1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/constMethodFlags.hpp" 37 #include "oops/markWord.hpp" 38 #include "oops/method.hpp" 39 #include "oops/methodData.hpp" 40 #include "oops/inlineKlass.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/jvmtiThreadState.hpp" 46 #include "runtime/basicLock.hpp" 47 #include "runtime/frame.inline.hpp" 48 #include "runtime/javaThread.hpp" 49 #include "runtime/safepointMechanism.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 53 void InterpreterMacroAssembler::narrow(Register result) { 54 55 // Get method->_constMethod->_result_type 56 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 57 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 58 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 59 60 Label done, notBool, notByte, notChar; 61 62 // common case first 63 cmpw(rscratch1, T_INT); 64 br(Assembler::EQ, done); 65 66 // mask integer result to narrower return type. 67 cmpw(rscratch1, T_BOOLEAN); 68 br(Assembler::NE, notBool); 69 andw(result, result, 0x1); 70 b(done); 71 72 bind(notBool); 73 cmpw(rscratch1, T_BYTE); 74 br(Assembler::NE, notByte); 75 sbfx(result, result, 0, 8); 76 b(done); 77 78 bind(notByte); 79 cmpw(rscratch1, T_CHAR); 80 br(Assembler::NE, notChar); 81 ubfx(result, result, 0, 16); // truncate upper 16 bits 82 b(done); 83 84 bind(notChar); 85 sbfx(result, result, 0, 16); // sign-extend short 86 87 // Nothing to do for T_INT 88 bind(done); 89 } 90 91 void InterpreterMacroAssembler::jump_to_entry(address entry) { 92 assert(entry, "Entry must have been generated by now"); 93 b(entry); 94 } 95 96 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 97 if (JvmtiExport::can_pop_frame()) { 98 Label L; 99 // Initiate popframe handling only if it is not already being 100 // processed. If the flag has the popframe_processing bit set, it 101 // means that this code is called *during* popframe handling - we 102 // don't want to reenter. 103 // This method is only called just after the call into the vm in 104 // call_VM_base, so the arg registers are available. 105 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 106 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 107 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 108 // Call Interpreter::remove_activation_preserving_args_entry() to get the 109 // address of the same-named entrypoint in the generated interpreter code. 110 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 111 br(r0); 112 bind(L); 113 } 114 } 115 116 117 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 118 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 119 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 120 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 121 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 122 switch (state) { 123 case atos: ldr(r0, oop_addr); 124 str(zr, oop_addr); 125 interp_verify_oop(r0, state); break; 126 case ltos: ldr(r0, val_addr); break; 127 case btos: // fall through 128 case ztos: // fall through 129 case ctos: // fall through 130 case stos: // fall through 131 case itos: ldrw(r0, val_addr); break; 132 case ftos: ldrs(v0, val_addr); break; 133 case dtos: ldrd(v0, val_addr); break; 134 case vtos: /* nothing to do */ break; 135 default : ShouldNotReachHere(); 136 } 137 // Clean up tos value in the thread object 138 movw(rscratch1, (int) ilgl); 139 strw(rscratch1, tos_addr); 140 strw(zr, val_addr); 141 } 142 143 144 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 145 if (JvmtiExport::can_force_early_return()) { 146 Label L; 147 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 148 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 149 150 // Initiate earlyret handling only if it is not already being processed. 151 // If the flag has the earlyret_processing bit set, it means that this code 152 // is called *during* earlyret handling - we don't want to reenter. 153 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 154 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 155 br(Assembler::NE, L); 156 157 // Call Interpreter::remove_activation_early_entry() to get the address of the 158 // same-named entrypoint in the generated interpreter code. 159 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 160 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 161 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 162 br(r0); 163 bind(L); 164 } 165 } 166 167 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 168 Register reg, 169 int bcp_offset) { 170 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 171 ldrh(reg, Address(rbcp, bcp_offset)); 172 rev16(reg, reg); 173 } 174 175 void InterpreterMacroAssembler::get_dispatch() { 176 uint64_t offset; 177 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 178 // Use add() here after ARDP, rather than lea(). 179 // lea() does not generate anything if its offset is zero. 180 // However, relocs expect to find either an ADD or a load/store 181 // insn after an ADRP. add() always generates an ADD insn, even 182 // for add(Rn, Rn, 0). 183 add(rdispatch, rdispatch, offset); 184 } 185 186 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 187 int bcp_offset, 188 size_t index_size) { 189 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 190 if (index_size == sizeof(u2)) { 191 load_unsigned_short(index, Address(rbcp, bcp_offset)); 192 } else if (index_size == sizeof(u4)) { 193 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 194 ldrw(index, Address(rbcp, bcp_offset)); 195 } else if (index_size == sizeof(u1)) { 196 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 197 } else { 198 ShouldNotReachHere(); 199 } 200 } 201 202 void InterpreterMacroAssembler::get_method_counters(Register method, 203 Register mcs, Label& skip) { 204 Label has_counters; 205 ldr(mcs, Address(method, Method::method_counters_offset())); 206 cbnz(mcs, has_counters); 207 call_VM(noreg, CAST_FROM_FN_PTR(address, 208 InterpreterRuntime::build_method_counters), method); 209 ldr(mcs, Address(method, Method::method_counters_offset())); 210 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 211 bind(has_counters); 212 } 213 214 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 215 Register t1, Register t2, 216 bool clear_fields, Label& alloc_failed) { 217 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 218 if (DTraceMethodProbes) { 219 // Trigger dtrace event for fastpath 220 push(atos); 221 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 222 pop(atos); 223 } 224 } 225 226 void InterpreterMacroAssembler::read_flat_field(Register entry, 227 Register field_index, Register field_offset, 228 Register temp, Register obj) { 229 Label alloc_failed, empty_value, done; 230 const Register src = field_offset; 231 const Register alloc_temp = r10; 232 const Register dst_temp = field_index; 233 const Register layout_info = temp; 234 assert_different_registers(obj, entry, field_index, field_offset, temp, alloc_temp); 235 236 // Grab the inline field klass 237 ldr(rscratch1, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 238 inline_layout_info(rscratch1, field_index, layout_info); 239 240 const Register field_klass = dst_temp; 241 ldr(field_klass, Address(layout_info, in_bytes(InlineLayoutInfo::klass_offset()))); 242 243 // check for empty value klass 244 test_klass_is_empty_inline_type(field_klass, rscratch1, empty_value); 245 246 // allocate buffer 247 push(obj); // save holder 248 allocate_instance(field_klass, obj, alloc_temp, rscratch2, false, alloc_failed); 249 250 // Have an oop instance buffer, copy into it 251 data_for_oop(obj, dst_temp, field_klass); // danger, uses rscratch1 252 pop(alloc_temp); // restore holder 253 lea(src, Address(alloc_temp, field_offset)); 254 // call_VM_leaf, clobbers a few regs, save restore new obj 255 push(obj); 256 flat_field_copy(IS_DEST_UNINITIALIZED, src, dst_temp, layout_info); 257 pop(obj); 258 b(done); 259 260 bind(empty_value); 261 get_empty_inline_type_oop(field_klass, alloc_temp, obj); 262 b(done); 263 264 bind(alloc_failed); 265 pop(obj); 266 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 267 obj, entry); 268 269 bind(done); 270 membar(Assembler::StoreStore); 271 } 272 273 // Load object from cpool->resolved_references(index) 274 void InterpreterMacroAssembler::load_resolved_reference_at_index( 275 Register result, Register index, Register tmp) { 276 assert_different_registers(result, index); 277 278 get_constant_pool(result); 279 // load pointer for resolved_references[] objArray 280 ldr(result, Address(result, ConstantPool::cache_offset())); 281 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 282 resolve_oop_handle(result, tmp, rscratch2); 283 // Add in the index 284 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 285 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 286 } 287 288 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 289 Register cpool, Register index, Register klass, Register temp) { 290 add(temp, cpool, index, LSL, LogBytesPerWord); 291 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 292 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 293 add(klass, klass, temp, LSL, LogBytesPerWord); 294 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 295 } 296 297 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 298 // subtype of super_klass. 299 // 300 // Args: 301 // r0: superklass 302 // Rsub_klass: subklass 303 // 304 // Kills: 305 // r2, r5 306 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 307 Label& ok_is_subtype, 308 bool profile) { 309 assert(Rsub_klass != r0, "r0 holds superklass"); 310 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 311 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 312 313 // Profile the not-null value's klass. 314 if (profile) { 315 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 316 } 317 318 // Do the check. 319 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 320 } 321 322 // Java Expression Stack 323 324 void InterpreterMacroAssembler::pop_ptr(Register r) { 325 ldr(r, post(esp, wordSize)); 326 } 327 328 void InterpreterMacroAssembler::pop_i(Register r) { 329 ldrw(r, post(esp, wordSize)); 330 } 331 332 void InterpreterMacroAssembler::pop_l(Register r) { 333 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 334 } 335 336 void InterpreterMacroAssembler::push_ptr(Register r) { 337 str(r, pre(esp, -wordSize)); 338 } 339 340 void InterpreterMacroAssembler::push_i(Register r) { 341 str(r, pre(esp, -wordSize)); 342 } 343 344 void InterpreterMacroAssembler::push_l(Register r) { 345 str(zr, pre(esp, -wordSize)); 346 str(r, pre(esp, - wordSize)); 347 } 348 349 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 350 ldrs(r, post(esp, wordSize)); 351 } 352 353 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 354 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 355 } 356 357 void InterpreterMacroAssembler::push_f(FloatRegister r) { 358 strs(r, pre(esp, -wordSize)); 359 } 360 361 void InterpreterMacroAssembler::push_d(FloatRegister r) { 362 strd(r, pre(esp, 2* -wordSize)); 363 } 364 365 void InterpreterMacroAssembler::pop(TosState state) { 366 switch (state) { 367 case atos: pop_ptr(); break; 368 case btos: 369 case ztos: 370 case ctos: 371 case stos: 372 case itos: pop_i(); break; 373 case ltos: pop_l(); break; 374 case ftos: pop_f(); break; 375 case dtos: pop_d(); break; 376 case vtos: /* nothing to do */ break; 377 default: ShouldNotReachHere(); 378 } 379 interp_verify_oop(r0, state); 380 } 381 382 void InterpreterMacroAssembler::push(TosState state) { 383 interp_verify_oop(r0, state); 384 switch (state) { 385 case atos: push_ptr(); break; 386 case btos: 387 case ztos: 388 case ctos: 389 case stos: 390 case itos: push_i(); break; 391 case ltos: push_l(); break; 392 case ftos: push_f(); break; 393 case dtos: push_d(); break; 394 case vtos: /* nothing to do */ break; 395 default : ShouldNotReachHere(); 396 } 397 } 398 399 // Helpers for swap and dup 400 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 401 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 402 } 403 404 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 405 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 406 } 407 408 void InterpreterMacroAssembler::load_float(Address src) { 409 ldrs(v0, src); 410 } 411 412 void InterpreterMacroAssembler::load_double(Address src) { 413 ldrd(v0, src); 414 } 415 416 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 417 // set sender sp 418 mov(r19_sender_sp, sp); 419 // record last_sp 420 sub(rscratch1, esp, rfp); 421 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 422 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 423 } 424 425 // Jump to from_interpreted entry of a call unless single stepping is possible 426 // in this thread in which case we must call the i2i entry 427 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 428 prepare_to_jump_from_interpreted(); 429 430 if (JvmtiExport::can_post_interpreter_events()) { 431 Label run_compiled_code; 432 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 433 // compiled code in threads for which the event is enabled. Check here for 434 // interp_only_mode if these events CAN be enabled. 435 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 436 cbzw(rscratch1, run_compiled_code); 437 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 438 br(rscratch1); 439 bind(run_compiled_code); 440 } 441 442 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 443 br(rscratch1); 444 } 445 446 // The following two routines provide a hook so that an implementation 447 // can schedule the dispatch in two parts. amd64 does not do this. 448 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 449 } 450 451 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 452 dispatch_next(state, step); 453 } 454 455 void InterpreterMacroAssembler::dispatch_base(TosState state, 456 address* table, 457 bool verifyoop, 458 bool generate_poll) { 459 if (VerifyActivationFrameSize) { 460 Unimplemented(); 461 } 462 if (verifyoop) { 463 interp_verify_oop(r0, state); 464 } 465 466 Label safepoint; 467 address* const safepoint_table = Interpreter::safept_table(state); 468 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 469 470 if (needs_thread_local_poll) { 471 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 472 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 473 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 474 } 475 476 if (table == Interpreter::dispatch_table(state)) { 477 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 478 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 479 } else { 480 mov(rscratch2, (address)table); 481 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 482 } 483 br(rscratch2); 484 485 if (needs_thread_local_poll) { 486 bind(safepoint); 487 lea(rscratch2, ExternalAddress((address)safepoint_table)); 488 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 489 br(rscratch2); 490 } 491 } 492 493 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 494 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 495 } 496 497 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 498 dispatch_base(state, Interpreter::normal_table(state)); 499 } 500 501 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 502 dispatch_base(state, Interpreter::normal_table(state), false); 503 } 504 505 506 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 507 // load next bytecode 508 ldrb(rscratch1, Address(pre(rbcp, step))); 509 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 510 } 511 512 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 513 // load current bytecode 514 ldrb(rscratch1, Address(rbcp, 0)); 515 dispatch_base(state, table); 516 } 517 518 // remove activation 519 // 520 // Apply stack watermark barrier. 521 // Unlock the receiver if this is a synchronized method. 522 // Unlock any Java monitors from synchronized blocks. 523 // Remove the activation from the stack. 524 // 525 // If there are locked Java monitors 526 // If throw_monitor_exception 527 // throws IllegalMonitorStateException 528 // Else if install_monitor_exception 529 // installs IllegalMonitorStateException 530 // Else 531 // no error processing 532 void InterpreterMacroAssembler::remove_activation( 533 TosState state, 534 bool throw_monitor_exception, 535 bool install_monitor_exception, 536 bool notify_jvmdi) { 537 // Note: Registers r3 xmm0 may be in use for the 538 // result check if synchronized method 539 Label unlocked, unlock, no_unlock; 540 541 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 542 // that would normally not be safe to use. Such bad returns into unsafe territory of 543 // the stack, will call InterpreterRuntime::at_unwind. 544 Label slow_path; 545 Label fast_path; 546 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 547 br(Assembler::AL, fast_path); 548 bind(slow_path); 549 push(state); 550 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 551 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 552 reset_last_Java_frame(true); 553 pop(state); 554 bind(fast_path); 555 556 // get the value of _do_not_unlock_if_synchronized into r3 557 const Address do_not_unlock_if_synchronized(rthread, 558 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 559 ldrb(r3, do_not_unlock_if_synchronized); 560 strb(zr, do_not_unlock_if_synchronized); // reset the flag 561 562 // get method access flags 563 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 564 ldr(r2, Address(r1, Method::access_flags_offset())); 565 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 566 567 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 568 // is set. 569 cbnz(r3, no_unlock); 570 571 // unlock monitor 572 push(state); // save result 573 574 // BasicObjectLock will be first in list, since this is a 575 // synchronized method. However, need to check that the object has 576 // not been unlocked by an explicit monitorexit bytecode. 577 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 578 wordSize - (int) sizeof(BasicObjectLock)); 579 // We use c_rarg1 so that if we go slow path it will be the correct 580 // register for unlock_object to pass to VM directly 581 lea(c_rarg1, monitor); // address of first monitor 582 583 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 584 cbnz(r0, unlock); 585 586 pop(state); 587 if (throw_monitor_exception) { 588 // Entry already unlocked, need to throw exception 589 call_VM(noreg, CAST_FROM_FN_PTR(address, 590 InterpreterRuntime::throw_illegal_monitor_state_exception)); 591 should_not_reach_here(); 592 } else { 593 // Monitor already unlocked during a stack unroll. If requested, 594 // install an illegal_monitor_state_exception. Continue with 595 // stack unrolling. 596 if (install_monitor_exception) { 597 call_VM(noreg, CAST_FROM_FN_PTR(address, 598 InterpreterRuntime::new_illegal_monitor_state_exception)); 599 } 600 b(unlocked); 601 } 602 603 bind(unlock); 604 unlock_object(c_rarg1); 605 pop(state); 606 607 // Check that for block-structured locking (i.e., that all locked 608 // objects has been unlocked) 609 bind(unlocked); 610 611 // r0: Might contain return value 612 613 // Check that all monitors are unlocked 614 { 615 Label loop, exception, entry, restart; 616 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 617 const Address monitor_block_top( 618 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 619 const Address monitor_block_bot( 620 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 621 622 bind(restart); 623 // We use c_rarg1 so that if we go slow path it will be the correct 624 // register for unlock_object to pass to VM directly 625 ldr(c_rarg1, monitor_block_top); // derelativize pointer 626 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 627 // c_rarg1 points to current entry, starting with top-most entry 628 629 lea(r19, monitor_block_bot); // points to word before bottom of 630 // monitor block 631 b(entry); 632 633 // Entry already locked, need to throw exception 634 bind(exception); 635 636 if (throw_monitor_exception) { 637 // Throw exception 638 MacroAssembler::call_VM(noreg, 639 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 640 throw_illegal_monitor_state_exception)); 641 should_not_reach_here(); 642 } else { 643 // Stack unrolling. Unlock object and install illegal_monitor_exception. 644 // Unlock does not block, so don't have to worry about the frame. 645 // We don't have to preserve c_rarg1 since we are going to throw an exception. 646 647 push(state); 648 unlock_object(c_rarg1); 649 pop(state); 650 651 if (install_monitor_exception) { 652 call_VM(noreg, CAST_FROM_FN_PTR(address, 653 InterpreterRuntime:: 654 new_illegal_monitor_state_exception)); 655 } 656 657 b(restart); 658 } 659 660 bind(loop); 661 // check if current entry is used 662 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 663 cbnz(rscratch1, exception); 664 665 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 666 bind(entry); 667 cmp(c_rarg1, r19); // check if bottom reached 668 br(Assembler::NE, loop); // if not at bottom then check this entry 669 } 670 671 bind(no_unlock); 672 673 // jvmti support 674 if (notify_jvmdi) { 675 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 676 } else { 677 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 678 } 679 680 // remove activation 681 // get sender esp 682 ldr(rscratch2, 683 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 684 685 if (StackReservedPages > 0) { 686 // testing if reserved zone needs to be re-enabled 687 Label no_reserved_zone_enabling; 688 689 // check if already enabled - if so no re-enabling needed 690 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 691 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 692 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 693 br(Assembler::EQ, no_reserved_zone_enabling); 694 695 // look for an overflow into the stack reserved zone, i.e. 696 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 697 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 698 cmp(rscratch2, rscratch1); 699 br(Assembler::LS, no_reserved_zone_enabling); 700 701 call_VM_leaf( 702 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 703 call_VM(noreg, CAST_FROM_FN_PTR(address, 704 InterpreterRuntime::throw_delayed_StackOverflowError)); 705 should_not_reach_here(); 706 707 bind(no_reserved_zone_enabling); 708 } 709 710 if (state == atos && InlineTypeReturnedAsFields) { 711 // Check if we are returning an non-null inline type and load its fields into registers 712 Label skip; 713 test_oop_is_not_inline_type(r0, rscratch2, skip); 714 715 // Load fields from a buffered value with an inline class specific handler 716 load_klass(rscratch1 /*dst*/, r0 /*src*/); 717 ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 718 ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 719 // Unpack handler can be null if inline type is not scalarizable in returns 720 cbz(rscratch1, skip); 721 722 blr(rscratch1); 723 #ifdef ASSERT 724 // TODO 8284443 Enable 725 if (StressCallingConvention && false) { 726 Label skip_stress; 727 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 728 ldrw(rscratch1, Address(rscratch1, Method::flags_offset())); 729 tstw(rscratch1, MethodFlags::has_scalarized_return_flag()); 730 br(Assembler::EQ, skip_stress); 731 load_klass(r0, r0); 732 orr(r0, r0, 1); 733 bind(skip_stress); 734 } 735 #endif 736 bind(skip); 737 // Check above kills sender esp in rscratch2. Reload it. 738 ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 739 } 740 741 // restore sender esp 742 mov(esp, rscratch2); 743 // remove frame anchor 744 leave(); 745 // If we're returning to interpreted code we will shortly be 746 // adjusting SP to allow some space for ESP. If we're returning to 747 // compiled code the saved sender SP was saved in sender_sp, so this 748 // restores it. 749 andr(sp, esp, -16); 750 } 751 752 // Lock object 753 // 754 // Args: 755 // c_rarg1: BasicObjectLock to be used for locking 756 // 757 // Kills: 758 // r0 759 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 760 // rscratch1, rscratch2 (scratch regs) 761 void InterpreterMacroAssembler::lock_object(Register lock_reg) 762 { 763 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 764 if (LockingMode == LM_MONITOR) { 765 call_VM(noreg, 766 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 767 lock_reg); 768 } else { 769 Label count, done; 770 771 const Register swap_reg = r0; 772 const Register tmp = c_rarg2; 773 const Register obj_reg = c_rarg3; // Will contain the oop 774 const Register tmp2 = c_rarg4; 775 const Register tmp3 = c_rarg5; 776 777 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 778 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 779 const int mark_offset = lock_offset + 780 BasicLock::displaced_header_offset_in_bytes(); 781 782 Label slow_case; 783 784 // Load object pointer into obj_reg %c_rarg3 785 ldr(obj_reg, Address(lock_reg, obj_offset)); 786 787 if (DiagnoseSyncOnValueBasedClasses != 0) { 788 load_klass(tmp, obj_reg); 789 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 790 tst(tmp, KlassFlags::_misc_is_value_based_class); 791 br(Assembler::NE, slow_case); 792 } 793 794 if (LockingMode == LM_LIGHTWEIGHT) { 795 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 796 b(count); 797 } else if (LockingMode == LM_LEGACY) { 798 // Load (object->mark() | 1) into swap_reg 799 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 800 orr(swap_reg, rscratch1, 1); 801 if (EnableValhalla) { 802 // Mask inline_type bit such that we go to the slow path if object is an inline type 803 andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 804 } 805 806 // Save (object->mark() | 1) into BasicLock's displaced header 807 str(swap_reg, Address(lock_reg, mark_offset)); 808 809 assert(lock_offset == 0, 810 "displached header must be first word in BasicObjectLock"); 811 812 Label fail; 813 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 814 815 // Fast check for recursive lock. 816 // 817 // Can apply the optimization only if this is a stack lock 818 // allocated in this thread. For efficiency, we can focus on 819 // recently allocated stack locks (instead of reading the stack 820 // base and checking whether 'mark' points inside the current 821 // thread stack): 822 // 1) (mark & 7) == 0, and 823 // 2) sp <= mark < mark + os::pagesize() 824 // 825 // Warning: sp + os::pagesize can overflow the stack base. We must 826 // neither apply the optimization for an inflated lock allocated 827 // just above the thread stack (this is why condition 1 matters) 828 // nor apply the optimization if the stack lock is inside the stack 829 // of another thread. The latter is avoided even in case of overflow 830 // because we have guard pages at the end of all stacks. Hence, if 831 // we go over the stack base and hit the stack of another thread, 832 // this should not be in a writeable area that could contain a 833 // stack lock allocated by that thread. As a consequence, a stack 834 // lock less than page size away from sp is guaranteed to be 835 // owned by the current thread. 836 // 837 // These 3 tests can be done by evaluating the following 838 // expression: ((mark - sp) & (7 - os::vm_page_size())), 839 // assuming both stack pointer and pagesize have their 840 // least significant 3 bits clear. 841 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 842 // NOTE2: aarch64 does not like to subtract sp from rn so take a 843 // copy 844 mov(rscratch1, sp); 845 sub(swap_reg, swap_reg, rscratch1); 846 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 847 848 // Save the test result, for recursive case, the result is zero 849 str(swap_reg, Address(lock_reg, mark_offset)); 850 br(Assembler::EQ, count); 851 } 852 bind(slow_case); 853 854 // Call the runtime routine for slow case 855 call_VM(noreg, 856 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 857 lock_reg); 858 b(done); 859 860 bind(count); 861 increment(Address(rthread, JavaThread::held_monitor_count_offset())); 862 863 bind(done); 864 } 865 } 866 867 868 // Unlocks an object. Used in monitorexit bytecode and 869 // remove_activation. Throws an IllegalMonitorException if object is 870 // not locked by current thread. 871 // 872 // Args: 873 // c_rarg1: BasicObjectLock for lock 874 // 875 // Kills: 876 // r0 877 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 878 // rscratch1, rscratch2 (scratch regs) 879 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 880 { 881 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 882 883 if (LockingMode == LM_MONITOR) { 884 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 885 } else { 886 Label count, done; 887 888 const Register swap_reg = r0; 889 const Register header_reg = c_rarg2; // Will contain the old oopMark 890 const Register obj_reg = c_rarg3; // Will contain the oop 891 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 892 893 save_bcp(); // Save in case of exception 894 895 if (LockingMode != LM_LIGHTWEIGHT) { 896 // Convert from BasicObjectLock structure to object and BasicLock 897 // structure Store the BasicLock address into %r0 898 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 899 } 900 901 // Load oop into obj_reg(%c_rarg3) 902 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 903 904 // Free entry 905 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 906 907 if (LockingMode == LM_LIGHTWEIGHT) { 908 Label slow_case; 909 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 910 b(count); 911 bind(slow_case); 912 } else if (LockingMode == LM_LEGACY) { 913 // Load the old header from BasicLock structure 914 ldr(header_reg, Address(swap_reg, 915 BasicLock::displaced_header_offset_in_bytes())); 916 917 // Test for recursion 918 cbz(header_reg, count); 919 920 // Atomic swap back the old header 921 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 922 } 923 // Call the runtime routine for slow case. 924 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 925 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 926 b(done); 927 928 bind(count); 929 decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 930 931 bind(done); 932 restore_bcp(); 933 } 934 } 935 936 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 937 Label& zero_continue) { 938 assert(ProfileInterpreter, "must be profiling interpreter"); 939 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 940 cbz(mdp, zero_continue); 941 } 942 943 // Set the method data pointer for the current bcp. 944 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 945 assert(ProfileInterpreter, "must be profiling interpreter"); 946 Label set_mdp; 947 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 948 949 // Test MDO to avoid the call if it is null. 950 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 951 cbz(r0, set_mdp); 952 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 953 // r0: mdi 954 // mdo is guaranteed to be non-zero here, we checked for it before the call. 955 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 956 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 957 add(r0, r1, r0); 958 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 959 bind(set_mdp); 960 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 961 } 962 963 void InterpreterMacroAssembler::verify_method_data_pointer() { 964 assert(ProfileInterpreter, "must be profiling interpreter"); 965 #ifdef ASSERT 966 Label verify_continue; 967 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 968 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 969 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 970 get_method(r1); 971 972 // If the mdp is valid, it will point to a DataLayout header which is 973 // consistent with the bcp. The converse is highly probable also. 974 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 975 ldr(rscratch1, Address(r1, Method::const_offset())); 976 add(r2, r2, rscratch1, Assembler::LSL); 977 lea(r2, Address(r2, ConstMethod::codes_offset())); 978 cmp(r2, rbcp); 979 br(Assembler::EQ, verify_continue); 980 // r1: method 981 // rbcp: bcp // rbcp == 22 982 // r3: mdp 983 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 984 r1, rbcp, r3); 985 bind(verify_continue); 986 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 987 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 988 #endif // ASSERT 989 } 990 991 992 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 993 int constant, 994 Register value) { 995 assert(ProfileInterpreter, "must be profiling interpreter"); 996 Address data(mdp_in, constant); 997 str(value, data); 998 } 999 1000 1001 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1002 int constant, 1003 bool decrement) { 1004 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1005 } 1006 1007 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1008 Register reg, 1009 int constant, 1010 bool decrement) { 1011 assert(ProfileInterpreter, "must be profiling interpreter"); 1012 // %%% this does 64bit counters at best it is wasting space 1013 // at worst it is a rare bug when counters overflow 1014 1015 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 1016 1017 Address addr1(mdp_in, constant); 1018 Address addr2(rscratch2, reg, Address::lsl(0)); 1019 Address &addr = addr1; 1020 if (reg != noreg) { 1021 lea(rscratch2, addr1); 1022 addr = addr2; 1023 } 1024 1025 if (decrement) { 1026 // Decrement the register. Set condition codes. 1027 // Intel does this 1028 // addptr(data, (int32_t) -DataLayout::counter_increment); 1029 // If the decrement causes the counter to overflow, stay negative 1030 // Label L; 1031 // jcc(Assembler::negative, L); 1032 // addptr(data, (int32_t) DataLayout::counter_increment); 1033 // so we do this 1034 ldr(rscratch1, addr); 1035 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 1036 Label L; 1037 br(Assembler::LO, L); // skip store if counter underflow 1038 str(rscratch1, addr); 1039 bind(L); 1040 } else { 1041 assert(DataLayout::counter_increment == 1, 1042 "flow-free idiom only works with 1"); 1043 // Intel does this 1044 // Increment the register. Set carry flag. 1045 // addptr(data, DataLayout::counter_increment); 1046 // If the increment causes the counter to overflow, pull back by 1. 1047 // sbbptr(data, (int32_t)0); 1048 // so we do this 1049 ldr(rscratch1, addr); 1050 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1051 Label L; 1052 br(Assembler::CS, L); // skip store if counter overflow 1053 str(rscratch1, addr); 1054 bind(L); 1055 } 1056 } 1057 1058 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1059 int flag_byte_constant) { 1060 assert(ProfileInterpreter, "must be profiling interpreter"); 1061 int flags_offset = in_bytes(DataLayout::flags_offset()); 1062 // Set the flag 1063 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1064 orr(rscratch1, rscratch1, flag_byte_constant); 1065 strb(rscratch1, Address(mdp_in, flags_offset)); 1066 } 1067 1068 1069 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1070 int offset, 1071 Register value, 1072 Register test_value_out, 1073 Label& not_equal_continue) { 1074 assert(ProfileInterpreter, "must be profiling interpreter"); 1075 if (test_value_out == noreg) { 1076 ldr(rscratch1, Address(mdp_in, offset)); 1077 cmp(value, rscratch1); 1078 } else { 1079 // Put the test value into a register, so caller can use it: 1080 ldr(test_value_out, Address(mdp_in, offset)); 1081 cmp(value, test_value_out); 1082 } 1083 br(Assembler::NE, not_equal_continue); 1084 } 1085 1086 1087 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1088 int offset_of_disp) { 1089 assert(ProfileInterpreter, "must be profiling interpreter"); 1090 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1091 add(mdp_in, mdp_in, rscratch1, LSL); 1092 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1093 } 1094 1095 1096 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1097 Register reg, 1098 int offset_of_disp) { 1099 assert(ProfileInterpreter, "must be profiling interpreter"); 1100 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1101 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1102 add(mdp_in, mdp_in, rscratch1, LSL); 1103 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1104 } 1105 1106 1107 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1108 int constant) { 1109 assert(ProfileInterpreter, "must be profiling interpreter"); 1110 add(mdp_in, mdp_in, (unsigned)constant); 1111 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1112 } 1113 1114 1115 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1116 assert(ProfileInterpreter, "must be profiling interpreter"); 1117 // save/restore across call_VM 1118 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1119 call_VM(noreg, 1120 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1121 return_bci); 1122 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1123 } 1124 1125 1126 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1127 Register bumped_count) { 1128 if (ProfileInterpreter) { 1129 Label profile_continue; 1130 1131 // If no method data exists, go to profile_continue. 1132 // Otherwise, assign to mdp 1133 test_method_data_pointer(mdp, profile_continue); 1134 1135 // We are taking a branch. Increment the taken count. 1136 // We inline increment_mdp_data_at to return bumped_count in a register 1137 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1138 Address data(mdp, in_bytes(JumpData::taken_offset())); 1139 ldr(bumped_count, data); 1140 assert(DataLayout::counter_increment == 1, 1141 "flow-free idiom only works with 1"); 1142 // Intel does this to catch overflow 1143 // addptr(bumped_count, DataLayout::counter_increment); 1144 // sbbptr(bumped_count, 0); 1145 // so we do this 1146 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1147 Label L; 1148 br(Assembler::CS, L); // skip store if counter overflow 1149 str(bumped_count, data); 1150 bind(L); 1151 // The method data pointer needs to be updated to reflect the new target. 1152 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1153 bind(profile_continue); 1154 } 1155 } 1156 1157 1158 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1159 if (ProfileInterpreter) { 1160 Label profile_continue; 1161 1162 // If no method data exists, go to profile_continue. 1163 test_method_data_pointer(mdp, profile_continue); 1164 1165 // We are taking a branch. Increment the not taken count. 1166 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1167 1168 // The method data pointer needs to be updated to correspond to 1169 // the next bytecode 1170 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size())); 1171 bind(profile_continue); 1172 } 1173 } 1174 1175 1176 void InterpreterMacroAssembler::profile_call(Register mdp) { 1177 if (ProfileInterpreter) { 1178 Label profile_continue; 1179 1180 // If no method data exists, go to profile_continue. 1181 test_method_data_pointer(mdp, profile_continue); 1182 1183 // We are making a call. Increment the count. 1184 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1185 1186 // The method data pointer needs to be updated to reflect the new target. 1187 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1188 bind(profile_continue); 1189 } 1190 } 1191 1192 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1193 if (ProfileInterpreter) { 1194 Label profile_continue; 1195 1196 // If no method data exists, go to profile_continue. 1197 test_method_data_pointer(mdp, profile_continue); 1198 1199 // We are making a call. Increment the count. 1200 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1201 1202 // The method data pointer needs to be updated to reflect the new target. 1203 update_mdp_by_constant(mdp, 1204 in_bytes(VirtualCallData:: 1205 virtual_call_data_size())); 1206 bind(profile_continue); 1207 } 1208 } 1209 1210 1211 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1212 Register mdp, 1213 Register reg2, 1214 bool receiver_can_be_null) { 1215 if (ProfileInterpreter) { 1216 Label profile_continue; 1217 1218 // If no method data exists, go to profile_continue. 1219 test_method_data_pointer(mdp, profile_continue); 1220 1221 Label skip_receiver_profile; 1222 if (receiver_can_be_null) { 1223 Label not_null; 1224 // We are making a call. Increment the count for null receiver. 1225 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1226 b(skip_receiver_profile); 1227 bind(not_null); 1228 } 1229 1230 // Record the receiver type. 1231 record_klass_in_profile(receiver, mdp, reg2); 1232 bind(skip_receiver_profile); 1233 1234 // The method data pointer needs to be updated to reflect the new target. 1235 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1236 bind(profile_continue); 1237 } 1238 } 1239 1240 // This routine creates a state machine for updating the multi-row 1241 // type profile at a virtual call site (or other type-sensitive bytecode). 1242 // The machine visits each row (of receiver/count) until the receiver type 1243 // is found, or until it runs out of rows. At the same time, it remembers 1244 // the location of the first empty row. (An empty row records null for its 1245 // receiver, and can be allocated for a newly-observed receiver type.) 1246 // Because there are two degrees of freedom in the state, a simple linear 1247 // search will not work; it must be a decision tree. Hence this helper 1248 // function is recursive, to generate the required tree structured code. 1249 // It's the interpreter, so we are trading off code space for speed. 1250 // See below for example code. 1251 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1252 Register receiver, Register mdp, 1253 Register reg2, int start_row, 1254 Label& done) { 1255 if (TypeProfileWidth == 0) { 1256 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1257 } else { 1258 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1259 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1260 } 1261 } 1262 1263 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1264 Register reg2, int start_row, Label& done, int total_rows, 1265 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1266 int last_row = total_rows - 1; 1267 assert(start_row <= last_row, "must be work left to do"); 1268 // Test this row for both the item and for null. 1269 // Take any of three different outcomes: 1270 // 1. found item => increment count and goto done 1271 // 2. found null => keep looking for case 1, maybe allocate this cell 1272 // 3. found something else => keep looking for cases 1 and 2 1273 // Case 3 is handled by a recursive call. 1274 for (int row = start_row; row <= last_row; row++) { 1275 Label next_test; 1276 bool test_for_null_also = (row == start_row); 1277 1278 // See if the item is item[n]. 1279 int item_offset = in_bytes(item_offset_fn(row)); 1280 test_mdp_data_at(mdp, item_offset, item, 1281 (test_for_null_also ? reg2 : noreg), 1282 next_test); 1283 // (Reg2 now contains the item from the CallData.) 1284 1285 // The item is item[n]. Increment count[n]. 1286 int count_offset = in_bytes(item_count_offset_fn(row)); 1287 increment_mdp_data_at(mdp, count_offset); 1288 b(done); 1289 bind(next_test); 1290 1291 if (test_for_null_also) { 1292 Label found_null; 1293 // Failed the equality check on item[n]... Test for null. 1294 if (start_row == last_row) { 1295 // The only thing left to do is handle the null case. 1296 cbz(reg2, found_null); 1297 // Item did not match any saved item and there is no empty row for it. 1298 // Increment total counter to indicate polymorphic case. 1299 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1300 b(done); 1301 bind(found_null); 1302 break; 1303 } 1304 // Since null is rare, make it be the branch-taken case. 1305 cbz(reg2, found_null); 1306 1307 // Put all the "Case 3" tests here. 1308 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1309 item_offset_fn, item_count_offset_fn); 1310 1311 // Found a null. Keep searching for a matching item, 1312 // but remember that this is an empty (unused) slot. 1313 bind(found_null); 1314 } 1315 } 1316 1317 // In the fall-through case, we found no matching item, but we 1318 // observed the item[start_row] is null. 1319 1320 // Fill in the item field and increment the count. 1321 int item_offset = in_bytes(item_offset_fn(start_row)); 1322 set_mdp_data_at(mdp, item_offset, item); 1323 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1324 mov(reg2, DataLayout::counter_increment); 1325 set_mdp_data_at(mdp, count_offset, reg2); 1326 if (start_row > 0) { 1327 b(done); 1328 } 1329 } 1330 1331 // Example state machine code for three profile rows: 1332 // // main copy of decision tree, rooted at row[1] 1333 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1334 // if (row[0].rec != nullptr) { 1335 // // inner copy of decision tree, rooted at row[1] 1336 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1337 // if (row[1].rec != nullptr) { 1338 // // degenerate decision tree, rooted at row[2] 1339 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1340 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1341 // row[2].init(rec); goto done; 1342 // } else { 1343 // // remember row[1] is empty 1344 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1345 // row[1].init(rec); goto done; 1346 // } 1347 // } else { 1348 // // remember row[0] is empty 1349 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1350 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1351 // row[0].init(rec); goto done; 1352 // } 1353 // done: 1354 1355 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1356 Register mdp, Register reg2) { 1357 assert(ProfileInterpreter, "must be profiling"); 1358 Label done; 1359 1360 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1361 1362 bind (done); 1363 } 1364 1365 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1366 Register mdp) { 1367 if (ProfileInterpreter) { 1368 Label profile_continue; 1369 uint row; 1370 1371 // If no method data exists, go to profile_continue. 1372 test_method_data_pointer(mdp, profile_continue); 1373 1374 // Update the total ret count. 1375 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1376 1377 for (row = 0; row < RetData::row_limit(); row++) { 1378 Label next_test; 1379 1380 // See if return_bci is equal to bci[n]: 1381 test_mdp_data_at(mdp, 1382 in_bytes(RetData::bci_offset(row)), 1383 return_bci, noreg, 1384 next_test); 1385 1386 // return_bci is equal to bci[n]. Increment the count. 1387 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1388 1389 // The method data pointer needs to be updated to reflect the new target. 1390 update_mdp_by_offset(mdp, 1391 in_bytes(RetData::bci_displacement_offset(row))); 1392 b(profile_continue); 1393 bind(next_test); 1394 } 1395 1396 update_mdp_for_ret(return_bci); 1397 1398 bind(profile_continue); 1399 } 1400 } 1401 1402 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1403 if (ProfileInterpreter) { 1404 Label profile_continue; 1405 1406 // If no method data exists, go to profile_continue. 1407 test_method_data_pointer(mdp, profile_continue); 1408 1409 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1410 1411 // The method data pointer needs to be updated. 1412 int mdp_delta = in_bytes(BitData::bit_data_size()); 1413 if (TypeProfileCasts) { 1414 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1415 } 1416 update_mdp_by_constant(mdp, mdp_delta); 1417 1418 bind(profile_continue); 1419 } 1420 } 1421 1422 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1423 if (ProfileInterpreter) { 1424 Label profile_continue; 1425 1426 // If no method data exists, go to profile_continue. 1427 test_method_data_pointer(mdp, profile_continue); 1428 1429 // The method data pointer needs to be updated. 1430 int mdp_delta = in_bytes(BitData::bit_data_size()); 1431 if (TypeProfileCasts) { 1432 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1433 1434 // Record the object type. 1435 record_klass_in_profile(klass, mdp, reg2); 1436 } 1437 update_mdp_by_constant(mdp, mdp_delta); 1438 1439 bind(profile_continue); 1440 } 1441 } 1442 1443 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1444 if (ProfileInterpreter) { 1445 Label profile_continue; 1446 1447 // If no method data exists, go to profile_continue. 1448 test_method_data_pointer(mdp, profile_continue); 1449 1450 // Update the default case count 1451 increment_mdp_data_at(mdp, 1452 in_bytes(MultiBranchData::default_count_offset())); 1453 1454 // The method data pointer needs to be updated. 1455 update_mdp_by_offset(mdp, 1456 in_bytes(MultiBranchData:: 1457 default_displacement_offset())); 1458 1459 bind(profile_continue); 1460 } 1461 } 1462 1463 void InterpreterMacroAssembler::profile_switch_case(Register index, 1464 Register mdp, 1465 Register reg2) { 1466 if (ProfileInterpreter) { 1467 Label profile_continue; 1468 1469 // If no method data exists, go to profile_continue. 1470 test_method_data_pointer(mdp, profile_continue); 1471 1472 // Build the base (index * per_case_size_in_bytes()) + 1473 // case_array_offset_in_bytes() 1474 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1475 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1476 Assembler::maddw(index, index, reg2, rscratch1); 1477 1478 // Update the case count 1479 increment_mdp_data_at(mdp, 1480 index, 1481 in_bytes(MultiBranchData::relative_count_offset())); 1482 1483 // The method data pointer needs to be updated. 1484 update_mdp_by_offset(mdp, 1485 index, 1486 in_bytes(MultiBranchData:: 1487 relative_displacement_offset())); 1488 1489 bind(profile_continue); 1490 } 1491 } 1492 1493 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp, 1494 Register array, 1495 Register tmp) { 1496 if (ProfileInterpreter) { 1497 Label profile_continue; 1498 1499 // If no method data exists, go to profile_continue. 1500 test_method_data_pointer(mdp, profile_continue); 1501 1502 mov(tmp, array); 1503 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset()))); 1504 1505 Label not_flat; 1506 test_non_flat_array_oop(array, tmp, not_flat); 1507 1508 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant()); 1509 1510 bind(not_flat); 1511 1512 Label not_null_free; 1513 test_non_null_free_array_oop(array, tmp, not_null_free); 1514 1515 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant()); 1516 1517 bind(not_null_free); 1518 1519 bind(profile_continue); 1520 } 1521 } 1522 1523 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp, 1524 Register array, 1525 Register tmp); 1526 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp, 1527 Register array, 1528 Register tmp); 1529 1530 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) { 1531 if (ProfileInterpreter) { 1532 Label profile_continue; 1533 1534 // If no method data exists, go to profile_continue. 1535 test_method_data_pointer(mdp, profile_continue); 1536 1537 Label done, update; 1538 cbnz(element, update); 1539 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1540 b(done); 1541 1542 bind(update); 1543 load_klass(tmp, element); 1544 1545 // Record the object type. 1546 record_klass_in_profile(tmp, mdp, tmp2); 1547 1548 bind(done); 1549 1550 // The method data pointer needs to be updated. 1551 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size())); 1552 1553 bind(profile_continue); 1554 } 1555 } 1556 1557 1558 void InterpreterMacroAssembler::profile_element_type(Register mdp, 1559 Register element, 1560 Register tmp) { 1561 if (ProfileInterpreter) { 1562 Label profile_continue; 1563 1564 // If no method data exists, go to profile_continue. 1565 test_method_data_pointer(mdp, profile_continue); 1566 1567 mov(tmp, element); 1568 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset()))); 1569 1570 // The method data pointer needs to be updated. 1571 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size())); 1572 1573 bind(profile_continue); 1574 } 1575 } 1576 1577 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1578 Register left, 1579 Register right, 1580 Register tmp) { 1581 if (ProfileInterpreter) { 1582 Label profile_continue; 1583 1584 // If no method data exists, go to profile_continue. 1585 test_method_data_pointer(mdp, profile_continue); 1586 1587 mov(tmp, left); 1588 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1589 1590 Label left_not_inline_type; 1591 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1592 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1593 bind(left_not_inline_type); 1594 1595 mov(tmp, right); 1596 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1597 1598 Label right_not_inline_type; 1599 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1600 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1601 bind(right_not_inline_type); 1602 1603 bind(profile_continue); 1604 } 1605 } 1606 1607 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1608 if (state == atos) { 1609 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1610 } 1611 } 1612 1613 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1614 1615 1616 void InterpreterMacroAssembler::notify_method_entry() { 1617 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1618 // track stack depth. If it is possible to enter interp_only_mode we add 1619 // the code to check if the event should be sent. 1620 if (JvmtiExport::can_post_interpreter_events()) { 1621 Label L; 1622 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1623 cbzw(r3, L); 1624 call_VM(noreg, CAST_FROM_FN_PTR(address, 1625 InterpreterRuntime::post_method_entry)); 1626 bind(L); 1627 } 1628 1629 if (DTraceMethodProbes) { 1630 get_method(c_rarg1); 1631 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1632 rthread, c_rarg1); 1633 } 1634 1635 // RedefineClasses() tracing support for obsolete method entry 1636 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1637 get_method(c_rarg1); 1638 call_VM_leaf( 1639 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1640 rthread, c_rarg1); 1641 } 1642 1643 } 1644 1645 1646 void InterpreterMacroAssembler::notify_method_exit( 1647 TosState state, NotifyMethodExitMode mode) { 1648 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1649 // track stack depth. If it is possible to enter interp_only_mode we add 1650 // the code to check if the event should be sent. 1651 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1652 Label L; 1653 // Note: frame::interpreter_frame_result has a dependency on how the 1654 // method result is saved across the call to post_method_exit. If this 1655 // is changed then the interpreter_frame_result implementation will 1656 // need to be updated too. 1657 1658 // template interpreter will leave the result on the top of the stack. 1659 push(state); 1660 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1661 cbz(r3, L); 1662 call_VM(noreg, 1663 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1664 bind(L); 1665 pop(state); 1666 } 1667 1668 if (DTraceMethodProbes) { 1669 push(state); 1670 get_method(c_rarg1); 1671 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1672 rthread, c_rarg1); 1673 pop(state); 1674 } 1675 } 1676 1677 1678 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1679 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1680 int increment, Address mask, 1681 Register scratch, Register scratch2, 1682 bool preloaded, Condition cond, 1683 Label* where) { 1684 if (!preloaded) { 1685 ldrw(scratch, counter_addr); 1686 } 1687 add(scratch, scratch, increment); 1688 strw(scratch, counter_addr); 1689 ldrw(scratch2, mask); 1690 ands(scratch, scratch, scratch2); 1691 br(cond, *where); 1692 } 1693 1694 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1695 int number_of_arguments) { 1696 // interpreter specific 1697 // 1698 // Note: No need to save/restore rbcp & rlocals pointer since these 1699 // are callee saved registers and no blocking/ GC can happen 1700 // in leaf calls. 1701 #ifdef ASSERT 1702 { 1703 Label L; 1704 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1705 cbz(rscratch1, L); 1706 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1707 " last_sp != nullptr"); 1708 bind(L); 1709 } 1710 #endif /* ASSERT */ 1711 // super call 1712 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1713 } 1714 1715 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1716 Register java_thread, 1717 Register last_java_sp, 1718 address entry_point, 1719 int number_of_arguments, 1720 bool check_exceptions) { 1721 // interpreter specific 1722 // 1723 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1724 // really make a difference for these runtime calls, since they are 1725 // slow anyway. Btw., bcp must be saved/restored since it may change 1726 // due to GC. 1727 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1728 save_bcp(); 1729 #ifdef ASSERT 1730 { 1731 Label L; 1732 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1733 cbz(rscratch1, L); 1734 stop("InterpreterMacroAssembler::call_VM_base:" 1735 " last_sp != nullptr"); 1736 bind(L); 1737 } 1738 #endif /* ASSERT */ 1739 // super call 1740 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1741 entry_point, number_of_arguments, 1742 check_exceptions); 1743 // interpreter specific 1744 restore_bcp(); 1745 restore_locals(); 1746 } 1747 1748 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1749 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1750 Label update, next, none; 1751 1752 verify_oop(obj); 1753 1754 cbnz(obj, update); 1755 orptr(mdo_addr, TypeEntries::null_seen); 1756 b(next); 1757 1758 bind(update); 1759 load_klass(obj, obj); 1760 1761 ldr(rscratch1, mdo_addr); 1762 eor(obj, obj, rscratch1); 1763 tst(obj, TypeEntries::type_klass_mask); 1764 br(Assembler::EQ, next); // klass seen before, nothing to 1765 // do. The unknown bit may have been 1766 // set already but no need to check. 1767 1768 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1769 // already unknown. Nothing to do anymore. 1770 1771 cbz(rscratch1, none); 1772 cmp(rscratch1, (u1)TypeEntries::null_seen); 1773 br(Assembler::EQ, none); 1774 // There is a chance that the checks above 1775 // fail if another thread has just set the 1776 // profiling to this obj's klass 1777 eor(obj, obj, rscratch1); // get back original value before XOR 1778 ldr(rscratch1, mdo_addr); 1779 eor(obj, obj, rscratch1); 1780 tst(obj, TypeEntries::type_klass_mask); 1781 br(Assembler::EQ, next); 1782 1783 // different than before. Cannot keep accurate profile. 1784 orptr(mdo_addr, TypeEntries::type_unknown); 1785 b(next); 1786 1787 bind(none); 1788 // first time here. Set profile type. 1789 str(obj, mdo_addr); 1790 #ifdef ASSERT 1791 andr(obj, obj, TypeEntries::type_mask); 1792 verify_klass_ptr(obj); 1793 #endif 1794 1795 bind(next); 1796 } 1797 1798 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1799 if (!ProfileInterpreter) { 1800 return; 1801 } 1802 1803 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1804 Label profile_continue; 1805 1806 test_method_data_pointer(mdp, profile_continue); 1807 1808 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1809 1810 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1811 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1812 br(Assembler::NE, profile_continue); 1813 1814 if (MethodData::profile_arguments()) { 1815 Label done; 1816 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1817 1818 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1819 if (i > 0 || MethodData::profile_return()) { 1820 // If return value type is profiled we may have no argument to profile 1821 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1822 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1823 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1824 add(rscratch1, mdp, off_to_args); 1825 br(Assembler::LT, done); 1826 } 1827 ldr(tmp, Address(callee, Method::const_offset())); 1828 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1829 // stack offset o (zero based) from the start of the argument 1830 // list, for n arguments translates into offset n - o - 1 from 1831 // the end of the argument list 1832 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1833 sub(tmp, tmp, rscratch1); 1834 sub(tmp, tmp, 1); 1835 Address arg_addr = argument_address(tmp); 1836 ldr(tmp, arg_addr); 1837 1838 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1839 profile_obj_type(tmp, mdo_arg_addr); 1840 1841 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1842 off_to_args += to_add; 1843 } 1844 1845 if (MethodData::profile_return()) { 1846 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1847 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1848 } 1849 1850 add(rscratch1, mdp, off_to_args); 1851 bind(done); 1852 mov(mdp, rscratch1); 1853 1854 if (MethodData::profile_return()) { 1855 // We're right after the type profile for the last 1856 // argument. tmp is the number of cells left in the 1857 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1858 // if there's a return to profile. 1859 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1860 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1861 } 1862 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1863 } else { 1864 assert(MethodData::profile_return(), "either profile call args or call ret"); 1865 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1866 } 1867 1868 // mdp points right after the end of the 1869 // CallTypeData/VirtualCallTypeData, right after the cells for the 1870 // return value type if there's one 1871 1872 bind(profile_continue); 1873 } 1874 } 1875 1876 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1877 assert_different_registers(mdp, ret, tmp, rbcp); 1878 if (ProfileInterpreter && MethodData::profile_return()) { 1879 Label profile_continue, done; 1880 1881 test_method_data_pointer(mdp, profile_continue); 1882 1883 if (MethodData::profile_return_jsr292_only()) { 1884 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1885 1886 // If we don't profile all invoke bytecodes we must make sure 1887 // it's a bytecode we indeed profile. We can't go back to the 1888 // beginning of the ProfileData we intend to update to check its 1889 // type because we're right after it and we don't known its 1890 // length 1891 Label do_profile; 1892 ldrb(rscratch1, Address(rbcp, 0)); 1893 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1894 br(Assembler::EQ, do_profile); 1895 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1896 br(Assembler::EQ, do_profile); 1897 get_method(tmp); 1898 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1899 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1900 br(Assembler::NE, profile_continue); 1901 1902 bind(do_profile); 1903 } 1904 1905 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1906 mov(tmp, ret); 1907 profile_obj_type(tmp, mdo_ret_addr); 1908 1909 bind(profile_continue); 1910 } 1911 } 1912 1913 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1914 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1915 if (ProfileInterpreter && MethodData::profile_parameters()) { 1916 Label profile_continue, done; 1917 1918 test_method_data_pointer(mdp, profile_continue); 1919 1920 // Load the offset of the area within the MDO used for 1921 // parameters. If it's negative we're not profiling any parameters 1922 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1923 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1924 1925 // Compute a pointer to the area for parameters from the offset 1926 // and move the pointer to the slot for the last 1927 // parameters. Collect profiling from last parameter down. 1928 // mdo start + parameters offset + array length - 1 1929 add(mdp, mdp, tmp1); 1930 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1931 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1932 1933 Label loop; 1934 bind(loop); 1935 1936 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1937 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1938 int per_arg_scale = exact_log2(DataLayout::cell_size); 1939 add(rscratch1, mdp, off_base); 1940 add(rscratch2, mdp, type_base); 1941 1942 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1943 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1944 1945 // load offset on the stack from the slot for this parameter 1946 ldr(tmp2, arg_off); 1947 neg(tmp2, tmp2); 1948 // read the parameter from the local area 1949 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1950 1951 // profile the parameter 1952 profile_obj_type(tmp2, arg_type); 1953 1954 // go to next parameter 1955 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1956 br(Assembler::GE, loop); 1957 1958 bind(profile_continue); 1959 } 1960 } 1961 1962 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1963 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1964 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1965 // Get address of invokedynamic array 1966 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1967 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1968 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1969 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1970 lea(cache, Address(cache, index)); 1971 } 1972 1973 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1974 // Get index out of bytecode pointer 1975 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1976 // Take shortcut if the size is a power of 2 1977 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1978 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1979 } else { 1980 mov(cache, sizeof(ResolvedFieldEntry)); 1981 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1982 } 1983 // Get address of field entries array 1984 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1985 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1986 lea(cache, Address(cache, index)); 1987 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1988 membar(MacroAssembler::LoadLoad); 1989 } 1990 1991 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1992 // Get index out of bytecode pointer 1993 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1994 mov(cache, sizeof(ResolvedMethodEntry)); 1995 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1996 1997 // Get address of field entries array 1998 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 1999 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 2000 lea(cache, Address(cache, index)); 2001 }