1 /*
2 * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "gc/shared/tlab_globals.hpp"
27 #include "gc/shenandoah/shenandoahFreeSet.hpp"
28 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
29 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
30 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
31 #include "logging/logStream.hpp"
32 #include "memory/resourceArea.hpp"
33 #include "runtime/orderAccess.hpp"
34
35 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
36 _heap(heap),
37 _mutator_free_bitmap(max_regions, mtGC),
38 _collector_free_bitmap(max_regions, mtGC),
39 _max(max_regions)
40 {
41 clear_internal();
42 }
43
44 void ShenandoahFreeSet::increase_used(size_t num_bytes) {
45 shenandoah_assert_heaplocked();
46 _used += num_bytes;
47
48 assert(_used <= _capacity, "must not use more than we have: used: " SIZE_FORMAT
49 ", capacity: " SIZE_FORMAT ", num_bytes: " SIZE_FORMAT, _used, _capacity, num_bytes);
50 }
51
52 bool ShenandoahFreeSet::is_mutator_free(size_t idx) const {
53 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
54 idx, _max, _mutator_leftmost, _mutator_rightmost);
55 return _mutator_free_bitmap.at(idx);
56 }
57
58 bool ShenandoahFreeSet::is_collector_free(size_t idx) const {
59 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
60 idx, _max, _collector_leftmost, _collector_rightmost);
61 return _collector_free_bitmap.at(idx);
62 }
63
64 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {
65 // Scan the bitmap looking for a first fit.
66 //
67 // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
68 // we would find the region to allocate at right away.
69 //
70 // Allocations are biased: new application allocs go to beginning of the heap, and GC allocs
71 // go to the end. This makes application allocation faster, because we would clear lots
72 // of regions from the beginning most of the time.
73 //
74 // Free set maintains mutator and collector views, and normally they allocate in their views only,
75 // unless we special cases for stealing and mixed allocations.
76
77 switch (req.type()) {
78 case ShenandoahAllocRequest::_alloc_tlab:
79 case ShenandoahAllocRequest::_alloc_shared: {
80
81 // Try to allocate in the mutator view
82 for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
83 if (is_mutator_free(idx)) {
84 HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
85 if (result != nullptr) {
86 return result;
87 }
88 }
89 }
90
91 // There is no recovery. Mutator does not touch collector view at all.
92 break;
93 }
94 case ShenandoahAllocRequest::_alloc_gclab:
95 case ShenandoahAllocRequest::_alloc_shared_gc: {
96 // size_t is unsigned, need to dodge underflow when _leftmost = 0
97
98 // Fast-path: try to allocate in the collector view first
99 for (size_t c = _collector_rightmost + 1; c > _collector_leftmost; c--) {
100 size_t idx = c - 1;
101 if (is_collector_free(idx)) {
102 HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
103 if (result != nullptr) {
104 return result;
105 }
106 }
107 }
108
109 // No dice. Can we borrow space from mutator view?
110 if (!ShenandoahEvacReserveOverflow) {
111 return nullptr;
112 }
113
114 // Try to steal the empty region from the mutator view
115 for (size_t c = _mutator_rightmost + 1; c > _mutator_leftmost; c--) {
116 size_t idx = c - 1;
117 if (is_mutator_free(idx)) {
118 ShenandoahHeapRegion* r = _heap->get_region(idx);
119 if (can_allocate_from(r)) {
120 flip_to_gc(r);
121 HeapWord *result = try_allocate_in(r, req, in_new_region);
122 if (result != nullptr) {
123 return result;
124 }
125 }
126 }
127 }
128
129 // No dice. Do not try to mix mutator and GC allocations, because
130 // URWM moves due to GC allocations would expose unparsable mutator
131 // allocations.
132
133 break;
134 }
135 default:
136 ShouldNotReachHere();
137 }
138
139 return nullptr;
140 }
141
142 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
143 assert (!has_no_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index());
144
145 if (_heap->is_concurrent_weak_root_in_progress() &&
146 r->is_trash()) {
147 return nullptr;
148 }
149
150 try_recycle_trashed(r);
151
152 in_new_region = r->is_empty();
153
154 HeapWord* result = nullptr;
155 size_t size = req.size();
156
157 if (req.is_lab_alloc()) {
158 size_t free = align_down(r->free() >> LogHeapWordSize, MinObjAlignment);
159 if (size > free) {
160 size = free;
161 }
162 if (size >= req.min_size()) {
163 result = r->allocate(size, req.type());
164 assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, size);
165 }
166 } else {
167 result = r->allocate(size, req.type());
168 }
169
170 if (result != nullptr) {
171 // Allocation successful, bump stats:
172 if (req.is_mutator_alloc()) {
173 increase_used(size * HeapWordSize);
174 }
175
176 // Record actual allocation size
177 req.set_actual_size(size);
178
179 if (req.is_gc_alloc()) {
180 r->set_update_watermark(r->top());
181 }
182 }
183
184 if (result == nullptr || has_no_alloc_capacity(r)) {
185 // Region cannot afford this or future allocations. Retire it.
186 //
187 // While this seems a bit harsh, especially in the case when this large allocation does not
188 // fit, but the next small one would, we are risking to inflate scan times when lots of
189 // almost-full regions precede the fully-empty region where we want allocate the entire TLAB.
190 // TODO: Record first fully-empty region, and use that for large allocations
191
192 // Record the remainder as allocation waste
193 if (req.is_mutator_alloc()) {
194 size_t waste = r->free();
195 if (waste > 0) {
196 increase_used(waste);
197 _heap->notify_mutator_alloc_words(waste >> LogHeapWordSize, true);
198 }
199 }
200
201 size_t num = r->index();
202 _collector_free_bitmap.clear_bit(num);
203 _mutator_free_bitmap.clear_bit(num);
204 // Touched the bounds? Need to update:
205 if (touches_bounds(num)) {
206 adjust_bounds();
207 }
208 assert_bounds();
209 }
210 return result;
211 }
212
213 bool ShenandoahFreeSet::touches_bounds(size_t num) const {
214 return num == _collector_leftmost || num == _collector_rightmost || num == _mutator_leftmost || num == _mutator_rightmost;
215 }
216
217 void ShenandoahFreeSet::recompute_bounds() {
218 // Reset to the most pessimistic case:
219 _mutator_rightmost = _max - 1;
220 _mutator_leftmost = 0;
221 _collector_rightmost = _max - 1;
222 _collector_leftmost = 0;
223
224 // ...and adjust from there
225 adjust_bounds();
226 }
227
228 void ShenandoahFreeSet::adjust_bounds() {
229 // Rewind both mutator bounds until the next bit.
230 while (_mutator_leftmost < _max && !is_mutator_free(_mutator_leftmost)) {
231 _mutator_leftmost++;
232 }
233 while (_mutator_rightmost > 0 && !is_mutator_free(_mutator_rightmost)) {
234 _mutator_rightmost--;
235 }
236 // Rewind both collector bounds until the next bit.
237 while (_collector_leftmost < _max && !is_collector_free(_collector_leftmost)) {
238 _collector_leftmost++;
239 }
240 while (_collector_rightmost > 0 && !is_collector_free(_collector_rightmost)) {
241 _collector_rightmost--;
242 }
243 }
244
245 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {
246 shenandoah_assert_heaplocked();
247
248 size_t words_size = req.size();
249 size_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
250
251 // No regions left to satisfy allocation, bye.
252 if (num > mutator_count()) {
253 return nullptr;
254 }
255
256 // Find the continuous interval of $num regions, starting from $beg and ending in $end,
257 // inclusive. Contiguous allocations are biased to the beginning.
258
259 size_t beg = _mutator_leftmost;
260 size_t end = beg;
261
262 while (true) {
263 if (end >= _max) {
264 // Hit the end, goodbye
265 return nullptr;
266 }
267
268 // If regions are not adjacent, then current [beg; end] is useless, and we may fast-forward.
269 // If region is not completely free, the current [beg; end] is useless, and we may fast-forward.
270 if (!is_mutator_free(end) || !can_allocate_from(_heap->get_region(end))) {
271 end++;
272 beg = end;
273 continue;
274 }
275
276 if ((end - beg + 1) == num) {
277 // found the match
278 break;
279 }
280
281 end++;
282 }
283
284 size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
285
286 // Initialize regions:
287 for (size_t i = beg; i <= end; i++) {
288 ShenandoahHeapRegion* r = _heap->get_region(i);
289 try_recycle_trashed(r);
290
291 assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous");
292 assert(r->is_empty(), "Should be empty");
293
294 if (i == beg) {
295 r->make_humongous_start();
296 } else {
297 r->make_humongous_cont();
298 }
299
300 // Trailing region may be non-full, record the remainder there
301 size_t used_words;
302 if ((i == end) && (remainder != 0)) {
303 used_words = remainder;
304 } else {
305 used_words = ShenandoahHeapRegion::region_size_words();
306 }
307
308 r->set_top(r->bottom() + used_words);
309
310 _mutator_free_bitmap.clear_bit(r->index());
311 }
312
313 // While individual regions report their true use, all humongous regions are
314 // marked used in the free set.
315 increase_used(ShenandoahHeapRegion::region_size_bytes() * num);
316
317 if (remainder != 0) {
318 // Record this remainder as allocation waste
319 _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true);
320 }
321
322 // Allocated at left/rightmost? Move the bounds appropriately.
323 if (beg == _mutator_leftmost || end == _mutator_rightmost) {
324 adjust_bounds();
325 }
326 assert_bounds();
327
328 req.set_actual_size(words_size);
329 return _heap->get_region(beg)->bottom();
330 }
331
332 bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) {
333 return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress());
334 }
335
336 size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) {
337 if (r->is_trash()) {
338 // This would be recycled on allocation path
339 return ShenandoahHeapRegion::region_size_bytes();
340 } else {
341 return r->free();
342 }
343 }
344
345 bool ShenandoahFreeSet::has_no_alloc_capacity(ShenandoahHeapRegion *r) {
346 return alloc_capacity(r) == 0;
347 }
348
349 void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion *r) {
350 if (r->is_trash()) {
351 _heap->decrease_used(r->used());
352 r->recycle();
353 }
354 }
355
356 void ShenandoahFreeSet::recycle_trash() {
357 // lock is not reentrable, check we don't have it
358 shenandoah_assert_not_heaplocked();
359
360 for (size_t i = 0; i < _heap->num_regions(); i++) {
361 ShenandoahHeapRegion* r = _heap->get_region(i);
362 if (r->is_trash()) {
363 ShenandoahHeapLocker locker(_heap->lock());
364 try_recycle_trashed(r);
365 }
366 SpinPause(); // allow allocators to take the lock
367 }
368 }
369
370 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
371 size_t idx = r->index();
372
373 assert(_mutator_free_bitmap.at(idx), "Should be in mutator view");
374 assert(can_allocate_from(r), "Should not be allocated");
375
376 _mutator_free_bitmap.clear_bit(idx);
377 _collector_free_bitmap.set_bit(idx);
378 _collector_leftmost = MIN2(idx, _collector_leftmost);
379 _collector_rightmost = MAX2(idx, _collector_rightmost);
380
381 _capacity -= alloc_capacity(r);
382
383 if (touches_bounds(idx)) {
384 adjust_bounds();
385 }
386 assert_bounds();
387 }
388
389 void ShenandoahFreeSet::clear() {
390 shenandoah_assert_heaplocked();
391 clear_internal();
392 }
393
394 void ShenandoahFreeSet::clear_internal() {
395 _mutator_free_bitmap.clear();
396 _collector_free_bitmap.clear();
397 _mutator_leftmost = _max;
398 _mutator_rightmost = 0;
399 _collector_leftmost = _max;
400 _collector_rightmost = 0;
401 _capacity = 0;
402 _used = 0;
403 }
404
405 void ShenandoahFreeSet::rebuild() {
406 shenandoah_assert_heaplocked();
407 clear();
408
409 for (size_t idx = 0; idx < _heap->num_regions(); idx++) {
410 ShenandoahHeapRegion* region = _heap->get_region(idx);
411 if (region->is_alloc_allowed() || region->is_trash()) {
412 assert(!region->is_cset(), "Shouldn't be adding those to the free set");
413
414 // Do not add regions that would surely fail allocation
415 if (has_no_alloc_capacity(region)) continue;
416
417 _capacity += alloc_capacity(region);
418 assert(_used <= _capacity, "must not use more than we have");
419
420 assert(!is_mutator_free(idx), "We are about to add it, it shouldn't be there already");
421 _mutator_free_bitmap.set_bit(idx);
422 }
423 }
424
425 // Evac reserve: reserve trailing space for evacuations
426 size_t to_reserve = _heap->max_capacity() / 100 * ShenandoahEvacReserve;
427 size_t reserved = 0;
428
429 for (size_t idx = _heap->num_regions() - 1; idx > 0; idx--) {
430 if (reserved >= to_reserve) break;
431
432 ShenandoahHeapRegion* region = _heap->get_region(idx);
433 if (_mutator_free_bitmap.at(idx) && can_allocate_from(region)) {
434 _mutator_free_bitmap.clear_bit(idx);
435 _collector_free_bitmap.set_bit(idx);
436 size_t ac = alloc_capacity(region);
437 _capacity -= ac;
438 reserved += ac;
439 }
440 }
441
442 recompute_bounds();
443 assert_bounds();
444 }
445
446 void ShenandoahFreeSet::log_status() {
447 shenandoah_assert_heaplocked();
448
449 LogTarget(Info, gc, ergo) lt;
450 if (lt.is_enabled()) {
451 ResourceMark rm;
452 LogStream ls(lt);
453
454 {
455 size_t last_idx = 0;
456 size_t max = 0;
457 size_t max_contig = 0;
458 size_t empty_contig = 0;
459
460 size_t total_used = 0;
461 size_t total_free = 0;
462 size_t total_free_ext = 0;
463
464 for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
465 if (is_mutator_free(idx)) {
466 ShenandoahHeapRegion *r = _heap->get_region(idx);
467 size_t free = alloc_capacity(r);
468
469 max = MAX2(max, free);
470
471 if (r->is_empty()) {
472 total_free_ext += free;
473 if (last_idx + 1 == idx) {
474 empty_contig++;
475 } else {
476 empty_contig = 1;
477 }
478 } else {
479 empty_contig = 0;
480 }
481
482 total_used += r->used();
483 total_free += free;
484
485 max_contig = MAX2(max_contig, empty_contig);
486 last_idx = idx;
487 }
488 }
489
490 size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
491 size_t free = capacity() - used();
492
493 ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ",
494 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
495 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
496 byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
497 );
498
499 ls.print("Frag: ");
500 size_t frag_ext;
501 if (total_free_ext > 0) {
502 frag_ext = 100 - (100 * max_humongous / total_free_ext);
503 } else {
504 frag_ext = 0;
505 }
506 ls.print(SIZE_FORMAT "%% external, ", frag_ext);
507
508 size_t frag_int;
509 if (mutator_count() > 0) {
510 frag_int = (100 * (total_used / mutator_count()) / ShenandoahHeapRegion::region_size_bytes());
511 } else {
512 frag_int = 0;
513 }
514 ls.print(SIZE_FORMAT "%% internal; ", frag_int);
515 }
516
517 {
518 size_t max = 0;
519 size_t total_free = 0;
520
521 for (size_t idx = _collector_leftmost; idx <= _collector_rightmost; idx++) {
522 if (is_collector_free(idx)) {
523 ShenandoahHeapRegion *r = _heap->get_region(idx);
524 size_t free = alloc_capacity(r);
525 max = MAX2(max, free);
526 total_free += free;
527 }
528 }
529
530 ls.print_cr("Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s",
531 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
532 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max));
533 }
534 }
535 }
536
537 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
538 shenandoah_assert_heaplocked();
539 assert_bounds();
540
541 if (req.size() > ShenandoahHeapRegion::humongous_threshold_words()) {
542 switch (req.type()) {
543 case ShenandoahAllocRequest::_alloc_shared:
544 case ShenandoahAllocRequest::_alloc_shared_gc:
545 in_new_region = true;
546 return allocate_contiguous(req);
547 case ShenandoahAllocRequest::_alloc_gclab:
548 case ShenandoahAllocRequest::_alloc_tlab:
549 in_new_region = false;
550 assert(false, "Trying to allocate TLAB larger than the humongous threshold: " SIZE_FORMAT " > " SIZE_FORMAT,
551 req.size(), ShenandoahHeapRegion::humongous_threshold_words());
552 return nullptr;
553 default:
554 ShouldNotReachHere();
555 return nullptr;
556 }
557 } else {
558 return allocate_single(req, in_new_region);
559 }
560 }
561
562 size_t ShenandoahFreeSet::unsafe_peek_free() const {
563 // Deliberately not locked, this method is unsafe when free set is modified.
564
565 for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
566 if (index < _max && is_mutator_free(index)) {
567 ShenandoahHeapRegion* r = _heap->get_region(index);
568 if (r->free() >= MinTLABSize) {
569 return r->free();
570 }
571 }
572 }
573
574 // It appears that no regions left
575 return 0;
576 }
577
578 void ShenandoahFreeSet::print_on(outputStream* out) const {
579 out->print_cr("Mutator Free Set: " SIZE_FORMAT "", mutator_count());
580 for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
581 if (is_mutator_free(index)) {
582 _heap->get_region(index)->print_on(out);
583 }
584 }
585 out->print_cr("Collector Free Set: " SIZE_FORMAT "", collector_count());
586 for (size_t index = _collector_leftmost; index <= _collector_rightmost; index++) {
587 if (is_collector_free(index)) {
588 _heap->get_region(index)->print_on(out);
589 }
590 }
591 }
592
593 /*
594 * Internal fragmentation metric: describes how fragmented the heap regions are.
595 *
596 * It is derived as:
597 *
598 * sum(used[i]^2, i=0..k)
599 * IF = 1 - ------------------------------
600 * C * sum(used[i], i=0..k)
601 *
602 * ...where k is the number of regions in computation, C is the region capacity, and
603 * used[i] is the used space in the region.
604 *
605 * The non-linearity causes IF to be lower for the cases where the same total heap
606 * used is densely packed. For example:
607 * a) Heap is completely full => IF = 0
608 * b) Heap is half full, first 50% regions are completely full => IF = 0
609 * c) Heap is half full, each region is 50% full => IF = 1/2
610 * d) Heap is quarter full, first 50% regions are completely full => IF = 0
611 * e) Heap is quarter full, each region is 25% full => IF = 3/4
612 * f) Heap has one small object per each region => IF =~ 1
613 */
614 double ShenandoahFreeSet::internal_fragmentation() {
615 double squared = 0;
616 double linear = 0;
617
618 for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
619 if (is_mutator_free(index)) {
620 ShenandoahHeapRegion* r = _heap->get_region(index);
621 size_t used = r->used();
622 squared += used * used;
623 linear += used;
624 }
625 }
626
627 if (linear > 0) {
628 double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
629 return 1 - s;
630 } else {
631 return 0;
632 }
633 }
634
635 /*
636 * External fragmentation metric: describes how fragmented the heap is.
637 *
638 * It is derived as:
639 *
640 * EF = 1 - largest_contiguous_free / total_free
641 *
642 * For example:
643 * a) Heap is completely empty => EF = 0
644 * b) Heap is completely full => EF = 0
645 * c) Heap is first-half full => EF = 1/2
646 * d) Heap is half full, full and empty regions interleave => EF =~ 1
647 */
648 double ShenandoahFreeSet::external_fragmentation() {
649 size_t last_idx = 0;
650 size_t max_contig = 0;
651 size_t empty_contig = 0;
652
653 size_t free = 0;
654
655 for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
656 if (is_mutator_free(index)) {
657 ShenandoahHeapRegion* r = _heap->get_region(index);
658 if (r->is_empty()) {
659 free += ShenandoahHeapRegion::region_size_bytes();
660 if (last_idx + 1 == index) {
661 empty_contig++;
662 } else {
663 empty_contig = 1;
664 }
665 } else {
666 empty_contig = 0;
667 }
668
669 max_contig = MAX2(max_contig, empty_contig);
670 last_idx = index;
671 }
672 }
673
674 if (free > 0) {
675 return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
676 } else {
677 return 0;
678 }
679 }
680
681 #ifdef ASSERT
682 void ShenandoahFreeSet::assert_bounds() const {
683 // Performance invariants. Failing these would not break the free set, but performance
684 // would suffer.
685 assert (_mutator_leftmost <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _mutator_leftmost, _max);
686 assert (_mutator_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _mutator_rightmost, _max);
687
688 assert (_mutator_leftmost == _max || is_mutator_free(_mutator_leftmost), "leftmost region should be free: " SIZE_FORMAT, _mutator_leftmost);
689 assert (_mutator_rightmost == 0 || is_mutator_free(_mutator_rightmost), "rightmost region should be free: " SIZE_FORMAT, _mutator_rightmost);
690
691 size_t beg_off = _mutator_free_bitmap.find_first_set_bit(0);
692 size_t end_off = _mutator_free_bitmap.find_first_set_bit(_mutator_rightmost + 1);
693 assert (beg_off >= _mutator_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _mutator_leftmost);
694 assert (end_off == _max, "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, _mutator_rightmost);
695
696 assert (_collector_leftmost <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _collector_leftmost, _max);
697 assert (_collector_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _collector_rightmost, _max);
698
699 assert (_collector_leftmost == _max || is_collector_free(_collector_leftmost), "leftmost region should be free: " SIZE_FORMAT, _collector_leftmost);
700 assert (_collector_rightmost == 0 || is_collector_free(_collector_rightmost), "rightmost region should be free: " SIZE_FORMAT, _collector_rightmost);
701
702 beg_off = _collector_free_bitmap.find_first_set_bit(0);
703 end_off = _collector_free_bitmap.find_first_set_bit(_collector_rightmost + 1);
704 assert (beg_off >= _collector_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _collector_leftmost);
705 assert (end_off == _max, "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, _collector_rightmost);
706 }
707 #endif
|
1 /*
2 * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved.
3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "precompiled.hpp"
27 #include "gc/shared/tlab_globals.hpp"
28 #include "gc/shenandoah/shenandoahAffiliation.hpp"
29 #include "gc/shenandoah/shenandoahFreeSet.hpp"
30 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
31 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
32 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
33 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
34 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
35 #include "gc/shenandoah/shenandoahSimpleBitMap.hpp"
36 #include "gc/shenandoah/shenandoahSimpleBitMap.inline.hpp"
37 #include "logging/logStream.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "runtime/orderAccess.hpp"
40
41 static const char* partition_name(ShenandoahFreeSetPartitionId t) {
42 switch (t) {
43 case ShenandoahFreeSetPartitionId::NotFree: return "NotFree";
44 case ShenandoahFreeSetPartitionId::Mutator: return "Mutator";
45 case ShenandoahFreeSetPartitionId::Collector: return "Collector";
46 case ShenandoahFreeSetPartitionId::OldCollector: return "OldCollector";
47 default:
48 ShouldNotReachHere();
49 return "Unrecognized";
50 }
51 }
52
53 class ShenandoahLeftRightIterator {
54 private:
55 idx_t _idx;
56 idx_t _end;
57 ShenandoahRegionPartitions* _partitions;
58 ShenandoahFreeSetPartitionId _partition;
59 public:
60 explicit ShenandoahLeftRightIterator(ShenandoahRegionPartitions* partitions, ShenandoahFreeSetPartitionId partition, bool use_empty = false)
61 : _idx(0), _end(0), _partitions(partitions), _partition(partition) {
62 _idx = use_empty ? _partitions->leftmost_empty(_partition) : _partitions->leftmost(_partition);
63 _end = use_empty ? _partitions->rightmost_empty(_partition) : _partitions->rightmost(_partition);
64 }
65
66 bool has_next() const {
67 if (_idx <= _end) {
68 assert(_partitions->in_free_set(_partition, _idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, _idx);
69 return true;
70 }
71 return false;
72 }
73
74 idx_t current() const {
75 return _idx;
76 }
77
78 idx_t next() {
79 _idx = _partitions->find_index_of_next_available_region(_partition, _idx + 1);
80 return current();
81 }
82 };
83
84 class ShenandoahRightLeftIterator {
85 private:
86 idx_t _idx;
87 idx_t _end;
88 ShenandoahRegionPartitions* _partitions;
89 ShenandoahFreeSetPartitionId _partition;
90 public:
91 explicit ShenandoahRightLeftIterator(ShenandoahRegionPartitions* partitions, ShenandoahFreeSetPartitionId partition, bool use_empty = false)
92 : _idx(0), _end(0), _partitions(partitions), _partition(partition) {
93 _idx = use_empty ? _partitions->rightmost_empty(_partition) : _partitions->rightmost(_partition);
94 _end = use_empty ? _partitions->leftmost_empty(_partition) : _partitions->leftmost(_partition);
95 }
96
97 bool has_next() const {
98 if (_idx >= _end) {
99 assert(_partitions->in_free_set(_partition, _idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, _idx);
100 return true;
101 }
102 return false;
103 }
104
105 idx_t current() const {
106 return _idx;
107 }
108
109 idx_t next() {
110 _idx = _partitions->find_index_of_previous_available_region(_partition, _idx - 1);
111 return current();
112 }
113 };
114
115 #ifndef PRODUCT
116 void ShenandoahRegionPartitions::dump_bitmap() const {
117 log_debug(gc)("Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "], Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT
118 "], Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
119 _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)],
120 _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)],
121 _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)],
122 _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)],
123 _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)],
124 _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]);
125 log_debug(gc)("Empty Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT
126 "], Empty Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT
127 "], Empty Old Collecto range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
128 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)],
129 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)],
130 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
131 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
132 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
133 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)]);
134
135 log_debug(gc)("%6s: %18s %18s %18s %18s", "index", "Mutator Bits", "Collector Bits", "Old Collector Bits", "NotFree Bits");
136 dump_bitmap_range(0, _max-1);
137 }
138
139 void ShenandoahRegionPartitions::dump_bitmap_range(idx_t start_region_idx, idx_t end_region_idx) const {
140 assert((start_region_idx >= 0) && (start_region_idx < (idx_t) _max), "precondition");
141 assert((end_region_idx >= 0) && (end_region_idx < (idx_t) _max), "precondition");
142 idx_t aligned_start = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(start_region_idx);
143 idx_t aligned_end = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(end_region_idx);
144 idx_t alignment = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].alignment();
145 while (aligned_start <= aligned_end) {
146 dump_bitmap_row(aligned_start);
147 aligned_start += alignment;
148 }
149 }
150
151 void ShenandoahRegionPartitions::dump_bitmap_row(idx_t region_idx) const {
152 assert((region_idx >= 0) && (region_idx < (idx_t) _max), "precondition");
153 idx_t aligned_idx = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(region_idx);
154 uintx mutator_bits = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].bits_at(aligned_idx);
155 uintx collector_bits = _membership[int(ShenandoahFreeSetPartitionId::Collector)].bits_at(aligned_idx);
156 uintx old_collector_bits = _membership[int(ShenandoahFreeSetPartitionId::OldCollector)].bits_at(aligned_idx);
157 uintx free_bits = mutator_bits | collector_bits | old_collector_bits;
158 uintx notfree_bits = ~free_bits;
159 log_debug(gc)(SSIZE_FORMAT_W(6) ": " SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0,
160 aligned_idx, mutator_bits, collector_bits, old_collector_bits, notfree_bits);
161 }
162 #endif
163
164 ShenandoahRegionPartitions::ShenandoahRegionPartitions(size_t max_regions, ShenandoahFreeSet* free_set) :
165 _max(max_regions),
166 _region_size_bytes(ShenandoahHeapRegion::region_size_bytes()),
167 _free_set(free_set),
168 _membership{ ShenandoahSimpleBitMap(max_regions), ShenandoahSimpleBitMap(max_regions) , ShenandoahSimpleBitMap(max_regions) }
169 {
170 make_all_regions_unavailable();
171 }
172
173 inline bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) const {
174 return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress());
175 }
176
177 inline bool ShenandoahFreeSet::can_allocate_from(size_t idx) const {
178 ShenandoahHeapRegion* r = _heap->get_region(idx);
179 return can_allocate_from(r);
180 }
181
182 inline size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) const {
183 if (r->is_trash()) {
184 // This would be recycled on allocation path
185 return ShenandoahHeapRegion::region_size_bytes();
186 } else {
187 return r->free();
188 }
189 }
190
191 inline size_t ShenandoahFreeSet::alloc_capacity(size_t idx) const {
192 ShenandoahHeapRegion* r = _heap->get_region(idx);
193 return alloc_capacity(r);
194 }
195
196 inline bool ShenandoahFreeSet::has_alloc_capacity(ShenandoahHeapRegion *r) const {
197 return alloc_capacity(r) > 0;
198 }
199
200 inline idx_t ShenandoahRegionPartitions::leftmost(ShenandoahFreeSetPartitionId which_partition) const {
201 assert (which_partition < NumPartitions, "selected free partition must be valid");
202 idx_t idx = _leftmosts[int(which_partition)];
203 if (idx >= _max) {
204 return _max;
205 } else {
206 // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used
207 // to query the original value of leftmost when leftmost must be adjusted because the interval representing
208 // which_partition is shrinking after the region that used to be leftmost is retired.
209 return idx;
210 }
211 }
212
213 inline idx_t ShenandoahRegionPartitions::rightmost(ShenandoahFreeSetPartitionId which_partition) const {
214 assert (which_partition < NumPartitions, "selected free partition must be valid");
215 idx_t idx = _rightmosts[int(which_partition)];
216 // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used
217 // to query the original value of leftmost when leftmost must be adjusted because the interval representing
218 // which_partition is shrinking after the region that used to be leftmost is retired.
219 return idx;
220 }
221
222 void ShenandoahRegionPartitions::make_all_regions_unavailable() {
223 for (size_t partition_id = 0; partition_id < IntNumPartitions; partition_id++) {
224 _membership[partition_id].clear_all();
225 _leftmosts[partition_id] = _max;
226 _rightmosts[partition_id] = -1;
227 _leftmosts_empty[partition_id] = _max;
228 _rightmosts_empty[partition_id] = -1;;
229 _capacity[partition_id] = 0;
230 _used[partition_id] = 0;
231 }
232 _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
233 }
234
235 void ShenandoahRegionPartitions::establish_mutator_intervals(idx_t mutator_leftmost, idx_t mutator_rightmost,
236 idx_t mutator_leftmost_empty, idx_t mutator_rightmost_empty,
237 size_t mutator_region_count, size_t mutator_used) {
238 _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost;
239 _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost;
240 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost_empty;
241 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost_empty;
242
243 _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count;
244 _used[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_used;
245 _capacity[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count * _region_size_bytes;
246
247 _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)] = _max;
248 _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)] = -1;
249 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = _max;
250 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = -1;
251
252 _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
253 _used[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
254 _capacity[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
255 }
256
257 void ShenandoahRegionPartitions::establish_old_collector_intervals(idx_t old_collector_leftmost, idx_t old_collector_rightmost,
258 idx_t old_collector_leftmost_empty,
259 idx_t old_collector_rightmost_empty,
260 size_t old_collector_region_count, size_t old_collector_used) {
261 _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost;
262 _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost;
263 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost_empty;
264 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost_empty;
265
266 _region_counts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count;
267 _used[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_used;
268 _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count * _region_size_bytes;
269 }
270
271 void ShenandoahRegionPartitions::increase_used(ShenandoahFreeSetPartitionId which_partition, size_t bytes) {
272 assert (which_partition < NumPartitions, "Partition must be valid");
273 _used[int(which_partition)] += bytes;
274 assert (_used[int(which_partition)] <= _capacity[int(which_partition)],
275 "Must not use (" SIZE_FORMAT ") more than capacity (" SIZE_FORMAT ") after increase by " SIZE_FORMAT,
276 _used[int(which_partition)], _capacity[int(which_partition)], bytes);
277 }
278
279 inline void ShenandoahRegionPartitions::shrink_interval_if_range_modifies_either_boundary(
280 ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) {
281 assert((low_idx <= high_idx) && (low_idx >= 0) && (high_idx < _max), "Range must span legal index values");
282 if (low_idx == leftmost(partition)) {
283 assert (!_membership[int(partition)].is_set(low_idx), "Do not shrink interval if region not removed");
284 if (high_idx + 1 == _max) {
285 _leftmosts[int(partition)] = _max;
286 } else {
287 _leftmosts[int(partition)] = find_index_of_next_available_region(partition, high_idx + 1);
288 }
289 if (_leftmosts_empty[int(partition)] < _leftmosts[int(partition)]) {
290 // This gets us closer to where we need to be; we'll scan further when leftmosts_empty is requested.
291 _leftmosts_empty[int(partition)] = _leftmosts[int(partition)];
292 }
293 }
294 if (high_idx == _rightmosts[int(partition)]) {
295 assert (!_membership[int(partition)].is_set(high_idx), "Do not shrink interval if region not removed");
296 if (low_idx == 0) {
297 _rightmosts[int(partition)] = -1;
298 } else {
299 _rightmosts[int(partition)] = find_index_of_previous_available_region(partition, low_idx - 1);
300 }
301 if (_rightmosts_empty[int(partition)] > _rightmosts[int(partition)]) {
302 // This gets us closer to where we need to be; we'll scan further when rightmosts_empty is requested.
303 _rightmosts_empty[int(partition)] = _rightmosts[int(partition)];
304 }
305 }
306 if (_leftmosts[int(partition)] > _rightmosts[int(partition)]) {
307 _leftmosts[int(partition)] = _max;
308 _rightmosts[int(partition)] = -1;
309 _leftmosts_empty[int(partition)] = _max;
310 _rightmosts_empty[int(partition)] = -1;
311 }
312 }
313
314 inline void ShenandoahRegionPartitions::shrink_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition, idx_t idx) {
315 shrink_interval_if_range_modifies_either_boundary(partition, idx, idx);
316 }
317
318 inline void ShenandoahRegionPartitions::expand_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition,
319 idx_t idx, size_t region_available) {
320 if (_leftmosts[int(partition)] > idx) {
321 _leftmosts[int(partition)] = idx;
322 }
323 if (_rightmosts[int(partition)] < idx) {
324 _rightmosts[int(partition)] = idx;
325 }
326 if (region_available == _region_size_bytes) {
327 if (_leftmosts_empty[int(partition)] > idx) {
328 _leftmosts_empty[int(partition)] = idx;
329 }
330 if (_rightmosts_empty[int(partition)] < idx) {
331 _rightmosts_empty[int(partition)] = idx;
332 }
333 }
334 }
335
336 void ShenandoahRegionPartitions::retire_range_from_partition(
337 ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) {
338
339 // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size()
340 assert ((low_idx < _max) && (high_idx < _max), "Both indices are sane: " SIZE_FORMAT " and " SIZE_FORMAT " < " SIZE_FORMAT,
341 low_idx, high_idx, _max);
342 assert (partition < NumPartitions, "Cannot remove from free partitions if not already free");
343
344 for (idx_t idx = low_idx; idx <= high_idx; idx++) {
345 assert (in_free_set(partition, idx), "Must be in partition to remove from partition");
346 _membership[int(partition)].clear_bit(idx);
347 }
348 _region_counts[int(partition)] -= high_idx + 1 - low_idx;
349 shrink_interval_if_range_modifies_either_boundary(partition, low_idx, high_idx);
350 }
351
352 void ShenandoahRegionPartitions::retire_from_partition(ShenandoahFreeSetPartitionId partition, idx_t idx, size_t used_bytes) {
353
354 // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size()
355 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
356 assert (partition < NumPartitions, "Cannot remove from free partitions if not already free");
357 assert (in_free_set(partition, idx), "Must be in partition to remove from partition");
358
359 if (used_bytes < _region_size_bytes) {
360 // Count the alignment pad remnant of memory as used when we retire this region
361 increase_used(partition, _region_size_bytes - used_bytes);
362 }
363 _membership[int(partition)].clear_bit(idx);
364 shrink_interval_if_boundary_modified(partition, idx);
365 _region_counts[int(partition)]--;
366 }
367
368 void ShenandoahRegionPartitions::make_free(idx_t idx, ShenandoahFreeSetPartitionId which_partition, size_t available) {
369 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
370 assert (membership(idx) == ShenandoahFreeSetPartitionId::NotFree, "Cannot make free if already free");
371 assert (which_partition < NumPartitions, "selected free partition must be valid");
372 assert (available <= _region_size_bytes, "Available cannot exceed region size");
373
374 _membership[int(which_partition)].set_bit(idx);
375 _capacity[int(which_partition)] += _region_size_bytes;
376 _used[int(which_partition)] += _region_size_bytes - available;
377 expand_interval_if_boundary_modified(which_partition, idx, available);
378 _region_counts[int(which_partition)]++;
379 }
380
381 bool ShenandoahRegionPartitions::is_mutator_partition(ShenandoahFreeSetPartitionId p) {
382 return (p == ShenandoahFreeSetPartitionId::Mutator);
383 }
384
385 bool ShenandoahRegionPartitions::is_young_collector_partition(ShenandoahFreeSetPartitionId p) {
386 return (p == ShenandoahFreeSetPartitionId::Collector);
387 }
388
389 bool ShenandoahRegionPartitions::is_old_collector_partition(ShenandoahFreeSetPartitionId p) {
390 return (p == ShenandoahFreeSetPartitionId::OldCollector);
391 }
392
393 bool ShenandoahRegionPartitions::available_implies_empty(size_t available_in_region) {
394 return (available_in_region == _region_size_bytes);
395 }
396
397
398 void ShenandoahRegionPartitions::move_from_partition_to_partition(idx_t idx, ShenandoahFreeSetPartitionId orig_partition,
399 ShenandoahFreeSetPartitionId new_partition, size_t available) {
400 ShenandoahHeapRegion* r = ShenandoahHeap::heap()->get_region(idx);
401 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
402 assert (orig_partition < NumPartitions, "Original partition must be valid");
403 assert (new_partition < NumPartitions, "New partition must be valid");
404 assert (available <= _region_size_bytes, "Available cannot exceed region size");
405 assert (_membership[int(orig_partition)].is_set(idx), "Cannot move from partition unless in partition");
406 assert ((r != nullptr) && ((r->is_trash() && (available == _region_size_bytes)) ||
407 (r->used() + available == _region_size_bytes)),
408 "Used: " SIZE_FORMAT " + available: " SIZE_FORMAT " should equal region size: " SIZE_FORMAT,
409 ShenandoahHeap::heap()->get_region(idx)->used(), available, _region_size_bytes);
410
411 // Expected transitions:
412 // During rebuild: Mutator => Collector
413 // Mutator empty => Collector
414 // Mutator empty => OldCollector
415 // During flip_to_gc: Mutator empty => Collector
416 // Mutator empty => OldCollector
417 // At start of update refs: Collector => Mutator
418 // OldCollector Empty => Mutator
419 assert ((is_mutator_partition(orig_partition) && is_young_collector_partition(new_partition)) ||
420 (is_mutator_partition(orig_partition) &&
421 available_implies_empty(available) && is_old_collector_partition(new_partition)) ||
422 (is_young_collector_partition(orig_partition) && is_mutator_partition(new_partition)) ||
423 (is_old_collector_partition(orig_partition)
424 && available_implies_empty(available) && is_mutator_partition(new_partition)),
425 "Unexpected movement between partitions, available: " SIZE_FORMAT ", _region_size_bytes: " SIZE_FORMAT
426 ", orig_partition: %s, new_partition: %s",
427 available, _region_size_bytes, partition_name(orig_partition), partition_name(new_partition));
428
429 size_t used = _region_size_bytes - available;
430 assert (_used[int(orig_partition)] >= used,
431 "Orig partition used: " SIZE_FORMAT " must exceed moved used: " SIZE_FORMAT " within region " SSIZE_FORMAT,
432 _used[int(orig_partition)], used, idx);
433
434 _membership[int(orig_partition)].clear_bit(idx);
435 _membership[int(new_partition)].set_bit(idx);
436
437 _capacity[int(orig_partition)] -= _region_size_bytes;
438 _used[int(orig_partition)] -= used;
439 shrink_interval_if_boundary_modified(orig_partition, idx);
440
441 _capacity[int(new_partition)] += _region_size_bytes;;
442 _used[int(new_partition)] += used;
443 expand_interval_if_boundary_modified(new_partition, idx, available);
444
445 _region_counts[int(orig_partition)]--;
446 _region_counts[int(new_partition)]++;
447 }
448
449 const char* ShenandoahRegionPartitions::partition_membership_name(idx_t idx) const {
450 return partition_name(membership(idx));
451 }
452
453 inline ShenandoahFreeSetPartitionId ShenandoahRegionPartitions::membership(idx_t idx) const {
454 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
455 ShenandoahFreeSetPartitionId result = ShenandoahFreeSetPartitionId::NotFree;
456 for (uint partition_id = 0; partition_id < UIntNumPartitions; partition_id++) {
457 if (_membership[partition_id].is_set(idx)) {
458 assert(result == ShenandoahFreeSetPartitionId::NotFree, "Region should reside in only one partition");
459 result = (ShenandoahFreeSetPartitionId) partition_id;
460 }
461 }
462 return result;
463 }
464
465 #ifdef ASSERT
466 inline bool ShenandoahRegionPartitions::partition_id_matches(idx_t idx, ShenandoahFreeSetPartitionId test_partition) const {
467 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
468 assert (test_partition < ShenandoahFreeSetPartitionId::NotFree, "must be a valid partition");
469
470 return membership(idx) == test_partition;
471 }
472 #endif
473
474 inline bool ShenandoahRegionPartitions::is_empty(ShenandoahFreeSetPartitionId which_partition) const {
475 assert (which_partition < NumPartitions, "selected free partition must be valid");
476 return (leftmost(which_partition) > rightmost(which_partition));
477 }
478
479 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_region(
480 ShenandoahFreeSetPartitionId which_partition, idx_t start_index) const {
481 idx_t rightmost_idx = rightmost(which_partition);
482 idx_t leftmost_idx = leftmost(which_partition);
483 if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max;
484 if (start_index < leftmost_idx) {
485 start_index = leftmost_idx;
486 }
487 idx_t result = _membership[int(which_partition)].find_first_set_bit(start_index, rightmost_idx + 1);
488 if (result > rightmost_idx) {
489 result = _max;
490 }
491 assert (result >= start_index, "Requires progress");
492 return result;
493 }
494
495 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_region(
496 ShenandoahFreeSetPartitionId which_partition, idx_t last_index) const {
497 idx_t rightmost_idx = rightmost(which_partition);
498 idx_t leftmost_idx = leftmost(which_partition);
499 // if (leftmost_idx == max) then (last_index < leftmost_idx)
500 if (last_index < leftmost_idx) return -1;
501 if (last_index > rightmost_idx) {
502 last_index = rightmost_idx;
503 }
504 idx_t result = _membership[int(which_partition)].find_last_set_bit(-1, last_index);
505 if (result < leftmost_idx) {
506 result = -1;
507 }
508 assert (result <= last_index, "Requires progress");
509 return result;
510 }
511
512 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_cluster_of_regions(
513 ShenandoahFreeSetPartitionId which_partition, idx_t start_index, size_t cluster_size) const {
514 idx_t rightmost_idx = rightmost(which_partition);
515 idx_t leftmost_idx = leftmost(which_partition);
516 if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max;
517 idx_t result = _membership[int(which_partition)].find_first_consecutive_set_bits(start_index, rightmost_idx + 1, cluster_size);
518 if (result > rightmost_idx) {
519 result = _max;
520 }
521 assert (result >= start_index, "Requires progress");
522 return result;
523 }
524
525 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_cluster_of_regions(
526 ShenandoahFreeSetPartitionId which_partition, idx_t last_index, size_t cluster_size) const {
527 idx_t leftmost_idx = leftmost(which_partition);
528 // if (leftmost_idx == max) then (last_index < leftmost_idx)
529 if (last_index < leftmost_idx) return -1;
530 idx_t result = _membership[int(which_partition)].find_last_consecutive_set_bits(leftmost_idx - 1, last_index, cluster_size);
531 if (result <= leftmost_idx) {
532 result = -1;
533 }
534 assert (result <= last_index, "Requires progress");
535 return result;
536 }
537
538 idx_t ShenandoahRegionPartitions::leftmost_empty(ShenandoahFreeSetPartitionId which_partition) {
539 assert (which_partition < NumPartitions, "selected free partition must be valid");
540 idx_t max_regions = _max;
541 if (_leftmosts_empty[int(which_partition)] == _max) {
542 return _max;
543 }
544 for (idx_t idx = find_index_of_next_available_region(which_partition, _leftmosts_empty[int(which_partition)]);
545 idx < max_regions; ) {
546 assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx);
547 if (_free_set->alloc_capacity(idx) == _region_size_bytes) {
548 _leftmosts_empty[int(which_partition)] = idx;
549 return idx;
550 }
551 idx = find_index_of_next_available_region(which_partition, idx + 1);
552 }
553 _leftmosts_empty[int(which_partition)] = _max;
554 _rightmosts_empty[int(which_partition)] = -1;
555 return _max;
556 }
557
558 idx_t ShenandoahRegionPartitions::rightmost_empty(ShenandoahFreeSetPartitionId which_partition) {
559 assert (which_partition < NumPartitions, "selected free partition must be valid");
560 if (_rightmosts_empty[int(which_partition)] < 0) {
561 return -1;
562 }
563 for (idx_t idx = find_index_of_previous_available_region(which_partition, _rightmosts_empty[int(which_partition)]);
564 idx >= 0; ) {
565 assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx);
566 if (_free_set->alloc_capacity(idx) == _region_size_bytes) {
567 _rightmosts_empty[int(which_partition)] = idx;
568 return idx;
569 }
570 idx = find_index_of_previous_available_region(which_partition, idx - 1);
571 }
572 _leftmosts_empty[int(which_partition)] = _max;
573 _rightmosts_empty[int(which_partition)] = -1;
574 return -1;
575 }
576
577
578 #ifdef ASSERT
579 void ShenandoahRegionPartitions::assert_bounds() {
580
581 idx_t leftmosts[UIntNumPartitions];
582 idx_t rightmosts[UIntNumPartitions];
583 idx_t empty_leftmosts[UIntNumPartitions];
584 idx_t empty_rightmosts[UIntNumPartitions];
585
586 for (uint i = 0; i < UIntNumPartitions; i++) {
587 leftmosts[i] = _max;
588 empty_leftmosts[i] = _max;
589 rightmosts[i] = -1;
590 empty_rightmosts[i] = -1;
591 }
592
593 for (idx_t i = 0; i < _max; i++) {
594 ShenandoahFreeSetPartitionId partition = membership(i);
595 switch (partition) {
596 case ShenandoahFreeSetPartitionId::NotFree:
597 break;
598
599 case ShenandoahFreeSetPartitionId::Mutator:
600 case ShenandoahFreeSetPartitionId::Collector:
601 case ShenandoahFreeSetPartitionId::OldCollector:
602 {
603 size_t capacity = _free_set->alloc_capacity(i);
604 bool is_empty = (capacity == _region_size_bytes);
605 assert(capacity > 0, "free regions must have allocation capacity");
606 if (i < leftmosts[int(partition)]) {
607 leftmosts[int(partition)] = i;
608 }
609 if (is_empty && (i < empty_leftmosts[int(partition)])) {
610 empty_leftmosts[int(partition)] = i;
611 }
612 if (i > rightmosts[int(partition)]) {
613 rightmosts[int(partition)] = i;
614 }
615 if (is_empty && (i > empty_rightmosts[int(partition)])) {
616 empty_rightmosts[int(partition)] = i;
617 }
618 break;
619 }
620
621 default:
622 ShouldNotReachHere();
623 }
624 }
625
626 // Performance invariants. Failing these would not break the free partition, but performance would suffer.
627 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) <= _max,
628 "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Mutator), _max);
629 assert (rightmost(ShenandoahFreeSetPartitionId::Mutator) < _max,
630 "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator), _max);
631
632 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max
633 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator),
634 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Mutator));
635 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max
636 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator),
637 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator));
638
639 // If Mutator partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
640 // Likewise for empty region partitions.
641 idx_t beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
642 idx_t end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
643 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Mutator),
644 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
645 beg_off, leftmost(ShenandoahFreeSetPartitionId::Mutator));
646 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Mutator),
647 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
648 end_off, rightmost(ShenandoahFreeSetPartitionId::Mutator));
649
650 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
651 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
652 assert (beg_off >= leftmost_empty(ShenandoahFreeSetPartitionId::Mutator),
653 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
654 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Mutator));
655 assert (end_off <= rightmost_empty(ShenandoahFreeSetPartitionId::Mutator),
656 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
657 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Mutator));
658
659 // Performance invariants. Failing these would not break the free partition, but performance would suffer.
660 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) <= _max, "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT,
661 leftmost(ShenandoahFreeSetPartitionId::Collector), _max);
662 assert (rightmost(ShenandoahFreeSetPartitionId::Collector) < _max, "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT,
663 rightmost(ShenandoahFreeSetPartitionId::Collector), _max);
664
665 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max
666 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector),
667 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Collector));
668 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max
669 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector),
670 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Collector));
671
672 // If Collector partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
673 // Likewise for empty region partitions.
674 beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Collector)];
675 end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Collector)];
676 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Collector),
677 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
678 beg_off, leftmost(ShenandoahFreeSetPartitionId::Collector));
679 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Collector),
680 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
681 end_off, rightmost(ShenandoahFreeSetPartitionId::Collector));
682
683 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Collector)];
684 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Collector)];
685 assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
686 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
687 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Collector));
688 assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
689 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
690 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Collector));
691
692 // Performance invariants. Failing these would not break the free partition, but performance would suffer.
693 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) <= _max, "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT,
694 leftmost(ShenandoahFreeSetPartitionId::OldCollector), _max);
695 assert (rightmost(ShenandoahFreeSetPartitionId::OldCollector) < _max, "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT,
696 rightmost(ShenandoahFreeSetPartitionId::OldCollector), _max);
697
698 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max
699 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::OldCollector),
700 ShenandoahFreeSetPartitionId::OldCollector),
701 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::OldCollector));
702 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max
703 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::OldCollector),
704 ShenandoahFreeSetPartitionId::OldCollector),
705 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::OldCollector));
706
707 // If OldCollector partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
708 // Likewise for empty region partitions.
709 beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
710 end_off = rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
711 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::OldCollector),
712 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
713 beg_off, leftmost(ShenandoahFreeSetPartitionId::OldCollector));
714 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::OldCollector),
715 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
716 end_off, rightmost(ShenandoahFreeSetPartitionId::OldCollector));
717
718 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
719 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
720 assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
721 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
722 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector));
723 assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
724 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
725 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector));
726 }
727 #endif
728
729 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
730 _heap(heap),
731 _partitions(max_regions, this),
732 _alloc_bias_weight(0)
733 {
734 clear_internal();
735 }
736
737 void ShenandoahFreeSet::add_promoted_in_place_region_to_old_collector(ShenandoahHeapRegion* region) {
738 shenandoah_assert_heaplocked();
739 size_t plab_min_size_in_bytes = ShenandoahGenerationalHeap::heap()->plab_min_size() * HeapWordSize;
740 size_t idx = region->index();
741 size_t capacity = alloc_capacity(region);
742 assert(_partitions.membership(idx) == ShenandoahFreeSetPartitionId::NotFree,
743 "Regions promoted in place should have been excluded from Mutator partition");
744 if (capacity >= plab_min_size_in_bytes) {
745 _partitions.make_free(idx, ShenandoahFreeSetPartitionId::OldCollector, capacity);
746 _heap->old_generation()->augment_promoted_reserve(capacity);
747 }
748 }
749
750 HeapWord* ShenandoahFreeSet::allocate_from_partition_with_affiliation(ShenandoahAffiliation affiliation,
751 ShenandoahAllocRequest& req, bool& in_new_region) {
752
753 shenandoah_assert_heaplocked();
754 ShenandoahFreeSetPartitionId which_partition = req.is_old()? ShenandoahFreeSetPartitionId::OldCollector: ShenandoahFreeSetPartitionId::Collector;
755 if (_partitions.alloc_from_left_bias(which_partition)) {
756 ShenandoahLeftRightIterator iterator(&_partitions, which_partition, affiliation == ShenandoahAffiliation::FREE);
757 return allocate_with_affiliation(iterator, affiliation, req, in_new_region);
758 } else {
759 ShenandoahRightLeftIterator iterator(&_partitions, which_partition, affiliation == ShenandoahAffiliation::FREE);
760 return allocate_with_affiliation(iterator, affiliation, req, in_new_region);
761 }
762 }
763
764 template<typename Iter>
765 HeapWord* ShenandoahFreeSet::allocate_with_affiliation(Iter& iterator, ShenandoahAffiliation affiliation, ShenandoahAllocRequest& req, bool& in_new_region) {
766 for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
767 ShenandoahHeapRegion* r = _heap->get_region(idx);
768 if (r->affiliation() == affiliation) {
769 HeapWord* result = try_allocate_in(r, req, in_new_region);
770 if (result != nullptr) {
771 return result;
772 }
773 }
774 }
775 log_debug(gc, free)("Could not allocate collector region with affiliation: %s for request " PTR_FORMAT,
776 shenandoah_affiliation_name(affiliation), p2i(&req));
777 return nullptr;
778 }
779
780 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {
781 shenandoah_assert_heaplocked();
782
783 // Scan the bitmap looking for a first fit.
784 //
785 // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
786 // we would find the region to allocate at right away.
787 //
788 // Allocations are biased: GC allocations are taken from the high end of the heap. Regular (and TLAB)
789 // mutator allocations are taken from the middle of heap, below the memory reserved for Collector.
790 // Humongous mutator allocations are taken from the bottom of the heap.
791 //
792 // Free set maintains mutator and collector partitions. Normally, each allocates only from its partition,
793 // except in special cases when the collector steals regions from the mutator partition.
794
795 // Overwrite with non-zero (non-NULL) values only if necessary for allocation bookkeeping.
796
797 switch (req.type()) {
798 case ShenandoahAllocRequest::_alloc_tlab:
799 case ShenandoahAllocRequest::_alloc_shared:
800 return allocate_for_mutator(req, in_new_region);
801 case ShenandoahAllocRequest::_alloc_gclab:
802 case ShenandoahAllocRequest::_alloc_plab:
803 case ShenandoahAllocRequest::_alloc_shared_gc:
804 return allocate_for_collector(req, in_new_region);
805 default:
806 ShouldNotReachHere();
807 }
808 return nullptr;
809 }
810
811 HeapWord* ShenandoahFreeSet::allocate_for_mutator(ShenandoahAllocRequest &req, bool &in_new_region) {
812 update_allocation_bias();
813
814 if (_partitions.is_empty(ShenandoahFreeSetPartitionId::Mutator)) {
815 // There is no recovery. Mutator does not touch collector view at all.
816 return nullptr;
817 }
818
819 // Try to allocate in the mutator view
820 if (_partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)) {
821 // Allocate from low to high memory. This keeps the range of fully empty regions more tightly packed.
822 // Note that the most recently allocated regions tend not to be evacuated in a given GC cycle. So this
823 // tends to accumulate "fragmented" uncollected regions in high memory.
824 ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
825 return allocate_from_regions(iterator, req, in_new_region);
826 }
827
828 // Allocate from high to low memory. This preserves low memory for humongous allocations.
829 ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
830 return allocate_from_regions(iterator, req, in_new_region);
831 }
832
833 void ShenandoahFreeSet::update_allocation_bias() {
834 if (_alloc_bias_weight-- <= 0) {
835 // We have observed that regions not collected in previous GC cycle tend to congregate at one end or the other
836 // of the heap. Typically, these are the more recently engaged regions and the objects in these regions have not
837 // yet had a chance to die (and/or are treated as floating garbage). If we use the same allocation bias on each
838 // GC pass, these "most recently" engaged regions for GC pass N will also be the "most recently" engaged regions
839 // for GC pass N+1, and the relatively large amount of live data and/or floating garbage introduced
840 // during the most recent GC pass may once again prevent the region from being collected. We have found that
841 // alternating the allocation behavior between GC passes improves evacuation performance by 3-7% on certain
842 // benchmarks. In the best case, this has the effect of consuming these partially consumed regions before
843 // the start of the next mark cycle so all of their garbage can be efficiently reclaimed.
844 //
845 // First, finish consuming regions that are already partially consumed so as to more tightly limit ranges of
846 // available regions. Other potential benefits:
847 // 1. Eventual collection set has fewer regions because we have packed newly allocated objects into fewer regions
848 // 2. We preserve the "empty" regions longer into the GC cycle, reducing likelihood of allocation failures
849 // late in the GC cycle.
850 idx_t non_empty_on_left = (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator)
851 - _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator));
852 idx_t non_empty_on_right = (_partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator)
853 - _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator));
854 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, (non_empty_on_right < non_empty_on_left));
855 _alloc_bias_weight = INITIAL_ALLOC_BIAS_WEIGHT;
856 }
857 }
858
859 template<typename Iter>
860 HeapWord* ShenandoahFreeSet::allocate_from_regions(Iter& iterator, ShenandoahAllocRequest &req, bool &in_new_region) {
861 for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
862 ShenandoahHeapRegion* r = _heap->get_region(idx);
863 size_t min_size = (req.type() == ShenandoahAllocRequest::_alloc_tlab) ? req.min_size() : req.size();
864 if (alloc_capacity(r) >= min_size) {
865 HeapWord* result = try_allocate_in(r, req, in_new_region);
866 if (result != nullptr) {
867 return result;
868 }
869 }
870 }
871 return nullptr;
872 }
873
874 HeapWord* ShenandoahFreeSet::allocate_for_collector(ShenandoahAllocRequest &req, bool &in_new_region) {
875 // Fast-path: try to allocate in the collector view first
876 HeapWord* result;
877 result = allocate_from_partition_with_affiliation(req.affiliation(), req, in_new_region);
878 if (result != nullptr) {
879 return result;
880 }
881
882 bool allow_new_region = can_allocate_in_new_region(req);
883 if (allow_new_region) {
884 // Try a free region that is dedicated to GC allocations.
885 result = allocate_from_partition_with_affiliation(ShenandoahAffiliation::FREE, req, in_new_region);
886 if (result != nullptr) {
887 return result;
888 }
889 }
890
891 // No dice. Can we borrow space from mutator view?
892 if (!ShenandoahEvacReserveOverflow) {
893 return nullptr;
894 }
895
896 if (!allow_new_region && req.is_old() && (_heap->young_generation()->free_unaffiliated_regions() > 0)) {
897 // This allows us to flip a mutator region to old_collector
898 allow_new_region = true;
899 }
900
901 // We should expand old-gen if this can prevent an old-gen evacuation failure. We don't care so much about
902 // promotion failures since they can be mitigated in a subsequent GC pass. Would be nice to know if this
903 // allocation request is for evacuation or promotion. Individual threads limit their use of PLAB memory for
904 // promotions, so we already have an assurance that any additional memory set aside for old-gen will be used
905 // only for old-gen evacuations.
906 if (allow_new_region) {
907 // Try to steal an empty region from the mutator view.
908 result = try_allocate_from_mutator(req, in_new_region);
909 }
910
911 // This is it. Do not try to mix mutator and GC allocations, because adjusting region UWM
912 // due to GC allocations would expose unparsable mutator allocations.
913 return result;
914 }
915
916 bool ShenandoahFreeSet::can_allocate_in_new_region(const ShenandoahAllocRequest& req) {
917 if (!_heap->mode()->is_generational()) {
918 return true;
919 }
920
921 assert(req.is_old() || req.is_young(), "Should request affiliation");
922 return (req.is_old() && _heap->old_generation()->free_unaffiliated_regions() > 0)
923 || (req.is_young() && _heap->young_generation()->free_unaffiliated_regions() > 0);
924 }
925
926 HeapWord* ShenandoahFreeSet::try_allocate_from_mutator(ShenandoahAllocRequest& req, bool& in_new_region) {
927 // The collector prefers to keep longer lived regions toward the right side of the heap, so it always
928 // searches for regions from right to left here.
929 ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator, true);
930 for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
931 ShenandoahHeapRegion* r = _heap->get_region(idx);
932 if (can_allocate_from(r)) {
933 if (req.is_old()) {
934 if (!flip_to_old_gc(r)) {
935 continue;
936 }
937 } else {
938 flip_to_gc(r);
939 }
940 // Region r is entirely empty. If try_allocate_in fails on region r, something else is really wrong.
941 // Don't bother to retry with other regions.
942 log_debug(gc, free)("Flipped region " SIZE_FORMAT " to gc for request: " PTR_FORMAT, idx, p2i(&req));
943 return try_allocate_in(r, req, in_new_region);
944 }
945 }
946
947 return nullptr;
948 }
949
950 // This work method takes an argument corresponding to the number of bytes
951 // free in a region, and returns the largest amount in heapwords that can be allocated
952 // such that both of the following conditions are satisfied:
953 //
954 // 1. it is a multiple of card size
955 // 2. any remaining shard may be filled with a filler object
956 //
957 // The idea is that the allocation starts and ends at card boundaries. Because
958 // a region ('s end) is card-aligned, the remainder shard that must be filled is
959 // at the start of the free space.
960 //
961 // This is merely a helper method to use for the purpose of such a calculation.
962 size_t ShenandoahFreeSet::get_usable_free_words(size_t free_bytes) const {
963 // e.g. card_size is 512, card_shift is 9, min_fill_size() is 8
964 // free is 514
965 // usable_free is 512, which is decreased to 0
966 size_t usable_free = (free_bytes / CardTable::card_size()) << CardTable::card_shift();
967 assert(usable_free <= free_bytes, "Sanity check");
968 if ((free_bytes != usable_free) && (free_bytes - usable_free < ShenandoahHeap::min_fill_size() * HeapWordSize)) {
969 // After aligning to card multiples, the remainder would be smaller than
970 // the minimum filler object, so we'll need to take away another card's
971 // worth to construct a filler object.
972 if (usable_free >= CardTable::card_size()) {
973 usable_free -= CardTable::card_size();
974 } else {
975 assert(usable_free == 0, "usable_free is a multiple of card_size and card_size > min_fill_size");
976 }
977 }
978
979 return usable_free / HeapWordSize;
980 }
981
982 // Given a size argument, which is a multiple of card size, a request struct
983 // for a PLAB, and an old region, return a pointer to the allocated space for
984 // a PLAB which is card-aligned and where any remaining shard in the region
985 // has been suitably filled by a filler object.
986 // It is assumed (and assertion-checked) that such an allocation is always possible.
987 HeapWord* ShenandoahFreeSet::allocate_aligned_plab(size_t size, ShenandoahAllocRequest& req, ShenandoahHeapRegion* r) {
988 assert(_heap->mode()->is_generational(), "PLABs are only for generational mode");
989 assert(r->is_old(), "All PLABs reside in old-gen");
990 assert(!req.is_mutator_alloc(), "PLABs should not be allocated by mutators.");
991 assert(is_aligned(size, CardTable::card_size_in_words()), "Align by design");
992
993 HeapWord* result = r->allocate_aligned(size, req, CardTable::card_size());
994 assert(result != nullptr, "Allocation cannot fail");
995 assert(r->top() <= r->end(), "Allocation cannot span end of region");
996 assert(is_aligned(result, CardTable::card_size_in_words()), "Align by design");
997 return result;
998 }
999
1000 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
1001 assert (has_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index());
1002 if (_heap->is_concurrent_weak_root_in_progress() && r->is_trash()) {
1003 // We cannot use this region for allocation when weak roots are in progress because the collector may need
1004 // to reference unmarked oops during concurrent classunloading. The collector also needs accurate marking
1005 // information to determine which weak handles need to be null'd out. If the region is recycled before weak
1006 // roots processing has finished, weak root processing may fail to null out a handle into a trashed region.
1007 // This turns the handle into a dangling pointer and will crash or corrupt the heap.
1008 return nullptr;
1009 }
1010 HeapWord* result = nullptr;
1011 r->try_recycle_under_lock();
1012 in_new_region = r->is_empty();
1013
1014 if (in_new_region) {
1015 log_debug(gc, free)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").",
1016 r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req));
1017 assert(!r->is_affiliated(), "New region " SIZE_FORMAT " should be unaffiliated", r->index());
1018 r->set_affiliation(req.affiliation());
1019 if (r->is_old()) {
1020 // Any OLD region allocated during concurrent coalesce-and-fill does not need to be coalesced and filled because
1021 // all objects allocated within this region are above TAMS (and thus are implicitly marked). In case this is an
1022 // OLD region and concurrent preparation for mixed evacuations visits this region before the start of the next
1023 // old-gen concurrent mark (i.e. this region is allocated following the start of old-gen concurrent mark but before
1024 // concurrent preparations for mixed evacuations are completed), we mark this region as not requiring any
1025 // coalesce-and-fill processing.
1026 r->end_preemptible_coalesce_and_fill();
1027 _heap->old_generation()->clear_cards_for(r);
1028 }
1029 _heap->generation_for(r->affiliation())->increment_affiliated_region_count();
1030
1031 #ifdef ASSERT
1032 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
1033 assert(ctx->top_at_mark_start(r) == r->bottom(), "Newly established allocation region starts with TAMS equal to bottom");
1034 assert(ctx->is_bitmap_range_within_region_clear(ctx->top_bitmap(r), r->end()), "Bitmap above top_bitmap() must be clear");
1035 #endif
1036 log_debug(gc, free)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").",
1037 r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req));
1038 } else {
1039 assert(r->is_affiliated(), "Region " SIZE_FORMAT " that is not new should be affiliated", r->index());
1040 if (r->affiliation() != req.affiliation()) {
1041 assert(_heap->mode()->is_generational(), "Request for %s from %s region should only happen in generational mode.",
1042 req.affiliation_name(), r->affiliation_name());
1043 return nullptr;
1044 }
1045 }
1046
1047 // req.size() is in words, r->free() is in bytes.
1048 if (req.is_lab_alloc()) {
1049 size_t adjusted_size = req.size();
1050 size_t free = r->free(); // free represents bytes available within region r
1051 if (req.type() == ShenandoahAllocRequest::_alloc_plab) {
1052 // This is a PLAB allocation
1053 assert(_heap->mode()->is_generational(), "PLABs are only for generational mode");
1054 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, r->index()),
1055 "PLABS must be allocated in old_collector_free regions");
1056
1057 // Need to assure that plabs are aligned on multiple of card region
1058 // Convert free from unaligned bytes to aligned number of words
1059 size_t usable_free = get_usable_free_words(free);
1060 if (adjusted_size > usable_free) {
1061 adjusted_size = usable_free;
1062 }
1063 adjusted_size = align_down(adjusted_size, CardTable::card_size_in_words());
1064 if (adjusted_size >= req.min_size()) {
1065 result = allocate_aligned_plab(adjusted_size, req, r);
1066 assert(result != nullptr, "allocate must succeed");
1067 req.set_actual_size(adjusted_size);
1068 } else {
1069 // Otherwise, leave result == nullptr because the adjusted size is smaller than min size.
1070 log_trace(gc, free)("Failed to shrink PLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT
1071 " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size());
1072 }
1073 } else {
1074 // This is a GCLAB or a TLAB allocation
1075 // Convert free from unaligned bytes to aligned number of words
1076 free = align_down(free >> LogHeapWordSize, MinObjAlignment);
1077 if (adjusted_size > free) {
1078 adjusted_size = free;
1079 }
1080 if (adjusted_size >= req.min_size()) {
1081 result = r->allocate(adjusted_size, req);
1082 assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, adjusted_size);
1083 req.set_actual_size(adjusted_size);
1084 } else {
1085 log_trace(gc, free)("Failed to shrink TLAB or GCLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT
1086 " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size());
1087 }
1088 }
1089 } else {
1090 size_t size = req.size();
1091 result = r->allocate(size, req);
1092 if (result != nullptr) {
1093 // Record actual allocation size
1094 req.set_actual_size(size);
1095 }
1096 }
1097
1098 if (result != nullptr) {
1099 // Allocation successful, bump stats:
1100 if (req.is_mutator_alloc()) {
1101 assert(req.is_young(), "Mutator allocations always come from young generation.");
1102 _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, req.actual_size() * HeapWordSize);
1103 } else {
1104 assert(req.is_gc_alloc(), "Should be gc_alloc since req wasn't mutator alloc");
1105
1106 // For GC allocations, we advance update_watermark because the objects relocated into this memory during
1107 // evacuation are not updated during evacuation. For both young and old regions r, it is essential that all
1108 // PLABs be made parsable at the end of evacuation. This is enabled by retiring all plabs at end of evacuation.
1109 r->set_update_watermark(r->top());
1110 if (r->is_old()) {
1111 _partitions.increase_used(ShenandoahFreeSetPartitionId::OldCollector, req.actual_size() * HeapWordSize);
1112 assert(req.type() != ShenandoahAllocRequest::_alloc_gclab, "old-gen allocations use PLAB or shared allocation");
1113 // for plabs, we'll sort the difference between evac and promotion usage when we retire the plab
1114 } else {
1115 _partitions.increase_used(ShenandoahFreeSetPartitionId::Collector, req.actual_size() * HeapWordSize);
1116 }
1117 }
1118 }
1119
1120 static const size_t min_capacity = (size_t) (ShenandoahHeapRegion::region_size_bytes() * (1.0 - 1.0 / ShenandoahEvacWaste));
1121 size_t ac = alloc_capacity(r);
1122
1123 if (((result == nullptr) && (ac < min_capacity)) || (alloc_capacity(r) < PLAB::min_size() * HeapWordSize)) {
1124 // Regardless of whether this allocation succeeded, if the remaining memory is less than PLAB:min_size(), retire this region.
1125 // Note that retire_from_partition() increases used to account for waste.
1126
1127 // Also, if this allocation request failed and the consumed within this region * ShenandoahEvacWaste > region size,
1128 // then retire the region so that subsequent searches can find available memory more quickly.
1129
1130 size_t idx = r->index();
1131 ShenandoahFreeSetPartitionId orig_partition;
1132 if (req.is_mutator_alloc()) {
1133 orig_partition = ShenandoahFreeSetPartitionId::Mutator;
1134 } else if (req.type() == ShenandoahAllocRequest::_alloc_gclab) {
1135 orig_partition = ShenandoahFreeSetPartitionId::Collector;
1136 } else if (req.type() == ShenandoahAllocRequest::_alloc_plab) {
1137 orig_partition = ShenandoahFreeSetPartitionId::OldCollector;
1138 } else {
1139 assert(req.type() == ShenandoahAllocRequest::_alloc_shared_gc, "Unexpected allocation type");
1140 if (req.is_old()) {
1141 orig_partition = ShenandoahFreeSetPartitionId::OldCollector;
1142 } else {
1143 orig_partition = ShenandoahFreeSetPartitionId::Collector;
1144 }
1145 }
1146 _partitions.retire_from_partition(orig_partition, idx, r->used());
1147 _partitions.assert_bounds();
1148 }
1149 return result;
1150 }
1151
1152 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {
1153 assert(req.is_mutator_alloc(), "All humongous allocations are performed by mutator");
1154 shenandoah_assert_heaplocked();
1155
1156 size_t words_size = req.size();
1157 idx_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
1158
1159 assert(req.is_young(), "Humongous regions always allocated in YOUNG");
1160 ShenandoahGeneration* generation = _heap->generation_for(req.affiliation());
1161
1162 // Check if there are enough regions left to satisfy allocation.
1163 if (num > (idx_t) _partitions.count(ShenandoahFreeSetPartitionId::Mutator)) {
1164 return nullptr;
1165 }
1166
1167 idx_t start_range = _partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator);
1168 idx_t end_range = _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator) + 1;
1169 idx_t last_possible_start = end_range - num;
1170
1171 // Find the continuous interval of $num regions, starting from $beg and ending in $end,
1172 // inclusive. Contiguous allocations are biased to the beginning.
1173 idx_t beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator,
1174 start_range, num);
1175 if (beg > last_possible_start) {
1176 // Hit the end, goodbye
1177 return nullptr;
1178 }
1179 idx_t end = beg;
1180
1181 while (true) {
1182 // We've confirmed num contiguous regions belonging to Mutator partition, so no need to confirm membership.
1183 // If region is not completely free, the current [beg; end] is useless, and we may fast-forward. If we can extend
1184 // the existing range, we can exploit that certain regions are already known to be in the Mutator free set.
1185 while (!can_allocate_from(_heap->get_region(end))) {
1186 // region[end] is not empty, so we restart our search after region[end]
1187 idx_t slide_delta = end + 1 - beg;
1188 if (beg + slide_delta > last_possible_start) {
1189 // no room to slide
1190 return nullptr;
1191 }
1192 for (idx_t span_end = beg + num; slide_delta > 0; slide_delta--) {
1193 if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, span_end)) {
1194 beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator,
1195 span_end + 1, num);
1196 break;
1197 } else {
1198 beg++;
1199 span_end++;
1200 }
1201 }
1202 // Here, either beg identifies a range of num regions all of which are in the Mutator free set, or beg > last_possible_start
1203 if (beg > last_possible_start) {
1204 // Hit the end, goodbye
1205 return nullptr;
1206 }
1207 end = beg;
1208 }
1209
1210 if ((end - beg + 1) == num) {
1211 // found the match
1212 break;
1213 }
1214
1215 end++;
1216 }
1217
1218 size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
1219 // Initialize regions:
1220 for (idx_t i = beg; i <= end; i++) {
1221 ShenandoahHeapRegion* r = _heap->get_region(i);
1222 r->try_recycle_under_lock();
1223
1224 assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous");
1225 assert(r->is_empty(), "Should be empty");
1226
1227 if (i == beg) {
1228 r->make_humongous_start();
1229 } else {
1230 r->make_humongous_cont();
1231 }
1232
1233 // Trailing region may be non-full, record the remainder there
1234 size_t used_words;
1235 if ((i == end) && (remainder != 0)) {
1236 used_words = remainder;
1237 } else {
1238 used_words = ShenandoahHeapRegion::region_size_words();
1239 }
1240
1241 r->set_affiliation(req.affiliation());
1242 r->set_update_watermark(r->bottom());
1243 r->set_top(r->bottom() + used_words);
1244 }
1245 generation->increase_affiliated_region_count(num);
1246 if (remainder != 0) {
1247 // Record this remainder as allocation waste
1248 _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true);
1249 }
1250
1251 // retire_range_from_partition() will adjust bounds on Mutator free set if appropriate
1252 _partitions.retire_range_from_partition(ShenandoahFreeSetPartitionId::Mutator, beg, end);
1253
1254 size_t total_humongous_size = ShenandoahHeapRegion::region_size_bytes() * num;
1255 _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, total_humongous_size);
1256 _partitions.assert_bounds();
1257 req.set_actual_size(words_size);
1258 if (remainder != 0) {
1259 req.set_waste(ShenandoahHeapRegion::region_size_words() - remainder);
1260 }
1261 return _heap->get_region(beg)->bottom();
1262 }
1263
1264 class ShenandoahRecycleTrashedRegionClosure final : public ShenandoahHeapRegionClosure {
1265 public:
1266 ShenandoahRecycleTrashedRegionClosure(): ShenandoahHeapRegionClosure() {}
1267
1268 void heap_region_do(ShenandoahHeapRegion* r) {
1269 r->try_recycle();
1270 }
1271
1272 bool is_thread_safe() {
1273 return true;
1274 }
1275 };
1276
1277 void ShenandoahFreeSet::recycle_trash() {
1278 // lock is not non-reentrant, check we don't have it
1279 shenandoah_assert_not_heaplocked();
1280
1281 ShenandoahHeap* heap = ShenandoahHeap::heap();
1282 heap->assert_gc_workers(heap->workers()->active_workers());
1283
1284 ShenandoahRecycleTrashedRegionClosure closure;
1285 heap->parallel_heap_region_iterate(&closure);
1286 }
1287
1288 bool ShenandoahFreeSet::flip_to_old_gc(ShenandoahHeapRegion* r) {
1289 const size_t idx = r->index();
1290
1291 assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view");
1292 assert(can_allocate_from(r), "Should not be allocated");
1293
1294 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
1295 const size_t region_capacity = alloc_capacity(r);
1296
1297 bool transferred = gen_heap->generation_sizer()->transfer_to_old(1);
1298 if (transferred) {
1299 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1300 ShenandoahFreeSetPartitionId::OldCollector, region_capacity);
1301 _partitions.assert_bounds();
1302 _heap->old_generation()->augment_evacuation_reserve(region_capacity);
1303 return true;
1304 }
1305
1306 if (_heap->young_generation()->free_unaffiliated_regions() == 0 && _heap->old_generation()->free_unaffiliated_regions() > 0) {
1307 // Old has free unaffiliated regions, but it couldn't use them for allocation (likely because they
1308 // are trash and weak roots are in process). In this scenario, we aren't really stealing from the
1309 // mutator (they have nothing to steal), but they do have a usable region in their partition. What
1310 // we want to do here is swap that region from the mutator partition with one from the old collector
1311 // partition.
1312 // 1. Find a temporarily unusable trash region in the old collector partition
1313 ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::OldCollector, true);
1314 idx_t unusable_trash = -1;
1315 for (unusable_trash = iterator.current(); iterator.has_next(); unusable_trash = iterator.next()) {
1316 const ShenandoahHeapRegion* region = _heap->get_region(unusable_trash);
1317 if (region->is_trash() && _heap->is_concurrent_weak_root_in_progress()) {
1318 break;
1319 }
1320 }
1321
1322 if (unusable_trash != -1) {
1323 const size_t unusable_capacity = alloc_capacity(unusable_trash);
1324 // 2. Move the (temporarily) unusable trash region we found to the mutator partition
1325 _partitions.move_from_partition_to_partition(unusable_trash,
1326 ShenandoahFreeSetPartitionId::OldCollector,
1327 ShenandoahFreeSetPartitionId::Mutator, unusable_capacity);
1328
1329 // 3. Move this usable region from the mutator partition to the old collector partition
1330 _partitions.move_from_partition_to_partition(idx,
1331 ShenandoahFreeSetPartitionId::Mutator,
1332 ShenandoahFreeSetPartitionId::OldCollector, region_capacity);
1333
1334 _partitions.assert_bounds();
1335
1336 // 4. Do not adjust capacities for generations, we just swapped the regions that have already
1337 // been accounted for. However, we should adjust the evacuation reserves as those may have changed.
1338 shenandoah_assert_heaplocked();
1339 const size_t reserve = _heap->old_generation()->get_evacuation_reserve();
1340 _heap->old_generation()->set_evacuation_reserve(reserve - unusable_capacity + region_capacity);
1341 return true;
1342 }
1343 }
1344
1345 // We can't take this region young because it has no free unaffiliated regions (transfer failed).
1346 return false;
1347 }
1348
1349 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
1350 size_t idx = r->index();
1351
1352 assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view");
1353 assert(can_allocate_from(r), "Should not be allocated");
1354
1355 size_t ac = alloc_capacity(r);
1356 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1357 ShenandoahFreeSetPartitionId::Collector, ac);
1358 _partitions.assert_bounds();
1359
1360 // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next,
1361 // to recycle trash before attempting to allocate anything in the region.
1362 }
1363
1364 void ShenandoahFreeSet::clear() {
1365 shenandoah_assert_heaplocked();
1366 clear_internal();
1367 }
1368
1369 void ShenandoahFreeSet::clear_internal() {
1370 _partitions.make_all_regions_unavailable();
1371
1372 _alloc_bias_weight = 0;
1373 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, true);
1374 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Collector, false);
1375 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector, false);
1376 }
1377
1378 void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_cset_regions, size_t &old_cset_regions,
1379 size_t &first_old_region, size_t &last_old_region,
1380 size_t &old_region_count) {
1381 clear_internal();
1382
1383 first_old_region = _heap->num_regions();
1384 last_old_region = 0;
1385 old_region_count = 0;
1386 old_cset_regions = 0;
1387 young_cset_regions = 0;
1388
1389 size_t region_size_bytes = _partitions.region_size_bytes();
1390 size_t max_regions = _partitions.max_regions();
1391
1392 size_t mutator_leftmost = max_regions;
1393 size_t mutator_rightmost = 0;
1394 size_t mutator_leftmost_empty = max_regions;
1395 size_t mutator_rightmost_empty = 0;
1396 size_t mutator_regions = 0;
1397 size_t mutator_used = 0;
1398
1399 size_t old_collector_leftmost = max_regions;
1400 size_t old_collector_rightmost = 0;
1401 size_t old_collector_leftmost_empty = max_regions;
1402 size_t old_collector_rightmost_empty = 0;
1403 size_t old_collector_regions = 0;
1404 size_t old_collector_used = 0;
1405
1406 size_t num_regions = _heap->num_regions();
1407 for (size_t idx = 0; idx < num_regions; idx++) {
1408 ShenandoahHeapRegion* region = _heap->get_region(idx);
1409 if (region->is_trash()) {
1410 // Trashed regions represent regions that had been in the collection partition but have not yet been "cleaned up".
1411 // The cset regions are not "trashed" until we have finished update refs.
1412 if (region->is_old()) {
1413 old_cset_regions++;
1414 } else {
1415 assert(region->is_young(), "Trashed region should be old or young");
1416 young_cset_regions++;
1417 }
1418 } else if (region->is_old()) {
1419 // count both humongous and regular regions, but don't count trash (cset) regions.
1420 old_region_count++;
1421 if (first_old_region > idx) {
1422 first_old_region = idx;
1423 }
1424 last_old_region = idx;
1425 }
1426 if (region->is_alloc_allowed() || region->is_trash()) {
1427 assert(!region->is_cset(), "Shouldn't be adding cset regions to the free set");
1428
1429 // Do not add regions that would almost surely fail allocation
1430 size_t ac = alloc_capacity(region);
1431 if (ac > PLAB::min_size() * HeapWordSize) {
1432 if (region->is_trash() || !region->is_old()) {
1433 // Both young and old collected regions (trashed) are placed into the Mutator set
1434 _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::Mutator);
1435 if (idx < mutator_leftmost) {
1436 mutator_leftmost = idx;
1437 }
1438 if (idx > mutator_rightmost) {
1439 mutator_rightmost = idx;
1440 }
1441 if (ac == region_size_bytes) {
1442 if (idx < mutator_leftmost_empty) {
1443 mutator_leftmost_empty = idx;
1444 }
1445 if (idx > mutator_rightmost_empty) {
1446 mutator_rightmost_empty = idx;
1447 }
1448 }
1449 mutator_regions++;
1450 mutator_used += (region_size_bytes - ac);
1451 } else {
1452 // !region->is_trash() && region is_old()
1453 _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::OldCollector);
1454 if (idx < old_collector_leftmost) {
1455 old_collector_leftmost = idx;
1456 }
1457 if (idx > old_collector_rightmost) {
1458 old_collector_rightmost = idx;
1459 }
1460 if (ac == region_size_bytes) {
1461 if (idx < old_collector_leftmost_empty) {
1462 old_collector_leftmost_empty = idx;
1463 }
1464 if (idx > old_collector_rightmost_empty) {
1465 old_collector_rightmost_empty = idx;
1466 }
1467 }
1468 old_collector_regions++;
1469 old_collector_used += (region_size_bytes - ac);
1470 }
1471 }
1472 }
1473 }
1474 log_debug(gc, free)(" At end of prep_to_rebuild, mutator_leftmost: " SIZE_FORMAT
1475 ", mutator_rightmost: " SIZE_FORMAT
1476 ", mutator_leftmost_empty: " SIZE_FORMAT
1477 ", mutator_rightmost_empty: " SIZE_FORMAT
1478 ", mutator_regions: " SIZE_FORMAT
1479 ", mutator_used: " SIZE_FORMAT,
1480 mutator_leftmost, mutator_rightmost, mutator_leftmost_empty, mutator_rightmost_empty,
1481 mutator_regions, mutator_used);
1482
1483 log_debug(gc, free)(" old_collector_leftmost: " SIZE_FORMAT
1484 ", old_collector_rightmost: " SIZE_FORMAT
1485 ", old_collector_leftmost_empty: " SIZE_FORMAT
1486 ", old_collector_rightmost_empty: " SIZE_FORMAT
1487 ", old_collector_regions: " SIZE_FORMAT
1488 ", old_collector_used: " SIZE_FORMAT,
1489 old_collector_leftmost, old_collector_rightmost, old_collector_leftmost_empty, old_collector_rightmost_empty,
1490 old_collector_regions, old_collector_used);
1491
1492 idx_t rightmost_idx = (mutator_leftmost == max_regions)? -1: (idx_t) mutator_rightmost;
1493 idx_t rightmost_empty_idx = (mutator_leftmost_empty == max_regions)? -1: (idx_t) mutator_rightmost_empty;
1494 _partitions.establish_mutator_intervals(mutator_leftmost, rightmost_idx, mutator_leftmost_empty, rightmost_empty_idx,
1495 mutator_regions, mutator_used);
1496 rightmost_idx = (old_collector_leftmost == max_regions)? -1: (idx_t) old_collector_rightmost;
1497 rightmost_empty_idx = (old_collector_leftmost_empty == max_regions)? -1: (idx_t) old_collector_rightmost_empty;
1498 _partitions.establish_old_collector_intervals(old_collector_leftmost, rightmost_idx, old_collector_leftmost_empty,
1499 rightmost_empty_idx, old_collector_regions, old_collector_used);
1500 log_debug(gc, free)(" After find_regions_with_alloc_capacity(), Mutator range [%zd, %zd],"
1501 " Old Collector range [%zd, %zd]",
1502 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1503 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1504 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1505 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector));
1506 }
1507
1508 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred
1509 size_t ShenandoahFreeSet::transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector,
1510 size_t max_xfer_regions,
1511 size_t& bytes_transferred) {
1512 shenandoah_assert_heaplocked();
1513 const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1514 size_t transferred_regions = 0;
1515 ShenandoahLeftRightIterator iterator(&_partitions, which_collector, true);
1516 for (idx_t idx = iterator.current(); transferred_regions < max_xfer_regions && iterator.has_next(); idx = iterator.next()) {
1517 // Note: can_allocate_from() denotes that region is entirely empty
1518 if (can_allocate_from(idx)) {
1519 _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, region_size_bytes);
1520 transferred_regions++;
1521 bytes_transferred += region_size_bytes;
1522 }
1523 }
1524 return transferred_regions;
1525 }
1526
1527 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred
1528 size_t ShenandoahFreeSet::transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector,
1529 size_t max_xfer_regions,
1530 size_t& bytes_transferred) {
1531 shenandoah_assert_heaplocked();
1532 size_t transferred_regions = 0;
1533 ShenandoahLeftRightIterator iterator(&_partitions, which_collector, false);
1534 for (idx_t idx = iterator.current(); transferred_regions < max_xfer_regions && iterator.has_next(); idx = iterator.next()) {
1535 size_t ac = alloc_capacity(idx);
1536 if (ac > 0) {
1537 _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, ac);
1538 transferred_regions++;
1539 bytes_transferred += ac;
1540 }
1541 }
1542 return transferred_regions;
1543 }
1544
1545 void ShenandoahFreeSet::move_regions_from_collector_to_mutator(size_t max_xfer_regions) {
1546 size_t collector_xfer = 0;
1547 size_t old_collector_xfer = 0;
1548
1549 // Process empty regions within the Collector free partition
1550 if ((max_xfer_regions > 0) &&
1551 (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Collector)
1552 <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Collector))) {
1553 ShenandoahHeapLocker locker(_heap->lock());
1554 max_xfer_regions -=
1555 transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions,
1556 collector_xfer);
1557 }
1558
1559 // Process empty regions within the OldCollector free partition
1560 if ((max_xfer_regions > 0) &&
1561 (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector)
1562 <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector))) {
1563 ShenandoahHeapLocker locker(_heap->lock());
1564 size_t old_collector_regions =
1565 transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::OldCollector, max_xfer_regions,
1566 old_collector_xfer);
1567 max_xfer_regions -= old_collector_regions;
1568 if (old_collector_regions > 0) {
1569 ShenandoahGenerationalHeap::cast(_heap)->generation_sizer()->transfer_to_young(old_collector_regions);
1570 }
1571 }
1572
1573 // If there are any non-empty regions within Collector partition, we can also move them to the Mutator free partition
1574 if ((max_xfer_regions > 0) && (_partitions.leftmost(ShenandoahFreeSetPartitionId::Collector)
1575 <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector))) {
1576 ShenandoahHeapLocker locker(_heap->lock());
1577 max_xfer_regions -=
1578 transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions,
1579 collector_xfer);
1580 }
1581
1582 size_t total_xfer = collector_xfer + old_collector_xfer;
1583 log_info(gc, ergo)("At start of update refs, moving " SIZE_FORMAT "%s to Mutator free set from Collector Reserve ("
1584 SIZE_FORMAT "%s) and from Old Collector Reserve (" SIZE_FORMAT "%s)",
1585 byte_size_in_proper_unit(total_xfer), proper_unit_for_byte_size(total_xfer),
1586 byte_size_in_proper_unit(collector_xfer), proper_unit_for_byte_size(collector_xfer),
1587 byte_size_in_proper_unit(old_collector_xfer), proper_unit_for_byte_size(old_collector_xfer));
1588 }
1589
1590
1591 // Overwrite arguments to represent the amount of memory in each generation that is about to be recycled
1592 void ShenandoahFreeSet::prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions,
1593 size_t &first_old_region, size_t &last_old_region, size_t &old_region_count) {
1594 shenandoah_assert_heaplocked();
1595 // This resets all state information, removing all regions from all sets.
1596 clear();
1597 log_debug(gc, free)("Rebuilding FreeSet");
1598
1599 // This places regions that have alloc_capacity into the old_collector set if they identify as is_old() or the
1600 // mutator set otherwise. All trashed (cset) regions are affiliated young and placed in mutator set.
1601 find_regions_with_alloc_capacity(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
1602 }
1603
1604 void ShenandoahFreeSet::establish_generation_sizes(size_t young_region_count, size_t old_region_count) {
1605 assert(young_region_count + old_region_count == ShenandoahHeap::heap()->num_regions(), "Sanity");
1606 if (ShenandoahHeap::heap()->mode()->is_generational()) {
1607 ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
1608 ShenandoahOldGeneration* old_gen = heap->old_generation();
1609 ShenandoahYoungGeneration* young_gen = heap->young_generation();
1610 size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1611
1612 size_t original_old_capacity = old_gen->max_capacity();
1613 size_t new_old_capacity = old_region_count * region_size_bytes;
1614 size_t new_young_capacity = young_region_count * region_size_bytes;
1615 old_gen->set_capacity(new_old_capacity);
1616 young_gen->set_capacity(new_young_capacity);
1617
1618 if (new_old_capacity > original_old_capacity) {
1619 size_t region_count = (new_old_capacity - original_old_capacity) / region_size_bytes;
1620 log_info(gc, ergo)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT,
1621 region_count, young_gen->name(), old_gen->name(), PROPERFMTARGS(new_old_capacity));
1622 } else if (new_old_capacity < original_old_capacity) {
1623 size_t region_count = (original_old_capacity - new_old_capacity) / region_size_bytes;
1624 log_info(gc, ergo)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT,
1625 region_count, old_gen->name(), young_gen->name(), PROPERFMTARGS(new_young_capacity));
1626 }
1627 // This balances generations, so clear any pending request to balance.
1628 old_gen->set_region_balance(0);
1629 }
1630 }
1631
1632 void ShenandoahFreeSet::finish_rebuild(size_t young_cset_regions, size_t old_cset_regions, size_t old_region_count,
1633 bool have_evacuation_reserves) {
1634 shenandoah_assert_heaplocked();
1635 size_t young_reserve(0), old_reserve(0);
1636
1637 if (_heap->mode()->is_generational()) {
1638 compute_young_and_old_reserves(young_cset_regions, old_cset_regions, have_evacuation_reserves,
1639 young_reserve, old_reserve);
1640 } else {
1641 young_reserve = (_heap->max_capacity() / 100) * ShenandoahEvacReserve;
1642 old_reserve = 0;
1643 }
1644
1645 // Move some of the mutator regions in the Collector and OldCollector partitions in order to satisfy
1646 // young_reserve and old_reserve.
1647 reserve_regions(young_reserve, old_reserve, old_region_count);
1648 size_t young_region_count = _heap->num_regions() - old_region_count;
1649 establish_generation_sizes(young_region_count, old_region_count);
1650 establish_old_collector_alloc_bias();
1651 _partitions.assert_bounds();
1652 log_status();
1653 }
1654
1655 void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_cset_regions, size_t old_cset_regions,
1656 bool have_evacuation_reserves,
1657 size_t& young_reserve_result, size_t& old_reserve_result) const {
1658 shenandoah_assert_generational();
1659 const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1660
1661 ShenandoahOldGeneration* const old_generation = _heap->old_generation();
1662 size_t old_available = old_generation->available();
1663 size_t old_unaffiliated_regions = old_generation->free_unaffiliated_regions();
1664 ShenandoahYoungGeneration* const young_generation = _heap->young_generation();
1665 size_t young_capacity = young_generation->max_capacity();
1666 size_t young_unaffiliated_regions = young_generation->free_unaffiliated_regions();
1667
1668 // Add in the regions we anticipate to be freed by evacuation of the collection set
1669 old_unaffiliated_regions += old_cset_regions;
1670 young_unaffiliated_regions += young_cset_regions;
1671
1672 // Consult old-region balance to make adjustments to current generation capacities and availability.
1673 // The generation region transfers take place after we rebuild.
1674 const ssize_t old_region_balance = old_generation->get_region_balance();
1675 if (old_region_balance != 0) {
1676 #ifdef ASSERT
1677 if (old_region_balance > 0) {
1678 assert(old_region_balance <= checked_cast<ssize_t>(old_unaffiliated_regions), "Cannot transfer regions that are affiliated");
1679 } else {
1680 assert(0 - old_region_balance <= checked_cast<ssize_t>(young_unaffiliated_regions), "Cannot transfer regions that are affiliated");
1681 }
1682 #endif
1683
1684 ssize_t xfer_bytes = old_region_balance * checked_cast<ssize_t>(region_size_bytes);
1685 old_available -= xfer_bytes;
1686 old_unaffiliated_regions -= old_region_balance;
1687 young_capacity += xfer_bytes;
1688 young_unaffiliated_regions += old_region_balance;
1689 }
1690
1691 // All allocations taken from the old collector set are performed by GC, generally using PLABs for both
1692 // promotions and evacuations. The partition between which old memory is reserved for evacuation and
1693 // which is reserved for promotion is enforced using thread-local variables that prescribe intentions for
1694 // each PLAB's available memory.
1695 if (have_evacuation_reserves) {
1696 // We are rebuilding at the end of final mark, having already established evacuation budgets for this GC pass.
1697 const size_t promoted_reserve = old_generation->get_promoted_reserve();
1698 const size_t old_evac_reserve = old_generation->get_evacuation_reserve();
1699 young_reserve_result = young_generation->get_evacuation_reserve();
1700 old_reserve_result = promoted_reserve + old_evac_reserve;
1701 assert(old_reserve_result <= old_available,
1702 "Cannot reserve (" SIZE_FORMAT " + " SIZE_FORMAT") more OLD than is available: " SIZE_FORMAT,
1703 promoted_reserve, old_evac_reserve, old_available);
1704 } else {
1705 // We are rebuilding at end of GC, so we set aside budgets specified on command line (or defaults)
1706 young_reserve_result = (young_capacity * ShenandoahEvacReserve) / 100;
1707 // The auto-sizer has already made old-gen large enough to hold all anticipated evacuations and promotions.
1708 // Affiliated old-gen regions are already in the OldCollector free set. Add in the relevant number of
1709 // unaffiliated regions.
1710 old_reserve_result = old_available;
1711 }
1712
1713 // Old available regions that have less than PLAB::min_size() of available memory are not placed into the OldCollector
1714 // free set. Because of this, old_available may not have enough memory to represent the intended reserve. Adjust
1715 // the reserve downward to account for this possibility. This loss is part of the reason why the original budget
1716 // was adjusted with ShenandoahOldEvacWaste and ShenandoahOldPromoWaste multipliers.
1717 if (old_reserve_result >
1718 _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes) {
1719 old_reserve_result =
1720 _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes;
1721 }
1722
1723 if (young_reserve_result > young_unaffiliated_regions * region_size_bytes) {
1724 young_reserve_result = young_unaffiliated_regions * region_size_bytes;
1725 }
1726 }
1727
1728 // Having placed all regions that have allocation capacity into the mutator set if they identify as is_young()
1729 // or into the old collector set if they identify as is_old(), move some of these regions from the mutator set
1730 // into the collector set or old collector set in order to assure that the memory available for allocations within
1731 // the collector set is at least to_reserve and the memory available for allocations within the old collector set
1732 // is at least to_reserve_old.
1733 void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old, size_t &old_region_count) {
1734 for (size_t i = _heap->num_regions(); i > 0; i--) {
1735 size_t idx = i - 1;
1736 ShenandoahHeapRegion* r = _heap->get_region(idx);
1737 if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) {
1738 continue;
1739 }
1740
1741 size_t ac = alloc_capacity(r);
1742 assert (ac > 0, "Membership in free set implies has capacity");
1743 assert (!r->is_old() || r->is_trash(), "Except for trash, mutator_is_free regions should not be affiliated OLD");
1744
1745 bool move_to_old_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector) < to_reserve_old;
1746 bool move_to_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector) < to_reserve;
1747
1748 if (!move_to_collector && !move_to_old_collector) {
1749 // We've satisfied both to_reserve and to_reserved_old
1750 break;
1751 }
1752
1753 if (move_to_old_collector) {
1754 // We give priority to OldCollector partition because we desire to pack OldCollector regions into higher
1755 // addresses than Collector regions. Presumably, OldCollector regions are more "stable" and less likely to
1756 // be collected in the near future.
1757 if (r->is_trash() || !r->is_affiliated()) {
1758 // OLD regions that have available memory are already in the old_collector free set.
1759 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1760 ShenandoahFreeSetPartitionId::OldCollector, ac);
1761 log_trace(gc, free)(" Shifting region " SIZE_FORMAT " from mutator_free to old_collector_free", idx);
1762 log_trace(gc, free)(" Shifted Mutator range [%zd, %zd],"
1763 " Old Collector range [%zd, %zd]",
1764 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1765 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1766 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1767 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector));
1768 old_region_count++;
1769 continue;
1770 }
1771 }
1772
1773 if (move_to_collector) {
1774 // Note: In a previous implementation, regions were only placed into the survivor space (collector_is_free) if
1775 // they were entirely empty. This has the effect of causing new Mutator allocation to reside next to objects
1776 // that have already survived at least one GC, mixing ephemeral with longer-lived objects in the same region.
1777 // Any objects that have survived a GC are less likely to immediately become garbage, so a region that contains
1778 // survivor objects is less likely to be selected for the collection set. This alternative implementation allows
1779 // survivor regions to continue accumulating other survivor objects, and makes it more likely that ephemeral objects
1780 // occupy regions comprised entirely of ephemeral objects. These regions are highly likely to be included in the next
1781 // collection set, and they are easily evacuated because they have low density of live objects.
1782 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1783 ShenandoahFreeSetPartitionId::Collector, ac);
1784 log_trace(gc, free)(" Shifting region " SIZE_FORMAT " from mutator_free to collector_free", idx);
1785 log_trace(gc, free)(" Shifted Mutator range [%zd, %zd],"
1786 " Collector range [%zd, %zd]",
1787 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1788 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1789 _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector),
1790 _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector));
1791 }
1792 }
1793
1794 if (LogTarget(Info, gc, free)::is_enabled()) {
1795 size_t old_reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector);
1796 if (old_reserve < to_reserve_old) {
1797 log_info(gc, free)("Wanted " PROPERFMT " for old reserve, but only reserved: " PROPERFMT,
1798 PROPERFMTARGS(to_reserve_old), PROPERFMTARGS(old_reserve));
1799 }
1800 size_t reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector);
1801 if (reserve < to_reserve) {
1802 log_info(gc, free)("Wanted " PROPERFMT " for young reserve, but only reserved: " PROPERFMT,
1803 PROPERFMTARGS(to_reserve), PROPERFMTARGS(reserve));
1804 }
1805 }
1806 }
1807
1808 void ShenandoahFreeSet::establish_old_collector_alloc_bias() {
1809 ShenandoahHeap* heap = ShenandoahHeap::heap();
1810 shenandoah_assert_heaplocked();
1811
1812 idx_t left_idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
1813 idx_t right_idx = _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector);
1814 idx_t middle = (left_idx + right_idx) / 2;
1815 size_t available_in_first_half = 0;
1816 size_t available_in_second_half = 0;
1817
1818 for (idx_t index = left_idx; index < middle; index++) {
1819 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
1820 ShenandoahHeapRegion* r = heap->get_region((size_t) index);
1821 available_in_first_half += r->free();
1822 }
1823 }
1824 for (idx_t index = middle; index <= right_idx; index++) {
1825 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
1826 ShenandoahHeapRegion* r = heap->get_region(index);
1827 available_in_second_half += r->free();
1828 }
1829 }
1830
1831 // We desire to first consume the sparsely distributed regions in order that the remaining regions are densely packed.
1832 // Densely packing regions reduces the effort to search for a region that has sufficient memory to satisfy a new allocation
1833 // request. Regions become sparsely distributed following a Full GC, which tends to slide all regions to the front of the
1834 // heap rather than allowing survivor regions to remain at the high end of the heap where we intend for them to congregate.
1835 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector,
1836 (available_in_second_half > available_in_first_half));
1837 }
1838
1839 void ShenandoahFreeSet::log_status_under_lock() {
1840 // Must not be heap locked, it acquires heap lock only when log is enabled
1841 shenandoah_assert_not_heaplocked();
1842 if (LogTarget(Info, gc, free)::is_enabled()
1843 DEBUG_ONLY(|| LogTarget(Debug, gc, free)::is_enabled())) {
1844 ShenandoahHeapLocker locker(_heap->lock());
1845 log_status();
1846 }
1847 }
1848
1849 void ShenandoahFreeSet::log_status() {
1850 shenandoah_assert_heaplocked();
1851
1852 #ifdef ASSERT
1853 // Dump of the FreeSet details is only enabled if assertions are enabled
1854 LogTarget(Debug, gc, free) debug_free;
1855 if (debug_free.is_enabled()) {
1856 #define BUFFER_SIZE 80
1857 LogStream ls(debug_free);
1858
1859 char buffer[BUFFER_SIZE];
1860 for (uint i = 0; i < BUFFER_SIZE; i++) {
1861 buffer[i] = '\0';
1862 }
1863
1864 ls.cr();
1865 ls.print_cr("Mutator free range [%zd..%zd] allocating from %s",
1866 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1867 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1868 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)? "left to right": "right to left");
1869
1870 ls.print_cr("Collector free range [%zd..%zd] allocating from %s",
1871 _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector),
1872 _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector),
1873 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Collector)? "left to right": "right to left");
1874
1875 ls.print_cr("Old collector free range [%zd..%zd] allocates from %s",
1876 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1877 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector),
1878 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::OldCollector)? "left to right": "right to left");
1879 ls.cr();
1880 ls.print_cr("FreeSet map legend:");
1881 ls.print_cr(" M/m:mutator, C/c:collector O/o:old_collector (Empty/Occupied)");
1882 ls.print_cr(" H/h:humongous, X/x:no alloc capacity, ~/_:retired (Old/Young)");
1883
1884 for (uint i = 0; i < _heap->num_regions(); i++) {
1885 ShenandoahHeapRegion *r = _heap->get_region(i);
1886 uint idx = i % 64;
1887 if ((i != 0) && (idx == 0)) {
1888 ls.print_cr(" %6u: %s", i-64, buffer);
1889 }
1890 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, i)) {
1891 size_t capacity = alloc_capacity(r);
1892 assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in mutator_free set");
1893 buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'M' : 'm';
1894 } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, i)) {
1895 size_t capacity = alloc_capacity(r);
1896 assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in collector_free set");
1897 buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'C' : 'c';
1898 } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, i)) {
1899 size_t capacity = alloc_capacity(r);
1900 buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'O' : 'o';
1901 } else if (r->is_humongous()) {
1902 buffer[idx] = (r->is_old() ? 'H' : 'h');
1903 } else if (alloc_capacity(r) == 0) {
1904 buffer[idx] = (r->is_old() ? 'X' : 'x');
1905 } else {
1906 buffer[idx] = (r->is_old() ? '~' : '_');
1907 }
1908 }
1909 uint remnant = _heap->num_regions() % 64;
1910 if (remnant > 0) {
1911 buffer[remnant] = '\0';
1912 } else {
1913 remnant = 64;
1914 }
1915 ls.print_cr(" %6u: %s", (uint) (_heap->num_regions() - remnant), buffer);
1916 }
1917 #endif
1918
1919 LogTarget(Info, gc, free) lt;
1920 if (lt.is_enabled()) {
1921 ResourceMark rm;
1922 LogStream ls(lt);
1923
1924 {
1925 idx_t last_idx = 0;
1926 size_t max = 0;
1927 size_t max_contig = 0;
1928 size_t empty_contig = 0;
1929
1930 size_t total_used = 0;
1931 size_t total_free = 0;
1932 size_t total_free_ext = 0;
1933
1934 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator);
1935 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); idx++) {
1936 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) {
1937 ShenandoahHeapRegion *r = _heap->get_region(idx);
1938 size_t free = alloc_capacity(r);
1939 max = MAX2(max, free);
1940 if (r->is_empty()) {
1941 total_free_ext += free;
1942 if (last_idx + 1 == idx) {
1943 empty_contig++;
1944 } else {
1945 empty_contig = 1;
1946 }
1947 } else {
1948 empty_contig = 0;
1949 }
1950 total_used += r->used();
1951 total_free += free;
1952 max_contig = MAX2(max_contig, empty_contig);
1953 last_idx = idx;
1954 }
1955 }
1956
1957 size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
1958 size_t free = capacity() - used();
1959
1960 // Since certain regions that belonged to the Mutator free partition at the time of most recent rebuild may have been
1961 // retired, the sum of used and capacities within regions that are still in the Mutator free partition may not match
1962 // my internally tracked values of used() and free().
1963 assert(free == total_free, "Free memory should match");
1964 ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ",
1965 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
1966 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
1967 byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
1968 );
1969
1970 ls.print("Frag: ");
1971 size_t frag_ext;
1972 if (total_free_ext > 0) {
1973 frag_ext = 100 - (100 * max_humongous / total_free_ext);
1974 } else {
1975 frag_ext = 0;
1976 }
1977 ls.print(SIZE_FORMAT "%% external, ", frag_ext);
1978
1979 size_t frag_int;
1980 if (_partitions.count(ShenandoahFreeSetPartitionId::Mutator) > 0) {
1981 frag_int = (100 * (total_used / _partitions.count(ShenandoahFreeSetPartitionId::Mutator))
1982 / ShenandoahHeapRegion::region_size_bytes());
1983 } else {
1984 frag_int = 0;
1985 }
1986 ls.print(SIZE_FORMAT "%% internal; ", frag_int);
1987 ls.print("Used: " SIZE_FORMAT "%s, Mutator Free: " SIZE_FORMAT,
1988 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used),
1989 _partitions.count(ShenandoahFreeSetPartitionId::Mutator));
1990 }
1991
1992 {
1993 size_t max = 0;
1994 size_t total_free = 0;
1995 size_t total_used = 0;
1996
1997 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector);
1998 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector); idx++) {
1999 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, idx)) {
2000 ShenandoahHeapRegion *r = _heap->get_region(idx);
2001 size_t free = alloc_capacity(r);
2002 max = MAX2(max, free);
2003 total_free += free;
2004 total_used += r->used();
2005 }
2006 }
2007 ls.print(" Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s",
2008 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
2009 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
2010 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used));
2011 }
2012
2013 if (_heap->mode()->is_generational()) {
2014 size_t max = 0;
2015 size_t total_free = 0;
2016 size_t total_used = 0;
2017
2018 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
2019 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); idx++) {
2020 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, idx)) {
2021 ShenandoahHeapRegion *r = _heap->get_region(idx);
2022 size_t free = alloc_capacity(r);
2023 max = MAX2(max, free);
2024 total_free += free;
2025 total_used += r->used();
2026 }
2027 }
2028 ls.print_cr(" Old Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s",
2029 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
2030 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
2031 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used));
2032 }
2033 }
2034 }
2035
2036 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
2037 shenandoah_assert_heaplocked();
2038 if (ShenandoahHeapRegion::requires_humongous(req.size())) {
2039 switch (req.type()) {
2040 case ShenandoahAllocRequest::_alloc_shared:
2041 case ShenandoahAllocRequest::_alloc_shared_gc:
2042 in_new_region = true;
2043 return allocate_contiguous(req);
2044 case ShenandoahAllocRequest::_alloc_plab:
2045 case ShenandoahAllocRequest::_alloc_gclab:
2046 case ShenandoahAllocRequest::_alloc_tlab:
2047 in_new_region = false;
2048 assert(false, "Trying to allocate TLAB in humongous region: " SIZE_FORMAT, req.size());
2049 return nullptr;
2050 default:
2051 ShouldNotReachHere();
2052 return nullptr;
2053 }
2054 } else {
2055 return allocate_single(req, in_new_region);
2056 }
2057 }
2058
2059 void ShenandoahFreeSet::print_on(outputStream* out) const {
2060 out->print_cr("Mutator Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Mutator));
2061 ShenandoahLeftRightIterator mutator(const_cast<ShenandoahRegionPartitions*>(&_partitions), ShenandoahFreeSetPartitionId::Mutator);
2062 for (idx_t index = mutator.current(); mutator.has_next(); index = mutator.next()) {
2063 _heap->get_region(index)->print_on(out);
2064 }
2065
2066 out->print_cr("Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Collector));
2067 ShenandoahLeftRightIterator collector(const_cast<ShenandoahRegionPartitions*>(&_partitions), ShenandoahFreeSetPartitionId::Collector);
2068 for (idx_t index = collector.current(); collector.has_next(); index = collector.next()) {
2069 _heap->get_region(index)->print_on(out);
2070 }
2071
2072 if (_heap->mode()->is_generational()) {
2073 out->print_cr("Old Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::OldCollector));
2074 for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
2075 index <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); index++) {
2076 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
2077 _heap->get_region(index)->print_on(out);
2078 }
2079 }
2080 }
2081 }
2082
2083 double ShenandoahFreeSet::internal_fragmentation() {
2084 double squared = 0;
2085 double linear = 0;
2086
2087 ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
2088 for (idx_t index = iterator.current(); iterator.has_next(); index = iterator.next()) {
2089 ShenandoahHeapRegion* r = _heap->get_region(index);
2090 size_t used = r->used();
2091 squared += used * used;
2092 linear += used;
2093 }
2094
2095 if (linear > 0) {
2096 double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
2097 return 1 - s;
2098 } else {
2099 return 0;
2100 }
2101 }
2102
2103 double ShenandoahFreeSet::external_fragmentation() {
2104 idx_t last_idx = 0;
2105 size_t max_contig = 0;
2106 size_t empty_contig = 0;
2107 size_t free = 0;
2108
2109 ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
2110 for (idx_t index = iterator.current(); iterator.has_next(); index = iterator.next()) {
2111 ShenandoahHeapRegion* r = _heap->get_region(index);
2112 if (r->is_empty()) {
2113 free += ShenandoahHeapRegion::region_size_bytes();
2114 if (last_idx + 1 == index) {
2115 empty_contig++;
2116 } else {
2117 empty_contig = 1;
2118 }
2119 } else {
2120 empty_contig = 0;
2121 }
2122 max_contig = MAX2(max_contig, empty_contig);
2123 last_idx = index;
2124 }
2125
2126 if (free > 0) {
2127 return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
2128 } else {
2129 return 0;
2130 }
2131 }
2132
|