< prev index next >

src/hotspot/cpu/aarch64/aarch64.ad

Print this page

 1637 
 1638 int MachCallDynamicJavaNode::ret_addr_offset()
 1639 {
 1640   return 16; // movz, movk, movk, bl
 1641 }
 1642 
 1643 int MachCallRuntimeNode::ret_addr_offset() {
 1644   // for generated stubs the call will be
 1645   //   bl(addr)
 1646   // or with far branches
 1647   //   bl(trampoline_stub)
 1648   // for real runtime callouts it will be six instructions
 1649   // see aarch64_enc_java_to_runtime
 1650   //   adr(rscratch2, retaddr)
 1651   //   lea(rscratch1, RuntimeAddress(addr)
 1652   //   stp(zr, rscratch2, Address(__ pre(sp, -2 * wordSize)))
 1653   //   blr(rscratch1)
 1654   CodeBlob *cb = CodeCache::find_blob(_entry_point);
 1655   if (cb) {
 1656     return 1 * NativeInstruction::instruction_size;



 1657   } else {
 1658     return 6 * NativeInstruction::instruction_size;
 1659   }
 1660 }
 1661 
 1662 //=============================================================================
 1663 
 1664 #ifndef PRODUCT
 1665 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1666   st->print("BREAKPOINT");
 1667 }
 1668 #endif
 1669 
 1670 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1671   __ brk(0);
 1672 }
 1673 
 1674 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1675   return MachNode::size(ra_);
 1676 }

 1745   if (C->stub_function() == nullptr && BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) {
 1746     st->print("\n\t");
 1747     st->print("ldr  rscratch1, [guard]\n\t");
 1748     st->print("dmb ishld\n\t");
 1749     st->print("ldr  rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t");
 1750     st->print("cmp  rscratch1, rscratch2\n\t");
 1751     st->print("b.eq skip");
 1752     st->print("\n\t");
 1753     st->print("blr #nmethod_entry_barrier_stub\n\t");
 1754     st->print("b skip\n\t");
 1755     st->print("guard: int\n\t");
 1756     st->print("\n\t");
 1757     st->print("skip:\n\t");
 1758   }
 1759 }
 1760 #endif
 1761 
 1762 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1763   Compile* C = ra_->C;
 1764 
 1765   // n.b. frame size includes space for return pc and rfp
 1766   const int framesize = C->output()->frame_size_in_bytes();
 1767 
 1768   // insert a nop at the start of the prolog so we can patch in a
 1769   // branch if we need to invalidate the method later
 1770   __ nop();
 1771 
 1772   if (C->clinit_barrier_on_entry()) {
 1773     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 1774 
 1775     Label L_skip_barrier;
 1776 
 1777     __ mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
 1778     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 1779     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 1780     __ bind(L_skip_barrier);
 1781   }
 1782 
 1783   if (C->max_vector_size() > 0) {
 1784     __ reinitialize_ptrue();
 1785   }
 1786 
 1787   int bangsize = C->output()->bang_size_in_bytes();
 1788   if (C->output()->need_stack_bang(bangsize))
 1789     __ generate_stack_overflow_check(bangsize);
 1790 
 1791   __ build_frame(framesize);
 1792 
 1793   if (C->stub_function() == nullptr) {
 1794     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 1795     if (BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) {
 1796       // Dummy labels for just measuring the code size
 1797       Label dummy_slow_path;
 1798       Label dummy_continuation;
 1799       Label dummy_guard;
 1800       Label* slow_path = &dummy_slow_path;
 1801       Label* continuation = &dummy_continuation;
 1802       Label* guard = &dummy_guard;
 1803       if (!Compile::current()->output()->in_scratch_emit_size()) {
 1804         // Use real labels from actual stub when not emitting code for the purpose of measuring its size
 1805         C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub();
 1806         Compile::current()->output()->add_stub(stub);
 1807         slow_path = &stub->entry();
 1808         continuation = &stub->continuation();
 1809         guard = &stub->guard();
 1810       }
 1811       // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub.
 1812       bs->nmethod_entry_barrier(masm, slow_path, continuation, guard);
 1813     }
 1814   }
 1815 
 1816   if (VerifyStackAtCalls) {
 1817     Unimplemented();
 1818   }
 1819 
 1820   C->output()->set_frame_complete(__ offset());
 1821 
 1822   if (C->has_mach_constant_base_node()) {
 1823     // NOTE: We set the table base offset here because users might be
 1824     // emitted before MachConstantBaseNode.
 1825     ConstantTable& constant_table = C->output()->constant_table();
 1826     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1827   }
 1828 }
 1829 
 1830 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 1831 {
 1832   return MachNode::size(ra_); // too many variables; just compute it
 1833                               // the hard way
 1834 }
 1835 
 1836 int MachPrologNode::reloc() const
 1837 {
 1838   return 0;
 1839 }
 1840 
 1841 //=============================================================================
 1842 
 1843 #ifndef PRODUCT
 1844 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1845   Compile* C = ra_->C;
 1846   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1847 
 1848   st->print("# pop frame %d\n\t",framesize);
 1849 
 1850   if (framesize == 0) {
 1851     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1852   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
 1853     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
 1854     st->print("add  sp, sp, #%d\n\t", framesize);
 1855   } else {

 1858     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1859   }
 1860   if (VM_Version::use_rop_protection()) {
 1861     st->print("autiaz\n\t");
 1862     st->print("ldr  zr, [lr]\n\t");
 1863   }
 1864 
 1865   if (do_polling() && C->is_method_compilation()) {
 1866     st->print("# test polling word\n\t");
 1867     st->print("ldr  rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset()));
 1868     st->print("cmp  sp, rscratch1\n\t");
 1869     st->print("bhi #slow_path");
 1870   }
 1871 }
 1872 #endif
 1873 
 1874 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1875   Compile* C = ra_->C;
 1876   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1877 
 1878   __ remove_frame(framesize);
 1879 
 1880   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1881     __ reserved_stack_check();
 1882   }
 1883 
 1884   if (do_polling() && C->is_method_compilation()) {
 1885     Label dummy_label;
 1886     Label* code_stub = &dummy_label;
 1887     if (!C->output()->in_scratch_emit_size()) {
 1888       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1889       C->output()->add_stub(stub);
 1890       code_stub = &stub->entry();
 1891     }
 1892     __ relocate(relocInfo::poll_return_type);
 1893     __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */);
 1894   }
 1895 }
 1896 
 1897 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 1898   // Variable size. Determine dynamically.
 1899   return MachNode::size(ra_);
 1900 }
 1901 
 1902 int MachEpilogNode::reloc() const {
 1903   // Return number of relocatable values contained in this instruction.
 1904   return 1; // 1 for polling page.
 1905 }
 1906 
 1907 const Pipeline * MachEpilogNode::pipeline() const {
 1908   return MachNode::pipeline_class();
 1909 }
 1910 
 1911 //=============================================================================
 1912 
 1913 static enum RC rc_class(OptoReg::Name reg) {
 1914 
 1915   if (reg == OptoReg::Bad) {
 1916     return rc_bad;
 1917   }
 1918 
 1919   // we have 32 int registers * 2 halves
 1920   int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register;
 1921 

 2177 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2178   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2179   int reg    = ra_->get_encode(this);
 2180 
 2181   // This add will handle any 24-bit signed offset. 24 bits allows an
 2182   // 8 megabyte stack frame.
 2183   __ add(as_Register(reg), sp, offset);
 2184 }
 2185 
 2186 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 2187   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 2188   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2189 
 2190   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
 2191     return NativeInstruction::instruction_size;
 2192   } else {
 2193     return 2 * NativeInstruction::instruction_size;
 2194   }
 2195 }
 2196 
 2197 //=============================================================================









































 2198 

 2199 #ifndef PRODUCT
 2200 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2201 {
 2202   st->print_cr("# MachUEPNode");
 2203   if (UseCompressedClassPointers) {
 2204     st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2205     st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2206     st->print_cr("\tcmpw rscratch1, r10");
 2207   } else {
 2208     st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2209     st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2210     st->print_cr("\tcmp rscratch1, r10");
 2211   }
 2212   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
 2213 }
 2214 #endif
 2215 
 2216 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 2217 {
 2218   __ ic_check(InteriorEntryAlignment);
 2219 }
 2220 
 2221 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
 2222 {
 2223   return MachNode::size(ra_);
 2224 }
 2225 
 2226 // REQUIRED EMIT CODE
 2227 
 2228 //=============================================================================
 2229 
 2230 // Emit exception handler code.
 2231 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm)
 2232 {
 2233   // mov rscratch1 #exception_blob_entry_point
 2234   // br rscratch1
 2235   // Note that the code buffer's insts_mark is always relative to insts.
 2236   // That's why we must use the macroassembler to generate a handler.
 2237   address base = __ start_a_stub(size_exception_handler());
 2238   if (base == nullptr) {
 2239     ciEnv::current()->record_failure("CodeCache is full");
 2240     return 0;  // CodeBuffer::expand failed
 2241   }
 2242   int offset = __ offset();
 2243   __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
 2244   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
 2245   __ end_a_stub();

 3661   %}
 3662 
 3663   enc_class aarch64_enc_java_dynamic_call(method meth) %{
 3664     int method_index = resolved_method_index(masm);
 3665     address call = __ ic_call((address)$meth$$method, method_index);
 3666     if (call == nullptr) {
 3667       ciEnv::current()->record_failure("CodeCache is full");
 3668       return;
 3669     }
 3670     __ post_call_nop();
 3671     if (Compile::current()->max_vector_size() > 0) {
 3672       __ reinitialize_ptrue();
 3673     }
 3674   %}
 3675 
 3676   enc_class aarch64_enc_call_epilog() %{
 3677     if (VerifyStackAtCalls) {
 3678       // Check that stack depth is unchanged: find majik cookie on stack
 3679       __ call_Unimplemented();
 3680     }































 3681   %}
 3682 
 3683   enc_class aarch64_enc_java_to_runtime(method meth) %{
 3684     // some calls to generated routines (arraycopy code) are scheduled
 3685     // by C2 as runtime calls. if so we can call them using a br (they
 3686     // will be in a reachable segment) otherwise we have to use a blr
 3687     // which loads the absolute address into a register.
 3688     address entry = (address)$meth$$method;
 3689     CodeBlob *cb = CodeCache::find_blob(entry);
 3690     if (cb) {
 3691       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
 3692       if (call == nullptr) {
 3693         ciEnv::current()->record_failure("CodeCache is full");
 3694         return;
 3695       }
 3696       __ post_call_nop();
 3697     } else {
 3698       Label retaddr;
 3699       __ adr(rscratch2, retaddr);
 3700       __ lea(rscratch1, RuntimeAddress(entry));

 6738 instruct loadConL(iRegLNoSp dst, immL src)
 6739 %{
 6740   match(Set dst src);
 6741 
 6742   ins_cost(INSN_COST);
 6743   format %{ "mov $dst, $src\t# long" %}
 6744 
 6745   ins_encode( aarch64_enc_mov_imm(dst, src) );
 6746 
 6747   ins_pipe(ialu_imm);
 6748 %}
 6749 
 6750 // Load Pointer Constant
 6751 
 6752 instruct loadConP(iRegPNoSp dst, immP con)
 6753 %{
 6754   match(Set dst con);
 6755 
 6756   ins_cost(INSN_COST * 4);
 6757   format %{
 6758     "mov  $dst, $con\t# ptr\n\t"
 6759   %}
 6760 
 6761   ins_encode(aarch64_enc_mov_p(dst, con));
 6762 
 6763   ins_pipe(ialu_imm);
 6764 %}
 6765 
 6766 // Load Null Pointer Constant
 6767 
 6768 instruct loadConP0(iRegPNoSp dst, immP0 con)
 6769 %{
 6770   match(Set dst con);
 6771 
 6772   ins_cost(INSN_COST);
 6773   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6774 
 6775   ins_encode(aarch64_enc_mov_p0(dst, con));
 6776 
 6777   ins_pipe(ialu_imm);
 6778 %}

 7934 %}
 7935 
 7936 // ============================================================================
 7937 // Cast/Convert Instructions
 7938 
 7939 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 7940   match(Set dst (CastX2P src));
 7941 
 7942   ins_cost(INSN_COST);
 7943   format %{ "mov $dst, $src\t# long -> ptr" %}
 7944 
 7945   ins_encode %{
 7946     if ($dst$$reg != $src$$reg) {
 7947       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 7948     }
 7949   %}
 7950 
 7951   ins_pipe(ialu_reg);
 7952 %}
 7953 















 7954 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 7955   match(Set dst (CastP2X src));
 7956 
 7957   ins_cost(INSN_COST);
 7958   format %{ "mov $dst, $src\t# ptr -> long" %}
 7959 
 7960   ins_encode %{
 7961     if ($dst$$reg != $src$$reg) {
 7962       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 7963     }
 7964   %}
 7965 
 7966   ins_pipe(ialu_reg);
 7967 %}
 7968 
 7969 // Convert oop into int for vectors alignment masking
 7970 instruct convP2I(iRegINoSp dst, iRegP src) %{
 7971   match(Set dst (ConvL2I (CastP2X src)));
 7972 
 7973   ins_cost(INSN_COST);

14759 
14760   match(Set dst (MoveL2D src));
14761 
14762   effect(DEF dst, USE src);
14763 
14764   ins_cost(INSN_COST);
14765 
14766   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
14767 
14768   ins_encode %{
14769     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
14770   %}
14771 
14772   ins_pipe(fp_l2d);
14773 
14774 %}
14775 
14776 // ============================================================================
14777 // clearing of an array
14778 
14779 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr)
14780 %{
14781   match(Set dummy (ClearArray cnt base));
14782   effect(USE_KILL cnt, USE_KILL base, KILL cr);
14783 
14784   ins_cost(4 * INSN_COST);
14785   format %{ "ClearArray $cnt, $base" %}
14786 
14787   ins_encode %{
14788     address tpc = __ zero_words($base$$Register, $cnt$$Register);
14789     if (tpc == nullptr) {
14790       ciEnv::current()->record_failure("CodeCache is full");
14791       return;
14792     }
14793   %}
14794 
14795   ins_pipe(pipe_class_memory);
14796 %}
14797 
















14798 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr)
14799 %{
14800   predicate((uint64_t)n->in(2)->get_long()
14801             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord));

14802   match(Set dummy (ClearArray cnt base));
14803   effect(TEMP temp, USE_KILL base, KILL cr);
14804 
14805   ins_cost(4 * INSN_COST);
14806   format %{ "ClearArray $cnt, $base" %}
14807 
14808   ins_encode %{
14809     address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
14810     if (tpc == nullptr) {
14811       ciEnv::current()->record_failure("CodeCache is full");
14812       return;
14813     }
14814   %}
14815 
14816   ins_pipe(pipe_class_memory);
14817 %}
14818 
14819 // ============================================================================
14820 // Overflow Math Instructions
14821 

16132 %}
16133 
16134 // Call Runtime Instruction without safepoint and with vector arguments
16135 instruct CallLeafDirectVector(method meth)
16136 %{
16137   match(CallLeafVector);
16138 
16139   effect(USE meth);
16140 
16141   ins_cost(CALL_COST);
16142 
16143   format %{ "CALL, runtime leaf vector $meth" %}
16144 
16145   ins_encode(aarch64_enc_java_to_runtime(meth));
16146 
16147   ins_pipe(pipe_class_call);
16148 %}
16149 
16150 // Call Runtime Instruction
16151 


















16152 instruct CallLeafNoFPDirect(method meth)
16153 %{


16154   match(CallLeafNoFP);
16155 
16156   effect(USE meth);
16157 
16158   ins_cost(CALL_COST);
16159 
16160   format %{ "CALL, runtime leaf nofp $meth" %}
16161 
16162   ins_encode( aarch64_enc_java_to_runtime(meth) );
16163 
16164   ins_pipe(pipe_class_call);
16165 %}
16166 
16167 // Tail Call; Jump from runtime stub to Java code.
16168 // Also known as an 'interprocedural jump'.
16169 // Target of jump will eventually return to caller.
16170 // TailJump below removes the return address.
16171 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been
16172 // emitted just above the TailCall which has reset rfp to the caller state.
16173 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr)

 1637 
 1638 int MachCallDynamicJavaNode::ret_addr_offset()
 1639 {
 1640   return 16; // movz, movk, movk, bl
 1641 }
 1642 
 1643 int MachCallRuntimeNode::ret_addr_offset() {
 1644   // for generated stubs the call will be
 1645   //   bl(addr)
 1646   // or with far branches
 1647   //   bl(trampoline_stub)
 1648   // for real runtime callouts it will be six instructions
 1649   // see aarch64_enc_java_to_runtime
 1650   //   adr(rscratch2, retaddr)
 1651   //   lea(rscratch1, RuntimeAddress(addr)
 1652   //   stp(zr, rscratch2, Address(__ pre(sp, -2 * wordSize)))
 1653   //   blr(rscratch1)
 1654   CodeBlob *cb = CodeCache::find_blob(_entry_point);
 1655   if (cb) {
 1656     return 1 * NativeInstruction::instruction_size;
 1657   } else if (_entry_point == nullptr) {
 1658     // See CallLeafNoFPIndirect
 1659     return 1 * NativeInstruction::instruction_size;
 1660   } else {
 1661     return 6 * NativeInstruction::instruction_size;
 1662   }
 1663 }
 1664 
 1665 //=============================================================================
 1666 
 1667 #ifndef PRODUCT
 1668 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1669   st->print("BREAKPOINT");
 1670 }
 1671 #endif
 1672 
 1673 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1674   __ brk(0);
 1675 }
 1676 
 1677 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1678   return MachNode::size(ra_);
 1679 }

 1748   if (C->stub_function() == nullptr && BarrierSet::barrier_set()->barrier_set_nmethod() != nullptr) {
 1749     st->print("\n\t");
 1750     st->print("ldr  rscratch1, [guard]\n\t");
 1751     st->print("dmb ishld\n\t");
 1752     st->print("ldr  rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t");
 1753     st->print("cmp  rscratch1, rscratch2\n\t");
 1754     st->print("b.eq skip");
 1755     st->print("\n\t");
 1756     st->print("blr #nmethod_entry_barrier_stub\n\t");
 1757     st->print("b skip\n\t");
 1758     st->print("guard: int\n\t");
 1759     st->print("\n\t");
 1760     st->print("skip:\n\t");
 1761   }
 1762 }
 1763 #endif
 1764 
 1765 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1766   Compile* C = ra_->C;
 1767 



 1768   // insert a nop at the start of the prolog so we can patch in a
 1769   // branch if we need to invalidate the method later
 1770   __ nop();
 1771 
 1772   __ verified_entry(C, 0);









 1773 
 1774   if (C->stub_function() == nullptr) {
 1775     __ entry_barrier();
 1776   }
 1777 
 1778   if (!Compile::current()->output()->in_scratch_emit_size()) {
 1779     __ bind(*_verified_entry);

























 1780   }
 1781 
 1782   if (VerifyStackAtCalls) {
 1783     Unimplemented();
 1784   }
 1785 
 1786   C->output()->set_frame_complete(__ offset());
 1787 
 1788   if (C->has_mach_constant_base_node()) {
 1789     // NOTE: We set the table base offset here because users might be
 1790     // emitted before MachConstantBaseNode.
 1791     ConstantTable& constant_table = C->output()->constant_table();
 1792     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1793   }
 1794 }
 1795 






 1796 int MachPrologNode::reloc() const
 1797 {
 1798   return 0;
 1799 }
 1800 
 1801 //=============================================================================
 1802 
 1803 #ifndef PRODUCT
 1804 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1805   Compile* C = ra_->C;
 1806   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1807 
 1808   st->print("# pop frame %d\n\t",framesize);
 1809 
 1810   if (framesize == 0) {
 1811     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1812   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
 1813     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
 1814     st->print("add  sp, sp, #%d\n\t", framesize);
 1815   } else {

 1818     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1819   }
 1820   if (VM_Version::use_rop_protection()) {
 1821     st->print("autiaz\n\t");
 1822     st->print("ldr  zr, [lr]\n\t");
 1823   }
 1824 
 1825   if (do_polling() && C->is_method_compilation()) {
 1826     st->print("# test polling word\n\t");
 1827     st->print("ldr  rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset()));
 1828     st->print("cmp  sp, rscratch1\n\t");
 1829     st->print("bhi #slow_path");
 1830   }
 1831 }
 1832 #endif
 1833 
 1834 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1835   Compile* C = ra_->C;
 1836   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1837 
 1838   __ remove_frame(framesize, C->needs_stack_repair());
 1839 
 1840   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1841     __ reserved_stack_check();
 1842   }
 1843 
 1844   if (do_polling() && C->is_method_compilation()) {
 1845     Label dummy_label;
 1846     Label* code_stub = &dummy_label;
 1847     if (!C->output()->in_scratch_emit_size()) {
 1848       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1849       C->output()->add_stub(stub);
 1850       code_stub = &stub->entry();
 1851     }
 1852     __ relocate(relocInfo::poll_return_type);
 1853     __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */);
 1854   }
 1855 }
 1856 





 1857 int MachEpilogNode::reloc() const {
 1858   // Return number of relocatable values contained in this instruction.
 1859   return 1; // 1 for polling page.
 1860 }
 1861 
 1862 const Pipeline * MachEpilogNode::pipeline() const {
 1863   return MachNode::pipeline_class();
 1864 }
 1865 
 1866 //=============================================================================
 1867 
 1868 static enum RC rc_class(OptoReg::Name reg) {
 1869 
 1870   if (reg == OptoReg::Bad) {
 1871     return rc_bad;
 1872   }
 1873 
 1874   // we have 32 int registers * 2 halves
 1875   int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register;
 1876 

 2132 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2133   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2134   int reg    = ra_->get_encode(this);
 2135 
 2136   // This add will handle any 24-bit signed offset. 24 bits allows an
 2137   // 8 megabyte stack frame.
 2138   __ add(as_Register(reg), sp, offset);
 2139 }
 2140 
 2141 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 2142   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 2143   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2144 
 2145   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
 2146     return NativeInstruction::instruction_size;
 2147   } else {
 2148     return 2 * NativeInstruction::instruction_size;
 2149   }
 2150 }
 2151 
 2152 ///=============================================================================
 2153 #ifndef PRODUCT
 2154 void MachVEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2155 {
 2156   st->print_cr("# MachVEPNode");
 2157   if (!_verified) {
 2158     st->print_cr("\t load_class");
 2159   } else {
 2160     st->print_cr("\t unpack_inline_arg");
 2161   }
 2162 }
 2163 #endif
 2164 
 2165 void MachVEPNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc* ra_) const
 2166 {
 2167   if (!_verified) {
 2168     __ ic_check(1);
 2169   } else {
 2170     // insert a nop at the start of the prolog so we can patch in a
 2171     // branch if we need to invalidate the method later
 2172     __ nop();
 2173 
 2174     // TODO 8284443 Avoid creation of temporary frame
 2175     if (ra_->C->stub_function() == nullptr) {
 2176       __ verified_entry(ra_->C, 0);
 2177       __ entry_barrier();
 2178       int framesize = ra_->C->output()->frame_slots() << LogBytesPerInt;
 2179       __ remove_frame(framesize, false);
 2180     }
 2181     // Unpack inline type args passed as oop and then jump to
 2182     // the verified entry point (skipping the unverified entry).
 2183     int sp_inc = __ unpack_inline_args(ra_->C, _receiver_only);
 2184     // Emit code for verified entry and save increment for stack repair on return
 2185     __ verified_entry(ra_->C, sp_inc);
 2186     if (Compile::current()->output()->in_scratch_emit_size()) {
 2187       Label dummy_verified_entry;
 2188       __ b(dummy_verified_entry);
 2189     } else {
 2190       __ b(*_verified_entry);
 2191     }
 2192   }
 2193 }
 2194 
 2195 //=============================================================================
 2196 #ifndef PRODUCT
 2197 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2198 {
 2199   st->print_cr("# MachUEPNode");
 2200   if (UseCompressedClassPointers) {
 2201     st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2202     st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2203     st->print_cr("\tcmpw rscratch1, r10");
 2204   } else {
 2205     st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2206     st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2207     st->print_cr("\tcmp rscratch1, r10");
 2208   }
 2209   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
 2210 }
 2211 #endif
 2212 
 2213 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 2214 {
 2215   __ ic_check(InteriorEntryAlignment);
 2216 }
 2217 





 2218 // REQUIRED EMIT CODE
 2219 
 2220 //=============================================================================
 2221 
 2222 // Emit exception handler code.
 2223 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm)
 2224 {
 2225   // mov rscratch1 #exception_blob_entry_point
 2226   // br rscratch1
 2227   // Note that the code buffer's insts_mark is always relative to insts.
 2228   // That's why we must use the macroassembler to generate a handler.
 2229   address base = __ start_a_stub(size_exception_handler());
 2230   if (base == nullptr) {
 2231     ciEnv::current()->record_failure("CodeCache is full");
 2232     return 0;  // CodeBuffer::expand failed
 2233   }
 2234   int offset = __ offset();
 2235   __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
 2236   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
 2237   __ end_a_stub();

 3653   %}
 3654 
 3655   enc_class aarch64_enc_java_dynamic_call(method meth) %{
 3656     int method_index = resolved_method_index(masm);
 3657     address call = __ ic_call((address)$meth$$method, method_index);
 3658     if (call == nullptr) {
 3659       ciEnv::current()->record_failure("CodeCache is full");
 3660       return;
 3661     }
 3662     __ post_call_nop();
 3663     if (Compile::current()->max_vector_size() > 0) {
 3664       __ reinitialize_ptrue();
 3665     }
 3666   %}
 3667 
 3668   enc_class aarch64_enc_call_epilog() %{
 3669     if (VerifyStackAtCalls) {
 3670       // Check that stack depth is unchanged: find majik cookie on stack
 3671       __ call_Unimplemented();
 3672     }
 3673     if (tf()->returns_inline_type_as_fields() && !_method->is_method_handle_intrinsic()) {
 3674       // The last return value is not set by the callee but used to pass IsInit information to compiled code.
 3675       // Search for the corresponding projection, get the register and emit code that initialized it.
 3676       uint con = (tf()->range_cc()->cnt() - 1);
 3677       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 3678         ProjNode* proj = fast_out(i)->as_Proj();
 3679         if (proj->_con == con) {
 3680           // Set IsInit if r0 is non-null (a non-null value is returned buffered or scalarized)
 3681           OptoReg::Name optoReg = ra_->get_reg_first(proj);
 3682           VMReg reg = OptoReg::as_VMReg(optoReg, ra_->_framesize, OptoReg::reg2stack(ra_->_matcher._new_SP));
 3683           Register toReg = reg->is_reg() ? reg->as_Register() : rscratch1;
 3684           __ cmp(r0, zr);
 3685           __ cset(toReg, Assembler::NE);
 3686           if (reg->is_stack()) {
 3687             int st_off = reg->reg2stack() * VMRegImpl::stack_slot_size;
 3688             __ str(toReg, Address(sp, st_off));
 3689           }
 3690           break;
 3691         }
 3692       }
 3693       if (return_value_is_used()) {
 3694         // An inline type is returned as fields in multiple registers.
 3695         // R0 either contains an oop if the inline type is buffered or a pointer
 3696         // to the corresponding InlineKlass with the lowest bit set to 1. Zero r0
 3697         // if the lowest bit is set to allow C2 to use the oop after null checking.
 3698         // r0 &= (r0 & 1) - 1
 3699         __ andr(rscratch1, r0, 0x1);
 3700         __ sub(rscratch1, rscratch1, 0x1);
 3701         __ andr(r0, r0, rscratch1);
 3702       }
 3703     }
 3704   %}
 3705 
 3706   enc_class aarch64_enc_java_to_runtime(method meth) %{
 3707     // some calls to generated routines (arraycopy code) are scheduled
 3708     // by C2 as runtime calls. if so we can call them using a br (they
 3709     // will be in a reachable segment) otherwise we have to use a blr
 3710     // which loads the absolute address into a register.
 3711     address entry = (address)$meth$$method;
 3712     CodeBlob *cb = CodeCache::find_blob(entry);
 3713     if (cb) {
 3714       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
 3715       if (call == nullptr) {
 3716         ciEnv::current()->record_failure("CodeCache is full");
 3717         return;
 3718       }
 3719       __ post_call_nop();
 3720     } else {
 3721       Label retaddr;
 3722       __ adr(rscratch2, retaddr);
 3723       __ lea(rscratch1, RuntimeAddress(entry));

 6761 instruct loadConL(iRegLNoSp dst, immL src)
 6762 %{
 6763   match(Set dst src);
 6764 
 6765   ins_cost(INSN_COST);
 6766   format %{ "mov $dst, $src\t# long" %}
 6767 
 6768   ins_encode( aarch64_enc_mov_imm(dst, src) );
 6769 
 6770   ins_pipe(ialu_imm);
 6771 %}
 6772 
 6773 // Load Pointer Constant
 6774 
 6775 instruct loadConP(iRegPNoSp dst, immP con)
 6776 %{
 6777   match(Set dst con);
 6778 
 6779   ins_cost(INSN_COST * 4);
 6780   format %{
 6781     "mov  $dst, $con\t# ptr"
 6782   %}
 6783 
 6784   ins_encode(aarch64_enc_mov_p(dst, con));
 6785 
 6786   ins_pipe(ialu_imm);
 6787 %}
 6788 
 6789 // Load Null Pointer Constant
 6790 
 6791 instruct loadConP0(iRegPNoSp dst, immP0 con)
 6792 %{
 6793   match(Set dst con);
 6794 
 6795   ins_cost(INSN_COST);
 6796   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6797 
 6798   ins_encode(aarch64_enc_mov_p0(dst, con));
 6799 
 6800   ins_pipe(ialu_imm);
 6801 %}

 7957 %}
 7958 
 7959 // ============================================================================
 7960 // Cast/Convert Instructions
 7961 
 7962 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 7963   match(Set dst (CastX2P src));
 7964 
 7965   ins_cost(INSN_COST);
 7966   format %{ "mov $dst, $src\t# long -> ptr" %}
 7967 
 7968   ins_encode %{
 7969     if ($dst$$reg != $src$$reg) {
 7970       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 7971     }
 7972   %}
 7973 
 7974   ins_pipe(ialu_reg);
 7975 %}
 7976 
 7977 instruct castN2X(iRegLNoSp dst, iRegN src) %{
 7978   match(Set dst (CastP2X src));
 7979 
 7980   ins_cost(INSN_COST);
 7981   format %{ "mov $dst, $src\t# ptr -> long" %}
 7982 
 7983   ins_encode %{
 7984     if ($dst$$reg != $src$$reg) {
 7985       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 7986     }
 7987   %}
 7988 
 7989   ins_pipe(ialu_reg);
 7990 %}
 7991 
 7992 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 7993   match(Set dst (CastP2X src));
 7994 
 7995   ins_cost(INSN_COST);
 7996   format %{ "mov $dst, $src\t# ptr -> long" %}
 7997 
 7998   ins_encode %{
 7999     if ($dst$$reg != $src$$reg) {
 8000       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8001     }
 8002   %}
 8003 
 8004   ins_pipe(ialu_reg);
 8005 %}
 8006 
 8007 // Convert oop into int for vectors alignment masking
 8008 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8009   match(Set dst (ConvL2I (CastP2X src)));
 8010 
 8011   ins_cost(INSN_COST);

14797 
14798   match(Set dst (MoveL2D src));
14799 
14800   effect(DEF dst, USE src);
14801 
14802   ins_cost(INSN_COST);
14803 
14804   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
14805 
14806   ins_encode %{
14807     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
14808   %}
14809 
14810   ins_pipe(fp_l2d);
14811 
14812 %}
14813 
14814 // ============================================================================
14815 // clearing of an array
14816 
14817 instruct clearArray_reg_reg_immL0(iRegL_R11 cnt, iRegP_R10 base, immL0 zero, Universe dummy, rFlagsReg cr)
14818 %{
14819   match(Set dummy (ClearArray (Binary cnt base) zero));
14820   effect(USE_KILL cnt, USE_KILL base, KILL cr);
14821 
14822   ins_cost(4 * INSN_COST);
14823   format %{ "ClearArray $cnt, $base" %}
14824 
14825   ins_encode %{
14826     address tpc = __ zero_words($base$$Register, $cnt$$Register);
14827     if (tpc == nullptr) {
14828       ciEnv::current()->record_failure("CodeCache is full");
14829       return;
14830     }
14831   %}
14832 
14833   ins_pipe(pipe_class_memory);
14834 %}
14835 
14836 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, iRegL val, Universe dummy, rFlagsReg cr)
14837 %{
14838   predicate(((ClearArrayNode*)n)->word_copy_only());
14839   match(Set dummy (ClearArray (Binary cnt base) val));
14840   effect(USE_KILL cnt, USE_KILL base, KILL cr);
14841 
14842   ins_cost(4 * INSN_COST);
14843   format %{ "ClearArray $cnt, $base, $val" %}
14844 
14845   ins_encode %{
14846     __ fill_words($base$$Register, $cnt$$Register, $val$$Register);
14847   %}
14848 
14849   ins_pipe(pipe_class_memory);
14850 %}
14851 
14852 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr)
14853 %{
14854   predicate((uint64_t)n->in(2)->get_long()
14855             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord)
14856             && !((ClearArrayNode*)n)->word_copy_only());
14857   match(Set dummy (ClearArray cnt base));
14858   effect(TEMP temp, USE_KILL base, KILL cr);
14859 
14860   ins_cost(4 * INSN_COST);
14861   format %{ "ClearArray $cnt, $base" %}
14862 
14863   ins_encode %{
14864     address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
14865     if (tpc == nullptr) {
14866       ciEnv::current()->record_failure("CodeCache is full");
14867       return;
14868     }
14869   %}
14870 
14871   ins_pipe(pipe_class_memory);
14872 %}
14873 
14874 // ============================================================================
14875 // Overflow Math Instructions
14876 

16187 %}
16188 
16189 // Call Runtime Instruction without safepoint and with vector arguments
16190 instruct CallLeafDirectVector(method meth)
16191 %{
16192   match(CallLeafVector);
16193 
16194   effect(USE meth);
16195 
16196   ins_cost(CALL_COST);
16197 
16198   format %{ "CALL, runtime leaf vector $meth" %}
16199 
16200   ins_encode(aarch64_enc_java_to_runtime(meth));
16201 
16202   ins_pipe(pipe_class_call);
16203 %}
16204 
16205 // Call Runtime Instruction
16206 
16207 // entry point is null, target holds the address to call
16208 instruct CallLeafNoFPIndirect(iRegP target)
16209 %{
16210   predicate(n->as_Call()->entry_point() == nullptr);
16211 
16212   match(CallLeafNoFP target);
16213 
16214   ins_cost(CALL_COST);
16215 
16216   format %{ "CALL, runtime leaf nofp indirect $target" %}
16217 
16218   ins_encode %{
16219     __ blr($target$$Register);
16220   %}
16221 
16222   ins_pipe(pipe_class_call);
16223 %}
16224 
16225 instruct CallLeafNoFPDirect(method meth)
16226 %{
16227   predicate(n->as_Call()->entry_point() != nullptr);
16228 
16229   match(CallLeafNoFP);
16230 
16231   effect(USE meth);
16232 
16233   ins_cost(CALL_COST);
16234 
16235   format %{ "CALL, runtime leaf nofp $meth" %}
16236 
16237   ins_encode( aarch64_enc_java_to_runtime(meth) );
16238 
16239   ins_pipe(pipe_class_call);
16240 %}
16241 
16242 // Tail Call; Jump from runtime stub to Java code.
16243 // Also known as an 'interprocedural jump'.
16244 // Target of jump will eventually return to caller.
16245 // TailJump below removes the return address.
16246 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been
16247 // emitted just above the TailCall which has reset rfp to the caller state.
16248 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr)
< prev index next >