1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "metaprogramming/enableIf.hpp" 32 #include "oops/compressedOops.hpp" 33 #include "oops/compressedKlass.hpp" 34 #include "runtime/vm_version.hpp" 35 #include "utilities/macros.hpp" 36 #include "utilities/powerOfTwo.hpp" 37 #include "runtime/signature.hpp" 38 39 40 class ciInlineKlass; 41 42 class OopMap; 43 44 // MacroAssembler extends Assembler by frequently used macros. 45 // 46 // Instructions for which a 'better' code sequence exists depending 47 // on arguments should also go in here. 48 49 class MacroAssembler: public Assembler { 50 friend class LIR_Assembler; 51 52 public: 53 using Assembler::mov; 54 using Assembler::movi; 55 56 protected: 57 58 // Support for VM calls 59 // 60 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 61 // may customize this version by overriding it for its purposes (e.g., to save/restore 62 // additional registers when doing a VM call). 63 virtual void call_VM_leaf_base( 64 address entry_point, // the entry point 65 int number_of_arguments, // the number of arguments to pop after the call 66 Label *retaddr = nullptr 67 ); 68 69 virtual void call_VM_leaf_base( 70 address entry_point, // the entry point 71 int number_of_arguments, // the number of arguments to pop after the call 72 Label &retaddr) { 73 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 74 } 75 76 // This is the base routine called by the different versions of call_VM. The interpreter 77 // may customize this version by overriding it for its purposes (e.g., to save/restore 78 // additional registers when doing a VM call). 79 // 80 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 81 // returns the register which contains the thread upon return. If a thread register has been 82 // specified, the return value will correspond to that register. If no last_java_sp is specified 83 // (noreg) than rsp will be used instead. 84 virtual void call_VM_base( // returns the register containing the thread upon return 85 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 86 Register java_thread, // the thread if computed before ; use noreg otherwise 87 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 88 address entry_point, // the entry point 89 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 90 bool check_exceptions // whether to check for pending exceptions after return 91 ); 92 93 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 94 95 enum KlassDecodeMode { 96 KlassDecodeNone, 97 KlassDecodeZero, 98 KlassDecodeXor, 99 KlassDecodeMovk 100 }; 101 102 // Calculate decoding mode based on given parameters, used for checking then ultimately setting. 103 static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range); 104 105 private: 106 static KlassDecodeMode _klass_decode_mode; 107 108 // Returns above setting with asserts 109 static KlassDecodeMode klass_decode_mode(); 110 111 public: 112 // Checks the decode mode and returns false if not compatible with preferred decoding mode. 113 static bool check_klass_decode_mode(address base, int shift, const size_t range); 114 115 // Sets the decode mode and returns false if cannot be set. 116 static bool set_klass_decode_mode(address base, int shift, const size_t range); 117 118 public: 119 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 120 121 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 122 // The implementation is only non-empty for the InterpreterMacroAssembler, 123 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 124 virtual void check_and_handle_popframe(Register java_thread); 125 virtual void check_and_handle_earlyret(Register java_thread); 126 127 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 128 void rt_call(address dest, Register tmp = rscratch1); 129 130 // Load Effective Address 131 void lea(Register r, const Address &a) { 132 InstructionMark im(this); 133 a.lea(this, r); 134 } 135 136 /* Sometimes we get misaligned loads and stores, usually from Unsafe 137 accesses, and these can exceed the offset range. */ 138 Address legitimize_address(const Address &a, int size, Register scratch) { 139 if (a.getMode() == Address::base_plus_offset) { 140 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 141 block_comment("legitimize_address {"); 142 lea(scratch, a); 143 block_comment("} legitimize_address"); 144 return Address(scratch); 145 } 146 } 147 return a; 148 } 149 150 void addmw(Address a, Register incr, Register scratch) { 151 ldrw(scratch, a); 152 addw(scratch, scratch, incr); 153 strw(scratch, a); 154 } 155 156 // Add constant to memory word 157 void addmw(Address a, int imm, Register scratch) { 158 ldrw(scratch, a); 159 if (imm > 0) 160 addw(scratch, scratch, (unsigned)imm); 161 else 162 subw(scratch, scratch, (unsigned)-imm); 163 strw(scratch, a); 164 } 165 166 void bind(Label& L) { 167 Assembler::bind(L); 168 code()->clear_last_insn(); 169 code()->set_last_label(pc()); 170 } 171 172 void membar(Membar_mask_bits order_constraint); 173 174 using Assembler::ldr; 175 using Assembler::str; 176 using Assembler::ldrw; 177 using Assembler::strw; 178 179 void ldr(Register Rx, const Address &adr); 180 void ldrw(Register Rw, const Address &adr); 181 void str(Register Rx, const Address &adr); 182 void strw(Register Rx, const Address &adr); 183 184 // Frame creation and destruction shared between JITs. 185 void build_frame(int framesize); 186 void remove_frame(int framesize); 187 188 virtual void _call_Unimplemented(address call_site) { 189 mov(rscratch2, call_site); 190 } 191 192 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 193 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 194 // https://reviews.llvm.org/D3311 195 196 #ifdef _WIN64 197 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 198 #else 199 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 200 #endif 201 202 // aliases defined in AARCH64 spec 203 204 template<class T> 205 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 206 207 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 208 inline void cmp(Register Rd, unsigned imm) = delete; 209 210 template<class T> 211 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 212 213 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 214 inline void cmn(Register Rd, unsigned imm) = delete; 215 216 void cset(Register Rd, Assembler::Condition cond) { 217 csinc(Rd, zr, zr, ~cond); 218 } 219 void csetw(Register Rd, Assembler::Condition cond) { 220 csincw(Rd, zr, zr, ~cond); 221 } 222 223 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 224 csneg(Rd, Rn, Rn, ~cond); 225 } 226 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 227 csnegw(Rd, Rn, Rn, ~cond); 228 } 229 230 inline void movw(Register Rd, Register Rn) { 231 if (Rd == sp || Rn == sp) { 232 Assembler::addw(Rd, Rn, 0U); 233 } else { 234 orrw(Rd, zr, Rn); 235 } 236 } 237 inline void mov(Register Rd, Register Rn) { 238 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 239 if (Rd == Rn) { 240 } else if (Rd == sp || Rn == sp) { 241 Assembler::add(Rd, Rn, 0U); 242 } else { 243 orr(Rd, zr, Rn); 244 } 245 } 246 247 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 248 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 249 250 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 251 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 252 253 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 254 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 255 256 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 257 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 258 } 259 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 260 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 261 } 262 263 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 264 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 265 } 266 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 267 bfm(Rd, Rn, lsb , (lsb + width - 1)); 268 } 269 270 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 271 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 272 } 273 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 274 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 275 } 276 277 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 278 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 279 } 280 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 281 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 282 } 283 284 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 285 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 286 } 287 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 288 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 289 } 290 291 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 292 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 293 } 294 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 295 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 296 } 297 298 inline void asrw(Register Rd, Register Rn, unsigned imm) { 299 sbfmw(Rd, Rn, imm, 31); 300 } 301 302 inline void asr(Register Rd, Register Rn, unsigned imm) { 303 sbfm(Rd, Rn, imm, 63); 304 } 305 306 inline void lslw(Register Rd, Register Rn, unsigned imm) { 307 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 308 } 309 310 inline void lsl(Register Rd, Register Rn, unsigned imm) { 311 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 312 } 313 314 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 315 ubfmw(Rd, Rn, imm, 31); 316 } 317 318 inline void lsr(Register Rd, Register Rn, unsigned imm) { 319 ubfm(Rd, Rn, imm, 63); 320 } 321 322 inline void rorw(Register Rd, Register Rn, unsigned imm) { 323 extrw(Rd, Rn, Rn, imm); 324 } 325 326 inline void ror(Register Rd, Register Rn, unsigned imm) { 327 extr(Rd, Rn, Rn, imm); 328 } 329 330 inline void sxtbw(Register Rd, Register Rn) { 331 sbfmw(Rd, Rn, 0, 7); 332 } 333 inline void sxthw(Register Rd, Register Rn) { 334 sbfmw(Rd, Rn, 0, 15); 335 } 336 inline void sxtb(Register Rd, Register Rn) { 337 sbfm(Rd, Rn, 0, 7); 338 } 339 inline void sxth(Register Rd, Register Rn) { 340 sbfm(Rd, Rn, 0, 15); 341 } 342 inline void sxtw(Register Rd, Register Rn) { 343 sbfm(Rd, Rn, 0, 31); 344 } 345 346 inline void uxtbw(Register Rd, Register Rn) { 347 ubfmw(Rd, Rn, 0, 7); 348 } 349 inline void uxthw(Register Rd, Register Rn) { 350 ubfmw(Rd, Rn, 0, 15); 351 } 352 inline void uxtb(Register Rd, Register Rn) { 353 ubfm(Rd, Rn, 0, 7); 354 } 355 inline void uxth(Register Rd, Register Rn) { 356 ubfm(Rd, Rn, 0, 15); 357 } 358 inline void uxtw(Register Rd, Register Rn) { 359 ubfm(Rd, Rn, 0, 31); 360 } 361 362 inline void cmnw(Register Rn, Register Rm) { 363 addsw(zr, Rn, Rm); 364 } 365 inline void cmn(Register Rn, Register Rm) { 366 adds(zr, Rn, Rm); 367 } 368 369 inline void cmpw(Register Rn, Register Rm) { 370 subsw(zr, Rn, Rm); 371 } 372 inline void cmp(Register Rn, Register Rm) { 373 subs(zr, Rn, Rm); 374 } 375 376 inline void negw(Register Rd, Register Rn) { 377 subw(Rd, zr, Rn); 378 } 379 380 inline void neg(Register Rd, Register Rn) { 381 sub(Rd, zr, Rn); 382 } 383 384 inline void negsw(Register Rd, Register Rn) { 385 subsw(Rd, zr, Rn); 386 } 387 388 inline void negs(Register Rd, Register Rn) { 389 subs(Rd, zr, Rn); 390 } 391 392 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 393 addsw(zr, Rn, Rm, kind, shift); 394 } 395 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 396 adds(zr, Rn, Rm, kind, shift); 397 } 398 399 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 400 subsw(zr, Rn, Rm, kind, shift); 401 } 402 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 403 subs(zr, Rn, Rm, kind, shift); 404 } 405 406 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 407 subw(Rd, zr, Rn, kind, shift); 408 } 409 410 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 411 sub(Rd, zr, Rn, kind, shift); 412 } 413 414 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 415 subsw(Rd, zr, Rn, kind, shift); 416 } 417 418 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 419 subs(Rd, zr, Rn, kind, shift); 420 } 421 422 inline void mnegw(Register Rd, Register Rn, Register Rm) { 423 msubw(Rd, Rn, Rm, zr); 424 } 425 inline void mneg(Register Rd, Register Rn, Register Rm) { 426 msub(Rd, Rn, Rm, zr); 427 } 428 429 inline void mulw(Register Rd, Register Rn, Register Rm) { 430 maddw(Rd, Rn, Rm, zr); 431 } 432 inline void mul(Register Rd, Register Rn, Register Rm) { 433 madd(Rd, Rn, Rm, zr); 434 } 435 436 inline void smnegl(Register Rd, Register Rn, Register Rm) { 437 smsubl(Rd, Rn, Rm, zr); 438 } 439 inline void smull(Register Rd, Register Rn, Register Rm) { 440 smaddl(Rd, Rn, Rm, zr); 441 } 442 443 inline void umnegl(Register Rd, Register Rn, Register Rm) { 444 umsubl(Rd, Rn, Rm, zr); 445 } 446 inline void umull(Register Rd, Register Rn, Register Rm) { 447 umaddl(Rd, Rn, Rm, zr); 448 } 449 450 #define WRAP(INSN) \ 451 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 452 if (VM_Version::supports_a53mac() && Ra != zr) \ 453 nop(); \ 454 Assembler::INSN(Rd, Rn, Rm, Ra); \ 455 } 456 457 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 458 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 459 #undef WRAP 460 461 462 // macro assembly operations needed for aarch64 463 464 public: 465 466 enum FpPushPopMode { 467 PushPopFull, 468 PushPopSVE, 469 PushPopNeon, 470 PushPopFp 471 }; 472 473 // first two private routines for loading 32 bit or 64 bit constants 474 private: 475 476 void mov_immediate64(Register dst, uint64_t imm64); 477 void mov_immediate32(Register dst, uint32_t imm32); 478 479 int push(unsigned int bitset, Register stack); 480 int pop(unsigned int bitset, Register stack); 481 482 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 483 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 484 485 int push_p(unsigned int bitset, Register stack); 486 int pop_p(unsigned int bitset, Register stack); 487 488 void mov(Register dst, Address a); 489 490 public: 491 492 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 493 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 494 495 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 496 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 497 498 static RegSet call_clobbered_gp_registers(); 499 500 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 501 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 502 503 // Push and pop everything that might be clobbered by a native 504 // runtime call except rscratch1 and rscratch2. (They are always 505 // scratch, so we don't have to protect them.) Only save the lower 506 // 64 bits of each vector register. Additional registers can be excluded 507 // in a passed RegSet. 508 void push_call_clobbered_registers_except(RegSet exclude); 509 void pop_call_clobbered_registers_except(RegSet exclude); 510 511 void push_call_clobbered_registers() { 512 push_call_clobbered_registers_except(RegSet()); 513 } 514 void pop_call_clobbered_registers() { 515 pop_call_clobbered_registers_except(RegSet()); 516 } 517 518 519 // now mov instructions for loading absolute addresses and 32 or 520 // 64 bit integers 521 522 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 523 524 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 525 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 526 527 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 528 529 void mov(Register dst, RegisterOrConstant src) { 530 if (src.is_register()) 531 mov(dst, src.as_register()); 532 else 533 mov(dst, src.as_constant()); 534 } 535 536 void movptr(Register r, uintptr_t imm64); 537 538 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 539 540 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 541 orr(Vd, T, Vn, Vn); 542 } 543 544 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 545 fcvtsh(tmp, src); 546 smov(dst, tmp, H, 0); 547 } 548 549 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 550 mov(tmp, H, 0, src); 551 fcvths(dst, tmp); 552 } 553 554 // Generalized Test Bit And Branch, including a "far" variety which 555 // spans more than 32KiB. 556 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 557 assert(cond == EQ || cond == NE, "must be"); 558 559 if (isfar) 560 cond = ~cond; 561 562 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 563 if (cond == Assembler::EQ) 564 branch = &Assembler::tbz; 565 else 566 branch = &Assembler::tbnz; 567 568 if (isfar) { 569 Label L; 570 (this->*branch)(Rt, bitpos, L); 571 b(dest); 572 bind(L); 573 } else { 574 (this->*branch)(Rt, bitpos, dest); 575 } 576 } 577 578 // macro instructions for accessing and updating floating point 579 // status register 580 // 581 // FPSR : op1 == 011 582 // CRn == 0100 583 // CRm == 0100 584 // op2 == 001 585 586 inline void get_fpsr(Register reg) 587 { 588 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 589 } 590 591 inline void set_fpsr(Register reg) 592 { 593 msr(0b011, 0b0100, 0b0100, 0b001, reg); 594 } 595 596 inline void clear_fpsr() 597 { 598 msr(0b011, 0b0100, 0b0100, 0b001, zr); 599 } 600 601 // FPCR : op1 == 011 602 // CRn == 0100 603 // CRm == 0100 604 // op2 == 000 605 606 inline void get_fpcr(Register reg) { 607 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 608 } 609 610 inline void set_fpcr(Register reg) { 611 msr(0b011, 0b0100, 0b0100, 0b000, reg); 612 } 613 614 // DCZID_EL0: op1 == 011 615 // CRn == 0000 616 // CRm == 0000 617 // op2 == 111 618 inline void get_dczid_el0(Register reg) 619 { 620 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 621 } 622 623 // CTR_EL0: op1 == 011 624 // CRn == 0000 625 // CRm == 0000 626 // op2 == 001 627 inline void get_ctr_el0(Register reg) 628 { 629 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 630 } 631 632 inline void get_nzcv(Register reg) { 633 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 634 } 635 636 inline void set_nzcv(Register reg) { 637 msr(0b011, 0b0100, 0b0010, 0b000, reg); 638 } 639 640 // idiv variant which deals with MINLONG as dividend and -1 as divisor 641 int corrected_idivl(Register result, Register ra, Register rb, 642 bool want_remainder, Register tmp = rscratch1); 643 int corrected_idivq(Register result, Register ra, Register rb, 644 bool want_remainder, Register tmp = rscratch1); 645 646 // Support for null-checks 647 // 648 // Generates code that causes a null OS exception if the content of reg is null. 649 // If the accessed location is M[reg + offset] and the offset is known, provide the 650 // offset. No explicit code generation is needed if the offset is within a certain 651 // range (0 <= offset <= page_size). 652 653 virtual void null_check(Register reg, int offset = -1); 654 static bool needs_explicit_null_check(intptr_t offset); 655 static bool uses_implicit_null_check(void* address); 656 657 // markWord tests, kills markWord reg 658 void test_markword_is_inline_type(Register markword, Label& is_inline_type); 659 660 // inlineKlass queries, kills temp_reg 661 void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type); 662 void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type); 663 664 void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free); 665 void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free); 666 void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat); 667 void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker); 668 669 // Check oops for special arrays, i.e. flat arrays and/or null-free arrays 670 void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label); 671 void test_flat_array_oop(Register klass, Register temp_reg, Label& is_flat_array); 672 void test_non_flat_array_oop(Register oop, Register temp_reg, Label&is_non_flat_array); 673 void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array); 674 void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array); 675 676 // Check array klass layout helper for flat or null-free arrays... 677 void test_flat_array_layout(Register lh, Label& is_flat_array); 678 void test_non_flat_array_layout(Register lh, Label& is_non_flat_array); 679 680 static address target_addr_for_insn(address insn_addr, unsigned insn); 681 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 682 static address target_addr_for_insn(address insn_addr) { 683 unsigned insn = *(unsigned*)insn_addr; 684 return target_addr_for_insn(insn_addr, insn); 685 } 686 static address target_addr_for_insn_or_null(address insn_addr) { 687 unsigned insn = *(unsigned*)insn_addr; 688 return target_addr_for_insn_or_null(insn_addr, insn); 689 } 690 691 // Required platform-specific helpers for Label::patch_instructions. 692 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 693 static int pd_patch_instruction_size(address branch, address target); 694 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 695 pd_patch_instruction_size(branch, target); 696 } 697 static address pd_call_destination(address branch) { 698 return target_addr_for_insn(branch); 699 } 700 #ifndef PRODUCT 701 static void pd_print_patched_instruction(address branch); 702 #endif 703 704 static int patch_oop(address insn_addr, address o); 705 static int patch_narrow_klass(address insn_addr, narrowKlass n); 706 707 // Return whether code is emitted to a scratch blob. 708 virtual bool in_scratch_emit_size() { 709 return false; 710 } 711 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 712 static int max_trampoline_stub_size(); 713 void emit_static_call_stub(); 714 static int static_call_stub_size(); 715 716 // The following 4 methods return the offset of the appropriate move instruction 717 718 // Support for fast byte/short loading with zero extension (depending on particular CPU) 719 int load_unsigned_byte(Register dst, Address src); 720 int load_unsigned_short(Register dst, Address src); 721 722 // Support for fast byte/short loading with sign extension (depending on particular CPU) 723 int load_signed_byte(Register dst, Address src); 724 int load_signed_short(Register dst, Address src); 725 726 int load_signed_byte32(Register dst, Address src); 727 int load_signed_short32(Register dst, Address src); 728 729 // Support for sign-extension (hi:lo = extend_sign(lo)) 730 void extend_sign(Register hi, Register lo); 731 732 // Load and store values by size and signed-ness 733 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 734 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 735 736 // Support for inc/dec with optimal instruction selection depending on value 737 738 // x86_64 aliases an unqualified register/address increment and 739 // decrement to call incrementq and decrementq but also supports 740 // explicitly sized calls to incrementq/decrementq or 741 // incrementl/decrementl 742 743 // for aarch64 the proper convention would be to use 744 // increment/decrement for 64 bit operations and 745 // incrementw/decrementw for 32 bit operations. so when porting 746 // x86_64 code we can leave calls to increment/decrement as is, 747 // replace incrementq/decrementq with increment/decrement and 748 // replace incrementl/decrementl with incrementw/decrementw. 749 750 // n.b. increment/decrement calls with an Address destination will 751 // need to use a scratch register to load the value to be 752 // incremented. increment/decrement calls which add or subtract a 753 // constant value greater than 2^12 will need to use a 2nd scratch 754 // register to hold the constant. so, a register increment/decrement 755 // may trash rscratch2 and an address increment/decrement trash 756 // rscratch and rscratch2 757 758 void decrementw(Address dst, int value = 1); 759 void decrementw(Register reg, int value = 1); 760 761 void decrement(Register reg, int value = 1); 762 void decrement(Address dst, int value = 1); 763 764 void incrementw(Address dst, int value = 1); 765 void incrementw(Register reg, int value = 1); 766 767 void increment(Register reg, int value = 1); 768 void increment(Address dst, int value = 1); 769 770 771 // Alignment 772 void align(int modulus); 773 void align(int modulus, int target); 774 775 // nop 776 void post_call_nop(); 777 778 // Stack frame creation/removal 779 void enter(bool strip_ret_addr = false); 780 void leave(); 781 782 // ROP Protection 783 void protect_return_address(); 784 void protect_return_address(Register return_reg); 785 void authenticate_return_address(); 786 void authenticate_return_address(Register return_reg); 787 void strip_return_address(); 788 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 789 790 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 791 // The pointer will be loaded into the thread register. 792 void get_thread(Register thread); 793 794 // support for argument shuffling 795 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 796 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 797 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 798 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 799 void object_move( 800 OopMap* map, 801 int oop_handle_offset, 802 int framesize_in_slots, 803 VMRegPair src, 804 VMRegPair dst, 805 bool is_receiver, 806 int* receiver_offset); 807 808 809 // Support for VM calls 810 // 811 // It is imperative that all calls into the VM are handled via the call_VM macros. 812 // They make sure that the stack linkage is setup correctly. call_VM's correspond 813 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 814 815 816 void call_VM(Register oop_result, 817 address entry_point, 818 bool check_exceptions = true); 819 void call_VM(Register oop_result, 820 address entry_point, 821 Register arg_1, 822 bool check_exceptions = true); 823 void call_VM(Register oop_result, 824 address entry_point, 825 Register arg_1, Register arg_2, 826 bool check_exceptions = true); 827 void call_VM(Register oop_result, 828 address entry_point, 829 Register arg_1, Register arg_2, Register arg_3, 830 bool check_exceptions = true); 831 832 // Overloadings with last_Java_sp 833 void call_VM(Register oop_result, 834 Register last_java_sp, 835 address entry_point, 836 int number_of_arguments = 0, 837 bool check_exceptions = true); 838 void call_VM(Register oop_result, 839 Register last_java_sp, 840 address entry_point, 841 Register arg_1, bool 842 check_exceptions = true); 843 void call_VM(Register oop_result, 844 Register last_java_sp, 845 address entry_point, 846 Register arg_1, Register arg_2, 847 bool check_exceptions = true); 848 void call_VM(Register oop_result, 849 Register last_java_sp, 850 address entry_point, 851 Register arg_1, Register arg_2, Register arg_3, 852 bool check_exceptions = true); 853 854 void get_vm_result (Register oop_result, Register thread); 855 void get_vm_result_2(Register metadata_result, Register thread); 856 857 // These always tightly bind to MacroAssembler::call_VM_base 858 // bypassing the virtual implementation 859 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 860 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 861 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 862 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 863 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 864 865 void call_VM_leaf(address entry_point, 866 int number_of_arguments = 0); 867 void call_VM_leaf(address entry_point, 868 Register arg_1); 869 void call_VM_leaf(address entry_point, 870 Register arg_1, Register arg_2); 871 void call_VM_leaf(address entry_point, 872 Register arg_1, Register arg_2, Register arg_3); 873 874 // These always tightly bind to MacroAssembler::call_VM_leaf_base 875 // bypassing the virtual implementation 876 void super_call_VM_leaf(address entry_point); 877 void super_call_VM_leaf(address entry_point, Register arg_1); 878 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 879 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 880 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 881 882 // last Java Frame (fills frame anchor) 883 void set_last_Java_frame(Register last_java_sp, 884 Register last_java_fp, 885 address last_java_pc, 886 Register scratch); 887 888 void set_last_Java_frame(Register last_java_sp, 889 Register last_java_fp, 890 Label &last_java_pc, 891 Register scratch); 892 893 void set_last_Java_frame(Register last_java_sp, 894 Register last_java_fp, 895 Register last_java_pc, 896 Register scratch); 897 898 void reset_last_Java_frame(Register thread); 899 900 // thread in the default location (rthread) 901 void reset_last_Java_frame(bool clear_fp); 902 903 // Stores 904 void store_check(Register obj); // store check for obj - register is destroyed afterwards 905 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 906 907 void resolve_jobject(Register value, Register tmp1, Register tmp2); 908 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 909 910 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 911 void c2bool(Register x); 912 913 void load_method_holder_cld(Register rresult, Register rmethod); 914 void load_method_holder(Register holder, Register method); 915 916 // oop manipulations 917 void load_metadata(Register dst, Register src); 918 919 void load_narrow_klass_compact(Register dst, Register src); 920 void load_klass(Register dst, Register src); 921 void store_klass(Register dst, Register src); 922 void cmp_klass(Register obj, Register klass, Register tmp); 923 void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2); 924 925 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 926 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 927 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 928 929 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 930 Register tmp1, Register tmp2); 931 932 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 933 Register tmp1, Register tmp2, Register tmp3); 934 935 void flat_field_copy(DecoratorSet decorators, Register src, Register dst, Register inline_layout_info); 936 937 // inline type data payload offsets... 938 void payload_offset(Register inline_klass, Register offset); 939 void payload_address(Register oop, Register data, Register inline_klass); 940 // get data payload ptr a flat value array at index, kills rcx and index 941 void data_for_value_array_index(Register array, Register array_klass, 942 Register index, Register data); 943 944 void load_heap_oop(Register dst, Address src, Register tmp1, 945 Register tmp2, DecoratorSet decorators = 0); 946 947 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 948 Register tmp2, DecoratorSet decorators = 0); 949 void store_heap_oop(Address dst, Register val, Register tmp1, 950 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 951 952 // currently unimplemented 953 // Used for storing null. All other oop constants should be 954 // stored using routines that take a jobject. 955 void store_heap_oop_null(Address dst); 956 957 void load_prototype_header(Register dst, Register src); 958 959 void store_klass_gap(Register dst, Register src); 960 961 // This dummy is to prevent a call to store_heap_oop from 962 // converting a zero (like null) into a Register by giving 963 // the compiler two choices it can't resolve 964 965 void store_heap_oop(Address dst, void* dummy); 966 967 void encode_heap_oop(Register d, Register s); 968 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 969 void decode_heap_oop(Register d, Register s); 970 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 971 void encode_heap_oop_not_null(Register r); 972 void decode_heap_oop_not_null(Register r); 973 void encode_heap_oop_not_null(Register dst, Register src); 974 void decode_heap_oop_not_null(Register dst, Register src); 975 976 void set_narrow_oop(Register dst, jobject obj); 977 978 void encode_klass_not_null(Register r); 979 void decode_klass_not_null(Register r); 980 void encode_klass_not_null(Register dst, Register src); 981 void decode_klass_not_null(Register dst, Register src); 982 983 void set_narrow_klass(Register dst, Klass* k); 984 985 // if heap base register is used - reinit it with the correct value 986 void reinit_heapbase(); 987 988 DEBUG_ONLY(void verify_heapbase(const char* msg);) 989 990 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 991 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 992 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 993 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 994 995 void push_cont_fastpath(Register java_thread = rthread); 996 void pop_cont_fastpath(Register java_thread = rthread); 997 998 void inc_held_monitor_count(Register tmp); 999 void dec_held_monitor_count(Register tmp); 1000 1001 // Round up to a power of two 1002 void round_to(Register reg, int modulus); 1003 1004 // java.lang.Math::round intrinsics 1005 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 1006 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 1007 1008 // allocation 1009 1010 // Object / value buffer allocation... 1011 // Allocate instance of klass, assumes klass initialized by caller 1012 // new_obj prefers to be rax 1013 // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64) 1014 void allocate_instance(Register klass, Register new_obj, 1015 Register t1, Register t2, 1016 bool clear_fields, Label& alloc_failed); 1017 1018 void tlab_allocate( 1019 Register obj, // result: pointer to object after successful allocation 1020 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 1021 int con_size_in_bytes, // object size in bytes if known at compile time 1022 Register t1, // temp register 1023 Register t2, // temp register 1024 Label& slow_case // continuation point if fast allocation fails 1025 ); 1026 void verify_tlab(); 1027 1028 // For field "index" within "klass", return inline_klass ... 1029 void get_inline_type_field_klass(Register klass, Register index, Register inline_klass); 1030 void inline_layout_info(Register holder_klass, Register index, Register layout_info); 1031 1032 1033 // interface method calling 1034 void lookup_interface_method(Register recv_klass, 1035 Register intf_klass, 1036 RegisterOrConstant itable_index, 1037 Register method_result, 1038 Register scan_temp, 1039 Label& no_such_interface, 1040 bool return_method = true); 1041 1042 void lookup_interface_method_stub(Register recv_klass, 1043 Register holder_klass, 1044 Register resolved_klass, 1045 Register method_result, 1046 Register temp_reg, 1047 Register temp_reg2, 1048 int itable_index, 1049 Label& L_no_such_interface); 1050 1051 // virtual method calling 1052 // n.b. x86 allows RegisterOrConstant for vtable_index 1053 void lookup_virtual_method(Register recv_klass, 1054 RegisterOrConstant vtable_index, 1055 Register method_result); 1056 1057 // Test sub_klass against super_klass, with fast and slow paths. 1058 1059 // The fast path produces a tri-state answer: yes / no / maybe-slow. 1060 // One of the three labels can be null, meaning take the fall-through. 1061 // If super_check_offset is -1, the value is loaded up from super_klass. 1062 // No registers are killed, except temp_reg. 1063 void check_klass_subtype_fast_path(Register sub_klass, 1064 Register super_klass, 1065 Register temp_reg, 1066 Label* L_success, 1067 Label* L_failure, 1068 Label* L_slow_path, 1069 Register super_check_offset = noreg); 1070 1071 // The rest of the type check; must be wired to a corresponding fast path. 1072 // It does not repeat the fast path logic, so don't use it standalone. 1073 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1074 // Updates the sub's secondary super cache as necessary. 1075 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1076 void check_klass_subtype_slow_path(Register sub_klass, 1077 Register super_klass, 1078 Register temp_reg, 1079 Register temp2_reg, 1080 Label* L_success, 1081 Label* L_failure, 1082 bool set_cond_codes = false); 1083 1084 void check_klass_subtype_slow_path_linear(Register sub_klass, 1085 Register super_klass, 1086 Register temp_reg, 1087 Register temp2_reg, 1088 Label* L_success, 1089 Label* L_failure, 1090 bool set_cond_codes = false); 1091 1092 void check_klass_subtype_slow_path_table(Register sub_klass, 1093 Register super_klass, 1094 Register temp_reg, 1095 Register temp2_reg, 1096 Register temp3_reg, 1097 Register result_reg, 1098 FloatRegister vtemp_reg, 1099 Label* L_success, 1100 Label* L_failure, 1101 bool set_cond_codes = false); 1102 1103 // If r is valid, return r. 1104 // If r is invalid, remove a register r2 from available_regs, add r2 1105 // to regs_to_push, then return r2. 1106 Register allocate_if_noreg(const Register r, 1107 RegSetIterator<Register> &available_regs, 1108 RegSet ®s_to_push); 1109 1110 // Secondary subtype checking 1111 void lookup_secondary_supers_table_var(Register sub_klass, 1112 Register r_super_klass, 1113 Register temp1, 1114 Register temp2, 1115 Register temp3, 1116 FloatRegister vtemp, 1117 Register result, 1118 Label *L_success); 1119 1120 1121 // As above, but with a constant super_klass. 1122 // The result is in Register result, not the condition codes. 1123 bool lookup_secondary_supers_table_const(Register r_sub_klass, 1124 Register r_super_klass, 1125 Register temp1, 1126 Register temp2, 1127 Register temp3, 1128 FloatRegister vtemp, 1129 Register result, 1130 u1 super_klass_slot, 1131 bool stub_is_near = false); 1132 1133 void verify_secondary_supers_table(Register r_sub_klass, 1134 Register r_super_klass, 1135 Register temp1, 1136 Register temp2, 1137 Register result); 1138 1139 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1140 Register r_array_base, 1141 Register r_array_index, 1142 Register r_bitmap, 1143 Register temp1, 1144 Register result, 1145 bool is_stub = true); 1146 1147 // Simplified, combined version, good for typical uses. 1148 // Falls through on failure. 1149 void check_klass_subtype(Register sub_klass, 1150 Register super_klass, 1151 Register temp_reg, 1152 Label& L_success); 1153 1154 void clinit_barrier(Register klass, 1155 Register thread, 1156 Label* L_fast_path = nullptr, 1157 Label* L_slow_path = nullptr); 1158 1159 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1160 1161 void verify_sve_vector_length(Register tmp = rscratch1); 1162 void reinitialize_ptrue() { 1163 if (UseSVE > 0) { 1164 sve_ptrue(ptrue, B); 1165 } 1166 } 1167 void verify_ptrue(); 1168 1169 // Debugging 1170 1171 // only if +VerifyOops 1172 void _verify_oop(Register reg, const char* s, const char* file, int line); 1173 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1174 1175 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1176 if (VerifyOops) { 1177 _verify_oop(reg, s, file, line); 1178 } 1179 } 1180 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1181 if (VerifyOops) { 1182 _verify_oop_addr(reg, s, file, line); 1183 } 1184 } 1185 1186 // TODO: verify method and klass metadata (compare against vptr?) 1187 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1188 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1189 1190 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1191 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1192 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1193 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1194 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1195 1196 // Restore cpu control state after JNI call 1197 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1198 1199 // prints msg, dumps registers and stops execution 1200 void stop(const char* msg); 1201 1202 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1203 1204 void untested() { stop("untested"); } 1205 1206 void unimplemented(const char* what = ""); 1207 1208 void should_not_reach_here() { stop("should not reach here"); } 1209 1210 void _assert_asm(Condition cc, const char* msg); 1211 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1212 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1213 1214 // Stack overflow checking 1215 void bang_stack_with_offset(int offset) { 1216 // stack grows down, caller passes positive offset 1217 assert(offset > 0, "must bang with negative offset"); 1218 sub(rscratch2, sp, offset); 1219 str(zr, Address(rscratch2)); 1220 } 1221 1222 // Writes to stack successive pages until offset reached to check for 1223 // stack overflow + shadow pages. Also, clobbers tmp 1224 void bang_stack_size(Register size, Register tmp); 1225 1226 // Check for reserved stack access in method being exited (for JIT) 1227 void reserved_stack_check(); 1228 1229 // Arithmetics 1230 1231 // Clobber: rscratch1, rscratch2 1232 void addptr(const Address &dst, int32_t src); 1233 1234 // Clobber: rscratch1 1235 void cmpptr(Register src1, Address src2); 1236 1237 void cmpoop(Register obj1, Register obj2); 1238 1239 // Various forms of CAS 1240 1241 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1242 Label &succeed, Label *fail); 1243 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1244 Label &succeed, Label *fail); 1245 1246 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1247 Label &succeed, Label *fail); 1248 1249 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1250 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1251 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1252 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1253 1254 void atomic_xchg(Register prev, Register newv, Register addr); 1255 void atomic_xchgw(Register prev, Register newv, Register addr); 1256 void atomic_xchgl(Register prev, Register newv, Register addr); 1257 void atomic_xchglw(Register prev, Register newv, Register addr); 1258 void atomic_xchgal(Register prev, Register newv, Register addr); 1259 void atomic_xchgalw(Register prev, Register newv, Register addr); 1260 1261 void orptr(Address adr, RegisterOrConstant src) { 1262 ldr(rscratch1, adr); 1263 if (src.is_register()) 1264 orr(rscratch1, rscratch1, src.as_register()); 1265 else 1266 orr(rscratch1, rscratch1, src.as_constant()); 1267 str(rscratch1, adr); 1268 } 1269 1270 // A generic CAS; success or failure is in the EQ flag. 1271 // Clobbers rscratch1 1272 void cmpxchg(Register addr, Register expected, Register new_val, 1273 enum operand_size size, 1274 bool acquire, bool release, bool weak, 1275 Register result); 1276 1277 #ifdef ASSERT 1278 // Template short-hand support to clean-up after a failed call to trampoline 1279 // call generation (see trampoline_call() below), when a set of Labels must 1280 // be reset (before returning). 1281 template<typename Label, typename... More> 1282 void reset_labels(Label &lbl, More&... more) { 1283 lbl.reset(); reset_labels(more...); 1284 } 1285 template<typename Label> 1286 void reset_labels(Label &lbl) { 1287 lbl.reset(); 1288 } 1289 #endif 1290 1291 private: 1292 void compare_eq(Register rn, Register rm, enum operand_size size); 1293 1294 public: 1295 // AArch64 OpenJDK uses four different types of calls: 1296 // - direct call: bl pc_relative_offset 1297 // This is the shortest and the fastest, but the offset has the range: 1298 // +/-128MB for the release build, +/-2MB for the debug build. 1299 // 1300 // - far call: adrp reg, pc_relative_offset; add; bl reg 1301 // This is longer than a direct call. The offset has 1302 // the range +/-4GB. As the code cache size is limited to 4GB, 1303 // far calls can reach anywhere in the code cache. If a jump is 1304 // needed rather than a call, a far jump 'b reg' can be used instead. 1305 // All instructions are embedded at a call site. 1306 // 1307 // - trampoline call: 1308 // This is only available in C1/C2-generated code (nmethod). It is a combination 1309 // of a direct call, which is used if the destination of a call is in range, 1310 // and a register-indirect call. It has the advantages of reaching anywhere in 1311 // the AArch64 address space and being patchable at runtime when the generated 1312 // code is being executed by other threads. 1313 // 1314 // [Main code section] 1315 // bl trampoline 1316 // [Stub code section] 1317 // trampoline: 1318 // ldr reg, pc + 8 1319 // br reg 1320 // <64-bit destination address> 1321 // 1322 // If the destination is in range when the generated code is moved to the code 1323 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1324 // is not used. 1325 // The optimization does not remove the trampoline from the stub section. 1326 // This is necessary because the trampoline may well be redirected later when 1327 // code is patched, and the new destination may not be reachable by a simple BR 1328 // instruction. 1329 // 1330 // - indirect call: move reg, address; blr reg 1331 // This too can reach anywhere in the address space, but it cannot be 1332 // patched while code is running, so it must only be modified at a safepoint. 1333 // This form of call is most suitable for targets at fixed addresses, which 1334 // will never be patched. 1335 // 1336 // The patching we do conforms to the "Concurrent modification and 1337 // execution of instructions" section of the Arm Architectural 1338 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1339 // or SVC instructions to be modified while another thread is 1340 // executing them. 1341 // 1342 // To patch a trampoline call when the BL can't reach, we first modify 1343 // the 64-bit destination address in the trampoline, then modify the 1344 // BL to point to the trampoline, then flush the instruction cache to 1345 // broadcast the change to all executing threads. See 1346 // NativeCall::set_destination_mt_safe for the details. 1347 // 1348 // There is a benign race in that the other thread might observe the 1349 // modified BL before it observes the modified 64-bit destination 1350 // address. That does not matter because the destination method has been 1351 // invalidated, so there will be a trap at its start. 1352 // For this to work, the destination address in the trampoline is 1353 // always updated, even if we're not using the trampoline. 1354 1355 // Emit a direct call if the entry address will always be in range, 1356 // otherwise a trampoline call. 1357 // Supported entry.rspec(): 1358 // - relocInfo::runtime_call_type 1359 // - relocInfo::opt_virtual_call_type 1360 // - relocInfo::static_call_type 1361 // - relocInfo::virtual_call_type 1362 // 1363 // Return: the call PC or null if CodeCache is full. 1364 // Clobbers: rscratch1 1365 address trampoline_call(Address entry); 1366 1367 static bool far_branches() { 1368 return ReservedCodeCacheSize > branch_range; 1369 } 1370 1371 // Check if branches to the non nmethod section require a far jump 1372 static bool codestub_branch_needs_far_jump() { 1373 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1374 } 1375 1376 // Emit a direct call/jump if the entry address will always be in range, 1377 // otherwise a far call/jump. 1378 // The address must be inside the code cache. 1379 // Supported entry.rspec(): 1380 // - relocInfo::external_word_type 1381 // - relocInfo::runtime_call_type 1382 // - relocInfo::none 1383 // In the case of a far call/jump, the entry address is put in the tmp register. 1384 // The tmp register is invalidated. 1385 // 1386 // Far_jump returns the amount of the emitted code. 1387 void far_call(Address entry, Register tmp = rscratch1); 1388 int far_jump(Address entry, Register tmp = rscratch1); 1389 1390 static int far_codestub_branch_size() { 1391 if (codestub_branch_needs_far_jump()) { 1392 return 3 * 4; // adrp, add, br 1393 } else { 1394 return 4; 1395 } 1396 } 1397 1398 // Emit the CompiledIC call idiom 1399 address ic_call(address entry, jint method_index = 0); 1400 static int ic_check_size(); 1401 int ic_check(int end_alignment); 1402 1403 public: 1404 1405 // Data 1406 1407 void mov_metadata(Register dst, Metadata* obj); 1408 Address allocate_metadata_address(Metadata* obj); 1409 Address constant_oop_address(jobject obj); 1410 1411 void movoop(Register dst, jobject obj); 1412 1413 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1414 void kernel_crc32(Register crc, Register buf, Register len, 1415 Register table0, Register table1, Register table2, Register table3, 1416 Register tmp, Register tmp2, Register tmp3); 1417 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1418 void kernel_crc32c(Register crc, Register buf, Register len, 1419 Register table0, Register table1, Register table2, Register table3, 1420 Register tmp, Register tmp2, Register tmp3); 1421 1422 // Stack push and pop individual 64 bit registers 1423 void push(Register src); 1424 void pop(Register dst); 1425 1426 void repne_scan(Register addr, Register value, Register count, 1427 Register scratch); 1428 void repne_scanw(Register addr, Register value, Register count, 1429 Register scratch); 1430 1431 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1432 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1433 1434 // If a constant does not fit in an immediate field, generate some 1435 // number of MOV instructions and then perform the operation 1436 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1437 add_sub_imm_insn insn1, 1438 add_sub_reg_insn insn2, bool is32); 1439 // Separate vsn which sets the flags 1440 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1441 add_sub_imm_insn insn1, 1442 add_sub_reg_insn insn2, bool is32); 1443 1444 #define WRAP(INSN, is32) \ 1445 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1446 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1447 } \ 1448 \ 1449 void INSN(Register Rd, Register Rn, Register Rm, \ 1450 enum shift_kind kind, unsigned shift = 0) { \ 1451 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1452 } \ 1453 \ 1454 void INSN(Register Rd, Register Rn, Register Rm) { \ 1455 Assembler::INSN(Rd, Rn, Rm); \ 1456 } \ 1457 \ 1458 void INSN(Register Rd, Register Rn, Register Rm, \ 1459 ext::operation option, int amount = 0) { \ 1460 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1461 } 1462 1463 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1464 1465 #undef WRAP 1466 #define WRAP(INSN, is32) \ 1467 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1468 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1469 } \ 1470 \ 1471 void INSN(Register Rd, Register Rn, Register Rm, \ 1472 enum shift_kind kind, unsigned shift = 0) { \ 1473 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1474 } \ 1475 \ 1476 void INSN(Register Rd, Register Rn, Register Rm) { \ 1477 Assembler::INSN(Rd, Rn, Rm); \ 1478 } \ 1479 \ 1480 void INSN(Register Rd, Register Rn, Register Rm, \ 1481 ext::operation option, int amount = 0) { \ 1482 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1483 } 1484 1485 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1486 1487 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1488 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1489 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1490 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1491 1492 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1493 1494 void verified_entry(Compile* C, int sp_inc); 1495 1496 // Inline type specific methods 1497 #include "asm/macroAssembler_common.hpp" 1498 1499 int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true); 1500 bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]); 1501 bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 1502 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 1503 RegState reg_state[]); 1504 bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 1505 VMRegPair* from, int from_count, int& from_index, VMReg to, 1506 RegState reg_state[], Register val_array); 1507 int extend_stack_for_inline_args(int args_on_stack); 1508 void remove_frame(int initial_framesize, bool needs_stack_repair); 1509 VMReg spill_reg_for(VMReg reg); 1510 void save_stack_increment(int sp_inc, int frame_size); 1511 1512 void tableswitch(Register index, jint lowbound, jint highbound, 1513 Label &jumptable, Label &jumptable_end, int stride = 1) { 1514 adr(rscratch1, jumptable); 1515 subsw(rscratch2, index, lowbound); 1516 subsw(zr, rscratch2, highbound - lowbound); 1517 br(Assembler::HS, jumptable_end); 1518 add(rscratch1, rscratch1, rscratch2, 1519 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1520 br(rscratch1); 1521 } 1522 1523 // Form an address from base + offset in Rd. Rd may or may not 1524 // actually be used: you must use the Address that is returned. It 1525 // is up to you to ensure that the shift provided matches the size 1526 // of your data. 1527 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1528 1529 // Return true iff an address is within the 48-bit AArch64 address 1530 // space. 1531 bool is_valid_AArch64_address(address a) { 1532 return ((uint64_t)a >> 48) == 0; 1533 } 1534 1535 // Load the base of the cardtable byte map into reg. 1536 void load_byte_map_base(Register reg); 1537 1538 // Prolog generator routines to support switch between x86 code and 1539 // generated ARM code 1540 1541 // routine to generate an x86 prolog for a stub function which 1542 // bootstraps into the generated ARM code which directly follows the 1543 // stub 1544 // 1545 1546 public: 1547 1548 void ldr_constant(Register dest, const Address &const_addr) { 1549 if (NearCpool) { 1550 ldr(dest, const_addr); 1551 } else { 1552 uint64_t offset; 1553 adrp(dest, InternalAddress(const_addr.target()), offset); 1554 ldr(dest, Address(dest, offset)); 1555 } 1556 } 1557 1558 address read_polling_page(Register r, relocInfo::relocType rtype); 1559 void get_polling_page(Register dest, relocInfo::relocType rtype); 1560 1561 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1562 void update_byte_crc32(Register crc, Register val, Register table); 1563 void update_word_crc32(Register crc, Register v, Register tmp, 1564 Register table0, Register table1, Register table2, Register table3, 1565 bool upper = false); 1566 1567 address count_positives(Register ary1, Register len, Register result); 1568 1569 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1570 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1571 1572 // Ensure that the inline code and the stub use the same registers. 1573 #define ARRAYS_HASHCODE_REGISTERS \ 1574 do { \ 1575 assert(result == r0 && \ 1576 ary == r1 && \ 1577 cnt == r2 && \ 1578 vdata0 == v3 && \ 1579 vdata1 == v2 && \ 1580 vdata2 == v1 && \ 1581 vdata3 == v0 && \ 1582 vmul0 == v4 && \ 1583 vmul1 == v5 && \ 1584 vmul2 == v6 && \ 1585 vmul3 == v7 && \ 1586 vpow == v12 && \ 1587 vpowm == v13, "registers must match aarch64.ad"); \ 1588 } while (0) 1589 1590 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1591 1592 void fill_words(Register base, Register cnt, Register value); 1593 void fill_words(Register base, uint64_t cnt, Register value); 1594 1595 address zero_words(Register base, uint64_t cnt); 1596 address zero_words(Register ptr, Register cnt); 1597 void zero_dcache_blocks(Register base, Register cnt); 1598 1599 static const int zero_words_block_size; 1600 1601 address byte_array_inflate(Register src, Register dst, Register len, 1602 FloatRegister vtmp1, FloatRegister vtmp2, 1603 FloatRegister vtmp3, Register tmp4); 1604 1605 void char_array_compress(Register src, Register dst, Register len, 1606 Register res, 1607 FloatRegister vtmp0, FloatRegister vtmp1, 1608 FloatRegister vtmp2, FloatRegister vtmp3, 1609 FloatRegister vtmp4, FloatRegister vtmp5); 1610 1611 void encode_iso_array(Register src, Register dst, 1612 Register len, Register res, bool ascii, 1613 FloatRegister vtmp0, FloatRegister vtmp1, 1614 FloatRegister vtmp2, FloatRegister vtmp3, 1615 FloatRegister vtmp4, FloatRegister vtmp5); 1616 1617 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1618 address pio2, address dsin_coef, address dcos_coef); 1619 private: 1620 // begin trigonometric functions support block 1621 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1622 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1623 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1624 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1625 // end trigonometric functions support block 1626 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1627 Register src1, Register src2); 1628 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1629 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1630 } 1631 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1632 Register y, Register y_idx, Register z, 1633 Register carry, Register product, 1634 Register idx, Register kdx); 1635 void multiply_128_x_128_loop(Register y, Register z, 1636 Register carry, Register carry2, 1637 Register idx, Register jdx, 1638 Register yz_idx1, Register yz_idx2, 1639 Register tmp, Register tmp3, Register tmp4, 1640 Register tmp7, Register product_hi); 1641 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1642 Register len, Register tmp0, Register tmp1, Register tmp2, 1643 Register tmp3); 1644 void kernel_crc32_using_crc32(Register crc, Register buf, 1645 Register len, Register tmp0, Register tmp1, Register tmp2, 1646 Register tmp3); 1647 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1648 Register len, Register tmp0, Register tmp1, Register tmp2, 1649 Register tmp3); 1650 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1651 Register len, Register tmp0, Register tmp1, Register tmp2, 1652 Register tmp3); 1653 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1654 Register len, Register tmp0, Register tmp1, Register tmp2, 1655 size_t table_offset); 1656 1657 void ghash_modmul (FloatRegister result, 1658 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1659 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1660 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1661 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1662 public: 1663 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1664 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1665 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1666 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1667 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1668 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1669 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1670 void ghash_multiply_wide(int index, 1671 FloatRegister result_lo, FloatRegister result_hi, 1672 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1673 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1674 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1675 FloatRegister p, FloatRegister z, FloatRegister t1); 1676 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1677 FloatRegister p, FloatRegister z, FloatRegister t1); 1678 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1679 Register data, Register blocks, int unrolls); 1680 1681 1682 void aesenc_loadkeys(Register key, Register keylen); 1683 void aesecb_encrypt(Register from, Register to, Register keylen, 1684 FloatRegister data = v0, int unrolls = 1); 1685 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1686 void aes_round(FloatRegister input, FloatRegister subkey); 1687 1688 // ChaCha20 functions support block 1689 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1690 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1691 FloatRegister tbl); 1692 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1693 FloatRegister dVec, bool colToDiag); 1694 1695 // Place an ISB after code may have been modified due to a safepoint. 1696 void safepoint_isb(); 1697 1698 private: 1699 // Return the effective address r + (r1 << ext) + offset. 1700 // Uses rscratch2. 1701 Address offsetted_address(Register r, Register r1, Address::extend ext, 1702 int offset, int size); 1703 1704 private: 1705 // Returns an address on the stack which is reachable with a ldr/str of size 1706 // Uses rscratch2 if the address is not directly reachable 1707 Address spill_address(int size, int offset, Register tmp=rscratch2); 1708 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1709 1710 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1711 1712 // Check whether two loads/stores can be merged into ldp/stp. 1713 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1714 1715 // Merge current load/store with previous load/store into ldp/stp. 1716 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1717 1718 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1719 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1720 1721 public: 1722 void spill(Register Rx, bool is64, int offset) { 1723 if (is64) { 1724 str(Rx, spill_address(8, offset)); 1725 } else { 1726 strw(Rx, spill_address(4, offset)); 1727 } 1728 } 1729 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1730 str(Vx, T, spill_address(1 << (int)T, offset)); 1731 } 1732 1733 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1734 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1735 } 1736 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1737 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1738 } 1739 1740 void unspill(Register Rx, bool is64, int offset) { 1741 if (is64) { 1742 ldr(Rx, spill_address(8, offset)); 1743 } else { 1744 ldrw(Rx, spill_address(4, offset)); 1745 } 1746 } 1747 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1748 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1749 } 1750 1751 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1752 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1753 } 1754 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1755 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1756 } 1757 1758 void spill_copy128(int src_offset, int dst_offset, 1759 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1760 if (src_offset < 512 && (src_offset & 7) == 0 && 1761 dst_offset < 512 && (dst_offset & 7) == 0) { 1762 ldp(tmp1, tmp2, Address(sp, src_offset)); 1763 stp(tmp1, tmp2, Address(sp, dst_offset)); 1764 } else { 1765 unspill(tmp1, true, src_offset); 1766 spill(tmp1, true, dst_offset); 1767 unspill(tmp1, true, src_offset+8); 1768 spill(tmp1, true, dst_offset+8); 1769 } 1770 } 1771 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1772 int sve_vec_reg_size_in_bytes) { 1773 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1774 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1775 spill_copy128(src_offset, dst_offset); 1776 src_offset += 16; 1777 dst_offset += 16; 1778 } 1779 } 1780 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1781 int sve_predicate_reg_size_in_bytes) { 1782 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1783 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1784 reinitialize_ptrue(); 1785 } 1786 void cache_wb(Address line); 1787 void cache_wbsync(bool is_pre); 1788 1789 // Code for java.lang.Thread::onSpinWait() intrinsic. 1790 void spin_wait(); 1791 1792 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1793 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1794 1795 private: 1796 // Check the current thread doesn't need a cross modify fence. 1797 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1798 1799 }; 1800 1801 #ifdef ASSERT 1802 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1803 #endif 1804 1805 struct tableswitch { 1806 Register _reg; 1807 int _insn_index; jint _first_key; jint _last_key; 1808 Label _after; 1809 Label _branches; 1810 }; 1811 1812 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP