1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/collectedHeap.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "logging/log.hpp" 29 #include "logging/logStream.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/padded.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/atomic.hpp" 37 #include "runtime/basicLock.inline.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lightweightSynchronizer.hpp" 45 #include "runtime/lockStack.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.hpp" 48 #include "runtime/objectMonitor.inline.hpp" 49 #include "runtime/os.inline.hpp" 50 #include "runtime/osThread.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/safepointVerifiers.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.inline.hpp" 56 #include "runtime/threads.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/trimNativeHeap.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmThread.hpp" 61 #include "utilities/align.hpp" 62 #include "utilities/dtrace.hpp" 63 #include "utilities/events.hpp" 64 #include "utilities/globalCounter.inline.hpp" 65 #include "utilities/globalDefinitions.hpp" 66 #include "utilities/fastHash.hpp" 67 #include "utilities/linkedlist.hpp" 68 #include "utilities/preserveException.hpp" 69 70 class ObjectMonitorDeflationLogging; 71 72 void MonitorList::add(ObjectMonitor* m) { 73 ObjectMonitor* head; 74 do { 75 head = Atomic::load(&_head); 76 m->set_next_om(head); 77 } while (Atomic::cmpxchg(&_head, head, m) != head); 78 79 size_t count = Atomic::add(&_count, 1u, memory_order_relaxed); 80 size_t old_max; 81 do { 82 old_max = Atomic::load(&_max); 83 if (count <= old_max) { 84 break; 85 } 86 } while (Atomic::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max); 87 } 88 89 size_t MonitorList::count() const { 90 return Atomic::load(&_count); 91 } 92 93 size_t MonitorList::max() const { 94 return Atomic::load(&_max); 95 } 96 97 class ObjectMonitorDeflationSafepointer : public StackObj { 98 JavaThread* const _current; 99 ObjectMonitorDeflationLogging* const _log; 100 101 public: 102 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 103 : _current(current), _log(log) {} 104 105 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 106 }; 107 108 // Walk the in-use list and unlink deflated ObjectMonitors. 109 // Returns the number of unlinked ObjectMonitors. 110 size_t MonitorList::unlink_deflated(size_t deflated_count, 111 GrowableArray<ObjectMonitor*>* unlinked_list, 112 ObjectMonitorDeflationSafepointer* safepointer) { 113 size_t unlinked_count = 0; 114 ObjectMonitor* prev = nullptr; 115 ObjectMonitor* m = Atomic::load_acquire(&_head); 116 117 while (m != nullptr) { 118 if (m->is_being_async_deflated()) { 119 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 120 // modify the list once per batch. The batch starts at "m". 121 size_t unlinked_batch = 0; 122 ObjectMonitor* next = m; 123 // Look for at most MonitorUnlinkBatch monitors, or the number of 124 // deflated and not unlinked monitors, whatever comes first. 125 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 126 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 127 do { 128 ObjectMonitor* next_next = next->next_om(); 129 unlinked_batch++; 130 unlinked_list->append(next); 131 next = next_next; 132 if (unlinked_batch >= unlinked_batch_limit) { 133 // Reached the max batch, so bail out of the gathering loop. 134 break; 135 } 136 if (prev == nullptr && Atomic::load(&_head) != m) { 137 // Current batch used to be at head, but it is not at head anymore. 138 // Bail out and figure out where we currently are. This avoids long 139 // walks searching for new prev during unlink under heavy list inserts. 140 break; 141 } 142 } while (next != nullptr && next->is_being_async_deflated()); 143 144 // Unlink the found batch. 145 if (prev == nullptr) { 146 // The current batch is the first batch, so there is a chance that it starts at head. 147 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 148 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 149 if (prev_head != m) { 150 // Something must have updated the head. Figure out the actual prev for this batch. 151 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 152 prev = n; 153 } 154 assert(prev != nullptr, "Should have found the prev for the current batch"); 155 prev->set_next_om(next); 156 } 157 } else { 158 // The current batch is preceded by another batch. This guarantees the current batch 159 // does not start at head. Unlink the entire current batch without updating the head. 160 assert(Atomic::load(&_head) != m, "Sanity"); 161 prev->set_next_om(next); 162 } 163 164 unlinked_count += unlinked_batch; 165 if (unlinked_count >= deflated_count) { 166 // Reached the max so bail out of the searching loop. 167 // There should be no more deflated monitors left. 168 break; 169 } 170 m = next; 171 } else { 172 prev = m; 173 m = m->next_om(); 174 } 175 176 // Must check for a safepoint/handshake and honor it. 177 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 178 } 179 180 #ifdef ASSERT 181 // Invariant: the code above should unlink all deflated monitors. 182 // The code that runs after this unlinking does not expect deflated monitors. 183 // Notably, attempting to deflate the already deflated monitor would break. 184 { 185 ObjectMonitor* m = Atomic::load_acquire(&_head); 186 while (m != nullptr) { 187 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 188 m = m->next_om(); 189 } 190 } 191 #endif 192 193 Atomic::sub(&_count, unlinked_count); 194 return unlinked_count; 195 } 196 197 MonitorList::Iterator MonitorList::iterator() const { 198 return Iterator(Atomic::load_acquire(&_head)); 199 } 200 201 ObjectMonitor* MonitorList::Iterator::next() { 202 ObjectMonitor* current = _current; 203 _current = current->next_om(); 204 return current; 205 } 206 207 // The "core" versions of monitor enter and exit reside in this file. 208 // The interpreter and compilers contain specialized transliterated 209 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 210 // fast_lock(...) for instance. If you make changes here, make sure to modify the 211 // interpreter, and both C1 and C2 fast-path inline locking code emission. 212 // 213 // ----------------------------------------------------------------------------- 214 215 #ifdef DTRACE_ENABLED 216 217 // Only bother with this argument setup if dtrace is available 218 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 219 220 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 221 char* bytes = nullptr; \ 222 int len = 0; \ 223 jlong jtid = SharedRuntime::get_java_tid(thread); \ 224 Symbol* klassname = obj->klass()->name(); \ 225 if (klassname != nullptr) { \ 226 bytes = (char*)klassname->bytes(); \ 227 len = klassname->utf8_length(); \ 228 } 229 230 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 231 { \ 232 if (DTraceMonitorProbes) { \ 233 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 234 HOTSPOT_MONITOR_WAIT(jtid, \ 235 (uintptr_t)(monitor), bytes, len, (millis)); \ 236 } \ 237 } 238 239 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 240 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 241 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 242 243 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 244 { \ 245 if (DTraceMonitorProbes) { \ 246 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 247 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 248 (uintptr_t)(monitor), bytes, len); \ 249 } \ 250 } 251 252 #else // ndef DTRACE_ENABLED 253 254 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 255 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 256 257 #endif // ndef DTRACE_ENABLED 258 259 // This exists only as a workaround of dtrace bug 6254741 260 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 261 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 262 return 0; 263 } 264 265 static constexpr size_t inflation_lock_count() { 266 return 256; 267 } 268 269 // Static storage for an array of PlatformMutex. 270 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 271 272 static inline PlatformMutex* inflation_lock(size_t index) { 273 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 274 } 275 276 void ObjectSynchronizer::initialize() { 277 for (size_t i = 0; i < inflation_lock_count(); i++) { 278 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 279 } 280 // Start the ceiling with the estimate for one thread. 281 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 282 283 // Start the timer for deflations, so it does not trigger immediately. 284 _last_async_deflation_time_ns = os::javaTimeNanos(); 285 286 if (LockingMode == LM_LIGHTWEIGHT) { 287 LightweightSynchronizer::initialize(); 288 } 289 } 290 291 MonitorList ObjectSynchronizer::_in_use_list; 292 // monitors_used_above_threshold() policy is as follows: 293 // 294 // The ratio of the current _in_use_list count to the ceiling is used 295 // to determine if we are above MonitorUsedDeflationThreshold and need 296 // to do an async monitor deflation cycle. The ceiling is increased by 297 // AvgMonitorsPerThreadEstimate when a thread is added to the system 298 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 299 // removed from the system. 300 // 301 // Note: If the _in_use_list max exceeds the ceiling, then 302 // monitors_used_above_threshold() will use the in_use_list max instead 303 // of the thread count derived ceiling because we have used more 304 // ObjectMonitors than the estimated average. 305 // 306 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 307 // no-progress async monitor deflation cycles in a row, then the ceiling 308 // is adjusted upwards by monitors_used_above_threshold(). 309 // 310 // Start the ceiling with the estimate for one thread in initialize() 311 // which is called after cmd line options are processed. 312 static size_t _in_use_list_ceiling = 0; 313 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 314 bool volatile ObjectSynchronizer::_is_final_audit = false; 315 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 316 static uintx _no_progress_cnt = 0; 317 static bool _no_progress_skip_increment = false; 318 319 // =====================> Quick functions 320 321 // The quick_* forms are special fast-path variants used to improve 322 // performance. In the simplest case, a "quick_*" implementation could 323 // simply return false, in which case the caller will perform the necessary 324 // state transitions and call the slow-path form. 325 // The fast-path is designed to handle frequently arising cases in an efficient 326 // manner and is just a degenerate "optimistic" variant of the slow-path. 327 // returns true -- to indicate the call was satisfied. 328 // returns false -- to indicate the call needs the services of the slow-path. 329 // A no-loitering ordinance is in effect for code in the quick_* family 330 // operators: safepoints or indefinite blocking (blocking that might span a 331 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 332 // entry. 333 // 334 // Consider: An interesting optimization is to have the JIT recognize the 335 // following common idiom: 336 // synchronized (someobj) { .... ; notify(); } 337 // That is, we find a notify() or notifyAll() call that immediately precedes 338 // the monitorexit operation. In that case the JIT could fuse the operations 339 // into a single notifyAndExit() runtime primitive. 340 341 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 342 assert(current->thread_state() == _thread_in_Java, "invariant"); 343 NoSafepointVerifier nsv; 344 if (obj == nullptr) return false; // slow-path for invalid obj 345 const markWord mark = obj->mark(); 346 347 if (LockingMode == LM_LIGHTWEIGHT) { 348 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 349 // Degenerate notify 350 // fast-locked by caller so by definition the implied waitset is empty. 351 return true; 352 } 353 } else if (LockingMode == LM_LEGACY) { 354 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 355 // Degenerate notify 356 // stack-locked by caller so by definition the implied waitset is empty. 357 return true; 358 } 359 } 360 361 if (mark.has_monitor()) { 362 ObjectMonitor* const mon = read_monitor(current, obj, mark); 363 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 364 // Racing with inflation/deflation go slow path 365 return false; 366 } 367 assert(mon->object() == oop(obj), "invariant"); 368 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 369 370 if (mon->first_waiter() != nullptr) { 371 // We have one or more waiters. Since this is an inflated monitor 372 // that we own, we can transfer one or more threads from the waitset 373 // to the entry_list here and now, avoiding the slow-path. 374 if (all) { 375 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 376 } else { 377 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 378 } 379 do { 380 mon->notify_internal(current); 381 } while (mon->first_waiter() != nullptr && all); 382 } 383 return true; 384 } 385 386 // other IMS exception states take the slow-path 387 return false; 388 } 389 390 static bool useHeavyMonitors() { 391 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 392 return LockingMode == LM_MONITOR; 393 #else 394 return false; 395 #endif 396 } 397 398 // The LockNode emitted directly at the synchronization site would have 399 // been too big if it were to have included support for the cases of inflated 400 // recursive enter and exit, so they go here instead. 401 // Note that we can't safely call AsyncPrintJavaStack() from within 402 // quick_enter() as our thread state remains _in_Java. 403 404 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 405 assert(current->thread_state() == _thread_in_Java, "invariant"); 406 407 if (useHeavyMonitors()) { 408 return false; // Slow path 409 } 410 411 assert(LockingMode == LM_LEGACY, "legacy mode below"); 412 413 const markWord mark = obj->mark(); 414 415 if (mark.has_monitor()) { 416 417 ObjectMonitor* const m = read_monitor(mark); 418 // An async deflation or GC can race us before we manage to make 419 // the ObjectMonitor busy by setting the owner below. If we detect 420 // that race we just bail out to the slow-path here. 421 if (m->object_peek() == nullptr) { 422 return false; 423 } 424 425 // Lock contention and Transactional Lock Elision (TLE) diagnostics 426 // and observability 427 // Case: light contention possibly amenable to TLE 428 // Case: TLE inimical operations such as nested/recursive synchronization 429 430 if (m->has_owner(current)) { 431 m->_recursions++; 432 current->inc_held_monitor_count(); 433 return true; 434 } 435 436 // This Java Monitor is inflated so obj's header will never be 437 // displaced to this thread's BasicLock. Make the displaced header 438 // non-null so this BasicLock is not seen as recursive nor as 439 // being locked. We do this unconditionally so that this thread's 440 // BasicLock cannot be mis-interpreted by any stack walkers. For 441 // performance reasons, stack walkers generally first check for 442 // stack-locking in the object's header, the second check is for 443 // recursive stack-locking in the displaced header in the BasicLock, 444 // and last are the inflated Java Monitor (ObjectMonitor) checks. 445 lock->set_displaced_header(markWord::unused_mark()); 446 447 if (!m->has_owner() && m->try_set_owner(current)) { 448 assert(m->_recursions == 0, "invariant"); 449 current->inc_held_monitor_count(); 450 return true; 451 } 452 } 453 454 // Note that we could inflate in quick_enter. 455 // This is likely a useful optimization 456 // Critically, in quick_enter() we must not: 457 // -- block indefinitely, or 458 // -- reach a safepoint 459 460 return false; // revert to slow-path 461 } 462 463 // Handle notifications when synchronizing on value based classes 464 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 465 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 466 frame last_frame = locking_thread->last_frame(); 467 bool bcp_was_adjusted = false; 468 // Don't decrement bcp if it points to the frame's first instruction. This happens when 469 // handle_sync_on_value_based_class() is called because of a synchronized method. There 470 // is no actual monitorenter instruction in the byte code in this case. 471 if (last_frame.is_interpreted_frame() && 472 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 473 // adjust bcp to point back to monitorenter so that we print the correct line numbers 474 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 475 bcp_was_adjusted = true; 476 } 477 478 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 479 ResourceMark rm; 480 stringStream ss; 481 locking_thread->print_active_stack_on(&ss); 482 char* base = (char*)strstr(ss.base(), "at"); 483 char* newline = (char*)strchr(ss.base(), '\n'); 484 if (newline != nullptr) { 485 *newline = '\0'; 486 } 487 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 488 } else { 489 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 490 ResourceMark rm; 491 Log(valuebasedclasses) vblog; 492 493 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 494 if (locking_thread->has_last_Java_frame()) { 495 LogStream info_stream(vblog.info()); 496 locking_thread->print_active_stack_on(&info_stream); 497 } else { 498 vblog.info("Cannot find the last Java frame"); 499 } 500 501 EventSyncOnValueBasedClass event; 502 if (event.should_commit()) { 503 event.set_valueBasedClass(obj->klass()); 504 event.commit(); 505 } 506 } 507 508 if (bcp_was_adjusted) { 509 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 510 } 511 } 512 513 // ----------------------------------------------------------------------------- 514 // Monitor Enter/Exit 515 516 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 517 // When called with locking_thread != Thread::current() some mechanism must synchronize 518 // the locking_thread with respect to the current thread. Currently only used when 519 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 520 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 521 522 if (LockingMode == LM_LIGHTWEIGHT) { 523 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 524 } 525 526 if (!enter_fast_impl(obj, lock, locking_thread)) { 527 // Inflated ObjectMonitor::enter_for is required 528 529 // An async deflation can race after the inflate_for() call and before 530 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 531 // if we have lost the race to async deflation and we simply try again. 532 while (true) { 533 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 534 if (monitor->enter_for(locking_thread)) { 535 return; 536 } 537 assert(monitor->is_being_async_deflated(), "must be"); 538 } 539 } 540 } 541 542 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 543 if (!enter_fast_impl(obj, lock, current)) { 544 // Inflated ObjectMonitor::enter is required 545 546 // An async deflation can race after the inflate() call and before 547 // enter() can make the ObjectMonitor busy. enter() returns false if 548 // we have lost the race to async deflation and we simply try again. 549 while (true) { 550 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 551 if (monitor->enter(current)) { 552 return; 553 } 554 } 555 } 556 } 557 558 // The interpreter and compiler assembly code tries to lock using the fast path 559 // of this algorithm. Make sure to update that code if the following function is 560 // changed. The implementation is extremely sensitive to race condition. Be careful. 561 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 562 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 563 564 if (obj->klass()->is_value_based()) { 565 handle_sync_on_value_based_class(obj, locking_thread); 566 } 567 568 locking_thread->inc_held_monitor_count(); 569 570 if (!useHeavyMonitors()) { 571 if (LockingMode == LM_LEGACY) { 572 markWord mark = obj->mark(); 573 if (mark.is_unlocked()) { 574 // Anticipate successful CAS -- the ST of the displaced mark must 575 // be visible <= the ST performed by the CAS. 576 lock->set_displaced_header(mark); 577 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 578 return true; 579 } 580 } else if (mark.has_locker() && 581 locking_thread->is_lock_owned((address) mark.locker())) { 582 assert(lock != mark.locker(), "must not re-lock the same lock"); 583 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 584 lock->set_displaced_header(markWord::from_pointer(nullptr)); 585 return true; 586 } 587 588 // The object header will never be displaced to this lock, 589 // so it does not matter what the value is, except that it 590 // must be non-zero to avoid looking like a re-entrant lock, 591 // and must not look locked either. 592 lock->set_displaced_header(markWord::unused_mark()); 593 594 // Failed to fast lock. 595 return false; 596 } 597 } else if (VerifyHeavyMonitors) { 598 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 599 } 600 601 return false; 602 } 603 604 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 605 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 606 607 if (!useHeavyMonitors()) { 608 markWord mark = object->mark(); 609 if (LockingMode == LM_LEGACY) { 610 markWord dhw = lock->displaced_header(); 611 if (dhw.value() == 0) { 612 // If the displaced header is null, then this exit matches up with 613 // a recursive enter. No real work to do here except for diagnostics. 614 #ifndef PRODUCT 615 if (mark != markWord::INFLATING()) { 616 // Only do diagnostics if we are not racing an inflation. Simply 617 // exiting a recursive enter of a Java Monitor that is being 618 // inflated is safe; see the has_monitor() comment below. 619 assert(!mark.is_unlocked(), "invariant"); 620 assert(!mark.has_locker() || 621 current->is_lock_owned((address)mark.locker()), "invariant"); 622 if (mark.has_monitor()) { 623 // The BasicLock's displaced_header is marked as a recursive 624 // enter and we have an inflated Java Monitor (ObjectMonitor). 625 // This is a special case where the Java Monitor was inflated 626 // after this thread entered the stack-lock recursively. When a 627 // Java Monitor is inflated, we cannot safely walk the Java 628 // Monitor owner's stack and update the BasicLocks because a 629 // Java Monitor can be asynchronously inflated by a thread that 630 // does not own the Java Monitor. 631 ObjectMonitor* m = read_monitor(mark); 632 assert(m->object()->mark() == mark, "invariant"); 633 assert(m->is_entered(current), "invariant"); 634 } 635 } 636 #endif 637 return; 638 } 639 640 if (mark == markWord::from_pointer(lock)) { 641 // If the object is stack-locked by the current thread, try to 642 // swing the displaced header from the BasicLock back to the mark. 643 assert(dhw.is_neutral(), "invariant"); 644 if (object->cas_set_mark(dhw, mark) == mark) { 645 return; 646 } 647 } 648 } 649 } else if (VerifyHeavyMonitors) { 650 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 651 } 652 653 // We have to take the slow-path of possible inflation and then exit. 654 // The ObjectMonitor* can't be async deflated until ownership is 655 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 656 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 657 assert(!monitor->has_anonymous_owner(), "must not be"); 658 monitor->exit(current); 659 } 660 661 // ----------------------------------------------------------------------------- 662 // JNI locks on java objects 663 // NOTE: must use heavy weight monitor to handle jni monitor enter 664 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 665 // Top native frames in the stack will not be seen if we attempt 666 // preemption, since we start walking from the last Java anchor. 667 NoPreemptMark npm(current); 668 669 if (obj->klass()->is_value_based()) { 670 handle_sync_on_value_based_class(obj, current); 671 } 672 673 // the current locking is from JNI instead of Java code 674 current->set_current_pending_monitor_is_from_java(false); 675 // An async deflation can race after the inflate() call and before 676 // enter() can make the ObjectMonitor busy. enter() returns false if 677 // we have lost the race to async deflation and we simply try again. 678 while (true) { 679 ObjectMonitor* monitor; 680 bool entered; 681 if (LockingMode == LM_LIGHTWEIGHT) { 682 entered = LightweightSynchronizer::inflate_and_enter(obj(), inflate_cause_jni_enter, current, current) != nullptr; 683 } else { 684 monitor = inflate(current, obj(), inflate_cause_jni_enter); 685 entered = monitor->enter(current); 686 } 687 688 if (entered) { 689 current->inc_held_monitor_count(1, true); 690 break; 691 } 692 } 693 current->set_current_pending_monitor_is_from_java(true); 694 } 695 696 // NOTE: must use heavy weight monitor to handle jni monitor exit 697 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 698 JavaThread* current = THREAD; 699 700 ObjectMonitor* monitor; 701 if (LockingMode == LM_LIGHTWEIGHT) { 702 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 703 } else { 704 // The ObjectMonitor* can't be async deflated until ownership is 705 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 706 monitor = inflate(current, obj, inflate_cause_jni_exit); 707 } 708 // If this thread has locked the object, exit the monitor. We 709 // intentionally do not use CHECK on check_owner because we must exit the 710 // monitor even if an exception was already pending. 711 if (monitor->check_owner(THREAD)) { 712 monitor->exit(current); 713 current->dec_held_monitor_count(1, true); 714 } 715 } 716 717 // ----------------------------------------------------------------------------- 718 // Internal VM locks on java objects 719 // standard constructor, allows locking failures 720 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 721 _thread = thread; 722 _thread->check_for_valid_safepoint_state(); 723 _obj = obj; 724 725 if (_obj() != nullptr) { 726 ObjectSynchronizer::enter(_obj, &_lock, _thread); 727 } 728 } 729 730 ObjectLocker::~ObjectLocker() { 731 if (_obj() != nullptr) { 732 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 733 } 734 } 735 736 737 // ----------------------------------------------------------------------------- 738 // Wait/Notify/NotifyAll 739 // NOTE: must use heavy weight monitor to handle wait() 740 741 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 742 JavaThread* current = THREAD; 743 if (millis < 0) { 744 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 745 } 746 747 ObjectMonitor* monitor; 748 if (LockingMode == LM_LIGHTWEIGHT) { 749 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 750 } else { 751 // The ObjectMonitor* can't be async deflated because the _waiters 752 // field is incremented before ownership is dropped and decremented 753 // after ownership is regained. 754 monitor = inflate(current, obj(), inflate_cause_wait); 755 } 756 757 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 758 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 759 760 // This dummy call is in place to get around dtrace bug 6254741. Once 761 // that's fixed we can uncomment the following line, remove the call 762 // and change this function back into a "void" func. 763 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 764 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 765 return ret_code; 766 } 767 768 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 769 if (millis < 0) { 770 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 771 } 772 773 ObjectMonitor* monitor; 774 if (LockingMode == LM_LIGHTWEIGHT) { 775 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 776 } else { 777 monitor = inflate(THREAD, obj(), inflate_cause_wait); 778 } 779 monitor->wait(millis, false, THREAD); 780 } 781 782 783 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 784 JavaThread* current = THREAD; 785 786 markWord mark = obj->mark(); 787 if (LockingMode == LM_LIGHTWEIGHT) { 788 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 789 // Not inflated so there can't be any waiters to notify. 790 return; 791 } 792 } else if (LockingMode == LM_LEGACY) { 793 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 794 // Not inflated so there can't be any waiters to notify. 795 return; 796 } 797 } 798 799 ObjectMonitor* monitor; 800 if (LockingMode == LM_LIGHTWEIGHT) { 801 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 802 } else { 803 // The ObjectMonitor* can't be async deflated until ownership is 804 // dropped by the calling thread. 805 monitor = inflate(current, obj(), inflate_cause_notify); 806 } 807 monitor->notify(CHECK); 808 } 809 810 // NOTE: see comment of notify() 811 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 812 JavaThread* current = THREAD; 813 814 markWord mark = obj->mark(); 815 if (LockingMode == LM_LIGHTWEIGHT) { 816 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 817 // Not inflated so there can't be any waiters to notify. 818 return; 819 } 820 } else if (LockingMode == LM_LEGACY) { 821 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 822 // Not inflated so there can't be any waiters to notify. 823 return; 824 } 825 } 826 827 ObjectMonitor* monitor; 828 if (LockingMode == LM_LIGHTWEIGHT) { 829 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 830 } else { 831 // The ObjectMonitor* can't be async deflated until ownership is 832 // dropped by the calling thread. 833 monitor = inflate(current, obj(), inflate_cause_notify); 834 } 835 monitor->notifyAll(CHECK); 836 } 837 838 // ----------------------------------------------------------------------------- 839 // Hash Code handling 840 841 struct SharedGlobals { 842 char _pad_prefix[OM_CACHE_LINE_SIZE]; 843 // This is a highly shared mostly-read variable. 844 // To avoid false-sharing it needs to be the sole occupant of a cache line. 845 volatile int stw_random; 846 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 847 // Hot RW variable -- Sequester to avoid false-sharing 848 volatile int hc_sequence; 849 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 850 }; 851 852 static SharedGlobals GVars; 853 854 static markWord read_stable_mark(oop obj) { 855 markWord mark = obj->mark_acquire(); 856 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 857 // New lightweight locking does not use the markWord::INFLATING() protocol. 858 return mark; // normal fast-path return 859 } 860 861 int its = 0; 862 for (;;) { 863 markWord mark = obj->mark_acquire(); 864 if (!mark.is_being_inflated()) { 865 return mark; // normal fast-path return 866 } 867 868 // The object is being inflated by some other thread. 869 // The caller of read_stable_mark() must wait for inflation to complete. 870 // Avoid live-lock. 871 872 ++its; 873 if (its > 10000 || !os::is_MP()) { 874 if (its & 1) { 875 os::naked_yield(); 876 } else { 877 // Note that the following code attenuates the livelock problem but is not 878 // a complete remedy. A more complete solution would require that the inflating 879 // thread hold the associated inflation lock. The following code simply restricts 880 // the number of spinners to at most one. We'll have N-2 threads blocked 881 // on the inflationlock, 1 thread holding the inflation lock and using 882 // a yield/park strategy, and 1 thread in the midst of inflation. 883 // A more refined approach would be to change the encoding of INFLATING 884 // to allow encapsulation of a native thread pointer. Threads waiting for 885 // inflation to complete would use CAS to push themselves onto a singly linked 886 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 887 // and calling park(). When inflation was complete the thread that accomplished inflation 888 // would detach the list and set the markword to inflated with a single CAS and 889 // then for each thread on the list, set the flag and unpark() the thread. 890 891 // Index into the lock array based on the current object address. 892 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 893 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 894 int YieldThenBlock = 0; 895 assert(ix < inflation_lock_count(), "invariant"); 896 inflation_lock(ix)->lock(); 897 while (obj->mark_acquire() == markWord::INFLATING()) { 898 // Beware: naked_yield() is advisory and has almost no effect on some platforms 899 // so we periodically call current->_ParkEvent->park(1). 900 // We use a mixed spin/yield/block mechanism. 901 if ((YieldThenBlock++) >= 16) { 902 Thread::current()->_ParkEvent->park(1); 903 } else { 904 os::naked_yield(); 905 } 906 } 907 inflation_lock(ix)->unlock(); 908 } 909 } else { 910 SpinPause(); // SMP-polite spinning 911 } 912 } 913 } 914 915 // hashCode() generation : 916 // 917 // Possibilities: 918 // * MD5Digest of {obj,stw_random} 919 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 920 // * A DES- or AES-style SBox[] mechanism 921 // * One of the Phi-based schemes, such as: 922 // 2654435761 = 2^32 * Phi (golden ratio) 923 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 924 // * A variation of Marsaglia's shift-xor RNG scheme. 925 // * (obj ^ stw_random) is appealing, but can result 926 // in undesirable regularity in the hashCode values of adjacent objects 927 // (objects allocated back-to-back, in particular). This could potentially 928 // result in hashtable collisions and reduced hashtable efficiency. 929 // There are simple ways to "diffuse" the middle address bits over the 930 // generated hashCode values: 931 932 intptr_t ObjectSynchronizer::get_next_hash(Thread* current, oop obj) { 933 intptr_t value = 0; 934 if (hashCode == 0) { 935 // This form uses global Park-Miller RNG. 936 // On MP system we'll have lots of RW access to a global, so the 937 // mechanism induces lots of coherency traffic. 938 value = os::random(); 939 } else if (hashCode == 1) { 940 // This variation has the property of being stable (idempotent) 941 // between STW operations. This can be useful in some of the 1-0 942 // synchronization schemes. 943 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 944 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 945 } else if (hashCode == 2) { 946 value = 1; // for sensitivity testing 947 } else if (hashCode == 3) { 948 value = ++GVars.hc_sequence; 949 } else if (hashCode == 4) { 950 value = cast_from_oop<intptr_t>(obj); 951 } else if (hashCode == 5) { 952 // Marsaglia's xor-shift scheme with thread-specific state 953 // This is probably the best overall implementation -- we'll 954 // likely make this the default in future releases. 955 unsigned t = current->_hashStateX; 956 t ^= (t << 11); 957 current->_hashStateX = current->_hashStateY; 958 current->_hashStateY = current->_hashStateZ; 959 current->_hashStateZ = current->_hashStateW; 960 unsigned v = current->_hashStateW; 961 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 962 current->_hashStateW = v; 963 value = v; 964 } else { 965 assert(UseCompactObjectHeaders, "Only with compact i-hash"); 966 #ifdef _LP64 967 uint64_t val = cast_from_oop<uint64_t>(obj); 968 uint32_t hash = FastHash::get_hash32((uint32_t)val, (uint32_t)(val >> 32)); 969 #else 970 uint32_t val = cast_from_oop<uint32_t>(obj); 971 uint32_t hash = FastHash::get_hash32(val, UCONST64(0xAAAAAAAA)); 972 #endif 973 value= static_cast<intptr_t>(hash); 974 } 975 976 value &= markWord::hash_mask; 977 if (hashCode != 6 && value == 0) value = 0xBAD; 978 assert(value != markWord::no_hash || hashCode == 6, "invariant"); 979 return value; 980 } 981 982 static intptr_t install_hash_code(Thread* current, oop obj) { 983 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 984 985 markWord mark = obj->mark_acquire(); 986 for (;;) { 987 if (UseCompactObjectHeaders) { 988 if (mark.is_hashed()) { 989 return LightweightSynchronizer::get_hash(mark, obj); 990 } 991 intptr_t hash = ObjectSynchronizer::get_next_hash(current, obj); // get a new hash 992 markWord new_mark; 993 if (mark.is_not_hashed_expanded()) { 994 new_mark = mark.set_hashed_expanded(); 995 int offset = mark.klass()->hash_offset_in_bytes(obj, mark); 996 obj->int_field_put(offset, (jint) hash); 997 } else { 998 new_mark = mark.set_hashed_not_expanded(); 999 } 1000 markWord old_mark = obj->cas_set_mark(new_mark, mark); 1001 if (old_mark == mark) { 1002 return hash; 1003 } 1004 mark = old_mark; 1005 } else { 1006 intptr_t hash = mark.hash(); 1007 if (hash != 0) { 1008 return hash; 1009 } 1010 1011 hash = ObjectSynchronizer::get_next_hash(current, obj); 1012 const markWord old_mark = mark; 1013 const markWord new_mark = old_mark.copy_set_hash(hash); 1014 1015 mark = obj->cas_set_mark(new_mark, old_mark); 1016 if (old_mark == mark) { 1017 return hash; 1018 } 1019 } 1020 } 1021 } 1022 1023 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1024 if (UseObjectMonitorTable) { 1025 // Since the monitor isn't in the object header, the hash can simply be 1026 // installed in the object header. 1027 return install_hash_code(current, obj); 1028 } 1029 1030 while (true) { 1031 ObjectMonitor* monitor = nullptr; 1032 markWord temp, test; 1033 intptr_t hash; 1034 markWord mark = read_stable_mark(obj); 1035 if (VerifyHeavyMonitors) { 1036 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1037 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1038 } 1039 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1040 hash = mark.hash(); 1041 if (hash != 0) { // if it has a hash, just return it 1042 return hash; 1043 } 1044 hash = get_next_hash(current, obj); // get a new hash 1045 temp = mark.copy_set_hash(hash); // merge the hash into header 1046 // try to install the hash 1047 test = obj->cas_set_mark(temp, mark); 1048 if (test == mark) { // if the hash was installed, return it 1049 return hash; 1050 } 1051 if (LockingMode == LM_LIGHTWEIGHT) { 1052 // CAS failed, retry 1053 continue; 1054 } 1055 // Failed to install the hash. It could be that another thread 1056 // installed the hash just before our attempt or inflation has 1057 // occurred or... so we fall thru to inflate the monitor for 1058 // stability and then install the hash. 1059 } else if (mark.has_monitor()) { 1060 monitor = mark.monitor(); 1061 temp = monitor->header(); 1062 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1063 hash = temp.hash(); 1064 if (hash != 0) { 1065 // It has a hash. 1066 1067 // Separate load of dmw/header above from the loads in 1068 // is_being_async_deflated(). 1069 1070 // dmw/header and _contentions may get written by different threads. 1071 // Make sure to observe them in the same order when having several observers. 1072 OrderAccess::loadload_for_IRIW(); 1073 1074 if (monitor->is_being_async_deflated()) { 1075 // But we can't safely use the hash if we detect that async 1076 // deflation has occurred. So we attempt to restore the 1077 // header/dmw to the object's header so that we only retry 1078 // once if the deflater thread happens to be slow. 1079 monitor->install_displaced_markword_in_object(obj); 1080 continue; 1081 } 1082 return hash; 1083 } 1084 // Fall thru so we only have one place that installs the hash in 1085 // the ObjectMonitor. 1086 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1087 && current->is_Java_thread() 1088 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1089 // This is a stack-lock owned by the calling thread so fetch the 1090 // displaced markWord from the BasicLock on the stack. 1091 temp = mark.displaced_mark_helper(); 1092 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1093 hash = temp.hash(); 1094 if (hash != 0) { // if it has a hash, just return it 1095 return hash; 1096 } 1097 // WARNING: 1098 // The displaced header in the BasicLock on a thread's stack 1099 // is strictly immutable. It CANNOT be changed in ANY cases. 1100 // So we have to inflate the stack-lock into an ObjectMonitor 1101 // even if the current thread owns the lock. The BasicLock on 1102 // a thread's stack can be asynchronously read by other threads 1103 // during an inflate() call so any change to that stack memory 1104 // may not propagate to other threads correctly. 1105 } 1106 1107 // Inflate the monitor to set the hash. 1108 1109 // There's no need to inflate if the mark has already got a monitor. 1110 // NOTE: an async deflation can race after we get the monitor and 1111 // before we can update the ObjectMonitor's header with the hash 1112 // value below. 1113 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1114 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1115 mark = monitor->header(); 1116 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1117 hash = mark.hash(); 1118 if (hash == 0) { // if it does not have a hash 1119 hash = get_next_hash(current, obj); // get a new hash 1120 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1121 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1122 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1123 test = markWord(v); 1124 if (test != mark) { 1125 // The attempt to update the ObjectMonitor's header/dmw field 1126 // did not work. This can happen if another thread managed to 1127 // merge in the hash just before our cmpxchg(). 1128 // If we add any new usages of the header/dmw field, this code 1129 // will need to be updated. 1130 hash = test.hash(); 1131 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1132 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1133 } 1134 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1135 // If we detect that async deflation has occurred, then we 1136 // attempt to restore the header/dmw to the object's header 1137 // so that we only retry once if the deflater thread happens 1138 // to be slow. 1139 monitor->install_displaced_markword_in_object(obj); 1140 continue; 1141 } 1142 } 1143 // We finally get the hash. 1144 return hash; 1145 } 1146 } 1147 1148 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1149 Handle h_obj) { 1150 assert(current == JavaThread::current(), "Can only be called on current thread"); 1151 oop obj = h_obj(); 1152 1153 markWord mark = read_stable_mark(obj); 1154 1155 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1156 // stack-locked case, header points into owner's stack 1157 return current->is_lock_owned((address)mark.locker()); 1158 } 1159 1160 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1161 // fast-locking case, see if lock is in current's lock stack 1162 return current->lock_stack().contains(h_obj()); 1163 } 1164 1165 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1166 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1167 if (monitor != nullptr) { 1168 return monitor->is_entered(current) != 0; 1169 } 1170 // Racing with inflation/deflation, retry 1171 mark = obj->mark_acquire(); 1172 1173 if (mark.is_fast_locked()) { 1174 // Some other thread fast_locked, current could not have held the lock 1175 return false; 1176 } 1177 } 1178 1179 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1180 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1181 // The first stage of async deflation does not affect any field 1182 // used by this comparison so the ObjectMonitor* is usable here. 1183 ObjectMonitor* monitor = read_monitor(mark); 1184 return monitor->is_entered(current) != 0; 1185 } 1186 // Unlocked case, header in place 1187 assert(mark.is_unlocked(), "sanity check"); 1188 return false; 1189 } 1190 1191 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1192 oop obj = h_obj(); 1193 markWord mark = read_stable_mark(obj); 1194 1195 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1196 // stack-locked so header points into owner's stack. 1197 // owning_thread_from_monitor_owner() may also return null here: 1198 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1199 } 1200 1201 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1202 // fast-locked so get owner from the object. 1203 // owning_thread_from_object() may also return null here: 1204 return Threads::owning_thread_from_object(t_list, h_obj()); 1205 } 1206 1207 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1208 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1209 if (monitor != nullptr) { 1210 return Threads::owning_thread_from_monitor(t_list, monitor); 1211 } 1212 // Racing with inflation/deflation, retry 1213 mark = obj->mark_acquire(); 1214 1215 if (mark.is_fast_locked()) { 1216 // Some other thread fast_locked 1217 return Threads::owning_thread_from_object(t_list, h_obj()); 1218 } 1219 } 1220 1221 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1222 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1223 // The first stage of async deflation does not affect any field 1224 // used by this comparison so the ObjectMonitor* is usable here. 1225 ObjectMonitor* monitor = read_monitor(mark); 1226 assert(monitor != nullptr, "monitor should be non-null"); 1227 // owning_thread_from_monitor() may also return null here: 1228 return Threads::owning_thread_from_monitor(t_list, monitor); 1229 } 1230 1231 // Unlocked case, header in place 1232 // Cannot have assertion since this object may have been 1233 // locked by another thread when reaching here. 1234 // assert(mark.is_unlocked(), "sanity check"); 1235 1236 return nullptr; 1237 } 1238 1239 // Visitors ... 1240 1241 // Iterate over all ObjectMonitors. 1242 template <typename Function> 1243 void ObjectSynchronizer::monitors_iterate(Function function) { 1244 MonitorList::Iterator iter = _in_use_list.iterator(); 1245 while (iter.has_next()) { 1246 ObjectMonitor* monitor = iter.next(); 1247 function(monitor); 1248 } 1249 } 1250 1251 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1252 // returns true. 1253 template <typename OwnerFilter> 1254 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1255 monitors_iterate([&](ObjectMonitor* monitor) { 1256 // This function is only called at a safepoint or when the 1257 // target thread is suspended or when the target thread is 1258 // operating on itself. The current closures in use today are 1259 // only interested in an owned ObjectMonitor and ownership 1260 // cannot be dropped under the calling contexts so the 1261 // ObjectMonitor cannot be async deflated. 1262 if (monitor->has_owner() && filter(monitor)) { 1263 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1264 1265 closure->do_monitor(monitor); 1266 } 1267 }); 1268 } 1269 1270 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1271 // ObjectMonitors where owner is set to a stack-lock address in thread. 1272 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1273 int64_t key = ObjectMonitor::owner_id_from(thread); 1274 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1275 return owned_monitors_iterate_filtered(closure, thread_filter); 1276 } 1277 1278 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1279 int64_t key = ObjectMonitor::owner_id_from(vthread); 1280 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1281 return owned_monitors_iterate_filtered(closure, thread_filter); 1282 } 1283 1284 // Iterate ObjectMonitors owned by any thread. 1285 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1286 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1287 return owned_monitors_iterate_filtered(closure, all_filter); 1288 } 1289 1290 static bool monitors_used_above_threshold(MonitorList* list) { 1291 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1292 return false; 1293 } 1294 size_t monitors_used = list->count(); 1295 if (monitors_used == 0) { // empty list is easy 1296 return false; 1297 } 1298 size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1299 // Make sure that we use a ceiling value that is not lower than 1300 // previous, not lower than the recorded max used by the system, and 1301 // not lower than the current number of monitors in use (which can 1302 // race ahead of max). The result is guaranteed > 0. 1303 size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used); 1304 1305 // Check if our monitor usage is above the threshold: 1306 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1307 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1308 // Deflate monitors if over the threshold percentage, unless no 1309 // progress on previous deflations. 1310 bool is_above_threshold = true; 1311 1312 // Check if it's time to adjust the in_use_list_ceiling up, due 1313 // to too many async deflation attempts without any progress. 1314 if (NoAsyncDeflationProgressMax != 0 && 1315 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1316 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1317 size_t delta = (size_t)(ceiling * remainder) + 1; 1318 size_t new_ceiling = (ceiling > SIZE_MAX - delta) 1319 ? SIZE_MAX // Overflow, let's clamp new_ceiling. 1320 : ceiling + delta; 1321 1322 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1323 log_info(monitorinflation)("Too many deflations without progress; " 1324 "bumping in_use_list_ceiling from %zu" 1325 " to %zu", old_ceiling, new_ceiling); 1326 _no_progress_cnt = 0; 1327 ceiling = new_ceiling; 1328 1329 // Check if our monitor usage is still above the threshold: 1330 monitor_usage = (monitors_used * 100LL) / ceiling; 1331 is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold; 1332 } 1333 log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu" 1334 ", monitor_usage=%zu, threshold=%d", 1335 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1336 return is_above_threshold; 1337 } 1338 1339 return false; 1340 } 1341 1342 size_t ObjectSynchronizer::in_use_list_count() { 1343 return _in_use_list.count(); 1344 } 1345 1346 size_t ObjectSynchronizer::in_use_list_max() { 1347 return _in_use_list.max(); 1348 } 1349 1350 size_t ObjectSynchronizer::in_use_list_ceiling() { 1351 return _in_use_list_ceiling; 1352 } 1353 1354 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1355 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1356 } 1357 1358 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1359 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1360 } 1361 1362 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1363 _in_use_list_ceiling = new_value; 1364 } 1365 1366 bool ObjectSynchronizer::is_async_deflation_needed() { 1367 if (is_async_deflation_requested()) { 1368 // Async deflation request. 1369 log_info(monitorinflation)("Async deflation needed: explicit request"); 1370 return true; 1371 } 1372 1373 jlong time_since_last = time_since_last_async_deflation_ms(); 1374 1375 if (AsyncDeflationInterval > 0 && 1376 time_since_last > AsyncDeflationInterval && 1377 monitors_used_above_threshold(&_in_use_list)) { 1378 // It's been longer than our specified deflate interval and there 1379 // are too many monitors in use. We don't deflate more frequently 1380 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1381 // in order to not swamp the MonitorDeflationThread. 1382 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1383 return true; 1384 } 1385 1386 if (GuaranteedAsyncDeflationInterval > 0 && 1387 time_since_last > GuaranteedAsyncDeflationInterval) { 1388 // It's been longer than our specified guaranteed deflate interval. 1389 // We need to clean up the used monitors even if the threshold is 1390 // not reached, to keep the memory utilization at bay when many threads 1391 // touched many monitors. 1392 log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) " 1393 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1394 GuaranteedAsyncDeflationInterval, time_since_last); 1395 1396 // If this deflation has no progress, then it should not affect the no-progress 1397 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1398 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1399 // the generic code would bump the no-progress counter, and we compensate for that 1400 // by telling it to skip the update. 1401 // 1402 // If this deflation has progress, then it should let non-progress tracking 1403 // know about this, otherwise the threshold heuristics would kick in, potentially 1404 // experience no-progress due to aggressive cleanup by this deflation, and think 1405 // it is still in no-progress stride. In this "progress" case, the generic code would 1406 // zero the counter, and we allow it to happen. 1407 _no_progress_skip_increment = true; 1408 1409 return true; 1410 } 1411 1412 return false; 1413 } 1414 1415 void ObjectSynchronizer::request_deflate_idle_monitors() { 1416 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1417 set_is_async_deflation_requested(true); 1418 ml.notify_all(); 1419 } 1420 1421 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1422 JavaThread* current = JavaThread::current(); 1423 bool ret_code = false; 1424 1425 jlong last_time = last_async_deflation_time_ns(); 1426 1427 request_deflate_idle_monitors(); 1428 1429 const int N_CHECKS = 5; 1430 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1431 if (last_async_deflation_time_ns() > last_time) { 1432 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1433 ret_code = true; 1434 break; 1435 } 1436 { 1437 // JavaThread has to honor the blocking protocol. 1438 ThreadBlockInVM tbivm(current); 1439 os::naked_short_sleep(999); // sleep for almost 1 second 1440 } 1441 } 1442 if (!ret_code) { 1443 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1444 } 1445 1446 return ret_code; 1447 } 1448 1449 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1450 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1451 } 1452 1453 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1454 const oop obj, 1455 ObjectSynchronizer::InflateCause cause) { 1456 assert(event != nullptr, "invariant"); 1457 const Klass* monitor_klass = obj->klass(); 1458 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1459 return; 1460 } 1461 event->set_monitorClass(monitor_klass); 1462 event->set_address((uintptr_t)(void*)obj); 1463 event->set_cause((u1)cause); 1464 event->commit(); 1465 } 1466 1467 // Fast path code shared by multiple functions 1468 void ObjectSynchronizer::inflate_helper(oop obj) { 1469 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1470 markWord mark = obj->mark_acquire(); 1471 if (mark.has_monitor()) { 1472 ObjectMonitor* monitor = read_monitor(mark); 1473 markWord dmw = monitor->header(); 1474 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1475 return; 1476 } 1477 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1478 } 1479 1480 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1481 assert(current == Thread::current(), "must be"); 1482 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1483 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1484 } 1485 1486 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1487 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1488 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1489 return inflate_impl(thread, obj, cause); 1490 } 1491 1492 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1493 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1494 // is suspended throughout the call by some other mechanism. 1495 // The thread might be nullptr when called from a non JavaThread. (As may still be 1496 // the case from FastHashCode). However it is only important for correctness that the 1497 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1498 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1499 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1500 EventJavaMonitorInflate event; 1501 1502 for (;;) { 1503 const markWord mark = object->mark_acquire(); 1504 1505 // The mark can be in one of the following states: 1506 // * inflated - If the ObjectMonitor owner is anonymous and the 1507 // locking_thread owns the object lock, then we 1508 // make the locking_thread the ObjectMonitor owner. 1509 // * stack-locked - Coerce it to inflated from stack-locked. 1510 // * INFLATING - Busy wait for conversion from stack-locked to 1511 // inflated. 1512 // * unlocked - Aggressively inflate the object. 1513 1514 // CASE: inflated 1515 if (mark.has_monitor()) { 1516 ObjectMonitor* inf = mark.monitor(); 1517 markWord dmw = inf->header(); 1518 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1519 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1520 assert(LockingMode == LM_LEGACY, "invariant"); 1521 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1522 inf->set_stack_locker(nullptr); 1523 inf->set_owner_from_anonymous(locking_thread); 1524 } 1525 } 1526 return inf; 1527 } 1528 1529 // CASE: inflation in progress - inflating over a stack-lock. 1530 // Some other thread is converting from stack-locked to inflated. 1531 // Only that thread can complete inflation -- other threads must wait. 1532 // The INFLATING value is transient. 1533 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1534 // We could always eliminate polling by parking the thread on some auxiliary list. 1535 if (mark == markWord::INFLATING()) { 1536 read_stable_mark(object); 1537 continue; 1538 } 1539 1540 // CASE: stack-locked 1541 // Could be stack-locked either by current or by some other thread. 1542 // 1543 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1544 // to install INFLATING into the mark word. We originally installed INFLATING, 1545 // allocated the ObjectMonitor, and then finally STed the address of the 1546 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1547 // the interval in which INFLATING appeared in the mark, thus increasing 1548 // the odds of inflation contention. If we lose the race to set INFLATING, 1549 // then we just delete the ObjectMonitor and loop around again. 1550 // 1551 LogStreamHandle(Trace, monitorinflation) lsh; 1552 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1553 ObjectMonitor* m = new ObjectMonitor(object); 1554 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1555 // We do this before the CAS in order to minimize the length of time 1556 // in which INFLATING appears in the mark. 1557 1558 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1559 if (cmp != mark) { 1560 delete m; 1561 continue; // Interference -- just retry 1562 } 1563 1564 // We've successfully installed INFLATING (0) into the mark-word. 1565 // This is the only case where 0 will appear in a mark-word. 1566 // Only the singular thread that successfully swings the mark-word 1567 // to 0 can perform (or more precisely, complete) inflation. 1568 // 1569 // Why do we CAS a 0 into the mark-word instead of just CASing the 1570 // mark-word from the stack-locked value directly to the new inflated state? 1571 // Consider what happens when a thread unlocks a stack-locked object. 1572 // It attempts to use CAS to swing the displaced header value from the 1573 // on-stack BasicLock back into the object header. Recall also that the 1574 // header value (hash code, etc) can reside in (a) the object header, or 1575 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1576 // header in an ObjectMonitor. The inflate() routine must copy the header 1577 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1578 // the while preserving the hashCode stability invariants. If the owner 1579 // decides to release the lock while the value is 0, the unlock will fail 1580 // and control will eventually pass from slow_exit() to inflate. The owner 1581 // will then spin, waiting for the 0 value to disappear. Put another way, 1582 // the 0 causes the owner to stall if the owner happens to try to 1583 // drop the lock (restoring the header from the BasicLock to the object) 1584 // while inflation is in-progress. This protocol avoids races that might 1585 // would otherwise permit hashCode values to change or "flicker" for an object. 1586 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1587 // 0 serves as a "BUSY" inflate-in-progress indicator. 1588 1589 1590 // fetch the displaced mark from the owner's stack. 1591 // The owner can't die or unwind past the lock while our INFLATING 1592 // object is in the mark. Furthermore the owner can't complete 1593 // an unlock on the object, either. 1594 markWord dmw = mark.displaced_mark_helper(); 1595 // Catch if the object's header is not neutral (not locked and 1596 // not marked is what we care about here). 1597 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1598 1599 // Setup monitor fields to proper values -- prepare the monitor 1600 m->set_header(dmw); 1601 1602 // Note that a thread can inflate an object 1603 // that it has stack-locked -- as might happen in wait() -- directly 1604 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1605 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1606 m->set_owner(locking_thread); 1607 } else { 1608 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1609 // and set the stack locker field in the monitor. 1610 m->set_stack_locker(mark.locker()); 1611 m->set_anonymous_owner(); 1612 } 1613 // TODO-FIXME: assert BasicLock->dhw != 0. 1614 1615 // Must preserve store ordering. The monitor state must 1616 // be stable at the time of publishing the monitor address. 1617 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1618 // Release semantics so that above set_object() is seen first. 1619 object->release_set_mark(markWord::encode(m)); 1620 1621 // Once ObjectMonitor is configured and the object is associated 1622 // with the ObjectMonitor, it is safe to allow async deflation: 1623 _in_use_list.add(m); 1624 1625 if (log_is_enabled(Trace, monitorinflation)) { 1626 ResourceMark rm; 1627 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1628 INTPTR_FORMAT ", type='%s'", p2i(object), 1629 object->mark().value(), object->klass()->external_name()); 1630 } 1631 if (event.should_commit()) { 1632 post_monitor_inflate_event(&event, object, cause); 1633 } 1634 return m; 1635 } 1636 1637 // CASE: unlocked 1638 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1639 // If we know we're inflating for entry it's better to inflate by swinging a 1640 // pre-locked ObjectMonitor pointer into the object header. A successful 1641 // CAS inflates the object *and* confers ownership to the inflating thread. 1642 // In the current implementation we use a 2-step mechanism where we CAS() 1643 // to inflate and then CAS() again to try to swing _owner from null to current. 1644 // An inflateTry() method that we could call from enter() would be useful. 1645 1646 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1647 ObjectMonitor* m = new ObjectMonitor(object); 1648 // prepare m for installation - set monitor to initial state 1649 m->set_header(mark); 1650 1651 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1652 delete m; 1653 m = nullptr; 1654 continue; 1655 // interference - the markword changed - just retry. 1656 // The state-transitions are one-way, so there's no chance of 1657 // live-lock -- "Inflated" is an absorbing state. 1658 } 1659 1660 // Once the ObjectMonitor is configured and object is associated 1661 // with the ObjectMonitor, it is safe to allow async deflation: 1662 _in_use_list.add(m); 1663 1664 if (log_is_enabled(Trace, monitorinflation)) { 1665 ResourceMark rm; 1666 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1667 INTPTR_FORMAT ", type='%s'", p2i(object), 1668 object->mark().value(), object->klass()->external_name()); 1669 } 1670 if (event.should_commit()) { 1671 post_monitor_inflate_event(&event, object, cause); 1672 } 1673 return m; 1674 } 1675 } 1676 1677 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1678 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1679 // 1680 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1681 MonitorList::Iterator iter = _in_use_list.iterator(); 1682 size_t deflated_count = 0; 1683 Thread* current = Thread::current(); 1684 1685 while (iter.has_next()) { 1686 if (deflated_count >= (size_t)MonitorDeflationMax) { 1687 break; 1688 } 1689 ObjectMonitor* mid = iter.next(); 1690 if (mid->deflate_monitor(current)) { 1691 deflated_count++; 1692 } 1693 1694 // Must check for a safepoint/handshake and honor it. 1695 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1696 } 1697 1698 return deflated_count; 1699 } 1700 1701 class HandshakeForDeflation : public HandshakeClosure { 1702 public: 1703 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1704 1705 void do_thread(Thread* thread) { 1706 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1707 INTPTR_FORMAT, p2i(thread)); 1708 if (thread->is_Java_thread()) { 1709 // Clear OM cache 1710 JavaThread* jt = JavaThread::cast(thread); 1711 jt->om_clear_monitor_cache(); 1712 } 1713 } 1714 }; 1715 1716 class VM_RendezvousGCThreads : public VM_Operation { 1717 public: 1718 bool evaluate_at_safepoint() const override { return false; } 1719 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1720 void doit() override { 1721 Universe::heap()->safepoint_synchronize_begin(); 1722 Universe::heap()->safepoint_synchronize_end(); 1723 }; 1724 }; 1725 1726 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1727 ObjectMonitorDeflationSafepointer* safepointer) { 1728 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1729 size_t deleted_count = 0; 1730 for (ObjectMonitor* monitor: *delete_list) { 1731 delete monitor; 1732 deleted_count++; 1733 // A JavaThread must check for a safepoint/handshake and honor it. 1734 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1735 } 1736 return deleted_count; 1737 } 1738 1739 class ObjectMonitorDeflationLogging: public StackObj { 1740 LogStreamHandle(Debug, monitorinflation) _debug; 1741 LogStreamHandle(Info, monitorinflation) _info; 1742 LogStream* _stream; 1743 elapsedTimer _timer; 1744 1745 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1746 size_t count() const { return ObjectSynchronizer::in_use_list_count(); } 1747 size_t max() const { return ObjectSynchronizer::in_use_list_max(); } 1748 1749 public: 1750 ObjectMonitorDeflationLogging() 1751 : _debug(), _info(), _stream(nullptr) { 1752 if (_debug.is_enabled()) { 1753 _stream = &_debug; 1754 } else if (_info.is_enabled()) { 1755 _stream = &_info; 1756 } 1757 } 1758 1759 void begin() { 1760 if (_stream != nullptr) { 1761 _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1762 ceiling(), count(), max()); 1763 _timer.start(); 1764 } 1765 } 1766 1767 void before_handshake(size_t unlinked_count) { 1768 if (_stream != nullptr) { 1769 _timer.stop(); 1770 _stream->print_cr("before handshaking: unlinked_count=%zu" 1771 ", in_use_list stats: ceiling=%zu, count=" 1772 "%zu, max=%zu", 1773 unlinked_count, ceiling(), count(), max()); 1774 } 1775 } 1776 1777 void after_handshake() { 1778 if (_stream != nullptr) { 1779 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1780 "%zu, count=%zu, max=%zu", 1781 ceiling(), count(), max()); 1782 _timer.start(); 1783 } 1784 } 1785 1786 void end(size_t deflated_count, size_t unlinked_count) { 1787 if (_stream != nullptr) { 1788 _timer.stop(); 1789 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1790 _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs", 1791 deflated_count, unlinked_count, _timer.seconds()); 1792 } 1793 _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1794 ceiling(), count(), max()); 1795 } 1796 } 1797 1798 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1799 if (_stream != nullptr) { 1800 _timer.stop(); 1801 _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling=" 1802 "%zu, count=%zu, max=%zu", 1803 op_name, cnt_name, cnt, ceiling(), count(), max()); 1804 } 1805 } 1806 1807 void after_block_for_safepoint(const char* op_name) { 1808 if (_stream != nullptr) { 1809 _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu" 1810 ", count=%zu, max=%zu", op_name, 1811 ceiling(), count(), max()); 1812 _timer.start(); 1813 } 1814 } 1815 }; 1816 1817 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1818 if (!SafepointMechanism::should_process(_current)) { 1819 return; 1820 } 1821 1822 // A safepoint/handshake has started. 1823 _log->before_block_for_safepoint(op_name, count_name, counter); 1824 1825 { 1826 // Honor block request. 1827 ThreadBlockInVM tbivm(_current); 1828 } 1829 1830 _log->after_block_for_safepoint(op_name); 1831 } 1832 1833 // This function is called by the MonitorDeflationThread to deflate 1834 // ObjectMonitors. 1835 size_t ObjectSynchronizer::deflate_idle_monitors() { 1836 JavaThread* current = JavaThread::current(); 1837 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1838 1839 // The async deflation request has been processed. 1840 _last_async_deflation_time_ns = os::javaTimeNanos(); 1841 set_is_async_deflation_requested(false); 1842 1843 ObjectMonitorDeflationLogging log; 1844 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1845 1846 log.begin(); 1847 1848 // Deflate some idle ObjectMonitors. 1849 size_t deflated_count = deflate_monitor_list(&safepointer); 1850 1851 // Unlink the deflated ObjectMonitors from the in-use list. 1852 size_t unlinked_count = 0; 1853 size_t deleted_count = 0; 1854 if (deflated_count > 0) { 1855 ResourceMark rm(current); 1856 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1857 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1858 1859 #ifdef ASSERT 1860 if (UseObjectMonitorTable) { 1861 for (ObjectMonitor* monitor : delete_list) { 1862 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1863 } 1864 } 1865 #endif 1866 1867 log.before_handshake(unlinked_count); 1868 1869 // A JavaThread needs to handshake in order to safely free the 1870 // ObjectMonitors that were deflated in this cycle. 1871 HandshakeForDeflation hfd_hc; 1872 Handshake::execute(&hfd_hc); 1873 // Also, we sync and desync GC threads around the handshake, so that they can 1874 // safely read the mark-word and look-through to the object-monitor, without 1875 // being afraid that the object-monitor is going away. 1876 VM_RendezvousGCThreads sync_gc; 1877 VMThread::execute(&sync_gc); 1878 1879 log.after_handshake(); 1880 1881 // After the handshake, safely free the ObjectMonitors that were 1882 // deflated and unlinked in this cycle. 1883 1884 // Delete the unlinked ObjectMonitors. 1885 deleted_count = delete_monitors(&delete_list, &safepointer); 1886 assert(unlinked_count == deleted_count, "must be"); 1887 } 1888 1889 log.end(deflated_count, unlinked_count); 1890 1891 GVars.stw_random = os::random(); 1892 1893 if (deflated_count != 0) { 1894 _no_progress_cnt = 0; 1895 } else if (_no_progress_skip_increment) { 1896 _no_progress_skip_increment = false; 1897 } else { 1898 _no_progress_cnt++; 1899 } 1900 1901 return deflated_count; 1902 } 1903 1904 // Monitor cleanup on JavaThread::exit 1905 1906 // Iterate through monitor cache and attempt to release thread's monitors 1907 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1908 private: 1909 JavaThread* _thread; 1910 1911 public: 1912 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1913 void do_monitor(ObjectMonitor* mid) { 1914 intx rec = mid->complete_exit(_thread); 1915 _thread->dec_held_monitor_count(rec + 1); 1916 } 1917 }; 1918 1919 // Release all inflated monitors owned by current thread. Lightweight monitors are 1920 // ignored. This is meant to be called during JNI thread detach which assumes 1921 // all remaining monitors are heavyweight. All exceptions are swallowed. 1922 // Scanning the extant monitor list can be time consuming. 1923 // A simple optimization is to add a per-thread flag that indicates a thread 1924 // called jni_monitorenter() during its lifetime. 1925 // 1926 // Instead of NoSafepointVerifier it might be cheaper to 1927 // use an idiom of the form: 1928 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1929 // <code that must not run at safepoint> 1930 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1931 // Since the tests are extremely cheap we could leave them enabled 1932 // for normal product builds. 1933 1934 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1935 assert(current == JavaThread::current(), "must be current Java thread"); 1936 NoSafepointVerifier nsv; 1937 ReleaseJavaMonitorsClosure rjmc(current); 1938 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1939 assert(!current->has_pending_exception(), "Should not be possible"); 1940 current->clear_pending_exception(); 1941 assert(current->held_monitor_count() == 0, "Should not be possible"); 1942 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1943 current->clear_jni_monitor_count(); 1944 } 1945 1946 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1947 switch (cause) { 1948 case inflate_cause_vm_internal: return "VM Internal"; 1949 case inflate_cause_monitor_enter: return "Monitor Enter"; 1950 case inflate_cause_wait: return "Monitor Wait"; 1951 case inflate_cause_notify: return "Monitor Notify"; 1952 case inflate_cause_hash_code: return "Monitor Hash Code"; 1953 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1954 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1955 default: 1956 ShouldNotReachHere(); 1957 } 1958 return "Unknown"; 1959 } 1960 1961 //------------------------------------------------------------------------------ 1962 // Debugging code 1963 1964 u_char* ObjectSynchronizer::get_gvars_addr() { 1965 return (u_char*)&GVars; 1966 } 1967 1968 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1969 return (u_char*)&GVars.hc_sequence; 1970 } 1971 1972 size_t ObjectSynchronizer::get_gvars_size() { 1973 return sizeof(SharedGlobals); 1974 } 1975 1976 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1977 return (u_char*)&GVars.stw_random; 1978 } 1979 1980 // Do the final audit and print of ObjectMonitor stats; must be done 1981 // by the VMThread at VM exit time. 1982 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1983 assert(Thread::current()->is_VM_thread(), "sanity check"); 1984 1985 if (is_final_audit()) { // Only do the audit once. 1986 return; 1987 } 1988 set_is_final_audit(); 1989 log_info(monitorinflation)("Starting the final audit."); 1990 1991 if (log_is_enabled(Info, monitorinflation)) { 1992 LogStreamHandle(Info, monitorinflation) ls; 1993 audit_and_print_stats(&ls, true /* on_exit */); 1994 } 1995 } 1996 1997 // This function can be called by the MonitorDeflationThread or it can be called when 1998 // we are trying to exit the VM. The list walker functions can run in parallel with 1999 // the other list operations. 2000 // Calls to this function can be added in various places as a debugging 2001 // aid. 2002 // 2003 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 2004 int error_cnt = 0; 2005 2006 ls->print_cr("Checking in_use_list:"); 2007 chk_in_use_list(ls, &error_cnt); 2008 2009 if (error_cnt == 0) { 2010 ls->print_cr("No errors found in in_use_list checks."); 2011 } else { 2012 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 2013 } 2014 2015 // When exiting, only log the interesting entries at the Info level. 2016 // When called at intervals by the MonitorDeflationThread, log output 2017 // at the Trace level since there can be a lot of it. 2018 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 2019 LogStreamHandle(Trace, monitorinflation) ls_tr; 2020 log_in_use_monitor_details(&ls_tr, true /* log_all */); 2021 } else if (on_exit) { 2022 log_in_use_monitor_details(ls, false /* log_all */); 2023 } 2024 2025 ls->flush(); 2026 2027 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 2028 } 2029 2030 // Check the in_use_list; log the results of the checks. 2031 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2032 size_t l_in_use_count = _in_use_list.count(); 2033 size_t l_in_use_max = _in_use_list.max(); 2034 out->print_cr("count=%zu, max=%zu", l_in_use_count, 2035 l_in_use_max); 2036 2037 size_t ck_in_use_count = 0; 2038 MonitorList::Iterator iter = _in_use_list.iterator(); 2039 while (iter.has_next()) { 2040 ObjectMonitor* mid = iter.next(); 2041 chk_in_use_entry(mid, out, error_cnt_p); 2042 ck_in_use_count++; 2043 } 2044 2045 if (l_in_use_count == ck_in_use_count) { 2046 out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu", 2047 l_in_use_count, ck_in_use_count); 2048 } else { 2049 out->print_cr("WARNING: in_use_count=%zu is not equal to " 2050 "ck_in_use_count=%zu", l_in_use_count, 2051 ck_in_use_count); 2052 } 2053 2054 size_t ck_in_use_max = _in_use_list.max(); 2055 if (l_in_use_max == ck_in_use_max) { 2056 out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu", 2057 l_in_use_max, ck_in_use_max); 2058 } else { 2059 out->print_cr("WARNING: in_use_max=%zu is not equal to " 2060 "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max); 2061 } 2062 } 2063 2064 // Check an in-use monitor entry; log any errors. 2065 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2066 int* error_cnt_p) { 2067 if (n->owner_is_DEFLATER_MARKER()) { 2068 // This could happen when monitor deflation blocks for a safepoint. 2069 return; 2070 } 2071 2072 2073 if (n->metadata() == 0) { 2074 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2075 "have non-null _metadata (header/hash) field.", p2i(n)); 2076 *error_cnt_p = *error_cnt_p + 1; 2077 } 2078 2079 const oop obj = n->object_peek(); 2080 if (obj == nullptr) { 2081 return; 2082 } 2083 2084 const markWord mark = obj->mark(); 2085 if (!mark.has_monitor()) { 2086 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2087 "object does not think it has a monitor: obj=" 2088 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2089 p2i(obj), mark.value()); 2090 *error_cnt_p = *error_cnt_p + 1; 2091 return; 2092 } 2093 2094 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2095 if (n != obj_mon) { 2096 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2097 "object does not refer to the same monitor: obj=" 2098 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2099 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2100 *error_cnt_p = *error_cnt_p + 1; 2101 } 2102 } 2103 2104 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2105 // flags indicate why the entry is in-use, 'object' and 'object type' 2106 // indicate the associated object and its type. 2107 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2108 if (_in_use_list.count() > 0) { 2109 stringStream ss; 2110 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2111 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2112 out->print_cr("%18s %s %18s %18s", 2113 "monitor", "BHL", "object", "object type"); 2114 out->print_cr("================== === ================== =================="); 2115 2116 auto is_interesting = [&](ObjectMonitor* monitor) { 2117 return log_all || monitor->has_owner() || monitor->is_busy(); 2118 }; 2119 2120 monitors_iterate([&](ObjectMonitor* monitor) { 2121 if (is_interesting(monitor)) { 2122 const oop obj = monitor->object_peek(); 2123 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2124 ResourceMark rm; 2125 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2126 monitor->is_busy(), hash != 0, monitor->has_owner(), 2127 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2128 if (monitor->is_busy()) { 2129 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2130 ss.reset(); 2131 } 2132 out->cr(); 2133 } 2134 }); 2135 } 2136 2137 out->flush(); 2138 }