< prev index next >

src/hotspot/share/gc/shenandoah/shenandoahFreeSet.cpp

Print this page

   1 /*
   2  * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved.

   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/tlab_globals.hpp"

  27 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  28 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  29 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  30 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"




  31 #include "logging/logStream.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "runtime/orderAccess.hpp"
  34 
















































































































































































































































































































































































































































































































































































































































































































  35 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
  36   _heap(heap),
  37   _mutator_free_bitmap(max_regions, mtGC),
  38   _collector_free_bitmap(max_regions, mtGC),
  39   _max(max_regions)
  40 {
  41   clear_internal();
  42 }
  43 
  44 void ShenandoahFreeSet::increase_used(size_t num_bytes) {
  45   shenandoah_assert_heaplocked();
  46   _used += num_bytes;
  47 
  48   assert(_used <= _capacity, "must not use more than we have: used: " SIZE_FORMAT
  49          ", capacity: " SIZE_FORMAT ", num_bytes: " SIZE_FORMAT, _used, _capacity, num_bytes);





  50 }
  51 
  52 bool ShenandoahFreeSet::is_mutator_free(size_t idx) const {
  53   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
  54           idx, _max, _mutator_leftmost, _mutator_rightmost);
  55   return _mutator_free_bitmap.at(idx);








  56 }
  57 
  58 bool ShenandoahFreeSet::is_collector_free(size_t idx) const {
  59   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
  60           idx, _max, _collector_leftmost, _collector_rightmost);
  61   return _collector_free_bitmap.at(idx);










  62 }
  63 
  64 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {


  65   // Scan the bitmap looking for a first fit.
  66   //
  67   // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
  68   // we would find the region to allocate at right away.
  69   //
  70   // Allocations are biased: new application allocs go to beginning of the heap, and GC allocs
  71   // go to the end. This makes application allocation faster, because we would clear lots
  72   // of regions from the beginning most of the time.
  73   //
  74   // Free set maintains mutator and collector views, and normally they allocate in their views only,
  75   // unless we special cases for stealing and mixed allocations.


  76 
  77   switch (req.type()) {
  78     case ShenandoahAllocRequest::_alloc_tlab:
  79     case ShenandoahAllocRequest::_alloc_shared: {
  80 
  81       // Try to allocate in the mutator view
  82       for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
  83         if (is_mutator_free(idx)) {
  84           HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
  85           if (result != nullptr) {
  86             return result;
  87           }
  88         }
  89       }
  90 
  91       // There is no recovery. Mutator does not touch collector view at all.
  92       break;
  93     }
  94     case ShenandoahAllocRequest::_alloc_gclab:
  95     case ShenandoahAllocRequest::_alloc_shared_gc: {
  96       // size_t is unsigned, need to dodge underflow when _leftmost = 0
  97 
  98       // Fast-path: try to allocate in the collector view first
  99       for (size_t c = _collector_rightmost + 1; c > _collector_leftmost; c--) {
 100         size_t idx = c - 1;
 101         if (is_collector_free(idx)) {
 102           HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
 103           if (result != nullptr) {
 104             return result;
 105           }
 106         }
 107       }
 108 
 109       // No dice. Can we borrow space from mutator view?
 110       if (!ShenandoahEvacReserveOverflow) {
 111         return nullptr;
 112       }
 113 
 114       // Try to steal the empty region from the mutator view
 115       for (size_t c = _mutator_rightmost + 1; c > _mutator_leftmost; c--) {
 116         size_t idx = c - 1;
 117         if (is_mutator_free(idx)) {
 118           ShenandoahHeapRegion* r = _heap->get_region(idx);
 119           if (can_allocate_from(r)) {
 120             flip_to_gc(r);
 121             HeapWord *result = try_allocate_in(r, req, in_new_region);
 122             if (result != nullptr) {
 123               return result;
 124             }
 125           }
 126         }
 127       }
 128 
 129       // No dice. Do not try to mix mutator and GC allocations, because
 130       // URWM moves due to GC allocations would expose unparsable mutator
 131       // allocations.
 132 
 133       break;
 134     }
 135     default:
 136       ShouldNotReachHere();
 137   }
 138 
 139   return nullptr;
 140 }
 141 
 142 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
 143   assert (!has_no_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index());
 144 
 145   if (_heap->is_concurrent_weak_root_in_progress() &&
 146       r->is_trash()) {
 147     return nullptr;
 148   }
 149 
 150   try_recycle_trashed(r);







 151 
 152   in_new_region = r->is_empty();



 153 
 154   HeapWord* result = nullptr;
 155   size_t size = req.size();























 156 
 157   if (req.is_lab_alloc()) {
 158     size_t free = align_down(r->free() >> LogHeapWordSize, MinObjAlignment);
 159     if (size > free) {
 160       size = free;
 161     }
 162     if (size >= req.min_size()) {
 163       result = r->allocate(size, req.type());
 164       assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, size);


 165     }
 166   } else {
 167     result = r->allocate(size, req.type());
 168   }


 169 




 170   if (result != nullptr) {
 171     // Allocation successful, bump stats:
 172     if (req.is_mutator_alloc()) {
 173       increase_used(size * HeapWordSize);






 174     }






 175 
 176     // Record actual allocation size
 177     req.set_actual_size(size);


 178 
 179     if (req.is_gc_alloc()) {
 180       r->set_update_watermark(r->top());
 181     }





 182   }
 183 
 184   if (result == nullptr || has_no_alloc_capacity(r)) {
 185     // Region cannot afford this or future allocations. Retire it.
 186     //
 187     // While this seems a bit harsh, especially in the case when this large allocation does not
 188     // fit, but the next small one would, we are risking to inflate scan times when lots of
 189     // almost-full regions precede the fully-empty region where we want allocate the entire TLAB.
 190     // TODO: Record first fully-empty region, and use that for large allocations
 191 
 192     // Record the remainder as allocation waste
 193     if (req.is_mutator_alloc()) {
 194       size_t waste = r->free();
 195       if (waste > 0) {
 196         increase_used(waste);
 197         _heap->notify_mutator_alloc_words(waste >> LogHeapWordSize, true);















 198       }




 199     }




 200 
 201     size_t num = r->index();
 202     _collector_free_bitmap.clear_bit(num);
 203     _mutator_free_bitmap.clear_bit(num);
 204     // Touched the bounds? Need to update:
 205     if (touches_bounds(num)) {
 206       adjust_bounds();




















 207     }
 208     assert_bounds();
 209   }
 210   return result;

 211 }
 212 
 213 bool ShenandoahFreeSet::touches_bounds(size_t num) const {
 214   return num == _collector_leftmost || num == _collector_rightmost || num == _mutator_leftmost || num == _mutator_rightmost;














 215 }
 216 
 217 void ShenandoahFreeSet::recompute_bounds() {
 218   // Reset to the most pessimistic case:
 219   _mutator_rightmost = _max - 1;
 220   _mutator_leftmost = 0;
 221   _collector_rightmost = _max - 1;
 222   _collector_leftmost = 0;


 223 
 224   // ...and adjust from there
 225   adjust_bounds();
 226 }













 227 
 228 void ShenandoahFreeSet::adjust_bounds() {
 229   // Rewind both mutator bounds until the next bit.
 230   while (_mutator_leftmost < _max && !is_mutator_free(_mutator_leftmost)) {
 231     _mutator_leftmost++;










 232   }
 233   while (_mutator_rightmost > 0 && !is_mutator_free(_mutator_rightmost)) {
 234     _mutator_rightmost--;
















































 235   }
 236   // Rewind both collector bounds until the next bit.
 237   while (_collector_leftmost < _max && !is_collector_free(_collector_leftmost)) {
 238     _collector_leftmost++;


















 239   }
 240   while (_collector_rightmost > 0 && !is_collector_free(_collector_rightmost)) {
 241     _collector_rightmost--;



























 242   }

 243 }
 244 
 245 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {

 246   shenandoah_assert_heaplocked();
 247 
 248   size_t words_size = req.size();
 249   size_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 250 
 251   // No regions left to satisfy allocation, bye.
 252   if (num > mutator_count()) {



 253     return nullptr;
 254   }
 255 




 256   // Find the continuous interval of $num regions, starting from $beg and ending in $end,
 257   // inclusive. Contiguous allocations are biased to the beginning.
 258 
 259   size_t beg = _mutator_leftmost;
 260   size_t end = beg;




 261 
 262   while (true) {
 263     if (end >= _max) {
 264       // Hit the end, goodbye
 265       return nullptr;
 266     }
 267 
 268     // If regions are not adjacent, then current [beg; end] is useless, and we may fast-forward.
 269     // If region is not completely free, the current [beg; end] is useless, and we may fast-forward.
 270     if (!is_mutator_free(end) || !can_allocate_from(_heap->get_region(end))) {
 271       end++;
 272       beg = end;
 273       continue;















 274     }
 275 
 276     if ((end - beg + 1) == num) {
 277       // found the match
 278       break;
 279     }
 280 
 281     end++;
 282   }
 283 
 284   size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
 285 
 286   // Initialize regions:
 287   for (size_t i = beg; i <= end; i++) {
 288     ShenandoahHeapRegion* r = _heap->get_region(i);
 289     try_recycle_trashed(r);
 290 
 291     assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous");
 292     assert(r->is_empty(), "Should be empty");
 293 
 294     if (i == beg) {
 295       r->make_humongous_start();
 296     } else {
 297       r->make_humongous_cont();
 298     }
 299 
 300     // Trailing region may be non-full, record the remainder there
 301     size_t used_words;
 302     if ((i == end) && (remainder != 0)) {
 303       used_words = remainder;
 304     } else {
 305       used_words = ShenandoahHeapRegion::region_size_words();
 306     }
 307 


 308     r->set_top(r->bottom() + used_words);
 309 
 310     _mutator_free_bitmap.clear_bit(r->index());
 311   }
 312 
 313   // While individual regions report their true use, all humongous regions are
 314   // marked used in the free set.
 315   increase_used(ShenandoahHeapRegion::region_size_bytes() * num);
 316 
 317   if (remainder != 0) {
 318     // Record this remainder as allocation waste
 319     _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true);
 320   }
 321 
 322   // Allocated at left/rightmost? Move the bounds appropriately.
 323   if (beg == _mutator_leftmost || end == _mutator_rightmost) {
 324     adjust_bounds();
 325   }
 326   assert_bounds();
 327 



 328   req.set_actual_size(words_size);
 329   return _heap->get_region(beg)->bottom();
 330 }
 331 
 332 bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) {
 333   return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress());
 334 }
 335 
 336 size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) {
 337   if (r->is_trash()) {
 338     // This would be recycled on allocation path
 339     return ShenandoahHeapRegion::region_size_bytes();
 340   } else {
 341     return r->free();
 342   }

 343 }
 344 
 345 bool ShenandoahFreeSet::has_no_alloc_capacity(ShenandoahHeapRegion *r) {
 346   return alloc_capacity(r) == 0;
 347 }
 348 
 349 void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion *r) {
 350   if (r->is_trash()) {
 351     _heap->decrease_used(r->used());
 352     r->recycle();
 353   }
 354 }
 355 
 356 void ShenandoahFreeSet::recycle_trash() {
 357   // lock is not reentrable, check we don't have it
 358   shenandoah_assert_not_heaplocked();
 359 
 360   for (size_t i = 0; i < _heap->num_regions(); i++) {
 361     ShenandoahHeapRegion* r = _heap->get_region(i);
 362     if (r->is_trash()) {
 363       ShenandoahHeapLocker locker(_heap->lock());
 364       try_recycle_trashed(r);














 365     }
 366     SpinPause(); // allow allocators to take the lock

























 367   }
 368 }
 369 
 370 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
 371   size_t idx = r->index();
 372 
 373   assert(_mutator_free_bitmap.at(idx), "Should be in mutator view");
 374   assert(can_allocate_from(r), "Should not be allocated");
 375 
 376   _mutator_free_bitmap.clear_bit(idx);
 377   _collector_free_bitmap.set_bit(idx);
 378   _collector_leftmost = MIN2(idx, _collector_leftmost);
 379   _collector_rightmost = MAX2(idx, _collector_rightmost);
















 380 
 381   _capacity -= alloc_capacity(r);



 382 
 383   if (touches_bounds(idx)) {
 384     adjust_bounds();
 385   }
 386   assert_bounds();
 387 }
 388 
 389 void ShenandoahFreeSet::clear() {
 390   shenandoah_assert_heaplocked();
 391   clear_internal();
 392 }
 393 
 394 void ShenandoahFreeSet::clear_internal() {
 395   _mutator_free_bitmap.clear();
 396   _collector_free_bitmap.clear();
 397   _mutator_leftmost = _max;
 398   _mutator_rightmost = 0;
 399   _collector_leftmost = _max;
 400   _collector_rightmost = 0;
 401   _capacity = 0;
 402   _used = 0;
 403 }
 404 
 405 void ShenandoahFreeSet::rebuild() {
 406   shenandoah_assert_heaplocked();
 407   clear();

 408 
 409   for (size_t idx = 0; idx < _heap->num_regions(); idx++) {
























 410     ShenandoahHeapRegion* region = _heap->get_region(idx);

















 411     if (region->is_alloc_allowed() || region->is_trash()) {
 412       assert(!region->is_cset(), "Shouldn't be adding those to the free set");



































































































 413 
 414       // Do not add regions that would surely fail allocation
 415       if (has_no_alloc_capacity(region)) continue;















 416 
 417       _capacity += alloc_capacity(region);
 418       assert(_used <= _capacity, "must not use more than we have");











 419 
 420       assert(!is_mutator_free(idx), "We are about to add it, it shouldn't be there already");
 421       _mutator_free_bitmap.set_bit(idx);









 422     }
 423   }
 424 
 425   // Evac reserve: reserve trailing space for evacuations
 426   size_t to_reserve = _heap->max_capacity() / 100 * ShenandoahEvacReserve;
 427   size_t reserved = 0;





 428 
 429   for (size_t idx = _heap->num_regions() - 1; idx > 0; idx--) {
 430     if (reserved >= to_reserve) break;





 431 
 432     ShenandoahHeapRegion* region = _heap->get_region(idx);
 433     if (_mutator_free_bitmap.at(idx) && can_allocate_from(region)) {
 434       _mutator_free_bitmap.clear_bit(idx);
 435       _collector_free_bitmap.set_bit(idx);
 436       size_t ac = alloc_capacity(region);
 437       _capacity -= ac;
 438       reserved += ac;







































































































































































































































 439     }
 440   }
 441 
 442   recompute_bounds();
 443   assert_bounds();














 444 }
 445 
 446 void ShenandoahFreeSet::log_status() {
 447   shenandoah_assert_heaplocked();
 448 
 449   LogTarget(Info, gc, ergo) lt;


































































 450   if (lt.is_enabled()) {
 451     ResourceMark rm;
 452     LogStream ls(lt);
 453 
 454     {
 455       size_t last_idx = 0;
 456       size_t max = 0;
 457       size_t max_contig = 0;
 458       size_t empty_contig = 0;
 459 
 460       size_t total_used = 0;
 461       size_t total_free = 0;
 462       size_t total_free_ext = 0;
 463 
 464       for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
 465         if (is_mutator_free(idx)) {

 466           ShenandoahHeapRegion *r = _heap->get_region(idx);
 467           size_t free = alloc_capacity(r);
 468 
 469           max = MAX2(max, free);
 470 
 471           if (r->is_empty()) {
 472             total_free_ext += free;
 473             if (last_idx + 1 == idx) {
 474               empty_contig++;
 475             } else {
 476               empty_contig = 1;
 477             }
 478           } else {
 479             empty_contig = 0;
 480           }
 481 
 482           total_used += r->used();
 483           total_free += free;
 484 
 485           max_contig = MAX2(max_contig, empty_contig);
 486           last_idx = idx;
 487         }
 488       }
 489 
 490       size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
 491       size_t free = capacity() - used();
 492 




 493       ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ",
 494                byte_size_in_proper_unit(total_free),    proper_unit_for_byte_size(total_free),
 495                byte_size_in_proper_unit(max),           proper_unit_for_byte_size(max),
 496                byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
 497       );
 498 
 499       ls.print("Frag: ");
 500       size_t frag_ext;
 501       if (total_free_ext > 0) {
 502         frag_ext = 100 - (100 * max_humongous / total_free_ext);
 503       } else {
 504         frag_ext = 0;
 505       }
 506       ls.print(SIZE_FORMAT "%% external, ", frag_ext);
 507 
 508       size_t frag_int;
 509       if (mutator_count() > 0) {
 510         frag_int = (100 * (total_used / mutator_count()) / ShenandoahHeapRegion::region_size_bytes());

 511       } else {
 512         frag_int = 0;
 513       }
 514       ls.print(SIZE_FORMAT "%% internal; ", frag_int);



 515     }
 516 
 517     {
 518       size_t max = 0;
 519       size_t total_free = 0;

 520 
 521       for (size_t idx = _collector_leftmost; idx <= _collector_rightmost; idx++) {
 522         if (is_collector_free(idx)) {

 523           ShenandoahHeapRegion *r = _heap->get_region(idx);
 524           size_t free = alloc_capacity(r);
 525           max = MAX2(max, free);
 526           total_free += free;

 527         }
 528       }





 529 
 530       ls.print_cr("Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s",















 531                   byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
 532                   byte_size_in_proper_unit(max),        proper_unit_for_byte_size(max));

 533     }
 534   }
 535 }
 536 
 537 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
 538   shenandoah_assert_heaplocked();
 539   assert_bounds();
 540 
 541   if (req.size() > ShenandoahHeapRegion::humongous_threshold_words()) {
 542     switch (req.type()) {
 543       case ShenandoahAllocRequest::_alloc_shared:
 544       case ShenandoahAllocRequest::_alloc_shared_gc:
 545         in_new_region = true;
 546         return allocate_contiguous(req);

 547       case ShenandoahAllocRequest::_alloc_gclab:
 548       case ShenandoahAllocRequest::_alloc_tlab:
 549         in_new_region = false;
 550         assert(false, "Trying to allocate TLAB larger than the humongous threshold: " SIZE_FORMAT " > " SIZE_FORMAT,
 551                req.size(), ShenandoahHeapRegion::humongous_threshold_words());
 552         return nullptr;
 553       default:
 554         ShouldNotReachHere();
 555         return nullptr;
 556     }
 557   } else {
 558     return allocate_single(req, in_new_region);
 559   }
 560 }
 561 
 562 size_t ShenandoahFreeSet::unsafe_peek_free() const {
 563   // Deliberately not locked, this method is unsafe when free set is modified.
 564 
 565   for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
 566     if (index < _max && is_mutator_free(index)) {
 567       ShenandoahHeapRegion* r = _heap->get_region(index);
 568       if (r->free() >= MinTLABSize) {
 569         return r->free();
 570       }
 571     }
 572   }
 573 
 574   // It appears that no regions left
 575   return 0;
 576 }
 577 
 578 void ShenandoahFreeSet::print_on(outputStream* out) const {
 579   out->print_cr("Mutator Free Set: " SIZE_FORMAT "", mutator_count());
 580   for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
 581     if (is_mutator_free(index)) {
 582       _heap->get_region(index)->print_on(out);
 583     }
 584   }
 585   out->print_cr("Collector Free Set: " SIZE_FORMAT "", collector_count());
 586   for (size_t index = _collector_leftmost; index <= _collector_rightmost; index++) {
 587     if (is_collector_free(index)) {
 588       _heap->get_region(index)->print_on(out);




 589     }
 590   }
 591 }
 592 
 593 /*
 594  * Internal fragmentation metric: describes how fragmented the heap regions are.
 595  *
 596  * It is derived as:
 597  *
 598  *               sum(used[i]^2, i=0..k)
 599  *   IF = 1 - ------------------------------
 600  *              C * sum(used[i], i=0..k)
 601  *
 602  * ...where k is the number of regions in computation, C is the region capacity, and
 603  * used[i] is the used space in the region.
 604  *
 605  * The non-linearity causes IF to be lower for the cases where the same total heap
 606  * used is densely packed. For example:
 607  *   a) Heap is completely full  => IF = 0
 608  *   b) Heap is half full, first 50% regions are completely full => IF = 0
 609  *   c) Heap is half full, each region is 50% full => IF = 1/2
 610  *   d) Heap is quarter full, first 50% regions are completely full => IF = 0
 611  *   e) Heap is quarter full, each region is 25% full => IF = 3/4
 612  *   f) Heap has one small object per each region => IF =~ 1
 613  */
 614 double ShenandoahFreeSet::internal_fragmentation() {
 615   double squared = 0;
 616   double linear = 0;
 617 
 618   for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
 619     if (is_mutator_free(index)) {
 620       ShenandoahHeapRegion* r = _heap->get_region(index);
 621       size_t used = r->used();
 622       squared += used * used;
 623       linear += used;
 624     }
 625   }
 626 
 627   if (linear > 0) {
 628     double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
 629     return 1 - s;
 630   } else {
 631     return 0;
 632   }
 633 }
 634 
 635 /*
 636  * External fragmentation metric: describes how fragmented the heap is.
 637  *
 638  * It is derived as:
 639  *
 640  *   EF = 1 - largest_contiguous_free / total_free
 641  *
 642  * For example:
 643  *   a) Heap is completely empty => EF = 0
 644  *   b) Heap is completely full => EF = 0
 645  *   c) Heap is first-half full => EF = 1/2
 646  *   d) Heap is half full, full and empty regions interleave => EF =~ 1
 647  */
 648 double ShenandoahFreeSet::external_fragmentation() {
 649   size_t last_idx = 0;
 650   size_t max_contig = 0;
 651   size_t empty_contig = 0;
 652 
 653   size_t free = 0;
 654 
 655   for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
 656     if (is_mutator_free(index)) {
 657       ShenandoahHeapRegion* r = _heap->get_region(index);
 658       if (r->is_empty()) {
 659         free += ShenandoahHeapRegion::region_size_bytes();
 660         if (last_idx + 1 == index) {
 661           empty_contig++;
 662         } else {
 663           empty_contig = 1;
 664         }
 665       } else {
 666         empty_contig = 0;
 667       }
 668 
 669       max_contig = MAX2(max_contig, empty_contig);
 670       last_idx = index;
 671     }


 672   }
 673 
 674   if (free > 0) {
 675     return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
 676   } else {
 677     return 0;
 678   }
 679 }
 680 
 681 #ifdef ASSERT
 682 void ShenandoahFreeSet::assert_bounds() const {
 683   // Performance invariants. Failing these would not break the free set, but performance
 684   // would suffer.
 685   assert (_mutator_leftmost <= _max, "leftmost in bounds: "  SIZE_FORMAT " < " SIZE_FORMAT, _mutator_leftmost,  _max);
 686   assert (_mutator_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _mutator_rightmost, _max);
 687 
 688   assert (_mutator_leftmost == _max || is_mutator_free(_mutator_leftmost),  "leftmost region should be free: " SIZE_FORMAT,  _mutator_leftmost);
 689   assert (_mutator_rightmost == 0   || is_mutator_free(_mutator_rightmost), "rightmost region should be free: " SIZE_FORMAT, _mutator_rightmost);
 690 
 691   size_t beg_off = _mutator_free_bitmap.find_first_set_bit(0);
 692   size_t end_off = _mutator_free_bitmap.find_first_set_bit(_mutator_rightmost + 1);
 693   assert (beg_off >= _mutator_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _mutator_leftmost);
 694   assert (end_off == _max,      "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT,  end_off, _mutator_rightmost);
 695 
 696   assert (_collector_leftmost <= _max, "leftmost in bounds: "  SIZE_FORMAT " < " SIZE_FORMAT, _collector_leftmost,  _max);
 697   assert (_collector_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _collector_rightmost, _max);
 698 
 699   assert (_collector_leftmost == _max || is_collector_free(_collector_leftmost),  "leftmost region should be free: " SIZE_FORMAT,  _collector_leftmost);
 700   assert (_collector_rightmost == 0   || is_collector_free(_collector_rightmost), "rightmost region should be free: " SIZE_FORMAT, _collector_rightmost);
 701 
 702   beg_off = _collector_free_bitmap.find_first_set_bit(0);
 703   end_off = _collector_free_bitmap.find_first_set_bit(_collector_rightmost + 1);
 704   assert (beg_off >= _collector_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _collector_leftmost);
 705   assert (end_off == _max,      "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT,  end_off, _collector_rightmost);
 706 }
 707 #endif

   1 /*
   2  * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved.
   3  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "gc/shared/tlab_globals.hpp"
  28 #include "gc/shenandoah/shenandoahAffiliation.hpp"
  29 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  30 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  31 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  32 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  33 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  34 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  35 #include "gc/shenandoah/shenandoahSimpleBitMap.hpp"
  36 #include "gc/shenandoah/shenandoahSimpleBitMap.inline.hpp"
  37 #include "logging/logStream.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 
  41 static const char* partition_name(ShenandoahFreeSetPartitionId t) {
  42   switch (t) {
  43     case ShenandoahFreeSetPartitionId::NotFree: return "NotFree";
  44     case ShenandoahFreeSetPartitionId::Mutator: return "Mutator";
  45     case ShenandoahFreeSetPartitionId::Collector: return "Collector";
  46     case ShenandoahFreeSetPartitionId::OldCollector: return "OldCollector";
  47     default:
  48       ShouldNotReachHere();
  49       return "Unrecognized";
  50   }
  51 }
  52 
  53 class ShenandoahLeftRightIterator {
  54 private:
  55   idx_t _idx;
  56   idx_t _end;
  57   ShenandoahRegionPartitions* _partitions;
  58   ShenandoahFreeSetPartitionId _partition;
  59 public:
  60   explicit ShenandoahLeftRightIterator(ShenandoahRegionPartitions* partitions, ShenandoahFreeSetPartitionId partition, bool use_empty = false)
  61     : _idx(0), _end(0), _partitions(partitions), _partition(partition) {
  62     _idx = use_empty ? _partitions->leftmost_empty(_partition) : _partitions->leftmost(_partition);
  63     _end = use_empty ? _partitions->rightmost_empty(_partition) : _partitions->rightmost(_partition);
  64   }
  65 
  66   bool has_next() const {
  67     if (_idx <= _end) {
  68       assert(_partitions->in_free_set(_partition, _idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, _idx);
  69       return true;
  70     }
  71     return false;
  72   }
  73 
  74   idx_t current() const {
  75     return _idx;
  76   }
  77 
  78   idx_t next() {
  79     _idx = _partitions->find_index_of_next_available_region(_partition, _idx + 1);
  80     return current();
  81   }
  82 };
  83 
  84 class ShenandoahRightLeftIterator {
  85 private:
  86   idx_t _idx;
  87   idx_t _end;
  88   ShenandoahRegionPartitions* _partitions;
  89   ShenandoahFreeSetPartitionId _partition;
  90 public:
  91   explicit ShenandoahRightLeftIterator(ShenandoahRegionPartitions* partitions, ShenandoahFreeSetPartitionId partition, bool use_empty = false)
  92     : _idx(0), _end(0), _partitions(partitions), _partition(partition) {
  93     _idx = use_empty ? _partitions->rightmost_empty(_partition) : _partitions->rightmost(_partition);
  94     _end = use_empty ? _partitions->leftmost_empty(_partition) : _partitions->leftmost(_partition);
  95   }
  96 
  97   bool has_next() const {
  98     if (_idx >= _end) {
  99       assert(_partitions->in_free_set(_partition, _idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, _idx);
 100       return true;
 101     }
 102     return false;
 103   }
 104 
 105   idx_t current() const {
 106     return _idx;
 107   }
 108 
 109   idx_t next() {
 110     _idx = _partitions->find_index_of_previous_available_region(_partition, _idx - 1);
 111     return current();
 112   }
 113 };
 114 
 115 #ifndef PRODUCT
 116 void ShenandoahRegionPartitions::dump_bitmap() const {
 117   log_debug(gc)("Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "], Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT
 118                 "], Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
 119                 _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)],
 120                 _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)],
 121                 _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)],
 122                 _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)],
 123                 _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)],
 124                 _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]);
 125   log_debug(gc)("Empty Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT
 126                 "], Empty Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT
 127                 "], Empty Old Collecto range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
 128                 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)],
 129                 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)],
 130                 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
 131                 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
 132                 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
 133                 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)]);
 134 
 135   log_debug(gc)("%6s: %18s %18s %18s %18s", "index", "Mutator Bits", "Collector Bits", "Old Collector Bits", "NotFree Bits");
 136   dump_bitmap_range(0, _max-1);
 137 }
 138 
 139 void ShenandoahRegionPartitions::dump_bitmap_range(idx_t start_region_idx, idx_t end_region_idx) const {
 140   assert((start_region_idx >= 0) && (start_region_idx < (idx_t) _max), "precondition");
 141   assert((end_region_idx >= 0) && (end_region_idx < (idx_t) _max), "precondition");
 142   idx_t aligned_start = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(start_region_idx);
 143   idx_t aligned_end = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(end_region_idx);
 144   idx_t alignment = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].alignment();
 145   while (aligned_start <= aligned_end) {
 146     dump_bitmap_row(aligned_start);
 147     aligned_start += alignment;
 148   }
 149 }
 150 
 151 void ShenandoahRegionPartitions::dump_bitmap_row(idx_t region_idx) const {
 152   assert((region_idx >= 0) && (region_idx < (idx_t) _max), "precondition");
 153   idx_t aligned_idx = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(region_idx);
 154   uintx mutator_bits = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].bits_at(aligned_idx);
 155   uintx collector_bits = _membership[int(ShenandoahFreeSetPartitionId::Collector)].bits_at(aligned_idx);
 156   uintx old_collector_bits = _membership[int(ShenandoahFreeSetPartitionId::OldCollector)].bits_at(aligned_idx);
 157   uintx free_bits = mutator_bits | collector_bits | old_collector_bits;
 158   uintx notfree_bits =  ~free_bits;
 159   log_debug(gc)(SSIZE_FORMAT_W(6) ": " SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0,
 160                 aligned_idx, mutator_bits, collector_bits, old_collector_bits, notfree_bits);
 161 }
 162 #endif
 163 
 164 ShenandoahRegionPartitions::ShenandoahRegionPartitions(size_t max_regions, ShenandoahFreeSet* free_set) :
 165     _max(max_regions),
 166     _region_size_bytes(ShenandoahHeapRegion::region_size_bytes()),
 167     _free_set(free_set),
 168     _membership{ ShenandoahSimpleBitMap(max_regions), ShenandoahSimpleBitMap(max_regions) , ShenandoahSimpleBitMap(max_regions) }
 169 {
 170   make_all_regions_unavailable();
 171 }
 172 
 173 inline bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) const {
 174   return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress());
 175 }
 176 
 177 inline bool ShenandoahFreeSet::can_allocate_from(size_t idx) const {
 178   ShenandoahHeapRegion* r = _heap->get_region(idx);
 179   return can_allocate_from(r);
 180 }
 181 
 182 inline size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) const {
 183   if (r->is_trash()) {
 184     // This would be recycled on allocation path
 185     return ShenandoahHeapRegion::region_size_bytes();
 186   } else {
 187     return r->free();
 188   }
 189 }
 190 
 191 inline size_t ShenandoahFreeSet::alloc_capacity(size_t idx) const {
 192   ShenandoahHeapRegion* r = _heap->get_region(idx);
 193   return alloc_capacity(r);
 194 }
 195 
 196 inline bool ShenandoahFreeSet::has_alloc_capacity(ShenandoahHeapRegion *r) const {
 197   return alloc_capacity(r) > 0;
 198 }
 199 
 200 inline idx_t ShenandoahRegionPartitions::leftmost(ShenandoahFreeSetPartitionId which_partition) const {
 201   assert (which_partition < NumPartitions, "selected free partition must be valid");
 202   idx_t idx = _leftmosts[int(which_partition)];
 203   if (idx >= _max) {
 204     return _max;
 205   } else {
 206     // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used
 207     // to query the original value of leftmost when leftmost must be adjusted because the interval representing
 208     // which_partition is shrinking after the region that used to be leftmost is retired.
 209     return idx;
 210   }
 211 }
 212 
 213 inline idx_t ShenandoahRegionPartitions::rightmost(ShenandoahFreeSetPartitionId which_partition) const {
 214   assert (which_partition < NumPartitions, "selected free partition must be valid");
 215   idx_t idx = _rightmosts[int(which_partition)];
 216   // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used
 217   // to query the original value of leftmost when leftmost must be adjusted because the interval representing
 218   // which_partition is shrinking after the region that used to be leftmost is retired.
 219   return idx;
 220 }
 221 
 222 void ShenandoahRegionPartitions::make_all_regions_unavailable() {
 223   for (size_t partition_id = 0; partition_id < IntNumPartitions; partition_id++) {
 224     _membership[partition_id].clear_all();
 225     _leftmosts[partition_id] = _max;
 226     _rightmosts[partition_id] = -1;
 227     _leftmosts_empty[partition_id] = _max;
 228     _rightmosts_empty[partition_id] = -1;;
 229     _capacity[partition_id] = 0;
 230     _used[partition_id] = 0;
 231   }
 232   _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
 233 }
 234 
 235 void ShenandoahRegionPartitions::establish_mutator_intervals(idx_t mutator_leftmost, idx_t mutator_rightmost,
 236                                                              idx_t mutator_leftmost_empty, idx_t mutator_rightmost_empty,
 237                                                              size_t mutator_region_count, size_t mutator_used) {
 238   _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost;
 239   _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost;
 240   _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost_empty;
 241   _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost_empty;
 242 
 243   _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count;
 244   _used[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_used;
 245   _capacity[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count * _region_size_bytes;
 246 
 247   _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)] = _max;
 248   _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)] = -1;
 249   _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = _max;
 250   _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = -1;
 251 
 252   _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
 253   _used[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
 254   _capacity[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
 255 }
 256 
 257 void ShenandoahRegionPartitions::establish_old_collector_intervals(idx_t old_collector_leftmost, idx_t old_collector_rightmost,
 258                                                                    idx_t old_collector_leftmost_empty,
 259                                                                    idx_t old_collector_rightmost_empty,
 260                                                                    size_t old_collector_region_count, size_t old_collector_used) {
 261   _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost;
 262   _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost;
 263   _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost_empty;
 264   _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost_empty;
 265 
 266   _region_counts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count;
 267   _used[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_used;
 268   _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count * _region_size_bytes;
 269 }
 270 
 271 void ShenandoahRegionPartitions::increase_used(ShenandoahFreeSetPartitionId which_partition, size_t bytes) {
 272   assert (which_partition < NumPartitions, "Partition must be valid");
 273   _used[int(which_partition)] += bytes;
 274   assert (_used[int(which_partition)] <= _capacity[int(which_partition)],
 275           "Must not use (" SIZE_FORMAT ") more than capacity (" SIZE_FORMAT ") after increase by " SIZE_FORMAT,
 276           _used[int(which_partition)], _capacity[int(which_partition)], bytes);
 277 }
 278 
 279 inline void ShenandoahRegionPartitions::shrink_interval_if_range_modifies_either_boundary(
 280   ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) {
 281   assert((low_idx <= high_idx) && (low_idx >= 0) && (high_idx < _max), "Range must span legal index values");
 282   if (low_idx == leftmost(partition)) {
 283     assert (!_membership[int(partition)].is_set(low_idx), "Do not shrink interval if region not removed");
 284     if (high_idx + 1 == _max) {
 285       _leftmosts[int(partition)] = _max;
 286     } else {
 287       _leftmosts[int(partition)] = find_index_of_next_available_region(partition, high_idx + 1);
 288     }
 289     if (_leftmosts_empty[int(partition)] < _leftmosts[int(partition)]) {
 290       // This gets us closer to where we need to be; we'll scan further when leftmosts_empty is requested.
 291       _leftmosts_empty[int(partition)] = _leftmosts[int(partition)];
 292     }
 293   }
 294   if (high_idx == _rightmosts[int(partition)]) {
 295     assert (!_membership[int(partition)].is_set(high_idx), "Do not shrink interval if region not removed");
 296     if (low_idx == 0) {
 297       _rightmosts[int(partition)] = -1;
 298     } else {
 299       _rightmosts[int(partition)] = find_index_of_previous_available_region(partition, low_idx - 1);
 300     }
 301     if (_rightmosts_empty[int(partition)] > _rightmosts[int(partition)]) {
 302       // This gets us closer to where we need to be; we'll scan further when rightmosts_empty is requested.
 303       _rightmosts_empty[int(partition)] = _rightmosts[int(partition)];
 304     }
 305   }
 306   if (_leftmosts[int(partition)] > _rightmosts[int(partition)]) {
 307     _leftmosts[int(partition)] = _max;
 308     _rightmosts[int(partition)] = -1;
 309     _leftmosts_empty[int(partition)] = _max;
 310     _rightmosts_empty[int(partition)] = -1;
 311   }
 312 }
 313 
 314 inline void ShenandoahRegionPartitions::shrink_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition, idx_t idx) {
 315   shrink_interval_if_range_modifies_either_boundary(partition, idx, idx);
 316 }
 317 
 318 inline void ShenandoahRegionPartitions::expand_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition,
 319                                                                              idx_t idx, size_t region_available) {
 320   if (_leftmosts[int(partition)] > idx) {
 321     _leftmosts[int(partition)] = idx;
 322   }
 323   if (_rightmosts[int(partition)] < idx) {
 324     _rightmosts[int(partition)] = idx;
 325   }
 326   if (region_available == _region_size_bytes) {
 327     if (_leftmosts_empty[int(partition)] > idx) {
 328       _leftmosts_empty[int(partition)] = idx;
 329     }
 330     if (_rightmosts_empty[int(partition)] < idx) {
 331       _rightmosts_empty[int(partition)] = idx;
 332     }
 333   }
 334 }
 335 
 336 void ShenandoahRegionPartitions::retire_range_from_partition(
 337   ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) {
 338 
 339   // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size()
 340   assert ((low_idx < _max) && (high_idx < _max), "Both indices are sane: " SIZE_FORMAT " and " SIZE_FORMAT " < " SIZE_FORMAT,
 341           low_idx, high_idx, _max);
 342   assert (partition < NumPartitions, "Cannot remove from free partitions if not already free");
 343 
 344   for (idx_t idx = low_idx; idx <= high_idx; idx++) {
 345     assert (in_free_set(partition, idx), "Must be in partition to remove from partition");
 346     _membership[int(partition)].clear_bit(idx);
 347   }
 348   _region_counts[int(partition)] -= high_idx + 1 - low_idx;
 349   shrink_interval_if_range_modifies_either_boundary(partition, low_idx, high_idx);
 350 }
 351 
 352 void ShenandoahRegionPartitions::retire_from_partition(ShenandoahFreeSetPartitionId partition, idx_t idx, size_t used_bytes) {
 353 
 354   // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size()
 355   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 356   assert (partition < NumPartitions, "Cannot remove from free partitions if not already free");
 357   assert (in_free_set(partition, idx), "Must be in partition to remove from partition");
 358 
 359   if (used_bytes < _region_size_bytes) {
 360     // Count the alignment pad remnant of memory as used when we retire this region
 361     increase_used(partition, _region_size_bytes - used_bytes);
 362   }
 363   _membership[int(partition)].clear_bit(idx);
 364   shrink_interval_if_boundary_modified(partition, idx);
 365   _region_counts[int(partition)]--;
 366 }
 367 
 368 void ShenandoahRegionPartitions::make_free(idx_t idx, ShenandoahFreeSetPartitionId which_partition, size_t available) {
 369   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 370   assert (membership(idx) == ShenandoahFreeSetPartitionId::NotFree, "Cannot make free if already free");
 371   assert (which_partition < NumPartitions, "selected free partition must be valid");
 372   assert (available <= _region_size_bytes, "Available cannot exceed region size");
 373 
 374   _membership[int(which_partition)].set_bit(idx);
 375   _capacity[int(which_partition)] += _region_size_bytes;
 376   _used[int(which_partition)] += _region_size_bytes - available;
 377   expand_interval_if_boundary_modified(which_partition, idx, available);
 378   _region_counts[int(which_partition)]++;
 379 }
 380 
 381 bool ShenandoahRegionPartitions::is_mutator_partition(ShenandoahFreeSetPartitionId p) {
 382   return (p == ShenandoahFreeSetPartitionId::Mutator);
 383 }
 384 
 385 bool ShenandoahRegionPartitions::is_young_collector_partition(ShenandoahFreeSetPartitionId p) {
 386   return (p == ShenandoahFreeSetPartitionId::Collector);
 387 }
 388 
 389 bool ShenandoahRegionPartitions::is_old_collector_partition(ShenandoahFreeSetPartitionId p) {
 390   return (p == ShenandoahFreeSetPartitionId::OldCollector);
 391 }
 392 
 393 bool ShenandoahRegionPartitions::available_implies_empty(size_t available_in_region) {
 394   return (available_in_region == _region_size_bytes);
 395 }
 396 
 397 
 398 void ShenandoahRegionPartitions::move_from_partition_to_partition(idx_t idx, ShenandoahFreeSetPartitionId orig_partition,
 399                                                                   ShenandoahFreeSetPartitionId new_partition, size_t available) {
 400   ShenandoahHeapRegion* r = ShenandoahHeap::heap()->get_region(idx);
 401   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 402   assert (orig_partition < NumPartitions, "Original partition must be valid");
 403   assert (new_partition < NumPartitions, "New partition must be valid");
 404   assert (available <= _region_size_bytes, "Available cannot exceed region size");
 405   assert (_membership[int(orig_partition)].is_set(idx), "Cannot move from partition unless in partition");
 406   assert ((r != nullptr) && ((r->is_trash() && (available == _region_size_bytes)) ||
 407                              (r->used() + available == _region_size_bytes)),
 408           "Used: " SIZE_FORMAT " + available: " SIZE_FORMAT " should equal region size: " SIZE_FORMAT,
 409           ShenandoahHeap::heap()->get_region(idx)->used(), available, _region_size_bytes);
 410 
 411   // Expected transitions:
 412   //  During rebuild:         Mutator => Collector
 413   //                          Mutator empty => Collector
 414   //                          Mutator empty => OldCollector
 415   //  During flip_to_gc:      Mutator empty => Collector
 416   //                          Mutator empty => OldCollector
 417   // At start of update refs: Collector => Mutator
 418   //                          OldCollector Empty => Mutator
 419   assert ((is_mutator_partition(orig_partition) && is_young_collector_partition(new_partition)) ||
 420           (is_mutator_partition(orig_partition) &&
 421            available_implies_empty(available) && is_old_collector_partition(new_partition)) ||
 422           (is_young_collector_partition(orig_partition) && is_mutator_partition(new_partition)) ||
 423           (is_old_collector_partition(orig_partition)
 424            && available_implies_empty(available) && is_mutator_partition(new_partition)),
 425           "Unexpected movement between partitions, available: " SIZE_FORMAT ", _region_size_bytes: " SIZE_FORMAT
 426           ", orig_partition: %s, new_partition: %s",
 427           available, _region_size_bytes, partition_name(orig_partition), partition_name(new_partition));
 428 
 429   size_t used = _region_size_bytes - available;
 430   assert (_used[int(orig_partition)] >= used,
 431           "Orig partition used: " SIZE_FORMAT " must exceed moved used: " SIZE_FORMAT " within region " SSIZE_FORMAT,
 432           _used[int(orig_partition)], used, idx);
 433 
 434   _membership[int(orig_partition)].clear_bit(idx);
 435   _membership[int(new_partition)].set_bit(idx);
 436 
 437   _capacity[int(orig_partition)] -= _region_size_bytes;
 438   _used[int(orig_partition)] -= used;
 439   shrink_interval_if_boundary_modified(orig_partition, idx);
 440 
 441   _capacity[int(new_partition)] += _region_size_bytes;;
 442   _used[int(new_partition)] += used;
 443   expand_interval_if_boundary_modified(new_partition, idx, available);
 444 
 445   _region_counts[int(orig_partition)]--;
 446   _region_counts[int(new_partition)]++;
 447 }
 448 
 449 const char* ShenandoahRegionPartitions::partition_membership_name(idx_t idx) const {
 450   return partition_name(membership(idx));
 451 }
 452 
 453 inline ShenandoahFreeSetPartitionId ShenandoahRegionPartitions::membership(idx_t idx) const {
 454   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 455   ShenandoahFreeSetPartitionId result = ShenandoahFreeSetPartitionId::NotFree;
 456   for (uint partition_id = 0; partition_id < UIntNumPartitions; partition_id++) {
 457     if (_membership[partition_id].is_set(idx)) {
 458       assert(result == ShenandoahFreeSetPartitionId::NotFree, "Region should reside in only one partition");
 459       result = (ShenandoahFreeSetPartitionId) partition_id;
 460     }
 461   }
 462   return result;
 463 }
 464 
 465 #ifdef ASSERT
 466 inline bool ShenandoahRegionPartitions::partition_id_matches(idx_t idx, ShenandoahFreeSetPartitionId test_partition) const {
 467   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 468   assert (test_partition < ShenandoahFreeSetPartitionId::NotFree, "must be a valid partition");
 469 
 470   return membership(idx) == test_partition;
 471 }
 472 #endif
 473 
 474 inline bool ShenandoahRegionPartitions::is_empty(ShenandoahFreeSetPartitionId which_partition) const {
 475   assert (which_partition < NumPartitions, "selected free partition must be valid");
 476   return (leftmost(which_partition) > rightmost(which_partition));
 477 }
 478 
 479 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_region(
 480   ShenandoahFreeSetPartitionId which_partition, idx_t start_index) const {
 481   idx_t rightmost_idx = rightmost(which_partition);
 482   idx_t leftmost_idx = leftmost(which_partition);
 483   if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max;
 484   if (start_index < leftmost_idx) {
 485     start_index = leftmost_idx;
 486   }
 487   idx_t result = _membership[int(which_partition)].find_first_set_bit(start_index, rightmost_idx + 1);
 488   if (result > rightmost_idx) {
 489     result = _max;
 490   }
 491   assert (result >= start_index, "Requires progress");
 492   return result;
 493 }
 494 
 495 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_region(
 496   ShenandoahFreeSetPartitionId which_partition, idx_t last_index) const {
 497   idx_t rightmost_idx = rightmost(which_partition);
 498   idx_t leftmost_idx = leftmost(which_partition);
 499   // if (leftmost_idx == max) then (last_index < leftmost_idx)
 500   if (last_index < leftmost_idx) return -1;
 501   if (last_index > rightmost_idx) {
 502     last_index = rightmost_idx;
 503   }
 504   idx_t result = _membership[int(which_partition)].find_last_set_bit(-1, last_index);
 505   if (result < leftmost_idx) {
 506     result = -1;
 507   }
 508   assert (result <= last_index, "Requires progress");
 509   return result;
 510 }
 511 
 512 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_cluster_of_regions(
 513   ShenandoahFreeSetPartitionId which_partition, idx_t start_index, size_t cluster_size) const {
 514   idx_t rightmost_idx = rightmost(which_partition);
 515   idx_t leftmost_idx = leftmost(which_partition);
 516   if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max;
 517   idx_t result = _membership[int(which_partition)].find_first_consecutive_set_bits(start_index, rightmost_idx + 1, cluster_size);
 518   if (result > rightmost_idx) {
 519     result = _max;
 520   }
 521   assert (result >= start_index, "Requires progress");
 522   return result;
 523 }
 524 
 525 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_cluster_of_regions(
 526   ShenandoahFreeSetPartitionId which_partition, idx_t last_index, size_t cluster_size) const {
 527   idx_t leftmost_idx = leftmost(which_partition);
 528   // if (leftmost_idx == max) then (last_index < leftmost_idx)
 529   if (last_index < leftmost_idx) return -1;
 530   idx_t result = _membership[int(which_partition)].find_last_consecutive_set_bits(leftmost_idx - 1, last_index, cluster_size);
 531   if (result <= leftmost_idx) {
 532     result = -1;
 533   }
 534   assert (result <= last_index, "Requires progress");
 535   return result;
 536 }
 537 
 538 idx_t ShenandoahRegionPartitions::leftmost_empty(ShenandoahFreeSetPartitionId which_partition) {
 539   assert (which_partition < NumPartitions, "selected free partition must be valid");
 540   idx_t max_regions = _max;
 541   if (_leftmosts_empty[int(which_partition)] == _max) {
 542     return _max;
 543   }
 544   for (idx_t idx = find_index_of_next_available_region(which_partition, _leftmosts_empty[int(which_partition)]);
 545        idx < max_regions; ) {
 546     assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx);
 547     if (_free_set->alloc_capacity(idx) == _region_size_bytes) {
 548       _leftmosts_empty[int(which_partition)] = idx;
 549       return idx;
 550     }
 551     idx = find_index_of_next_available_region(which_partition, idx + 1);
 552   }
 553   _leftmosts_empty[int(which_partition)] = _max;
 554   _rightmosts_empty[int(which_partition)] = -1;
 555   return _max;
 556 }
 557 
 558 idx_t ShenandoahRegionPartitions::rightmost_empty(ShenandoahFreeSetPartitionId which_partition) {
 559   assert (which_partition < NumPartitions, "selected free partition must be valid");
 560   if (_rightmosts_empty[int(which_partition)] < 0) {
 561     return -1;
 562   }
 563   for (idx_t idx = find_index_of_previous_available_region(which_partition, _rightmosts_empty[int(which_partition)]);
 564        idx >= 0; ) {
 565     assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx);
 566     if (_free_set->alloc_capacity(idx) == _region_size_bytes) {
 567       _rightmosts_empty[int(which_partition)] = idx;
 568       return idx;
 569     }
 570     idx = find_index_of_previous_available_region(which_partition, idx - 1);
 571   }
 572   _leftmosts_empty[int(which_partition)] = _max;
 573   _rightmosts_empty[int(which_partition)] = -1;
 574   return -1;
 575 }
 576 
 577 
 578 #ifdef ASSERT
 579 void ShenandoahRegionPartitions::assert_bounds() {
 580 
 581   idx_t leftmosts[UIntNumPartitions];
 582   idx_t rightmosts[UIntNumPartitions];
 583   idx_t empty_leftmosts[UIntNumPartitions];
 584   idx_t empty_rightmosts[UIntNumPartitions];
 585 
 586   for (uint i = 0; i < UIntNumPartitions; i++) {
 587     leftmosts[i] = _max;
 588     empty_leftmosts[i] = _max;
 589     rightmosts[i] = -1;
 590     empty_rightmosts[i] = -1;
 591   }
 592 
 593   for (idx_t i = 0; i < _max; i++) {
 594     ShenandoahFreeSetPartitionId partition = membership(i);
 595     switch (partition) {
 596       case ShenandoahFreeSetPartitionId::NotFree:
 597         break;
 598 
 599       case ShenandoahFreeSetPartitionId::Mutator:
 600       case ShenandoahFreeSetPartitionId::Collector:
 601       case ShenandoahFreeSetPartitionId::OldCollector:
 602       {
 603         size_t capacity = _free_set->alloc_capacity(i);
 604         bool is_empty = (capacity == _region_size_bytes);
 605         assert(capacity > 0, "free regions must have allocation capacity");
 606         if (i < leftmosts[int(partition)]) {
 607           leftmosts[int(partition)] = i;
 608         }
 609         if (is_empty && (i < empty_leftmosts[int(partition)])) {
 610           empty_leftmosts[int(partition)] = i;
 611         }
 612         if (i > rightmosts[int(partition)]) {
 613           rightmosts[int(partition)] = i;
 614         }
 615         if (is_empty && (i > empty_rightmosts[int(partition)])) {
 616           empty_rightmosts[int(partition)] = i;
 617         }
 618         break;
 619       }
 620 
 621       default:
 622         ShouldNotReachHere();
 623     }
 624   }
 625 
 626   // Performance invariants. Failing these would not break the free partition, but performance would suffer.
 627   assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) <= _max,
 628           "leftmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Mutator),  _max);
 629   assert (rightmost(ShenandoahFreeSetPartitionId::Mutator) < _max,
 630           "rightmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator),  _max);
 631 
 632   assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max
 633           || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator),
 634           "leftmost region should be free: " SSIZE_FORMAT,  leftmost(ShenandoahFreeSetPartitionId::Mutator));
 635   assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max
 636           || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator),
 637           "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator));
 638 
 639   // If Mutator partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
 640   // Likewise for empty region partitions.
 641   idx_t beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
 642   idx_t end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
 643   assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Mutator),
 644           "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 645           beg_off, leftmost(ShenandoahFreeSetPartitionId::Mutator));
 646   assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Mutator),
 647           "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 648           end_off, rightmost(ShenandoahFreeSetPartitionId::Mutator));
 649 
 650   beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
 651   end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
 652   assert (beg_off >= leftmost_empty(ShenandoahFreeSetPartitionId::Mutator),
 653           "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 654           beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Mutator));
 655   assert (end_off <= rightmost_empty(ShenandoahFreeSetPartitionId::Mutator),
 656           "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 657           end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Mutator));
 658 
 659   // Performance invariants. Failing these would not break the free partition, but performance would suffer.
 660   assert (leftmost(ShenandoahFreeSetPartitionId::Collector) <= _max, "leftmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT,
 661           leftmost(ShenandoahFreeSetPartitionId::Collector),  _max);
 662   assert (rightmost(ShenandoahFreeSetPartitionId::Collector) < _max, "rightmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT,
 663           rightmost(ShenandoahFreeSetPartitionId::Collector),  _max);
 664 
 665   assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max
 666           || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector),
 667           "leftmost region should be free: " SSIZE_FORMAT,  leftmost(ShenandoahFreeSetPartitionId::Collector));
 668   assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max
 669           || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector),
 670           "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Collector));
 671 
 672   // If Collector partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
 673   // Likewise for empty region partitions.
 674   beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Collector)];
 675   end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Collector)];
 676   assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Collector),
 677           "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 678           beg_off, leftmost(ShenandoahFreeSetPartitionId::Collector));
 679   assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Collector),
 680           "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 681           end_off, rightmost(ShenandoahFreeSetPartitionId::Collector));
 682 
 683   beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Collector)];
 684   end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Collector)];
 685   assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
 686           "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 687           beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Collector));
 688   assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
 689           "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 690           end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Collector));
 691 
 692   // Performance invariants. Failing these would not break the free partition, but performance would suffer.
 693   assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) <= _max, "leftmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT,
 694           leftmost(ShenandoahFreeSetPartitionId::OldCollector),  _max);
 695   assert (rightmost(ShenandoahFreeSetPartitionId::OldCollector) < _max, "rightmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT,
 696           rightmost(ShenandoahFreeSetPartitionId::OldCollector),  _max);
 697 
 698   assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max
 699           || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::OldCollector),
 700                                   ShenandoahFreeSetPartitionId::OldCollector),
 701           "leftmost region should be free: " SSIZE_FORMAT,  leftmost(ShenandoahFreeSetPartitionId::OldCollector));
 702   assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max
 703           || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::OldCollector),
 704                                   ShenandoahFreeSetPartitionId::OldCollector),
 705           "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::OldCollector));
 706 
 707   // If OldCollector partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
 708   // Likewise for empty region partitions.
 709   beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
 710   end_off = rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
 711   assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::OldCollector),
 712           "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 713           beg_off, leftmost(ShenandoahFreeSetPartitionId::OldCollector));
 714   assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::OldCollector),
 715           "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 716           end_off, rightmost(ShenandoahFreeSetPartitionId::OldCollector));
 717 
 718   beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
 719   end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
 720   assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
 721           "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 722           beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector));
 723   assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
 724           "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 725           end_off, rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector));
 726 }
 727 #endif
 728 
 729 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
 730   _heap(heap),
 731   _partitions(max_regions, this),
 732   _trash_regions(NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, max_regions, mtGC)),
 733   _alloc_bias_weight(0)
 734 {
 735   clear_internal();
 736 }
 737 
 738 void ShenandoahFreeSet::add_promoted_in_place_region_to_old_collector(ShenandoahHeapRegion* region) {
 739   shenandoah_assert_heaplocked();
 740   size_t plab_min_size_in_bytes = ShenandoahGenerationalHeap::heap()->plab_min_size() * HeapWordSize;
 741   size_t idx = region->index();
 742   size_t capacity = alloc_capacity(region);
 743   assert(_partitions.membership(idx) == ShenandoahFreeSetPartitionId::NotFree,
 744          "Regions promoted in place should have been excluded from Mutator partition");
 745   if (capacity >= plab_min_size_in_bytes) {
 746     _partitions.make_free(idx, ShenandoahFreeSetPartitionId::OldCollector, capacity);
 747     _heap->old_generation()->augment_promoted_reserve(capacity);
 748   }
 749 }
 750 
 751 HeapWord* ShenandoahFreeSet::allocate_from_partition_with_affiliation(ShenandoahAffiliation affiliation,
 752                                                                       ShenandoahAllocRequest& req, bool& in_new_region) {
 753 
 754   shenandoah_assert_heaplocked();
 755   ShenandoahFreeSetPartitionId which_partition = req.is_old()? ShenandoahFreeSetPartitionId::OldCollector: ShenandoahFreeSetPartitionId::Collector;
 756   if (_partitions.alloc_from_left_bias(which_partition)) {
 757     ShenandoahLeftRightIterator iterator(&_partitions, which_partition, affiliation == ShenandoahAffiliation::FREE);
 758     return allocate_with_affiliation(iterator, affiliation, req, in_new_region);
 759   } else {
 760     ShenandoahRightLeftIterator iterator(&_partitions, which_partition, affiliation == ShenandoahAffiliation::FREE);
 761     return allocate_with_affiliation(iterator, affiliation, req, in_new_region);
 762   }
 763 }
 764 
 765 template<typename Iter>
 766 HeapWord* ShenandoahFreeSet::allocate_with_affiliation(Iter& iterator, ShenandoahAffiliation affiliation, ShenandoahAllocRequest& req, bool& in_new_region) {
 767   for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
 768     ShenandoahHeapRegion* r = _heap->get_region(idx);
 769     if (r->affiliation() == affiliation) {
 770       HeapWord* result = try_allocate_in(r, req, in_new_region);
 771       if (result != nullptr) {
 772         return result;
 773       }
 774     }
 775   }
 776   log_debug(gc, free)("Could not allocate collector region with affiliation: %s for request " PTR_FORMAT,
 777                       shenandoah_affiliation_name(affiliation), p2i(&req));
 778   return nullptr;
 779 }
 780 
 781 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {
 782   shenandoah_assert_heaplocked();
 783 
 784   // Scan the bitmap looking for a first fit.
 785   //
 786   // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
 787   // we would find the region to allocate at right away.
 788   //
 789   // Allocations are biased: GC allocations are taken from the high end of the heap.  Regular (and TLAB)
 790   // mutator allocations are taken from the middle of heap, below the memory reserved for Collector.
 791   // Humongous mutator allocations are taken from the bottom of the heap.
 792   //
 793   // Free set maintains mutator and collector partitions.  Normally, each allocates only from its partition,
 794   // except in special cases when the collector steals regions from the mutator partition.
 795 
 796   // Overwrite with non-zero (non-NULL) values only if necessary for allocation bookkeeping.
 797 
 798   switch (req.type()) {
 799     case ShenandoahAllocRequest::_alloc_tlab:
 800     case ShenandoahAllocRequest::_alloc_shared:
 801       return allocate_for_mutator(req, in_new_region);













 802     case ShenandoahAllocRequest::_alloc_gclab:
 803     case ShenandoahAllocRequest::_alloc_plab:
 804     case ShenandoahAllocRequest::_alloc_shared_gc:
 805       return allocate_for_collector(req, in_new_region);





































 806     default:
 807       ShouldNotReachHere();
 808   }

 809   return nullptr;
 810 }
 811 
 812 HeapWord* ShenandoahFreeSet::allocate_for_mutator(ShenandoahAllocRequest &req, bool &in_new_region) {
 813   update_allocation_bias();
 814 
 815   if (_partitions.is_empty(ShenandoahFreeSetPartitionId::Mutator)) {
 816     // There is no recovery. Mutator does not touch collector view at all.
 817     return nullptr;
 818   }
 819 
 820   // Try to allocate in the mutator view
 821   if (_partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)) {
 822     // Allocate from low to high memory.  This keeps the range of fully empty regions more tightly packed.
 823     // Note that the most recently allocated regions tend not to be evacuated in a given GC cycle.  So this
 824     // tends to accumulate "fragmented" uncollected regions in high memory.
 825     ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
 826     return allocate_from_regions(iterator, req, in_new_region);
 827   }
 828 
 829   // Allocate from high to low memory. This preserves low memory for humongous allocations.
 830   ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
 831   return allocate_from_regions(iterator, req, in_new_region);
 832 }
 833 
 834 void ShenandoahFreeSet::update_allocation_bias() {
 835   if (_alloc_bias_weight-- <= 0) {
 836     // We have observed that regions not collected in previous GC cycle tend to congregate at one end or the other
 837     // of the heap.  Typically, these are the more recently engaged regions and the objects in these regions have not
 838     // yet had a chance to die (and/or are treated as floating garbage).  If we use the same allocation bias on each
 839     // GC pass, these "most recently" engaged regions for GC pass N will also be the "most recently" engaged regions
 840     // for GC pass N+1, and the relatively large amount of live data and/or floating garbage introduced
 841     // during the most recent GC pass may once again prevent the region from being collected.  We have found that
 842     // alternating the allocation behavior between GC passes improves evacuation performance by 3-7% on certain
 843     // benchmarks.  In the best case, this has the effect of consuming these partially consumed regions before
 844     // the start of the next mark cycle so all of their garbage can be efficiently reclaimed.
 845     //
 846     // First, finish consuming regions that are already partially consumed so as to more tightly limit ranges of
 847     // available regions.  Other potential benefits:
 848     //  1. Eventual collection set has fewer regions because we have packed newly allocated objects into fewer regions
 849     //  2. We preserve the "empty" regions longer into the GC cycle, reducing likelihood of allocation failures
 850     //     late in the GC cycle.
 851     idx_t non_empty_on_left = (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator)
 852                                - _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator));
 853     idx_t non_empty_on_right = (_partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator)
 854                                 - _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator));
 855     _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, (non_empty_on_right < non_empty_on_left));
 856     _alloc_bias_weight = INITIAL_ALLOC_BIAS_WEIGHT;
 857   }
 858 }
 859 
 860 template<typename Iter>
 861 HeapWord* ShenandoahFreeSet::allocate_from_regions(Iter& iterator, ShenandoahAllocRequest &req, bool &in_new_region) {
 862   for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
 863     ShenandoahHeapRegion* r = _heap->get_region(idx);
 864     size_t min_size = (req.type() == ShenandoahAllocRequest::_alloc_tlab) ? req.min_size() : req.size();
 865     if (alloc_capacity(r) >= min_size) {
 866       HeapWord* result = try_allocate_in(r, req, in_new_region);
 867       if (result != nullptr) {
 868         return result;
 869       }
 870     }


 871   }
 872   return nullptr;
 873 }
 874 
 875 HeapWord* ShenandoahFreeSet::allocate_for_collector(ShenandoahAllocRequest &req, bool &in_new_region) {
 876   // Fast-path: try to allocate in the collector view first
 877   HeapWord* result;
 878   result = allocate_from_partition_with_affiliation(req.affiliation(), req, in_new_region);
 879   if (result != nullptr) {
 880     return result;
 881   }
 882 
 883   bool allow_new_region = can_allocate_in_new_region(req);
 884   if (allow_new_region) {
 885     // Try a free region that is dedicated to GC allocations.
 886     result = allocate_from_partition_with_affiliation(ShenandoahAffiliation::FREE, req, in_new_region);
 887     if (result != nullptr) {
 888       return result;
 889     }
 890   }
 891 
 892   // No dice. Can we borrow space from mutator view?
 893   if (!ShenandoahEvacReserveOverflow) {
 894     return nullptr;
 895   }
 896 
 897   if (!allow_new_region && req.is_old() && (_heap->young_generation()->free_unaffiliated_regions() > 0)) {
 898     // This allows us to flip a mutator region to old_collector
 899     allow_new_region = true;
 900   }
 901 
 902   // We should expand old-gen if this can prevent an old-gen evacuation failure.  We don't care so much about
 903   // promotion failures since they can be mitigated in a subsequent GC pass.  Would be nice to know if this
 904   // allocation request is for evacuation or promotion.  Individual threads limit their use of PLAB memory for
 905   // promotions, so we already have an assurance that any additional memory set aside for old-gen will be used
 906   // only for old-gen evacuations.
 907   if (allow_new_region) {
 908     // Try to steal an empty region from the mutator view.
 909     result = try_allocate_from_mutator(req, in_new_region);
 910   }
 911 
 912   // This is it. Do not try to mix mutator and GC allocations, because adjusting region UWM
 913   // due to GC allocations would expose unparsable mutator allocations.
 914   return result;
 915 }



 916 
 917 bool ShenandoahFreeSet::can_allocate_in_new_region(const ShenandoahAllocRequest& req) {
 918   if (!_heap->mode()->is_generational()) {
 919     return true;
 920   }
 921 
 922   assert(req.is_old() || req.is_young(), "Should request affiliation");
 923   return (req.is_old() && _heap->old_generation()->free_unaffiliated_regions() > 0)
 924          || (req.is_young() && _heap->young_generation()->free_unaffiliated_regions() > 0);
 925 }
 926 
 927 HeapWord* ShenandoahFreeSet::try_allocate_from_mutator(ShenandoahAllocRequest& req, bool& in_new_region) {
 928   // The collector prefers to keep longer lived regions toward the right side of the heap, so it always
 929   // searches for regions from right to left here.
 930   ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator, true);
 931   for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
 932     ShenandoahHeapRegion* r = _heap->get_region(idx);
 933     if (can_allocate_from(r)) {
 934       if (req.is_old()) {
 935         flip_to_old_gc(r);
 936       } else {
 937         flip_to_gc(r);
 938       }
 939       // Region r is entirely empty.  If try_allocate_in fails on region r, something else is really wrong.
 940       // Don't bother to retry with other regions.
 941       log_debug(gc, free)("Flipped region " SIZE_FORMAT " to gc for request: " PTR_FORMAT, idx, p2i(&req));
 942       return try_allocate_in(r, req, in_new_region);
 943     }
 944   }
 945 
 946   return nullptr;
 947 }
 948 
 949 // This work method takes an argument corresponding to the number of bytes
 950 // free in a region, and returns the largest amount in heapwords that can be allocated
 951 // such that both of the following conditions are satisfied:
 952 //
 953 // 1. it is a multiple of card size
 954 // 2. any remaining shard may be filled with a filler object
 955 //
 956 // The idea is that the allocation starts and ends at card boundaries. Because
 957 // a region ('s end) is card-aligned, the remainder shard that must be filled is
 958 // at the start of the free space.
 959 //
 960 // This is merely a helper method to use for the purpose of such a calculation.
 961 size_t ShenandoahFreeSet::get_usable_free_words(size_t free_bytes) const {
 962   // e.g. card_size is 512, card_shift is 9, min_fill_size() is 8
 963   //      free is 514
 964   //      usable_free is 512, which is decreased to 0
 965   size_t usable_free = (free_bytes / CardTable::card_size()) << CardTable::card_shift();
 966   assert(usable_free <= free_bytes, "Sanity check");
 967   if ((free_bytes != usable_free) && (free_bytes - usable_free < ShenandoahHeap::min_fill_size() * HeapWordSize)) {
 968     // After aligning to card multiples, the remainder would be smaller than
 969     // the minimum filler object, so we'll need to take away another card's
 970     // worth to construct a filler object.
 971     if (usable_free >= CardTable::card_size()) {
 972       usable_free -= CardTable::card_size();
 973     } else {
 974       assert(usable_free == 0, "usable_free is a multiple of card_size and card_size > min_fill_size");
 975     }

 976   }
 977 
 978   return usable_free / HeapWordSize;
 979 }
 980 
 981 // Given a size argument, which is a multiple of card size, a request struct
 982 // for a PLAB, and an old region, return a pointer to the allocated space for
 983 // a PLAB which is card-aligned and where any remaining shard in the region
 984 // has been suitably filled by a filler object.
 985 // It is assumed (and assertion-checked) that such an allocation is always possible.
 986 HeapWord* ShenandoahFreeSet::allocate_aligned_plab(size_t size, ShenandoahAllocRequest& req, ShenandoahHeapRegion* r) {
 987   assert(_heap->mode()->is_generational(), "PLABs are only for generational mode");
 988   assert(r->is_old(), "All PLABs reside in old-gen");
 989   assert(!req.is_mutator_alloc(), "PLABs should not be allocated by mutators.");
 990   assert(is_aligned(size, CardTable::card_size_in_words()), "Align by design");
 991 
 992   HeapWord* result = r->allocate_aligned(size, req, CardTable::card_size());
 993   assert(result != nullptr, "Allocation cannot fail");
 994   assert(r->top() <= r->end(), "Allocation cannot span end of region");
 995   assert(is_aligned(result, CardTable::card_size_in_words()), "Align by design");
 996   return result;
 997 }
 998 
 999 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
1000   assert (has_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index());
1001   if (_heap->is_concurrent_weak_root_in_progress() && r->is_trash()) {
1002     return nullptr;
1003   }
1004   HeapWord* result = nullptr;
1005   try_recycle_trashed(r);
1006   in_new_region = r->is_empty();
1007 
1008   if (in_new_region) {
1009     log_debug(gc)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").",
1010                        r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req));
1011     assert(!r->is_affiliated(), "New region " SIZE_FORMAT " should be unaffiliated", r->index());
1012     r->set_affiliation(req.affiliation());
1013     if (r->is_old()) {
1014       // Any OLD region allocated during concurrent coalesce-and-fill does not need to be coalesced and filled because
1015       // all objects allocated within this region are above TAMS (and thus are implicitly marked).  In case this is an
1016       // OLD region and concurrent preparation for mixed evacuations visits this region before the start of the next
1017       // old-gen concurrent mark (i.e. this region is allocated following the start of old-gen concurrent mark but before
1018       // concurrent preparations for mixed evacuations are completed), we mark this region as not requiring any
1019       // coalesce-and-fill processing.
1020       r->end_preemptible_coalesce_and_fill();
1021       _heap->old_generation()->clear_cards_for(r);
1022     }
1023     _heap->generation_for(r->affiliation())->increment_affiliated_region_count();
1024 
1025 #ifdef ASSERT
1026     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
1027     assert(ctx->top_at_mark_start(r) == r->bottom(), "Newly established allocation region starts with TAMS equal to bottom");
1028     assert(ctx->is_bitmap_range_within_region_clear(ctx->top_bitmap(r), r->end()), "Bitmap above top_bitmap() must be clear");
1029 #endif
1030     log_debug(gc)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").",
1031                        r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req));
1032   } else {
1033     assert(r->is_affiliated(), "Region " SIZE_FORMAT " that is not new should be affiliated", r->index());
1034     if (r->affiliation() != req.affiliation()) {
1035       assert(_heap->mode()->is_generational(), "Request for %s from %s region should only happen in generational mode.",
1036              req.affiliation_name(), r->affiliation_name());
1037       return nullptr;
1038     }
1039   }
1040 
1041   // req.size() is in words, r->free() is in bytes.
1042   if (req.is_lab_alloc()) {
1043     size_t adjusted_size = req.size();
1044     size_t free = r->free();    // free represents bytes available within region r
1045     if (req.type() == ShenandoahAllocRequest::_alloc_plab) {
1046       // This is a PLAB allocation
1047       assert(_heap->mode()->is_generational(), "PLABs are only for generational mode");
1048       assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, r->index()),
1049              "PLABS must be allocated in old_collector_free regions");
1050 
1051       // Need to assure that plabs are aligned on multiple of card region
1052       // Convert free from unaligned bytes to aligned number of words
1053       size_t usable_free = get_usable_free_words(free);
1054       if (adjusted_size > usable_free) {
1055         adjusted_size = usable_free;
1056       }
1057       adjusted_size = align_down(adjusted_size, CardTable::card_size_in_words());
1058       if (adjusted_size >= req.min_size()) {
1059         result = allocate_aligned_plab(adjusted_size, req, r);
1060         assert(result != nullptr, "allocate must succeed");
1061         req.set_actual_size(adjusted_size);
1062       } else {
1063         // Otherwise, leave result == nullptr because the adjusted size is smaller than min size.
1064         log_trace(gc, free)("Failed to shrink PLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT
1065                             " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size());
1066       }
1067     } else {
1068       // This is a GCLAB or a TLAB allocation
1069       // Convert free from unaligned bytes to aligned number of words
1070       free = align_down(free >> LogHeapWordSize, MinObjAlignment);
1071       if (adjusted_size > free) {
1072         adjusted_size = free;
1073       }
1074       if (adjusted_size >= req.min_size()) {
1075         result = r->allocate(adjusted_size, req);
1076         assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, adjusted_size);
1077         req.set_actual_size(adjusted_size);
1078       } else {
1079         log_trace(gc, free)("Failed to shrink TLAB or GCLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT
1080                             " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size());
1081       }
1082     }
1083   } else {
1084     size_t size = req.size();
1085     result = r->allocate(size, req);
1086     if (result != nullptr) {
1087       // Record actual allocation size
1088       req.set_actual_size(size);
1089     }
1090   }
1091 
1092   if (result != nullptr) {
1093     // Allocation successful, bump stats:
1094     if (req.is_mutator_alloc()) {
1095       assert(req.is_young(), "Mutator allocations always come from young generation.");
1096       _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, req.actual_size() * HeapWordSize);
1097     } else {
1098       assert(req.is_gc_alloc(), "Should be gc_alloc since req wasn't mutator alloc");
1099 
1100       // For GC allocations, we advance update_watermark because the objects relocated into this memory during
1101       // evacuation are not updated during evacuation.  For both young and old regions r, it is essential that all
1102       // PLABs be made parsable at the end of evacuation.  This is enabled by retiring all plabs at end of evacuation.
1103       r->set_update_watermark(r->top());
1104       if (r->is_old()) {
1105         _partitions.increase_used(ShenandoahFreeSetPartitionId::OldCollector, req.actual_size() * HeapWordSize);
1106         assert(req.type() != ShenandoahAllocRequest::_alloc_gclab, "old-gen allocations use PLAB or shared allocation");
1107         // for plabs, we'll sort the difference between evac and promotion usage when we retire the plab
1108       } else {
1109         _partitions.increase_used(ShenandoahFreeSetPartitionId::Collector, req.actual_size() * HeapWordSize);
1110       }
1111     }
1112   }
1113 
1114   static const size_t min_capacity = (size_t) (ShenandoahHeapRegion::region_size_bytes() * (1.0 - 1.0 / ShenandoahEvacWaste));
1115   size_t ac = alloc_capacity(r);
1116 
1117   if (((result == nullptr) && (ac < min_capacity)) || (alloc_capacity(r) < PLAB::min_size() * HeapWordSize)) {
1118     // Regardless of whether this allocation succeeded, if the remaining memory is less than PLAB:min_size(), retire this region.
1119     // Note that retire_from_partition() increases used to account for waste.
1120 
1121     // Also, if this allocation request failed and the consumed within this region * ShenandoahEvacWaste > region size,
1122     // then retire the region so that subsequent searches can find available memory more quickly.
1123 
1124     size_t idx = r->index();
1125     ShenandoahFreeSetPartitionId orig_partition;
1126     if (req.is_mutator_alloc()) {
1127       orig_partition = ShenandoahFreeSetPartitionId::Mutator;
1128     } else if (req.type() == ShenandoahAllocRequest::_alloc_gclab) {
1129       orig_partition = ShenandoahFreeSetPartitionId::Collector;
1130     } else if (req.type() == ShenandoahAllocRequest::_alloc_plab) {
1131       orig_partition = ShenandoahFreeSetPartitionId::OldCollector;
1132     } else {
1133       assert(req.type() == ShenandoahAllocRequest::_alloc_shared_gc, "Unexpected allocation type");
1134       if (req.is_old()) {
1135         orig_partition = ShenandoahFreeSetPartitionId::OldCollector;
1136       } else {
1137         orig_partition = ShenandoahFreeSetPartitionId::Collector;
1138       }
1139     }
1140     _partitions.retire_from_partition(orig_partition, idx, r->used());
1141     _partitions.assert_bounds();
1142   }
1143   return result;
1144 }
1145 
1146 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {
1147   assert(req.is_mutator_alloc(), "All humongous allocations are performed by mutator");
1148   shenandoah_assert_heaplocked();
1149 
1150   size_t words_size = req.size();
1151   idx_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
1152 
1153   assert(req.is_young(), "Humongous regions always allocated in YOUNG");
1154   ShenandoahGeneration* generation = _heap->generation_for(req.affiliation());
1155 
1156   // Check if there are enough regions left to satisfy allocation.
1157   if (num > (idx_t) _partitions.count(ShenandoahFreeSetPartitionId::Mutator)) {
1158     return nullptr;
1159   }
1160 
1161   idx_t start_range = _partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator);
1162   idx_t end_range = _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator) + 1;
1163   idx_t last_possible_start = end_range - num;
1164 
1165   // Find the continuous interval of $num regions, starting from $beg and ending in $end,
1166   // inclusive. Contiguous allocations are biased to the beginning.
1167   idx_t beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator,
1168                                                                           start_range, num);
1169   if (beg > last_possible_start) {
1170     // Hit the end, goodbye
1171     return nullptr;
1172   }
1173   idx_t end = beg;
1174 
1175   while (true) {
1176     // We've confirmed num contiguous regions belonging to Mutator partition, so no need to confirm membership.
1177     // If region is not completely free, the current [beg; end] is useless, and we may fast-forward.  If we can extend
1178     // the existing range, we can exploit that certain regions are already known to be in the Mutator free set.
1179     while (!can_allocate_from(_heap->get_region(end))) {
1180       // region[end] is not empty, so we restart our search after region[end]
1181       idx_t slide_delta = end + 1 - beg;
1182       if (beg + slide_delta > last_possible_start) {
1183         // no room to slide
1184         return nullptr;
1185       }
1186       for (idx_t span_end = beg + num; slide_delta > 0; slide_delta--) {
1187         if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, span_end)) {
1188           beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator,
1189                                                                             span_end + 1, num);
1190           break;
1191         } else {
1192           beg++;
1193           span_end++;
1194         }
1195       }
1196       // Here, either beg identifies a range of num regions all of which are in the Mutator free set, or beg > last_possible_start
1197       if (beg > last_possible_start) {
1198         // Hit the end, goodbye
1199         return nullptr;
1200       }
1201       end = beg;
1202     }
1203 
1204     if ((end - beg + 1) == num) {
1205       // found the match
1206       break;
1207     }
1208 
1209     end++;
1210   }
1211 
1212   size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();

1213   // Initialize regions:
1214   for (idx_t i = beg; i <= end; i++) {
1215     ShenandoahHeapRegion* r = _heap->get_region(i);
1216     try_recycle_trashed(r);
1217 
1218     assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous");
1219     assert(r->is_empty(), "Should be empty");
1220 
1221     if (i == beg) {
1222       r->make_humongous_start();
1223     } else {
1224       r->make_humongous_cont();
1225     }
1226 
1227     // Trailing region may be non-full, record the remainder there
1228     size_t used_words;
1229     if ((i == end) && (remainder != 0)) {
1230       used_words = remainder;
1231     } else {
1232       used_words = ShenandoahHeapRegion::region_size_words();
1233     }
1234 
1235     r->set_affiliation(req.affiliation());
1236     r->set_update_watermark(r->bottom());
1237     r->set_top(r->bottom() + used_words);


1238   }
1239   generation->increase_affiliated_region_count(num);




1240   if (remainder != 0) {
1241     // Record this remainder as allocation waste
1242     _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true);
1243   }
1244 
1245   // retire_range_from_partition() will adjust bounds on Mutator free set if appropriate
1246   _partitions.retire_range_from_partition(ShenandoahFreeSetPartitionId::Mutator, beg, end);



1247 
1248   size_t total_humongous_size = ShenandoahHeapRegion::region_size_bytes() * num;
1249   _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, total_humongous_size);
1250   _partitions.assert_bounds();
1251   req.set_actual_size(words_size);
1252   if (remainder != 0) {
1253     req.set_waste(ShenandoahHeapRegion::region_size_words() - remainder);











1254   }
1255   return _heap->get_region(beg)->bottom();
1256 }
1257 
1258 void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion* r) {




1259   if (r->is_trash()) {

1260     r->recycle();
1261   }
1262 }
1263 
1264 void ShenandoahFreeSet::recycle_trash() {
1265   // lock is not reentrable, check we don't have it
1266   shenandoah_assert_not_heaplocked();
1267   size_t count = 0;
1268   for (size_t i = 0; i < _heap->num_regions(); i++) {
1269     ShenandoahHeapRegion* r = _heap->get_region(i);
1270     if (r->is_trash()) {
1271       _trash_regions[count++] = r;
1272     }
1273   }
1274 
1275   size_t total_batches = 0;
1276   jlong batch_start_time = 0;
1277   jlong recycle_trash_start_time = os::javaTimeNanos();    // This value will be treated as the initial batch_start_time
1278   jlong batch_end_time = recycle_trash_start_time;
1279   // Process as many batches as can be processed within 10 us.
1280   static constexpr jlong deadline_ns = 10000;               // 10 us
1281   size_t idx = 0;
1282   jlong predicted_next_batch_end_time;
1283   jlong batch_process_time_estimate = 0;
1284   while (idx < count) {
1285     if (idx > 0) {
1286       os::naked_yield(); // Yield to allow allocators to take the lock, except on the first iteration
1287     }
1288     // Avoid another call to javaTimeNanos() if we already know time at which last batch ended
1289     batch_start_time = batch_end_time;
1290     const jlong deadline = batch_start_time + deadline_ns;
1291 
1292     ShenandoahHeapLocker locker(_heap->lock());
1293     do {
1294       // Measurements on typical 2024 hardware suggest it typically requires between 1400 and 2000 ns to process a batch of
1295       // 32 regions, assuming low contention with other threads.  Sometimes this goes higher, when mutator threads
1296       // are contending for CPU cores and/or the heap lock.  On this hardware with a 10 us deadline, we expect 3-6 batches
1297       // to be processed between yields most of the time.
1298       //
1299       // Note that deadline is enforced since the end of previous batch.  In the case that yield() or acquisition of heap lock
1300       // takes a "long time", we will have less time to process regions, but we will always process at least one batch between
1301       // yields.  Yielding more frequently when there is heavy contention for the heap lock or for CPU cores is considered the
1302       // right thing to do.
1303       const size_t REGIONS_PER_BATCH = 32;
1304       size_t max_idx = MIN2(count, idx + REGIONS_PER_BATCH);
1305       while (idx < max_idx) {
1306         try_recycle_trashed(_trash_regions[idx++]);
1307       }
1308       total_batches++;
1309       batch_end_time = os::javaTimeNanos();
1310       // Estimate includes historic combination of yield times and heap lock acquisition times.
1311       batch_process_time_estimate = (batch_end_time - recycle_trash_start_time) / total_batches;
1312       predicted_next_batch_end_time = batch_end_time + batch_process_time_estimate;
1313     } while ((idx < count) && (predicted_next_batch_end_time < deadline));
1314   }
1315 }
1316 
1317 void ShenandoahFreeSet::flip_to_old_gc(ShenandoahHeapRegion* r) {
1318   size_t idx = r->index();
1319 
1320   assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view");
1321   assert(can_allocate_from(r), "Should not be allocated");
1322 
1323   ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
1324   size_t region_capacity = alloc_capacity(r);
1325   _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1326                                                ShenandoahFreeSetPartitionId::OldCollector, region_capacity);
1327   _partitions.assert_bounds();
1328   _heap->old_generation()->augment_evacuation_reserve(region_capacity);
1329   bool transferred = gen_heap->generation_sizer()->transfer_to_old(1);
1330   if (!transferred) {
1331     log_warning(gc, free)("Forcing transfer of " SIZE_FORMAT " to old reserve.", idx);
1332     gen_heap->generation_sizer()->force_transfer_to_old(1);
1333   }
1334   // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next,
1335   // to recycle trash before attempting to allocate anything in the region.
1336 }
1337 
1338 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
1339   size_t idx = r->index();
1340 
1341   assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view");
1342   assert(can_allocate_from(r), "Should not be allocated");
1343 
1344   size_t ac = alloc_capacity(r);
1345   _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1346                                                ShenandoahFreeSetPartitionId::Collector, ac);
1347   _partitions.assert_bounds();
1348 
1349   // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next,
1350   // to recycle trash before attempting to allocate anything in the region.


1351 }
1352 
1353 void ShenandoahFreeSet::clear() {
1354   shenandoah_assert_heaplocked();
1355   clear_internal();
1356 }
1357 
1358 void ShenandoahFreeSet::clear_internal() {
1359   _partitions.make_all_regions_unavailable();
1360 
1361   _alloc_bias_weight = 0;
1362   _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, true);
1363   _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Collector, false);
1364   _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector, false);


1365 }
1366 
1367 void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_cset_regions, size_t &old_cset_regions,
1368                                                          size_t &first_old_region, size_t &last_old_region,
1369                                                          size_t &old_region_count) {
1370   clear_internal();
1371 
1372   first_old_region = _heap->num_regions();
1373   last_old_region = 0;
1374   old_region_count = 0;
1375   old_cset_regions = 0;
1376   young_cset_regions = 0;
1377 
1378   size_t region_size_bytes = _partitions.region_size_bytes();
1379   size_t max_regions = _partitions.max_regions();
1380 
1381   size_t mutator_leftmost = max_regions;
1382   size_t mutator_rightmost = 0;
1383   size_t mutator_leftmost_empty = max_regions;
1384   size_t mutator_rightmost_empty = 0;
1385   size_t mutator_regions = 0;
1386   size_t mutator_used = 0;
1387 
1388   size_t old_collector_leftmost = max_regions;
1389   size_t old_collector_rightmost = 0;
1390   size_t old_collector_leftmost_empty = max_regions;
1391   size_t old_collector_rightmost_empty = 0;
1392   size_t old_collector_regions = 0;
1393   size_t old_collector_used = 0;
1394 
1395   size_t num_regions = _heap->num_regions();
1396   for (size_t idx = 0; idx < num_regions; idx++) {
1397     ShenandoahHeapRegion* region = _heap->get_region(idx);
1398     if (region->is_trash()) {
1399       // Trashed regions represent regions that had been in the collection partition but have not yet been "cleaned up".
1400       // The cset regions are not "trashed" until we have finished update refs.
1401       if (region->is_old()) {
1402         old_cset_regions++;
1403       } else {
1404         assert(region->is_young(), "Trashed region should be old or young");
1405         young_cset_regions++;
1406       }
1407     } else if (region->is_old()) {
1408       // count both humongous and regular regions, but don't count trash (cset) regions.
1409       old_region_count++;
1410       if (first_old_region > idx) {
1411         first_old_region = idx;
1412       }
1413       last_old_region = idx;
1414     }
1415     if (region->is_alloc_allowed() || region->is_trash()) {
1416       assert(!region->is_cset(), "Shouldn't be adding cset regions to the free set");
1417 
1418       // Do not add regions that would almost surely fail allocation
1419       size_t ac = alloc_capacity(region);
1420       if (ac > PLAB::min_size() * HeapWordSize) {
1421         if (region->is_trash() || !region->is_old()) {
1422           // Both young and old collected regions (trashed) are placed into the Mutator set
1423           _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::Mutator);
1424           if (idx < mutator_leftmost) {
1425             mutator_leftmost = idx;
1426           }
1427           if (idx > mutator_rightmost) {
1428             mutator_rightmost = idx;
1429           }
1430           if (ac == region_size_bytes) {
1431             if (idx < mutator_leftmost_empty) {
1432               mutator_leftmost_empty = idx;
1433             }
1434             if (idx > mutator_rightmost_empty) {
1435               mutator_rightmost_empty = idx;
1436             }
1437           }
1438           mutator_regions++;
1439           mutator_used += (region_size_bytes - ac);
1440         } else {
1441           // !region->is_trash() && region is_old()
1442           _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::OldCollector);
1443           if (idx < old_collector_leftmost) {
1444             old_collector_leftmost = idx;
1445           }
1446           if (idx > old_collector_rightmost) {
1447             old_collector_rightmost = idx;
1448           }
1449           if (ac == region_size_bytes) {
1450             if (idx < old_collector_leftmost_empty) {
1451               old_collector_leftmost_empty = idx;
1452             }
1453             if (idx > old_collector_rightmost_empty) {
1454               old_collector_rightmost_empty = idx;
1455             }
1456           }
1457           old_collector_regions++;
1458           old_collector_used += (region_size_bytes - ac);
1459         }
1460       }
1461     }
1462   }
1463   log_debug(gc)("  At end of prep_to_rebuild, mutator_leftmost: " SIZE_FORMAT
1464                 ", mutator_rightmost: " SIZE_FORMAT
1465                 ", mutator_leftmost_empty: " SIZE_FORMAT
1466                 ", mutator_rightmost_empty: " SIZE_FORMAT
1467                 ", mutator_regions: " SIZE_FORMAT
1468                 ", mutator_used: " SIZE_FORMAT,
1469                 mutator_leftmost, mutator_rightmost, mutator_leftmost_empty, mutator_rightmost_empty,
1470                 mutator_regions, mutator_used);
1471 
1472   log_debug(gc)("  old_collector_leftmost: " SIZE_FORMAT
1473                 ", old_collector_rightmost: " SIZE_FORMAT
1474                 ", old_collector_leftmost_empty: " SIZE_FORMAT
1475                 ", old_collector_rightmost_empty: " SIZE_FORMAT
1476                 ", old_collector_regions: " SIZE_FORMAT
1477                 ", old_collector_used: " SIZE_FORMAT,
1478                 old_collector_leftmost, old_collector_rightmost, old_collector_leftmost_empty, old_collector_rightmost_empty,
1479                 old_collector_regions, old_collector_used);
1480 
1481   idx_t rightmost_idx = (mutator_leftmost == max_regions)? -1: (idx_t) mutator_rightmost;
1482   idx_t rightmost_empty_idx = (mutator_leftmost_empty == max_regions)? -1: (idx_t) mutator_rightmost_empty;
1483   _partitions.establish_mutator_intervals(mutator_leftmost, rightmost_idx, mutator_leftmost_empty, rightmost_empty_idx,
1484                                           mutator_regions, mutator_used);
1485   rightmost_idx = (old_collector_leftmost == max_regions)? -1: (idx_t) old_collector_rightmost;
1486   rightmost_empty_idx = (old_collector_leftmost_empty == max_regions)? -1: (idx_t) old_collector_rightmost_empty;
1487   _partitions.establish_old_collector_intervals(old_collector_leftmost, rightmost_idx, old_collector_leftmost_empty,
1488                                                 rightmost_empty_idx, old_collector_regions, old_collector_used);
1489   log_debug(gc)("  After find_regions_with_alloc_capacity(), Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "],"
1490                 "  Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
1491                 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1492                 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1493                 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1494                 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector));
1495 }
1496 
1497 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred
1498 size_t ShenandoahFreeSet::transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector,
1499                                                                                    size_t max_xfer_regions,
1500                                                                                    size_t& bytes_transferred) {
1501   shenandoah_assert_heaplocked();
1502   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1503   size_t transferred_regions = 0;
1504   ShenandoahLeftRightIterator iterator(&_partitions, which_collector, true);
1505   idx_t rightmost = _partitions.rightmost_empty(which_collector);
1506   for (idx_t idx = iterator.current(); transferred_regions < max_xfer_regions && iterator.has_next(); idx = iterator.next()) {
1507     // Note: can_allocate_from() denotes that region is entirely empty
1508     if (can_allocate_from(idx)) {
1509       _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, region_size_bytes);
1510       transferred_regions++;
1511       bytes_transferred += region_size_bytes;
1512     }
1513   }
1514   return transferred_regions;
1515 }
1516 
1517 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred
1518 size_t ShenandoahFreeSet::transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector,
1519                                                                                        size_t max_xfer_regions,
1520                                                                                        size_t& bytes_transferred) {
1521   shenandoah_assert_heaplocked();
1522   size_t transferred_regions = 0;
1523   ShenandoahLeftRightIterator iterator(&_partitions, which_collector, false);
1524   for (idx_t idx = iterator.current(); transferred_regions < max_xfer_regions && iterator.has_next(); idx = iterator.next()) {
1525     size_t ac = alloc_capacity(idx);
1526     if (ac > 0) {
1527       _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, ac);
1528       transferred_regions++;
1529       bytes_transferred += ac;
1530     }
1531   }
1532   return transferred_regions;
1533 }
1534 
1535 void ShenandoahFreeSet::move_regions_from_collector_to_mutator(size_t max_xfer_regions) {
1536   size_t collector_xfer = 0;
1537   size_t old_collector_xfer = 0;
1538 
1539   // Process empty regions within the Collector free partition
1540   if ((max_xfer_regions > 0) &&
1541       (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Collector)
1542        <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Collector))) {
1543     ShenandoahHeapLocker locker(_heap->lock());
1544     max_xfer_regions -=
1545       transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions,
1546                                                                collector_xfer);
1547   }
1548 
1549   // Process empty regions within the OldCollector free partition
1550   if ((max_xfer_regions > 0) &&
1551       (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector)
1552        <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector))) {
1553     ShenandoahHeapLocker locker(_heap->lock());
1554     size_t old_collector_regions =
1555       transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::OldCollector, max_xfer_regions,
1556                                                                old_collector_xfer);
1557     max_xfer_regions -= old_collector_regions;
1558     if (old_collector_regions > 0) {
1559       ShenandoahGenerationalHeap::cast(_heap)->generation_sizer()->transfer_to_young(old_collector_regions);
1560     }
1561   }
1562 
1563   // If there are any non-empty regions within Collector partition, we can also move them to the Mutator free partition
1564   if ((max_xfer_regions > 0) && (_partitions.leftmost(ShenandoahFreeSetPartitionId::Collector)
1565                                  <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector))) {
1566     ShenandoahHeapLocker locker(_heap->lock());
1567     max_xfer_regions -=
1568       transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions,
1569                                                                    collector_xfer);
1570   }
1571 
1572   size_t total_xfer = collector_xfer + old_collector_xfer;
1573   log_info(gc, ergo)("At start of update refs, moving " SIZE_FORMAT "%s to Mutator free set from Collector Reserve ("
1574                      SIZE_FORMAT "%s) and from Old Collector Reserve (" SIZE_FORMAT "%s)",
1575                      byte_size_in_proper_unit(total_xfer), proper_unit_for_byte_size(total_xfer),
1576                      byte_size_in_proper_unit(collector_xfer), proper_unit_for_byte_size(collector_xfer),
1577                      byte_size_in_proper_unit(old_collector_xfer), proper_unit_for_byte_size(old_collector_xfer));
1578 }
1579 
1580 
1581 // Overwrite arguments to represent the amount of memory in each generation that is about to be recycled
1582 void ShenandoahFreeSet::prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions,
1583                                            size_t &first_old_region, size_t &last_old_region, size_t &old_region_count) {
1584   shenandoah_assert_heaplocked();
1585   // This resets all state information, removing all regions from all sets.
1586   clear();
1587   log_debug(gc, free)("Rebuilding FreeSet");
1588 
1589   // This places regions that have alloc_capacity into the old_collector set if they identify as is_old() or the
1590   // mutator set otherwise.  All trashed (cset) regions are affiliated young and placed in mutator set.
1591   find_regions_with_alloc_capacity(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
1592 }
1593 
1594 void ShenandoahFreeSet::establish_generation_sizes(size_t young_region_count, size_t old_region_count) {
1595   assert(young_region_count + old_region_count == ShenandoahHeap::heap()->num_regions(), "Sanity");
1596   if (ShenandoahHeap::heap()->mode()->is_generational()) {
1597     ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
1598     ShenandoahOldGeneration* old_gen = heap->old_generation();
1599     ShenandoahYoungGeneration* young_gen = heap->young_generation();
1600     size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1601 
1602     size_t original_old_capacity = old_gen->max_capacity();
1603     size_t new_old_capacity = old_region_count * region_size_bytes;
1604     size_t new_young_capacity = young_region_count * region_size_bytes;
1605     old_gen->set_capacity(new_old_capacity);
1606     young_gen->set_capacity(new_young_capacity);
1607 
1608     if (new_old_capacity > original_old_capacity) {
1609       size_t region_count = (new_old_capacity - original_old_capacity) / region_size_bytes;
1610       log_info(gc, ergo)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT,
1611                          region_count, young_gen->name(), old_gen->name(), PROPERFMTARGS(new_old_capacity));
1612     } else if (new_old_capacity < original_old_capacity) {
1613       size_t region_count = (original_old_capacity - new_old_capacity) / region_size_bytes;
1614       log_info(gc, ergo)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT,
1615                          region_count, old_gen->name(), young_gen->name(), PROPERFMTARGS(new_young_capacity));
1616     }
1617     // This balances generations, so clear any pending request to balance.
1618     old_gen->set_region_balance(0);
1619   }
1620 }
1621 
1622 void ShenandoahFreeSet::finish_rebuild(size_t young_cset_regions, size_t old_cset_regions, size_t old_region_count,
1623                                        bool have_evacuation_reserves) {
1624   shenandoah_assert_heaplocked();
1625   size_t young_reserve(0), old_reserve(0);
1626 
1627   if (_heap->mode()->is_generational()) {
1628     compute_young_and_old_reserves(young_cset_regions, old_cset_regions, have_evacuation_reserves,
1629                                    young_reserve, old_reserve);
1630   } else {
1631     young_reserve = (_heap->max_capacity() / 100) * ShenandoahEvacReserve;
1632     old_reserve = 0;
1633   }
1634 
1635   // Move some of the mutator regions in the Collector and OldCollector partitions in order to satisfy
1636   // young_reserve and old_reserve.
1637   reserve_regions(young_reserve, old_reserve, old_region_count);
1638   size_t young_region_count = _heap->num_regions() - old_region_count;
1639   establish_generation_sizes(young_region_count, old_region_count);
1640   establish_old_collector_alloc_bias();
1641   _partitions.assert_bounds();
1642   log_status();
1643 }
1644 
1645 void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_cset_regions, size_t old_cset_regions,
1646                                                        bool have_evacuation_reserves,
1647                                                        size_t& young_reserve_result, size_t& old_reserve_result) const {
1648   shenandoah_assert_generational();
1649   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1650 
1651   ShenandoahOldGeneration* const old_generation = _heap->old_generation();
1652   size_t old_available = old_generation->available();
1653   size_t old_unaffiliated_regions = old_generation->free_unaffiliated_regions();
1654   ShenandoahYoungGeneration* const young_generation = _heap->young_generation();
1655   size_t young_capacity = young_generation->max_capacity();
1656   size_t young_unaffiliated_regions = young_generation->free_unaffiliated_regions();
1657 
1658   // Add in the regions we anticipate to be freed by evacuation of the collection set
1659   old_unaffiliated_regions += old_cset_regions;
1660   young_unaffiliated_regions += young_cset_regions;
1661 
1662   // Consult old-region balance to make adjustments to current generation capacities and availability.
1663   // The generation region transfers take place after we rebuild.
1664   const ssize_t old_region_balance = old_generation->get_region_balance();
1665   if (old_region_balance != 0) {
1666 #ifdef ASSERT
1667     if (old_region_balance > 0) {
1668       assert(old_region_balance <= checked_cast<ssize_t>(old_unaffiliated_regions), "Cannot transfer regions that are affiliated");
1669     } else {
1670       assert(0 - old_region_balance <= checked_cast<ssize_t>(young_unaffiliated_regions), "Cannot transfer regions that are affiliated");
1671     }
1672 #endif
1673 
1674     ssize_t xfer_bytes = old_region_balance * checked_cast<ssize_t>(region_size_bytes);
1675     old_available -= xfer_bytes;
1676     old_unaffiliated_regions -= old_region_balance;
1677     young_capacity += xfer_bytes;
1678     young_unaffiliated_regions += old_region_balance;
1679   }
1680 
1681   // All allocations taken from the old collector set are performed by GC, generally using PLABs for both
1682   // promotions and evacuations.  The partition between which old memory is reserved for evacuation and
1683   // which is reserved for promotion is enforced using thread-local variables that prescribe intentions for
1684   // each PLAB's available memory.
1685   if (have_evacuation_reserves) {
1686     // We are rebuilding at the end of final mark, having already established evacuation budgets for this GC pass.
1687     const size_t promoted_reserve = old_generation->get_promoted_reserve();
1688     const size_t old_evac_reserve = old_generation->get_evacuation_reserve();
1689     young_reserve_result = young_generation->get_evacuation_reserve();
1690     old_reserve_result = promoted_reserve + old_evac_reserve;
1691     assert(old_reserve_result <= old_available,
1692            "Cannot reserve (" SIZE_FORMAT " + " SIZE_FORMAT") more OLD than is available: " SIZE_FORMAT,
1693            promoted_reserve, old_evac_reserve, old_available);
1694   } else {
1695     // We are rebuilding at end of GC, so we set aside budgets specified on command line (or defaults)
1696     young_reserve_result = (young_capacity * ShenandoahEvacReserve) / 100;
1697     // The auto-sizer has already made old-gen large enough to hold all anticipated evacuations and promotions.
1698     // Affiliated old-gen regions are already in the OldCollector free set.  Add in the relevant number of
1699     // unaffiliated regions.
1700     old_reserve_result = old_available;
1701   }
1702 
1703   // Old available regions that have less than PLAB::min_size() of available memory are not placed into the OldCollector
1704   // free set.  Because of this, old_available may not have enough memory to represent the intended reserve.  Adjust
1705   // the reserve downward to account for this possibility. This loss is part of the reason why the original budget
1706   // was adjusted with ShenandoahOldEvacWaste and ShenandoahOldPromoWaste multipliers.
1707   if (old_reserve_result >
1708       _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes) {
1709     old_reserve_result =
1710       _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes;
1711   }
1712 
1713   if (young_reserve_result > young_unaffiliated_regions * region_size_bytes) {
1714     young_reserve_result = young_unaffiliated_regions * region_size_bytes;
1715   }
1716 }
1717 
1718 // Having placed all regions that have allocation capacity into the mutator set if they identify as is_young()
1719 // or into the old collector set if they identify as is_old(), move some of these regions from the mutator set
1720 // into the collector set or old collector set in order to assure that the memory available for allocations within
1721 // the collector set is at least to_reserve and the memory available for allocations within the old collector set
1722 // is at least to_reserve_old.
1723 void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old, size_t &old_region_count) {
1724   for (size_t i = _heap->num_regions(); i > 0; i--) {
1725     size_t idx = i - 1;
1726     ShenandoahHeapRegion* r = _heap->get_region(idx);
1727     if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) {
1728       continue;
1729     }
1730 
1731     size_t ac = alloc_capacity(r);
1732     assert (ac > 0, "Membership in free set implies has capacity");
1733     assert (!r->is_old() || r->is_trash(), "Except for trash, mutator_is_free regions should not be affiliated OLD");
1734 
1735     bool move_to_old_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector) < to_reserve_old;
1736     bool move_to_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector) < to_reserve;
1737 
1738     if (!move_to_collector && !move_to_old_collector) {
1739       // We've satisfied both to_reserve and to_reserved_old
1740       break;
1741     }
1742 
1743     if (move_to_old_collector) {
1744       // We give priority to OldCollector partition because we desire to pack OldCollector regions into higher
1745       // addresses than Collector regions.  Presumably, OldCollector regions are more "stable" and less likely to
1746       // be collected in the near future.
1747       if (r->is_trash() || !r->is_affiliated()) {
1748         // OLD regions that have available memory are already in the old_collector free set.
1749         _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1750                                                      ShenandoahFreeSetPartitionId::OldCollector, ac);
1751         log_debug(gc)("  Shifting region " SIZE_FORMAT " from mutator_free to old_collector_free", idx);
1752         log_debug(gc)("  Shifted Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "],"
1753                       "  Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
1754                       _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1755                       _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1756                       _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1757                       _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector));
1758         old_region_count++;
1759         continue;
1760       }
1761     }
1762 
1763     if (move_to_collector) {
1764       // Note: In a previous implementation, regions were only placed into the survivor space (collector_is_free) if
1765       // they were entirely empty.  This has the effect of causing new Mutator allocation to reside next to objects
1766       // that have already survived at least one GC, mixing ephemeral with longer-lived objects in the same region.
1767       // Any objects that have survived a GC are less likely to immediately become garbage, so a region that contains
1768       // survivor objects is less likely to be selected for the collection set.  This alternative implementation allows
1769       // survivor regions to continue accumulating other survivor objects, and makes it more likely that ephemeral objects
1770       // occupy regions comprised entirely of ephemeral objects.  These regions are highly likely to be included in the next
1771       // collection set, and they are easily evacuated because they have low density of live objects.
1772       _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1773                                                    ShenandoahFreeSetPartitionId::Collector, ac);
1774       log_debug(gc)("  Shifting region " SIZE_FORMAT " from mutator_free to collector_free", idx);
1775       log_debug(gc)("  Shifted Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "],"
1776                     "  Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
1777                     _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1778                     _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1779                     _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector),
1780                     _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector));
1781     }
1782   }
1783 
1784   if (LogTarget(Info, gc, free)::is_enabled()) {
1785     size_t old_reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector);
1786     if (old_reserve < to_reserve_old) {
1787       log_info(gc, free)("Wanted " PROPERFMT " for old reserve, but only reserved: " PROPERFMT,
1788                          PROPERFMTARGS(to_reserve_old), PROPERFMTARGS(old_reserve));
1789     }
1790     size_t reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector);
1791     if (reserve < to_reserve) {
1792       log_debug(gc)("Wanted " PROPERFMT " for young reserve, but only reserved: " PROPERFMT,
1793                     PROPERFMTARGS(to_reserve), PROPERFMTARGS(reserve));
1794     }
1795   }
1796 }
1797 
1798 void ShenandoahFreeSet::establish_old_collector_alloc_bias() {
1799   ShenandoahHeap* heap = ShenandoahHeap::heap();
1800   shenandoah_assert_heaplocked();
1801 
1802   idx_t left_idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
1803   idx_t right_idx = _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector);
1804   idx_t middle = (left_idx + right_idx) / 2;
1805   size_t available_in_first_half = 0;
1806   size_t available_in_second_half = 0;
1807 
1808   for (idx_t index = left_idx; index < middle; index++) {
1809     if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
1810       ShenandoahHeapRegion* r = heap->get_region((size_t) index);
1811       available_in_first_half += r->free();
1812     }
1813   }
1814   for (idx_t index = middle; index <= right_idx; index++) {
1815     if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
1816       ShenandoahHeapRegion* r = heap->get_region(index);
1817       available_in_second_half += r->free();
1818     }
1819   }
1820 
1821   // We desire to first consume the sparsely distributed regions in order that the remaining regions are densely packed.
1822   // Densely packing regions reduces the effort to search for a region that has sufficient memory to satisfy a new allocation
1823   // request.  Regions become sparsely distributed following a Full GC, which tends to slide all regions to the front of the
1824   // heap rather than allowing survivor regions to remain at the high end of the heap where we intend for them to congregate.
1825   _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector,
1826                                           (available_in_second_half > available_in_first_half));
1827 }
1828 
1829 void ShenandoahFreeSet::log_status_under_lock() {
1830   // Must not be heap locked, it acquires heap lock only when log is enabled
1831   shenandoah_assert_not_heaplocked();
1832   if (LogTarget(Info, gc, free)::is_enabled()
1833       DEBUG_ONLY(|| LogTarget(Debug, gc, free)::is_enabled())) {
1834     ShenandoahHeapLocker locker(_heap->lock());
1835     log_status();
1836   }
1837 }
1838 
1839 void ShenandoahFreeSet::log_status() {
1840   shenandoah_assert_heaplocked();
1841 
1842 #ifdef ASSERT
1843   // Dump of the FreeSet details is only enabled if assertions are enabled
1844   if (LogTarget(Debug, gc, free)::is_enabled()) {
1845 #define BUFFER_SIZE 80
1846 
1847     char buffer[BUFFER_SIZE];
1848     for (uint i = 0; i < BUFFER_SIZE; i++) {
1849       buffer[i] = '\0';
1850     }
1851 
1852     log_debug(gc)("FreeSet map legend:"
1853                        " M:mutator_free C:collector_free O:old_collector_free"
1854                        " H:humongous ~:retired old _:retired young");
1855     log_debug(gc)(" mutator free range [" SIZE_FORMAT ".." SIZE_FORMAT "] allocating from %s, "
1856                   " collector free range [" SIZE_FORMAT ".." SIZE_FORMAT "], "
1857                   "old collector free range [" SIZE_FORMAT ".." SIZE_FORMAT "] allocates from %s",
1858                   _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1859                   _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1860                   _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)? "left to right": "right to left",
1861                   _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector),
1862                   _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector),
1863                   _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1864                   _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector),
1865                   _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::OldCollector)? "left to right": "right to left");
1866 
1867     for (uint i = 0; i < _heap->num_regions(); i++) {
1868       ShenandoahHeapRegion *r = _heap->get_region(i);
1869       uint idx = i % 64;
1870       if ((i != 0) && (idx == 0)) {
1871         log_debug(gc)(" %6u: %s", i-64, buffer);
1872       }
1873       if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, i)) {
1874         size_t capacity = alloc_capacity(r);
1875         assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in mutator_free set");
1876         buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'M' : 'm';
1877       } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, i)) {
1878         size_t capacity = alloc_capacity(r);
1879         assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in collector_free set");
1880         buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'C' : 'c';
1881       } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, i)) {
1882         size_t capacity = alloc_capacity(r);
1883         buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'O' : 'o';
1884       } else if (r->is_humongous()) {
1885         if (r->is_old()) {
1886           buffer[idx] = 'H';
1887         } else {
1888           buffer[idx] = 'h';
1889         }
1890       } else {
1891         if (r->is_old()) {
1892           buffer[idx] = '~';
1893         } else {
1894           buffer[idx] = '_';
1895         }
1896       }
1897     }
1898     uint remnant = _heap->num_regions() % 64;
1899     if (remnant > 0) {
1900       buffer[remnant] = '\0';
1901     } else {
1902       remnant = 64;
1903     }
1904     log_debug(gc)(" %6u: %s", (uint) (_heap->num_regions() - remnant), buffer);
1905   }
1906 #endif
1907 
1908   LogTarget(Info, gc, free) lt;
1909   if (lt.is_enabled()) {
1910     ResourceMark rm;
1911     LogStream ls(lt);
1912 
1913     {
1914       idx_t last_idx = 0;
1915       size_t max = 0;
1916       size_t max_contig = 0;
1917       size_t empty_contig = 0;
1918 
1919       size_t total_used = 0;
1920       size_t total_free = 0;
1921       size_t total_free_ext = 0;
1922 
1923       for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator);
1924            idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); idx++) {
1925         if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) {
1926           ShenandoahHeapRegion *r = _heap->get_region(idx);
1927           size_t free = alloc_capacity(r);

1928           max = MAX2(max, free);

1929           if (r->is_empty()) {
1930             total_free_ext += free;
1931             if (last_idx + 1 == idx) {
1932               empty_contig++;
1933             } else {
1934               empty_contig = 1;
1935             }
1936           } else {
1937             empty_contig = 0;
1938           }

1939           total_used += r->used();
1940           total_free += free;

1941           max_contig = MAX2(max_contig, empty_contig);
1942           last_idx = idx;
1943         }
1944       }
1945 
1946       size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
1947       size_t free = capacity() - used();
1948 
1949       // Since certain regions that belonged to the Mutator free partition at the time of most recent rebuild may have been
1950       // retired, the sum of used and capacities within regions that are still in the Mutator free partition may not match
1951       // my internally tracked values of used() and free().
1952       assert(free == total_free, "Free memory should match");
1953       ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ",
1954                byte_size_in_proper_unit(total_free),    proper_unit_for_byte_size(total_free),
1955                byte_size_in_proper_unit(max),           proper_unit_for_byte_size(max),
1956                byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
1957       );
1958 
1959       ls.print("Frag: ");
1960       size_t frag_ext;
1961       if (total_free_ext > 0) {
1962         frag_ext = 100 - (100 * max_humongous / total_free_ext);
1963       } else {
1964         frag_ext = 0;
1965       }
1966       ls.print(SIZE_FORMAT "%% external, ", frag_ext);
1967 
1968       size_t frag_int;
1969       if (_partitions.count(ShenandoahFreeSetPartitionId::Mutator) > 0) {
1970         frag_int = (100 * (total_used / _partitions.count(ShenandoahFreeSetPartitionId::Mutator))
1971                     / ShenandoahHeapRegion::region_size_bytes());
1972       } else {
1973         frag_int = 0;
1974       }
1975       ls.print(SIZE_FORMAT "%% internal; ", frag_int);
1976       ls.print("Used: " SIZE_FORMAT "%s, Mutator Free: " SIZE_FORMAT,
1977                byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used),
1978                _partitions.count(ShenandoahFreeSetPartitionId::Mutator));
1979     }
1980 
1981     {
1982       size_t max = 0;
1983       size_t total_free = 0;
1984       size_t total_used = 0;
1985 
1986       for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector);
1987            idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector); idx++) {
1988         if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, idx)) {
1989           ShenandoahHeapRegion *r = _heap->get_region(idx);
1990           size_t free = alloc_capacity(r);
1991           max = MAX2(max, free);
1992           total_free += free;
1993           total_used += r->used();
1994         }
1995       }
1996       ls.print(" Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s",
1997                byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
1998                byte_size_in_proper_unit(max),        proper_unit_for_byte_size(max),
1999                byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used));
2000     }
2001 
2002     if (_heap->mode()->is_generational()) {
2003       size_t max = 0;
2004       size_t total_free = 0;
2005       size_t total_used = 0;
2006 
2007       for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
2008            idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); idx++) {
2009         if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, idx)) {
2010           ShenandoahHeapRegion *r = _heap->get_region(idx);
2011           size_t free = alloc_capacity(r);
2012           max = MAX2(max, free);
2013           total_free += free;
2014           total_used += r->used();
2015         }
2016       }
2017       ls.print_cr(" Old Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s",
2018                   byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
2019                   byte_size_in_proper_unit(max),        proper_unit_for_byte_size(max),
2020                   byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used));
2021     }
2022   }
2023 }
2024 
2025 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
2026   shenandoah_assert_heaplocked();
2027   if (ShenandoahHeapRegion::requires_humongous(req.size())) {


2028     switch (req.type()) {
2029       case ShenandoahAllocRequest::_alloc_shared:
2030       case ShenandoahAllocRequest::_alloc_shared_gc:
2031         in_new_region = true;
2032         return allocate_contiguous(req);
2033       case ShenandoahAllocRequest::_alloc_plab:
2034       case ShenandoahAllocRequest::_alloc_gclab:
2035       case ShenandoahAllocRequest::_alloc_tlab:
2036         in_new_region = false;
2037         assert(false, "Trying to allocate TLAB in humongous region: " SIZE_FORMAT, req.size());

2038         return nullptr;
2039       default:
2040         ShouldNotReachHere();
2041         return nullptr;
2042     }
2043   } else {
2044     return allocate_single(req, in_new_region);
2045   }
2046 }
2047 
2048 void ShenandoahFreeSet::print_on(outputStream* out) const {
2049   out->print_cr("Mutator Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Mutator));
2050   ShenandoahLeftRightIterator mutator(const_cast<ShenandoahRegionPartitions*>(&_partitions), ShenandoahFreeSetPartitionId::Mutator);
2051   for (idx_t index = mutator.current(); mutator.has_next(); index = mutator.next()) {
2052     _heap->get_region(index)->print_on(out);





2053   }
2054 
2055   out->print_cr("Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Collector));
2056   ShenandoahLeftRightIterator collector(const_cast<ShenandoahRegionPartitions*>(&_partitions), ShenandoahFreeSetPartitionId::Collector);
2057   for (idx_t index = collector.current(); collector.has_next(); index = collector.next()) {
2058     _heap->get_region(index)->print_on(out);






2059   }
2060 
2061   if (_heap->mode()->is_generational()) {
2062     out->print_cr("Old Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::OldCollector));
2063     for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
2064          index <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); index++) {
2065       if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
2066         _heap->get_region(index)->print_on(out);
2067       }
2068     }
2069   }
2070 }
2071 





















2072 double ShenandoahFreeSet::internal_fragmentation() {
2073   double squared = 0;
2074   double linear = 0;
2075 
2076   ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
2077   for (idx_t index = iterator.current(); iterator.has_next(); index = iterator.next()) {
2078     ShenandoahHeapRegion* r = _heap->get_region(index);
2079     size_t used = r->used();
2080     squared += used * used;
2081     linear += used;

2082   }
2083 
2084   if (linear > 0) {
2085     double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
2086     return 1 - s;
2087   } else {
2088     return 0;
2089   }
2090 }
2091 













2092 double ShenandoahFreeSet::external_fragmentation() {
2093   idx_t last_idx = 0;
2094   size_t max_contig = 0;
2095   size_t empty_contig = 0;

2096   size_t free = 0;
2097 
2098   ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
2099   for (idx_t index = iterator.current(); iterator.has_next(); index = iterator.next()) {
2100     ShenandoahHeapRegion* r = _heap->get_region(index);
2101     if (r->is_empty()) {
2102       free += ShenandoahHeapRegion::region_size_bytes();
2103       if (last_idx + 1 == index) {
2104         empty_contig++;



2105       } else {
2106         empty_contig = 1;
2107       }
2108     } else {
2109       empty_contig = 0;

2110     }
2111     max_contig = MAX2(max_contig, empty_contig);
2112     last_idx = index;
2113   }
2114 
2115   if (free > 0) {
2116     return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
2117   } else {
2118     return 0;
2119   }
2120 }
2121 



























< prev index next >