1 /* 2 * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "memory/allocation.hpp" 28 #include "memory/universe.hpp" 29 30 #include "gc/shared/classUnloadingContext.hpp" 31 #include "gc/shared/gcArguments.hpp" 32 #include "gc/shared/gcTimer.hpp" 33 #include "gc/shared/gcTraceTime.inline.hpp" 34 #include "gc/shared/locationPrinter.inline.hpp" 35 #include "gc/shared/memAllocator.hpp" 36 #include "gc/shared/plab.hpp" 37 #include "gc/shared/tlab_globals.hpp" 38 39 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 40 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 41 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 45 #include "gc/shenandoah/shenandoahControlThread.hpp" 46 #include "gc/shenandoah/shenandoahFreeSet.hpp" 47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 48 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 51 #include "gc/shenandoah/shenandoahInitLogger.hpp" 52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 53 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 54 #include "gc/shenandoah/shenandoahMetrics.hpp" 55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 57 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 58 #include "gc/shenandoah/shenandoahPadding.hpp" 59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 62 #include "gc/shenandoah/shenandoahSTWMark.hpp" 63 #include "gc/shenandoah/shenandoahUtils.hpp" 64 #include "gc/shenandoah/shenandoahVerifier.hpp" 65 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 66 #include "gc/shenandoah/shenandoahVMOperations.hpp" 67 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 72 #if INCLUDE_JFR 73 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 74 #endif 75 76 #include "classfile/systemDictionary.hpp" 77 #include "code/codeCache.hpp" 78 #include "memory/classLoaderMetaspace.hpp" 79 #include "memory/metaspaceUtils.hpp" 80 #include "oops/compressedOops.inline.hpp" 81 #include "prims/jvmtiTagMap.hpp" 82 #include "runtime/atomic.hpp" 83 #include "runtime/globals.hpp" 84 #include "runtime/interfaceSupport.inline.hpp" 85 #include "runtime/java.hpp" 86 #include "runtime/orderAccess.hpp" 87 #include "runtime/safepointMechanism.hpp" 88 #include "runtime/vmThread.hpp" 89 #include "services/mallocTracker.hpp" 90 #include "services/memTracker.hpp" 91 #include "utilities/events.hpp" 92 #include "utilities/powerOfTwo.hpp" 93 94 class ShenandoahPretouchHeapTask : public WorkerTask { 95 private: 96 ShenandoahRegionIterator _regions; 97 const size_t _page_size; 98 public: 99 ShenandoahPretouchHeapTask(size_t page_size) : 100 WorkerTask("Shenandoah Pretouch Heap"), 101 _page_size(page_size) {} 102 103 virtual void work(uint worker_id) { 104 ShenandoahHeapRegion* r = _regions.next(); 105 while (r != nullptr) { 106 if (r->is_committed()) { 107 os::pretouch_memory(r->bottom(), r->end(), _page_size); 108 } 109 r = _regions.next(); 110 } 111 } 112 }; 113 114 class ShenandoahPretouchBitmapTask : public WorkerTask { 115 private: 116 ShenandoahRegionIterator _regions; 117 char* _bitmap_base; 118 const size_t _bitmap_size; 119 const size_t _page_size; 120 public: 121 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 122 WorkerTask("Shenandoah Pretouch Bitmap"), 123 _bitmap_base(bitmap_base), 124 _bitmap_size(bitmap_size), 125 _page_size(page_size) {} 126 127 virtual void work(uint worker_id) { 128 ShenandoahHeapRegion* r = _regions.next(); 129 while (r != nullptr) { 130 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 131 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 132 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 133 134 if (r->is_committed()) { 135 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 136 } 137 138 r = _regions.next(); 139 } 140 } 141 }; 142 143 jint ShenandoahHeap::initialize() { 144 // 145 // Figure out heap sizing 146 // 147 148 size_t init_byte_size = InitialHeapSize; 149 size_t min_byte_size = MinHeapSize; 150 size_t max_byte_size = MaxHeapSize; 151 size_t heap_alignment = HeapAlignment; 152 153 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 154 155 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 156 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 157 158 _num_regions = ShenandoahHeapRegion::region_count(); 159 assert(_num_regions == (max_byte_size / reg_size_bytes), 160 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 161 _num_regions, max_byte_size, reg_size_bytes); 162 163 // Now we know the number of regions, initialize the heuristics. 164 initialize_heuristics(); 165 166 size_t num_committed_regions = init_byte_size / reg_size_bytes; 167 num_committed_regions = MIN2(num_committed_regions, _num_regions); 168 assert(num_committed_regions <= _num_regions, "sanity"); 169 _initial_size = num_committed_regions * reg_size_bytes; 170 171 size_t num_min_regions = min_byte_size / reg_size_bytes; 172 num_min_regions = MIN2(num_min_regions, _num_regions); 173 assert(num_min_regions <= _num_regions, "sanity"); 174 _minimum_size = num_min_regions * reg_size_bytes; 175 176 // Default to max heap size. 177 _soft_max_size = _num_regions * reg_size_bytes; 178 179 _committed = _initial_size; 180 181 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 182 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 183 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 184 185 // 186 // Reserve and commit memory for heap 187 // 188 189 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 190 initialize_reserved_region(heap_rs); 191 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 192 _heap_region_special = heap_rs.special(); 193 194 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 195 "Misaligned heap: " PTR_FORMAT, p2i(base())); 196 197 #if SHENANDOAH_OPTIMIZED_MARKTASK 198 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 199 // Fail if we ever attempt to address more than we can. 200 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 201 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 202 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 203 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 204 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 205 vm_exit_during_initialization("Fatal Error", buf); 206 } 207 #endif 208 209 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 210 if (!_heap_region_special) { 211 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 212 "Cannot commit heap memory"); 213 } 214 215 // 216 // Reserve and commit memory for bitmap(s) 217 // 218 219 _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 220 _bitmap_size = align_up(_bitmap_size, bitmap_page_size); 221 222 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 223 224 guarantee(bitmap_bytes_per_region != 0, 225 "Bitmap bytes per region should not be zero"); 226 guarantee(is_power_of_2(bitmap_bytes_per_region), 227 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 228 229 if (bitmap_page_size > bitmap_bytes_per_region) { 230 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 231 _bitmap_bytes_per_slice = bitmap_page_size; 232 } else { 233 _bitmap_regions_per_slice = 1; 234 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 235 } 236 237 guarantee(_bitmap_regions_per_slice >= 1, 238 "Should have at least one region per slice: " SIZE_FORMAT, 239 _bitmap_regions_per_slice); 240 241 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 242 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 243 _bitmap_bytes_per_slice, bitmap_page_size); 244 245 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 246 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 247 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 248 _bitmap_region_special = bitmap.special(); 249 250 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 251 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 252 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 253 if (!_bitmap_region_special) { 254 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 255 "Cannot commit bitmap memory"); 256 } 257 258 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 259 260 if (ShenandoahVerify) { 261 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 262 if (!verify_bitmap.special()) { 263 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 264 "Cannot commit verification bitmap memory"); 265 } 266 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 267 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 268 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 269 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 270 } 271 272 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 273 ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size); 274 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 275 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 276 _aux_bitmap_region_special = aux_bitmap.special(); 277 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 278 279 // 280 // Create regions and region sets 281 // 282 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 283 size_t region_storage_size = align_up(region_align * _num_regions, region_page_size); 284 region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity()); 285 286 ReservedSpace region_storage(region_storage_size, region_page_size); 287 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 288 if (!region_storage.special()) { 289 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 290 "Cannot commit region memory"); 291 } 292 293 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 294 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 295 // If not successful, bite a bullet and allocate at whatever address. 296 { 297 size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 298 size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 299 300 uintptr_t min = round_up_power_of_2(cset_align); 301 uintptr_t max = (1u << 30u); 302 303 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 304 char* req_addr = (char*)addr; 305 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 306 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr); 307 if (cset_rs.is_reserved()) { 308 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 309 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 310 break; 311 } 312 } 313 314 if (_collection_set == nullptr) { 315 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size()); 316 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 317 } 318 } 319 320 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 321 _free_set = new ShenandoahFreeSet(this, _num_regions); 322 323 { 324 ShenandoahHeapLocker locker(lock()); 325 326 for (size_t i = 0; i < _num_regions; i++) { 327 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 328 bool is_committed = i < num_committed_regions; 329 void* loc = region_storage.base() + i * region_align; 330 331 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 332 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 333 334 _marking_context->initialize_top_at_mark_start(r); 335 _regions[i] = r; 336 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 337 } 338 339 // Initialize to complete 340 _marking_context->mark_complete(); 341 342 _free_set->rebuild(); 343 } 344 345 if (AlwaysPreTouch) { 346 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 347 // before initialize() below zeroes it with initializing thread. For any given region, 348 // we touch the region and the corresponding bitmaps from the same thread. 349 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 350 351 _pretouch_heap_page_size = heap_page_size; 352 _pretouch_bitmap_page_size = bitmap_page_size; 353 354 #ifdef LINUX 355 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 356 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 357 // them into huge one. Therefore, we need to pretouch with smaller pages. 358 if (UseTransparentHugePages) { 359 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 360 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 361 } 362 #endif 363 364 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 365 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 366 367 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 368 _workers->run_task(&bcl); 369 370 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 371 _workers->run_task(&hcl); 372 } 373 374 // 375 // Initialize the rest of GC subsystems 376 // 377 378 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 379 for (uint worker = 0; worker < _max_workers; worker++) { 380 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 381 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 382 } 383 384 // There should probably be Shenandoah-specific options for these, 385 // just as there are G1-specific options. 386 { 387 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 388 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 389 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 390 } 391 392 _monitoring_support = new ShenandoahMonitoringSupport(this); 393 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 394 ShenandoahCodeRoots::initialize(); 395 396 if (ShenandoahPacing) { 397 _pacer = new ShenandoahPacer(this); 398 _pacer->setup_for_idle(); 399 } else { 400 _pacer = nullptr; 401 } 402 403 _control_thread = new ShenandoahControlThread(); 404 405 ShenandoahInitLogger::print(); 406 407 return JNI_OK; 408 } 409 410 void ShenandoahHeap::initialize_mode() { 411 if (ShenandoahGCMode != nullptr) { 412 if (strcmp(ShenandoahGCMode, "satb") == 0) { 413 _gc_mode = new ShenandoahSATBMode(); 414 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 415 _gc_mode = new ShenandoahIUMode(); 416 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 417 _gc_mode = new ShenandoahPassiveMode(); 418 } else { 419 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 420 } 421 } else { 422 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 423 } 424 _gc_mode->initialize_flags(); 425 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 426 vm_exit_during_initialization( 427 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 428 _gc_mode->name())); 429 } 430 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 431 vm_exit_during_initialization( 432 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 433 _gc_mode->name())); 434 } 435 } 436 437 void ShenandoahHeap::initialize_heuristics() { 438 assert(_gc_mode != nullptr, "Must be initialized"); 439 _heuristics = _gc_mode->initialize_heuristics(); 440 441 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 442 vm_exit_during_initialization( 443 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 444 _heuristics->name())); 445 } 446 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 447 vm_exit_during_initialization( 448 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 449 _heuristics->name())); 450 } 451 } 452 453 #ifdef _MSC_VER 454 #pragma warning( push ) 455 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 456 #endif 457 458 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 459 CollectedHeap(), 460 _initial_size(0), 461 _used(0), 462 _committed(0), 463 _bytes_allocated_since_gc_start(0), 464 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 465 _workers(nullptr), 466 _safepoint_workers(nullptr), 467 _heap_region_special(false), 468 _num_regions(0), 469 _regions(nullptr), 470 _update_refs_iterator(this), 471 _gc_state_changed(false), 472 _control_thread(nullptr), 473 _shenandoah_policy(policy), 474 _gc_mode(nullptr), 475 _heuristics(nullptr), 476 _free_set(nullptr), 477 _pacer(nullptr), 478 _verifier(nullptr), 479 _phase_timings(nullptr), 480 _monitoring_support(nullptr), 481 _memory_pool(nullptr), 482 _stw_memory_manager("Shenandoah Pauses"), 483 _cycle_memory_manager("Shenandoah Cycles"), 484 _gc_timer(new ConcurrentGCTimer()), 485 _soft_ref_policy(), 486 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 487 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 488 _marking_context(nullptr), 489 _bitmap_size(0), 490 _bitmap_regions_per_slice(0), 491 _bitmap_bytes_per_slice(0), 492 _bitmap_region_special(false), 493 _aux_bitmap_region_special(false), 494 _liveness_cache(nullptr), 495 _collection_set(nullptr) 496 { 497 // Initialize GC mode early, so we can adjust barrier support 498 initialize_mode(); 499 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 500 501 _max_workers = MAX2(_max_workers, 1U); 502 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 503 if (_workers == nullptr) { 504 vm_exit_during_initialization("Failed necessary allocation."); 505 } else { 506 _workers->initialize_workers(); 507 } 508 509 if (ParallelGCThreads > 1) { 510 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", 511 ParallelGCThreads); 512 _safepoint_workers->initialize_workers(); 513 } 514 } 515 516 #ifdef _MSC_VER 517 #pragma warning( pop ) 518 #endif 519 520 class ShenandoahResetBitmapTask : public WorkerTask { 521 private: 522 ShenandoahRegionIterator _regions; 523 524 public: 525 ShenandoahResetBitmapTask() : 526 WorkerTask("Shenandoah Reset Bitmap") {} 527 528 void work(uint worker_id) { 529 ShenandoahHeapRegion* region = _regions.next(); 530 ShenandoahHeap* heap = ShenandoahHeap::heap(); 531 ShenandoahMarkingContext* const ctx = heap->marking_context(); 532 while (region != nullptr) { 533 if (heap->is_bitmap_slice_committed(region)) { 534 ctx->clear_bitmap(region); 535 } 536 region = _regions.next(); 537 } 538 } 539 }; 540 541 void ShenandoahHeap::reset_mark_bitmap() { 542 assert_gc_workers(_workers->active_workers()); 543 mark_incomplete_marking_context(); 544 545 ShenandoahResetBitmapTask task; 546 _workers->run_task(&task); 547 } 548 549 void ShenandoahHeap::print_on(outputStream* st) const { 550 st->print_cr("Shenandoah Heap"); 551 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 552 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 553 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 554 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 555 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 556 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 557 num_regions(), 558 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 559 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 560 561 st->print("Status: "); 562 if (has_forwarded_objects()) st->print("has forwarded objects, "); 563 if (is_concurrent_mark_in_progress()) st->print("marking, "); 564 if (is_evacuation_in_progress()) st->print("evacuating, "); 565 if (is_update_refs_in_progress()) st->print("updating refs, "); 566 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 567 if (is_full_gc_in_progress()) st->print("full gc, "); 568 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 569 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 570 if (is_concurrent_strong_root_in_progress() && 571 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 572 573 if (cancelled_gc()) { 574 st->print("cancelled"); 575 } else { 576 st->print("not cancelled"); 577 } 578 st->cr(); 579 580 st->print_cr("Reserved region:"); 581 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 582 p2i(reserved_region().start()), 583 p2i(reserved_region().end())); 584 585 ShenandoahCollectionSet* cset = collection_set(); 586 st->print_cr("Collection set:"); 587 if (cset != nullptr) { 588 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 589 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 590 } else { 591 st->print_cr(" (null)"); 592 } 593 594 st->cr(); 595 MetaspaceUtils::print_on(st); 596 597 if (Verbose) { 598 st->cr(); 599 print_heap_regions_on(st); 600 } 601 } 602 603 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 604 public: 605 void do_thread(Thread* thread) { 606 assert(thread != nullptr, "Sanity"); 607 assert(thread->is_Worker_thread(), "Only worker thread expected"); 608 ShenandoahThreadLocalData::initialize_gclab(thread); 609 } 610 }; 611 612 void ShenandoahHeap::post_initialize() { 613 CollectedHeap::post_initialize(); 614 MutexLocker ml(Threads_lock); 615 616 ShenandoahInitWorkerGCLABClosure init_gclabs; 617 _workers->threads_do(&init_gclabs); 618 619 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 620 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 621 _workers->set_initialize_gclab(); 622 if (_safepoint_workers != nullptr) { 623 _safepoint_workers->threads_do(&init_gclabs); 624 _safepoint_workers->set_initialize_gclab(); 625 } 626 627 _heuristics->initialize(); 628 629 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 630 } 631 632 size_t ShenandoahHeap::used() const { 633 return Atomic::load(&_used); 634 } 635 636 size_t ShenandoahHeap::committed() const { 637 return Atomic::load(&_committed); 638 } 639 640 void ShenandoahHeap::increase_committed(size_t bytes) { 641 shenandoah_assert_heaplocked_or_safepoint(); 642 _committed += bytes; 643 } 644 645 void ShenandoahHeap::decrease_committed(size_t bytes) { 646 shenandoah_assert_heaplocked_or_safepoint(); 647 _committed -= bytes; 648 } 649 650 void ShenandoahHeap::increase_used(size_t bytes) { 651 Atomic::add(&_used, bytes, memory_order_relaxed); 652 } 653 654 void ShenandoahHeap::set_used(size_t bytes) { 655 Atomic::store(&_used, bytes); 656 } 657 658 void ShenandoahHeap::decrease_used(size_t bytes) { 659 assert(used() >= bytes, "never decrease heap size by more than we've left"); 660 Atomic::sub(&_used, bytes, memory_order_relaxed); 661 } 662 663 void ShenandoahHeap::increase_allocated(size_t bytes) { 664 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 665 } 666 667 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 668 size_t bytes = words * HeapWordSize; 669 if (!waste) { 670 increase_used(bytes); 671 } 672 increase_allocated(bytes); 673 if (ShenandoahPacing) { 674 control_thread()->pacing_notify_alloc(words); 675 if (waste) { 676 pacer()->claim_for_alloc(words, true); 677 } 678 } 679 } 680 681 size_t ShenandoahHeap::capacity() const { 682 return committed(); 683 } 684 685 size_t ShenandoahHeap::max_capacity() const { 686 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 687 } 688 689 size_t ShenandoahHeap::soft_max_capacity() const { 690 size_t v = Atomic::load(&_soft_max_size); 691 assert(min_capacity() <= v && v <= max_capacity(), 692 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 693 min_capacity(), v, max_capacity()); 694 return v; 695 } 696 697 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 698 assert(min_capacity() <= v && v <= max_capacity(), 699 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 700 min_capacity(), v, max_capacity()); 701 Atomic::store(&_soft_max_size, v); 702 } 703 704 size_t ShenandoahHeap::min_capacity() const { 705 return _minimum_size; 706 } 707 708 size_t ShenandoahHeap::initial_capacity() const { 709 return _initial_size; 710 } 711 712 bool ShenandoahHeap::is_in(const void* p) const { 713 HeapWord* heap_base = (HeapWord*) base(); 714 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 715 return p >= heap_base && p < last_region_end; 716 } 717 718 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 719 assert (ShenandoahUncommit, "should be enabled"); 720 721 // Application allocates from the beginning of the heap, and GC allocates at 722 // the end of it. It is more efficient to uncommit from the end, so that applications 723 // could enjoy the near committed regions. GC allocations are much less frequent, 724 // and therefore can accept the committing costs. 725 726 size_t count = 0; 727 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 728 ShenandoahHeapRegion* r = get_region(i - 1); 729 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 730 ShenandoahHeapLocker locker(lock()); 731 if (r->is_empty_committed()) { 732 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 733 break; 734 } 735 736 r->make_uncommitted(); 737 count++; 738 } 739 } 740 SpinPause(); // allow allocators to take the lock 741 } 742 743 if (count > 0) { 744 control_thread()->notify_heap_changed(); 745 } 746 } 747 748 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 749 // New object should fit the GCLAB size 750 size_t min_size = MAX2(size, PLAB::min_size()); 751 752 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 753 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 754 new_size = MIN2(new_size, PLAB::max_size()); 755 new_size = MAX2(new_size, PLAB::min_size()); 756 757 // Record new heuristic value even if we take any shortcut. This captures 758 // the case when moderately-sized objects always take a shortcut. At some point, 759 // heuristics should catch up with them. 760 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 761 762 if (new_size < size) { 763 // New size still does not fit the object. Fall back to shared allocation. 764 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 765 return nullptr; 766 } 767 768 // Retire current GCLAB, and allocate a new one. 769 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 770 gclab->retire(); 771 772 size_t actual_size = 0; 773 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 774 if (gclab_buf == nullptr) { 775 return nullptr; 776 } 777 778 assert (size <= actual_size, "allocation should fit"); 779 780 // ...and clear or zap just allocated TLAB, if needed. 781 if (ZeroTLAB) { 782 Copy::zero_to_words(gclab_buf, actual_size); 783 } else if (ZapTLAB) { 784 // Skip mangling the space corresponding to the object header to 785 // ensure that the returned space is not considered parsable by 786 // any concurrent GC thread. 787 size_t hdr_size = oopDesc::header_size(); 788 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 789 } 790 gclab->set_buf(gclab_buf, actual_size); 791 return gclab->allocate(size); 792 } 793 794 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 795 size_t requested_size, 796 size_t* actual_size) { 797 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 798 HeapWord* res = allocate_memory(req); 799 if (res != nullptr) { 800 *actual_size = req.actual_size(); 801 } else { 802 *actual_size = 0; 803 } 804 return res; 805 } 806 807 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 808 size_t word_size, 809 size_t* actual_size) { 810 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 811 HeapWord* res = allocate_memory(req); 812 if (res != nullptr) { 813 *actual_size = req.actual_size(); 814 } else { 815 *actual_size = 0; 816 } 817 return res; 818 } 819 820 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 821 intptr_t pacer_epoch = 0; 822 bool in_new_region = false; 823 HeapWord* result = nullptr; 824 825 if (req.is_mutator_alloc()) { 826 if (ShenandoahPacing) { 827 pacer()->pace_for_alloc(req.size()); 828 pacer_epoch = pacer()->epoch(); 829 } 830 831 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 832 result = allocate_memory_under_lock(req, in_new_region); 833 } 834 835 // Allocation failed, block until control thread reacted, then retry allocation. 836 // 837 // It might happen that one of the threads requesting allocation would unblock 838 // way later after GC happened, only to fail the second allocation, because 839 // other threads have already depleted the free storage. In this case, a better 840 // strategy is to try again, as long as GC makes progress (or until at least 841 // one full GC has completed). 842 size_t original_count = shenandoah_policy()->full_gc_count(); 843 while (result == nullptr 844 && (_progress_last_gc.is_set() || original_count == shenandoah_policy()->full_gc_count())) { 845 control_thread()->handle_alloc_failure(req); 846 result = allocate_memory_under_lock(req, in_new_region); 847 } 848 } else { 849 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 850 result = allocate_memory_under_lock(req, in_new_region); 851 // Do not call handle_alloc_failure() here, because we cannot block. 852 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 853 } 854 855 if (in_new_region) { 856 control_thread()->notify_heap_changed(); 857 } 858 859 if (result != nullptr) { 860 size_t requested = req.size(); 861 size_t actual = req.actual_size(); 862 863 assert (req.is_lab_alloc() || (requested == actual), 864 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 865 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 866 867 if (req.is_mutator_alloc()) { 868 notify_mutator_alloc_words(actual, false); 869 870 // If we requested more than we were granted, give the rest back to pacer. 871 // This only matters if we are in the same pacing epoch: do not try to unpace 872 // over the budget for the other phase. 873 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 874 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 875 } 876 } else { 877 increase_used(actual*HeapWordSize); 878 } 879 } 880 881 return result; 882 } 883 884 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 885 // If we are dealing with mutator allocation, then we may need to block for safepoint. 886 // We cannot block for safepoint for GC allocations, because there is a high chance 887 // we are already running at safepoint or from stack watermark machinery, and we cannot 888 // block again. 889 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 890 return _free_set->allocate(req, in_new_region); 891 } 892 893 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 894 bool* gc_overhead_limit_was_exceeded) { 895 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 896 return allocate_memory(req); 897 } 898 899 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 900 size_t size, 901 Metaspace::MetadataType mdtype) { 902 MetaWord* result; 903 904 // Inform metaspace OOM to GC heuristics if class unloading is possible. 905 if (heuristics()->can_unload_classes()) { 906 ShenandoahHeuristics* h = heuristics(); 907 h->record_metaspace_oom(); 908 } 909 910 // Expand and retry allocation 911 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 912 if (result != nullptr) { 913 return result; 914 } 915 916 // Start full GC 917 collect(GCCause::_metadata_GC_clear_soft_refs); 918 919 // Retry allocation 920 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 921 if (result != nullptr) { 922 return result; 923 } 924 925 // Expand and retry allocation 926 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 927 if (result != nullptr) { 928 return result; 929 } 930 931 // Out of memory 932 return nullptr; 933 } 934 935 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 936 private: 937 ShenandoahHeap* const _heap; 938 Thread* const _thread; 939 public: 940 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 941 _heap(heap), _thread(Thread::current()) {} 942 943 void do_object(oop p) { 944 shenandoah_assert_marked(nullptr, p); 945 if (!p->is_forwarded()) { 946 _heap->evacuate_object(p, _thread); 947 } 948 } 949 }; 950 951 class ShenandoahEvacuationTask : public WorkerTask { 952 private: 953 ShenandoahHeap* const _sh; 954 ShenandoahCollectionSet* const _cs; 955 bool _concurrent; 956 public: 957 ShenandoahEvacuationTask(ShenandoahHeap* sh, 958 ShenandoahCollectionSet* cs, 959 bool concurrent) : 960 WorkerTask("Shenandoah Evacuation"), 961 _sh(sh), 962 _cs(cs), 963 _concurrent(concurrent) 964 {} 965 966 void work(uint worker_id) { 967 if (_concurrent) { 968 ShenandoahConcurrentWorkerSession worker_session(worker_id); 969 ShenandoahSuspendibleThreadSetJoiner stsj; 970 ShenandoahEvacOOMScope oom_evac_scope; 971 do_work(); 972 } else { 973 ShenandoahParallelWorkerSession worker_session(worker_id); 974 ShenandoahEvacOOMScope oom_evac_scope; 975 do_work(); 976 } 977 } 978 979 private: 980 void do_work() { 981 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 982 ShenandoahHeapRegion* r; 983 while ((r =_cs->claim_next()) != nullptr) { 984 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 985 _sh->marked_object_iterate(r, &cl); 986 987 if (ShenandoahPacing) { 988 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 989 } 990 991 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 992 break; 993 } 994 } 995 } 996 }; 997 998 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 999 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1000 workers()->run_task(&task); 1001 } 1002 1003 void ShenandoahHeap::trash_cset_regions() { 1004 ShenandoahHeapLocker locker(lock()); 1005 1006 ShenandoahCollectionSet* set = collection_set(); 1007 ShenandoahHeapRegion* r; 1008 set->clear_current_index(); 1009 while ((r = set->next()) != nullptr) { 1010 r->make_trash(); 1011 } 1012 collection_set()->clear(); 1013 } 1014 1015 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1016 st->print_cr("Heap Regions:"); 1017 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1018 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1019 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1020 st->print_cr("UWM=update watermark, U=used"); 1021 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1022 st->print_cr("S=shared allocs, L=live data"); 1023 st->print_cr("CP=critical pins"); 1024 1025 for (size_t i = 0; i < num_regions(); i++) { 1026 get_region(i)->print_on(st); 1027 } 1028 } 1029 1030 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1031 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1032 1033 oop humongous_obj = cast_to_oop(start->bottom()); 1034 size_t size = humongous_obj->size(); 1035 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1036 size_t index = start->index() + required_regions - 1; 1037 1038 assert(!start->has_live(), "liveness must be zero"); 1039 1040 for(size_t i = 0; i < required_regions; i++) { 1041 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1042 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1043 ShenandoahHeapRegion* region = get_region(index --); 1044 1045 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1046 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1047 1048 region->make_trash_immediate(); 1049 } 1050 } 1051 1052 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1053 public: 1054 ShenandoahCheckCleanGCLABClosure() {} 1055 void do_thread(Thread* thread) { 1056 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1057 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1058 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1059 } 1060 }; 1061 1062 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1063 private: 1064 bool const _resize; 1065 public: 1066 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1067 void do_thread(Thread* thread) { 1068 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1069 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1070 gclab->retire(); 1071 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1072 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1073 } 1074 } 1075 }; 1076 1077 void ShenandoahHeap::labs_make_parsable() { 1078 assert(UseTLAB, "Only call with UseTLAB"); 1079 1080 ShenandoahRetireGCLABClosure cl(false); 1081 1082 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1083 ThreadLocalAllocBuffer& tlab = t->tlab(); 1084 tlab.make_parsable(); 1085 cl.do_thread(t); 1086 } 1087 1088 workers()->threads_do(&cl); 1089 } 1090 1091 void ShenandoahHeap::tlabs_retire(bool resize) { 1092 assert(UseTLAB, "Only call with UseTLAB"); 1093 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1094 1095 ThreadLocalAllocStats stats; 1096 1097 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1098 ThreadLocalAllocBuffer& tlab = t->tlab(); 1099 tlab.retire(&stats); 1100 if (resize) { 1101 tlab.resize(); 1102 } 1103 } 1104 1105 stats.publish(); 1106 1107 #ifdef ASSERT 1108 ShenandoahCheckCleanGCLABClosure cl; 1109 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1110 cl.do_thread(t); 1111 } 1112 workers()->threads_do(&cl); 1113 #endif 1114 } 1115 1116 void ShenandoahHeap::gclabs_retire(bool resize) { 1117 assert(UseTLAB, "Only call with UseTLAB"); 1118 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1119 1120 ShenandoahRetireGCLABClosure cl(resize); 1121 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1122 cl.do_thread(t); 1123 } 1124 workers()->threads_do(&cl); 1125 1126 if (safepoint_workers() != nullptr) { 1127 safepoint_workers()->threads_do(&cl); 1128 } 1129 } 1130 1131 // Returns size in bytes 1132 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1133 // Return the max allowed size, and let the allocation path 1134 // figure out the safe size for current allocation. 1135 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1136 } 1137 1138 size_t ShenandoahHeap::max_tlab_size() const { 1139 // Returns size in words 1140 return ShenandoahHeapRegion::max_tlab_size_words(); 1141 } 1142 1143 void ShenandoahHeap::collect(GCCause::Cause cause) { 1144 control_thread()->request_gc(cause); 1145 } 1146 1147 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1148 //assert(false, "Shouldn't need to do full collections"); 1149 } 1150 1151 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1152 ShenandoahHeapRegion* r = heap_region_containing(addr); 1153 if (r != nullptr) { 1154 return r->block_start(addr); 1155 } 1156 return nullptr; 1157 } 1158 1159 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1160 ShenandoahHeapRegion* r = heap_region_containing(addr); 1161 return r->block_is_obj(addr); 1162 } 1163 1164 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1165 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1166 } 1167 1168 void ShenandoahHeap::prepare_for_verify() { 1169 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1170 labs_make_parsable(); 1171 } 1172 } 1173 1174 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1175 tcl->do_thread(_control_thread); 1176 workers()->threads_do(tcl); 1177 if (_safepoint_workers != nullptr) { 1178 _safepoint_workers->threads_do(tcl); 1179 } 1180 } 1181 1182 void ShenandoahHeap::print_tracing_info() const { 1183 LogTarget(Info, gc, stats) lt; 1184 if (lt.is_enabled()) { 1185 ResourceMark rm; 1186 LogStream ls(lt); 1187 1188 phase_timings()->print_global_on(&ls); 1189 1190 ls.cr(); 1191 ls.cr(); 1192 1193 shenandoah_policy()->print_gc_stats(&ls); 1194 1195 ls.cr(); 1196 ls.cr(); 1197 } 1198 } 1199 1200 void ShenandoahHeap::verify(VerifyOption vo) { 1201 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1202 if (ShenandoahVerify) { 1203 verifier()->verify_generic(vo); 1204 } else { 1205 // TODO: Consider allocating verification bitmaps on demand, 1206 // and turn this on unconditionally. 1207 } 1208 } 1209 } 1210 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1211 return _free_set->capacity(); 1212 } 1213 1214 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1215 private: 1216 MarkBitMap* _bitmap; 1217 ShenandoahScanObjectStack* _oop_stack; 1218 ShenandoahHeap* const _heap; 1219 ShenandoahMarkingContext* const _marking_context; 1220 1221 template <class T> 1222 void do_oop_work(T* p) { 1223 T o = RawAccess<>::oop_load(p); 1224 if (!CompressedOops::is_null(o)) { 1225 oop obj = CompressedOops::decode_not_null(o); 1226 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1227 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1228 return; 1229 } 1230 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1231 1232 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1233 if (!_bitmap->is_marked(obj)) { 1234 _bitmap->mark(obj); 1235 _oop_stack->push(obj); 1236 } 1237 } 1238 } 1239 public: 1240 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1241 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1242 _marking_context(_heap->marking_context()) {} 1243 void do_oop(oop* p) { do_oop_work(p); } 1244 void do_oop(narrowOop* p) { do_oop_work(p); } 1245 }; 1246 1247 /* 1248 * This is public API, used in preparation of object_iterate(). 1249 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1250 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1251 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1252 */ 1253 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1254 // No-op. 1255 } 1256 1257 /* 1258 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1259 * 1260 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1261 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1262 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1263 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1264 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1265 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1266 * wiped the bitmap in preparation for next marking). 1267 * 1268 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1269 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1270 * is allowed to report dead objects, but is not required to do so. 1271 */ 1272 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1273 // Reset bitmap 1274 if (!prepare_aux_bitmap_for_iteration()) 1275 return; 1276 1277 ShenandoahScanObjectStack oop_stack; 1278 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1279 // Seed the stack with root scan 1280 scan_roots_for_iteration(&oop_stack, &oops); 1281 1282 // Work through the oop stack to traverse heap 1283 while (! oop_stack.is_empty()) { 1284 oop obj = oop_stack.pop(); 1285 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1286 cl->do_object(obj); 1287 obj->oop_iterate(&oops); 1288 } 1289 1290 assert(oop_stack.is_empty(), "should be empty"); 1291 // Reclaim bitmap 1292 reclaim_aux_bitmap_for_iteration(); 1293 } 1294 1295 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1296 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1297 1298 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1299 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1300 return false; 1301 } 1302 // Reset bitmap 1303 _aux_bit_map.clear(); 1304 return true; 1305 } 1306 1307 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1308 // Process GC roots according to current GC cycle 1309 // This populates the work stack with initial objects 1310 // It is important to relinquish the associated locks before diving 1311 // into heap dumper 1312 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1313 ShenandoahHeapIterationRootScanner rp(n_workers); 1314 rp.roots_do(oops); 1315 } 1316 1317 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1318 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1319 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1320 } 1321 } 1322 1323 // Closure for parallelly iterate objects 1324 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1325 private: 1326 MarkBitMap* _bitmap; 1327 ShenandoahObjToScanQueue* _queue; 1328 ShenandoahHeap* const _heap; 1329 ShenandoahMarkingContext* const _marking_context; 1330 1331 template <class T> 1332 void do_oop_work(T* p) { 1333 T o = RawAccess<>::oop_load(p); 1334 if (!CompressedOops::is_null(o)) { 1335 oop obj = CompressedOops::decode_not_null(o); 1336 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1337 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1338 return; 1339 } 1340 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1341 1342 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1343 if (_bitmap->par_mark(obj)) { 1344 _queue->push(ShenandoahMarkTask(obj)); 1345 } 1346 } 1347 } 1348 public: 1349 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1350 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1351 _marking_context(_heap->marking_context()) {} 1352 void do_oop(oop* p) { do_oop_work(p); } 1353 void do_oop(narrowOop* p) { do_oop_work(p); } 1354 }; 1355 1356 // Object iterator for parallel heap iteraion. 1357 // The root scanning phase happenes in construction as a preparation of 1358 // parallel marking queues. 1359 // Every worker processes it's own marking queue. work-stealing is used 1360 // to balance workload. 1361 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1362 private: 1363 uint _num_workers; 1364 bool _init_ready; 1365 MarkBitMap* _aux_bit_map; 1366 ShenandoahHeap* _heap; 1367 ShenandoahScanObjectStack _roots_stack; // global roots stack 1368 ShenandoahObjToScanQueueSet* _task_queues; 1369 public: 1370 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1371 _num_workers(num_workers), 1372 _init_ready(false), 1373 _aux_bit_map(bitmap), 1374 _heap(ShenandoahHeap::heap()) { 1375 // Initialize bitmap 1376 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1377 if (!_init_ready) { 1378 return; 1379 } 1380 1381 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1382 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1383 1384 _init_ready = prepare_worker_queues(); 1385 } 1386 1387 ~ShenandoahParallelObjectIterator() { 1388 // Reclaim bitmap 1389 _heap->reclaim_aux_bitmap_for_iteration(); 1390 // Reclaim queue for workers 1391 if (_task_queues!= nullptr) { 1392 for (uint i = 0; i < _num_workers; ++i) { 1393 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1394 if (q != nullptr) { 1395 delete q; 1396 _task_queues->register_queue(i, nullptr); 1397 } 1398 } 1399 delete _task_queues; 1400 _task_queues = nullptr; 1401 } 1402 } 1403 1404 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1405 if (_init_ready) { 1406 object_iterate_parallel(cl, worker_id, _task_queues); 1407 } 1408 } 1409 1410 private: 1411 // Divide global root_stack into worker queues 1412 bool prepare_worker_queues() { 1413 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1414 // Initialize queues for every workers 1415 for (uint i = 0; i < _num_workers; ++i) { 1416 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1417 _task_queues->register_queue(i, task_queue); 1418 } 1419 // Divide roots among the workers. Assume that object referencing distribution 1420 // is related with root kind, use round-robin to make every worker have same chance 1421 // to process every kind of roots 1422 size_t roots_num = _roots_stack.size(); 1423 if (roots_num == 0) { 1424 // No work to do 1425 return false; 1426 } 1427 1428 for (uint j = 0; j < roots_num; j++) { 1429 uint stack_id = j % _num_workers; 1430 oop obj = _roots_stack.pop(); 1431 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1432 } 1433 return true; 1434 } 1435 1436 void object_iterate_parallel(ObjectClosure* cl, 1437 uint worker_id, 1438 ShenandoahObjToScanQueueSet* queue_set) { 1439 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1440 assert(queue_set != nullptr, "task queue must not be null"); 1441 1442 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1443 assert(q != nullptr, "object iterate queue must not be null"); 1444 1445 ShenandoahMarkTask t; 1446 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1447 1448 // Work through the queue to traverse heap. 1449 // Steal when there is no task in queue. 1450 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1451 oop obj = t.obj(); 1452 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1453 cl->do_object(obj); 1454 obj->oop_iterate(&oops); 1455 } 1456 assert(q->is_empty(), "should be empty"); 1457 } 1458 }; 1459 1460 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1461 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1462 } 1463 1464 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1465 void ShenandoahHeap::keep_alive(oop obj) { 1466 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1467 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1468 } 1469 } 1470 1471 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1472 for (size_t i = 0; i < num_regions(); i++) { 1473 ShenandoahHeapRegion* current = get_region(i); 1474 blk->heap_region_do(current); 1475 } 1476 } 1477 1478 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1479 private: 1480 ShenandoahHeap* const _heap; 1481 ShenandoahHeapRegionClosure* const _blk; 1482 size_t const _stride; 1483 1484 shenandoah_padding(0); 1485 volatile size_t _index; 1486 shenandoah_padding(1); 1487 1488 public: 1489 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1490 WorkerTask("Shenandoah Parallel Region Operation"), 1491 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1492 1493 void work(uint worker_id) { 1494 ShenandoahParallelWorkerSession worker_session(worker_id); 1495 size_t stride = _stride; 1496 1497 size_t max = _heap->num_regions(); 1498 while (Atomic::load(&_index) < max) { 1499 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1500 size_t start = cur; 1501 size_t end = MIN2(cur + stride, max); 1502 if (start >= max) break; 1503 1504 for (size_t i = cur; i < end; i++) { 1505 ShenandoahHeapRegion* current = _heap->get_region(i); 1506 _blk->heap_region_do(current); 1507 } 1508 } 1509 } 1510 }; 1511 1512 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1513 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1514 const uint active_workers = workers()->active_workers(); 1515 const size_t n_regions = num_regions(); 1516 size_t stride = ShenandoahParallelRegionStride; 1517 if (stride == 0 && active_workers > 1) { 1518 // Automatically derive the stride to balance the work between threads 1519 // evenly. Do not try to split work if below the reasonable threshold. 1520 constexpr size_t threshold = 4096; 1521 stride = n_regions <= threshold ? 1522 threshold : 1523 (n_regions + active_workers - 1) / active_workers; 1524 } 1525 1526 if (n_regions > stride && active_workers > 1) { 1527 ShenandoahParallelHeapRegionTask task(blk, stride); 1528 workers()->run_task(&task); 1529 } else { 1530 heap_region_iterate(blk); 1531 } 1532 } 1533 1534 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1535 private: 1536 ShenandoahMarkingContext* const _ctx; 1537 public: 1538 ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1539 1540 void heap_region_do(ShenandoahHeapRegion* r) { 1541 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1542 if (r->is_active()) { 1543 // Check if region needs updating its TAMS. We have updated it already during concurrent 1544 // reset, so it is very likely we don't need to do another write here. 1545 if (_ctx->top_at_mark_start(r) != r->top()) { 1546 _ctx->capture_top_at_mark_start(r); 1547 } 1548 } else { 1549 assert(_ctx->top_at_mark_start(r) == r->top(), 1550 "Region " SIZE_FORMAT " should already have correct TAMS", r->index()); 1551 } 1552 } 1553 1554 bool is_thread_safe() { return true; } 1555 }; 1556 1557 class ShenandoahRendezvousClosure : public HandshakeClosure { 1558 public: 1559 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1560 inline void do_thread(Thread* thread) {} 1561 }; 1562 1563 void ShenandoahHeap::rendezvous_threads() { 1564 ShenandoahRendezvousClosure cl; 1565 Handshake::execute(&cl); 1566 } 1567 1568 void ShenandoahHeap::recycle_trash() { 1569 free_set()->recycle_trash(); 1570 } 1571 1572 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1573 private: 1574 ShenandoahMarkingContext* const _ctx; 1575 public: 1576 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1577 1578 void heap_region_do(ShenandoahHeapRegion* r) { 1579 if (r->is_active()) { 1580 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1581 // anyway to capture any updates that happened since now. 1582 r->clear_live_data(); 1583 _ctx->capture_top_at_mark_start(r); 1584 } 1585 } 1586 1587 bool is_thread_safe() { return true; } 1588 }; 1589 1590 void ShenandoahHeap::prepare_gc() { 1591 reset_mark_bitmap(); 1592 1593 ShenandoahResetUpdateRegionStateClosure cl; 1594 parallel_heap_region_iterate(&cl); 1595 } 1596 1597 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1598 private: 1599 ShenandoahMarkingContext* const _ctx; 1600 ShenandoahHeapLock* const _lock; 1601 1602 public: 1603 ShenandoahFinalMarkUpdateRegionStateClosure() : 1604 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1605 1606 void heap_region_do(ShenandoahHeapRegion* r) { 1607 if (r->is_active()) { 1608 // All allocations past TAMS are implicitly live, adjust the region data. 1609 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1610 HeapWord *tams = _ctx->top_at_mark_start(r); 1611 HeapWord *top = r->top(); 1612 if (top > tams) { 1613 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1614 } 1615 1616 // We are about to select the collection set, make sure it knows about 1617 // current pinning status. Also, this allows trashing more regions that 1618 // now have their pinning status dropped. 1619 if (r->is_pinned()) { 1620 if (r->pin_count() == 0) { 1621 ShenandoahHeapLocker locker(_lock); 1622 r->make_unpinned(); 1623 } 1624 } else { 1625 if (r->pin_count() > 0) { 1626 ShenandoahHeapLocker locker(_lock); 1627 r->make_pinned(); 1628 } 1629 } 1630 1631 // Remember limit for updating refs. It's guaranteed that we get no 1632 // from-space-refs written from here on. 1633 r->set_update_watermark_at_safepoint(r->top()); 1634 } else { 1635 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1636 assert(_ctx->top_at_mark_start(r) == r->top(), 1637 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1638 } 1639 } 1640 1641 bool is_thread_safe() { return true; } 1642 }; 1643 1644 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1645 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1646 { 1647 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1648 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1649 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1650 parallel_heap_region_iterate(&cl); 1651 1652 assert_pinned_region_status(); 1653 } 1654 1655 { 1656 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1657 ShenandoahPhaseTimings::degen_gc_choose_cset); 1658 ShenandoahHeapLocker locker(lock()); 1659 _collection_set->clear(); 1660 heuristics()->choose_collection_set(_collection_set); 1661 } 1662 1663 { 1664 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1665 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1666 ShenandoahHeapLocker locker(lock()); 1667 _free_set->rebuild(); 1668 } 1669 } 1670 1671 void ShenandoahHeap::do_class_unloading() { 1672 _unloader.unload(); 1673 } 1674 1675 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1676 // Weak refs processing 1677 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1678 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1679 ShenandoahTimingsTracker t(phase); 1680 ShenandoahGCWorkerPhase worker_phase(phase); 1681 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1682 } 1683 1684 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1685 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1686 1687 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1688 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1689 // for future GCLABs here. 1690 if (UseTLAB) { 1691 ShenandoahGCPhase phase(concurrent ? 1692 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1693 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1694 gclabs_retire(ResizeTLAB); 1695 } 1696 1697 _update_refs_iterator.reset(); 1698 } 1699 1700 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1701 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1702 if (_gc_state_changed) { 1703 _gc_state_changed = false; 1704 char state = gc_state(); 1705 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1706 ShenandoahThreadLocalData::set_gc_state(t, state); 1707 } 1708 } 1709 } 1710 1711 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1712 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1713 _gc_state.set_cond(mask, value); 1714 _gc_state_changed = true; 1715 } 1716 1717 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1718 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1719 set_gc_state(MARKING, in_progress); 1720 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1721 } 1722 1723 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1724 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1725 set_gc_state(EVACUATION, in_progress); 1726 } 1727 1728 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1729 if (in_progress) { 1730 _concurrent_strong_root_in_progress.set(); 1731 } else { 1732 _concurrent_strong_root_in_progress.unset(); 1733 } 1734 } 1735 1736 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1737 set_gc_state(WEAK_ROOTS, cond); 1738 } 1739 1740 GCTracer* ShenandoahHeap::tracer() { 1741 return shenandoah_policy()->tracer(); 1742 } 1743 1744 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1745 return _free_set->used(); 1746 } 1747 1748 bool ShenandoahHeap::try_cancel_gc() { 1749 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1750 return prev == CANCELLABLE; 1751 } 1752 1753 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1754 if (try_cancel_gc()) { 1755 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1756 log_info(gc)("%s", msg.buffer()); 1757 Events::log(Thread::current(), "%s", msg.buffer()); 1758 } 1759 } 1760 1761 uint ShenandoahHeap::max_workers() { 1762 return _max_workers; 1763 } 1764 1765 void ShenandoahHeap::stop() { 1766 // The shutdown sequence should be able to terminate when GC is running. 1767 1768 // Step 0. Notify policy to disable event recording. 1769 _shenandoah_policy->record_shutdown(); 1770 1771 // Step 1. Notify control thread that we are in shutdown. 1772 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1773 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1774 control_thread()->prepare_for_graceful_shutdown(); 1775 1776 // Step 2. Notify GC workers that we are cancelling GC. 1777 cancel_gc(GCCause::_shenandoah_stop_vm); 1778 1779 // Step 3. Wait until GC worker exits normally. 1780 control_thread()->stop(); 1781 } 1782 1783 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1784 if (!unload_classes()) return; 1785 ClassUnloadingContext ctx(_workers->active_workers(), 1786 true /* unregister_nmethods_during_purge */, 1787 false /* lock_codeblob_free_separately */); 1788 1789 // Unload classes and purge SystemDictionary. 1790 { 1791 ShenandoahPhaseTimings::Phase phase = full_gc ? 1792 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1793 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1794 ShenandoahIsAliveSelector is_alive; 1795 { 1796 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 1797 ShenandoahGCPhase gc_phase(phase); 1798 ShenandoahGCWorkerPhase worker_phase(phase); 1799 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 1800 1801 uint num_workers = _workers->active_workers(); 1802 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 1803 _workers->run_task(&unlink_task); 1804 } 1805 // Release unloaded nmethods's memory. 1806 ClassUnloadingContext::context()->purge_and_free_nmethods(); 1807 } 1808 1809 { 1810 ShenandoahGCPhase phase(full_gc ? 1811 ShenandoahPhaseTimings::full_gc_purge_cldg : 1812 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1813 ClassLoaderDataGraph::purge(true /* at_safepoint */); 1814 } 1815 // Resize and verify metaspace 1816 MetaspaceGC::compute_new_size(); 1817 DEBUG_ONLY(MetaspaceUtils::verify();) 1818 } 1819 1820 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1821 // so they should not have forwarded oops. 1822 // However, we do need to "null" dead oops in the roots, if can not be done 1823 // in concurrent cycles. 1824 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1825 uint num_workers = _workers->active_workers(); 1826 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1827 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1828 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 1829 ShenandoahGCPhase phase(timing_phase); 1830 ShenandoahGCWorkerPhase worker_phase(timing_phase); 1831 // Cleanup weak roots 1832 if (has_forwarded_objects()) { 1833 ShenandoahForwardedIsAliveClosure is_alive; 1834 ShenandoahUpdateRefsClosure keep_alive; 1835 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 1836 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 1837 _workers->run_task(&cleaning_task); 1838 } else { 1839 ShenandoahIsAliveClosure is_alive; 1840 #ifdef ASSERT 1841 ShenandoahAssertNotForwardedClosure verify_cl; 1842 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 1843 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 1844 #else 1845 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 1846 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 1847 #endif 1848 _workers->run_task(&cleaning_task); 1849 } 1850 } 1851 1852 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 1853 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1854 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 1855 ShenandoahGCPhase phase(full_gc ? 1856 ShenandoahPhaseTimings::full_gc_purge : 1857 ShenandoahPhaseTimings::degen_gc_purge); 1858 stw_weak_refs(full_gc); 1859 stw_process_weak_roots(full_gc); 1860 stw_unload_classes(full_gc); 1861 } 1862 1863 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 1864 set_gc_state(HAS_FORWARDED, cond); 1865 } 1866 1867 void ShenandoahHeap::set_unload_classes(bool uc) { 1868 _unload_classes.set_cond(uc); 1869 } 1870 1871 bool ShenandoahHeap::unload_classes() const { 1872 return _unload_classes.is_set(); 1873 } 1874 1875 address ShenandoahHeap::in_cset_fast_test_addr() { 1876 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1877 assert(heap->collection_set() != nullptr, "Sanity"); 1878 return (address) heap->collection_set()->biased_map_address(); 1879 } 1880 1881 size_t ShenandoahHeap::bytes_allocated_since_gc_start() { 1882 return Atomic::load(&_bytes_allocated_since_gc_start); 1883 } 1884 1885 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 1886 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 1887 } 1888 1889 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 1890 _degenerated_gc_in_progress.set_cond(in_progress); 1891 } 1892 1893 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 1894 _full_gc_in_progress.set_cond(in_progress); 1895 } 1896 1897 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 1898 assert (is_full_gc_in_progress(), "should be"); 1899 _full_gc_move_in_progress.set_cond(in_progress); 1900 } 1901 1902 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 1903 set_gc_state(UPDATEREFS, in_progress); 1904 } 1905 1906 void ShenandoahHeap::register_nmethod(nmethod* nm) { 1907 ShenandoahCodeRoots::register_nmethod(nm); 1908 } 1909 1910 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 1911 ShenandoahCodeRoots::unregister_nmethod(nm); 1912 } 1913 1914 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 1915 heap_region_containing(o)->record_pin(); 1916 } 1917 1918 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 1919 ShenandoahHeapRegion* r = heap_region_containing(o); 1920 assert(r != nullptr, "Sanity"); 1921 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 1922 r->record_unpin(); 1923 } 1924 1925 void ShenandoahHeap::sync_pinned_region_status() { 1926 ShenandoahHeapLocker locker(lock()); 1927 1928 for (size_t i = 0; i < num_regions(); i++) { 1929 ShenandoahHeapRegion *r = get_region(i); 1930 if (r->is_active()) { 1931 if (r->is_pinned()) { 1932 if (r->pin_count() == 0) { 1933 r->make_unpinned(); 1934 } 1935 } else { 1936 if (r->pin_count() > 0) { 1937 r->make_pinned(); 1938 } 1939 } 1940 } 1941 } 1942 1943 assert_pinned_region_status(); 1944 } 1945 1946 #ifdef ASSERT 1947 void ShenandoahHeap::assert_pinned_region_status() { 1948 for (size_t i = 0; i < num_regions(); i++) { 1949 ShenandoahHeapRegion* r = get_region(i); 1950 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 1951 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 1952 } 1953 } 1954 #endif 1955 1956 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 1957 return _gc_timer; 1958 } 1959 1960 void ShenandoahHeap::prepare_concurrent_roots() { 1961 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1962 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1963 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 1964 set_concurrent_weak_root_in_progress(true); 1965 if (unload_classes()) { 1966 _unloader.prepare(); 1967 } 1968 } 1969 1970 void ShenandoahHeap::finish_concurrent_roots() { 1971 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1972 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1973 if (unload_classes()) { 1974 _unloader.finish(); 1975 } 1976 } 1977 1978 #ifdef ASSERT 1979 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 1980 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 1981 1982 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1983 if (UseDynamicNumberOfGCThreads) { 1984 assert(nworkers <= ParallelGCThreads, "Cannot use more than it has"); 1985 } else { 1986 // Use ParallelGCThreads inside safepoints 1987 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints"); 1988 } 1989 } else { 1990 if (UseDynamicNumberOfGCThreads) { 1991 assert(nworkers <= ConcGCThreads, "Cannot use more than it has"); 1992 } else { 1993 // Use ConcGCThreads outside safepoints 1994 assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints"); 1995 } 1996 } 1997 } 1998 #endif 1999 2000 ShenandoahVerifier* ShenandoahHeap::verifier() { 2001 guarantee(ShenandoahVerify, "Should be enabled"); 2002 assert (_verifier != nullptr, "sanity"); 2003 return _verifier; 2004 } 2005 2006 template<bool CONCURRENT> 2007 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2008 private: 2009 ShenandoahHeap* _heap; 2010 ShenandoahRegionIterator* _regions; 2011 public: 2012 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2013 WorkerTask("Shenandoah Update References"), 2014 _heap(ShenandoahHeap::heap()), 2015 _regions(regions) { 2016 } 2017 2018 void work(uint worker_id) { 2019 if (CONCURRENT) { 2020 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2021 ShenandoahSuspendibleThreadSetJoiner stsj; 2022 do_work<ShenandoahConcUpdateRefsClosure>(); 2023 } else { 2024 ShenandoahParallelWorkerSession worker_session(worker_id); 2025 do_work<ShenandoahSTWUpdateRefsClosure>(); 2026 } 2027 } 2028 2029 private: 2030 template<class T> 2031 void do_work() { 2032 T cl; 2033 ShenandoahHeapRegion* r = _regions->next(); 2034 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2035 while (r != nullptr) { 2036 HeapWord* update_watermark = r->get_update_watermark(); 2037 assert (update_watermark >= r->bottom(), "sanity"); 2038 if (r->is_active() && !r->is_cset()) { 2039 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2040 } 2041 if (ShenandoahPacing) { 2042 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2043 } 2044 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2045 return; 2046 } 2047 r = _regions->next(); 2048 } 2049 } 2050 }; 2051 2052 void ShenandoahHeap::update_heap_references(bool concurrent) { 2053 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2054 2055 if (concurrent) { 2056 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2057 workers()->run_task(&task); 2058 } else { 2059 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2060 workers()->run_task(&task); 2061 } 2062 } 2063 2064 2065 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2066 private: 2067 ShenandoahHeapLock* const _lock; 2068 2069 public: 2070 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2071 2072 void heap_region_do(ShenandoahHeapRegion* r) { 2073 // Drop unnecessary "pinned" state from regions that does not have CP marks 2074 // anymore, as this would allow trashing them. 2075 2076 if (r->is_active()) { 2077 if (r->is_pinned()) { 2078 if (r->pin_count() == 0) { 2079 ShenandoahHeapLocker locker(_lock); 2080 r->make_unpinned(); 2081 } 2082 } else { 2083 if (r->pin_count() > 0) { 2084 ShenandoahHeapLocker locker(_lock); 2085 r->make_pinned(); 2086 } 2087 } 2088 } 2089 } 2090 2091 bool is_thread_safe() { return true; } 2092 }; 2093 2094 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2095 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2096 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2097 2098 { 2099 ShenandoahGCPhase phase(concurrent ? 2100 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2101 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2102 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2103 parallel_heap_region_iterate(&cl); 2104 2105 assert_pinned_region_status(); 2106 } 2107 2108 { 2109 ShenandoahGCPhase phase(concurrent ? 2110 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2111 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2112 trash_cset_regions(); 2113 } 2114 } 2115 2116 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2117 { 2118 ShenandoahGCPhase phase(concurrent ? 2119 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2120 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2121 ShenandoahHeapLocker locker(lock()); 2122 _free_set->rebuild(); 2123 } 2124 } 2125 2126 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2127 print_on(st); 2128 st->cr(); 2129 print_heap_regions_on(st); 2130 } 2131 2132 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2133 size_t slice = r->index() / _bitmap_regions_per_slice; 2134 2135 size_t regions_from = _bitmap_regions_per_slice * slice; 2136 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2137 for (size_t g = regions_from; g < regions_to; g++) { 2138 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2139 if (skip_self && g == r->index()) continue; 2140 if (get_region(g)->is_committed()) { 2141 return true; 2142 } 2143 } 2144 return false; 2145 } 2146 2147 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2148 shenandoah_assert_heaplocked(); 2149 2150 // Bitmaps in special regions do not need commits 2151 if (_bitmap_region_special) { 2152 return true; 2153 } 2154 2155 if (is_bitmap_slice_committed(r, true)) { 2156 // Some other region from the group is already committed, meaning the bitmap 2157 // slice is already committed, we exit right away. 2158 return true; 2159 } 2160 2161 // Commit the bitmap slice: 2162 size_t slice = r->index() / _bitmap_regions_per_slice; 2163 size_t off = _bitmap_bytes_per_slice * slice; 2164 size_t len = _bitmap_bytes_per_slice; 2165 char* start = (char*) _bitmap_region.start() + off; 2166 2167 if (!os::commit_memory(start, len, false)) { 2168 return false; 2169 } 2170 2171 if (AlwaysPreTouch) { 2172 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2173 } 2174 2175 return true; 2176 } 2177 2178 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2179 shenandoah_assert_heaplocked(); 2180 2181 // Bitmaps in special regions do not need uncommits 2182 if (_bitmap_region_special) { 2183 return true; 2184 } 2185 2186 if (is_bitmap_slice_committed(r, true)) { 2187 // Some other region from the group is still committed, meaning the bitmap 2188 // slice is should stay committed, exit right away. 2189 return true; 2190 } 2191 2192 // Uncommit the bitmap slice: 2193 size_t slice = r->index() / _bitmap_regions_per_slice; 2194 size_t off = _bitmap_bytes_per_slice * slice; 2195 size_t len = _bitmap_bytes_per_slice; 2196 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2197 return false; 2198 } 2199 return true; 2200 } 2201 2202 void ShenandoahHeap::safepoint_synchronize_begin() { 2203 SuspendibleThreadSet::synchronize(); 2204 } 2205 2206 void ShenandoahHeap::safepoint_synchronize_end() { 2207 SuspendibleThreadSet::desynchronize(); 2208 } 2209 2210 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) { 2211 static const char *msg = "Concurrent uncommit"; 2212 ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 2213 EventMark em("%s", msg); 2214 2215 op_uncommit(shrink_before, shrink_until); 2216 } 2217 2218 void ShenandoahHeap::try_inject_alloc_failure() { 2219 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2220 _inject_alloc_failure.set(); 2221 os::naked_short_sleep(1); 2222 if (cancelled_gc()) { 2223 log_info(gc)("Allocation failure was successfully injected"); 2224 } 2225 } 2226 } 2227 2228 bool ShenandoahHeap::should_inject_alloc_failure() { 2229 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2230 } 2231 2232 void ShenandoahHeap::initialize_serviceability() { 2233 _memory_pool = new ShenandoahMemoryPool(this); 2234 _cycle_memory_manager.add_pool(_memory_pool); 2235 _stw_memory_manager.add_pool(_memory_pool); 2236 } 2237 2238 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2239 GrowableArray<GCMemoryManager*> memory_managers(2); 2240 memory_managers.append(&_cycle_memory_manager); 2241 memory_managers.append(&_stw_memory_manager); 2242 return memory_managers; 2243 } 2244 2245 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2246 GrowableArray<MemoryPool*> memory_pools(1); 2247 memory_pools.append(_memory_pool); 2248 return memory_pools; 2249 } 2250 2251 MemoryUsage ShenandoahHeap::memory_usage() { 2252 return _memory_pool->get_memory_usage(); 2253 } 2254 2255 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2256 _heap(ShenandoahHeap::heap()), 2257 _index(0) {} 2258 2259 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2260 _heap(heap), 2261 _index(0) {} 2262 2263 void ShenandoahRegionIterator::reset() { 2264 _index = 0; 2265 } 2266 2267 bool ShenandoahRegionIterator::has_next() const { 2268 return _index < _heap->num_regions(); 2269 } 2270 2271 char ShenandoahHeap::gc_state() const { 2272 return _gc_state.raw_value(); 2273 } 2274 2275 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2276 #ifdef ASSERT 2277 assert(_liveness_cache != nullptr, "sanity"); 2278 assert(worker_id < _max_workers, "sanity"); 2279 for (uint i = 0; i < num_regions(); i++) { 2280 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2281 } 2282 #endif 2283 return _liveness_cache[worker_id]; 2284 } 2285 2286 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2287 assert(worker_id < _max_workers, "sanity"); 2288 assert(_liveness_cache != nullptr, "sanity"); 2289 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2290 for (uint i = 0; i < num_regions(); i++) { 2291 ShenandoahLiveData live = ld[i]; 2292 if (live > 0) { 2293 ShenandoahHeapRegion* r = get_region(i); 2294 r->increase_live_data_gc_words(live); 2295 ld[i] = 0; 2296 } 2297 } 2298 } 2299 2300 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2301 if (is_idle()) return false; 2302 2303 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2304 // marking phase. 2305 if (is_concurrent_mark_in_progress() && 2306 !marking_context()->allocated_after_mark_start(obj)) { 2307 return true; 2308 } 2309 2310 // Can not guarantee obj is deeply good. 2311 if (has_forwarded_objects()) { 2312 return true; 2313 } 2314 2315 return false; 2316 }