1 /*
   2  * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/jvmtiThreadState.hpp"
  55 #include "prims/unsafe.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/objectMonitor.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 
  63 //---------------------------make_vm_intrinsic----------------------------
  64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  65   vmIntrinsicID id = m->intrinsic_id();
  66   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  67 
  68   if (!m->is_loaded()) {
  69     // Do not attempt to inline unloaded methods.
  70     return nullptr;
  71   }
  72 
  73   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  74   bool is_available = false;
  75 
  76   {
  77     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  78     // the compiler must transition to '_thread_in_vm' state because both
  79     // methods access VM-internal data.
  80     VM_ENTRY_MARK;
  81     methodHandle mh(THREAD, m->get_Method());
  82     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  83     if (is_available && is_virtual) {
  84       is_available = vmIntrinsics::does_virtual_dispatch(id);
  85     }
  86   }
  87 
  88   if (is_available) {
  89     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  90     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  91     return new LibraryIntrinsic(m, is_virtual,
  92                                 vmIntrinsics::predicates_needed(id),
  93                                 vmIntrinsics::does_virtual_dispatch(id),
  94                                 id);
  95   } else {
  96     return nullptr;
  97   }
  98 }
  99 
 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 101   LibraryCallKit kit(jvms, this);
 102   Compile* C = kit.C;
 103   int nodes = C->unique();
 104 #ifndef PRODUCT
 105   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 106     char buf[1000];
 107     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 108     tty->print_cr("Intrinsic %s", str);
 109   }
 110 #endif
 111   ciMethod* callee = kit.callee();
 112   const int bci    = kit.bci();
 113 #ifdef ASSERT
 114   Node* ctrl = kit.control();
 115 #endif
 116   // Try to inline the intrinsic.
 117   if (callee->check_intrinsic_candidate() &&
 118       kit.try_to_inline(_last_predicate)) {
 119     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 120                                           : "(intrinsic)";
 121     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 122     if (C->print_intrinsics() || C->print_inlining()) {
 123       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 124     }
 125     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 126     if (C->log()) {
 127       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 128                      vmIntrinsics::name_at(intrinsic_id()),
 129                      (is_virtual() ? " virtual='1'" : ""),
 130                      C->unique() - nodes);
 131     }
 132     // Push the result from the inlined method onto the stack.
 133     kit.push_result();
 134     C->print_inlining_update(this);
 135     return kit.transfer_exceptions_into_jvms();
 136   }
 137 
 138   // The intrinsic bailed out
 139   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 140   if (jvms->has_method()) {
 141     // Not a root compile.
 142     const char* msg;
 143     if (callee->intrinsic_candidate()) {
 144       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 145     } else {
 146       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 147                          : "failed to inline (intrinsic), method not annotated";
 148     }
 149     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 150     if (C->print_intrinsics() || C->print_inlining()) {
 151       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 152     }
 153   } else {
 154     // Root compile
 155     ResourceMark rm;
 156     stringStream msg_stream;
 157     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 158                      vmIntrinsics::name_at(intrinsic_id()),
 159                      is_virtual() ? " (virtual)" : "", bci);
 160     const char *msg = msg_stream.freeze();
 161     log_debug(jit, inlining)("%s", msg);
 162     if (C->print_intrinsics() || C->print_inlining()) {
 163       tty->print("%s", msg);
 164     }
 165   }
 166   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 167   C->print_inlining_update(this);
 168 
 169   return nullptr;
 170 }
 171 
 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 173   LibraryCallKit kit(jvms, this);
 174   Compile* C = kit.C;
 175   int nodes = C->unique();
 176   _last_predicate = predicate;
 177 #ifndef PRODUCT
 178   assert(is_predicated() && predicate < predicates_count(), "sanity");
 179   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 180     char buf[1000];
 181     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 182     tty->print_cr("Predicate for intrinsic %s", str);
 183   }
 184 #endif
 185   ciMethod* callee = kit.callee();
 186   const int bci    = kit.bci();
 187 
 188   Node* slow_ctl = kit.try_to_predicate(predicate);
 189   if (!kit.failing()) {
 190     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 191                                           : "(intrinsic, predicate)";
 192     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 193     if (C->print_intrinsics() || C->print_inlining()) {
 194       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 195     }
 196     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 197     if (C->log()) {
 198       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 199                      vmIntrinsics::name_at(intrinsic_id()),
 200                      (is_virtual() ? " virtual='1'" : ""),
 201                      C->unique() - nodes);
 202     }
 203     return slow_ctl; // Could be null if the check folds.
 204   }
 205 
 206   // The intrinsic bailed out
 207   if (jvms->has_method()) {
 208     // Not a root compile.
 209     const char* msg = "failed to generate predicate for intrinsic";
 210     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 211     if (C->print_intrinsics() || C->print_inlining()) {
 212       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 213     }
 214   } else {
 215     // Root compile
 216     ResourceMark rm;
 217     stringStream msg_stream;
 218     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 219                      vmIntrinsics::name_at(intrinsic_id()),
 220                      is_virtual() ? " (virtual)" : "", bci);
 221     const char *msg = msg_stream.freeze();
 222     log_debug(jit, inlining)("%s", msg);
 223     if (C->print_intrinsics() || C->print_inlining()) {
 224       C->print_inlining_stream()->print("%s", msg);
 225     }
 226   }
 227   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 228   return nullptr;
 229 }
 230 
 231 bool LibraryCallKit::try_to_inline(int predicate) {
 232   // Handle symbolic names for otherwise undistinguished boolean switches:
 233   const bool is_store       = true;
 234   const bool is_compress    = true;
 235   const bool is_static      = true;
 236   const bool is_volatile    = true;
 237 
 238   if (!jvms()->has_method()) {
 239     // Root JVMState has a null method.
 240     assert(map()->memory()->Opcode() == Op_Parm, "");
 241     // Insert the memory aliasing node
 242     set_all_memory(reset_memory());
 243   }
 244   assert(merged_memory(), "");
 245 
 246   switch (intrinsic_id()) {
 247   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 248   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 249   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 250 
 251   case vmIntrinsics::_ceil:
 252   case vmIntrinsics::_floor:
 253   case vmIntrinsics::_rint:
 254   case vmIntrinsics::_dsin:
 255   case vmIntrinsics::_dcos:
 256   case vmIntrinsics::_dtan:
 257   case vmIntrinsics::_dabs:
 258   case vmIntrinsics::_fabs:
 259   case vmIntrinsics::_iabs:
 260   case vmIntrinsics::_labs:
 261   case vmIntrinsics::_datan2:
 262   case vmIntrinsics::_dsqrt:
 263   case vmIntrinsics::_dsqrt_strict:
 264   case vmIntrinsics::_dexp:
 265   case vmIntrinsics::_dlog:
 266   case vmIntrinsics::_dlog10:
 267   case vmIntrinsics::_dpow:
 268   case vmIntrinsics::_dcopySign:
 269   case vmIntrinsics::_fcopySign:
 270   case vmIntrinsics::_dsignum:
 271   case vmIntrinsics::_roundF:
 272   case vmIntrinsics::_roundD:
 273   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 274 
 275   case vmIntrinsics::_notify:
 276   case vmIntrinsics::_notifyAll:
 277     return inline_notify(intrinsic_id());
 278 
 279   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 280   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 281   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 282   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 283   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 284   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 285   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 286   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 287   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 288   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 289   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 290   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 291   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 292   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 293 
 294   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 295 
 296   case vmIntrinsics::_arraySort:                return inline_array_sort();
 297   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 298 
 299   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 300   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 301   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 302   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 303 
 304   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 305   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 306   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 307   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 308   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 309   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 310   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 311   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 312 
 313   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 314   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 315 
 316   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 317 
 318   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 319   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 320   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 321   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 322 
 323   case vmIntrinsics::_compressStringC:
 324   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 325   case vmIntrinsics::_inflateStringC:
 326   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 327 
 328   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 337 
 338   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 339   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 340   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 341   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 342   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 343   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 344   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 345   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 346   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 347 
 348   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 359   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 360   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 361   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 362   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 363   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 364   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 365   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 366   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 367 
 368   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 369   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 370   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 371   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 372 
 373   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 374   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 375   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 376   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 377 
 378   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 379   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 380   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 381   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 382   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 383   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 384   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 385   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 386   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 387 
 388   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 389   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 390   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 391   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 392   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 393   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 394   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 395   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 396   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 397 
 398   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 407 
 408   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 409   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 410   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 411   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 412   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 413   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 414   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 415   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 416   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 417 
 418   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 419   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 420   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 421   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 422   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 423 
 424   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 425   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 426   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 427   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 428   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 429   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 430   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 431   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 432   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 436   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 437   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 438   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 439   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 440   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 441   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 442   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 443   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 444 
 445   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 446   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 447   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 448   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 449   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 450   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 451   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 452   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 453   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 454   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 455   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 456   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 457   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 458   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 459   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 460 
 461   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 462   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 463   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 464   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 465 
 466   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 467   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 468   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 469   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 470   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 471 
 472   case vmIntrinsics::_loadFence:
 473   case vmIntrinsics::_storeFence:
 474   case vmIntrinsics::_storeStoreFence:
 475   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 476 
 477   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 478 
 479   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 480   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 481   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 482 
 483   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 484   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 485 
 486 #if INCLUDE_JVMTI
 487   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 488                                                                                          "notifyJvmtiStart", true, false);
 489   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 490                                                                                          "notifyJvmtiEnd", false, true);
 491   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 492                                                                                          "notifyJvmtiMount", false, false);
 493   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 494                                                                                          "notifyJvmtiUnmount", false, false);
 495   case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide();
 496 #endif
 497 
 498 #ifdef JFR_HAVE_INTRINSICS
 499   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 500   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 501   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 502 #endif
 503   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 504   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 505   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 506   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 507   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 508   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 509   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 510   case vmIntrinsics::_getLength:                return inline_native_getLength();
 511   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 512   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 513   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 514   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 515   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 516   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 517   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 518 
 519   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 520   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 521 
 522   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 523 
 524   case vmIntrinsics::_isInstance:
 525   case vmIntrinsics::_getModifiers:
 526   case vmIntrinsics::_isInterface:
 527   case vmIntrinsics::_isArray:
 528   case vmIntrinsics::_isPrimitive:
 529   case vmIntrinsics::_isHidden:
 530   case vmIntrinsics::_getSuperclass:
 531   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 532 
 533   case vmIntrinsics::_floatToRawIntBits:
 534   case vmIntrinsics::_floatToIntBits:
 535   case vmIntrinsics::_intBitsToFloat:
 536   case vmIntrinsics::_doubleToRawLongBits:
 537   case vmIntrinsics::_doubleToLongBits:
 538   case vmIntrinsics::_longBitsToDouble:
 539   case vmIntrinsics::_floatToFloat16:
 540   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 541 
 542   case vmIntrinsics::_floatIsFinite:
 543   case vmIntrinsics::_floatIsInfinite:
 544   case vmIntrinsics::_doubleIsFinite:
 545   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 546 
 547   case vmIntrinsics::_numberOfLeadingZeros_i:
 548   case vmIntrinsics::_numberOfLeadingZeros_l:
 549   case vmIntrinsics::_numberOfTrailingZeros_i:
 550   case vmIntrinsics::_numberOfTrailingZeros_l:
 551   case vmIntrinsics::_bitCount_i:
 552   case vmIntrinsics::_bitCount_l:
 553   case vmIntrinsics::_reverse_i:
 554   case vmIntrinsics::_reverse_l:
 555   case vmIntrinsics::_reverseBytes_i:
 556   case vmIntrinsics::_reverseBytes_l:
 557   case vmIntrinsics::_reverseBytes_s:
 558   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 559 
 560   case vmIntrinsics::_compress_i:
 561   case vmIntrinsics::_compress_l:
 562   case vmIntrinsics::_expand_i:
 563   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 564 
 565   case vmIntrinsics::_compareUnsigned_i:
 566   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 567 
 568   case vmIntrinsics::_divideUnsigned_i:
 569   case vmIntrinsics::_divideUnsigned_l:
 570   case vmIntrinsics::_remainderUnsigned_i:
 571   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 572 
 573   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 574 
 575   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 576   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 577   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 578 
 579   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 580 
 581   case vmIntrinsics::_aescrypt_encryptBlock:
 582   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 583 
 584   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 585   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 586     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 587 
 588   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 589   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 590     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 591 
 592   case vmIntrinsics::_counterMode_AESCrypt:
 593     return inline_counterMode_AESCrypt(intrinsic_id());
 594 
 595   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 596     return inline_galoisCounterMode_AESCrypt();
 597 
 598   case vmIntrinsics::_md5_implCompress:
 599   case vmIntrinsics::_sha_implCompress:
 600   case vmIntrinsics::_sha2_implCompress:
 601   case vmIntrinsics::_sha5_implCompress:
 602   case vmIntrinsics::_sha3_implCompress:
 603     return inline_digestBase_implCompress(intrinsic_id());
 604 
 605   case vmIntrinsics::_digestBase_implCompressMB:
 606     return inline_digestBase_implCompressMB(predicate);
 607 
 608   case vmIntrinsics::_multiplyToLen:
 609     return inline_multiplyToLen();
 610 
 611   case vmIntrinsics::_squareToLen:
 612     return inline_squareToLen();
 613 
 614   case vmIntrinsics::_mulAdd:
 615     return inline_mulAdd();
 616 
 617   case vmIntrinsics::_montgomeryMultiply:
 618     return inline_montgomeryMultiply();
 619   case vmIntrinsics::_montgomerySquare:
 620     return inline_montgomerySquare();
 621 
 622   case vmIntrinsics::_bigIntegerRightShiftWorker:
 623     return inline_bigIntegerShift(true);
 624   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 625     return inline_bigIntegerShift(false);
 626 
 627   case vmIntrinsics::_vectorizedMismatch:
 628     return inline_vectorizedMismatch();
 629 
 630   case vmIntrinsics::_ghash_processBlocks:
 631     return inline_ghash_processBlocks();
 632   case vmIntrinsics::_chacha20Block:
 633     return inline_chacha20Block();
 634   case vmIntrinsics::_base64_encodeBlock:
 635     return inline_base64_encodeBlock();
 636   case vmIntrinsics::_base64_decodeBlock:
 637     return inline_base64_decodeBlock();
 638   case vmIntrinsics::_poly1305_processBlocks:
 639     return inline_poly1305_processBlocks();
 640 
 641   case vmIntrinsics::_encodeISOArray:
 642   case vmIntrinsics::_encodeByteISOArray:
 643     return inline_encodeISOArray(false);
 644   case vmIntrinsics::_encodeAsciiArray:
 645     return inline_encodeISOArray(true);
 646 
 647   case vmIntrinsics::_updateCRC32:
 648     return inline_updateCRC32();
 649   case vmIntrinsics::_updateBytesCRC32:
 650     return inline_updateBytesCRC32();
 651   case vmIntrinsics::_updateByteBufferCRC32:
 652     return inline_updateByteBufferCRC32();
 653 
 654   case vmIntrinsics::_updateBytesCRC32C:
 655     return inline_updateBytesCRC32C();
 656   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 657     return inline_updateDirectByteBufferCRC32C();
 658 
 659   case vmIntrinsics::_updateBytesAdler32:
 660     return inline_updateBytesAdler32();
 661   case vmIntrinsics::_updateByteBufferAdler32:
 662     return inline_updateByteBufferAdler32();
 663 
 664   case vmIntrinsics::_profileBoolean:
 665     return inline_profileBoolean();
 666   case vmIntrinsics::_isCompileConstant:
 667     return inline_isCompileConstant();
 668 
 669   case vmIntrinsics::_countPositives:
 670     return inline_countPositives();
 671 
 672   case vmIntrinsics::_fmaD:
 673   case vmIntrinsics::_fmaF:
 674     return inline_fma(intrinsic_id());
 675 
 676   case vmIntrinsics::_isDigit:
 677   case vmIntrinsics::_isLowerCase:
 678   case vmIntrinsics::_isUpperCase:
 679   case vmIntrinsics::_isWhitespace:
 680     return inline_character_compare(intrinsic_id());
 681 
 682   case vmIntrinsics::_min:
 683   case vmIntrinsics::_max:
 684   case vmIntrinsics::_min_strict:
 685   case vmIntrinsics::_max_strict:
 686     return inline_min_max(intrinsic_id());
 687 
 688   case vmIntrinsics::_maxF:
 689   case vmIntrinsics::_minF:
 690   case vmIntrinsics::_maxD:
 691   case vmIntrinsics::_minD:
 692   case vmIntrinsics::_maxF_strict:
 693   case vmIntrinsics::_minF_strict:
 694   case vmIntrinsics::_maxD_strict:
 695   case vmIntrinsics::_minD_strict:
 696       return inline_fp_min_max(intrinsic_id());
 697 
 698   case vmIntrinsics::_VectorUnaryOp:
 699     return inline_vector_nary_operation(1);
 700   case vmIntrinsics::_VectorBinaryOp:
 701     return inline_vector_nary_operation(2);
 702   case vmIntrinsics::_VectorTernaryOp:
 703     return inline_vector_nary_operation(3);
 704   case vmIntrinsics::_VectorFromBitsCoerced:
 705     return inline_vector_frombits_coerced();
 706   case vmIntrinsics::_VectorShuffleIota:
 707     return inline_vector_shuffle_iota();
 708   case vmIntrinsics::_VectorMaskOp:
 709     return inline_vector_mask_operation();
 710   case vmIntrinsics::_VectorShuffleToVector:
 711     return inline_vector_shuffle_to_vector();
 712   case vmIntrinsics::_VectorLoadOp:
 713     return inline_vector_mem_operation(/*is_store=*/false);
 714   case vmIntrinsics::_VectorLoadMaskedOp:
 715     return inline_vector_mem_masked_operation(/*is_store*/false);
 716   case vmIntrinsics::_VectorStoreOp:
 717     return inline_vector_mem_operation(/*is_store=*/true);
 718   case vmIntrinsics::_VectorStoreMaskedOp:
 719     return inline_vector_mem_masked_operation(/*is_store=*/true);
 720   case vmIntrinsics::_VectorGatherOp:
 721     return inline_vector_gather_scatter(/*is_scatter*/ false);
 722   case vmIntrinsics::_VectorScatterOp:
 723     return inline_vector_gather_scatter(/*is_scatter*/ true);
 724   case vmIntrinsics::_VectorReductionCoerced:
 725     return inline_vector_reduction();
 726   case vmIntrinsics::_VectorTest:
 727     return inline_vector_test();
 728   case vmIntrinsics::_VectorBlend:
 729     return inline_vector_blend();
 730   case vmIntrinsics::_VectorRearrange:
 731     return inline_vector_rearrange();
 732   case vmIntrinsics::_VectorCompare:
 733     return inline_vector_compare();
 734   case vmIntrinsics::_VectorBroadcastInt:
 735     return inline_vector_broadcast_int();
 736   case vmIntrinsics::_VectorConvert:
 737     return inline_vector_convert();
 738   case vmIntrinsics::_VectorInsert:
 739     return inline_vector_insert();
 740   case vmIntrinsics::_VectorExtract:
 741     return inline_vector_extract();
 742   case vmIntrinsics::_VectorCompressExpand:
 743     return inline_vector_compress_expand();
 744   case vmIntrinsics::_IndexVector:
 745     return inline_index_vector();
 746   case vmIntrinsics::_IndexPartiallyInUpperRange:
 747     return inline_index_partially_in_upper_range();
 748 
 749   case vmIntrinsics::_getObjectSize:
 750     return inline_getObjectSize();
 751 
 752   case vmIntrinsics::_blackhole:
 753     return inline_blackhole();
 754 
 755   default:
 756     // If you get here, it may be that someone has added a new intrinsic
 757     // to the list in vmIntrinsics.hpp without implementing it here.
 758 #ifndef PRODUCT
 759     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 760       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 761                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 762     }
 763 #endif
 764     return false;
 765   }
 766 }
 767 
 768 Node* LibraryCallKit::try_to_predicate(int predicate) {
 769   if (!jvms()->has_method()) {
 770     // Root JVMState has a null method.
 771     assert(map()->memory()->Opcode() == Op_Parm, "");
 772     // Insert the memory aliasing node
 773     set_all_memory(reset_memory());
 774   }
 775   assert(merged_memory(), "");
 776 
 777   switch (intrinsic_id()) {
 778   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 779     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 780   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 781     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 782   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 783     return inline_electronicCodeBook_AESCrypt_predicate(false);
 784   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 785     return inline_electronicCodeBook_AESCrypt_predicate(true);
 786   case vmIntrinsics::_counterMode_AESCrypt:
 787     return inline_counterMode_AESCrypt_predicate();
 788   case vmIntrinsics::_digestBase_implCompressMB:
 789     return inline_digestBase_implCompressMB_predicate(predicate);
 790   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 791     return inline_galoisCounterMode_AESCrypt_predicate();
 792 
 793   default:
 794     // If you get here, it may be that someone has added a new intrinsic
 795     // to the list in vmIntrinsics.hpp without implementing it here.
 796 #ifndef PRODUCT
 797     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 798       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 799                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 800     }
 801 #endif
 802     Node* slow_ctl = control();
 803     set_control(top()); // No fast path intrinsic
 804     return slow_ctl;
 805   }
 806 }
 807 
 808 //------------------------------set_result-------------------------------
 809 // Helper function for finishing intrinsics.
 810 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 811   record_for_igvn(region);
 812   set_control(_gvn.transform(region));
 813   set_result( _gvn.transform(value));
 814   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 815 }
 816 
 817 //------------------------------generate_guard---------------------------
 818 // Helper function for generating guarded fast-slow graph structures.
 819 // The given 'test', if true, guards a slow path.  If the test fails
 820 // then a fast path can be taken.  (We generally hope it fails.)
 821 // In all cases, GraphKit::control() is updated to the fast path.
 822 // The returned value represents the control for the slow path.
 823 // The return value is never 'top'; it is either a valid control
 824 // or null if it is obvious that the slow path can never be taken.
 825 // Also, if region and the slow control are not null, the slow edge
 826 // is appended to the region.
 827 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 828   if (stopped()) {
 829     // Already short circuited.
 830     return nullptr;
 831   }
 832 
 833   // Build an if node and its projections.
 834   // If test is true we take the slow path, which we assume is uncommon.
 835   if (_gvn.type(test) == TypeInt::ZERO) {
 836     // The slow branch is never taken.  No need to build this guard.
 837     return nullptr;
 838   }
 839 
 840   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 841 
 842   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 843   if (if_slow == top()) {
 844     // The slow branch is never taken.  No need to build this guard.
 845     return nullptr;
 846   }
 847 
 848   if (region != nullptr)
 849     region->add_req(if_slow);
 850 
 851   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 852   set_control(if_fast);
 853 
 854   return if_slow;
 855 }
 856 
 857 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 858   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 859 }
 860 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 861   return generate_guard(test, region, PROB_FAIR);
 862 }
 863 
 864 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 865                                                      Node* *pos_index) {
 866   if (stopped())
 867     return nullptr;                // already stopped
 868   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 869     return nullptr;                // index is already adequately typed
 870   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 871   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 872   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 873   if (is_neg != nullptr && pos_index != nullptr) {
 874     // Emulate effect of Parse::adjust_map_after_if.
 875     Node* ccast = new CastIINode(index, TypeInt::POS);
 876     ccast->set_req(0, control());
 877     (*pos_index) = _gvn.transform(ccast);
 878   }
 879   return is_neg;
 880 }
 881 
 882 // Make sure that 'position' is a valid limit index, in [0..length].
 883 // There are two equivalent plans for checking this:
 884 //   A. (offset + copyLength)  unsigned<=  arrayLength
 885 //   B. offset  <=  (arrayLength - copyLength)
 886 // We require that all of the values above, except for the sum and
 887 // difference, are already known to be non-negative.
 888 // Plan A is robust in the face of overflow, if offset and copyLength
 889 // are both hugely positive.
 890 //
 891 // Plan B is less direct and intuitive, but it does not overflow at
 892 // all, since the difference of two non-negatives is always
 893 // representable.  Whenever Java methods must perform the equivalent
 894 // check they generally use Plan B instead of Plan A.
 895 // For the moment we use Plan A.
 896 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 897                                                   Node* subseq_length,
 898                                                   Node* array_length,
 899                                                   RegionNode* region) {
 900   if (stopped())
 901     return nullptr;                // already stopped
 902   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 903   if (zero_offset && subseq_length->eqv_uncast(array_length))
 904     return nullptr;                // common case of whole-array copy
 905   Node* last = subseq_length;
 906   if (!zero_offset)             // last += offset
 907     last = _gvn.transform(new AddINode(last, offset));
 908   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 909   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 910   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 911   return is_over;
 912 }
 913 
 914 // Emit range checks for the given String.value byte array
 915 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 916   if (stopped()) {
 917     return; // already stopped
 918   }
 919   RegionNode* bailout = new RegionNode(1);
 920   record_for_igvn(bailout);
 921   if (char_count) {
 922     // Convert char count to byte count
 923     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 924   }
 925 
 926   // Offset and count must not be negative
 927   generate_negative_guard(offset, bailout);
 928   generate_negative_guard(count, bailout);
 929   // Offset + count must not exceed length of array
 930   generate_limit_guard(offset, count, load_array_length(array), bailout);
 931 
 932   if (bailout->req() > 1) {
 933     PreserveJVMState pjvms(this);
 934     set_control(_gvn.transform(bailout));
 935     uncommon_trap(Deoptimization::Reason_intrinsic,
 936                   Deoptimization::Action_maybe_recompile);
 937   }
 938 }
 939 
 940 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 941                                             bool is_immutable) {
 942   ciKlass* thread_klass = env()->Thread_klass();
 943   const Type* thread_type
 944     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 945 
 946   Node* thread = _gvn.transform(new ThreadLocalNode());
 947   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 948   tls_output = thread;
 949 
 950   Node* thread_obj_handle
 951     = (is_immutable
 952       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 953         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 954       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 955   thread_obj_handle = _gvn.transform(thread_obj_handle);
 956 
 957   DecoratorSet decorators = IN_NATIVE;
 958   if (is_immutable) {
 959     decorators |= C2_IMMUTABLE_MEMORY;
 960   }
 961   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 962 }
 963 
 964 //--------------------------generate_current_thread--------------------
 965 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 966   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 967                                /*is_immutable*/false);
 968 }
 969 
 970 //--------------------------generate_virtual_thread--------------------
 971 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 972   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 973                                !C->method()->changes_current_thread());
 974 }
 975 
 976 //------------------------------make_string_method_node------------------------
 977 // Helper method for String intrinsic functions. This version is called with
 978 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 979 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 980 // containing the lengths of str1 and str2.
 981 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 982   Node* result = nullptr;
 983   switch (opcode) {
 984   case Op_StrIndexOf:
 985     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 986                                 str1_start, cnt1, str2_start, cnt2, ae);
 987     break;
 988   case Op_StrComp:
 989     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 990                              str1_start, cnt1, str2_start, cnt2, ae);
 991     break;
 992   case Op_StrEquals:
 993     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
 994     // Use the constant length if there is one because optimized match rule may exist.
 995     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
 996                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
 997     break;
 998   default:
 999     ShouldNotReachHere();
1000     return nullptr;
1001   }
1002 
1003   // All these intrinsics have checks.
1004   C->set_has_split_ifs(true); // Has chance for split-if optimization
1005   clear_upper_avx();
1006 
1007   return _gvn.transform(result);
1008 }
1009 
1010 //------------------------------inline_string_compareTo------------------------
1011 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1012   Node* arg1 = argument(0);
1013   Node* arg2 = argument(1);
1014 
1015   arg1 = must_be_not_null(arg1, true);
1016   arg2 = must_be_not_null(arg2, true);
1017 
1018   // Get start addr and length of first argument
1019   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1020   Node* arg1_cnt    = load_array_length(arg1);
1021 
1022   // Get start addr and length of second argument
1023   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1024   Node* arg2_cnt    = load_array_length(arg2);
1025 
1026   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1027   set_result(result);
1028   return true;
1029 }
1030 
1031 //------------------------------inline_string_equals------------------------
1032 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1033   Node* arg1 = argument(0);
1034   Node* arg2 = argument(1);
1035 
1036   // paths (plus control) merge
1037   RegionNode* region = new RegionNode(3);
1038   Node* phi = new PhiNode(region, TypeInt::BOOL);
1039 
1040   if (!stopped()) {
1041 
1042     arg1 = must_be_not_null(arg1, true);
1043     arg2 = must_be_not_null(arg2, true);
1044 
1045     // Get start addr and length of first argument
1046     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1047     Node* arg1_cnt    = load_array_length(arg1);
1048 
1049     // Get start addr and length of second argument
1050     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1051     Node* arg2_cnt    = load_array_length(arg2);
1052 
1053     // Check for arg1_cnt != arg2_cnt
1054     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1055     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1056     Node* if_ne = generate_slow_guard(bol, nullptr);
1057     if (if_ne != nullptr) {
1058       phi->init_req(2, intcon(0));
1059       region->init_req(2, if_ne);
1060     }
1061 
1062     // Check for count == 0 is done by assembler code for StrEquals.
1063 
1064     if (!stopped()) {
1065       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1066       phi->init_req(1, equals);
1067       region->init_req(1, control());
1068     }
1069   }
1070 
1071   // post merge
1072   set_control(_gvn.transform(region));
1073   record_for_igvn(region);
1074 
1075   set_result(_gvn.transform(phi));
1076   return true;
1077 }
1078 
1079 //------------------------------inline_array_equals----------------------------
1080 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1081   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1082   Node* arg1 = argument(0);
1083   Node* arg2 = argument(1);
1084 
1085   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1086   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1087   clear_upper_avx();
1088 
1089   return true;
1090 }
1091 
1092 
1093 //------------------------------inline_countPositives------------------------------
1094 bool LibraryCallKit::inline_countPositives() {
1095   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1096     return false;
1097   }
1098 
1099   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1100   // no receiver since it is static method
1101   Node* ba         = argument(0);
1102   Node* offset     = argument(1);
1103   Node* len        = argument(2);
1104 
1105   ba = must_be_not_null(ba, true);
1106 
1107   // Range checks
1108   generate_string_range_check(ba, offset, len, false);
1109   if (stopped()) {
1110     return true;
1111   }
1112   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1113   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1114   set_result(_gvn.transform(result));
1115   clear_upper_avx();
1116   return true;
1117 }
1118 
1119 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1120   Node* index = argument(0);
1121   Node* length = bt == T_INT ? argument(1) : argument(2);
1122   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1123     return false;
1124   }
1125 
1126   // check that length is positive
1127   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1128   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1129 
1130   {
1131     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1132     uncommon_trap(Deoptimization::Reason_intrinsic,
1133                   Deoptimization::Action_make_not_entrant);
1134   }
1135 
1136   if (stopped()) {
1137     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1138     return true;
1139   }
1140 
1141   // length is now known positive, add a cast node to make this explicit
1142   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1143   Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt);
1144   casted_length = _gvn.transform(casted_length);
1145   replace_in_map(length, casted_length);
1146   length = casted_length;
1147 
1148   // Use an unsigned comparison for the range check itself
1149   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1150   BoolTest::mask btest = BoolTest::lt;
1151   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1152   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1153   _gvn.set_type(rc, rc->Value(&_gvn));
1154   if (!rc_bool->is_Con()) {
1155     record_for_igvn(rc);
1156   }
1157   set_control(_gvn.transform(new IfTrueNode(rc)));
1158   {
1159     PreserveJVMState pjvms(this);
1160     set_control(_gvn.transform(new IfFalseNode(rc)));
1161     uncommon_trap(Deoptimization::Reason_range_check,
1162                   Deoptimization::Action_make_not_entrant);
1163   }
1164 
1165   if (stopped()) {
1166     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1167     return true;
1168   }
1169 
1170   // index is now known to be >= 0 and < length, cast it
1171   Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt);
1172   result = _gvn.transform(result);
1173   set_result(result);
1174   replace_in_map(index, result);
1175   return true;
1176 }
1177 
1178 //------------------------------inline_string_indexOf------------------------
1179 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1180   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1181     return false;
1182   }
1183   Node* src = argument(0);
1184   Node* tgt = argument(1);
1185 
1186   // Make the merge point
1187   RegionNode* result_rgn = new RegionNode(4);
1188   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1189 
1190   src = must_be_not_null(src, true);
1191   tgt = must_be_not_null(tgt, true);
1192 
1193   // Get start addr and length of source string
1194   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1195   Node* src_count = load_array_length(src);
1196 
1197   // Get start addr and length of substring
1198   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1199   Node* tgt_count = load_array_length(tgt);
1200 
1201   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1202     // Divide src size by 2 if String is UTF16 encoded
1203     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1204   }
1205   if (ae == StrIntrinsicNode::UU) {
1206     // Divide substring size by 2 if String is UTF16 encoded
1207     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1208   }
1209 
1210   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1211   if (result != nullptr) {
1212     result_phi->init_req(3, result);
1213     result_rgn->init_req(3, control());
1214   }
1215   set_control(_gvn.transform(result_rgn));
1216   record_for_igvn(result_rgn);
1217   set_result(_gvn.transform(result_phi));
1218 
1219   return true;
1220 }
1221 
1222 //-----------------------------inline_string_indexOf-----------------------
1223 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1224   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1225     return false;
1226   }
1227   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1228     return false;
1229   }
1230   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1231   Node* src         = argument(0); // byte[]
1232   Node* src_count   = argument(1); // char count
1233   Node* tgt         = argument(2); // byte[]
1234   Node* tgt_count   = argument(3); // char count
1235   Node* from_index  = argument(4); // char index
1236 
1237   src = must_be_not_null(src, true);
1238   tgt = must_be_not_null(tgt, true);
1239 
1240   // Multiply byte array index by 2 if String is UTF16 encoded
1241   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1242   src_count = _gvn.transform(new SubINode(src_count, from_index));
1243   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1244   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1245 
1246   // Range checks
1247   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1248   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1249   if (stopped()) {
1250     return true;
1251   }
1252 
1253   RegionNode* region = new RegionNode(5);
1254   Node* phi = new PhiNode(region, TypeInt::INT);
1255 
1256   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1257   if (result != nullptr) {
1258     // The result is index relative to from_index if substring was found, -1 otherwise.
1259     // Generate code which will fold into cmove.
1260     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1261     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1262 
1263     Node* if_lt = generate_slow_guard(bol, nullptr);
1264     if (if_lt != nullptr) {
1265       // result == -1
1266       phi->init_req(3, result);
1267       region->init_req(3, if_lt);
1268     }
1269     if (!stopped()) {
1270       result = _gvn.transform(new AddINode(result, from_index));
1271       phi->init_req(4, result);
1272       region->init_req(4, control());
1273     }
1274   }
1275 
1276   set_control(_gvn.transform(region));
1277   record_for_igvn(region);
1278   set_result(_gvn.transform(phi));
1279   clear_upper_avx();
1280 
1281   return true;
1282 }
1283 
1284 // Create StrIndexOfNode with fast path checks
1285 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1286                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1287   // Check for substr count > string count
1288   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1289   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1290   Node* if_gt = generate_slow_guard(bol, nullptr);
1291   if (if_gt != nullptr) {
1292     phi->init_req(1, intcon(-1));
1293     region->init_req(1, if_gt);
1294   }
1295   if (!stopped()) {
1296     // Check for substr count == 0
1297     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1298     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1299     Node* if_zero = generate_slow_guard(bol, nullptr);
1300     if (if_zero != nullptr) {
1301       phi->init_req(2, intcon(0));
1302       region->init_req(2, if_zero);
1303     }
1304   }
1305   if (!stopped()) {
1306     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1307   }
1308   return nullptr;
1309 }
1310 
1311 //-----------------------------inline_string_indexOfChar-----------------------
1312 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1313   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1314     return false;
1315   }
1316   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1317     return false;
1318   }
1319   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1320   Node* src         = argument(0); // byte[]
1321   Node* int_ch      = argument(1);
1322   Node* from_index  = argument(2);
1323   Node* max         = argument(3);
1324 
1325   src = must_be_not_null(src, true);
1326 
1327   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1328   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1329   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1330 
1331   // Range checks
1332   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1333 
1334   // Check for int_ch >= 0
1335   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1336   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1337   {
1338     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1339     uncommon_trap(Deoptimization::Reason_intrinsic,
1340                   Deoptimization::Action_maybe_recompile);
1341   }
1342   if (stopped()) {
1343     return true;
1344   }
1345 
1346   RegionNode* region = new RegionNode(3);
1347   Node* phi = new PhiNode(region, TypeInt::INT);
1348 
1349   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1350   C->set_has_split_ifs(true); // Has chance for split-if optimization
1351   _gvn.transform(result);
1352 
1353   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1354   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1355 
1356   Node* if_lt = generate_slow_guard(bol, nullptr);
1357   if (if_lt != nullptr) {
1358     // result == -1
1359     phi->init_req(2, result);
1360     region->init_req(2, if_lt);
1361   }
1362   if (!stopped()) {
1363     result = _gvn.transform(new AddINode(result, from_index));
1364     phi->init_req(1, result);
1365     region->init_req(1, control());
1366   }
1367   set_control(_gvn.transform(region));
1368   record_for_igvn(region);
1369   set_result(_gvn.transform(phi));
1370   clear_upper_avx();
1371 
1372   return true;
1373 }
1374 //---------------------------inline_string_copy---------------------
1375 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1376 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1377 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1378 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1379 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1380 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1381 bool LibraryCallKit::inline_string_copy(bool compress) {
1382   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1383     return false;
1384   }
1385   int nargs = 5;  // 2 oops, 3 ints
1386   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1387 
1388   Node* src         = argument(0);
1389   Node* src_offset  = argument(1);
1390   Node* dst         = argument(2);
1391   Node* dst_offset  = argument(3);
1392   Node* length      = argument(4);
1393 
1394   // Check for allocation before we add nodes that would confuse
1395   // tightly_coupled_allocation()
1396   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1397 
1398   // Figure out the size and type of the elements we will be copying.
1399   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1400   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1401   if (src_type == nullptr || dst_type == nullptr) {
1402     return false;
1403   }
1404   BasicType src_elem = src_type->elem()->array_element_basic_type();
1405   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1406   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1407          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1408          "Unsupported array types for inline_string_copy");
1409 
1410   src = must_be_not_null(src, true);
1411   dst = must_be_not_null(dst, true);
1412 
1413   // Convert char[] offsets to byte[] offsets
1414   bool convert_src = (compress && src_elem == T_BYTE);
1415   bool convert_dst = (!compress && dst_elem == T_BYTE);
1416   if (convert_src) {
1417     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1418   } else if (convert_dst) {
1419     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1420   }
1421 
1422   // Range checks
1423   generate_string_range_check(src, src_offset, length, convert_src);
1424   generate_string_range_check(dst, dst_offset, length, convert_dst);
1425   if (stopped()) {
1426     return true;
1427   }
1428 
1429   Node* src_start = array_element_address(src, src_offset, src_elem);
1430   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1431   // 'src_start' points to src array + scaled offset
1432   // 'dst_start' points to dst array + scaled offset
1433   Node* count = nullptr;
1434   if (compress) {
1435     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1436   } else {
1437     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1438   }
1439 
1440   if (alloc != nullptr) {
1441     if (alloc->maybe_set_complete(&_gvn)) {
1442       // "You break it, you buy it."
1443       InitializeNode* init = alloc->initialization();
1444       assert(init->is_complete(), "we just did this");
1445       init->set_complete_with_arraycopy();
1446       assert(dst->is_CheckCastPP(), "sanity");
1447       assert(dst->in(0)->in(0) == init, "dest pinned");
1448     }
1449     // Do not let stores that initialize this object be reordered with
1450     // a subsequent store that would make this object accessible by
1451     // other threads.
1452     // Record what AllocateNode this StoreStore protects so that
1453     // escape analysis can go from the MemBarStoreStoreNode to the
1454     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1455     // based on the escape status of the AllocateNode.
1456     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1457   }
1458   if (compress) {
1459     set_result(_gvn.transform(count));
1460   }
1461   clear_upper_avx();
1462 
1463   return true;
1464 }
1465 
1466 #ifdef _LP64
1467 #define XTOP ,top() /*additional argument*/
1468 #else  //_LP64
1469 #define XTOP        /*no additional argument*/
1470 #endif //_LP64
1471 
1472 //------------------------inline_string_toBytesU--------------------------
1473 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1474 bool LibraryCallKit::inline_string_toBytesU() {
1475   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1476     return false;
1477   }
1478   // Get the arguments.
1479   Node* value     = argument(0);
1480   Node* offset    = argument(1);
1481   Node* length    = argument(2);
1482 
1483   Node* newcopy = nullptr;
1484 
1485   // Set the original stack and the reexecute bit for the interpreter to reexecute
1486   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1487   { PreserveReexecuteState preexecs(this);
1488     jvms()->set_should_reexecute(true);
1489 
1490     // Check if a null path was taken unconditionally.
1491     value = null_check(value);
1492 
1493     RegionNode* bailout = new RegionNode(1);
1494     record_for_igvn(bailout);
1495 
1496     // Range checks
1497     generate_negative_guard(offset, bailout);
1498     generate_negative_guard(length, bailout);
1499     generate_limit_guard(offset, length, load_array_length(value), bailout);
1500     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1501     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1502 
1503     if (bailout->req() > 1) {
1504       PreserveJVMState pjvms(this);
1505       set_control(_gvn.transform(bailout));
1506       uncommon_trap(Deoptimization::Reason_intrinsic,
1507                     Deoptimization::Action_maybe_recompile);
1508     }
1509     if (stopped()) {
1510       return true;
1511     }
1512 
1513     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1514     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1515     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1516     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1517     guarantee(alloc != nullptr, "created above");
1518 
1519     // Calculate starting addresses.
1520     Node* src_start = array_element_address(value, offset, T_CHAR);
1521     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1522 
1523     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1524     const TypeInt* toffset = gvn().type(offset)->is_int();
1525     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1526 
1527     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1528     const char* copyfunc_name = "arraycopy";
1529     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1530     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1531                       OptoRuntime::fast_arraycopy_Type(),
1532                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1533                       src_start, dst_start, ConvI2X(length) XTOP);
1534     // Do not let reads from the cloned object float above the arraycopy.
1535     if (alloc->maybe_set_complete(&_gvn)) {
1536       // "You break it, you buy it."
1537       InitializeNode* init = alloc->initialization();
1538       assert(init->is_complete(), "we just did this");
1539       init->set_complete_with_arraycopy();
1540       assert(newcopy->is_CheckCastPP(), "sanity");
1541       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1542     }
1543     // Do not let stores that initialize this object be reordered with
1544     // a subsequent store that would make this object accessible by
1545     // other threads.
1546     // Record what AllocateNode this StoreStore protects so that
1547     // escape analysis can go from the MemBarStoreStoreNode to the
1548     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1549     // based on the escape status of the AllocateNode.
1550     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1551   } // original reexecute is set back here
1552 
1553   C->set_has_split_ifs(true); // Has chance for split-if optimization
1554   if (!stopped()) {
1555     set_result(newcopy);
1556   }
1557   clear_upper_avx();
1558 
1559   return true;
1560 }
1561 
1562 //------------------------inline_string_getCharsU--------------------------
1563 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1564 bool LibraryCallKit::inline_string_getCharsU() {
1565   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1566     return false;
1567   }
1568 
1569   // Get the arguments.
1570   Node* src       = argument(0);
1571   Node* src_begin = argument(1);
1572   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1573   Node* dst       = argument(3);
1574   Node* dst_begin = argument(4);
1575 
1576   // Check for allocation before we add nodes that would confuse
1577   // tightly_coupled_allocation()
1578   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1579 
1580   // Check if a null path was taken unconditionally.
1581   src = null_check(src);
1582   dst = null_check(dst);
1583   if (stopped()) {
1584     return true;
1585   }
1586 
1587   // Get length and convert char[] offset to byte[] offset
1588   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1589   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1590 
1591   // Range checks
1592   generate_string_range_check(src, src_begin, length, true);
1593   generate_string_range_check(dst, dst_begin, length, false);
1594   if (stopped()) {
1595     return true;
1596   }
1597 
1598   if (!stopped()) {
1599     // Calculate starting addresses.
1600     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1601     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1602 
1603     // Check if array addresses are aligned to HeapWordSize
1604     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1605     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1606     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1607                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1608 
1609     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1610     const char* copyfunc_name = "arraycopy";
1611     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1612     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1613                       OptoRuntime::fast_arraycopy_Type(),
1614                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1615                       src_start, dst_start, ConvI2X(length) XTOP);
1616     // Do not let reads from the cloned object float above the arraycopy.
1617     if (alloc != nullptr) {
1618       if (alloc->maybe_set_complete(&_gvn)) {
1619         // "You break it, you buy it."
1620         InitializeNode* init = alloc->initialization();
1621         assert(init->is_complete(), "we just did this");
1622         init->set_complete_with_arraycopy();
1623         assert(dst->is_CheckCastPP(), "sanity");
1624         assert(dst->in(0)->in(0) == init, "dest pinned");
1625       }
1626       // Do not let stores that initialize this object be reordered with
1627       // a subsequent store that would make this object accessible by
1628       // other threads.
1629       // Record what AllocateNode this StoreStore protects so that
1630       // escape analysis can go from the MemBarStoreStoreNode to the
1631       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1632       // based on the escape status of the AllocateNode.
1633       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1634     } else {
1635       insert_mem_bar(Op_MemBarCPUOrder);
1636     }
1637   }
1638 
1639   C->set_has_split_ifs(true); // Has chance for split-if optimization
1640   return true;
1641 }
1642 
1643 //----------------------inline_string_char_access----------------------------
1644 // Store/Load char to/from byte[] array.
1645 // static void StringUTF16.putChar(byte[] val, int index, int c)
1646 // static char StringUTF16.getChar(byte[] val, int index)
1647 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1648   Node* value  = argument(0);
1649   Node* index  = argument(1);
1650   Node* ch = is_store ? argument(2) : nullptr;
1651 
1652   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1653   // correctly requires matched array shapes.
1654   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1655           "sanity: byte[] and char[] bases agree");
1656   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1657           "sanity: byte[] and char[] scales agree");
1658 
1659   // Bail when getChar over constants is requested: constant folding would
1660   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1661   // Java method would constant fold nicely instead.
1662   if (!is_store && value->is_Con() && index->is_Con()) {
1663     return false;
1664   }
1665 
1666   // Save state and restore on bailout
1667   uint old_sp = sp();
1668   SafePointNode* old_map = clone_map();
1669 
1670   value = must_be_not_null(value, true);
1671 
1672   Node* adr = array_element_address(value, index, T_CHAR);
1673   if (adr->is_top()) {
1674     set_map(old_map);
1675     set_sp(old_sp);
1676     return false;
1677   }
1678   destruct_map_clone(old_map);
1679   if (is_store) {
1680     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1681   } else {
1682     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1683     set_result(ch);
1684   }
1685   return true;
1686 }
1687 
1688 //--------------------------round_double_node--------------------------------
1689 // Round a double node if necessary.
1690 Node* LibraryCallKit::round_double_node(Node* n) {
1691   if (Matcher::strict_fp_requires_explicit_rounding) {
1692 #ifdef IA32
1693     if (UseSSE < 2) {
1694       n = _gvn.transform(new RoundDoubleNode(nullptr, n));
1695     }
1696 #else
1697     Unimplemented();
1698 #endif // IA32
1699   }
1700   return n;
1701 }
1702 
1703 //------------------------------inline_math-----------------------------------
1704 // public static double Math.abs(double)
1705 // public static double Math.sqrt(double)
1706 // public static double Math.log(double)
1707 // public static double Math.log10(double)
1708 // public static double Math.round(double)
1709 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1710   Node* arg = round_double_node(argument(0));
1711   Node* n = nullptr;
1712   switch (id) {
1713   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1714   case vmIntrinsics::_dsqrt:
1715   case vmIntrinsics::_dsqrt_strict:
1716                               n = new SqrtDNode(C, control(),  arg);  break;
1717   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1718   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1719   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1720   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1721   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1722   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1723   default:  fatal_unexpected_iid(id);  break;
1724   }
1725   set_result(_gvn.transform(n));
1726   return true;
1727 }
1728 
1729 //------------------------------inline_math-----------------------------------
1730 // public static float Math.abs(float)
1731 // public static int Math.abs(int)
1732 // public static long Math.abs(long)
1733 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1734   Node* arg = argument(0);
1735   Node* n = nullptr;
1736   switch (id) {
1737   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1738   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1739   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1740   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1741   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1742   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1743   default:  fatal_unexpected_iid(id);  break;
1744   }
1745   set_result(_gvn.transform(n));
1746   return true;
1747 }
1748 
1749 //------------------------------runtime_math-----------------------------
1750 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1751   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1752          "must be (DD)D or (D)D type");
1753 
1754   // Inputs
1755   Node* a = round_double_node(argument(0));
1756   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr;
1757 
1758   const TypePtr* no_memory_effects = nullptr;
1759   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1760                                  no_memory_effects,
1761                                  a, top(), b, b ? top() : nullptr);
1762   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1763 #ifdef ASSERT
1764   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1765   assert(value_top == top(), "second value must be top");
1766 #endif
1767 
1768   set_result(value);
1769   return true;
1770 }
1771 
1772 //------------------------------inline_math_pow-----------------------------
1773 bool LibraryCallKit::inline_math_pow() {
1774   Node* exp = round_double_node(argument(2));
1775   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1776   if (d != nullptr) {
1777     if (d->getd() == 2.0) {
1778       // Special case: pow(x, 2.0) => x * x
1779       Node* base = round_double_node(argument(0));
1780       set_result(_gvn.transform(new MulDNode(base, base)));
1781       return true;
1782     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1783       // Special case: pow(x, 0.5) => sqrt(x)
1784       Node* base = round_double_node(argument(0));
1785       Node* zero = _gvn.zerocon(T_DOUBLE);
1786 
1787       RegionNode* region = new RegionNode(3);
1788       Node* phi = new PhiNode(region, Type::DOUBLE);
1789 
1790       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1791       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1792       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1793       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1794       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1795 
1796       Node* if_pow = generate_slow_guard(test, nullptr);
1797       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1798       phi->init_req(1, value_sqrt);
1799       region->init_req(1, control());
1800 
1801       if (if_pow != nullptr) {
1802         set_control(if_pow);
1803         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1804                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1805         const TypePtr* no_memory_effects = nullptr;
1806         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1807                                        no_memory_effects, base, top(), exp, top());
1808         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1809 #ifdef ASSERT
1810         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1811         assert(value_top == top(), "second value must be top");
1812 #endif
1813         phi->init_req(2, value_pow);
1814         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1815       }
1816 
1817       C->set_has_split_ifs(true); // Has chance for split-if optimization
1818       set_control(_gvn.transform(region));
1819       record_for_igvn(region);
1820       set_result(_gvn.transform(phi));
1821 
1822       return true;
1823     }
1824   }
1825 
1826   return StubRoutines::dpow() != nullptr ?
1827     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1828     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1829 }
1830 
1831 //------------------------------inline_math_native-----------------------------
1832 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1833   switch (id) {
1834   case vmIntrinsics::_dsin:
1835     return StubRoutines::dsin() != nullptr ?
1836       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1837       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1838   case vmIntrinsics::_dcos:
1839     return StubRoutines::dcos() != nullptr ?
1840       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1841       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1842   case vmIntrinsics::_dtan:
1843     return StubRoutines::dtan() != nullptr ?
1844       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1845       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1846   case vmIntrinsics::_dexp:
1847     return StubRoutines::dexp() != nullptr ?
1848       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1849       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1850   case vmIntrinsics::_dlog:
1851     return StubRoutines::dlog() != nullptr ?
1852       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1853       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1854   case vmIntrinsics::_dlog10:
1855     return StubRoutines::dlog10() != nullptr ?
1856       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1857       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1858 
1859   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1860   case vmIntrinsics::_ceil:
1861   case vmIntrinsics::_floor:
1862   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1863 
1864   case vmIntrinsics::_dsqrt:
1865   case vmIntrinsics::_dsqrt_strict:
1866                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1867   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1868   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1869   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1870   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1871 
1872   case vmIntrinsics::_dpow:      return inline_math_pow();
1873   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1874   case vmIntrinsics::_fcopySign: return inline_math(id);
1875   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1876   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1877   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1878 
1879    // These intrinsics are not yet correctly implemented
1880   case vmIntrinsics::_datan2:
1881     return false;
1882 
1883   default:
1884     fatal_unexpected_iid(id);
1885     return false;
1886   }
1887 }
1888 
1889 //----------------------------inline_notify-----------------------------------*
1890 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1891   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1892   address func;
1893   if (id == vmIntrinsics::_notify) {
1894     func = OptoRuntime::monitor_notify_Java();
1895   } else {
1896     func = OptoRuntime::monitor_notifyAll_Java();
1897   }
1898   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1899   make_slow_call_ex(call, env()->Throwable_klass(), false);
1900   return true;
1901 }
1902 
1903 
1904 //----------------------------inline_min_max-----------------------------------
1905 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1906   set_result(generate_min_max(id, argument(0), argument(1)));
1907   return true;
1908 }
1909 
1910 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1911   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1912   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1913   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1914   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1915 
1916   {
1917     PreserveJVMState pjvms(this);
1918     PreserveReexecuteState preexecs(this);
1919     jvms()->set_should_reexecute(true);
1920 
1921     set_control(slow_path);
1922     set_i_o(i_o());
1923 
1924     uncommon_trap(Deoptimization::Reason_intrinsic,
1925                   Deoptimization::Action_none);
1926   }
1927 
1928   set_control(fast_path);
1929   set_result(math);
1930 }
1931 
1932 template <typename OverflowOp>
1933 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1934   typedef typename OverflowOp::MathOp MathOp;
1935 
1936   MathOp* mathOp = new MathOp(arg1, arg2);
1937   Node* operation = _gvn.transform( mathOp );
1938   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1939   inline_math_mathExact(operation, ofcheck);
1940   return true;
1941 }
1942 
1943 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1944   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1945 }
1946 
1947 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1948   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1949 }
1950 
1951 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1952   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1953 }
1954 
1955 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1956   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1957 }
1958 
1959 bool LibraryCallKit::inline_math_negateExactI() {
1960   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1961 }
1962 
1963 bool LibraryCallKit::inline_math_negateExactL() {
1964   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1965 }
1966 
1967 bool LibraryCallKit::inline_math_multiplyExactI() {
1968   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1969 }
1970 
1971 bool LibraryCallKit::inline_math_multiplyExactL() {
1972   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1973 }
1974 
1975 bool LibraryCallKit::inline_math_multiplyHigh() {
1976   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
1977   return true;
1978 }
1979 
1980 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
1981   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
1982   return true;
1983 }
1984 
1985 Node*
1986 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1987   Node* result_val = nullptr;
1988   switch (id) {
1989   case vmIntrinsics::_min:
1990   case vmIntrinsics::_min_strict:
1991     result_val = _gvn.transform(new MinINode(x0, y0));
1992     break;
1993   case vmIntrinsics::_max:
1994   case vmIntrinsics::_max_strict:
1995     result_val = _gvn.transform(new MaxINode(x0, y0));
1996     break;
1997   default:
1998     fatal_unexpected_iid(id);
1999     break;
2000   }
2001   return result_val;
2002 }
2003 
2004 inline int
2005 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2006   const TypePtr* base_type = TypePtr::NULL_PTR;
2007   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2008   if (base_type == nullptr) {
2009     // Unknown type.
2010     return Type::AnyPtr;
2011   } else if (base_type == TypePtr::NULL_PTR) {
2012     // Since this is a null+long form, we have to switch to a rawptr.
2013     base   = _gvn.transform(new CastX2PNode(offset));
2014     offset = MakeConX(0);
2015     return Type::RawPtr;
2016   } else if (base_type->base() == Type::RawPtr) {
2017     return Type::RawPtr;
2018   } else if (base_type->isa_oopptr()) {
2019     // Base is never null => always a heap address.
2020     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2021       return Type::OopPtr;
2022     }
2023     // Offset is small => always a heap address.
2024     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2025     if (offset_type != nullptr &&
2026         base_type->offset() == 0 &&     // (should always be?)
2027         offset_type->_lo >= 0 &&
2028         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2029       return Type::OopPtr;
2030     } else if (type == T_OBJECT) {
2031       // off heap access to an oop doesn't make any sense. Has to be on
2032       // heap.
2033       return Type::OopPtr;
2034     }
2035     // Otherwise, it might either be oop+off or null+addr.
2036     return Type::AnyPtr;
2037   } else {
2038     // No information:
2039     return Type::AnyPtr;
2040   }
2041 }
2042 
2043 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2044   Node* uncasted_base = base;
2045   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2046   if (kind == Type::RawPtr) {
2047     return basic_plus_adr(top(), uncasted_base, offset);
2048   } else if (kind == Type::AnyPtr) {
2049     assert(base == uncasted_base, "unexpected base change");
2050     if (can_cast) {
2051       if (!_gvn.type(base)->speculative_maybe_null() &&
2052           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2053         // According to profiling, this access is always on
2054         // heap. Casting the base to not null and thus avoiding membars
2055         // around the access should allow better optimizations
2056         Node* null_ctl = top();
2057         base = null_check_oop(base, &null_ctl, true, true, true);
2058         assert(null_ctl->is_top(), "no null control here");
2059         return basic_plus_adr(base, offset);
2060       } else if (_gvn.type(base)->speculative_always_null() &&
2061                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2062         // According to profiling, this access is always off
2063         // heap.
2064         base = null_assert(base);
2065         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2066         offset = MakeConX(0);
2067         return basic_plus_adr(top(), raw_base, offset);
2068       }
2069     }
2070     // We don't know if it's an on heap or off heap access. Fall back
2071     // to raw memory access.
2072     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2073     return basic_plus_adr(top(), raw, offset);
2074   } else {
2075     assert(base == uncasted_base, "unexpected base change");
2076     // We know it's an on heap access so base can't be null
2077     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2078       base = must_be_not_null(base, true);
2079     }
2080     return basic_plus_adr(base, offset);
2081   }
2082 }
2083 
2084 //--------------------------inline_number_methods-----------------------------
2085 // inline int     Integer.numberOfLeadingZeros(int)
2086 // inline int        Long.numberOfLeadingZeros(long)
2087 //
2088 // inline int     Integer.numberOfTrailingZeros(int)
2089 // inline int        Long.numberOfTrailingZeros(long)
2090 //
2091 // inline int     Integer.bitCount(int)
2092 // inline int        Long.bitCount(long)
2093 //
2094 // inline char  Character.reverseBytes(char)
2095 // inline short     Short.reverseBytes(short)
2096 // inline int     Integer.reverseBytes(int)
2097 // inline long       Long.reverseBytes(long)
2098 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2099   Node* arg = argument(0);
2100   Node* n = nullptr;
2101   switch (id) {
2102   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2103   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2104   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2105   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2106   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2107   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2108   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2109   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2110   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2111   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2112   case vmIntrinsics::_reverse_i:                n = new ReverseINode(0, arg); break;
2113   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(0, arg); break;
2114   default:  fatal_unexpected_iid(id);  break;
2115   }
2116   set_result(_gvn.transform(n));
2117   return true;
2118 }
2119 
2120 //--------------------------inline_bitshuffle_methods-----------------------------
2121 // inline int Integer.compress(int, int)
2122 // inline int Integer.expand(int, int)
2123 // inline long Long.compress(long, long)
2124 // inline long Long.expand(long, long)
2125 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2126   Node* n = nullptr;
2127   switch (id) {
2128     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2129     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2130     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2131     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2132     default:  fatal_unexpected_iid(id);  break;
2133   }
2134   set_result(_gvn.transform(n));
2135   return true;
2136 }
2137 
2138 //--------------------------inline_number_methods-----------------------------
2139 // inline int Integer.compareUnsigned(int, int)
2140 // inline int    Long.compareUnsigned(long, long)
2141 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2142   Node* arg1 = argument(0);
2143   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2144   Node* n = nullptr;
2145   switch (id) {
2146     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2147     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2148     default:  fatal_unexpected_iid(id);  break;
2149   }
2150   set_result(_gvn.transform(n));
2151   return true;
2152 }
2153 
2154 //--------------------------inline_unsigned_divmod_methods-----------------------------
2155 // inline int Integer.divideUnsigned(int, int)
2156 // inline int Integer.remainderUnsigned(int, int)
2157 // inline long Long.divideUnsigned(long, long)
2158 // inline long Long.remainderUnsigned(long, long)
2159 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2160   Node* n = nullptr;
2161   switch (id) {
2162     case vmIntrinsics::_divideUnsigned_i: {
2163       zero_check_int(argument(1));
2164       // Compile-time detect of null-exception
2165       if (stopped()) {
2166         return true; // keep the graph constructed so far
2167       }
2168       n = new UDivINode(control(), argument(0), argument(1));
2169       break;
2170     }
2171     case vmIntrinsics::_divideUnsigned_l: {
2172       zero_check_long(argument(2));
2173       // Compile-time detect of null-exception
2174       if (stopped()) {
2175         return true; // keep the graph constructed so far
2176       }
2177       n = new UDivLNode(control(), argument(0), argument(2));
2178       break;
2179     }
2180     case vmIntrinsics::_remainderUnsigned_i: {
2181       zero_check_int(argument(1));
2182       // Compile-time detect of null-exception
2183       if (stopped()) {
2184         return true; // keep the graph constructed so far
2185       }
2186       n = new UModINode(control(), argument(0), argument(1));
2187       break;
2188     }
2189     case vmIntrinsics::_remainderUnsigned_l: {
2190       zero_check_long(argument(2));
2191       // Compile-time detect of null-exception
2192       if (stopped()) {
2193         return true; // keep the graph constructed so far
2194       }
2195       n = new UModLNode(control(), argument(0), argument(2));
2196       break;
2197     }
2198     default:  fatal_unexpected_iid(id);  break;
2199   }
2200   set_result(_gvn.transform(n));
2201   return true;
2202 }
2203 
2204 //----------------------------inline_unsafe_access----------------------------
2205 
2206 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2207   // Attempt to infer a sharper value type from the offset and base type.
2208   ciKlass* sharpened_klass = nullptr;
2209 
2210   // See if it is an instance field, with an object type.
2211   if (alias_type->field() != nullptr) {
2212     if (alias_type->field()->type()->is_klass()) {
2213       sharpened_klass = alias_type->field()->type()->as_klass();
2214     }
2215   }
2216 
2217   const TypeOopPtr* result = nullptr;
2218   // See if it is a narrow oop array.
2219   if (adr_type->isa_aryptr()) {
2220     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2221       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2222       if (elem_type != nullptr && elem_type->is_loaded()) {
2223         // Sharpen the value type.
2224         result = elem_type;
2225       }
2226     }
2227   }
2228 
2229   // The sharpened class might be unloaded if there is no class loader
2230   // contraint in place.
2231   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2232     // Sharpen the value type.
2233     result = TypeOopPtr::make_from_klass(sharpened_klass);
2234   }
2235   if (result != nullptr) {
2236 #ifndef PRODUCT
2237     if (C->print_intrinsics() || C->print_inlining()) {
2238       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2239       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2240     }
2241 #endif
2242   }
2243   return result;
2244 }
2245 
2246 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2247   switch (kind) {
2248       case Relaxed:
2249         return MO_UNORDERED;
2250       case Opaque:
2251         return MO_RELAXED;
2252       case Acquire:
2253         return MO_ACQUIRE;
2254       case Release:
2255         return MO_RELEASE;
2256       case Volatile:
2257         return MO_SEQ_CST;
2258       default:
2259         ShouldNotReachHere();
2260         return 0;
2261   }
2262 }
2263 
2264 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2265   if (callee()->is_static())  return false;  // caller must have the capability!
2266   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2267   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2268   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2269   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2270 
2271   if (is_reference_type(type)) {
2272     decorators |= ON_UNKNOWN_OOP_REF;
2273   }
2274 
2275   if (unaligned) {
2276     decorators |= C2_UNALIGNED;
2277   }
2278 
2279 #ifndef PRODUCT
2280   {
2281     ResourceMark rm;
2282     // Check the signatures.
2283     ciSignature* sig = callee()->signature();
2284 #ifdef ASSERT
2285     if (!is_store) {
2286       // Object getReference(Object base, int/long offset), etc.
2287       BasicType rtype = sig->return_type()->basic_type();
2288       assert(rtype == type, "getter must return the expected value");
2289       assert(sig->count() == 2, "oop getter has 2 arguments");
2290       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2291       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2292     } else {
2293       // void putReference(Object base, int/long offset, Object x), etc.
2294       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2295       assert(sig->count() == 3, "oop putter has 3 arguments");
2296       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2297       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2298       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2299       assert(vtype == type, "putter must accept the expected value");
2300     }
2301 #endif // ASSERT
2302  }
2303 #endif //PRODUCT
2304 
2305   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2306 
2307   Node* receiver = argument(0);  // type: oop
2308 
2309   // Build address expression.
2310   Node* heap_base_oop = top();
2311 
2312   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2313   Node* base = argument(1);  // type: oop
2314   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2315   Node* offset = argument(2);  // type: long
2316   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2317   // to be plain byte offsets, which are also the same as those accepted
2318   // by oopDesc::field_addr.
2319   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2320          "fieldOffset must be byte-scaled");
2321   // 32-bit machines ignore the high half!
2322   offset = ConvL2X(offset);
2323 
2324   // Save state and restore on bailout
2325   uint old_sp = sp();
2326   SafePointNode* old_map = clone_map();
2327 
2328   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2329 
2330   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2331     if (type != T_OBJECT) {
2332       decorators |= IN_NATIVE; // off-heap primitive access
2333     } else {
2334       set_map(old_map);
2335       set_sp(old_sp);
2336       return false; // off-heap oop accesses are not supported
2337     }
2338   } else {
2339     heap_base_oop = base; // on-heap or mixed access
2340   }
2341 
2342   // Can base be null? Otherwise, always on-heap access.
2343   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2344 
2345   if (!can_access_non_heap) {
2346     decorators |= IN_HEAP;
2347   }
2348 
2349   Node* val = is_store ? argument(4) : nullptr;
2350 
2351   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2352   if (adr_type == TypePtr::NULL_PTR) {
2353     set_map(old_map);
2354     set_sp(old_sp);
2355     return false; // off-heap access with zero address
2356   }
2357 
2358   // Try to categorize the address.
2359   Compile::AliasType* alias_type = C->alias_type(adr_type);
2360   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2361 
2362   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2363       alias_type->adr_type() == TypeAryPtr::RANGE) {
2364     set_map(old_map);
2365     set_sp(old_sp);
2366     return false; // not supported
2367   }
2368 
2369   bool mismatched = false;
2370   BasicType bt = alias_type->basic_type();
2371   if (bt != T_ILLEGAL) {
2372     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2373     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2374       // Alias type doesn't differentiate between byte[] and boolean[]).
2375       // Use address type to get the element type.
2376       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2377     }
2378     if (is_reference_type(bt, true)) {
2379       // accessing an array field with getReference is not a mismatch
2380       bt = T_OBJECT;
2381     }
2382     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2383       // Don't intrinsify mismatched object accesses
2384       set_map(old_map);
2385       set_sp(old_sp);
2386       return false;
2387     }
2388     mismatched = (bt != type);
2389   } else if (alias_type->adr_type()->isa_oopptr()) {
2390     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2391   }
2392 
2393   destruct_map_clone(old_map);
2394   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2395 
2396   if (mismatched) {
2397     decorators |= C2_MISMATCHED;
2398   }
2399 
2400   // First guess at the value type.
2401   const Type *value_type = Type::get_const_basic_type(type);
2402 
2403   // Figure out the memory ordering.
2404   decorators |= mo_decorator_for_access_kind(kind);
2405 
2406   if (!is_store && type == T_OBJECT) {
2407     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2408     if (tjp != nullptr) {
2409       value_type = tjp;
2410     }
2411   }
2412 
2413   receiver = null_check(receiver);
2414   if (stopped()) {
2415     return true;
2416   }
2417   // Heap pointers get a null-check from the interpreter,
2418   // as a courtesy.  However, this is not guaranteed by Unsafe,
2419   // and it is not possible to fully distinguish unintended nulls
2420   // from intended ones in this API.
2421 
2422   if (!is_store) {
2423     Node* p = nullptr;
2424     // Try to constant fold a load from a constant field
2425     ciField* field = alias_type->field();
2426     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2427       // final or stable field
2428       p = make_constant_from_field(field, heap_base_oop);
2429     }
2430 
2431     if (p == nullptr) { // Could not constant fold the load
2432       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2433       // Normalize the value returned by getBoolean in the following cases
2434       if (type == T_BOOLEAN &&
2435           (mismatched ||
2436            heap_base_oop == top() ||                  // - heap_base_oop is null or
2437            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2438                                                       //   and the unsafe access is made to large offset
2439                                                       //   (i.e., larger than the maximum offset necessary for any
2440                                                       //   field access)
2441             ) {
2442           IdealKit ideal = IdealKit(this);
2443 #define __ ideal.
2444           IdealVariable normalized_result(ideal);
2445           __ declarations_done();
2446           __ set(normalized_result, p);
2447           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2448           __ set(normalized_result, ideal.ConI(1));
2449           ideal.end_if();
2450           final_sync(ideal);
2451           p = __ value(normalized_result);
2452 #undef __
2453       }
2454     }
2455     if (type == T_ADDRESS) {
2456       p = gvn().transform(new CastP2XNode(nullptr, p));
2457       p = ConvX2UL(p);
2458     }
2459     // The load node has the control of the preceding MemBarCPUOrder.  All
2460     // following nodes will have the control of the MemBarCPUOrder inserted at
2461     // the end of this method.  So, pushing the load onto the stack at a later
2462     // point is fine.
2463     set_result(p);
2464   } else {
2465     if (bt == T_ADDRESS) {
2466       // Repackage the long as a pointer.
2467       val = ConvL2X(val);
2468       val = gvn().transform(new CastX2PNode(val));
2469     }
2470     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2471   }
2472 
2473   return true;
2474 }
2475 
2476 //----------------------------inline_unsafe_load_store----------------------------
2477 // This method serves a couple of different customers (depending on LoadStoreKind):
2478 //
2479 // LS_cmp_swap:
2480 //
2481 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2482 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2483 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2484 //
2485 // LS_cmp_swap_weak:
2486 //
2487 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2488 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2489 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2490 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2491 //
2492 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2493 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2494 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2495 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2496 //
2497 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2498 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2499 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2500 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2501 //
2502 // LS_cmp_exchange:
2503 //
2504 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2505 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2506 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2507 //
2508 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2509 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2510 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2511 //
2512 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2513 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2514 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2515 //
2516 // LS_get_add:
2517 //
2518 //   int  getAndAddInt( Object o, long offset, int  delta)
2519 //   long getAndAddLong(Object o, long offset, long delta)
2520 //
2521 // LS_get_set:
2522 //
2523 //   int    getAndSet(Object o, long offset, int    newValue)
2524 //   long   getAndSet(Object o, long offset, long   newValue)
2525 //   Object getAndSet(Object o, long offset, Object newValue)
2526 //
2527 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2528   // This basic scheme here is the same as inline_unsafe_access, but
2529   // differs in enough details that combining them would make the code
2530   // overly confusing.  (This is a true fact! I originally combined
2531   // them, but even I was confused by it!) As much code/comments as
2532   // possible are retained from inline_unsafe_access though to make
2533   // the correspondences clearer. - dl
2534 
2535   if (callee()->is_static())  return false;  // caller must have the capability!
2536 
2537   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2538   decorators |= mo_decorator_for_access_kind(access_kind);
2539 
2540 #ifndef PRODUCT
2541   BasicType rtype;
2542   {
2543     ResourceMark rm;
2544     // Check the signatures.
2545     ciSignature* sig = callee()->signature();
2546     rtype = sig->return_type()->basic_type();
2547     switch(kind) {
2548       case LS_get_add:
2549       case LS_get_set: {
2550       // Check the signatures.
2551 #ifdef ASSERT
2552       assert(rtype == type, "get and set must return the expected type");
2553       assert(sig->count() == 3, "get and set has 3 arguments");
2554       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2555       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2556       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2557       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2558 #endif // ASSERT
2559         break;
2560       }
2561       case LS_cmp_swap:
2562       case LS_cmp_swap_weak: {
2563       // Check the signatures.
2564 #ifdef ASSERT
2565       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2566       assert(sig->count() == 4, "CAS has 4 arguments");
2567       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2568       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2569 #endif // ASSERT
2570         break;
2571       }
2572       case LS_cmp_exchange: {
2573       // Check the signatures.
2574 #ifdef ASSERT
2575       assert(rtype == type, "CAS must return the expected type");
2576       assert(sig->count() == 4, "CAS has 4 arguments");
2577       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2578       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2579 #endif // ASSERT
2580         break;
2581       }
2582       default:
2583         ShouldNotReachHere();
2584     }
2585   }
2586 #endif //PRODUCT
2587 
2588   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2589 
2590   // Get arguments:
2591   Node* receiver = nullptr;
2592   Node* base     = nullptr;
2593   Node* offset   = nullptr;
2594   Node* oldval   = nullptr;
2595   Node* newval   = nullptr;
2596   switch(kind) {
2597     case LS_cmp_swap:
2598     case LS_cmp_swap_weak:
2599     case LS_cmp_exchange: {
2600       const bool two_slot_type = type2size[type] == 2;
2601       receiver = argument(0);  // type: oop
2602       base     = argument(1);  // type: oop
2603       offset   = argument(2);  // type: long
2604       oldval   = argument(4);  // type: oop, int, or long
2605       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2606       break;
2607     }
2608     case LS_get_add:
2609     case LS_get_set: {
2610       receiver = argument(0);  // type: oop
2611       base     = argument(1);  // type: oop
2612       offset   = argument(2);  // type: long
2613       oldval   = nullptr;
2614       newval   = argument(4);  // type: oop, int, or long
2615       break;
2616     }
2617     default:
2618       ShouldNotReachHere();
2619   }
2620 
2621   // Build field offset expression.
2622   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2623   // to be plain byte offsets, which are also the same as those accepted
2624   // by oopDesc::field_addr.
2625   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2626   // 32-bit machines ignore the high half of long offsets
2627   offset = ConvL2X(offset);
2628   // Save state and restore on bailout
2629   uint old_sp = sp();
2630   SafePointNode* old_map = clone_map();
2631   Node* adr = make_unsafe_address(base, offset,type, false);
2632   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2633 
2634   Compile::AliasType* alias_type = C->alias_type(adr_type);
2635   BasicType bt = alias_type->basic_type();
2636   if (bt != T_ILLEGAL &&
2637       (is_reference_type(bt) != (type == T_OBJECT))) {
2638     // Don't intrinsify mismatched object accesses.
2639     set_map(old_map);
2640     set_sp(old_sp);
2641     return false;
2642   }
2643 
2644   destruct_map_clone(old_map);
2645 
2646   // For CAS, unlike inline_unsafe_access, there seems no point in
2647   // trying to refine types. Just use the coarse types here.
2648   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2649   const Type *value_type = Type::get_const_basic_type(type);
2650 
2651   switch (kind) {
2652     case LS_get_set:
2653     case LS_cmp_exchange: {
2654       if (type == T_OBJECT) {
2655         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2656         if (tjp != nullptr) {
2657           value_type = tjp;
2658         }
2659       }
2660       break;
2661     }
2662     case LS_cmp_swap:
2663     case LS_cmp_swap_weak:
2664     case LS_get_add:
2665       break;
2666     default:
2667       ShouldNotReachHere();
2668   }
2669 
2670   // Null check receiver.
2671   receiver = null_check(receiver);
2672   if (stopped()) {
2673     return true;
2674   }
2675 
2676   int alias_idx = C->get_alias_index(adr_type);
2677 
2678   if (is_reference_type(type)) {
2679     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2680 
2681     // Transformation of a value which could be null pointer (CastPP #null)
2682     // could be delayed during Parse (for example, in adjust_map_after_if()).
2683     // Execute transformation here to avoid barrier generation in such case.
2684     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2685       newval = _gvn.makecon(TypePtr::NULL_PTR);
2686 
2687     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2688       // Refine the value to a null constant, when it is known to be null
2689       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2690     }
2691   }
2692 
2693   Node* result = nullptr;
2694   switch (kind) {
2695     case LS_cmp_exchange: {
2696       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2697                                             oldval, newval, value_type, type, decorators);
2698       break;
2699     }
2700     case LS_cmp_swap_weak:
2701       decorators |= C2_WEAK_CMPXCHG;
2702     case LS_cmp_swap: {
2703       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2704                                              oldval, newval, value_type, type, decorators);
2705       break;
2706     }
2707     case LS_get_set: {
2708       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2709                                      newval, value_type, type, decorators);
2710       break;
2711     }
2712     case LS_get_add: {
2713       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2714                                     newval, value_type, type, decorators);
2715       break;
2716     }
2717     default:
2718       ShouldNotReachHere();
2719   }
2720 
2721   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2722   set_result(result);
2723   return true;
2724 }
2725 
2726 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2727   // Regardless of form, don't allow previous ld/st to move down,
2728   // then issue acquire, release, or volatile mem_bar.
2729   insert_mem_bar(Op_MemBarCPUOrder);
2730   switch(id) {
2731     case vmIntrinsics::_loadFence:
2732       insert_mem_bar(Op_LoadFence);
2733       return true;
2734     case vmIntrinsics::_storeFence:
2735       insert_mem_bar(Op_StoreFence);
2736       return true;
2737     case vmIntrinsics::_storeStoreFence:
2738       insert_mem_bar(Op_StoreStoreFence);
2739       return true;
2740     case vmIntrinsics::_fullFence:
2741       insert_mem_bar(Op_MemBarVolatile);
2742       return true;
2743     default:
2744       fatal_unexpected_iid(id);
2745       return false;
2746   }
2747 }
2748 
2749 bool LibraryCallKit::inline_onspinwait() {
2750   insert_mem_bar(Op_OnSpinWait);
2751   return true;
2752 }
2753 
2754 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2755   if (!kls->is_Con()) {
2756     return true;
2757   }
2758   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2759   if (klsptr == nullptr) {
2760     return true;
2761   }
2762   ciInstanceKlass* ik = klsptr->instance_klass();
2763   // don't need a guard for a klass that is already initialized
2764   return !ik->is_initialized();
2765 }
2766 
2767 //----------------------------inline_unsafe_writeback0-------------------------
2768 // public native void Unsafe.writeback0(long address)
2769 bool LibraryCallKit::inline_unsafe_writeback0() {
2770   if (!Matcher::has_match_rule(Op_CacheWB)) {
2771     return false;
2772   }
2773 #ifndef PRODUCT
2774   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2775   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2776   ciSignature* sig = callee()->signature();
2777   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2778 #endif
2779   null_check_receiver();  // null-check, then ignore
2780   Node *addr = argument(1);
2781   addr = new CastX2PNode(addr);
2782   addr = _gvn.transform(addr);
2783   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2784   flush = _gvn.transform(flush);
2785   set_memory(flush, TypeRawPtr::BOTTOM);
2786   return true;
2787 }
2788 
2789 //----------------------------inline_unsafe_writeback0-------------------------
2790 // public native void Unsafe.writeback0(long address)
2791 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2792   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2793     return false;
2794   }
2795   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2796     return false;
2797   }
2798 #ifndef PRODUCT
2799   assert(Matcher::has_match_rule(Op_CacheWB),
2800          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2801                 : "found match rule for CacheWBPostSync but not CacheWB"));
2802 
2803 #endif
2804   null_check_receiver();  // null-check, then ignore
2805   Node *sync;
2806   if (is_pre) {
2807     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2808   } else {
2809     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2810   }
2811   sync = _gvn.transform(sync);
2812   set_memory(sync, TypeRawPtr::BOTTOM);
2813   return true;
2814 }
2815 
2816 //----------------------------inline_unsafe_allocate---------------------------
2817 // public native Object Unsafe.allocateInstance(Class<?> cls);
2818 bool LibraryCallKit::inline_unsafe_allocate() {
2819 
2820 #if INCLUDE_JVMTI
2821   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2822     return false;
2823   }
2824 #endif //INCLUDE_JVMTI
2825 
2826   if (callee()->is_static())  return false;  // caller must have the capability!
2827 
2828   null_check_receiver();  // null-check, then ignore
2829   Node* cls = null_check(argument(1));
2830   if (stopped())  return true;
2831 
2832   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2833   kls = null_check(kls);
2834   if (stopped())  return true;  // argument was like int.class
2835 
2836 #if INCLUDE_JVMTI
2837     // Don't try to access new allocated obj in the intrinsic.
2838     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
2839     // Deoptimize and allocate in interpreter instead.
2840     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
2841     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
2842     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
2843     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2844     {
2845       BuildCutout unless(this, tst, PROB_MAX);
2846       uncommon_trap(Deoptimization::Reason_intrinsic,
2847                     Deoptimization::Action_make_not_entrant);
2848     }
2849     if (stopped()) {
2850       return true;
2851     }
2852 #endif //INCLUDE_JVMTI
2853 
2854   Node* test = nullptr;
2855   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2856     // Note:  The argument might still be an illegal value like
2857     // Serializable.class or Object[].class.   The runtime will handle it.
2858     // But we must make an explicit check for initialization.
2859     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2860     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2861     // can generate code to load it as unsigned byte.
2862     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2863     Node* bits = intcon(InstanceKlass::fully_initialized);
2864     test = _gvn.transform(new SubINode(inst, bits));
2865     // The 'test' is non-zero if we need to take a slow path.
2866   }
2867 
2868   Node* obj = new_instance(kls, test);
2869   set_result(obj);
2870   return true;
2871 }
2872 
2873 //------------------------inline_native_time_funcs--------------
2874 // inline code for System.currentTimeMillis() and System.nanoTime()
2875 // these have the same type and signature
2876 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2877   const TypeFunc* tf = OptoRuntime::void_long_Type();
2878   const TypePtr* no_memory_effects = nullptr;
2879   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2880   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2881 #ifdef ASSERT
2882   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2883   assert(value_top == top(), "second value must be top");
2884 #endif
2885   set_result(value);
2886   return true;
2887 }
2888 
2889 
2890 #if INCLUDE_JVMTI
2891 
2892 // When notifications are disabled then just update the VTMS transition bit and return.
2893 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
2894 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
2895   if (!DoJVMTIVirtualThreadTransitions) {
2896     return true;
2897   }
2898   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
2899   IdealKit ideal(this);
2900 
2901   Node* ONE = ideal.ConI(1);
2902   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
2903   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
2904   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2905 
2906   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
2907     sync_kit(ideal);
2908     // if notifyJvmti enabled then make a call to the given SharedRuntime function
2909     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
2910     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
2911     ideal.sync_kit(this);
2912   } ideal.else_(); {
2913     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
2914     Node* thread = ideal.thread();
2915     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
2916     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
2917     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
2918 
2919     sync_kit(ideal);
2920     access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2921     access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2922 
2923     ideal.sync_kit(this);
2924   } ideal.end_if();
2925   final_sync(ideal);
2926 
2927   return true;
2928 }
2929 
2930 // Always update the temporary VTMS transition bit.
2931 bool LibraryCallKit::inline_native_notify_jvmti_hide() {
2932   if (!DoJVMTIVirtualThreadTransitions) {
2933     return true;
2934   }
2935   IdealKit ideal(this);
2936 
2937   {
2938     // unconditionally update the temporary VTMS transition bit in current JavaThread
2939     Node* thread = ideal.thread();
2940     Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification
2941     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset()));
2942     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
2943 
2944     sync_kit(ideal);
2945     access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2946     ideal.sync_kit(this);
2947   }
2948   final_sync(ideal);
2949 
2950   return true;
2951 }
2952 
2953 #endif // INCLUDE_JVMTI
2954 
2955 #ifdef JFR_HAVE_INTRINSICS
2956 
2957 /**
2958  * if oop->klass != null
2959  *   // normal class
2960  *   epoch = _epoch_state ? 2 : 1
2961  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
2962  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
2963  *   }
2964  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
2965  * else
2966  *   // primitive class
2967  *   if oop->array_klass != null
2968  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
2969  *   else
2970  *     id = LAST_TYPE_ID + 1 // void class path
2971  *   if (!signaled)
2972  *     signaled = true
2973  */
2974 bool LibraryCallKit::inline_native_classID() {
2975   Node* cls = argument(0);
2976 
2977   IdealKit ideal(this);
2978 #define __ ideal.
2979   IdealVariable result(ideal); __ declarations_done();
2980   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
2981                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
2982                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
2983 
2984 
2985   __ if_then(kls, BoolTest::ne, null()); {
2986     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
2987     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
2988 
2989     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
2990     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2991     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
2992     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
2993     mask = _gvn.transform(new OrLNode(mask, epoch));
2994     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
2995 
2996     float unlikely  = PROB_UNLIKELY(0.999);
2997     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
2998       sync_kit(ideal);
2999       make_runtime_call(RC_LEAF,
3000                         OptoRuntime::class_id_load_barrier_Type(),
3001                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3002                         "class id load barrier",
3003                         TypePtr::BOTTOM,
3004                         kls);
3005       ideal.sync_kit(this);
3006     } __ end_if();
3007 
3008     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3009   } __ else_(); {
3010     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3011                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3012                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3013     __ if_then(array_kls, BoolTest::ne, null()); {
3014       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3015       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3016       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3017       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3018     } __ else_(); {
3019       // void class case
3020       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3021     } __ end_if();
3022 
3023     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3024     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3025     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3026       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3027     } __ end_if();
3028   } __ end_if();
3029 
3030   final_sync(ideal);
3031   set_result(ideal.value(result));
3032 #undef __
3033   return true;
3034 }
3035 
3036 //------------------------inline_native_jvm_commit------------------
3037 bool LibraryCallKit::inline_native_jvm_commit() {
3038   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3039 
3040   // Save input memory and i_o state.
3041   Node* input_memory_state = reset_memory();
3042   set_all_memory(input_memory_state);
3043   Node* input_io_state = i_o();
3044 
3045   // TLS.
3046   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3047   // Jfr java buffer.
3048   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3049   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3050   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3051 
3052   // Load the current value of the notified field in the JfrThreadLocal.
3053   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3054   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3055 
3056   // Test for notification.
3057   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3058   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3059   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3060 
3061   // True branch, is notified.
3062   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3063   set_control(is_notified);
3064 
3065   // Reset notified state.
3066   Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered);
3067 
3068   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3069   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3070   // Convert the machine-word to a long.
3071   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3072 
3073   // False branch, not notified.
3074   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3075   set_control(not_notified);
3076   set_all_memory(input_memory_state);
3077 
3078   // Arg is the next position as a long.
3079   Node* arg = argument(0);
3080   // Convert long to machine-word.
3081   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3082 
3083   // Store the next_position to the underlying jfr java buffer.
3084   Node* commit_memory;
3085 #ifdef _LP64
3086   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release);
3087 #else
3088   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release);
3089 #endif
3090 
3091   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3092   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3093   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3094   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3095 
3096   // And flags with lease constant.
3097   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3098 
3099   // Branch on lease to conditionalize returning the leased java buffer.
3100   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3101   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3102   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3103 
3104   // False branch, not a lease.
3105   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3106 
3107   // True branch, is lease.
3108   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3109   set_control(is_lease);
3110 
3111   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3112   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3113                                               OptoRuntime::void_void_Type(),
3114                                               StubRoutines::jfr_return_lease(),
3115                                               "return_lease", TypePtr::BOTTOM);
3116   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3117 
3118   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3119   record_for_igvn(lease_compare_rgn);
3120   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3121   record_for_igvn(lease_compare_mem);
3122   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3123   record_for_igvn(lease_compare_io);
3124   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3125   record_for_igvn(lease_result_value);
3126 
3127   // Update control and phi nodes.
3128   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3129   lease_compare_rgn->init_req(_false_path, not_lease);
3130 
3131   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3132   lease_compare_mem->init_req(_false_path, commit_memory);
3133 
3134   lease_compare_io->init_req(_true_path, i_o());
3135   lease_compare_io->init_req(_false_path, input_io_state);
3136 
3137   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3138   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3139 
3140   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3141   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3142   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3143   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3144 
3145   // Update control and phi nodes.
3146   result_rgn->init_req(_true_path, is_notified);
3147   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3148 
3149   result_mem->init_req(_true_path, notified_reset_memory);
3150   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3151 
3152   result_io->init_req(_true_path, input_io_state);
3153   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3154 
3155   result_value->init_req(_true_path, current_pos);
3156   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3157 
3158   // Set output state.
3159   set_control(_gvn.transform(result_rgn));
3160   set_all_memory(_gvn.transform(result_mem));
3161   set_i_o(_gvn.transform(result_io));
3162   set_result(result_rgn, result_value);
3163   return true;
3164 }
3165 
3166 /*
3167  * The intrinsic is a model of this pseudo-code:
3168  *
3169  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3170  * jobject h_event_writer = tl->java_event_writer();
3171  * if (h_event_writer == nullptr) {
3172  *   return nullptr;
3173  * }
3174  * oop threadObj = Thread::threadObj();
3175  * oop vthread = java_lang_Thread::vthread(threadObj);
3176  * traceid tid;
3177  * bool excluded;
3178  * if (vthread != threadObj) {  // i.e. current thread is virtual
3179  *   tid = java_lang_Thread::tid(vthread);
3180  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3181  *   excluded = vthread_epoch_raw & excluded_mask;
3182  *   if (!excluded) {
3183  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3184  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3185  *     if (vthread_epoch != current_epoch) {
3186  *       write_checkpoint();
3187  *     }
3188  *   }
3189  * } else {
3190  *   tid = java_lang_Thread::tid(threadObj);
3191  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3192  *   excluded = thread_epoch_raw & excluded_mask;
3193  * }
3194  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3195  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3196  * if (tid_in_event_writer != tid) {
3197  *   setField(event_writer, "threadID", tid);
3198  *   setField(event_writer, "excluded", excluded);
3199  * }
3200  * return event_writer
3201  */
3202 bool LibraryCallKit::inline_native_getEventWriter() {
3203   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3204 
3205   // Save input memory and i_o state.
3206   Node* input_memory_state = reset_memory();
3207   set_all_memory(input_memory_state);
3208   Node* input_io_state = i_o();
3209 
3210   Node* excluded_mask = _gvn.intcon(32768);
3211   Node* epoch_mask = _gvn.intcon(32767);
3212 
3213   // TLS
3214   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3215 
3216   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3217   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3218 
3219   // Load the eventwriter jobject handle.
3220   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3221 
3222   // Null check the jobject handle.
3223   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3224   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3225   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3226 
3227   // False path, jobj is null.
3228   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3229 
3230   // True path, jobj is not null.
3231   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3232 
3233   set_control(jobj_is_not_null);
3234 
3235   // Load the threadObj for the CarrierThread.
3236   Node* threadObj = generate_current_thread(tls_ptr);
3237 
3238   // Load the vthread.
3239   Node* vthread = generate_virtual_thread(tls_ptr);
3240 
3241   // If vthread != threadObj, this is a virtual thread.
3242   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3243   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3244   IfNode* iff_vthread_not_equal_threadObj =
3245     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3246 
3247   // False branch, fallback to threadObj.
3248   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3249   set_control(vthread_equal_threadObj);
3250 
3251   // Load the tid field from the vthread object.
3252   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3253 
3254   // Load the raw epoch value from the threadObj.
3255   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3256   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3257                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3258 
3259   // Mask off the excluded information from the epoch.
3260   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3261 
3262   // True branch, this is a virtual thread.
3263   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3264   set_control(vthread_not_equal_threadObj);
3265 
3266   // Load the tid field from the vthread object.
3267   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3268 
3269   // Load the raw epoch value from the vthread.
3270   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3271   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3272                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3273 
3274   // Mask off the excluded information from the epoch.
3275   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3276 
3277   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3278   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3279   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3280   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3281 
3282   // False branch, vthread is excluded, no need to write epoch info.
3283   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3284 
3285   // True branch, vthread is included, update epoch info.
3286   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3287   set_control(included);
3288 
3289   // Get epoch value.
3290   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3291 
3292   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3293   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3294   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3295 
3296   // Compare the epoch in the vthread to the current epoch generation.
3297   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3298   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3299   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3300 
3301   // False path, epoch is equal, checkpoint information is valid.
3302   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3303 
3304   // True path, epoch is not equal, write a checkpoint for the vthread.
3305   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3306 
3307   set_control(epoch_is_not_equal);
3308 
3309   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3310   // The call also updates the native thread local thread id and the vthread with the current epoch.
3311   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3312                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3313                                                   StubRoutines::jfr_write_checkpoint(),
3314                                                   "write_checkpoint", TypePtr::BOTTOM);
3315   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3316 
3317   // vthread epoch != current epoch
3318   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3319   record_for_igvn(epoch_compare_rgn);
3320   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3321   record_for_igvn(epoch_compare_mem);
3322   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3323   record_for_igvn(epoch_compare_io);
3324 
3325   // Update control and phi nodes.
3326   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3327   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3328   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3329   epoch_compare_mem->init_req(_false_path, input_memory_state);
3330   epoch_compare_io->init_req(_true_path, i_o());
3331   epoch_compare_io->init_req(_false_path, input_io_state);
3332 
3333   // excluded != true
3334   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3335   record_for_igvn(exclude_compare_rgn);
3336   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3337   record_for_igvn(exclude_compare_mem);
3338   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3339   record_for_igvn(exclude_compare_io);
3340 
3341   // Update control and phi nodes.
3342   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3343   exclude_compare_rgn->init_req(_false_path, excluded);
3344   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3345   exclude_compare_mem->init_req(_false_path, input_memory_state);
3346   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3347   exclude_compare_io->init_req(_false_path, input_io_state);
3348 
3349   // vthread != threadObj
3350   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3351   record_for_igvn(vthread_compare_rgn);
3352   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3353   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3354   record_for_igvn(vthread_compare_io);
3355   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3356   record_for_igvn(tid);
3357   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3358   record_for_igvn(exclusion);
3359 
3360   // Update control and phi nodes.
3361   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3362   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3363   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3364   vthread_compare_mem->init_req(_false_path, input_memory_state);
3365   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3366   vthread_compare_io->init_req(_false_path, input_io_state);
3367   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3368   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3369   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3370   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3371 
3372   // Update branch state.
3373   set_control(_gvn.transform(vthread_compare_rgn));
3374   set_all_memory(_gvn.transform(vthread_compare_mem));
3375   set_i_o(_gvn.transform(vthread_compare_io));
3376 
3377   // Load the event writer oop by dereferencing the jobject handle.
3378   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3379   assert(klass_EventWriter->is_loaded(), "invariant");
3380   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3381   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3382   const TypeOopPtr* const xtype = aklass->as_instance_type();
3383   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3384   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3385 
3386   // Load the current thread id from the event writer object.
3387   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3388   // Get the field offset to, conditionally, store an updated tid value later.
3389   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3390   const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr();
3391   // Get the field offset to, conditionally, store an updated exclusion value later.
3392   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3393   const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr();
3394 
3395   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3396   record_for_igvn(event_writer_tid_compare_rgn);
3397   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3398   record_for_igvn(event_writer_tid_compare_mem);
3399   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3400   record_for_igvn(event_writer_tid_compare_io);
3401 
3402   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3403   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3404   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3405   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3406 
3407   // False path, tids are the same.
3408   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3409 
3410   // True path, tid is not equal, need to update the tid in the event writer.
3411   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3412   record_for_igvn(tid_is_not_equal);
3413 
3414   // Store the exclusion state to the event writer.
3415   store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered);
3416 
3417   // Store the tid to the event writer.
3418   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered);
3419 
3420   // Update control and phi nodes.
3421   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3422   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3423   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3424   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3425   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3426   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3427 
3428   // Result of top level CFG, Memory, IO and Value.
3429   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3430   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3431   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3432   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3433 
3434   // Result control.
3435   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3436   result_rgn->init_req(_false_path, jobj_is_null);
3437 
3438   // Result memory.
3439   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3440   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3441 
3442   // Result IO.
3443   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3444   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3445 
3446   // Result value.
3447   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3448   result_value->init_req(_false_path, null()); // return null
3449 
3450   // Set output state.
3451   set_control(_gvn.transform(result_rgn));
3452   set_all_memory(_gvn.transform(result_mem));
3453   set_i_o(_gvn.transform(result_io));
3454   set_result(result_rgn, result_value);
3455   return true;
3456 }
3457 
3458 /*
3459  * The intrinsic is a model of this pseudo-code:
3460  *
3461  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3462  * if (carrierThread != thread) { // is virtual thread
3463  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3464  *   bool excluded = vthread_epoch_raw & excluded_mask;
3465  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3466  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3467  *   if (!excluded) {
3468  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3469  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3470  *   }
3471  *   Atomic::release_store(&tl->_vthread, true);
3472  *   return;
3473  * }
3474  * Atomic::release_store(&tl->_vthread, false);
3475  */
3476 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3477   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3478 
3479   Node* input_memory_state = reset_memory();
3480   set_all_memory(input_memory_state);
3481 
3482   Node* excluded_mask = _gvn.intcon(32768);
3483   Node* epoch_mask = _gvn.intcon(32767);
3484 
3485   Node* const carrierThread = generate_current_thread(jt);
3486   // If thread != carrierThread, this is a virtual thread.
3487   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3488   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3489   IfNode* iff_thread_not_equal_carrierThread =
3490     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3491 
3492   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3493 
3494   // False branch, is carrierThread.
3495   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3496   // Store release
3497   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3498 
3499   set_all_memory(input_memory_state);
3500 
3501   // True branch, is virtual thread.
3502   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3503   set_control(thread_not_equal_carrierThread);
3504 
3505   // Load the raw epoch value from the vthread.
3506   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3507   Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3508                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3509 
3510   // Mask off the excluded information from the epoch.
3511   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3512 
3513   // Load the tid field from the thread.
3514   Node* tid = load_field_from_object(thread, "tid", "J");
3515 
3516   // Store the vthread tid to the jfr thread local.
3517   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3518   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3519 
3520   // Branch is_excluded to conditionalize updating the epoch .
3521   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3522   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3523   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3524 
3525   // True branch, vthread is excluded, no need to write epoch info.
3526   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3527   set_control(excluded);
3528   Node* vthread_is_excluded = _gvn.intcon(1);
3529 
3530   // False branch, vthread is included, update epoch info.
3531   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3532   set_control(included);
3533   Node* vthread_is_included = _gvn.intcon(0);
3534 
3535   // Get epoch value.
3536   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3537 
3538   // Store the vthread epoch to the jfr thread local.
3539   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3540   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true);
3541 
3542   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3543   record_for_igvn(excluded_rgn);
3544   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3545   record_for_igvn(excluded_mem);
3546   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3547   record_for_igvn(exclusion);
3548 
3549   // Merge the excluded control and memory.
3550   excluded_rgn->init_req(_true_path, excluded);
3551   excluded_rgn->init_req(_false_path, included);
3552   excluded_mem->init_req(_true_path, tid_memory);
3553   excluded_mem->init_req(_false_path, included_memory);
3554   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3555   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3556 
3557   // Set intermediate state.
3558   set_control(_gvn.transform(excluded_rgn));
3559   set_all_memory(excluded_mem);
3560 
3561   // Store the vthread exclusion state to the jfr thread local.
3562   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3563   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true);
3564 
3565   // Store release
3566   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3567 
3568   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3569   record_for_igvn(thread_compare_rgn);
3570   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3571   record_for_igvn(thread_compare_mem);
3572   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3573   record_for_igvn(vthread);
3574 
3575   // Merge the thread_compare control and memory.
3576   thread_compare_rgn->init_req(_true_path, control());
3577   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3578   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3579   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3580 
3581   // Set output state.
3582   set_control(_gvn.transform(thread_compare_rgn));
3583   set_all_memory(_gvn.transform(thread_compare_mem));
3584 }
3585 
3586 #endif // JFR_HAVE_INTRINSICS
3587 
3588 //------------------------inline_native_currentCarrierThread------------------
3589 bool LibraryCallKit::inline_native_currentCarrierThread() {
3590   Node* junk = nullptr;
3591   set_result(generate_current_thread(junk));
3592   return true;
3593 }
3594 
3595 //------------------------inline_native_currentThread------------------
3596 bool LibraryCallKit::inline_native_currentThread() {
3597   Node* junk = nullptr;
3598   set_result(generate_virtual_thread(junk));
3599   return true;
3600 }
3601 
3602 //------------------------inline_native_setVthread------------------
3603 bool LibraryCallKit::inline_native_setCurrentThread() {
3604   assert(C->method()->changes_current_thread(),
3605          "method changes current Thread but is not annotated ChangesCurrentThread");
3606   Node* arr = argument(1);
3607   Node* thread = _gvn.transform(new ThreadLocalNode());
3608   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3609   Node* thread_obj_handle
3610     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3611   thread_obj_handle = _gvn.transform(thread_obj_handle);
3612   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3613   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3614   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3615   return true;
3616 }
3617 
3618 const Type* LibraryCallKit::scopedValueCache_type() {
3619   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3620   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3621   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3622 
3623   // Because we create the scopedValue cache lazily we have to make the
3624   // type of the result BotPTR.
3625   bool xk = etype->klass_is_exact();
3626   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3627   return objects_type;
3628 }
3629 
3630 Node* LibraryCallKit::scopedValueCache_helper() {
3631   Node* thread = _gvn.transform(new ThreadLocalNode());
3632   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3633   // We cannot use immutable_memory() because we might flip onto a
3634   // different carrier thread, at which point we'll need to use that
3635   // carrier thread's cache.
3636   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3637   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3638   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3639 }
3640 
3641 //------------------------inline_native_scopedValueCache------------------
3642 bool LibraryCallKit::inline_native_scopedValueCache() {
3643   Node* cache_obj_handle = scopedValueCache_helper();
3644   const Type* objects_type = scopedValueCache_type();
3645   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3646 
3647   return true;
3648 }
3649 
3650 //------------------------inline_native_setScopedValueCache------------------
3651 bool LibraryCallKit::inline_native_setScopedValueCache() {
3652   Node* arr = argument(0);
3653   Node* cache_obj_handle = scopedValueCache_helper();
3654   const Type* objects_type = scopedValueCache_type();
3655 
3656   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3657   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3658 
3659   return true;
3660 }
3661 
3662 //---------------------------load_mirror_from_klass----------------------------
3663 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3664 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3665   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3666   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3667   // mirror = ((OopHandle)mirror)->resolve();
3668   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3669 }
3670 
3671 //-----------------------load_klass_from_mirror_common-------------------------
3672 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3673 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3674 // and branch to the given path on the region.
3675 // If never_see_null, take an uncommon trap on null, so we can optimistically
3676 // compile for the non-null case.
3677 // If the region is null, force never_see_null = true.
3678 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3679                                                     bool never_see_null,
3680                                                     RegionNode* region,
3681                                                     int null_path,
3682                                                     int offset) {
3683   if (region == nullptr)  never_see_null = true;
3684   Node* p = basic_plus_adr(mirror, offset);
3685   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3686   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3687   Node* null_ctl = top();
3688   kls = null_check_oop(kls, &null_ctl, never_see_null);
3689   if (region != nullptr) {
3690     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3691     region->init_req(null_path, null_ctl);
3692   } else {
3693     assert(null_ctl == top(), "no loose ends");
3694   }
3695   return kls;
3696 }
3697 
3698 //--------------------(inline_native_Class_query helpers)---------------------
3699 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3700 // Fall through if (mods & mask) == bits, take the guard otherwise.
3701 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3702   // Branch around if the given klass has the given modifier bit set.
3703   // Like generate_guard, adds a new path onto the region.
3704   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3705   Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered);
3706   Node* mask = intcon(modifier_mask);
3707   Node* bits = intcon(modifier_bits);
3708   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3709   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3710   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3711   return generate_fair_guard(bol, region);
3712 }
3713 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3714   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3715 }
3716 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3717   return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region);
3718 }
3719 
3720 //-------------------------inline_native_Class_query-------------------
3721 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3722   const Type* return_type = TypeInt::BOOL;
3723   Node* prim_return_value = top();  // what happens if it's a primitive class?
3724   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3725   bool expect_prim = false;     // most of these guys expect to work on refs
3726 
3727   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3728 
3729   Node* mirror = argument(0);
3730   Node* obj    = top();
3731 
3732   switch (id) {
3733   case vmIntrinsics::_isInstance:
3734     // nothing is an instance of a primitive type
3735     prim_return_value = intcon(0);
3736     obj = argument(1);
3737     break;
3738   case vmIntrinsics::_getModifiers:
3739     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3740     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3741     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3742     break;
3743   case vmIntrinsics::_isInterface:
3744     prim_return_value = intcon(0);
3745     break;
3746   case vmIntrinsics::_isArray:
3747     prim_return_value = intcon(0);
3748     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3749     break;
3750   case vmIntrinsics::_isPrimitive:
3751     prim_return_value = intcon(1);
3752     expect_prim = true;  // obviously
3753     break;
3754   case vmIntrinsics::_isHidden:
3755     prim_return_value = intcon(0);
3756     break;
3757   case vmIntrinsics::_getSuperclass:
3758     prim_return_value = null();
3759     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3760     break;
3761   case vmIntrinsics::_getClassAccessFlags:
3762     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3763     return_type = TypeInt::INT;  // not bool!  6297094
3764     break;
3765   default:
3766     fatal_unexpected_iid(id);
3767     break;
3768   }
3769 
3770   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3771   if (mirror_con == nullptr)  return false;  // cannot happen?
3772 
3773 #ifndef PRODUCT
3774   if (C->print_intrinsics() || C->print_inlining()) {
3775     ciType* k = mirror_con->java_mirror_type();
3776     if (k) {
3777       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3778       k->print_name();
3779       tty->cr();
3780     }
3781   }
3782 #endif
3783 
3784   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3785   RegionNode* region = new RegionNode(PATH_LIMIT);
3786   record_for_igvn(region);
3787   PhiNode* phi = new PhiNode(region, return_type);
3788 
3789   // The mirror will never be null of Reflection.getClassAccessFlags, however
3790   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3791   // if it is. See bug 4774291.
3792 
3793   // For Reflection.getClassAccessFlags(), the null check occurs in
3794   // the wrong place; see inline_unsafe_access(), above, for a similar
3795   // situation.
3796   mirror = null_check(mirror);
3797   // If mirror or obj is dead, only null-path is taken.
3798   if (stopped())  return true;
3799 
3800   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3801 
3802   // Now load the mirror's klass metaobject, and null-check it.
3803   // Side-effects region with the control path if the klass is null.
3804   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3805   // If kls is null, we have a primitive mirror.
3806   phi->init_req(_prim_path, prim_return_value);
3807   if (stopped()) { set_result(region, phi); return true; }
3808   bool safe_for_replace = (region->in(_prim_path) == top());
3809 
3810   Node* p;  // handy temp
3811   Node* null_ctl;
3812 
3813   // Now that we have the non-null klass, we can perform the real query.
3814   // For constant classes, the query will constant-fold in LoadNode::Value.
3815   Node* query_value = top();
3816   switch (id) {
3817   case vmIntrinsics::_isInstance:
3818     // nothing is an instance of a primitive type
3819     query_value = gen_instanceof(obj, kls, safe_for_replace);
3820     break;
3821 
3822   case vmIntrinsics::_getModifiers:
3823     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3824     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
3825     break;
3826 
3827   case vmIntrinsics::_isInterface:
3828     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3829     if (generate_interface_guard(kls, region) != nullptr)
3830       // A guard was added.  If the guard is taken, it was an interface.
3831       phi->add_req(intcon(1));
3832     // If we fall through, it's a plain class.
3833     query_value = intcon(0);
3834     break;
3835 
3836   case vmIntrinsics::_isArray:
3837     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3838     if (generate_array_guard(kls, region) != nullptr)
3839       // A guard was added.  If the guard is taken, it was an array.
3840       phi->add_req(intcon(1));
3841     // If we fall through, it's a plain class.
3842     query_value = intcon(0);
3843     break;
3844 
3845   case vmIntrinsics::_isPrimitive:
3846     query_value = intcon(0); // "normal" path produces false
3847     break;
3848 
3849   case vmIntrinsics::_isHidden:
3850     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
3851     if (generate_hidden_class_guard(kls, region) != nullptr)
3852       // A guard was added.  If the guard is taken, it was an hidden class.
3853       phi->add_req(intcon(1));
3854     // If we fall through, it's a plain class.
3855     query_value = intcon(0);
3856     break;
3857 
3858 
3859   case vmIntrinsics::_getSuperclass:
3860     // The rules here are somewhat unfortunate, but we can still do better
3861     // with random logic than with a JNI call.
3862     // Interfaces store null or Object as _super, but must report null.
3863     // Arrays store an intermediate super as _super, but must report Object.
3864     // Other types can report the actual _super.
3865     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3866     if (generate_interface_guard(kls, region) != nullptr)
3867       // A guard was added.  If the guard is taken, it was an interface.
3868       phi->add_req(null());
3869     if (generate_array_guard(kls, region) != nullptr)
3870       // A guard was added.  If the guard is taken, it was an array.
3871       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3872     // If we fall through, it's a plain class.  Get its _super.
3873     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3874     kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3875     null_ctl = top();
3876     kls = null_check_oop(kls, &null_ctl);
3877     if (null_ctl != top()) {
3878       // If the guard is taken, Object.superClass is null (both klass and mirror).
3879       region->add_req(null_ctl);
3880       phi   ->add_req(null());
3881     }
3882     if (!stopped()) {
3883       query_value = load_mirror_from_klass(kls);
3884     }
3885     break;
3886 
3887   case vmIntrinsics::_getClassAccessFlags:
3888     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3889     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
3890     break;
3891 
3892   default:
3893     fatal_unexpected_iid(id);
3894     break;
3895   }
3896 
3897   // Fall-through is the normal case of a query to a real class.
3898   phi->init_req(1, query_value);
3899   region->init_req(1, control());
3900 
3901   C->set_has_split_ifs(true); // Has chance for split-if optimization
3902   set_result(region, phi);
3903   return true;
3904 }
3905 
3906 //-------------------------inline_Class_cast-------------------
3907 bool LibraryCallKit::inline_Class_cast() {
3908   Node* mirror = argument(0); // Class
3909   Node* obj    = argument(1);
3910   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3911   if (mirror_con == nullptr) {
3912     return false;  // dead path (mirror->is_top()).
3913   }
3914   if (obj == nullptr || obj->is_top()) {
3915     return false;  // dead path
3916   }
3917   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3918 
3919   // First, see if Class.cast() can be folded statically.
3920   // java_mirror_type() returns non-null for compile-time Class constants.
3921   ciType* tm = mirror_con->java_mirror_type();
3922   if (tm != nullptr && tm->is_klass() &&
3923       tp != nullptr) {
3924     if (!tp->is_loaded()) {
3925       // Don't use intrinsic when class is not loaded.
3926       return false;
3927     } else {
3928       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
3929       if (static_res == Compile::SSC_always_true) {
3930         // isInstance() is true - fold the code.
3931         set_result(obj);
3932         return true;
3933       } else if (static_res == Compile::SSC_always_false) {
3934         // Don't use intrinsic, have to throw ClassCastException.
3935         // If the reference is null, the non-intrinsic bytecode will
3936         // be optimized appropriately.
3937         return false;
3938       }
3939     }
3940   }
3941 
3942   // Bailout intrinsic and do normal inlining if exception path is frequent.
3943   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3944     return false;
3945   }
3946 
3947   // Generate dynamic checks.
3948   // Class.cast() is java implementation of _checkcast bytecode.
3949   // Do checkcast (Parse::do_checkcast()) optimizations here.
3950 
3951   mirror = null_check(mirror);
3952   // If mirror is dead, only null-path is taken.
3953   if (stopped()) {
3954     return true;
3955   }
3956 
3957   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
3958   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3959   RegionNode* region = new RegionNode(PATH_LIMIT);
3960   record_for_igvn(region);
3961 
3962   // Now load the mirror's klass metaobject, and null-check it.
3963   // If kls is null, we have a primitive mirror and
3964   // nothing is an instance of a primitive type.
3965   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3966 
3967   Node* res = top();
3968   if (!stopped()) {
3969     Node* bad_type_ctrl = top();
3970     // Do checkcast optimizations.
3971     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3972     region->init_req(_bad_type_path, bad_type_ctrl);
3973   }
3974   if (region->in(_prim_path) != top() ||
3975       region->in(_bad_type_path) != top()) {
3976     // Let Interpreter throw ClassCastException.
3977     PreserveJVMState pjvms(this);
3978     set_control(_gvn.transform(region));
3979     uncommon_trap(Deoptimization::Reason_intrinsic,
3980                   Deoptimization::Action_maybe_recompile);
3981   }
3982   if (!stopped()) {
3983     set_result(res);
3984   }
3985   return true;
3986 }
3987 
3988 
3989 //--------------------------inline_native_subtype_check------------------------
3990 // This intrinsic takes the JNI calls out of the heart of
3991 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3992 bool LibraryCallKit::inline_native_subtype_check() {
3993   // Pull both arguments off the stack.
3994   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3995   args[0] = argument(0);
3996   args[1] = argument(1);
3997   Node* klasses[2];             // corresponding Klasses: superk, subk
3998   klasses[0] = klasses[1] = top();
3999 
4000   enum {
4001     // A full decision tree on {superc is prim, subc is prim}:
4002     _prim_0_path = 1,           // {P,N} => false
4003                                 // {P,P} & superc!=subc => false
4004     _prim_same_path,            // {P,P} & superc==subc => true
4005     _prim_1_path,               // {N,P} => false
4006     _ref_subtype_path,          // {N,N} & subtype check wins => true
4007     _both_ref_path,             // {N,N} & subtype check loses => false
4008     PATH_LIMIT
4009   };
4010 
4011   RegionNode* region = new RegionNode(PATH_LIMIT);
4012   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4013   record_for_igvn(region);
4014 
4015   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4016   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4017   int class_klass_offset = java_lang_Class::klass_offset();
4018 
4019   // First null-check both mirrors and load each mirror's klass metaobject.
4020   int which_arg;
4021   for (which_arg = 0; which_arg <= 1; which_arg++) {
4022     Node* arg = args[which_arg];
4023     arg = null_check(arg);
4024     if (stopped())  break;
4025     args[which_arg] = arg;
4026 
4027     Node* p = basic_plus_adr(arg, class_klass_offset);
4028     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4029     klasses[which_arg] = _gvn.transform(kls);
4030   }
4031 
4032   // Having loaded both klasses, test each for null.
4033   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4034   for (which_arg = 0; which_arg <= 1; which_arg++) {
4035     Node* kls = klasses[which_arg];
4036     Node* null_ctl = top();
4037     kls = null_check_oop(kls, &null_ctl, never_see_null);
4038     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4039     region->init_req(prim_path, null_ctl);
4040     if (stopped())  break;
4041     klasses[which_arg] = kls;
4042   }
4043 
4044   if (!stopped()) {
4045     // now we have two reference types, in klasses[0..1]
4046     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4047     Node* superk = klasses[0];  // the receiver
4048     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4049     // now we have a successful reference subtype check
4050     region->set_req(_ref_subtype_path, control());
4051   }
4052 
4053   // If both operands are primitive (both klasses null), then
4054   // we must return true when they are identical primitives.
4055   // It is convenient to test this after the first null klass check.
4056   set_control(region->in(_prim_0_path)); // go back to first null check
4057   if (!stopped()) {
4058     // Since superc is primitive, make a guard for the superc==subc case.
4059     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4060     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4061     generate_guard(bol_eq, region, PROB_FAIR);
4062     if (region->req() == PATH_LIMIT+1) {
4063       // A guard was added.  If the added guard is taken, superc==subc.
4064       region->swap_edges(PATH_LIMIT, _prim_same_path);
4065       region->del_req(PATH_LIMIT);
4066     }
4067     region->set_req(_prim_0_path, control()); // Not equal after all.
4068   }
4069 
4070   // these are the only paths that produce 'true':
4071   phi->set_req(_prim_same_path,   intcon(1));
4072   phi->set_req(_ref_subtype_path, intcon(1));
4073 
4074   // pull together the cases:
4075   assert(region->req() == PATH_LIMIT, "sane region");
4076   for (uint i = 1; i < region->req(); i++) {
4077     Node* ctl = region->in(i);
4078     if (ctl == nullptr || ctl == top()) {
4079       region->set_req(i, top());
4080       phi   ->set_req(i, top());
4081     } else if (phi->in(i) == nullptr) {
4082       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4083     }
4084   }
4085 
4086   set_control(_gvn.transform(region));
4087   set_result(_gvn.transform(phi));
4088   return true;
4089 }
4090 
4091 //---------------------generate_array_guard_common------------------------
4092 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4093                                                   bool obj_array, bool not_array) {
4094 
4095   if (stopped()) {
4096     return nullptr;
4097   }
4098 
4099   // If obj_array/non_array==false/false:
4100   // Branch around if the given klass is in fact an array (either obj or prim).
4101   // If obj_array/non_array==false/true:
4102   // Branch around if the given klass is not an array klass of any kind.
4103   // If obj_array/non_array==true/true:
4104   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4105   // If obj_array/non_array==true/false:
4106   // Branch around if the kls is an oop array (Object[] or subtype)
4107   //
4108   // Like generate_guard, adds a new path onto the region.
4109   jint  layout_con = 0;
4110   Node* layout_val = get_layout_helper(kls, layout_con);
4111   if (layout_val == nullptr) {
4112     bool query = (obj_array
4113                   ? Klass::layout_helper_is_objArray(layout_con)
4114                   : Klass::layout_helper_is_array(layout_con));
4115     if (query == not_array) {
4116       return nullptr;                       // never a branch
4117     } else {                             // always a branch
4118       Node* always_branch = control();
4119       if (region != nullptr)
4120         region->add_req(always_branch);
4121       set_control(top());
4122       return always_branch;
4123     }
4124   }
4125   // Now test the correct condition.
4126   jint  nval = (obj_array
4127                 ? (jint)(Klass::_lh_array_tag_type_value
4128                    <<    Klass::_lh_array_tag_shift)
4129                 : Klass::_lh_neutral_value);
4130   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4131   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4132   // invert the test if we are looking for a non-array
4133   if (not_array)  btest = BoolTest(btest).negate();
4134   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4135   return generate_fair_guard(bol, region);
4136 }
4137 
4138 
4139 //-----------------------inline_native_newArray--------------------------
4140 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4141 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4142 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4143   Node* mirror;
4144   Node* count_val;
4145   if (uninitialized) {
4146     null_check_receiver();
4147     mirror    = argument(1);
4148     count_val = argument(2);
4149   } else {
4150     mirror    = argument(0);
4151     count_val = argument(1);
4152   }
4153 
4154   mirror = null_check(mirror);
4155   // If mirror or obj is dead, only null-path is taken.
4156   if (stopped())  return true;
4157 
4158   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4159   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4160   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4161   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4162   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4163 
4164   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4165   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4166                                                   result_reg, _slow_path);
4167   Node* normal_ctl   = control();
4168   Node* no_array_ctl = result_reg->in(_slow_path);
4169 
4170   // Generate code for the slow case.  We make a call to newArray().
4171   set_control(no_array_ctl);
4172   if (!stopped()) {
4173     // Either the input type is void.class, or else the
4174     // array klass has not yet been cached.  Either the
4175     // ensuing call will throw an exception, or else it
4176     // will cache the array klass for next time.
4177     PreserveJVMState pjvms(this);
4178     CallJavaNode* slow_call = nullptr;
4179     if (uninitialized) {
4180       // Generate optimized virtual call (holder class 'Unsafe' is final)
4181       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4182     } else {
4183       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4184     }
4185     Node* slow_result = set_results_for_java_call(slow_call);
4186     // this->control() comes from set_results_for_java_call
4187     result_reg->set_req(_slow_path, control());
4188     result_val->set_req(_slow_path, slow_result);
4189     result_io ->set_req(_slow_path, i_o());
4190     result_mem->set_req(_slow_path, reset_memory());
4191   }
4192 
4193   set_control(normal_ctl);
4194   if (!stopped()) {
4195     // Normal case:  The array type has been cached in the java.lang.Class.
4196     // The following call works fine even if the array type is polymorphic.
4197     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4198     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4199     result_reg->init_req(_normal_path, control());
4200     result_val->init_req(_normal_path, obj);
4201     result_io ->init_req(_normal_path, i_o());
4202     result_mem->init_req(_normal_path, reset_memory());
4203 
4204     if (uninitialized) {
4205       // Mark the allocation so that zeroing is skipped
4206       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4207       alloc->maybe_set_complete(&_gvn);
4208     }
4209   }
4210 
4211   // Return the combined state.
4212   set_i_o(        _gvn.transform(result_io)  );
4213   set_all_memory( _gvn.transform(result_mem));
4214 
4215   C->set_has_split_ifs(true); // Has chance for split-if optimization
4216   set_result(result_reg, result_val);
4217   return true;
4218 }
4219 
4220 //----------------------inline_native_getLength--------------------------
4221 // public static native int java.lang.reflect.Array.getLength(Object array);
4222 bool LibraryCallKit::inline_native_getLength() {
4223   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4224 
4225   Node* array = null_check(argument(0));
4226   // If array is dead, only null-path is taken.
4227   if (stopped())  return true;
4228 
4229   // Deoptimize if it is a non-array.
4230   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr);
4231 
4232   if (non_array != nullptr) {
4233     PreserveJVMState pjvms(this);
4234     set_control(non_array);
4235     uncommon_trap(Deoptimization::Reason_intrinsic,
4236                   Deoptimization::Action_maybe_recompile);
4237   }
4238 
4239   // If control is dead, only non-array-path is taken.
4240   if (stopped())  return true;
4241 
4242   // The works fine even if the array type is polymorphic.
4243   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4244   Node* result = load_array_length(array);
4245 
4246   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4247   set_result(result);
4248   return true;
4249 }
4250 
4251 //------------------------inline_array_copyOf----------------------------
4252 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4253 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4254 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4255   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4256 
4257   // Get the arguments.
4258   Node* original          = argument(0);
4259   Node* start             = is_copyOfRange? argument(1): intcon(0);
4260   Node* end               = is_copyOfRange? argument(2): argument(1);
4261   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4262 
4263   Node* newcopy = nullptr;
4264 
4265   // Set the original stack and the reexecute bit for the interpreter to reexecute
4266   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4267   { PreserveReexecuteState preexecs(this);
4268     jvms()->set_should_reexecute(true);
4269 
4270     array_type_mirror = null_check(array_type_mirror);
4271     original          = null_check(original);
4272 
4273     // Check if a null path was taken unconditionally.
4274     if (stopped())  return true;
4275 
4276     Node* orig_length = load_array_length(original);
4277 
4278     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4279     klass_node = null_check(klass_node);
4280 
4281     RegionNode* bailout = new RegionNode(1);
4282     record_for_igvn(bailout);
4283 
4284     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4285     // Bail out if that is so.
4286     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4287     if (not_objArray != nullptr) {
4288       // Improve the klass node's type from the new optimistic assumption:
4289       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4290       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4291       Node* cast = new CastPPNode(klass_node, akls);
4292       cast->init_req(0, control());
4293       klass_node = _gvn.transform(cast);
4294     }
4295 
4296     // Bail out if either start or end is negative.
4297     generate_negative_guard(start, bailout, &start);
4298     generate_negative_guard(end,   bailout, &end);
4299 
4300     Node* length = end;
4301     if (_gvn.type(start) != TypeInt::ZERO) {
4302       length = _gvn.transform(new SubINode(end, start));
4303     }
4304 
4305     // Bail out if length is negative.
4306     // Without this the new_array would throw
4307     // NegativeArraySizeException but IllegalArgumentException is what
4308     // should be thrown
4309     generate_negative_guard(length, bailout, &length);
4310 
4311     if (bailout->req() > 1) {
4312       PreserveJVMState pjvms(this);
4313       set_control(_gvn.transform(bailout));
4314       uncommon_trap(Deoptimization::Reason_intrinsic,
4315                     Deoptimization::Action_maybe_recompile);
4316     }
4317 
4318     if (!stopped()) {
4319       // How many elements will we copy from the original?
4320       // The answer is MinI(orig_length - start, length).
4321       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4322       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4323 
4324       // Generate a direct call to the right arraycopy function(s).
4325       // We know the copy is disjoint but we might not know if the
4326       // oop stores need checking.
4327       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4328       // This will fail a store-check if x contains any non-nulls.
4329 
4330       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4331       // loads/stores but it is legal only if we're sure the
4332       // Arrays.copyOf would succeed. So we need all input arguments
4333       // to the copyOf to be validated, including that the copy to the
4334       // new array won't trigger an ArrayStoreException. That subtype
4335       // check can be optimized if we know something on the type of
4336       // the input array from type speculation.
4337       if (_gvn.type(klass_node)->singleton()) {
4338         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4339         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4340 
4341         int test = C->static_subtype_check(superk, subk);
4342         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4343           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4344           if (t_original->speculative_type() != nullptr) {
4345             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4346           }
4347         }
4348       }
4349 
4350       bool validated = false;
4351       // Reason_class_check rather than Reason_intrinsic because we
4352       // want to intrinsify even if this traps.
4353       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4354         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4355 
4356         if (not_subtype_ctrl != top()) {
4357           PreserveJVMState pjvms(this);
4358           set_control(not_subtype_ctrl);
4359           uncommon_trap(Deoptimization::Reason_class_check,
4360                         Deoptimization::Action_make_not_entrant);
4361           assert(stopped(), "Should be stopped");
4362         }
4363         validated = true;
4364       }
4365 
4366       if (!stopped()) {
4367         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4368 
4369         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4370                                                 load_object_klass(original), klass_node);
4371         if (!is_copyOfRange) {
4372           ac->set_copyof(validated);
4373         } else {
4374           ac->set_copyofrange(validated);
4375         }
4376         Node* n = _gvn.transform(ac);
4377         if (n == ac) {
4378           ac->connect_outputs(this);
4379         } else {
4380           assert(validated, "shouldn't transform if all arguments not validated");
4381           set_all_memory(n);
4382         }
4383       }
4384     }
4385   } // original reexecute is set back here
4386 
4387   C->set_has_split_ifs(true); // Has chance for split-if optimization
4388   if (!stopped()) {
4389     set_result(newcopy);
4390   }
4391   return true;
4392 }
4393 
4394 
4395 //----------------------generate_virtual_guard---------------------------
4396 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4397 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4398                                              RegionNode* slow_region) {
4399   ciMethod* method = callee();
4400   int vtable_index = method->vtable_index();
4401   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4402          "bad index %d", vtable_index);
4403   // Get the Method* out of the appropriate vtable entry.
4404   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4405                      vtable_index*vtableEntry::size_in_bytes() +
4406                      in_bytes(vtableEntry::method_offset());
4407   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4408   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4409 
4410   // Compare the target method with the expected method (e.g., Object.hashCode).
4411   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4412 
4413   Node* native_call = makecon(native_call_addr);
4414   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4415   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4416 
4417   return generate_slow_guard(test_native, slow_region);
4418 }
4419 
4420 //-----------------------generate_method_call----------------------------
4421 // Use generate_method_call to make a slow-call to the real
4422 // method if the fast path fails.  An alternative would be to
4423 // use a stub like OptoRuntime::slow_arraycopy_Java.
4424 // This only works for expanding the current library call,
4425 // not another intrinsic.  (E.g., don't use this for making an
4426 // arraycopy call inside of the copyOf intrinsic.)
4427 CallJavaNode*
4428 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4429   // When compiling the intrinsic method itself, do not use this technique.
4430   guarantee(callee() != C->method(), "cannot make slow-call to self");
4431 
4432   ciMethod* method = callee();
4433   // ensure the JVMS we have will be correct for this call
4434   guarantee(method_id == method->intrinsic_id(), "must match");
4435 
4436   const TypeFunc* tf = TypeFunc::make(method);
4437   if (res_not_null) {
4438     assert(tf->return_type() == T_OBJECT, "");
4439     const TypeTuple* range = tf->range();
4440     const Type** fields = TypeTuple::fields(range->cnt());
4441     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4442     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4443     tf = TypeFunc::make(tf->domain(), new_range);
4444   }
4445   CallJavaNode* slow_call;
4446   if (is_static) {
4447     assert(!is_virtual, "");
4448     slow_call = new CallStaticJavaNode(C, tf,
4449                            SharedRuntime::get_resolve_static_call_stub(), method);
4450   } else if (is_virtual) {
4451     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4452     int vtable_index = Method::invalid_vtable_index;
4453     if (UseInlineCaches) {
4454       // Suppress the vtable call
4455     } else {
4456       // hashCode and clone are not a miranda methods,
4457       // so the vtable index is fixed.
4458       // No need to use the linkResolver to get it.
4459        vtable_index = method->vtable_index();
4460        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4461               "bad index %d", vtable_index);
4462     }
4463     slow_call = new CallDynamicJavaNode(tf,
4464                           SharedRuntime::get_resolve_virtual_call_stub(),
4465                           method, vtable_index);
4466   } else {  // neither virtual nor static:  opt_virtual
4467     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4468     slow_call = new CallStaticJavaNode(C, tf,
4469                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4470     slow_call->set_optimized_virtual(true);
4471   }
4472   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4473     // To be able to issue a direct call (optimized virtual or virtual)
4474     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4475     // about the method being invoked should be attached to the call site to
4476     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4477     slow_call->set_override_symbolic_info(true);
4478   }
4479   set_arguments_for_java_call(slow_call);
4480   set_edges_for_java_call(slow_call);
4481   return slow_call;
4482 }
4483 
4484 
4485 /**
4486  * Build special case code for calls to hashCode on an object. This call may
4487  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4488  * slightly different code.
4489  */
4490 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4491   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4492   assert(!(is_virtual && is_static), "either virtual, special, or static");
4493 
4494   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4495 
4496   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4497   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4498   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4499   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4500   Node* obj = nullptr;
4501   if (!is_static) {
4502     // Check for hashing null object
4503     obj = null_check_receiver();
4504     if (stopped())  return true;        // unconditionally null
4505     result_reg->init_req(_null_path, top());
4506     result_val->init_req(_null_path, top());
4507   } else {
4508     // Do a null check, and return zero if null.
4509     // System.identityHashCode(null) == 0
4510     obj = argument(0);
4511     Node* null_ctl = top();
4512     obj = null_check_oop(obj, &null_ctl);
4513     result_reg->init_req(_null_path, null_ctl);
4514     result_val->init_req(_null_path, _gvn.intcon(0));
4515   }
4516 
4517   // Unconditionally null?  Then return right away.
4518   if (stopped()) {
4519     set_control( result_reg->in(_null_path));
4520     if (!stopped())
4521       set_result(result_val->in(_null_path));
4522     return true;
4523   }
4524 
4525   // We only go to the fast case code if we pass a number of guards.  The
4526   // paths which do not pass are accumulated in the slow_region.
4527   RegionNode* slow_region = new RegionNode(1);
4528   record_for_igvn(slow_region);
4529 
4530   // If this is a virtual call, we generate a funny guard.  We pull out
4531   // the vtable entry corresponding to hashCode() from the target object.
4532   // If the target method which we are calling happens to be the native
4533   // Object hashCode() method, we pass the guard.  We do not need this
4534   // guard for non-virtual calls -- the caller is known to be the native
4535   // Object hashCode().
4536   if (is_virtual) {
4537     // After null check, get the object's klass.
4538     Node* obj_klass = load_object_klass(obj);
4539     generate_virtual_guard(obj_klass, slow_region);
4540   }
4541 
4542   // Get the header out of the object, use LoadMarkNode when available
4543   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4544   // The control of the load must be null. Otherwise, the load can move before
4545   // the null check after castPP removal.
4546   Node* no_ctrl = nullptr;
4547   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4548 
4549   // Test the header to see if it is unlocked.
4550   Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4551   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4552   Node *unlocked_val   = _gvn.MakeConX(markWord::unlocked_value);
4553   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4554   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4555 
4556   generate_slow_guard(test_unlocked, slow_region);
4557 
4558   // Get the hash value and check to see that it has been properly assigned.
4559   // We depend on hash_mask being at most 32 bits and avoid the use of
4560   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4561   // vm: see markWord.hpp.
4562   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4563   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4564   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4565   // This hack lets the hash bits live anywhere in the mark object now, as long
4566   // as the shift drops the relevant bits into the low 32 bits.  Note that
4567   // Java spec says that HashCode is an int so there's no point in capturing
4568   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4569   hshifted_header      = ConvX2I(hshifted_header);
4570   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4571 
4572   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4573   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4574   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4575 
4576   generate_slow_guard(test_assigned, slow_region);
4577 
4578   Node* init_mem = reset_memory();
4579   // fill in the rest of the null path:
4580   result_io ->init_req(_null_path, i_o());
4581   result_mem->init_req(_null_path, init_mem);
4582 
4583   result_val->init_req(_fast_path, hash_val);
4584   result_reg->init_req(_fast_path, control());
4585   result_io ->init_req(_fast_path, i_o());
4586   result_mem->init_req(_fast_path, init_mem);
4587 
4588   // Generate code for the slow case.  We make a call to hashCode().
4589   set_control(_gvn.transform(slow_region));
4590   if (!stopped()) {
4591     // No need for PreserveJVMState, because we're using up the present state.
4592     set_all_memory(init_mem);
4593     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4594     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4595     Node* slow_result = set_results_for_java_call(slow_call);
4596     // this->control() comes from set_results_for_java_call
4597     result_reg->init_req(_slow_path, control());
4598     result_val->init_req(_slow_path, slow_result);
4599     result_io  ->set_req(_slow_path, i_o());
4600     result_mem ->set_req(_slow_path, reset_memory());
4601   }
4602 
4603   // Return the combined state.
4604   set_i_o(        _gvn.transform(result_io)  );
4605   set_all_memory( _gvn.transform(result_mem));
4606 
4607   set_result(result_reg, result_val);
4608   return true;
4609 }
4610 
4611 //---------------------------inline_native_getClass----------------------------
4612 // public final native Class<?> java.lang.Object.getClass();
4613 //
4614 // Build special case code for calls to getClass on an object.
4615 bool LibraryCallKit::inline_native_getClass() {
4616   Node* obj = null_check_receiver();
4617   if (stopped())  return true;
4618   set_result(load_mirror_from_klass(load_object_klass(obj)));
4619   return true;
4620 }
4621 
4622 //-----------------inline_native_Reflection_getCallerClass---------------------
4623 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4624 //
4625 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4626 //
4627 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4628 // in that it must skip particular security frames and checks for
4629 // caller sensitive methods.
4630 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4631 #ifndef PRODUCT
4632   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4633     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4634   }
4635 #endif
4636 
4637   if (!jvms()->has_method()) {
4638 #ifndef PRODUCT
4639     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4640       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4641     }
4642 #endif
4643     return false;
4644   }
4645 
4646   // Walk back up the JVM state to find the caller at the required
4647   // depth.
4648   JVMState* caller_jvms = jvms();
4649 
4650   // Cf. JVM_GetCallerClass
4651   // NOTE: Start the loop at depth 1 because the current JVM state does
4652   // not include the Reflection.getCallerClass() frame.
4653   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4654     ciMethod* m = caller_jvms->method();
4655     switch (n) {
4656     case 0:
4657       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4658       break;
4659     case 1:
4660       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4661       if (!m->caller_sensitive()) {
4662 #ifndef PRODUCT
4663         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4664           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4665         }
4666 #endif
4667         return false;  // bail-out; let JVM_GetCallerClass do the work
4668       }
4669       break;
4670     default:
4671       if (!m->is_ignored_by_security_stack_walk()) {
4672         // We have reached the desired frame; return the holder class.
4673         // Acquire method holder as java.lang.Class and push as constant.
4674         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4675         ciInstance* caller_mirror = caller_klass->java_mirror();
4676         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4677 
4678 #ifndef PRODUCT
4679         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4680           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4681           tty->print_cr("  JVM state at this point:");
4682           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4683             ciMethod* m = jvms()->of_depth(i)->method();
4684             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4685           }
4686         }
4687 #endif
4688         return true;
4689       }
4690       break;
4691     }
4692   }
4693 
4694 #ifndef PRODUCT
4695   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4696     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4697     tty->print_cr("  JVM state at this point:");
4698     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4699       ciMethod* m = jvms()->of_depth(i)->method();
4700       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4701     }
4702   }
4703 #endif
4704 
4705   return false;  // bail-out; let JVM_GetCallerClass do the work
4706 }
4707 
4708 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4709   Node* arg = argument(0);
4710   Node* result = nullptr;
4711 
4712   switch (id) {
4713   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4714   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4715   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4716   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4717   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
4718   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
4719 
4720   case vmIntrinsics::_doubleToLongBits: {
4721     // two paths (plus control) merge in a wood
4722     RegionNode *r = new RegionNode(3);
4723     Node *phi = new PhiNode(r, TypeLong::LONG);
4724 
4725     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4726     // Build the boolean node
4727     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4728 
4729     // Branch either way.
4730     // NaN case is less traveled, which makes all the difference.
4731     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4732     Node *opt_isnan = _gvn.transform(ifisnan);
4733     assert( opt_isnan->is_If(), "Expect an IfNode");
4734     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4735     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4736 
4737     set_control(iftrue);
4738 
4739     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4740     Node *slow_result = longcon(nan_bits); // return NaN
4741     phi->init_req(1, _gvn.transform( slow_result ));
4742     r->init_req(1, iftrue);
4743 
4744     // Else fall through
4745     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4746     set_control(iffalse);
4747 
4748     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4749     r->init_req(2, iffalse);
4750 
4751     // Post merge
4752     set_control(_gvn.transform(r));
4753     record_for_igvn(r);
4754 
4755     C->set_has_split_ifs(true); // Has chance for split-if optimization
4756     result = phi;
4757     assert(result->bottom_type()->isa_long(), "must be");
4758     break;
4759   }
4760 
4761   case vmIntrinsics::_floatToIntBits: {
4762     // two paths (plus control) merge in a wood
4763     RegionNode *r = new RegionNode(3);
4764     Node *phi = new PhiNode(r, TypeInt::INT);
4765 
4766     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4767     // Build the boolean node
4768     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4769 
4770     // Branch either way.
4771     // NaN case is less traveled, which makes all the difference.
4772     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4773     Node *opt_isnan = _gvn.transform(ifisnan);
4774     assert( opt_isnan->is_If(), "Expect an IfNode");
4775     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4776     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4777 
4778     set_control(iftrue);
4779 
4780     static const jint nan_bits = 0x7fc00000;
4781     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4782     phi->init_req(1, _gvn.transform( slow_result ));
4783     r->init_req(1, iftrue);
4784 
4785     // Else fall through
4786     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4787     set_control(iffalse);
4788 
4789     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4790     r->init_req(2, iffalse);
4791 
4792     // Post merge
4793     set_control(_gvn.transform(r));
4794     record_for_igvn(r);
4795 
4796     C->set_has_split_ifs(true); // Has chance for split-if optimization
4797     result = phi;
4798     assert(result->bottom_type()->isa_int(), "must be");
4799     break;
4800   }
4801 
4802   default:
4803     fatal_unexpected_iid(id);
4804     break;
4805   }
4806   set_result(_gvn.transform(result));
4807   return true;
4808 }
4809 
4810 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
4811   Node* arg = argument(0);
4812   Node* result = nullptr;
4813 
4814   switch (id) {
4815   case vmIntrinsics::_floatIsInfinite:
4816     result = new IsInfiniteFNode(arg);
4817     break;
4818   case vmIntrinsics::_floatIsFinite:
4819     result = new IsFiniteFNode(arg);
4820     break;
4821   case vmIntrinsics::_doubleIsInfinite:
4822     result = new IsInfiniteDNode(arg);
4823     break;
4824   case vmIntrinsics::_doubleIsFinite:
4825     result = new IsFiniteDNode(arg);
4826     break;
4827   default:
4828     fatal_unexpected_iid(id);
4829     break;
4830   }
4831   set_result(_gvn.transform(result));
4832   return true;
4833 }
4834 
4835 //----------------------inline_unsafe_copyMemory-------------------------
4836 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4837 
4838 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
4839   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
4840   const Type*       base_t = gvn.type(base);
4841 
4842   bool in_native = (base_t == TypePtr::NULL_PTR);
4843   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
4844   bool is_mixed  = !in_heap && !in_native;
4845 
4846   if (is_mixed) {
4847     return true; // mixed accesses can touch both on-heap and off-heap memory
4848   }
4849   if (in_heap) {
4850     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
4851     if (!is_prim_array) {
4852       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
4853       // there's not enough type information available to determine proper memory slice for it.
4854       return true;
4855     }
4856   }
4857   return false;
4858 }
4859 
4860 bool LibraryCallKit::inline_unsafe_copyMemory() {
4861   if (callee()->is_static())  return false;  // caller must have the capability!
4862   null_check_receiver();  // null-check receiver
4863   if (stopped())  return true;
4864 
4865   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4866 
4867   Node* src_base =         argument(1);  // type: oop
4868   Node* src_off  = ConvL2X(argument(2)); // type: long
4869   Node* dst_base =         argument(4);  // type: oop
4870   Node* dst_off  = ConvL2X(argument(5)); // type: long
4871   Node* size     = ConvL2X(argument(7)); // type: long
4872 
4873   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4874          "fieldOffset must be byte-scaled");
4875 
4876   Node* src_addr = make_unsafe_address(src_base, src_off);
4877   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
4878 
4879   Node* thread = _gvn.transform(new ThreadLocalNode());
4880   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
4881   BasicType doing_unsafe_access_bt = T_BYTE;
4882   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
4883 
4884   // update volatile field
4885   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4886 
4887   int flags = RC_LEAF | RC_NO_FP;
4888 
4889   const TypePtr* dst_type = TypePtr::BOTTOM;
4890 
4891   // Adjust memory effects of the runtime call based on input values.
4892   if (!has_wide_mem(_gvn, src_addr, src_base) &&
4893       !has_wide_mem(_gvn, dst_addr, dst_base)) {
4894     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
4895 
4896     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
4897     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
4898       flags |= RC_NARROW_MEM; // narrow in memory
4899     }
4900   }
4901 
4902   // Call it.  Note that the length argument is not scaled.
4903   make_runtime_call(flags,
4904                     OptoRuntime::fast_arraycopy_Type(),
4905                     StubRoutines::unsafe_arraycopy(),
4906                     "unsafe_arraycopy",
4907                     dst_type,
4908                     src_addr, dst_addr, size XTOP);
4909 
4910   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4911 
4912   return true;
4913 }
4914 
4915 #undef XTOP
4916 
4917 //------------------------clone_coping-----------------------------------
4918 // Helper function for inline_native_clone.
4919 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4920   assert(obj_size != nullptr, "");
4921   Node* raw_obj = alloc_obj->in(1);
4922   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4923 
4924   AllocateNode* alloc = nullptr;
4925   if (ReduceBulkZeroing) {
4926     // We will be completely responsible for initializing this object -
4927     // mark Initialize node as complete.
4928     alloc = AllocateNode::Ideal_allocation(alloc_obj);
4929     // The object was just allocated - there should be no any stores!
4930     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
4931     // Mark as complete_with_arraycopy so that on AllocateNode
4932     // expansion, we know this AllocateNode is initialized by an array
4933     // copy and a StoreStore barrier exists after the array copy.
4934     alloc->initialization()->set_complete_with_arraycopy();
4935   }
4936 
4937   Node* size = _gvn.transform(obj_size);
4938   access_clone(obj, alloc_obj, size, is_array);
4939 
4940   // Do not let reads from the cloned object float above the arraycopy.
4941   if (alloc != nullptr) {
4942     // Do not let stores that initialize this object be reordered with
4943     // a subsequent store that would make this object accessible by
4944     // other threads.
4945     // Record what AllocateNode this StoreStore protects so that
4946     // escape analysis can go from the MemBarStoreStoreNode to the
4947     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4948     // based on the escape status of the AllocateNode.
4949     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4950   } else {
4951     insert_mem_bar(Op_MemBarCPUOrder);
4952   }
4953 }
4954 
4955 //------------------------inline_native_clone----------------------------
4956 // protected native Object java.lang.Object.clone();
4957 //
4958 // Here are the simple edge cases:
4959 //  null receiver => normal trap
4960 //  virtual and clone was overridden => slow path to out-of-line clone
4961 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4962 //
4963 // The general case has two steps, allocation and copying.
4964 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4965 //
4966 // Copying also has two cases, oop arrays and everything else.
4967 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4968 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4969 //
4970 // These steps fold up nicely if and when the cloned object's klass
4971 // can be sharply typed as an object array, a type array, or an instance.
4972 //
4973 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4974   PhiNode* result_val;
4975 
4976   // Set the reexecute bit for the interpreter to reexecute
4977   // the bytecode that invokes Object.clone if deoptimization happens.
4978   { PreserveReexecuteState preexecs(this);
4979     jvms()->set_should_reexecute(true);
4980 
4981     Node* obj = null_check_receiver();
4982     if (stopped())  return true;
4983 
4984     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4985 
4986     // If we are going to clone an instance, we need its exact type to
4987     // know the number and types of fields to convert the clone to
4988     // loads/stores. Maybe a speculative type can help us.
4989     if (!obj_type->klass_is_exact() &&
4990         obj_type->speculative_type() != nullptr &&
4991         obj_type->speculative_type()->is_instance_klass()) {
4992       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4993       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4994           !spec_ik->has_injected_fields()) {
4995         if (!obj_type->isa_instptr() ||
4996             obj_type->is_instptr()->instance_klass()->has_subklass()) {
4997           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4998         }
4999       }
5000     }
5001 
5002     // Conservatively insert a memory barrier on all memory slices.
5003     // Do not let writes into the original float below the clone.
5004     insert_mem_bar(Op_MemBarCPUOrder);
5005 
5006     // paths into result_reg:
5007     enum {
5008       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5009       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5010       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5011       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5012       PATH_LIMIT
5013     };
5014     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5015     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5016     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5017     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5018     record_for_igvn(result_reg);
5019 
5020     Node* obj_klass = load_object_klass(obj);
5021     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5022     if (array_ctl != nullptr) {
5023       // It's an array.
5024       PreserveJVMState pjvms(this);
5025       set_control(array_ctl);
5026       Node* obj_length = load_array_length(obj);
5027       Node* array_size = nullptr; // Size of the array without object alignment padding.
5028       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5029 
5030       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5031       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5032         // If it is an oop array, it requires very special treatment,
5033         // because gc barriers are required when accessing the array.
5034         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5035         if (is_obja != nullptr) {
5036           PreserveJVMState pjvms2(this);
5037           set_control(is_obja);
5038           // Generate a direct call to the right arraycopy function(s).
5039           // Clones are always tightly coupled.
5040           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5041           ac->set_clone_oop_array();
5042           Node* n = _gvn.transform(ac);
5043           assert(n == ac, "cannot disappear");
5044           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5045 
5046           result_reg->init_req(_objArray_path, control());
5047           result_val->init_req(_objArray_path, alloc_obj);
5048           result_i_o ->set_req(_objArray_path, i_o());
5049           result_mem ->set_req(_objArray_path, reset_memory());
5050         }
5051       }
5052       // Otherwise, there are no barriers to worry about.
5053       // (We can dispense with card marks if we know the allocation
5054       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5055       //  causes the non-eden paths to take compensating steps to
5056       //  simulate a fresh allocation, so that no further
5057       //  card marks are required in compiled code to initialize
5058       //  the object.)
5059 
5060       if (!stopped()) {
5061         copy_to_clone(obj, alloc_obj, array_size, true);
5062 
5063         // Present the results of the copy.
5064         result_reg->init_req(_array_path, control());
5065         result_val->init_req(_array_path, alloc_obj);
5066         result_i_o ->set_req(_array_path, i_o());
5067         result_mem ->set_req(_array_path, reset_memory());
5068       }
5069     }
5070 
5071     // We only go to the instance fast case code if we pass a number of guards.
5072     // The paths which do not pass are accumulated in the slow_region.
5073     RegionNode* slow_region = new RegionNode(1);
5074     record_for_igvn(slow_region);
5075     if (!stopped()) {
5076       // It's an instance (we did array above).  Make the slow-path tests.
5077       // If this is a virtual call, we generate a funny guard.  We grab
5078       // the vtable entry corresponding to clone() from the target object.
5079       // If the target method which we are calling happens to be the
5080       // Object clone() method, we pass the guard.  We do not need this
5081       // guard for non-virtual calls; the caller is known to be the native
5082       // Object clone().
5083       if (is_virtual) {
5084         generate_virtual_guard(obj_klass, slow_region);
5085       }
5086 
5087       // The object must be easily cloneable and must not have a finalizer.
5088       // Both of these conditions may be checked in a single test.
5089       // We could optimize the test further, but we don't care.
5090       generate_access_flags_guard(obj_klass,
5091                                   // Test both conditions:
5092                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
5093                                   // Must be cloneable but not finalizer:
5094                                   JVM_ACC_IS_CLONEABLE_FAST,
5095                                   slow_region);
5096     }
5097 
5098     if (!stopped()) {
5099       // It's an instance, and it passed the slow-path tests.
5100       PreserveJVMState pjvms(this);
5101       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5102       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5103       // is reexecuted if deoptimization occurs and there could be problems when merging
5104       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5105       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5106 
5107       copy_to_clone(obj, alloc_obj, obj_size, false);
5108 
5109       // Present the results of the slow call.
5110       result_reg->init_req(_instance_path, control());
5111       result_val->init_req(_instance_path, alloc_obj);
5112       result_i_o ->set_req(_instance_path, i_o());
5113       result_mem ->set_req(_instance_path, reset_memory());
5114     }
5115 
5116     // Generate code for the slow case.  We make a call to clone().
5117     set_control(_gvn.transform(slow_region));
5118     if (!stopped()) {
5119       PreserveJVMState pjvms(this);
5120       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5121       // We need to deoptimize on exception (see comment above)
5122       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5123       // this->control() comes from set_results_for_java_call
5124       result_reg->init_req(_slow_path, control());
5125       result_val->init_req(_slow_path, slow_result);
5126       result_i_o ->set_req(_slow_path, i_o());
5127       result_mem ->set_req(_slow_path, reset_memory());
5128     }
5129 
5130     // Return the combined state.
5131     set_control(    _gvn.transform(result_reg));
5132     set_i_o(        _gvn.transform(result_i_o));
5133     set_all_memory( _gvn.transform(result_mem));
5134   } // original reexecute is set back here
5135 
5136   set_result(_gvn.transform(result_val));
5137   return true;
5138 }
5139 
5140 // If we have a tightly coupled allocation, the arraycopy may take care
5141 // of the array initialization. If one of the guards we insert between
5142 // the allocation and the arraycopy causes a deoptimization, an
5143 // uninitialized array will escape the compiled method. To prevent that
5144 // we set the JVM state for uncommon traps between the allocation and
5145 // the arraycopy to the state before the allocation so, in case of
5146 // deoptimization, we'll reexecute the allocation and the
5147 // initialization.
5148 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5149   if (alloc != nullptr) {
5150     ciMethod* trap_method = alloc->jvms()->method();
5151     int trap_bci = alloc->jvms()->bci();
5152 
5153     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5154         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5155       // Make sure there's no store between the allocation and the
5156       // arraycopy otherwise visible side effects could be rexecuted
5157       // in case of deoptimization and cause incorrect execution.
5158       bool no_interfering_store = true;
5159       Node* mem = alloc->in(TypeFunc::Memory);
5160       if (mem->is_MergeMem()) {
5161         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5162           Node* n = mms.memory();
5163           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5164             assert(n->is_Store(), "what else?");
5165             no_interfering_store = false;
5166             break;
5167           }
5168         }
5169       } else {
5170         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5171           Node* n = mms.memory();
5172           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5173             assert(n->is_Store(), "what else?");
5174             no_interfering_store = false;
5175             break;
5176           }
5177         }
5178       }
5179 
5180       if (no_interfering_store) {
5181         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5182 
5183         JVMState* saved_jvms = jvms();
5184         saved_reexecute_sp = _reexecute_sp;
5185 
5186         set_jvms(sfpt->jvms());
5187         _reexecute_sp = jvms()->sp();
5188 
5189         return saved_jvms;
5190       }
5191     }
5192   }
5193   return nullptr;
5194 }
5195 
5196 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5197 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5198 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5199   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5200   uint size = alloc->req();
5201   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5202   old_jvms->set_map(sfpt);
5203   for (uint i = 0; i < size; i++) {
5204     sfpt->init_req(i, alloc->in(i));
5205   }
5206   // re-push array length for deoptimization
5207   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5208   old_jvms->set_sp(old_jvms->sp()+1);
5209   old_jvms->set_monoff(old_jvms->monoff()+1);
5210   old_jvms->set_scloff(old_jvms->scloff()+1);
5211   old_jvms->set_endoff(old_jvms->endoff()+1);
5212   old_jvms->set_should_reexecute(true);
5213 
5214   sfpt->set_i_o(map()->i_o());
5215   sfpt->set_memory(map()->memory());
5216   sfpt->set_control(map()->control());
5217   return sfpt;
5218 }
5219 
5220 // In case of a deoptimization, we restart execution at the
5221 // allocation, allocating a new array. We would leave an uninitialized
5222 // array in the heap that GCs wouldn't expect. Move the allocation
5223 // after the traps so we don't allocate the array if we
5224 // deoptimize. This is possible because tightly_coupled_allocation()
5225 // guarantees there's no observer of the allocated array at this point
5226 // and the control flow is simple enough.
5227 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5228                                                     int saved_reexecute_sp, uint new_idx) {
5229   if (saved_jvms_before_guards != nullptr && !stopped()) {
5230     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5231 
5232     assert(alloc != nullptr, "only with a tightly coupled allocation");
5233     // restore JVM state to the state at the arraycopy
5234     saved_jvms_before_guards->map()->set_control(map()->control());
5235     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5236     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5237     // If we've improved the types of some nodes (null check) while
5238     // emitting the guards, propagate them to the current state
5239     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5240     set_jvms(saved_jvms_before_guards);
5241     _reexecute_sp = saved_reexecute_sp;
5242 
5243     // Remove the allocation from above the guards
5244     CallProjections callprojs;
5245     alloc->extract_projections(&callprojs, true);
5246     InitializeNode* init = alloc->initialization();
5247     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5248     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5249     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5250 
5251     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5252     // the allocation (i.e. is only valid if the allocation succeeds):
5253     // 1) replace CastIINode with AllocateArrayNode's length here
5254     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5255     //
5256     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5257     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5258     Node* init_control = init->proj_out(TypeFunc::Control);
5259     Node* alloc_length = alloc->Ideal_length();
5260 #ifdef ASSERT
5261     Node* prev_cast = nullptr;
5262 #endif
5263     for (uint i = 0; i < init_control->outcnt(); i++) {
5264       Node* init_out = init_control->raw_out(i);
5265       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5266 #ifdef ASSERT
5267         if (prev_cast == nullptr) {
5268           prev_cast = init_out;
5269         } else {
5270           if (prev_cast->cmp(*init_out) == false) {
5271             prev_cast->dump();
5272             init_out->dump();
5273             assert(false, "not equal CastIINode");
5274           }
5275         }
5276 #endif
5277         C->gvn_replace_by(init_out, alloc_length);
5278       }
5279     }
5280     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5281 
5282     // move the allocation here (after the guards)
5283     _gvn.hash_delete(alloc);
5284     alloc->set_req(TypeFunc::Control, control());
5285     alloc->set_req(TypeFunc::I_O, i_o());
5286     Node *mem = reset_memory();
5287     set_all_memory(mem);
5288     alloc->set_req(TypeFunc::Memory, mem);
5289     set_control(init->proj_out_or_null(TypeFunc::Control));
5290     set_i_o(callprojs.fallthrough_ioproj);
5291 
5292     // Update memory as done in GraphKit::set_output_for_allocation()
5293     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5294     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5295     if (ary_type->isa_aryptr() && length_type != nullptr) {
5296       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5297     }
5298     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5299     int            elemidx  = C->get_alias_index(telemref);
5300     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5301     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5302 
5303     Node* allocx = _gvn.transform(alloc);
5304     assert(allocx == alloc, "where has the allocation gone?");
5305     assert(dest->is_CheckCastPP(), "not an allocation result?");
5306 
5307     _gvn.hash_delete(dest);
5308     dest->set_req(0, control());
5309     Node* destx = _gvn.transform(dest);
5310     assert(destx == dest, "where has the allocation result gone?");
5311 
5312     array_ideal_length(alloc, ary_type, true);
5313   }
5314 }
5315 
5316 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5317 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5318 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5319 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5320 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5321 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5322 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5323                                                                        JVMState* saved_jvms_before_guards) {
5324   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5325     // There is at least one unrelated uncommon trap which needs to be replaced.
5326     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5327 
5328     JVMState* saved_jvms = jvms();
5329     const int saved_reexecute_sp = _reexecute_sp;
5330     set_jvms(sfpt->jvms());
5331     _reexecute_sp = jvms()->sp();
5332 
5333     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5334 
5335     // Restore state
5336     set_jvms(saved_jvms);
5337     _reexecute_sp = saved_reexecute_sp;
5338   }
5339 }
5340 
5341 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5342 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5343 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5344   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5345   while (if_proj->is_IfProj()) {
5346     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5347     if (uncommon_trap != nullptr) {
5348       create_new_uncommon_trap(uncommon_trap);
5349     }
5350     assert(if_proj->in(0)->is_If(), "must be If");
5351     if_proj = if_proj->in(0)->in(0);
5352   }
5353   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5354          "must have reached control projection of init node");
5355 }
5356 
5357 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5358   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5359   assert(trap_request != 0, "no valid UCT trap request");
5360   PreserveJVMState pjvms(this);
5361   set_control(uncommon_trap_call->in(0));
5362   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5363                 Deoptimization::trap_request_action(trap_request));
5364   assert(stopped(), "Should be stopped");
5365   _gvn.hash_delete(uncommon_trap_call);
5366   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5367 }
5368 
5369 //------------------------------inline_array_partition-----------------------
5370 bool LibraryCallKit::inline_array_partition() {
5371 
5372   Node* elementType     = null_check(argument(0));
5373   Node* obj             = argument(1);
5374   Node* offset          = argument(2);
5375   Node* fromIndex       = argument(4);
5376   Node* toIndex         = argument(5);
5377   Node* indexPivot1     = argument(6);
5378   Node* indexPivot2     = argument(7);
5379 
5380   Node* pivotIndices = nullptr;
5381 
5382   // Set the original stack and the reexecute bit for the interpreter to reexecute
5383   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5384   { PreserveReexecuteState preexecs(this);
5385     jvms()->set_should_reexecute(true);
5386 
5387     const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5388     ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
5389     BasicType bt = elem_type->basic_type();
5390     address stubAddr = nullptr;
5391     stubAddr = StubRoutines::select_array_partition_function();
5392     // stub not loaded
5393     if (stubAddr == nullptr) {
5394       return false;
5395     }
5396     // get the address of the array
5397     const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5398     if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM ) {
5399       return false; // failed input validation
5400     }
5401     Node* obj_adr = make_unsafe_address(obj, offset);
5402 
5403     // create the pivotIndices array of type int and size = 2
5404     Node* size = intcon(2);
5405     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5406     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5407     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5408     guarantee(alloc != nullptr, "created above");
5409     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5410 
5411     // pass the basic type enum to the stub
5412     Node* elemType = intcon(bt);
5413 
5414     // Call the stub
5415     const char *stubName = "array_partition_stub";
5416     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5417                       stubAddr, stubName, TypePtr::BOTTOM,
5418                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5419                       indexPivot1, indexPivot2);
5420 
5421   } // original reexecute is set back here
5422 
5423   if (!stopped()) {
5424     set_result(pivotIndices);
5425   }
5426 
5427   return true;
5428 }
5429 
5430 
5431 //------------------------------inline_array_sort-----------------------
5432 bool LibraryCallKit::inline_array_sort() {
5433 
5434   Node* elementType     = null_check(argument(0));
5435   Node* obj             = argument(1);
5436   Node* offset          = argument(2);
5437   Node* fromIndex       = argument(4);
5438   Node* toIndex         = argument(5);
5439 
5440   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5441   ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
5442   BasicType bt = elem_type->basic_type();
5443   address stubAddr = nullptr;
5444   stubAddr = StubRoutines::select_arraysort_function();
5445   //stub not loaded
5446   if (stubAddr == nullptr) {
5447     return false;
5448   }
5449 
5450   // get address of the array
5451   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5452   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM ) {
5453     return false; // failed input validation
5454   }
5455   Node* obj_adr = make_unsafe_address(obj, offset);
5456 
5457   // pass the basic type enum to the stub
5458   Node* elemType = intcon(bt);
5459 
5460   // Call the stub.
5461   const char *stubName = "arraysort_stub";
5462   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5463                     stubAddr, stubName, TypePtr::BOTTOM,
5464                     obj_adr, elemType, fromIndex, toIndex);
5465 
5466   return true;
5467 }
5468 
5469 
5470 //------------------------------inline_arraycopy-----------------------
5471 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5472 //                                                      Object dest, int destPos,
5473 //                                                      int length);
5474 bool LibraryCallKit::inline_arraycopy() {
5475   // Get the arguments.
5476   Node* src         = argument(0);  // type: oop
5477   Node* src_offset  = argument(1);  // type: int
5478   Node* dest        = argument(2);  // type: oop
5479   Node* dest_offset = argument(3);  // type: int
5480   Node* length      = argument(4);  // type: int
5481 
5482   uint new_idx = C->unique();
5483 
5484   // Check for allocation before we add nodes that would confuse
5485   // tightly_coupled_allocation()
5486   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5487 
5488   int saved_reexecute_sp = -1;
5489   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5490   // See arraycopy_restore_alloc_state() comment
5491   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5492   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5493   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5494   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5495 
5496   // The following tests must be performed
5497   // (1) src and dest are arrays.
5498   // (2) src and dest arrays must have elements of the same BasicType
5499   // (3) src and dest must not be null.
5500   // (4) src_offset must not be negative.
5501   // (5) dest_offset must not be negative.
5502   // (6) length must not be negative.
5503   // (7) src_offset + length must not exceed length of src.
5504   // (8) dest_offset + length must not exceed length of dest.
5505   // (9) each element of an oop array must be assignable
5506 
5507   // (3) src and dest must not be null.
5508   // always do this here because we need the JVM state for uncommon traps
5509   Node* null_ctl = top();
5510   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5511   assert(null_ctl->is_top(), "no null control here");
5512   dest = null_check(dest, T_ARRAY);
5513 
5514   if (!can_emit_guards) {
5515     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5516     // guards but the arraycopy node could still take advantage of a
5517     // tightly allocated allocation. tightly_coupled_allocation() is
5518     // called again to make sure it takes the null check above into
5519     // account: the null check is mandatory and if it caused an
5520     // uncommon trap to be emitted then the allocation can't be
5521     // considered tightly coupled in this context.
5522     alloc = tightly_coupled_allocation(dest);
5523   }
5524 
5525   bool validated = false;
5526 
5527   const Type* src_type  = _gvn.type(src);
5528   const Type* dest_type = _gvn.type(dest);
5529   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5530   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5531 
5532   // Do we have the type of src?
5533   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5534   // Do we have the type of dest?
5535   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5536   // Is the type for src from speculation?
5537   bool src_spec = false;
5538   // Is the type for dest from speculation?
5539   bool dest_spec = false;
5540 
5541   if ((!has_src || !has_dest) && can_emit_guards) {
5542     // We don't have sufficient type information, let's see if
5543     // speculative types can help. We need to have types for both src
5544     // and dest so that it pays off.
5545 
5546     // Do we already have or could we have type information for src
5547     bool could_have_src = has_src;
5548     // Do we already have or could we have type information for dest
5549     bool could_have_dest = has_dest;
5550 
5551     ciKlass* src_k = nullptr;
5552     if (!has_src) {
5553       src_k = src_type->speculative_type_not_null();
5554       if (src_k != nullptr && src_k->is_array_klass()) {
5555         could_have_src = true;
5556       }
5557     }
5558 
5559     ciKlass* dest_k = nullptr;
5560     if (!has_dest) {
5561       dest_k = dest_type->speculative_type_not_null();
5562       if (dest_k != nullptr && dest_k->is_array_klass()) {
5563         could_have_dest = true;
5564       }
5565     }
5566 
5567     if (could_have_src && could_have_dest) {
5568       // This is going to pay off so emit the required guards
5569       if (!has_src) {
5570         src = maybe_cast_profiled_obj(src, src_k, true);
5571         src_type  = _gvn.type(src);
5572         top_src  = src_type->isa_aryptr();
5573         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5574         src_spec = true;
5575       }
5576       if (!has_dest) {
5577         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5578         dest_type  = _gvn.type(dest);
5579         top_dest  = dest_type->isa_aryptr();
5580         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5581         dest_spec = true;
5582       }
5583     }
5584   }
5585 
5586   if (has_src && has_dest && can_emit_guards) {
5587     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5588     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5589     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5590     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5591 
5592     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5593       // If both arrays are object arrays then having the exact types
5594       // for both will remove the need for a subtype check at runtime
5595       // before the call and may make it possible to pick a faster copy
5596       // routine (without a subtype check on every element)
5597       // Do we have the exact type of src?
5598       bool could_have_src = src_spec;
5599       // Do we have the exact type of dest?
5600       bool could_have_dest = dest_spec;
5601       ciKlass* src_k = nullptr;
5602       ciKlass* dest_k = nullptr;
5603       if (!src_spec) {
5604         src_k = src_type->speculative_type_not_null();
5605         if (src_k != nullptr && src_k->is_array_klass()) {
5606           could_have_src = true;
5607         }
5608       }
5609       if (!dest_spec) {
5610         dest_k = dest_type->speculative_type_not_null();
5611         if (dest_k != nullptr && dest_k->is_array_klass()) {
5612           could_have_dest = true;
5613         }
5614       }
5615       if (could_have_src && could_have_dest) {
5616         // If we can have both exact types, emit the missing guards
5617         if (could_have_src && !src_spec) {
5618           src = maybe_cast_profiled_obj(src, src_k, true);
5619         }
5620         if (could_have_dest && !dest_spec) {
5621           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5622         }
5623       }
5624     }
5625   }
5626 
5627   ciMethod* trap_method = method();
5628   int trap_bci = bci();
5629   if (saved_jvms_before_guards != nullptr) {
5630     trap_method = alloc->jvms()->method();
5631     trap_bci = alloc->jvms()->bci();
5632   }
5633 
5634   bool negative_length_guard_generated = false;
5635 
5636   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5637       can_emit_guards &&
5638       !src->is_top() && !dest->is_top()) {
5639     // validate arguments: enables transformation the ArrayCopyNode
5640     validated = true;
5641 
5642     RegionNode* slow_region = new RegionNode(1);
5643     record_for_igvn(slow_region);
5644 
5645     // (1) src and dest are arrays.
5646     generate_non_array_guard(load_object_klass(src), slow_region);
5647     generate_non_array_guard(load_object_klass(dest), slow_region);
5648 
5649     // (2) src and dest arrays must have elements of the same BasicType
5650     // done at macro expansion or at Ideal transformation time
5651 
5652     // (4) src_offset must not be negative.
5653     generate_negative_guard(src_offset, slow_region);
5654 
5655     // (5) dest_offset must not be negative.
5656     generate_negative_guard(dest_offset, slow_region);
5657 
5658     // (7) src_offset + length must not exceed length of src.
5659     generate_limit_guard(src_offset, length,
5660                          load_array_length(src),
5661                          slow_region);
5662 
5663     // (8) dest_offset + length must not exceed length of dest.
5664     generate_limit_guard(dest_offset, length,
5665                          load_array_length(dest),
5666                          slow_region);
5667 
5668     // (6) length must not be negative.
5669     // This is also checked in generate_arraycopy() during macro expansion, but
5670     // we also have to check it here for the case where the ArrayCopyNode will
5671     // be eliminated by Escape Analysis.
5672     if (EliminateAllocations) {
5673       generate_negative_guard(length, slow_region);
5674       negative_length_guard_generated = true;
5675     }
5676 
5677     // (9) each element of an oop array must be assignable
5678     Node* dest_klass = load_object_klass(dest);
5679     if (src != dest) {
5680       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
5681 
5682       if (not_subtype_ctrl != top()) {
5683         PreserveJVMState pjvms(this);
5684         set_control(not_subtype_ctrl);
5685         uncommon_trap(Deoptimization::Reason_intrinsic,
5686                       Deoptimization::Action_make_not_entrant);
5687         assert(stopped(), "Should be stopped");
5688       }
5689     }
5690     {
5691       PreserveJVMState pjvms(this);
5692       set_control(_gvn.transform(slow_region));
5693       uncommon_trap(Deoptimization::Reason_intrinsic,
5694                     Deoptimization::Action_make_not_entrant);
5695       assert(stopped(), "Should be stopped");
5696     }
5697 
5698     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5699     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5700     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5701     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5702   }
5703 
5704   if (stopped()) {
5705     return true;
5706   }
5707 
5708   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
5709                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5710                                           // so the compiler has a chance to eliminate them: during macro expansion,
5711                                           // we have to set their control (CastPP nodes are eliminated).
5712                                           load_object_klass(src), load_object_klass(dest),
5713                                           load_array_length(src), load_array_length(dest));
5714 
5715   ac->set_arraycopy(validated);
5716 
5717   Node* n = _gvn.transform(ac);
5718   if (n == ac) {
5719     ac->connect_outputs(this);
5720   } else {
5721     assert(validated, "shouldn't transform if all arguments not validated");
5722     set_all_memory(n);
5723   }
5724   clear_upper_avx();
5725 
5726 
5727   return true;
5728 }
5729 
5730 
5731 // Helper function which determines if an arraycopy immediately follows
5732 // an allocation, with no intervening tests or other escapes for the object.
5733 AllocateArrayNode*
5734 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
5735   if (stopped())             return nullptr;  // no fast path
5736   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
5737 
5738   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
5739   if (alloc == nullptr)  return nullptr;
5740 
5741   Node* rawmem = memory(Compile::AliasIdxRaw);
5742   // Is the allocation's memory state untouched?
5743   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5744     // Bail out if there have been raw-memory effects since the allocation.
5745     // (Example:  There might have been a call or safepoint.)
5746     return nullptr;
5747   }
5748   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5749   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5750     return nullptr;
5751   }
5752 
5753   // There must be no unexpected observers of this allocation.
5754   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5755     Node* obs = ptr->fast_out(i);
5756     if (obs != this->map()) {
5757       return nullptr;
5758     }
5759   }
5760 
5761   // This arraycopy must unconditionally follow the allocation of the ptr.
5762   Node* alloc_ctl = ptr->in(0);
5763   Node* ctl = control();
5764   while (ctl != alloc_ctl) {
5765     // There may be guards which feed into the slow_region.
5766     // Any other control flow means that we might not get a chance
5767     // to finish initializing the allocated object.
5768     // Various low-level checks bottom out in uncommon traps. These
5769     // are considered safe since we've already checked above that
5770     // there is no unexpected observer of this allocation.
5771     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
5772       assert(ctl->in(0)->is_If(), "must be If");
5773       ctl = ctl->in(0)->in(0);
5774     } else {
5775       return nullptr;
5776     }
5777   }
5778 
5779   // If we get this far, we have an allocation which immediately
5780   // precedes the arraycopy, and we can take over zeroing the new object.
5781   // The arraycopy will finish the initialization, and provide
5782   // a new control state to which we will anchor the destination pointer.
5783 
5784   return alloc;
5785 }
5786 
5787 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
5788   if (node->is_IfProj()) {
5789     Node* other_proj = node->as_IfProj()->other_if_proj();
5790     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
5791       Node* obs = other_proj->fast_out(j);
5792       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
5793           (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5794         return obs->as_CallStaticJava();
5795       }
5796     }
5797   }
5798   return nullptr;
5799 }
5800 
5801 //-------------inline_encodeISOArray-----------------------------------
5802 // encode char[] to byte[] in ISO_8859_1 or ASCII
5803 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
5804   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5805   // no receiver since it is static method
5806   Node *src         = argument(0);
5807   Node *src_offset  = argument(1);
5808   Node *dst         = argument(2);
5809   Node *dst_offset  = argument(3);
5810   Node *length      = argument(4);
5811 
5812   src = must_be_not_null(src, true);
5813   dst = must_be_not_null(dst, true);
5814 
5815   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
5816   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
5817   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
5818       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
5819     // failed array check
5820     return false;
5821   }
5822 
5823   // Figure out the size and type of the elements we will be copying.
5824   BasicType src_elem = src_type->elem()->array_element_basic_type();
5825   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
5826   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5827     return false;
5828   }
5829 
5830   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5831   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5832   // 'src_start' points to src array + scaled offset
5833   // 'dst_start' points to dst array + scaled offset
5834 
5835   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5836   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
5837   enc = _gvn.transform(enc);
5838   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5839   set_memory(res_mem, mtype);
5840   set_result(enc);
5841   clear_upper_avx();
5842 
5843   return true;
5844 }
5845 
5846 //-------------inline_multiplyToLen-----------------------------------
5847 bool LibraryCallKit::inline_multiplyToLen() {
5848   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5849 
5850   address stubAddr = StubRoutines::multiplyToLen();
5851   if (stubAddr == nullptr) {
5852     return false; // Intrinsic's stub is not implemented on this platform
5853   }
5854   const char* stubName = "multiplyToLen";
5855 
5856   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5857 
5858   // no receiver because it is a static method
5859   Node* x    = argument(0);
5860   Node* xlen = argument(1);
5861   Node* y    = argument(2);
5862   Node* ylen = argument(3);
5863   Node* z    = argument(4);
5864 
5865   x = must_be_not_null(x, true);
5866   y = must_be_not_null(y, true);
5867 
5868   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
5869   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
5870   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
5871       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
5872     // failed array check
5873     return false;
5874   }
5875 
5876   BasicType x_elem = x_type->elem()->array_element_basic_type();
5877   BasicType y_elem = y_type->elem()->array_element_basic_type();
5878   if (x_elem != T_INT || y_elem != T_INT) {
5879     return false;
5880   }
5881 
5882   // Set the original stack and the reexecute bit for the interpreter to reexecute
5883   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5884   // on the return from z array allocation in runtime.
5885   { PreserveReexecuteState preexecs(this);
5886     jvms()->set_should_reexecute(true);
5887 
5888     Node* x_start = array_element_address(x, intcon(0), x_elem);
5889     Node* y_start = array_element_address(y, intcon(0), y_elem);
5890     // 'x_start' points to x array + scaled xlen
5891     // 'y_start' points to y array + scaled ylen
5892 
5893     // Allocate the result array
5894     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5895     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5896     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5897 
5898     IdealKit ideal(this);
5899 
5900 #define __ ideal.
5901      Node* one = __ ConI(1);
5902      Node* zero = __ ConI(0);
5903      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5904      __ set(need_alloc, zero);
5905      __ set(z_alloc, z);
5906      __ if_then(z, BoolTest::eq, null()); {
5907        __ increment (need_alloc, one);
5908      } __ else_(); {
5909        // Update graphKit memory and control from IdealKit.
5910        sync_kit(ideal);
5911        Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
5912        cast->init_req(0, control());
5913        _gvn.set_type(cast, cast->bottom_type());
5914        C->record_for_igvn(cast);
5915 
5916        Node* zlen_arg = load_array_length(cast);
5917        // Update IdealKit memory and control from graphKit.
5918        __ sync_kit(this);
5919        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5920          __ increment (need_alloc, one);
5921        } __ end_if();
5922      } __ end_if();
5923 
5924      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5925        // Update graphKit memory and control from IdealKit.
5926        sync_kit(ideal);
5927        Node * narr = new_array(klass_node, zlen, 1);
5928        // Update IdealKit memory and control from graphKit.
5929        __ sync_kit(this);
5930        __ set(z_alloc, narr);
5931      } __ end_if();
5932 
5933      sync_kit(ideal);
5934      z = __ value(z_alloc);
5935      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5936      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5937      // Final sync IdealKit and GraphKit.
5938      final_sync(ideal);
5939 #undef __
5940 
5941     Node* z_start = array_element_address(z, intcon(0), T_INT);
5942 
5943     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5944                                    OptoRuntime::multiplyToLen_Type(),
5945                                    stubAddr, stubName, TypePtr::BOTTOM,
5946                                    x_start, xlen, y_start, ylen, z_start, zlen);
5947   } // original reexecute is set back here
5948 
5949   C->set_has_split_ifs(true); // Has chance for split-if optimization
5950   set_result(z);
5951   return true;
5952 }
5953 
5954 //-------------inline_squareToLen------------------------------------
5955 bool LibraryCallKit::inline_squareToLen() {
5956   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5957 
5958   address stubAddr = StubRoutines::squareToLen();
5959   if (stubAddr == nullptr) {
5960     return false; // Intrinsic's stub is not implemented on this platform
5961   }
5962   const char* stubName = "squareToLen";
5963 
5964   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5965 
5966   Node* x    = argument(0);
5967   Node* len  = argument(1);
5968   Node* z    = argument(2);
5969   Node* zlen = argument(3);
5970 
5971   x = must_be_not_null(x, true);
5972   z = must_be_not_null(z, true);
5973 
5974   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
5975   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
5976   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
5977       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
5978     // failed array check
5979     return false;
5980   }
5981 
5982   BasicType x_elem = x_type->elem()->array_element_basic_type();
5983   BasicType z_elem = z_type->elem()->array_element_basic_type();
5984   if (x_elem != T_INT || z_elem != T_INT) {
5985     return false;
5986   }
5987 
5988 
5989   Node* x_start = array_element_address(x, intcon(0), x_elem);
5990   Node* z_start = array_element_address(z, intcon(0), z_elem);
5991 
5992   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5993                                   OptoRuntime::squareToLen_Type(),
5994                                   stubAddr, stubName, TypePtr::BOTTOM,
5995                                   x_start, len, z_start, zlen);
5996 
5997   set_result(z);
5998   return true;
5999 }
6000 
6001 //-------------inline_mulAdd------------------------------------------
6002 bool LibraryCallKit::inline_mulAdd() {
6003   assert(UseMulAddIntrinsic, "not implemented on this platform");
6004 
6005   address stubAddr = StubRoutines::mulAdd();
6006   if (stubAddr == nullptr) {
6007     return false; // Intrinsic's stub is not implemented on this platform
6008   }
6009   const char* stubName = "mulAdd";
6010 
6011   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6012 
6013   Node* out      = argument(0);
6014   Node* in       = argument(1);
6015   Node* offset   = argument(2);
6016   Node* len      = argument(3);
6017   Node* k        = argument(4);
6018 
6019   in = must_be_not_null(in, true);
6020   out = must_be_not_null(out, true);
6021 
6022   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6023   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6024   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6025        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6026     // failed array check
6027     return false;
6028   }
6029 
6030   BasicType out_elem = out_type->elem()->array_element_basic_type();
6031   BasicType in_elem = in_type->elem()->array_element_basic_type();
6032   if (out_elem != T_INT || in_elem != T_INT) {
6033     return false;
6034   }
6035 
6036   Node* outlen = load_array_length(out);
6037   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6038   Node* out_start = array_element_address(out, intcon(0), out_elem);
6039   Node* in_start = array_element_address(in, intcon(0), in_elem);
6040 
6041   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6042                                   OptoRuntime::mulAdd_Type(),
6043                                   stubAddr, stubName, TypePtr::BOTTOM,
6044                                   out_start,in_start, new_offset, len, k);
6045   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6046   set_result(result);
6047   return true;
6048 }
6049 
6050 //-------------inline_montgomeryMultiply-----------------------------------
6051 bool LibraryCallKit::inline_montgomeryMultiply() {
6052   address stubAddr = StubRoutines::montgomeryMultiply();
6053   if (stubAddr == nullptr) {
6054     return false; // Intrinsic's stub is not implemented on this platform
6055   }
6056 
6057   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6058   const char* stubName = "montgomery_multiply";
6059 
6060   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6061 
6062   Node* a    = argument(0);
6063   Node* b    = argument(1);
6064   Node* n    = argument(2);
6065   Node* len  = argument(3);
6066   Node* inv  = argument(4);
6067   Node* m    = argument(6);
6068 
6069   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6070   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6071   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6072   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6073   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6074       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6075       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6076       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6077     // failed array check
6078     return false;
6079   }
6080 
6081   BasicType a_elem = a_type->elem()->array_element_basic_type();
6082   BasicType b_elem = b_type->elem()->array_element_basic_type();
6083   BasicType n_elem = n_type->elem()->array_element_basic_type();
6084   BasicType m_elem = m_type->elem()->array_element_basic_type();
6085   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6086     return false;
6087   }
6088 
6089   // Make the call
6090   {
6091     Node* a_start = array_element_address(a, intcon(0), a_elem);
6092     Node* b_start = array_element_address(b, intcon(0), b_elem);
6093     Node* n_start = array_element_address(n, intcon(0), n_elem);
6094     Node* m_start = array_element_address(m, intcon(0), m_elem);
6095 
6096     Node* call = make_runtime_call(RC_LEAF,
6097                                    OptoRuntime::montgomeryMultiply_Type(),
6098                                    stubAddr, stubName, TypePtr::BOTTOM,
6099                                    a_start, b_start, n_start, len, inv, top(),
6100                                    m_start);
6101     set_result(m);
6102   }
6103 
6104   return true;
6105 }
6106 
6107 bool LibraryCallKit::inline_montgomerySquare() {
6108   address stubAddr = StubRoutines::montgomerySquare();
6109   if (stubAddr == nullptr) {
6110     return false; // Intrinsic's stub is not implemented on this platform
6111   }
6112 
6113   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6114   const char* stubName = "montgomery_square";
6115 
6116   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6117 
6118   Node* a    = argument(0);
6119   Node* n    = argument(1);
6120   Node* len  = argument(2);
6121   Node* inv  = argument(3);
6122   Node* m    = argument(5);
6123 
6124   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6125   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6126   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6127   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6128       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6129       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6130     // failed array check
6131     return false;
6132   }
6133 
6134   BasicType a_elem = a_type->elem()->array_element_basic_type();
6135   BasicType n_elem = n_type->elem()->array_element_basic_type();
6136   BasicType m_elem = m_type->elem()->array_element_basic_type();
6137   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6138     return false;
6139   }
6140 
6141   // Make the call
6142   {
6143     Node* a_start = array_element_address(a, intcon(0), a_elem);
6144     Node* n_start = array_element_address(n, intcon(0), n_elem);
6145     Node* m_start = array_element_address(m, intcon(0), m_elem);
6146 
6147     Node* call = make_runtime_call(RC_LEAF,
6148                                    OptoRuntime::montgomerySquare_Type(),
6149                                    stubAddr, stubName, TypePtr::BOTTOM,
6150                                    a_start, n_start, len, inv, top(),
6151                                    m_start);
6152     set_result(m);
6153   }
6154 
6155   return true;
6156 }
6157 
6158 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6159   address stubAddr = nullptr;
6160   const char* stubName = nullptr;
6161 
6162   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6163   if (stubAddr == nullptr) {
6164     return false; // Intrinsic's stub is not implemented on this platform
6165   }
6166 
6167   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6168 
6169   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6170 
6171   Node* newArr = argument(0);
6172   Node* oldArr = argument(1);
6173   Node* newIdx = argument(2);
6174   Node* shiftCount = argument(3);
6175   Node* numIter = argument(4);
6176 
6177   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6178   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6179   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6180       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6181     return false;
6182   }
6183 
6184   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6185   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6186   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6187     return false;
6188   }
6189 
6190   // Make the call
6191   {
6192     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6193     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6194 
6195     Node* call = make_runtime_call(RC_LEAF,
6196                                    OptoRuntime::bigIntegerShift_Type(),
6197                                    stubAddr,
6198                                    stubName,
6199                                    TypePtr::BOTTOM,
6200                                    newArr_start,
6201                                    oldArr_start,
6202                                    newIdx,
6203                                    shiftCount,
6204                                    numIter);
6205   }
6206 
6207   return true;
6208 }
6209 
6210 //-------------inline_vectorizedMismatch------------------------------
6211 bool LibraryCallKit::inline_vectorizedMismatch() {
6212   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6213 
6214   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6215   Node* obja    = argument(0); // Object
6216   Node* aoffset = argument(1); // long
6217   Node* objb    = argument(3); // Object
6218   Node* boffset = argument(4); // long
6219   Node* length  = argument(6); // int
6220   Node* scale   = argument(7); // int
6221 
6222   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6223   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6224   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6225       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6226       scale == top()) {
6227     return false; // failed input validation
6228   }
6229 
6230   Node* obja_adr = make_unsafe_address(obja, aoffset);
6231   Node* objb_adr = make_unsafe_address(objb, boffset);
6232 
6233   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6234   //
6235   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6236   //    if (length <= inline_limit) {
6237   //      inline_path:
6238   //        vmask   = VectorMaskGen length
6239   //        vload1  = LoadVectorMasked obja, vmask
6240   //        vload2  = LoadVectorMasked objb, vmask
6241   //        result1 = VectorCmpMasked vload1, vload2, vmask
6242   //    } else {
6243   //      call_stub_path:
6244   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6245   //    }
6246   //    exit_block:
6247   //      return Phi(result1, result2);
6248   //
6249   enum { inline_path = 1,  // input is small enough to process it all at once
6250          stub_path   = 2,  // input is too large; call into the VM
6251          PATH_LIMIT  = 3
6252   };
6253 
6254   Node* exit_block = new RegionNode(PATH_LIMIT);
6255   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6256   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6257 
6258   Node* call_stub_path = control();
6259 
6260   BasicType elem_bt = T_ILLEGAL;
6261 
6262   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6263   if (scale_t->is_con()) {
6264     switch (scale_t->get_con()) {
6265       case 0: elem_bt = T_BYTE;  break;
6266       case 1: elem_bt = T_SHORT; break;
6267       case 2: elem_bt = T_INT;   break;
6268       case 3: elem_bt = T_LONG;  break;
6269 
6270       default: elem_bt = T_ILLEGAL; break; // not supported
6271     }
6272   }
6273 
6274   int inline_limit = 0;
6275   bool do_partial_inline = false;
6276 
6277   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6278     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6279     do_partial_inline = inline_limit >= 16;
6280   }
6281 
6282   if (do_partial_inline) {
6283     assert(elem_bt != T_ILLEGAL, "sanity");
6284 
6285     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6286         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6287         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6288 
6289       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6290       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6291       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6292 
6293       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6294 
6295       if (!stopped()) {
6296         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6297 
6298         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6299         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6300         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6301         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6302 
6303         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6304         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6305         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6306         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6307 
6308         exit_block->init_req(inline_path, control());
6309         memory_phi->init_req(inline_path, map()->memory());
6310         result_phi->init_req(inline_path, result);
6311 
6312         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6313         clear_upper_avx();
6314       }
6315     }
6316   }
6317 
6318   if (call_stub_path != nullptr) {
6319     set_control(call_stub_path);
6320 
6321     Node* call = make_runtime_call(RC_LEAF,
6322                                    OptoRuntime::vectorizedMismatch_Type(),
6323                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6324                                    obja_adr, objb_adr, length, scale);
6325 
6326     exit_block->init_req(stub_path, control());
6327     memory_phi->init_req(stub_path, map()->memory());
6328     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6329   }
6330 
6331   exit_block = _gvn.transform(exit_block);
6332   memory_phi = _gvn.transform(memory_phi);
6333   result_phi = _gvn.transform(result_phi);
6334 
6335   set_control(exit_block);
6336   set_all_memory(memory_phi);
6337   set_result(result_phi);
6338 
6339   return true;
6340 }
6341 
6342 //------------------------------inline_vectorizedHashcode----------------------------
6343 bool LibraryCallKit::inline_vectorizedHashCode() {
6344   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6345 
6346   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6347   Node* array          = argument(0);
6348   Node* offset         = argument(1);
6349   Node* length         = argument(2);
6350   Node* initialValue   = argument(3);
6351   Node* basic_type     = argument(4);
6352 
6353   if (basic_type == top()) {
6354     return false; // failed input validation
6355   }
6356 
6357   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6358   if (!basic_type_t->is_con()) {
6359     return false; // Only intrinsify if mode argument is constant
6360   }
6361 
6362   array = must_be_not_null(array, true);
6363 
6364   BasicType bt = (BasicType)basic_type_t->get_con();
6365 
6366   // Resolve address of first element
6367   Node* array_start = array_element_address(array, offset, bt);
6368 
6369   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6370     array_start, length, initialValue, basic_type)));
6371   clear_upper_avx();
6372 
6373   return true;
6374 }
6375 
6376 /**
6377  * Calculate CRC32 for byte.
6378  * int java.util.zip.CRC32.update(int crc, int b)
6379  */
6380 bool LibraryCallKit::inline_updateCRC32() {
6381   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6382   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6383   // no receiver since it is static method
6384   Node* crc  = argument(0); // type: int
6385   Node* b    = argument(1); // type: int
6386 
6387   /*
6388    *    int c = ~ crc;
6389    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6390    *    b = b ^ (c >>> 8);
6391    *    crc = ~b;
6392    */
6393 
6394   Node* M1 = intcon(-1);
6395   crc = _gvn.transform(new XorINode(crc, M1));
6396   Node* result = _gvn.transform(new XorINode(crc, b));
6397   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6398 
6399   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6400   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6401   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6402   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6403 
6404   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6405   result = _gvn.transform(new XorINode(crc, result));
6406   result = _gvn.transform(new XorINode(result, M1));
6407   set_result(result);
6408   return true;
6409 }
6410 
6411 /**
6412  * Calculate CRC32 for byte[] array.
6413  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6414  */
6415 bool LibraryCallKit::inline_updateBytesCRC32() {
6416   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6417   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6418   // no receiver since it is static method
6419   Node* crc     = argument(0); // type: int
6420   Node* src     = argument(1); // type: oop
6421   Node* offset  = argument(2); // type: int
6422   Node* length  = argument(3); // type: int
6423 
6424   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6425   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6426     // failed array check
6427     return false;
6428   }
6429 
6430   // Figure out the size and type of the elements we will be copying.
6431   BasicType src_elem = src_type->elem()->array_element_basic_type();
6432   if (src_elem != T_BYTE) {
6433     return false;
6434   }
6435 
6436   // 'src_start' points to src array + scaled offset
6437   src = must_be_not_null(src, true);
6438   Node* src_start = array_element_address(src, offset, src_elem);
6439 
6440   // We assume that range check is done by caller.
6441   // TODO: generate range check (offset+length < src.length) in debug VM.
6442 
6443   // Call the stub.
6444   address stubAddr = StubRoutines::updateBytesCRC32();
6445   const char *stubName = "updateBytesCRC32";
6446 
6447   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6448                                  stubAddr, stubName, TypePtr::BOTTOM,
6449                                  crc, src_start, length);
6450   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6451   set_result(result);
6452   return true;
6453 }
6454 
6455 /**
6456  * Calculate CRC32 for ByteBuffer.
6457  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6458  */
6459 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6460   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6461   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6462   // no receiver since it is static method
6463   Node* crc     = argument(0); // type: int
6464   Node* src     = argument(1); // type: long
6465   Node* offset  = argument(3); // type: int
6466   Node* length  = argument(4); // type: int
6467 
6468   src = ConvL2X(src);  // adjust Java long to machine word
6469   Node* base = _gvn.transform(new CastX2PNode(src));
6470   offset = ConvI2X(offset);
6471 
6472   // 'src_start' points to src array + scaled offset
6473   Node* src_start = basic_plus_adr(top(), base, offset);
6474 
6475   // Call the stub.
6476   address stubAddr = StubRoutines::updateBytesCRC32();
6477   const char *stubName = "updateBytesCRC32";
6478 
6479   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6480                                  stubAddr, stubName, TypePtr::BOTTOM,
6481                                  crc, src_start, length);
6482   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6483   set_result(result);
6484   return true;
6485 }
6486 
6487 //------------------------------get_table_from_crc32c_class-----------------------
6488 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6489   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6490   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6491 
6492   return table;
6493 }
6494 
6495 //------------------------------inline_updateBytesCRC32C-----------------------
6496 //
6497 // Calculate CRC32C for byte[] array.
6498 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6499 //
6500 bool LibraryCallKit::inline_updateBytesCRC32C() {
6501   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6502   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6503   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6504   // no receiver since it is a static method
6505   Node* crc     = argument(0); // type: int
6506   Node* src     = argument(1); // type: oop
6507   Node* offset  = argument(2); // type: int
6508   Node* end     = argument(3); // type: int
6509 
6510   Node* length = _gvn.transform(new SubINode(end, offset));
6511 
6512   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6513   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6514     // failed array check
6515     return false;
6516   }
6517 
6518   // Figure out the size and type of the elements we will be copying.
6519   BasicType src_elem = src_type->elem()->array_element_basic_type();
6520   if (src_elem != T_BYTE) {
6521     return false;
6522   }
6523 
6524   // 'src_start' points to src array + scaled offset
6525   src = must_be_not_null(src, true);
6526   Node* src_start = array_element_address(src, offset, src_elem);
6527 
6528   // static final int[] byteTable in class CRC32C
6529   Node* table = get_table_from_crc32c_class(callee()->holder());
6530   table = must_be_not_null(table, true);
6531   Node* table_start = array_element_address(table, intcon(0), T_INT);
6532 
6533   // We assume that range check is done by caller.
6534   // TODO: generate range check (offset+length < src.length) in debug VM.
6535 
6536   // Call the stub.
6537   address stubAddr = StubRoutines::updateBytesCRC32C();
6538   const char *stubName = "updateBytesCRC32C";
6539 
6540   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6541                                  stubAddr, stubName, TypePtr::BOTTOM,
6542                                  crc, src_start, length, table_start);
6543   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6544   set_result(result);
6545   return true;
6546 }
6547 
6548 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6549 //
6550 // Calculate CRC32C for DirectByteBuffer.
6551 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6552 //
6553 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6554   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6555   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6556   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6557   // no receiver since it is a static method
6558   Node* crc     = argument(0); // type: int
6559   Node* src     = argument(1); // type: long
6560   Node* offset  = argument(3); // type: int
6561   Node* end     = argument(4); // type: int
6562 
6563   Node* length = _gvn.transform(new SubINode(end, offset));
6564 
6565   src = ConvL2X(src);  // adjust Java long to machine word
6566   Node* base = _gvn.transform(new CastX2PNode(src));
6567   offset = ConvI2X(offset);
6568 
6569   // 'src_start' points to src array + scaled offset
6570   Node* src_start = basic_plus_adr(top(), base, offset);
6571 
6572   // static final int[] byteTable in class CRC32C
6573   Node* table = get_table_from_crc32c_class(callee()->holder());
6574   table = must_be_not_null(table, true);
6575   Node* table_start = array_element_address(table, intcon(0), T_INT);
6576 
6577   // Call the stub.
6578   address stubAddr = StubRoutines::updateBytesCRC32C();
6579   const char *stubName = "updateBytesCRC32C";
6580 
6581   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6582                                  stubAddr, stubName, TypePtr::BOTTOM,
6583                                  crc, src_start, length, table_start);
6584   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6585   set_result(result);
6586   return true;
6587 }
6588 
6589 //------------------------------inline_updateBytesAdler32----------------------
6590 //
6591 // Calculate Adler32 checksum for byte[] array.
6592 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6593 //
6594 bool LibraryCallKit::inline_updateBytesAdler32() {
6595   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6596   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6597   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6598   // no receiver since it is static method
6599   Node* crc     = argument(0); // type: int
6600   Node* src     = argument(1); // type: oop
6601   Node* offset  = argument(2); // type: int
6602   Node* length  = argument(3); // type: int
6603 
6604   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6605   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6606     // failed array check
6607     return false;
6608   }
6609 
6610   // Figure out the size and type of the elements we will be copying.
6611   BasicType src_elem = src_type->elem()->array_element_basic_type();
6612   if (src_elem != T_BYTE) {
6613     return false;
6614   }
6615 
6616   // 'src_start' points to src array + scaled offset
6617   Node* src_start = array_element_address(src, offset, src_elem);
6618 
6619   // We assume that range check is done by caller.
6620   // TODO: generate range check (offset+length < src.length) in debug VM.
6621 
6622   // Call the stub.
6623   address stubAddr = StubRoutines::updateBytesAdler32();
6624   const char *stubName = "updateBytesAdler32";
6625 
6626   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6627                                  stubAddr, stubName, TypePtr::BOTTOM,
6628                                  crc, src_start, length);
6629   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6630   set_result(result);
6631   return true;
6632 }
6633 
6634 //------------------------------inline_updateByteBufferAdler32---------------
6635 //
6636 // Calculate Adler32 checksum for DirectByteBuffer.
6637 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6638 //
6639 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6640   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6641   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6642   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6643   // no receiver since it is static method
6644   Node* crc     = argument(0); // type: int
6645   Node* src     = argument(1); // type: long
6646   Node* offset  = argument(3); // type: int
6647   Node* length  = argument(4); // type: int
6648 
6649   src = ConvL2X(src);  // adjust Java long to machine word
6650   Node* base = _gvn.transform(new CastX2PNode(src));
6651   offset = ConvI2X(offset);
6652 
6653   // 'src_start' points to src array + scaled offset
6654   Node* src_start = basic_plus_adr(top(), base, offset);
6655 
6656   // Call the stub.
6657   address stubAddr = StubRoutines::updateBytesAdler32();
6658   const char *stubName = "updateBytesAdler32";
6659 
6660   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6661                                  stubAddr, stubName, TypePtr::BOTTOM,
6662                                  crc, src_start, length);
6663 
6664   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6665   set_result(result);
6666   return true;
6667 }
6668 
6669 //----------------------------inline_reference_get----------------------------
6670 // public T java.lang.ref.Reference.get();
6671 bool LibraryCallKit::inline_reference_get() {
6672   const int referent_offset = java_lang_ref_Reference::referent_offset();
6673 
6674   // Get the argument:
6675   Node* reference_obj = null_check_receiver();
6676   if (stopped()) return true;
6677 
6678   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6679   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6680                                         decorators, /*is_static*/ false, nullptr);
6681   if (result == nullptr) return false;
6682 
6683   // Add memory barrier to prevent commoning reads from this field
6684   // across safepoint since GC can change its value.
6685   insert_mem_bar(Op_MemBarCPUOrder);
6686 
6687   set_result(result);
6688   return true;
6689 }
6690 
6691 //----------------------------inline_reference_refersTo0----------------------------
6692 // bool java.lang.ref.Reference.refersTo0();
6693 // bool java.lang.ref.PhantomReference.refersTo0();
6694 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
6695   // Get arguments:
6696   Node* reference_obj = null_check_receiver();
6697   Node* other_obj = argument(1);
6698   if (stopped()) return true;
6699 
6700   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6701   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6702   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6703                                           decorators, /*is_static*/ false, nullptr);
6704   if (referent == nullptr) return false;
6705 
6706   // Add memory barrier to prevent commoning reads from this field
6707   // across safepoint since GC can change its value.
6708   insert_mem_bar(Op_MemBarCPUOrder);
6709 
6710   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
6711   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6712   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
6713 
6714   RegionNode* region = new RegionNode(3);
6715   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
6716 
6717   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
6718   region->init_req(1, if_true);
6719   phi->init_req(1, intcon(1));
6720 
6721   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
6722   region->init_req(2, if_false);
6723   phi->init_req(2, intcon(0));
6724 
6725   set_control(_gvn.transform(region));
6726   record_for_igvn(region);
6727   set_result(_gvn.transform(phi));
6728   return true;
6729 }
6730 
6731 
6732 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
6733                                              DecoratorSet decorators, bool is_static,
6734                                              ciInstanceKlass* fromKls) {
6735   if (fromKls == nullptr) {
6736     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6737     assert(tinst != nullptr, "obj is null");
6738     assert(tinst->is_loaded(), "obj is not loaded");
6739     fromKls = tinst->instance_klass();
6740   } else {
6741     assert(is_static, "only for static field access");
6742   }
6743   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6744                                               ciSymbol::make(fieldTypeString),
6745                                               is_static);
6746 
6747   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
6748   if (field == nullptr) return (Node *) nullptr;
6749 
6750   if (is_static) {
6751     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6752     fromObj = makecon(tip);
6753   }
6754 
6755   // Next code  copied from Parse::do_get_xxx():
6756 
6757   // Compute address and memory type.
6758   int offset  = field->offset_in_bytes();
6759   bool is_vol = field->is_volatile();
6760   ciType* field_klass = field->type();
6761   assert(field_klass->is_loaded(), "should be loaded");
6762   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6763   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6764   BasicType bt = field->layout_type();
6765 
6766   // Build the resultant type of the load
6767   const Type *type;
6768   if (bt == T_OBJECT) {
6769     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6770   } else {
6771     type = Type::get_const_basic_type(bt);
6772   }
6773 
6774   if (is_vol) {
6775     decorators |= MO_SEQ_CST;
6776   }
6777 
6778   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
6779 }
6780 
6781 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6782                                                  bool is_exact /* true */, bool is_static /* false */,
6783                                                  ciInstanceKlass * fromKls /* nullptr */) {
6784   if (fromKls == nullptr) {
6785     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6786     assert(tinst != nullptr, "obj is null");
6787     assert(tinst->is_loaded(), "obj is not loaded");
6788     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6789     fromKls = tinst->instance_klass();
6790   }
6791   else {
6792     assert(is_static, "only for static field access");
6793   }
6794   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6795     ciSymbol::make(fieldTypeString),
6796     is_static);
6797 
6798   assert(field != nullptr, "undefined field");
6799   assert(!field->is_volatile(), "not defined for volatile fields");
6800 
6801   if (is_static) {
6802     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6803     fromObj = makecon(tip);
6804   }
6805 
6806   // Next code  copied from Parse::do_get_xxx():
6807 
6808   // Compute address and memory type.
6809   int offset = field->offset_in_bytes();
6810   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6811 
6812   return adr;
6813 }
6814 
6815 //------------------------------inline_aescrypt_Block-----------------------
6816 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6817   address stubAddr = nullptr;
6818   const char *stubName;
6819   assert(UseAES, "need AES instruction support");
6820 
6821   switch(id) {
6822   case vmIntrinsics::_aescrypt_encryptBlock:
6823     stubAddr = StubRoutines::aescrypt_encryptBlock();
6824     stubName = "aescrypt_encryptBlock";
6825     break;
6826   case vmIntrinsics::_aescrypt_decryptBlock:
6827     stubAddr = StubRoutines::aescrypt_decryptBlock();
6828     stubName = "aescrypt_decryptBlock";
6829     break;
6830   default:
6831     break;
6832   }
6833   if (stubAddr == nullptr) return false;
6834 
6835   Node* aescrypt_object = argument(0);
6836   Node* src             = argument(1);
6837   Node* src_offset      = argument(2);
6838   Node* dest            = argument(3);
6839   Node* dest_offset     = argument(4);
6840 
6841   src = must_be_not_null(src, true);
6842   dest = must_be_not_null(dest, true);
6843 
6844   // (1) src and dest are arrays.
6845   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6846   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
6847   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
6848          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
6849 
6850   // for the quick and dirty code we will skip all the checks.
6851   // we are just trying to get the call to be generated.
6852   Node* src_start  = src;
6853   Node* dest_start = dest;
6854   if (src_offset != nullptr || dest_offset != nullptr) {
6855     assert(src_offset != nullptr && dest_offset != nullptr, "");
6856     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6857     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6858   }
6859 
6860   // now need to get the start of its expanded key array
6861   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6862   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6863   if (k_start == nullptr) return false;
6864 
6865   // Call the stub.
6866   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6867                     stubAddr, stubName, TypePtr::BOTTOM,
6868                     src_start, dest_start, k_start);
6869 
6870   return true;
6871 }
6872 
6873 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6874 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6875   address stubAddr = nullptr;
6876   const char *stubName = nullptr;
6877 
6878   assert(UseAES, "need AES instruction support");
6879 
6880   switch(id) {
6881   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6882     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6883     stubName = "cipherBlockChaining_encryptAESCrypt";
6884     break;
6885   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6886     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6887     stubName = "cipherBlockChaining_decryptAESCrypt";
6888     break;
6889   default:
6890     break;
6891   }
6892   if (stubAddr == nullptr) return false;
6893 
6894   Node* cipherBlockChaining_object = argument(0);
6895   Node* src                        = argument(1);
6896   Node* src_offset                 = argument(2);
6897   Node* len                        = argument(3);
6898   Node* dest                       = argument(4);
6899   Node* dest_offset                = argument(5);
6900 
6901   src = must_be_not_null(src, false);
6902   dest = must_be_not_null(dest, false);
6903 
6904   // (1) src and dest are arrays.
6905   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6906   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
6907   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
6908          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
6909 
6910   // checks are the responsibility of the caller
6911   Node* src_start  = src;
6912   Node* dest_start = dest;
6913   if (src_offset != nullptr || dest_offset != nullptr) {
6914     assert(src_offset != nullptr && dest_offset != nullptr, "");
6915     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6916     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6917   }
6918 
6919   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6920   // (because of the predicated logic executed earlier).
6921   // so we cast it here safely.
6922   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6923 
6924   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
6925   if (embeddedCipherObj == nullptr) return false;
6926 
6927   // cast it to what we know it will be at runtime
6928   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6929   assert(tinst != nullptr, "CBC obj is null");
6930   assert(tinst->is_loaded(), "CBC obj is not loaded");
6931   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6932   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6933 
6934   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6935   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6936   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
6937   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6938   aescrypt_object = _gvn.transform(aescrypt_object);
6939 
6940   // we need to get the start of the aescrypt_object's expanded key array
6941   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6942   if (k_start == nullptr) return false;
6943 
6944   // similarly, get the start address of the r vector
6945   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
6946   if (objRvec == nullptr) return false;
6947   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6948 
6949   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6950   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6951                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6952                                      stubAddr, stubName, TypePtr::BOTTOM,
6953                                      src_start, dest_start, k_start, r_start, len);
6954 
6955   // return cipher length (int)
6956   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6957   set_result(retvalue);
6958   return true;
6959 }
6960 
6961 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
6962 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
6963   address stubAddr = nullptr;
6964   const char *stubName = nullptr;
6965 
6966   assert(UseAES, "need AES instruction support");
6967 
6968   switch (id) {
6969   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
6970     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
6971     stubName = "electronicCodeBook_encryptAESCrypt";
6972     break;
6973   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
6974     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
6975     stubName = "electronicCodeBook_decryptAESCrypt";
6976     break;
6977   default:
6978     break;
6979   }
6980 
6981   if (stubAddr == nullptr) return false;
6982 
6983   Node* electronicCodeBook_object = argument(0);
6984   Node* src                       = argument(1);
6985   Node* src_offset                = argument(2);
6986   Node* len                       = argument(3);
6987   Node* dest                      = argument(4);
6988   Node* dest_offset               = argument(5);
6989 
6990   // (1) src and dest are arrays.
6991   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6992   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
6993   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
6994          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
6995 
6996   // checks are the responsibility of the caller
6997   Node* src_start = src;
6998   Node* dest_start = dest;
6999   if (src_offset != nullptr || dest_offset != nullptr) {
7000     assert(src_offset != nullptr && dest_offset != nullptr, "");
7001     src_start = array_element_address(src, src_offset, T_BYTE);
7002     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7003   }
7004 
7005   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7006   // (because of the predicated logic executed earlier).
7007   // so we cast it here safely.
7008   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7009 
7010   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7011   if (embeddedCipherObj == nullptr) return false;
7012 
7013   // cast it to what we know it will be at runtime
7014   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7015   assert(tinst != nullptr, "ECB obj is null");
7016   assert(tinst->is_loaded(), "ECB obj is not loaded");
7017   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7018   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7019 
7020   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7021   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7022   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7023   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7024   aescrypt_object = _gvn.transform(aescrypt_object);
7025 
7026   // we need to get the start of the aescrypt_object's expanded key array
7027   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7028   if (k_start == nullptr) return false;
7029 
7030   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7031   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7032                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7033                                      stubAddr, stubName, TypePtr::BOTTOM,
7034                                      src_start, dest_start, k_start, len);
7035 
7036   // return cipher length (int)
7037   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7038   set_result(retvalue);
7039   return true;
7040 }
7041 
7042 //------------------------------inline_counterMode_AESCrypt-----------------------
7043 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7044   assert(UseAES, "need AES instruction support");
7045   if (!UseAESCTRIntrinsics) return false;
7046 
7047   address stubAddr = nullptr;
7048   const char *stubName = nullptr;
7049   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7050     stubAddr = StubRoutines::counterMode_AESCrypt();
7051     stubName = "counterMode_AESCrypt";
7052   }
7053   if (stubAddr == nullptr) return false;
7054 
7055   Node* counterMode_object = argument(0);
7056   Node* src = argument(1);
7057   Node* src_offset = argument(2);
7058   Node* len = argument(3);
7059   Node* dest = argument(4);
7060   Node* dest_offset = argument(5);
7061 
7062   // (1) src and dest are arrays.
7063   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7064   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7065   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7066          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7067 
7068   // checks are the responsibility of the caller
7069   Node* src_start = src;
7070   Node* dest_start = dest;
7071   if (src_offset != nullptr || dest_offset != nullptr) {
7072     assert(src_offset != nullptr && dest_offset != nullptr, "");
7073     src_start = array_element_address(src, src_offset, T_BYTE);
7074     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7075   }
7076 
7077   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7078   // (because of the predicated logic executed earlier).
7079   // so we cast it here safely.
7080   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7081   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7082   if (embeddedCipherObj == nullptr) return false;
7083   // cast it to what we know it will be at runtime
7084   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7085   assert(tinst != nullptr, "CTR obj is null");
7086   assert(tinst->is_loaded(), "CTR obj is not loaded");
7087   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7088   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7089   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7090   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7091   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7092   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7093   aescrypt_object = _gvn.transform(aescrypt_object);
7094   // we need to get the start of the aescrypt_object's expanded key array
7095   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7096   if (k_start == nullptr) return false;
7097   // similarly, get the start address of the r vector
7098   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7099   if (obj_counter == nullptr) return false;
7100   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7101 
7102   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7103   if (saved_encCounter == nullptr) return false;
7104   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7105   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7106 
7107   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7108   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7109                                      OptoRuntime::counterMode_aescrypt_Type(),
7110                                      stubAddr, stubName, TypePtr::BOTTOM,
7111                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7112 
7113   // return cipher length (int)
7114   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7115   set_result(retvalue);
7116   return true;
7117 }
7118 
7119 //------------------------------get_key_start_from_aescrypt_object-----------------------
7120 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7121 #if defined(PPC64) || defined(S390)
7122   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7123   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7124   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7125   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7126   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7127   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7128   if (objSessionK == nullptr) {
7129     return (Node *) nullptr;
7130   }
7131   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7132 #else
7133   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7134 #endif // PPC64
7135   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7136   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7137 
7138   // now have the array, need to get the start address of the K array
7139   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7140   return k_start;
7141 }
7142 
7143 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7144 // Return node representing slow path of predicate check.
7145 // the pseudo code we want to emulate with this predicate is:
7146 // for encryption:
7147 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7148 // for decryption:
7149 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7150 //    note cipher==plain is more conservative than the original java code but that's OK
7151 //
7152 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7153   // The receiver was checked for null already.
7154   Node* objCBC = argument(0);
7155 
7156   Node* src = argument(1);
7157   Node* dest = argument(4);
7158 
7159   // Load embeddedCipher field of CipherBlockChaining object.
7160   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7161 
7162   // get AESCrypt klass for instanceOf check
7163   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7164   // will have same classloader as CipherBlockChaining object
7165   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7166   assert(tinst != nullptr, "CBCobj is null");
7167   assert(tinst->is_loaded(), "CBCobj is not loaded");
7168 
7169   // we want to do an instanceof comparison against the AESCrypt class
7170   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7171   if (!klass_AESCrypt->is_loaded()) {
7172     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7173     Node* ctrl = control();
7174     set_control(top()); // no regular fast path
7175     return ctrl;
7176   }
7177 
7178   src = must_be_not_null(src, true);
7179   dest = must_be_not_null(dest, true);
7180 
7181   // Resolve oops to stable for CmpP below.
7182   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7183 
7184   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7185   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7186   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7187 
7188   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7189 
7190   // for encryption, we are done
7191   if (!decrypting)
7192     return instof_false;  // even if it is null
7193 
7194   // for decryption, we need to add a further check to avoid
7195   // taking the intrinsic path when cipher and plain are the same
7196   // see the original java code for why.
7197   RegionNode* region = new RegionNode(3);
7198   region->init_req(1, instof_false);
7199 
7200   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7201   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7202   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7203   region->init_req(2, src_dest_conjoint);
7204 
7205   record_for_igvn(region);
7206   return _gvn.transform(region);
7207 }
7208 
7209 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7210 // Return node representing slow path of predicate check.
7211 // the pseudo code we want to emulate with this predicate is:
7212 // for encryption:
7213 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7214 // for decryption:
7215 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7216 //    note cipher==plain is more conservative than the original java code but that's OK
7217 //
7218 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7219   // The receiver was checked for null already.
7220   Node* objECB = argument(0);
7221 
7222   // Load embeddedCipher field of ElectronicCodeBook object.
7223   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7224 
7225   // get AESCrypt klass for instanceOf check
7226   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7227   // will have same classloader as ElectronicCodeBook object
7228   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7229   assert(tinst != nullptr, "ECBobj is null");
7230   assert(tinst->is_loaded(), "ECBobj is not loaded");
7231 
7232   // we want to do an instanceof comparison against the AESCrypt class
7233   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7234   if (!klass_AESCrypt->is_loaded()) {
7235     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7236     Node* ctrl = control();
7237     set_control(top()); // no regular fast path
7238     return ctrl;
7239   }
7240   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7241 
7242   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7243   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7244   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7245 
7246   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7247 
7248   // for encryption, we are done
7249   if (!decrypting)
7250     return instof_false;  // even if it is null
7251 
7252   // for decryption, we need to add a further check to avoid
7253   // taking the intrinsic path when cipher and plain are the same
7254   // see the original java code for why.
7255   RegionNode* region = new RegionNode(3);
7256   region->init_req(1, instof_false);
7257   Node* src = argument(1);
7258   Node* dest = argument(4);
7259   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7260   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7261   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7262   region->init_req(2, src_dest_conjoint);
7263 
7264   record_for_igvn(region);
7265   return _gvn.transform(region);
7266 }
7267 
7268 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7269 // Return node representing slow path of predicate check.
7270 // the pseudo code we want to emulate with this predicate is:
7271 // for encryption:
7272 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7273 // for decryption:
7274 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7275 //    note cipher==plain is more conservative than the original java code but that's OK
7276 //
7277 
7278 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7279   // The receiver was checked for null already.
7280   Node* objCTR = argument(0);
7281 
7282   // Load embeddedCipher field of CipherBlockChaining object.
7283   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7284 
7285   // get AESCrypt klass for instanceOf check
7286   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7287   // will have same classloader as CipherBlockChaining object
7288   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7289   assert(tinst != nullptr, "CTRobj is null");
7290   assert(tinst->is_loaded(), "CTRobj is not loaded");
7291 
7292   // we want to do an instanceof comparison against the AESCrypt class
7293   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7294   if (!klass_AESCrypt->is_loaded()) {
7295     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7296     Node* ctrl = control();
7297     set_control(top()); // no regular fast path
7298     return ctrl;
7299   }
7300 
7301   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7302   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7303   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7304   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7305   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7306 
7307   return instof_false; // even if it is null
7308 }
7309 
7310 //------------------------------inline_ghash_processBlocks
7311 bool LibraryCallKit::inline_ghash_processBlocks() {
7312   address stubAddr;
7313   const char *stubName;
7314   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7315 
7316   stubAddr = StubRoutines::ghash_processBlocks();
7317   stubName = "ghash_processBlocks";
7318 
7319   Node* data           = argument(0);
7320   Node* offset         = argument(1);
7321   Node* len            = argument(2);
7322   Node* state          = argument(3);
7323   Node* subkeyH        = argument(4);
7324 
7325   state = must_be_not_null(state, true);
7326   subkeyH = must_be_not_null(subkeyH, true);
7327   data = must_be_not_null(data, true);
7328 
7329   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7330   assert(state_start, "state is null");
7331   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7332   assert(subkeyH_start, "subkeyH is null");
7333   Node* data_start  = array_element_address(data, offset, T_BYTE);
7334   assert(data_start, "data is null");
7335 
7336   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7337                                   OptoRuntime::ghash_processBlocks_Type(),
7338                                   stubAddr, stubName, TypePtr::BOTTOM,
7339                                   state_start, subkeyH_start, data_start, len);
7340   return true;
7341 }
7342 
7343 //------------------------------inline_chacha20Block
7344 bool LibraryCallKit::inline_chacha20Block() {
7345   address stubAddr;
7346   const char *stubName;
7347   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7348 
7349   stubAddr = StubRoutines::chacha20Block();
7350   stubName = "chacha20Block";
7351 
7352   Node* state          = argument(0);
7353   Node* result         = argument(1);
7354 
7355   state = must_be_not_null(state, true);
7356   result = must_be_not_null(result, true);
7357 
7358   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7359   assert(state_start, "state is null");
7360   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7361   assert(result_start, "result is null");
7362 
7363   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7364                                   OptoRuntime::chacha20Block_Type(),
7365                                   stubAddr, stubName, TypePtr::BOTTOM,
7366                                   state_start, result_start);
7367   // return key stream length (int)
7368   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7369   set_result(retvalue);
7370   return true;
7371 }
7372 
7373 bool LibraryCallKit::inline_base64_encodeBlock() {
7374   address stubAddr;
7375   const char *stubName;
7376   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7377   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7378   stubAddr = StubRoutines::base64_encodeBlock();
7379   stubName = "encodeBlock";
7380 
7381   if (!stubAddr) return false;
7382   Node* base64obj = argument(0);
7383   Node* src = argument(1);
7384   Node* offset = argument(2);
7385   Node* len = argument(3);
7386   Node* dest = argument(4);
7387   Node* dp = argument(5);
7388   Node* isURL = argument(6);
7389 
7390   src = must_be_not_null(src, true);
7391   dest = must_be_not_null(dest, true);
7392 
7393   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7394   assert(src_start, "source array is null");
7395   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7396   assert(dest_start, "destination array is null");
7397 
7398   Node* base64 = make_runtime_call(RC_LEAF,
7399                                    OptoRuntime::base64_encodeBlock_Type(),
7400                                    stubAddr, stubName, TypePtr::BOTTOM,
7401                                    src_start, offset, len, dest_start, dp, isURL);
7402   return true;
7403 }
7404 
7405 bool LibraryCallKit::inline_base64_decodeBlock() {
7406   address stubAddr;
7407   const char *stubName;
7408   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7409   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7410   stubAddr = StubRoutines::base64_decodeBlock();
7411   stubName = "decodeBlock";
7412 
7413   if (!stubAddr) return false;
7414   Node* base64obj = argument(0);
7415   Node* src = argument(1);
7416   Node* src_offset = argument(2);
7417   Node* len = argument(3);
7418   Node* dest = argument(4);
7419   Node* dest_offset = argument(5);
7420   Node* isURL = argument(6);
7421   Node* isMIME = argument(7);
7422 
7423   src = must_be_not_null(src, true);
7424   dest = must_be_not_null(dest, true);
7425 
7426   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7427   assert(src_start, "source array is null");
7428   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7429   assert(dest_start, "destination array is null");
7430 
7431   Node* call = make_runtime_call(RC_LEAF,
7432                                  OptoRuntime::base64_decodeBlock_Type(),
7433                                  stubAddr, stubName, TypePtr::BOTTOM,
7434                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
7435   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7436   set_result(result);
7437   return true;
7438 }
7439 
7440 bool LibraryCallKit::inline_poly1305_processBlocks() {
7441   address stubAddr;
7442   const char *stubName;
7443   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
7444   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
7445   stubAddr = StubRoutines::poly1305_processBlocks();
7446   stubName = "poly1305_processBlocks";
7447 
7448   if (!stubAddr) return false;
7449   null_check_receiver();  // null-check receiver
7450   if (stopped())  return true;
7451 
7452   Node* input = argument(1);
7453   Node* input_offset = argument(2);
7454   Node* len = argument(3);
7455   Node* alimbs = argument(4);
7456   Node* rlimbs = argument(5);
7457 
7458   input = must_be_not_null(input, true);
7459   alimbs = must_be_not_null(alimbs, true);
7460   rlimbs = must_be_not_null(rlimbs, true);
7461 
7462   Node* input_start = array_element_address(input, input_offset, T_BYTE);
7463   assert(input_start, "input array is null");
7464   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
7465   assert(acc_start, "acc array is null");
7466   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
7467   assert(r_start, "r array is null");
7468 
7469   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7470                                  OptoRuntime::poly1305_processBlocks_Type(),
7471                                  stubAddr, stubName, TypePtr::BOTTOM,
7472                                  input_start, len, acc_start, r_start);
7473   return true;
7474 }
7475 
7476 //------------------------------inline_digestBase_implCompress-----------------------
7477 //
7478 // Calculate MD5 for single-block byte[] array.
7479 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
7480 //
7481 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
7482 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
7483 //
7484 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
7485 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
7486 //
7487 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
7488 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
7489 //
7490 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
7491 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
7492 //
7493 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
7494   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
7495 
7496   Node* digestBase_obj = argument(0);
7497   Node* src            = argument(1); // type oop
7498   Node* ofs            = argument(2); // type int
7499 
7500   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7501   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7502     // failed array check
7503     return false;
7504   }
7505   // Figure out the size and type of the elements we will be copying.
7506   BasicType src_elem = src_type->elem()->array_element_basic_type();
7507   if (src_elem != T_BYTE) {
7508     return false;
7509   }
7510   // 'src_start' points to src array + offset
7511   src = must_be_not_null(src, true);
7512   Node* src_start = array_element_address(src, ofs, src_elem);
7513   Node* state = nullptr;
7514   Node* block_size = nullptr;
7515   address stubAddr;
7516   const char *stubName;
7517 
7518   switch(id) {
7519   case vmIntrinsics::_md5_implCompress:
7520     assert(UseMD5Intrinsics, "need MD5 instruction support");
7521     state = get_state_from_digest_object(digestBase_obj, T_INT);
7522     stubAddr = StubRoutines::md5_implCompress();
7523     stubName = "md5_implCompress";
7524     break;
7525   case vmIntrinsics::_sha_implCompress:
7526     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
7527     state = get_state_from_digest_object(digestBase_obj, T_INT);
7528     stubAddr = StubRoutines::sha1_implCompress();
7529     stubName = "sha1_implCompress";
7530     break;
7531   case vmIntrinsics::_sha2_implCompress:
7532     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
7533     state = get_state_from_digest_object(digestBase_obj, T_INT);
7534     stubAddr = StubRoutines::sha256_implCompress();
7535     stubName = "sha256_implCompress";
7536     break;
7537   case vmIntrinsics::_sha5_implCompress:
7538     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
7539     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7540     stubAddr = StubRoutines::sha512_implCompress();
7541     stubName = "sha512_implCompress";
7542     break;
7543   case vmIntrinsics::_sha3_implCompress:
7544     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
7545     state = get_state_from_digest_object(digestBase_obj, T_BYTE);
7546     stubAddr = StubRoutines::sha3_implCompress();
7547     stubName = "sha3_implCompress";
7548     block_size = get_block_size_from_digest_object(digestBase_obj);
7549     if (block_size == nullptr) return false;
7550     break;
7551   default:
7552     fatal_unexpected_iid(id);
7553     return false;
7554   }
7555   if (state == nullptr) return false;
7556 
7557   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
7558   if (stubAddr == nullptr) return false;
7559 
7560   // Call the stub.
7561   Node* call;
7562   if (block_size == nullptr) {
7563     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
7564                              stubAddr, stubName, TypePtr::BOTTOM,
7565                              src_start, state);
7566   } else {
7567     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
7568                              stubAddr, stubName, TypePtr::BOTTOM,
7569                              src_start, state, block_size);
7570   }
7571 
7572   return true;
7573 }
7574 
7575 //------------------------------inline_digestBase_implCompressMB-----------------------
7576 //
7577 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
7578 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
7579 //
7580 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
7581   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7582          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7583   assert((uint)predicate < 5, "sanity");
7584   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
7585 
7586   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
7587   Node* src            = argument(1); // byte[] array
7588   Node* ofs            = argument(2); // type int
7589   Node* limit          = argument(3); // type int
7590 
7591   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7592   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7593     // failed array check
7594     return false;
7595   }
7596   // Figure out the size and type of the elements we will be copying.
7597   BasicType src_elem = src_type->elem()->array_element_basic_type();
7598   if (src_elem != T_BYTE) {
7599     return false;
7600   }
7601   // 'src_start' points to src array + offset
7602   src = must_be_not_null(src, false);
7603   Node* src_start = array_element_address(src, ofs, src_elem);
7604 
7605   const char* klass_digestBase_name = nullptr;
7606   const char* stub_name = nullptr;
7607   address     stub_addr = nullptr;
7608   BasicType elem_type = T_INT;
7609 
7610   switch (predicate) {
7611   case 0:
7612     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
7613       klass_digestBase_name = "sun/security/provider/MD5";
7614       stub_name = "md5_implCompressMB";
7615       stub_addr = StubRoutines::md5_implCompressMB();
7616     }
7617     break;
7618   case 1:
7619     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
7620       klass_digestBase_name = "sun/security/provider/SHA";
7621       stub_name = "sha1_implCompressMB";
7622       stub_addr = StubRoutines::sha1_implCompressMB();
7623     }
7624     break;
7625   case 2:
7626     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
7627       klass_digestBase_name = "sun/security/provider/SHA2";
7628       stub_name = "sha256_implCompressMB";
7629       stub_addr = StubRoutines::sha256_implCompressMB();
7630     }
7631     break;
7632   case 3:
7633     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
7634       klass_digestBase_name = "sun/security/provider/SHA5";
7635       stub_name = "sha512_implCompressMB";
7636       stub_addr = StubRoutines::sha512_implCompressMB();
7637       elem_type = T_LONG;
7638     }
7639     break;
7640   case 4:
7641     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
7642       klass_digestBase_name = "sun/security/provider/SHA3";
7643       stub_name = "sha3_implCompressMB";
7644       stub_addr = StubRoutines::sha3_implCompressMB();
7645       elem_type = T_BYTE;
7646     }
7647     break;
7648   default:
7649     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
7650   }
7651   if (klass_digestBase_name != nullptr) {
7652     assert(stub_addr != nullptr, "Stub is generated");
7653     if (stub_addr == nullptr) return false;
7654 
7655     // get DigestBase klass to lookup for SHA klass
7656     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
7657     assert(tinst != nullptr, "digestBase_obj is not instance???");
7658     assert(tinst->is_loaded(), "DigestBase is not loaded");
7659 
7660     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
7661     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
7662     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
7663     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
7664   }
7665   return false;
7666 }
7667 
7668 //------------------------------inline_digestBase_implCompressMB-----------------------
7669 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
7670                                                       BasicType elem_type, address stubAddr, const char *stubName,
7671                                                       Node* src_start, Node* ofs, Node* limit) {
7672   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
7673   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7674   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
7675   digest_obj = _gvn.transform(digest_obj);
7676 
7677   Node* state = get_state_from_digest_object(digest_obj, elem_type);
7678   if (state == nullptr) return false;
7679 
7680   Node* block_size = nullptr;
7681   if (strcmp("sha3_implCompressMB", stubName) == 0) {
7682     block_size = get_block_size_from_digest_object(digest_obj);
7683     if (block_size == nullptr) return false;
7684   }
7685 
7686   // Call the stub.
7687   Node* call;
7688   if (block_size == nullptr) {
7689     call = make_runtime_call(RC_LEAF|RC_NO_FP,
7690                              OptoRuntime::digestBase_implCompressMB_Type(false),
7691                              stubAddr, stubName, TypePtr::BOTTOM,
7692                              src_start, state, ofs, limit);
7693   } else {
7694      call = make_runtime_call(RC_LEAF|RC_NO_FP,
7695                              OptoRuntime::digestBase_implCompressMB_Type(true),
7696                              stubAddr, stubName, TypePtr::BOTTOM,
7697                              src_start, state, block_size, ofs, limit);
7698   }
7699 
7700   // return ofs (int)
7701   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7702   set_result(result);
7703 
7704   return true;
7705 }
7706 
7707 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
7708 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
7709   assert(UseAES, "need AES instruction support");
7710   address stubAddr = nullptr;
7711   const char *stubName = nullptr;
7712   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
7713   stubName = "galoisCounterMode_AESCrypt";
7714 
7715   if (stubAddr == nullptr) return false;
7716 
7717   Node* in      = argument(0);
7718   Node* inOfs   = argument(1);
7719   Node* len     = argument(2);
7720   Node* ct      = argument(3);
7721   Node* ctOfs   = argument(4);
7722   Node* out     = argument(5);
7723   Node* outOfs  = argument(6);
7724   Node* gctr_object = argument(7);
7725   Node* ghash_object = argument(8);
7726 
7727   // (1) in, ct and out are arrays.
7728   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
7729   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
7730   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
7731   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
7732           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
7733          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
7734 
7735   // checks are the responsibility of the caller
7736   Node* in_start = in;
7737   Node* ct_start = ct;
7738   Node* out_start = out;
7739   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
7740     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
7741     in_start = array_element_address(in, inOfs, T_BYTE);
7742     ct_start = array_element_address(ct, ctOfs, T_BYTE);
7743     out_start = array_element_address(out, outOfs, T_BYTE);
7744   }
7745 
7746   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7747   // (because of the predicated logic executed earlier).
7748   // so we cast it here safely.
7749   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7750   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7751   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
7752   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
7753   Node* state = load_field_from_object(ghash_object, "state", "[J");
7754 
7755   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
7756     return false;
7757   }
7758   // cast it to what we know it will be at runtime
7759   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
7760   assert(tinst != nullptr, "GCTR obj is null");
7761   assert(tinst->is_loaded(), "GCTR obj is not loaded");
7762   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7763   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7764   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7765   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7766   const TypeOopPtr* xtype = aklass->as_instance_type();
7767   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7768   aescrypt_object = _gvn.transform(aescrypt_object);
7769   // we need to get the start of the aescrypt_object's expanded key array
7770   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7771   if (k_start == nullptr) return false;
7772   // similarly, get the start address of the r vector
7773   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
7774   Node* state_start = array_element_address(state, intcon(0), T_LONG);
7775   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
7776 
7777 
7778   // Call the stub, passing params
7779   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7780                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
7781                                stubAddr, stubName, TypePtr::BOTTOM,
7782                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
7783 
7784   // return cipher length (int)
7785   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
7786   set_result(retvalue);
7787 
7788   return true;
7789 }
7790 
7791 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
7792 // Return node representing slow path of predicate check.
7793 // the pseudo code we want to emulate with this predicate is:
7794 // for encryption:
7795 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7796 // for decryption:
7797 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7798 //    note cipher==plain is more conservative than the original java code but that's OK
7799 //
7800 
7801 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
7802   // The receiver was checked for null already.
7803   Node* objGCTR = argument(7);
7804   // Load embeddedCipher field of GCTR object.
7805   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7806   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
7807 
7808   // get AESCrypt klass for instanceOf check
7809   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7810   // will have same classloader as CipherBlockChaining object
7811   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
7812   assert(tinst != nullptr, "GCTR obj is null");
7813   assert(tinst->is_loaded(), "GCTR obj is not loaded");
7814 
7815   // we want to do an instanceof comparison against the AESCrypt class
7816   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7817   if (!klass_AESCrypt->is_loaded()) {
7818     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7819     Node* ctrl = control();
7820     set_control(top()); // no regular fast path
7821     return ctrl;
7822   }
7823 
7824   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7825   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7826   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7827   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7828   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7829 
7830   return instof_false; // even if it is null
7831 }
7832 
7833 //------------------------------get_state_from_digest_object-----------------------
7834 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
7835   const char* state_type;
7836   switch (elem_type) {
7837     case T_BYTE: state_type = "[B"; break;
7838     case T_INT:  state_type = "[I"; break;
7839     case T_LONG: state_type = "[J"; break;
7840     default: ShouldNotReachHere();
7841   }
7842   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
7843   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
7844   if (digest_state == nullptr) return (Node *) nullptr;
7845 
7846   // now have the array, need to get the start address of the state array
7847   Node* state = array_element_address(digest_state, intcon(0), elem_type);
7848   return state;
7849 }
7850 
7851 //------------------------------get_block_size_from_sha3_object----------------------------------
7852 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
7853   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
7854   assert (block_size != nullptr, "sanity");
7855   return block_size;
7856 }
7857 
7858 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
7859 // Return node representing slow path of predicate check.
7860 // the pseudo code we want to emulate with this predicate is:
7861 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
7862 //
7863 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
7864   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7865          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7866   assert((uint)predicate < 5, "sanity");
7867 
7868   // The receiver was checked for null already.
7869   Node* digestBaseObj = argument(0);
7870 
7871   // get DigestBase klass for instanceOf check
7872   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
7873   assert(tinst != nullptr, "digestBaseObj is null");
7874   assert(tinst->is_loaded(), "DigestBase is not loaded");
7875 
7876   const char* klass_name = nullptr;
7877   switch (predicate) {
7878   case 0:
7879     if (UseMD5Intrinsics) {
7880       // we want to do an instanceof comparison against the MD5 class
7881       klass_name = "sun/security/provider/MD5";
7882     }
7883     break;
7884   case 1:
7885     if (UseSHA1Intrinsics) {
7886       // we want to do an instanceof comparison against the SHA class
7887       klass_name = "sun/security/provider/SHA";
7888     }
7889     break;
7890   case 2:
7891     if (UseSHA256Intrinsics) {
7892       // we want to do an instanceof comparison against the SHA2 class
7893       klass_name = "sun/security/provider/SHA2";
7894     }
7895     break;
7896   case 3:
7897     if (UseSHA512Intrinsics) {
7898       // we want to do an instanceof comparison against the SHA5 class
7899       klass_name = "sun/security/provider/SHA5";
7900     }
7901     break;
7902   case 4:
7903     if (UseSHA3Intrinsics) {
7904       // we want to do an instanceof comparison against the SHA3 class
7905       klass_name = "sun/security/provider/SHA3";
7906     }
7907     break;
7908   default:
7909     fatal("unknown SHA intrinsic predicate: %d", predicate);
7910   }
7911 
7912   ciKlass* klass = nullptr;
7913   if (klass_name != nullptr) {
7914     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
7915   }
7916   if ((klass == nullptr) || !klass->is_loaded()) {
7917     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
7918     Node* ctrl = control();
7919     set_control(top()); // no intrinsic path
7920     return ctrl;
7921   }
7922   ciInstanceKlass* instklass = klass->as_instance_klass();
7923 
7924   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
7925   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7926   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7927   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7928 
7929   return instof_false;  // even if it is null
7930 }
7931 
7932 //-------------inline_fma-----------------------------------
7933 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
7934   Node *a = nullptr;
7935   Node *b = nullptr;
7936   Node *c = nullptr;
7937   Node* result = nullptr;
7938   switch (id) {
7939   case vmIntrinsics::_fmaD:
7940     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
7941     // no receiver since it is static method
7942     a = round_double_node(argument(0));
7943     b = round_double_node(argument(2));
7944     c = round_double_node(argument(4));
7945     result = _gvn.transform(new FmaDNode(control(), a, b, c));
7946     break;
7947   case vmIntrinsics::_fmaF:
7948     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
7949     a = argument(0);
7950     b = argument(1);
7951     c = argument(2);
7952     result = _gvn.transform(new FmaFNode(control(), a, b, c));
7953     break;
7954   default:
7955     fatal_unexpected_iid(id);  break;
7956   }
7957   set_result(result);
7958   return true;
7959 }
7960 
7961 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
7962   // argument(0) is receiver
7963   Node* codePoint = argument(1);
7964   Node* n = nullptr;
7965 
7966   switch (id) {
7967     case vmIntrinsics::_isDigit :
7968       n = new DigitNode(control(), codePoint);
7969       break;
7970     case vmIntrinsics::_isLowerCase :
7971       n = new LowerCaseNode(control(), codePoint);
7972       break;
7973     case vmIntrinsics::_isUpperCase :
7974       n = new UpperCaseNode(control(), codePoint);
7975       break;
7976     case vmIntrinsics::_isWhitespace :
7977       n = new WhitespaceNode(control(), codePoint);
7978       break;
7979     default:
7980       fatal_unexpected_iid(id);
7981   }
7982 
7983   set_result(_gvn.transform(n));
7984   return true;
7985 }
7986 
7987 //------------------------------inline_fp_min_max------------------------------
7988 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
7989 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
7990 
7991   // The intrinsic should be used only when the API branches aren't predictable,
7992   // the last one performing the most important comparison. The following heuristic
7993   // uses the branch statistics to eventually bail out if necessary.
7994 
7995   ciMethodData *md = callee()->method_data();
7996 
7997   if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) {
7998     ciCallProfile cp = caller()->call_profile_at_bci(bci());
7999 
8000     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8001       // Bail out if the call-site didn't contribute enough to the statistics.
8002       return false;
8003     }
8004 
8005     uint taken = 0, not_taken = 0;
8006 
8007     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8008       if (p->is_BranchData()) {
8009         taken = ((ciBranchData*)p)->taken();
8010         not_taken = ((ciBranchData*)p)->not_taken();
8011       }
8012     }
8013 
8014     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8015     balance = balance < 0 ? -balance : balance;
8016     if ( balance > 0.2 ) {
8017       // Bail out if the most important branch is predictable enough.
8018       return false;
8019     }
8020   }
8021 */
8022 
8023   Node *a = nullptr;
8024   Node *b = nullptr;
8025   Node *n = nullptr;
8026   switch (id) {
8027   case vmIntrinsics::_maxF:
8028   case vmIntrinsics::_minF:
8029   case vmIntrinsics::_maxF_strict:
8030   case vmIntrinsics::_minF_strict:
8031     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8032     a = argument(0);
8033     b = argument(1);
8034     break;
8035   case vmIntrinsics::_maxD:
8036   case vmIntrinsics::_minD:
8037   case vmIntrinsics::_maxD_strict:
8038   case vmIntrinsics::_minD_strict:
8039     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8040     a = round_double_node(argument(0));
8041     b = round_double_node(argument(2));
8042     break;
8043   default:
8044     fatal_unexpected_iid(id);
8045     break;
8046   }
8047   switch (id) {
8048   case vmIntrinsics::_maxF:
8049   case vmIntrinsics::_maxF_strict:
8050     n = new MaxFNode(a, b);
8051     break;
8052   case vmIntrinsics::_minF:
8053   case vmIntrinsics::_minF_strict:
8054     n = new MinFNode(a, b);
8055     break;
8056   case vmIntrinsics::_maxD:
8057   case vmIntrinsics::_maxD_strict:
8058     n = new MaxDNode(a, b);
8059     break;
8060   case vmIntrinsics::_minD:
8061   case vmIntrinsics::_minD_strict:
8062     n = new MinDNode(a, b);
8063     break;
8064   default:
8065     fatal_unexpected_iid(id);
8066     break;
8067   }
8068   set_result(_gvn.transform(n));
8069   return true;
8070 }
8071 
8072 bool LibraryCallKit::inline_profileBoolean() {
8073   Node* counts = argument(1);
8074   const TypeAryPtr* ary = nullptr;
8075   ciArray* aobj = nullptr;
8076   if (counts->is_Con()
8077       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8078       && (aobj = ary->const_oop()->as_array()) != nullptr
8079       && (aobj->length() == 2)) {
8080     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8081     jint false_cnt = aobj->element_value(0).as_int();
8082     jint  true_cnt = aobj->element_value(1).as_int();
8083 
8084     if (C->log() != nullptr) {
8085       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8086                      false_cnt, true_cnt);
8087     }
8088 
8089     if (false_cnt + true_cnt == 0) {
8090       // According to profile, never executed.
8091       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8092                           Deoptimization::Action_reinterpret);
8093       return true;
8094     }
8095 
8096     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8097     // is a number of each value occurrences.
8098     Node* result = argument(0);
8099     if (false_cnt == 0 || true_cnt == 0) {
8100       // According to profile, one value has been never seen.
8101       int expected_val = (false_cnt == 0) ? 1 : 0;
8102 
8103       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8104       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8105 
8106       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8107       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8108       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8109 
8110       { // Slow path: uncommon trap for never seen value and then reexecute
8111         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8112         // the value has been seen at least once.
8113         PreserveJVMState pjvms(this);
8114         PreserveReexecuteState preexecs(this);
8115         jvms()->set_should_reexecute(true);
8116 
8117         set_control(slow_path);
8118         set_i_o(i_o());
8119 
8120         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8121                             Deoptimization::Action_reinterpret);
8122       }
8123       // The guard for never seen value enables sharpening of the result and
8124       // returning a constant. It allows to eliminate branches on the same value
8125       // later on.
8126       set_control(fast_path);
8127       result = intcon(expected_val);
8128     }
8129     // Stop profiling.
8130     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8131     // By replacing method body with profile data (represented as ProfileBooleanNode
8132     // on IR level) we effectively disable profiling.
8133     // It enables full speed execution once optimized code is generated.
8134     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8135     C->record_for_igvn(profile);
8136     set_result(profile);
8137     return true;
8138   } else {
8139     // Continue profiling.
8140     // Profile data isn't available at the moment. So, execute method's bytecode version.
8141     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8142     // is compiled and counters aren't available since corresponding MethodHandle
8143     // isn't a compile-time constant.
8144     return false;
8145   }
8146 }
8147 
8148 bool LibraryCallKit::inline_isCompileConstant() {
8149   Node* n = argument(0);
8150   set_result(n->is_Con() ? intcon(1) : intcon(0));
8151   return true;
8152 }
8153 
8154 //------------------------------- inline_getObjectSize --------------------------------------
8155 //
8156 // Calculate the runtime size of the object/array.
8157 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8158 //
8159 bool LibraryCallKit::inline_getObjectSize() {
8160   Node* obj = argument(3);
8161   Node* klass_node = load_object_klass(obj);
8162 
8163   jint  layout_con = Klass::_lh_neutral_value;
8164   Node* layout_val = get_layout_helper(klass_node, layout_con);
8165   int   layout_is_con = (layout_val == nullptr);
8166 
8167   if (layout_is_con) {
8168     // Layout helper is constant, can figure out things at compile time.
8169 
8170     if (Klass::layout_helper_is_instance(layout_con)) {
8171       // Instance case:  layout_con contains the size itself.
8172       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8173       set_result(size);
8174     } else {
8175       // Array case: size is round(header + element_size*arraylength).
8176       // Since arraylength is different for every array instance, we have to
8177       // compute the whole thing at runtime.
8178 
8179       Node* arr_length = load_array_length(obj);
8180 
8181       int round_mask = MinObjAlignmentInBytes - 1;
8182       int hsize  = Klass::layout_helper_header_size(layout_con);
8183       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8184 
8185       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8186         round_mask = 0;  // strength-reduce it if it goes away completely
8187       }
8188       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8189       Node* header_size = intcon(hsize + round_mask);
8190 
8191       Node* lengthx = ConvI2X(arr_length);
8192       Node* headerx = ConvI2X(header_size);
8193 
8194       Node* abody = lengthx;
8195       if (eshift != 0) {
8196         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8197       }
8198       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8199       if (round_mask != 0) {
8200         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8201       }
8202       size = ConvX2L(size);
8203       set_result(size);
8204     }
8205   } else {
8206     // Layout helper is not constant, need to test for array-ness at runtime.
8207 
8208     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8209     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8210     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8211     record_for_igvn(result_reg);
8212 
8213     Node* array_ctl = generate_array_guard(klass_node, nullptr);
8214     if (array_ctl != nullptr) {
8215       // Array case: size is round(header + element_size*arraylength).
8216       // Since arraylength is different for every array instance, we have to
8217       // compute the whole thing at runtime.
8218 
8219       PreserveJVMState pjvms(this);
8220       set_control(array_ctl);
8221       Node* arr_length = load_array_length(obj);
8222 
8223       int round_mask = MinObjAlignmentInBytes - 1;
8224       Node* mask = intcon(round_mask);
8225 
8226       Node* hss = intcon(Klass::_lh_header_size_shift);
8227       Node* hsm = intcon(Klass::_lh_header_size_mask);
8228       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8229       header_size = _gvn.transform(new AndINode(header_size, hsm));
8230       header_size = _gvn.transform(new AddINode(header_size, mask));
8231 
8232       // There is no need to mask or shift this value.
8233       // The semantics of LShiftINode include an implicit mask to 0x1F.
8234       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8235       Node* elem_shift = layout_val;
8236 
8237       Node* lengthx = ConvI2X(arr_length);
8238       Node* headerx = ConvI2X(header_size);
8239 
8240       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8241       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8242       if (round_mask != 0) {
8243         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8244       }
8245       size = ConvX2L(size);
8246 
8247       result_reg->init_req(_array_path, control());
8248       result_val->init_req(_array_path, size);
8249     }
8250 
8251     if (!stopped()) {
8252       // Instance case: the layout helper gives us instance size almost directly,
8253       // but we need to mask out the _lh_instance_slow_path_bit.
8254       Node* size = ConvI2X(layout_val);
8255       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8256       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8257       size = _gvn.transform(new AndXNode(size, mask));
8258       size = ConvX2L(size);
8259 
8260       result_reg->init_req(_instance_path, control());
8261       result_val->init_req(_instance_path, size);
8262     }
8263 
8264     set_result(result_reg, result_val);
8265   }
8266 
8267   return true;
8268 }
8269 
8270 //------------------------------- inline_blackhole --------------------------------------
8271 //
8272 // Make sure all arguments to this node are alive.
8273 // This matches methods that were requested to be blackholed through compile commands.
8274 //
8275 bool LibraryCallKit::inline_blackhole() {
8276   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8277   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8278   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8279 
8280   // Blackhole node pinches only the control, not memory. This allows
8281   // the blackhole to be pinned in the loop that computes blackholed
8282   // values, but have no other side effects, like breaking the optimizations
8283   // across the blackhole.
8284 
8285   Node* bh = _gvn.transform(new BlackholeNode(control()));
8286   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8287 
8288   // Bind call arguments as blackhole arguments to keep them alive
8289   uint nargs = callee()->arg_size();
8290   for (uint i = 0; i < nargs; i++) {
8291     bh->add_req(argument(i));
8292   }
8293 
8294   return true;
8295 }