == T_ILLEGAL) {
5374         st->print("+any");
5375       } else {
5376         int elem_size = type2aelembytes(basic_elem_type);
5377         st->print("[%d]", (_offset - header_size)/elem_size);
5378       }
5379     }
5380   }
5381   st->print(" *");
5382   if (_instance_id == InstanceTop)
5383     st->print(",iid=top");
5384   else if (_instance_id != InstanceBot)
5385     st->print(",iid=%d",_instance_id);
5386 
5387   dump_inline_depth(st);
5388   dump_speculative(st);
5389 }
5390 #endif
5391 
5392 bool TypeAryPtr::empty(void) const {
5393   if (_ary->empty())       return true;
5394   return TypeOopPtr::empty();
5395 }
5396 
5397 //------------------------------add_offset-------------------------------------
5398 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5399   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5400 }
5401 
5402 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5403   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5404 }
5405 
5406 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5407   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5408 }
5409 
5410 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5411   if (_speculative == nullptr) {
5412     return this;
5413   }
5414   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5415   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);
5416 }
5417 
5418 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5419   if (!UseInlineDepthForSpeculativeTypes) {
5420     return this;
5421   }
5422   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
5423 }
5424 
5425 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5426   assert(is_known_instance(), "should be known");
5427   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5428 }
5429 
5430 //=============================================================================
5431 
5432 //------------------------------hash-------------------------------------------
5433 // Type-specific hashing function.
5434 uint TypeNarrowPtr::hash(void) const {
5435   return _ptrtype->hash() + 7;
5436 }
5437 
5438 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5439   return _ptrtype->singleton();
5440 }
5441 
5442 bool TypeNarrowPtr::empty(void) const {
5443   return _ptrtype->empty();
5444 }
5445 
5446 intptr_t TypeNarrowPtr::get_con() const {
5447   return _ptrtype->get_con();
5448 }
5449 
5450 bool TypeNarrowPtr::eq( const Type *t ) const {
5451   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5452   if (tc != nullptr) {
5453     if (_ptrtype->base() != tc->_ptrtype->base()) {
5454       return false;
5455     }
5456     return tc->_ptrtype->eq(_ptrtype);
5457   }
5458   return false;
5459 }
5460 
5461 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5462   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5463   return make_same_narrowptr(odual);
5464 }
5465 
5466 
5467 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5468   if (isa_same_narrowptr(kills)) {
5469     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5470     if (ft->empty())
5471       return Type::TOP;           // Canonical empty value
5472     if (ft->isa_ptr()) {
5473       return make_hash_same_narrowptr(ft->isa_ptr());
5474     }
5475     return ft;
5476   } else if (kills->isa_ptr()) {
5477     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5478     if (ft->empty())
5479       return Type::TOP;           // Canonical empty value
5480     return ft;
5481   } else {
5482     return Type::TOP;
5483   }
5484 }
5485 
5486 //------------------------------xmeet------------------------------------------
5487 // Compute the MEET of two types.  It returns a new Type object.
5488 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5489   // Perform a fast test for common case; meeting the same types together.
5490   if( this == t ) return this;  // Meeting same type-rep?
5491 
5492   if (t->base() == base()) {
5493     const Type* result = _ptrtype->xmeet(t->make_ptr());
5494     if (result->isa_ptr()) {
5495       return make_hash_same_narrowptr(result->is_ptr());
5496     }
5497     return result;
5498   }
5499 
5500   // Current "this->_base" is NarrowKlass or NarrowOop
5501   switch (t->base()) {          // switch on original type
5502 
5503   case Int:                     // Mixing ints & oops happens when javac
5504   case Long:                    // reuses local variables
5505   case HalfFloatTop:
5506   case HalfFloatCon:
5507   case HalfFloatBot:
5508   case FloatTop:
5509   case FloatCon:
5510   case FloatBot:
5511   case DoubleTop:
5512   case DoubleCon:
5513   case DoubleBot:
5514   case AnyPtr:
5515   case RawPtr:
5516   case OopPtr:
5517   case InstPtr:
5518   case AryPtr:
5519   case MetadataPtr:
5520   case KlassPtr:
5521   case InstKlassPtr:
5522   case AryKlassPtr:
5523   case NarrowOop:
5524   case NarrowKlass:
5525 
5526   case Bottom:                  // Ye Olde Default
5527     return Type::BOTTOM;
5528   case Top:
5529     return this;
5530 
5531   default:                      // All else is a mistake
5532     typerr(t);
5533 
5534   } // End of switch
5535 
5536   return this;
5537 }
5538 
5539 #ifndef PRODUCT
5540 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5541   _ptrtype->dump2(d, depth, st);
5542 }
5543 #endif
5544 
5545 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5546 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5547 
5548 
5549 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5550   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5551 }
5552 
5553 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5554   return make(_ptrtype->remove_speculative()->is_ptr());
5555 }
5556 
5557 const Type* TypeNarrowOop::cleanup_speculative() const {
5558   return make(_ptrtype->cleanup_speculative()->is_ptr());
5559 }
5560 
5561 #ifndef PRODUCT
5562 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5563   st->print("narrowoop: ");
5564   TypeNarrowPtr::dump2(d, depth, st);
5565 }
5566 #endif
5567 
5568 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5569 
5570 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5571   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5572 }
5573 
5574 #ifndef PRODUCT
5575 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5576   st->print("narrowklass: ");
5577   TypeNarrowPtr::dump2(d, depth, st);
5578 }
5579 #endif
5580 
5581 
5582 //------------------------------eq---------------------------------------------
5583 // Structural equality check for Type representations
5584 bool TypeMetadataPtr::eq( const Type *t ) const {
5585   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5586   ciMetadata* one = metadata();
5587   ciMetadata* two = a->metadata();
5588   if (one == nullptr || two == nullptr) {
5589     return (one == two) && TypePtr::eq(t);
5590   } else {
5591     return one->equals(two) && TypePtr::eq(t);
5592   }
5593 }
5594 
5595 //------------------------------hash-------------------------------------------
5596 // Type-specific hashing function.
5597 uint TypeMetadataPtr::hash(void) const {
5598   return
5599     (metadata() ? metadata()->hash() : 0) +
5600     TypePtr::hash();
5601 }
5602 
5603 //------------------------------singleton--------------------------------------
5604 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5605 // constants
5606 bool TypeMetadataPtr::singleton(void) const {
5607   // detune optimizer to not generate constant metadata + constant offset as a constant!
5608   // TopPTR, Null, AnyNull, Constant are all singletons
5609   return (_offset == 0) && !below_centerline(_ptr);
5610 }
5611 
5612 //------------------------------add_offset-------------------------------------
5613 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5614   return make( _ptr, _metadata, xadd_offset(offset));
5615 }
5616 
5617 //-----------------------------filter------------------------------------------
5618 // Do not allow interface-vs.-noninterface joins to collapse to top.
5619 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5620   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5621   if (ft == nullptr || ft->empty())
5622     return Type::TOP;           // Canonical empty value
5623   return ft;
5624 }
5625 
5626  //------------------------------get_con----------------------------------------
5627 intptr_t TypeMetadataPtr::get_con() const {
5628   assert( _ptr == Null || _ptr == Constant, "" );
5629   assert( _offset >= 0, "" );
5630 
5631   if (_offset != 0) {
5632     // After being ported to the compiler interface, the compiler no longer
5633     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5634     // to a handle at compile time.  This handle is embedded in the generated
5635     // code and dereferenced at the time the nmethod is made.  Until that time,
5636     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5637     // have access to the addresses!).  This does not seem to currently happen,
5638     // but this assertion here is to help prevent its occurrence.
5639     tty->print_cr("Found oop constant with non-zero offset");
5640     ShouldNotReachHere();
5641   }
5642 
5643   return (intptr_t)metadata()->constant_encoding();
5644 }
5645 
5646 //------------------------------cast_to_ptr_type-------------------------------
5647 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5648   if( ptr == _ptr ) return this;
5649   return make(ptr, metadata(), _offset);
5650 }
5651 
5652 //------------------------------meet-------------------------------------------
5653 // Compute the MEET of two types.  It returns a new Type object.
5654 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5655   // Perform a fast test for common case; meeting the same types together.
5656   if( this == t ) return this;  // Meeting same type-rep?
5657 
5658   // Current "this->_base" is OopPtr
5659   switch (t->base()) {          // switch on original type
5660 
5661   case Int:                     // Mixing ints & oops happens when javac
5662   case Long:                    // reuses local variables
5663   case HalfFloatTop:
5664   case HalfFloatCon:
5665   case HalfFloatBot:
5666   case FloatTop:
5667   case FloatCon:
5668   case FloatBot:
5669   case DoubleTop:
5670   case DoubleCon:
5671   case DoubleBot:
5672   case NarrowOop:
5673   case NarrowKlass:
5674   case Bottom:                  // Ye Olde Default
5675     return Type::BOTTOM;
5676   case Top:
5677     return this;
5678 
5679   default:                      // All else is a mistake
5680     typerr(t);
5681 
5682   case AnyPtr: {
5683     // Found an AnyPtr type vs self-OopPtr type
5684     const TypePtr *tp = t->is_ptr();
5685     int offset = meet_offset(tp->offset());
5686     PTR ptr = meet_ptr(tp->ptr());
5687     switch (tp->ptr()) {
5688     case Null:
5689       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5690       // else fall through:
5691     case TopPTR:
5692     case AnyNull: {
5693       return make(ptr, _metadata, offset);
5694     }
5695     case BotPTR:
5696     case NotNull:
5697       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5698     default: typerr(t);
5699     }
5700   }
5701 
5702   case RawPtr:
5703   case KlassPtr:
5704   case InstKlassPtr:
5705   case AryKlassPtr:
5706   case OopPtr:
5707   case InstPtr:
5708   case AryPtr:
5709     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5710 
5711   case MetadataPtr: {
5712     const TypeMetadataPtr *tp = t->is_metadataptr();
5713     int offset = meet_offset(tp->offset());
5714     PTR tptr = tp->ptr();
5715     PTR ptr = meet_ptr(tptr);
5716     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5717     if (tptr == TopPTR || _ptr == TopPTR ||
5718         metadata()->equals(tp->metadata())) {
5719       return make(ptr, md, offset);
5720     }
5721     // metadata is different
5722     if( ptr == Constant ) {  // Cannot be equal constants, so...
5723       if( tptr == Constant && _ptr != Constant)  return t;
5724       if( _ptr == Constant && tptr != Constant)  return this;
5725       ptr = NotNull;            // Fall down in lattice
5726     }
5727     return make(ptr, nullptr, offset);
5728     break;
5729   }
5730   } // End of switch
5731   return this;                  // Return the double constant
5732 }
5733 
5734 
5735 //------------------------------xdual------------------------------------------
5736 // Dual of a pure metadata pointer.
5737 const Type *TypeMetadataPtr::xdual() const {
5738   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5739 }
5740 
5741 //------------------------------dump2------------------------------------------
5742 #ifndef PRODUCT
5743 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5744   st->print("metadataptr:%s", ptr_msg[_ptr]);
5745   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5746   switch( _offset ) {
5747   case OffsetTop: st->print("+top"); break;
5748   case OffsetBot: st->print("+any"); break;
5749   case         0: break;
5750   default:        st->print("+%d",_offset); break;
5751   }
5752 }
5753 #endif
5754 
5755 
5756 //=============================================================================
5757 // Convenience common pre-built type.
5758 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5759 
5760 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5761   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5762 }
5763 
5764 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5765   return make(Constant, m, 0);
5766 }
5767 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5768   return make(Constant, m, 0);
5769 }
5770 
5771 //------------------------------make-------------------------------------------
5772 // Create a meta data constant
5773 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5774   assert(m == nullptr || !m->is_klass(), "wrong type");
5775   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5776 }
5777 
5778 
5779 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5780   const Type* elem = _ary->_elem;
5781   bool xk = klass_is_exact();
5782   if (elem->make_oopptr() != nullptr) {
5783     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5784     if (elem->is_klassptr()->klass_is_exact()) {
5785       xk = true;
5786     }
5787   }
5788   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5789 }
5790 
5791 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5792   if (klass->is_instance_klass()) {
5793     return TypeInstKlassPtr::make(klass, interface_handling);
5794   }
5795   return TypeAryKlassPtr::make(klass, interface_handling);
5796 }
5797 
5798 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5799   if (klass->is_instance_klass()) {
5800     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5801     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5802   }
5803   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5804 }
5805 
5806 
5807 //------------------------------TypeKlassPtr-----------------------------------
5808 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5809   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5810   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5811          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5812 }
5813 
5814 // Is there a single ciKlass* that can represent that type?
5815 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5816   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5817   if (_interfaces->empty()) {
5818     return _klass;
5819   }
5820   if (_klass != ciEnv::current()->Object_klass()) {
5821     if (_interfaces->eq(_klass->as_instance_klass())) {
5822       return _klass;
5823     }
5824     return nullptr;
5825   }
5826   return _interfaces->exact_klass();
5827 }
5828 
5829 //------------------------------eq---------------------------------------------
5830 // Structural equality check for Type representations
5831 bool TypeKlassPtr::eq(const Type *t) const {
5832   const TypeKlassPtr *p = t->is_klassptr();
5833   return
5834     _interfaces->eq(p->_interfaces) &&
5835     TypePtr::eq(p);
5836 }
5837 
5838 //------------------------------hash-------------------------------------------
5839 // Type-specific hashing function.
5840 uint TypeKlassPtr::hash(void) const {
5841   return TypePtr::hash() + _interfaces->hash();
5842 }
5843 
5844 //------------------------------singleton--------------------------------------
5845 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5846 // constants
5847 bool TypeKlassPtr::singleton(void) const {
5848   // detune optimizer to not generate constant klass + constant offset as a constant!
5849   // TopPTR, Null, AnyNull, Constant are all singletons
5850   return (_offset == 0) && !below_centerline(_ptr);
5851 }
5852 
5853 // Do not allow interface-vs.-noninterface joins to collapse to top.
5854 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5855   // logic here mirrors the one from TypeOopPtr::filter. See comments
5856   // there.
5857   const Type* ft = join_helper(kills, include_speculative);
5858 
5859   if (ft->empty()) {
5860     return Type::TOP;           // Canonical empty value
5861   }
5862 
5863   return ft;
5864 }
5865 
5866 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5867   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5868     return _interfaces->union_with(other->_interfaces);
5869   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5870     return other->_interfaces;
5871   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5872     return _interfaces;
5873   }
5874   return _interfaces->intersection_with(other->_interfaces);
5875 }
5876 
5877 //------------------------------get_con----------------------------------------
5878 intptr_t TypeKlassPtr::get_con() const {
5879   assert( _ptr == Null || _ptr == Constant, "" );
5880   assert( _offset >= 0, "" );
5881 
5882   if (_offset != 0) {
5883     // After being ported to the compiler interface, the compiler no longer
5884     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5885     // to a handle at compile time.  This handle is embedded in the generated
5886     // code and dereferenced at the time the nmethod is made.  Until that time,
5887     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5888     // have access to the addresses!).  This does not seem to currently happen,
5889     // but this assertion here is to help prevent its occurrence.
5890     tty->print_cr("Found oop constant with non-zero offset");
5891     ShouldNotReachHere();
5892   }
5893 
5894   ciKlass* k = exact_klass();
5895 
5896   return (intptr_t)k->constant_encoding();
5897 }
5898 
5899 //------------------------------dump2------------------------------------------
5900 // Dump Klass Type
5901 #ifndef PRODUCT
5902 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
5903   switch(_ptr) {
5904   case Constant:
5905     st->print("precise ");
5906   case NotNull:
5907     {
5908       const char *name = klass()->name()->as_utf8();
5909       if (name) {
5910         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5911       } else {
5912         ShouldNotReachHere();
5913       }
5914       _interfaces->dump(st);
5915     }
5916   case BotPTR:
5917     if (!WizardMode && !Verbose && _ptr != Constant) break;
5918   case TopPTR:
5919   case AnyNull:
5920     st->print(":%s", ptr_msg[_ptr]);
5921     if (_ptr == Constant) st->print(":exact");
5922     break;
5923   default:
5924     break;
5925   }
5926 
5927   if (_offset) {               // Dump offset, if any
5928     if (_offset == OffsetBot)      { st->print("+any"); }
5929     else if (_offset == OffsetTop) { st->print("+unknown"); }
5930     else                            { st->print("+%d", _offset); }
5931   }
5932 
5933   st->print(" *");
5934 }
5935 #endif
5936 
5937 //=============================================================================
5938 // Convenience common pre-built types.
5939 
5940 // Not-null object klass or below
5941 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5942 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5943 
5944 bool TypeInstKlassPtr::eq(const Type *t) const {
5945   const TypeKlassPtr *p = t->is_klassptr();
5946   return
5947     klass()->equals(p->klass()) &&
5948     TypeKlassPtr::eq(p);
5949 }
5950 
5951 uint TypeInstKlassPtr::hash(void) const {
5952   return klass()->hash() + TypeKlassPtr::hash();
5953 }
5954 
5955 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {
5956   TypeInstKlassPtr *r =
5957     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5958 
5959   return r;
5960 }
5961 
5962 //------------------------------add_offset-------------------------------------
5963 // Access internals of klass object
5964 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5965   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5966 }
5967 
5968 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5969   return make(_ptr, klass(), _interfaces, offset);
5970 }
5971 
5972 //------------------------------cast_to_ptr_type-------------------------------
5973 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5974   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5975   if( ptr == _ptr ) return this;
5976   return make(ptr, _klass, _interfaces, _offset);
5977 }
5978 
5979 
5980 bool TypeInstKlassPtr::must_be_exact() const {
5981   if (!_klass->is_loaded())  return false;
5982   ciInstanceKlass* ik = _klass->as_instance_klass();
5983   if (ik->is_final())  return true;  // cannot clear xk
5984   return false;
5985 }
5986 
5987 //-----------------------------cast_to_exactness-------------------------------
5988 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5989   if (klass_is_exact == (_ptr == Constant)) return this;
5990   if (must_be_exact()) return this;
5991   ciKlass* k = klass();
5992   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5993 }
5994 
5995 
5996 //-----------------------------as_instance_type--------------------------------
5997 // Corresponding type for an instance of the given class.
5998 // It will be NotNull, and exact if and only if the klass type is exact.
5999 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6000   ciKlass* k = klass();
6001   bool xk = klass_is_exact();
6002   Compile* C = Compile::current();
6003   Dependencies* deps = C->dependencies();
6004   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6005   // Element is an instance
6006   bool klass_is_exact = false;
6007   const TypeInterfaces* interfaces = _interfaces;
6008   if (k->is_loaded()) {
6009     // Try to set klass_is_exact.
6010     ciInstanceKlass* ik = k->as_instance_klass();
6011     klass_is_exact = ik->is_final();
6012     if (!klass_is_exact && klass_change
6013         && deps != nullptr && UseUniqueSubclasses) {
6014       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6015       if (sub != nullptr) {
6016         if (_interfaces->eq(sub)) {
6017           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6018           k = ik = sub;
6019           xk = sub->is_final();
6020         }
6021       }
6022     }
6023   }
6024   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
6025 }
6026 
6027 //------------------------------xmeet------------------------------------------
6028 // Compute the MEET of two types, return a new Type object.
6029 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6030   // Perform a fast test for common case; meeting the same types together.
6031   if( this == t ) return this;  // Meeting same type-rep?
6032 
6033   // Current "this->_base" is Pointer
6034   switch (t->base()) {          // switch on original type
6035 
6036   case Int:                     // Mixing ints & oops happens when javac
6037   case Long:                    // reuses local variables
6038   case HalfFloatTop:
6039   case HalfFloatCon:
6040   case HalfFloatBot:
6041   case FloatTop:
6042   case FloatCon:
6043   case FloatBot:
6044   case DoubleTop:
6045   case DoubleCon:
6046   case DoubleBot:
6047   case NarrowOop:
6048   case NarrowKlass:
6049   case Bottom:                  // Ye Olde Default
6050     return Type::BOTTOM;
6051   case Top:
6052     return this;
6053 
6054   default:                      // All else is a mistake
6055     typerr(t);
6056 
6057   case AnyPtr: {                // Meeting to AnyPtrs
6058     // Found an AnyPtr type vs self-KlassPtr type
6059     const TypePtr *tp = t->is_ptr();
6060     int offset = meet_offset(tp->offset());
6061     PTR ptr = meet_ptr(tp->ptr());
6062     switch (tp->ptr()) {
6063     case TopPTR:
6064       return this;
6065     case Null:
6066       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6067     case AnyNull:
6068       return make( ptr, klass(), _interfaces, offset );
6069     case BotPTR:
6070     case NotNull:
6071       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6072     default: typerr(t);
6073     }
6074   }
6075 
6076   case RawPtr:
6077   case MetadataPtr:
6078   case OopPtr:
6079   case AryPtr:                  // Meet with AryPtr
6080   case InstPtr:                 // Meet with InstPtr
6081     return TypePtr::BOTTOM;
6082 
6083   //
6084   //             A-top         }
6085   //           /   |   \       }  Tops
6086   //       B-top A-any C-top   }
6087   //          | /  |  \ |      }  Any-nulls
6088   //       B-any   |   C-any   }
6089   //          |    |    |
6090   //       B-con A-con C-con   } constants; not comparable across classes
6091   //          |    |    |
6092   //       B-not   |   C-not   }
6093   //          | \  |  / |      }  not-nulls
6094   //       B-bot A-not C-bot   }
6095   //           \   |   /       }  Bottoms
6096   //             A-bot         }
6097   //
6098 
6099   case InstKlassPtr: {  // Meet two KlassPtr types
6100     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6101     int  off     = meet_offset(tkls->offset());
6102     PTR  ptr     = meet_ptr(tkls->ptr());
6103     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6104 
6105     ciKlass* res_klass = nullptr;
6106     bool res_xk = false;
6107     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
6108       case UNLOADED:
6109         ShouldNotReachHere();
6110       case SUBTYPE:
6111       case NOT_SUBTYPE:
6112       case LCA:
6113       case QUICK: {
6114         assert(res_xk == (ptr == Constant), "");
6115         const Type* res = make(ptr, res_klass, interfaces, off);
6116         return res;
6117       }
6118       default:
6119         ShouldNotReachHere();
6120     }
6121   } // End of case KlassPtr
6122   case AryKlassPtr: {                // All arrays inherit from Object class
6123     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6124     int offset = meet_offset(tp->offset());
6125     PTR ptr = meet_ptr(tp->ptr());
6126     const TypeInterfaces* interfaces = meet_interfaces(tp);
6127     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6128     const TypeInterfaces* this_interfaces = _interfaces;
6129 
6130     switch (ptr) {
6131     case TopPTR:
6132     case AnyNull:                // Fall 'down' to dual of object klass
6133       // For instances when a subclass meets a superclass we fall
6134       // below the centerline when the superclass is exact. We need to
6135       // do the same here.
6136       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6137         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
6138       } else {
6139         // cannot subclass, so the meet has to fall badly below the centerline
6140         ptr = NotNull;
6141         interfaces = _interfaces->intersection_with(tp->_interfaces);
6142         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6143       }
6144     case Constant:
6145     case NotNull:
6146     case BotPTR:                // Fall down to object klass
6147       // LCA is object_klass, but if we subclass from the top we can do better
6148       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6149         // If 'this' (InstPtr) is above the centerline and it is Object class
6150         // then we can subclass in the Java class hierarchy.
6151         // For instances when a subclass meets a superclass we fall
6152         // below the centerline when the superclass is exact. We need
6153         // to do the same here.
6154         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6155           // that is, tp's array type is a subtype of my klass
6156           return TypeAryKlassPtr::make(ptr,
6157                                        tp->elem(), tp->klass(), offset);
6158         }
6159       }
6160       // The other case cannot happen, since I cannot be a subtype of an array.
6161       // The meet falls down to Object class below centerline.
6162       if( ptr == Constant )
6163          ptr = NotNull;
6164       interfaces = this_interfaces->intersection_with(tp_interfaces);
6165       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6166     default: typerr(t);
6167     }
6168   }
6169 
6170   } // End of switch
6171   return this;                  // Return the double constant
6172 }
6173 
6174 //------------------------------xdual------------------------------------------
6175 // Dual: compute field-by-field dual
6176 const Type    *TypeInstKlassPtr::xdual() const {
6177   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
6178 }
6179 
6180 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6181   static_assert(std::is_base_of<T2, T1>::value, "");
6182   if (!this_one->is_loaded() || !other->is_loaded()) {
6183     return false;
6184   }
6185   if (!this_one->is_instance_type(other)) {
6186     return false;
6187   }
6188 
6189   if (!other_exact) {
6190     return false;
6191   }
6192 
6193   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6194     return true;
6195   }
6196 
6197   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6198 }
6199 
6200 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6201   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6202 }
6203 
6204 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
6205   static_assert(std::is_base_of<T2, T1>::value, "");
6206   if (!this_one->is_loaded() || !other->is_loaded()) {
6207     return false;
6208   }
6209   if (!this_one->is_instance_type(other)) {
6210     return false;
6211   }
6212   return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces);
6213 }
6214 
6215 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6216   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
6217 }
6218 
6219 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6220   static_assert(std::is_base_of<T2, T1>::value, "");
6221   if (!this_one->is_loaded() || !other->is_loaded()) {
6222     return true;
6223   }
6224 
6225   if (this_one->is_array_type(other)) {
6226     return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass())  && other->_interfaces->contains(this_one->_interfaces);
6227   }
6228 
6229   assert(this_one->is_instance_type(other), "unsupported");
6230 
6231   if (this_exact && other_exact) {
6232     return this_one->is_java_subtype_of(other);
6233   }
6234 
6235   if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) {
6236     return false;
6237   }
6238 
6239   if (this_exact) {
6240     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6241   }
6242 
6243   return true;
6244 }
6245 
6246 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6247   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6248 }
6249 
6250 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6251   if (!UseUniqueSubclasses) {
6252     return this;
6253   }
6254   ciKlass* k = klass();
6255   Compile* C = Compile::current();
6256   Dependencies* deps = C->dependencies();
6257   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6258   const TypeInterfaces* interfaces = _interfaces;
6259   if (k->is_loaded()) {
6260     ciInstanceKlass* ik = k->as_instance_klass();
6261     bool klass_is_exact = ik->is_final();
6262     if (!klass_is_exact &&
6263         deps != nullptr) {
6264       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6265       if (sub != nullptr) {
6266         if (_interfaces->eq(sub)) {
6267           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6268           k = ik = sub;
6269           klass_is_exact = sub->is_final();
6270           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6271         }
6272       }
6273     }
6274   }
6275   return this;
6276 }
6277 
6278 
6279 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6280   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6281 }
6282 
6283 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
6284   if (k->is_obj_array_klass()) {
6285     // Element is an object array. Recursively call ourself.
6286     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6287     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6288     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6289   } else if (k->is_type_array_klass()) {
6290     // Element is an typeArray
6291     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6292     return TypeAryKlassPtr::make(ptr, etype, k, offset);
6293   } else {
6294     ShouldNotReachHere();
6295     return nullptr;
6296   }
6297 }
6298 
6299 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6300   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6301 }
6302 
6303 //------------------------------eq---------------------------------------------
6304 // Structural equality check for Type representations
6305 bool TypeAryKlassPtr::eq(const Type *t) const {
6306   const TypeAryKlassPtr *p = t->is_aryklassptr();
6307   return
6308     _elem == p->_elem &&  // Check array
6309     TypeKlassPtr::eq(p);  // Check sub-parts
6310 }
6311 
6312 //------------------------------hash-------------------------------------------
6313 // Type-specific hashing function.
6314 uint TypeAryKlassPtr::hash(void) const {
6315   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();
6316 }
6317 
6318 //----------------------compute_klass------------------------------------------
6319 // Compute the defining klass for this class
6320 ciKlass* TypeAryPtr::compute_klass() const {
6321   // Compute _klass based on element type.
6322   ciKlass* k_ary = nullptr;
6323   const TypeInstPtr *tinst;
6324   const TypeAryPtr *tary;
6325   const Type* el = elem();
6326   if (el->isa_narrowoop()) {
6327     el = el->make_ptr();
6328   }
6329 
6330   // Get element klass
6331   if ((tinst = el->isa_instptr()) != nullptr) {
6332     // Leave k_ary at null.
6333   } else if ((tary = el->isa_aryptr()) != nullptr) {
6334     // Leave k_ary at null.
6335   } else if ((el->base() == Type::Top) ||
6336              (el->base() == Type::Bottom)) {
6337     // element type of Bottom occurs from meet of basic type
6338     // and object; Top occurs when doing join on Bottom.
6339     // Leave k_ary at null.
6340   } else {
6341     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6342     // Compute array klass directly from basic type
6343     k_ary = ciTypeArrayKlass::make(el->basic_type());
6344   }
6345   return k_ary;
6346 }
6347 
6348 //------------------------------klass------------------------------------------
6349 // Return the defining klass for this class
6350 ciKlass* TypeAryPtr::klass() const {
6351   if( _klass ) return _klass;   // Return cached value, if possible
6352 
6353   // Oops, need to compute _klass and cache it
6354   ciKlass* k_ary = compute_klass();
6355 
6356   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6357     // The _klass field acts as a cache of the underlying
6358     // ciKlass for this array type.  In order to set the field,
6359     // we need to cast away const-ness.
6360     //
6361     // IMPORTANT NOTE: we *never* set the _klass field for the
6362     // type TypeAryPtr::OOPS.  This Type is shared between all
6363     // active compilations.  However, the ciKlass which represents
6364     // this Type is *not* shared between compilations, so caching
6365     // this value would result in fetching a dangling pointer.
6366     //
6367     // Recomputing the underlying ciKlass for each request is
6368     // a bit less efficient than caching, but calls to
6369     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6370     ((TypeAryPtr*)this)->_klass = k_ary;
6371   }
6372   return k_ary;
6373 }
6374 
6375 // Is there a single ciKlass* that can represent that type?
6376 ciKlass* TypeAryPtr::exact_klass_helper() const {
6377   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6378     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6379     if (k == nullptr) {
6380       return nullptr;
6381     }
6382     k = ciObjArrayKlass::make(k);
6383     return k;
6384   }
6385 
6386   return klass();
6387 }
6388 
6389 const Type* TypeAryPtr::base_element_type(int& dims) const {
6390   const Type* elem = this->elem();
6391   dims = 1;
6392   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6393     elem = elem->make_ptr()->is_aryptr()->elem();
6394     dims++;
6395   }
6396   return elem;
6397 }
6398 
6399 //------------------------------add_offset-------------------------------------
6400 // Access internals of klass object
6401 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6402   return make(_ptr, elem(), klass(), xadd_offset(offset));
6403 }
6404 
6405 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6406   return make(_ptr, elem(), klass(), offset);
6407 }
6408 
6409 //------------------------------cast_to_ptr_type-------------------------------
6410 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6411   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6412   if (ptr == _ptr) return this;
6413   return make(ptr, elem(), _klass, _offset);
6414 }
6415 
6416 bool TypeAryKlassPtr::must_be_exact() const {
6417   if (_elem == Type::BOTTOM) return false;
6418   if (_elem == Type::TOP   ) return false;
6419   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6420   if (!tk)             return true;   // a primitive type, like int
6421   return tk->must_be_exact();
6422 }
6423 
6424 
6425 //-----------------------------cast_to_exactness-------------------------------
6426 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6427   if (must_be_exact()) return this;  // cannot clear xk
6428   ciKlass* k = _klass;
6429   const Type* elem = this->elem();
6430   if (elem->isa_klassptr() && !klass_is_exact) {
6431     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6432   }
6433   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6434 }
6435 
6436 
6437 //-----------------------------as_instance_type--------------------------------
6438 // Corresponding type for an instance of the given class.
6439 // It will be NotNull, and exact if and only if the klass type is exact.
6440 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6441   ciKlass* k = klass();
6442   bool    xk = klass_is_exact();
6443   const Type* el = nullptr;
6444   if (elem()->isa_klassptr()) {
6445     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6446     k = nullptr;
6447   } else {
6448     el = elem();
6449   }
6450   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);
6451 }
6452 
6453 
6454 //------------------------------xmeet------------------------------------------
6455 // Compute the MEET of two types, return a new Type object.
6456 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6457   // Perform a fast test for common case; meeting the same types together.
6458   if( this == t ) return this;  // Meeting same type-rep?
6459 
6460   // Current "this->_base" is Pointer
6461   switch (t->base()) {          // switch on original type
6462 
6463   case Int:                     // Mixing ints & oops happens when javac
6464   case Long:                    // reuses local variables
6465   case HalfFloatTop:
6466   case HalfFloatCon:
6467   case HalfFloatBot:
6468   case FloatTop:
6469   case FloatCon:
6470   case FloatBot:
6471   case DoubleTop:
6472   case DoubleCon:
6473   case DoubleBot:
6474   case NarrowOop:
6475   case NarrowKlass:
6476   case Bottom:                  // Ye Olde Default
6477     return Type::BOTTOM;
6478   case Top:
6479     return this;
6480 
6481   default:                      // All else is a mistake
6482     typerr(t);
6483 
6484   case AnyPtr: {                // Meeting to AnyPtrs
6485     // Found an AnyPtr type vs self-KlassPtr type
6486     const TypePtr *tp = t->is_ptr();
6487     int offset = meet_offset(tp->offset());
6488     PTR ptr = meet_ptr(tp->ptr());
6489     switch (tp->ptr()) {
6490     case TopPTR:
6491       return this;
6492     case Null:
6493       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6494     case AnyNull:
6495       return make( ptr, _elem, klass(), offset );
6496     case BotPTR:
6497     case NotNull:
6498       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6499     default: typerr(t);
6500     }
6501   }
6502 
6503   case RawPtr:
6504   case MetadataPtr:
6505   case OopPtr:
6506   case AryPtr:                  // Meet with AryPtr
6507   case InstPtr:                 // Meet with InstPtr
6508     return TypePtr::BOTTOM;
6509 
6510   //
6511   //             A-top         }
6512   //           /   |   \       }  Tops
6513   //       B-top A-any C-top   }
6514   //          | /  |  \ |      }  Any-nulls
6515   //       B-any   |   C-any   }
6516   //          |    |    |
6517   //       B-con A-con C-con   } constants; not comparable across classes
6518   //          |    |    |
6519   //       B-not   |   C-not   }
6520   //          | \  |  / |      }  not-nulls
6521   //       B-bot A-not C-bot   }
6522   //           \   |   /       }  Bottoms
6523   //             A-bot         }
6524   //
6525 
6526   case AryKlassPtr: {  // Meet two KlassPtr types
6527     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6528     int off = meet_offset(tap->offset());
6529     const Type* elem = _elem->meet(tap->_elem);
6530 
6531     PTR ptr = meet_ptr(tap->ptr());
6532     ciKlass* res_klass = nullptr;
6533     bool res_xk = false;
6534     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);
6535     assert(res_xk == (ptr == Constant), "");
6536     return make(ptr, elem, res_klass, off);
6537   } // End of case KlassPtr
6538   case InstKlassPtr: {
6539     const TypeInstKlassPtr *tp = t->is_instklassptr();
6540     int offset = meet_offset(tp->offset());
6541     PTR ptr = meet_ptr(tp->ptr());
6542     const TypeInterfaces* interfaces = meet_interfaces(tp);
6543     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6544     const TypeInterfaces* this_interfaces = _interfaces;
6545 
6546     switch (ptr) {
6547     case TopPTR:
6548     case AnyNull:                // Fall 'down' to dual of object klass
6549       // For instances when a subclass meets a superclass we fall
6550       // below the centerline when the superclass is exact. We need to
6551       // do the same here.
6552       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6553           !tp->klass_is_exact()) {
6554         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6555       } else {
6556         // cannot subclass, so the meet has to fall badly below the centerline
6557         ptr = NotNull;
6558         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6559         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6560       }
6561     case Constant:
6562     case NotNull:
6563     case BotPTR:                // Fall down to object klass
6564       // LCA is object_klass, but if we subclass from the top we can do better
6565       if (above_centerline(tp->ptr())) {
6566         // If 'tp'  is above the centerline and it is Object class
6567         // then we can subclass in the Java class hierarchy.
6568         // For instances when a subclass meets a superclass we fall
6569         // below the centerline when the superclass is exact. We need
6570         // to do the same here.
6571         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6572             !tp->klass_is_exact()) {
6573           // that is, my array type is a subtype of 'tp' klass
6574           return make(ptr, _elem, _klass, offset);
6575         }
6576       }
6577       // The other case cannot happen, since t cannot be a subtype of an array.
6578       // The meet falls down to Object class below centerline.
6579       if (ptr == Constant)
6580          ptr = NotNull;
6581       interfaces = this_interfaces->intersection_with(tp_interfaces);
6582       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6583     default: typerr(t);
6584     }
6585   }
6586 
6587   } // End of switch
6588   return this;                  // Return the double constant
6589 }
6590 
6591 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6592   static_assert(std::is_base_of<T2, T1>::value, "");
6593 
6594   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6595     return true;
6596   }
6597 
6598   int dummy;
6599   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6600 
6601   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6602     return false;
6603   }
6604 
6605   if (this_one->is_instance_type(other)) {
6606     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6607            other_exact;
6608   }
6609 
6610   assert(this_one->is_array_type(other), "");
6611   const T1* other_ary = this_one->is_array_type(other);
6612   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6613   if (other_top_or_bottom) {
6614     return false;
6615   }
6616 
6617   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6618   const TypePtr* this_elem = this_one->elem()->make_ptr();
6619   if (this_elem != nullptr && other_elem != nullptr) {
6620     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6621   }
6622   if (this_elem == nullptr && other_elem == nullptr) {
6623     return this_one->klass()->is_subtype_of(other->klass());
6624   }
6625   return false;
6626 }
6627 
6628 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6629   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6630 }
6631 
6632 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6633   static_assert(std::is_base_of<T2, T1>::value, "");
6634 
6635   int dummy;
6636   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6637 
6638   if (!this_one->is_array_type(other) ||
6639       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6640     return false;
6641   }
6642   const T1* other_ary = this_one->is_array_type(other);
6643   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6644 
6645   if (other_top_or_bottom) {
6646     return false;
6647   }
6648 
6649   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6650   const TypePtr* this_elem = this_one->elem()->make_ptr();
6651   if (other_elem != nullptr && this_elem != nullptr) {
6652     return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
6653   }
6654   if (other_elem == nullptr && this_elem == nullptr) {
6655     return this_one->klass()->equals(other->klass());
6656   }
6657   return false;
6658 }
6659 
6660 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6661   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
6662 }
6663 
6664 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6665   static_assert(std::is_base_of<T2, T1>::value, "");
6666   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6667     return true;
6668   }
6669   if (!this_one->is_loaded() || !other->is_loaded()) {
6670     return true;
6671   }
6672   if (this_one->is_instance_type(other)) {
6673     return other->klass()->equals(ciEnv::current()->Object_klass()) &&
6674            this_one->_interfaces->contains(other->_interfaces);
6675   }
6676 
6677   int dummy;
6678   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6679   if (this_top_or_bottom) {
6680     return true;
6681   }
6682 
6683   assert(this_one->is_array_type(other), "");
6684 
6685   const T1* other_ary = this_one->is_array_type(other);
6686   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6687   if (other_top_or_bottom) {
6688     return true;
6689   }
6690   if (this_exact && other_exact) {
6691     return this_one->is_java_subtype_of(other);
6692   }
6693 
6694   const TypePtr* this_elem = this_one->elem()->make_ptr();
6695   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6696   if (other_elem != nullptr && this_elem != nullptr) {
6697     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6698   }
6699   if (other_elem == nullptr && this_elem == nullptr) {
6700     return this_one->klass()->is_subtype_of(other->klass());
6701   }
6702   return false;
6703 }
6704 
6705 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6706   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6707 }
6708 
6709 //------------------------------xdual------------------------------------------
6710 // Dual: compute field-by-field dual
6711 const Type    *TypeAryKlassPtr::xdual() const {
6712   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6713 }
6714 
6715 // Is there a single ciKlass* that can represent that type?
6716 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6717   if (elem()->isa_klassptr()) {
6718     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6719     if (k == nullptr) {
6720       return nullptr;
6721     }
6722     k = ciObjArrayKlass::make(k);
6723     return k;
6724   }
6725 
6726   return klass();
6727 }
6728 
6729 ciKlass* TypeAryKlassPtr::klass() const {
6730   if (_klass != nullptr) {
6731     return _klass;
6732   }
6733   ciKlass* k = nullptr;
6734   if (elem()->isa_klassptr()) {
6735     // leave null
6736   } else if ((elem()->base() == Type::Top) ||
6737              (elem()->base() == Type::Bottom)) {
6738   } else {
6739     k = ciTypeArrayKlass::make(elem()->basic_type());
6740     ((TypeAryKlassPtr*)this)->_klass = k;
6741   }
6742   return k;
6743 }
6744 
6745 //------------------------------dump2------------------------------------------
6746 // Dump Klass Type
6747 #ifndef PRODUCT
6748 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6749   switch( _ptr ) {
6750   case Constant:
6751     st->print("precise ");
6752   case NotNull:
6753     {
6754       st->print("[");
6755       _elem->dump2(d, depth, st);
6756       _interfaces->dump(st);
6757       st->print(": ");
6758     }
6759   case BotPTR:
6760     if( !WizardMode && !Verbose && _ptr != Constant ) break;
6761   case TopPTR:
6762   case AnyNull:
6763     st->print(":%s", ptr_msg[_ptr]);
6764     if( _ptr == Constant ) st->print(":exact");
6765     break;
6766   default:
6767     break;
6768   }
6769 
6770   if( _offset ) {               // Dump offset, if any
6771     if( _offset == OffsetBot )      { st->print("+any"); }
6772     else if( _offset == OffsetTop ) { st->print("+unknown"); }
6773     else                            { st->print("+%d", _offset); }
6774   }
6775 
6776   st->print(" *");
6777 }
6778 #endif
6779 
6780 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6781   const Type* elem = this->elem();
6782   dims = 1;
6783   while (elem->isa_aryklassptr()) {
6784     elem = elem->is_aryklassptr()->elem();
6785     dims++;
6786   }
6787   return elem;
6788 }
6789 
6790 //=============================================================================
6791 // Convenience common pre-built types.
6792 
6793 //------------------------------make-------------------------------------------
6794 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6795   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
6796 }
6797 
6798 //------------------------------make-------------------------------------------
6799 const TypeFunc *TypeFunc::make(ciMethod* method) {
6800   Compile* C = Compile::current();
6801   const TypeFunc* tf = C->last_tf(method); // check cache
6802   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6803   const TypeTuple *domain;
6804   if (method->is_static()) {
6805     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6806   } else {
6807     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);
6808   }
6809   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6810   tf = TypeFunc::make(domain, range);
6811   C->set_last_tf(method, tf);  // fill cache
6812   return tf;
6813 }
6814 
6815 //------------------------------meet-------------------------------------------
6816 // Compute the MEET of two types.  It returns a new Type object.
6817 const Type *TypeFunc::xmeet( const Type *t ) const {
6818   // Perform a fast test for common case; meeting the same types together.
6819   if( this == t ) return this;  // Meeting same type-rep?
6820 
6821   // Current "this->_base" is Func
6822   switch (t->base()) {          // switch on original type
6823 
6824   case Bottom:                  // Ye Olde Default
6825     return t;
6826 
6827   default:                      // All else is a mistake
6828     typerr(t);
6829 
6830   case Top:
6831     break;
6832   }
6833   return this;                  // Return the double constant
6834 }
6835 
6836 //------------------------------xdual------------------------------------------
6837 // Dual: compute field-by-field dual
6838 const Type *TypeFunc::xdual() const {
6839   return this;
6840 }
6841 
6842 //------------------------------eq---------------------------------------------
6843 // Structural equality check for Type representations
6844 bool TypeFunc::eq( const Type *t ) const {
6845   const TypeFunc *a = (const TypeFunc*)t;
6846   return _domain == a->_domain &&
6847     _range == a->_range;
6848 }
6849 
6850 //------------------------------hash-------------------------------------------
6851 // Type-specific hashing function.
6852 uint TypeFunc::hash(void) const {
6853   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6854 }
6855 
6856 //------------------------------dump2------------------------------------------
6857 // Dump Function Type
6858 #ifndef PRODUCT
6859 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6860   if( _range->cnt() <= Parms )
6861     st->print("void");
6862   else {
6863     uint i;
6864     for (i = Parms; i < _range->cnt()-1; i++) {
6865       _range->field_at(i)->dump2(d,depth,st);
6866       st->print("/");
6867     }
6868     _range->field_at(i)->dump2(d,depth,st);
6869   }
6870   st->print(" ");
6871   st->print("( ");
6872   if( !depth || d[this] ) {     // Check for recursive dump
6873     st->print("...)");
6874     return;
6875   }
6876   d.Insert((void*)this,(void*)this);    // Stop recursion
6877   if (Parms < _domain->cnt())
6878     _domain->field_at(Parms)->dump2(d,depth-1,st);
6879   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6880     st->print(", ");
6881     _domain->field_at(i)->dump2(d,depth-1,st);
6882   }
6883   st->print(" )");
6884 }
6885 #endif
6886 
6887 //------------------------------singleton--------------------------------------
6888 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6889 // constants (Ldi nodes).  Singletons are integer, float or double constants
6890 // or a single symbol.
6891 bool TypeFunc::singleton(void) const {
6892   return false;                 // Never a singleton
6893 }
6894 
6895 bool TypeFunc::empty(void) const {
6896   return false;                 // Never empty
6897 }
6898 
6899 
6900 BasicType TypeFunc::return_type() const{
6901   if (range()->cnt() == TypeFunc::Parms) {
6902     return T_VOID;
6903   }
6904   return range()->field_at(TypeFunc::Parms)->basic_type();
6905 }