1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "compiler/compiler_globals.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interpreter/bytecodeHistogram.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateInterpreterGenerator.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "interpreter/bytecodeTracer.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/arrayOop.hpp"
  40 #include "oops/method.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "oops/methodData.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/inlineKlass.hpp"
  45 #include "oops/resolvedIndyEntry.hpp"
  46 #include "oops/resolvedMethodEntry.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/jvmtiThreadState.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/globals.hpp"
  53 #include "runtime/jniHandles.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/synchronizer.hpp"
  57 #include "runtime/timer.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "utilities/checkedCast.hpp"
  60 #include "utilities/debug.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 #include <sys/types.h>
  63 
  64 // Size of interpreter code.  Increase if too small.  Interpreter will
  65 // fail with a guarantee ("not enough space for interpreter generation");
  66 // if too small.
  67 // Run with +PrintInterpreter to get the VM to print out the size.
  68 // Max size with JVMTI
  69 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  70 
  71 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  72 
  73 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  74   address entry = __ pc();
  75 
  76   __ andr(esp, esp, -16);
  77   __ mov(c_rarg3, esp);
  78   // rmethod
  79   // rlocals
  80   // c_rarg3: first stack arg - wordSize
  81 
  82   // adjust sp
  83   __ sub(sp, c_rarg3, 18 * wordSize);
  84   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  85   __ call_VM(noreg,
  86              CAST_FROM_FN_PTR(address,
  87                               InterpreterRuntime::slow_signature_handler),
  88              rmethod, rlocals, c_rarg3);
  89 
  90   // r0: result handler
  91 
  92   // Stack layout:
  93   // rsp: return address           <- sp
  94   //      1 garbage
  95   //      8 integer args (if static first is unused)
  96   //      1 float/double identifiers
  97   //      8 double args
  98   //        stack args              <- esp
  99   //        garbage
 100   //        expression stack bottom
 101   //        bcp (null)
 102   //        ...
 103 
 104   // Restore LR
 105   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 106 
 107   // Do FP first so we can use c_rarg3 as temp
 108   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 109 
 110   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 111     const FloatRegister r = as_FloatRegister(i);
 112 
 113     Label d, done;
 114 
 115     __ tbnz(c_rarg3, i, d);
 116     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 117     __ b(done);
 118     __ bind(d);
 119     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 120     __ bind(done);
 121   }
 122 
 123   // c_rarg0 contains the result from the call of
 124   // InterpreterRuntime::slow_signature_handler so we don't touch it
 125   // here.  It will be loaded with the JNIEnv* later.
 126   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 127   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 128     Register rm = as_Register(i), rn = as_Register(i+1);
 129     __ ldp(rm, rn, Address(sp, i * wordSize));
 130   }
 131 
 132   __ add(sp, sp, 18 * wordSize);
 133   __ ret(lr);
 134 
 135   return entry;
 136 }
 137 
 138 
 139 //
 140 // Various method entries
 141 //
 142 
 143 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 144   // rmethod: Method*
 145   // r19_sender_sp: sender sp
 146   // esp: args
 147 
 148   // These don't need a safepoint check because they aren't virtually
 149   // callable. We won't enter these intrinsics from compiled code.
 150   // If in the future we added an intrinsic which was virtually callable
 151   // we'd have to worry about how to safepoint so that this code is used.
 152 
 153   // mathematical functions inlined by compiler
 154   // (interpreter must provide identical implementation
 155   // in order to avoid monotonicity bugs when switching
 156   // from interpreter to compiler in the middle of some
 157   // computation)
 158   //
 159   // stack:
 160   //        [ arg ] <-- esp
 161   //        [ arg ]
 162   // retaddr in lr
 163 
 164   address entry_point = nullptr;
 165   Register continuation = lr;
 166   switch (kind) {
 167   case Interpreter::java_lang_math_abs:
 168     entry_point = __ pc();
 169     __ ldrd(v0, Address(esp));
 170     __ fabsd(v0, v0);
 171     __ mov(sp, r19_sender_sp); // Restore caller's SP
 172     break;
 173   case Interpreter::java_lang_math_sqrt:
 174     entry_point = __ pc();
 175     __ ldrd(v0, Address(esp));
 176     __ fsqrtd(v0, v0);
 177     __ mov(sp, r19_sender_sp);
 178     break;
 179   case Interpreter::java_lang_math_sin :
 180   case Interpreter::java_lang_math_cos :
 181   case Interpreter::java_lang_math_tan :
 182   case Interpreter::java_lang_math_log :
 183   case Interpreter::java_lang_math_log10 :
 184   case Interpreter::java_lang_math_exp :
 185     entry_point = __ pc();
 186     __ ldrd(v0, Address(esp));
 187     __ mov(sp, r19_sender_sp);
 188     __ mov(r23, lr);
 189     continuation = r23;  // The first free callee-saved register
 190     generate_transcendental_entry(kind, 1);
 191     break;
 192   case Interpreter::java_lang_math_pow :
 193     entry_point = __ pc();
 194     __ mov(r23, lr);
 195     continuation = r23;
 196     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 197     __ ldrd(v1, Address(esp));
 198     __ mov(sp, r19_sender_sp);
 199     generate_transcendental_entry(kind, 2);
 200     break;
 201   case Interpreter::java_lang_math_fmaD :
 202     if (UseFMA) {
 203       entry_point = __ pc();
 204       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
 205       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
 206       __ ldrd(v2, Address(esp));
 207       __ fmaddd(v0, v0, v1, v2);
 208       __ mov(sp, r19_sender_sp); // Restore caller's SP
 209     }
 210     break;
 211   case Interpreter::java_lang_math_fmaF :
 212     if (UseFMA) {
 213       entry_point = __ pc();
 214       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
 215       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
 216       __ ldrs(v2, Address(esp));
 217       __ fmadds(v0, v0, v1, v2);
 218       __ mov(sp, r19_sender_sp); // Restore caller's SP
 219     }
 220     break;
 221   default:
 222     ;
 223   }
 224   if (entry_point) {
 225     __ br(continuation);
 226   }
 227 
 228   return entry_point;
 229 }
 230 
 231   // double trigonometrics and transcendentals
 232   // static jdouble dsin(jdouble x);
 233   // static jdouble dcos(jdouble x);
 234   // static jdouble dtan(jdouble x);
 235   // static jdouble dlog(jdouble x);
 236   // static jdouble dlog10(jdouble x);
 237   // static jdouble dexp(jdouble x);
 238   // static jdouble dpow(jdouble x, jdouble y);
 239 
 240 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 241   address fn;
 242   switch (kind) {
 243   case Interpreter::java_lang_math_sin :
 244     if (StubRoutines::dsin() == nullptr) {
 245       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 246     } else {
 247       fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
 248     }
 249     break;
 250   case Interpreter::java_lang_math_cos :
 251     if (StubRoutines::dcos() == nullptr) {
 252       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 253     } else {
 254       fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
 255     }
 256     break;
 257   case Interpreter::java_lang_math_tan :
 258     if (StubRoutines::dtan() == nullptr) {
 259       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 260     } else {
 261       fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
 262     }
 263     break;
 264   case Interpreter::java_lang_math_log :
 265     if (StubRoutines::dlog() == nullptr) {
 266       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 267     } else {
 268       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
 269     }
 270     break;
 271   case Interpreter::java_lang_math_log10 :
 272     if (StubRoutines::dlog10() == nullptr) {
 273       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 274     } else {
 275       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
 276     }
 277     break;
 278   case Interpreter::java_lang_math_exp :
 279     if (StubRoutines::dexp() == nullptr) {
 280       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 281     } else {
 282       fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
 283     }
 284     break;
 285   case Interpreter::java_lang_math_pow :
 286     if (StubRoutines::dpow() == nullptr) {
 287       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 288     } else {
 289       fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
 290     }
 291     break;
 292   default:
 293     ShouldNotReachHere();
 294     fn = nullptr;  // unreachable
 295   }
 296   __ mov(rscratch1, fn);
 297   __ blr(rscratch1);
 298 }
 299 
 300 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() {
 301   assert(VM_Version::supports_float16(), "this intrinsic is not supported");
 302   // r19_sender_sp: sender sp
 303   // stack:
 304   //        [ arg ] <-- esp
 305   //        [ arg ]
 306   // retaddr in lr
 307   // result in v0
 308 
 309   address entry_point = __ pc();
 310   __ ldrw(c_rarg0, Address(esp));
 311   __ flt16_to_flt(v0, c_rarg0, v1);
 312   __ mov(sp, r19_sender_sp); // Restore caller's SP
 313   __ br(lr);
 314   return entry_point;
 315 }
 316 
 317 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() {
 318   assert(VM_Version::supports_float16(), "this intrinsic is not supported");
 319   // r19_sender_sp: sender sp
 320   // stack:
 321   //        [ arg ] <-- esp
 322   //        [ arg ]
 323   // retaddr in lr
 324   // result in c_rarg0
 325 
 326   address entry_point = __ pc();
 327   __ ldrs(v0, Address(esp));
 328   __ flt_to_flt16(c_rarg0, v0, v1);
 329   __ mov(sp, r19_sender_sp); // Restore caller's SP
 330   __ br(lr);
 331   return entry_point;
 332 }
 333 
 334 // Abstract method entry
 335 // Attempt to execute abstract method. Throw exception
 336 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 337   // rmethod: Method*
 338   // r19_sender_sp: sender SP
 339 
 340   address entry_point = __ pc();
 341 
 342   // abstract method entry
 343 
 344   //  pop return address, reset last_sp to null
 345   __ empty_expression_stack();
 346   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 347   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 348 
 349   // throw exception
 350   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 351                                      InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 352                                      rmethod);
 353   // the call_VM checks for exception, so we should never return here.
 354   __ should_not_reach_here();
 355 
 356   return entry_point;
 357 }
 358 
 359 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 360   address entry = __ pc();
 361 
 362 #ifdef ASSERT
 363   {
 364     Label L;
 365     __ ldr(rscratch1, Address(rfp,
 366                        frame::interpreter_frame_monitor_block_top_offset *
 367                        wordSize));
 368     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 369     __ mov(rscratch2, sp);
 370     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 371                            // grows negative)
 372     __ br(Assembler::HS, L); // check if frame is complete
 373     __ stop ("interpreter frame not set up");
 374     __ bind(L);
 375   }
 376 #endif // ASSERT
 377   // Restore bcp under the assumption that the current frame is still
 378   // interpreted
 379   __ restore_bcp();
 380 
 381   // expression stack must be empty before entering the VM if an
 382   // exception happened
 383   __ empty_expression_stack();
 384   // throw exception
 385   __ call_VM(noreg,
 386              CAST_FROM_FN_PTR(address,
 387                               InterpreterRuntime::throw_StackOverflowError));
 388   return entry;
 389 }
 390 
 391 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 392   address entry = __ pc();
 393   // expression stack must be empty before entering the VM if an
 394   // exception happened
 395   __ empty_expression_stack();
 396   // setup parameters
 397 
 398   // ??? convention: expect aberrant index in register r1
 399   __ movw(c_rarg2, r1);
 400   // ??? convention: expect array in register r3
 401   __ mov(c_rarg1, r3);
 402   __ call_VM(noreg,
 403              CAST_FROM_FN_PTR(address,
 404                               InterpreterRuntime::
 405                               throw_ArrayIndexOutOfBoundsException),
 406              c_rarg1, c_rarg2);
 407   return entry;
 408 }
 409 
 410 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 411   address entry = __ pc();
 412 
 413   // object is at TOS
 414   __ pop(c_rarg1);
 415 
 416   // expression stack must be empty before entering the VM if an
 417   // exception happened
 418   __ empty_expression_stack();
 419 
 420   __ call_VM(noreg,
 421              CAST_FROM_FN_PTR(address,
 422                               InterpreterRuntime::
 423                               throw_ClassCastException),
 424              c_rarg1);
 425   return entry;
 426 }
 427 
 428 address TemplateInterpreterGenerator::generate_exception_handler_common(
 429         const char* name, const char* message, bool pass_oop) {
 430   assert(!pass_oop || message == nullptr, "either oop or message but not both");
 431   address entry = __ pc();
 432   if (pass_oop) {
 433     // object is at TOS
 434     __ pop(c_rarg2);
 435   }
 436   // expression stack must be empty before entering the VM if an
 437   // exception happened
 438   __ empty_expression_stack();
 439   // setup parameters
 440   __ lea(c_rarg1, Address((address)name));
 441   if (pass_oop) {
 442     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 443                                     InterpreterRuntime::
 444                                     create_klass_exception),
 445                c_rarg1, c_rarg2);
 446   } else {
 447     // kind of lame ExternalAddress can't take null because
 448     // external_word_Relocation will assert.
 449     if (message != nullptr) {
 450       __ lea(c_rarg2, Address((address)message));
 451     } else {
 452       __ mov(c_rarg2, NULL_WORD);
 453     }
 454     __ call_VM(r0,
 455                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 456                c_rarg1, c_rarg2);
 457   }
 458   // throw exception
 459   __ b(address(Interpreter::throw_exception_entry()));
 460   return entry;
 461 }
 462 
 463 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 464   address entry = __ pc();
 465 
 466   // Restore stack bottom in case i2c adjusted stack
 467   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 468   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 469   // and null it as marker that esp is now tos until next java call
 470   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 471 
 472   if (state == atos && InlineTypeReturnedAsFields) {
 473     __ store_inline_type_fields_to_buf(nullptr, true);
 474   }
 475 
 476   __ restore_bcp();
 477   __ restore_locals();
 478   __ restore_constant_pool_cache();
 479   __ get_method(rmethod);
 480 
 481   if (state == atos) {
 482     Register obj = r0;
 483     Register mdp = r1;
 484     Register tmp = r2;
 485     __ profile_return_type(mdp, obj, tmp);
 486   }
 487 
 488   const Register cache = r1;
 489   const Register index = r2;
 490 
 491   if (index_size == sizeof(u4)) {
 492     __ load_resolved_indy_entry(cache, index);
 493     __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset())));
 494     __ add(esp, esp, cache, Assembler::LSL, 3);
 495   } else {
 496     // Pop N words from the stack
 497     assert(index_size == sizeof(u2), "Can only be u2");
 498     __ load_method_entry(cache, index);
 499     __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
 500     __ add(esp, esp, cache, Assembler::LSL, 3);
 501   }
 502 
 503   // Restore machine SP
 504   __ restore_sp_after_call();
 505 
 506   __ check_and_handle_popframe(rthread);
 507   __ check_and_handle_earlyret(rthread);
 508 
 509   __ get_dispatch();
 510   __ dispatch_next(state, step);
 511 
 512   return entry;
 513 }
 514 
 515 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 516                                                                int step,
 517                                                                address continuation) {
 518   address entry = __ pc();
 519   __ restore_bcp();
 520   __ restore_locals();
 521   __ restore_constant_pool_cache();
 522   __ get_method(rmethod);
 523   __ get_dispatch();
 524 
 525   __ restore_sp_after_call();  // Restore SP to extended SP
 526 
 527   // Restore expression stack pointer
 528   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 529   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 530   // null last_sp until next java call
 531   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 532 
 533 #if INCLUDE_JVMCI
 534   // Check if we need to take lock at entry of synchronized method.  This can
 535   // only occur on method entry so emit it only for vtos with step 0.
 536   if (EnableJVMCI && state == vtos && step == 0) {
 537     Label L;
 538     __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
 539     __ cbz(rscratch1, L);
 540     // Clear flag.
 541     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 542     // Take lock.
 543     lock_method();
 544     __ bind(L);
 545   } else {
 546 #ifdef ASSERT
 547     if (EnableJVMCI) {
 548       Label L;
 549       __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
 550       __ cbz(rscratch1, L);
 551       __ stop("unexpected pending monitor in deopt entry");
 552       __ bind(L);
 553     }
 554 #endif
 555   }
 556 #endif
 557   // handle exceptions
 558   {
 559     Label L;
 560     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 561     __ cbz(rscratch1, L);
 562     __ call_VM(noreg,
 563                CAST_FROM_FN_PTR(address,
 564                                 InterpreterRuntime::throw_pending_exception));
 565     __ should_not_reach_here();
 566     __ bind(L);
 567   }
 568 
 569   if (continuation == nullptr) {
 570     __ dispatch_next(state, step);
 571   } else {
 572     __ jump_to_entry(continuation);
 573   }
 574   return entry;
 575 }
 576 
 577 address TemplateInterpreterGenerator::generate_result_handler_for(
 578         BasicType type) {
 579     address entry = __ pc();
 580   switch (type) {
 581   case T_BOOLEAN: __ c2bool(r0);         break;
 582   case T_CHAR   : __ uxth(r0, r0);       break;
 583   case T_BYTE   : __ sxtb(r0, r0);        break;
 584   case T_SHORT  : __ sxth(r0, r0);        break;
 585   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 586   case T_LONG   : /* nothing to do */        break;
 587   case T_VOID   : /* nothing to do */        break;
 588   case T_FLOAT  : /* nothing to do */        break;
 589   case T_DOUBLE : /* nothing to do */        break;
 590   case T_OBJECT :
 591     // retrieve result from frame
 592     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 593     // and verify it
 594     __ verify_oop(r0);
 595     break;
 596   default       : ShouldNotReachHere();
 597   }
 598   __ ret(lr);                                  // return from result handler
 599   return entry;
 600 }
 601 
 602 address TemplateInterpreterGenerator::generate_safept_entry_for(
 603         TosState state,
 604         address runtime_entry) {
 605   address entry = __ pc();
 606   __ push(state);
 607   __ push_cont_fastpath(rthread);
 608   __ call_VM(noreg, runtime_entry);
 609   __ pop_cont_fastpath(rthread);
 610   __ membar(Assembler::AnyAny);
 611   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 612   return entry;
 613 }
 614 
 615 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() {
 616   if (!Continuations::enabled()) return nullptr;
 617   address start = __ pc();
 618 
 619   __ restore_bcp();
 620   __ restore_locals();
 621 
 622   // Restore constant pool cache
 623   __ ldr(rcpool, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 624 
 625   // Restore Java expression stack pointer
 626   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 627   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 628   // and null it as marker that esp is now tos until next java call
 629   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 630 
 631   // Restore machine SP
 632   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
 633   __ lea(sp, Address(rfp, rscratch1, Address::lsl(LogBytesPerWord)));
 634 
 635   // Restore method
 636   __ ldr(rmethod, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 637 
 638   // Restore dispatch
 639   uint64_t offset;
 640   __ adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 641   __ add(rdispatch, rdispatch, offset);
 642 
 643   __ ret(lr);
 644 
 645   return start;
 646 }
 647 
 648 
 649 // Helpers for commoning out cases in the various type of method entries.
 650 //
 651 
 652 
 653 // increment invocation count & check for overflow
 654 //
 655 // Note: checking for negative value instead of overflow
 656 //       so we have a 'sticky' overflow test
 657 //
 658 // rmethod: method
 659 //
 660 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
 661   Label done;
 662   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 663   int increment = InvocationCounter::count_increment;
 664   Label no_mdo;
 665   if (ProfileInterpreter) {
 666     // Are we profiling?
 667     __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 668     __ cbz(r0, no_mdo);
 669     // Increment counter in the MDO
 670     const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 671                                               in_bytes(InvocationCounter::counter_offset()));
 672     const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 673     __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 674     __ b(done);
 675   }
 676   __ bind(no_mdo);
 677   // Increment counter in MethodCounters
 678   const Address invocation_counter(rscratch2,
 679                 MethodCounters::invocation_counter_offset() +
 680                 InvocationCounter::counter_offset());
 681   __ get_method_counters(rmethod, rscratch2, done);
 682   const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 683   __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 684   __ bind(done);
 685 }
 686 
 687 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 688 
 689   // Asm interpreter on entry
 690   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 691   // Everything as it was on entry
 692 
 693   // InterpreterRuntime::frequency_counter_overflow takes two
 694   // arguments, the first (thread) is passed by call_VM, the second
 695   // indicates if the counter overflow occurs at a backwards branch
 696   // (null bcp).  We pass zero for it.  The call returns the address
 697   // of the verified entry point for the method or null if the
 698   // compilation did not complete (either went background or bailed
 699   // out).
 700   __ mov(c_rarg1, 0);
 701   __ call_VM(noreg,
 702              CAST_FROM_FN_PTR(address,
 703                               InterpreterRuntime::frequency_counter_overflow),
 704              c_rarg1);
 705 
 706   __ b(do_continue);
 707 }
 708 
 709 // See if we've got enough room on the stack for locals plus overhead
 710 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 711 // without going through the signal handler, i.e., reserved and yellow zones
 712 // will not be made usable. The shadow zone must suffice to handle the
 713 // overflow.
 714 // The expression stack grows down incrementally, so the normal guard
 715 // page mechanism will work for that.
 716 //
 717 // NOTE: Since the additional locals are also always pushed (wasn't
 718 // obvious in generate_method_entry) so the guard should work for them
 719 // too.
 720 //
 721 // Args:
 722 //      r3: number of additional locals this frame needs (what we must check)
 723 //      rmethod: Method*
 724 //
 725 // Kills:
 726 //      r0
 727 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 728 
 729   // monitor entry size: see picture of stack set
 730   // (generate_method_entry) and frame_amd64.hpp
 731   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 732 
 733   // total overhead size: entry_size + (saved rbp through expr stack
 734   // bottom).  be sure to change this if you add/subtract anything
 735   // to/from the overhead area
 736   const int overhead_size =
 737     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 738 
 739   const size_t page_size = os::vm_page_size();
 740 
 741   Label after_frame_check;
 742 
 743   // see if the frame is greater than one page in size. If so,
 744   // then we need to verify there is enough stack space remaining
 745   // for the additional locals.
 746   //
 747   // Note that we use SUBS rather than CMP here because the immediate
 748   // field of this instruction may overflow.  SUBS can cope with this
 749   // because it is a macro that will expand to some number of MOV
 750   // instructions and a register operation.
 751   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 752   __ br(Assembler::LS, after_frame_check);
 753 
 754   // compute rsp as if this were going to be the last frame on
 755   // the stack before the red zone
 756 
 757   // locals + overhead, in bytes
 758   __ mov(r0, overhead_size);
 759   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 760 
 761   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 762   __ ldr(rscratch1, stack_limit);
 763 
 764 #ifdef ASSERT
 765   Label limit_okay;
 766   // Verify that thread stack limit is non-zero.
 767   __ cbnz(rscratch1, limit_okay);
 768   __ stop("stack overflow limit is zero");
 769   __ bind(limit_okay);
 770 #endif
 771 
 772   // Add stack limit to locals.
 773   __ add(r0, r0, rscratch1);
 774 
 775   // Check against the current stack bottom.
 776   __ cmp(sp, r0);
 777   __ br(Assembler::HI, after_frame_check);
 778 
 779   // Remove the incoming args, peeling the machine SP back to where it
 780   // was in the caller.  This is not strictly necessary, but unless we
 781   // do so the stack frame may have a garbage FP; this ensures a
 782   // correct call stack that we can always unwind.  The ANDR should be
 783   // unnecessary because the sender SP in r19 is always aligned, but
 784   // it doesn't hurt.
 785   __ andr(sp, r19_sender_sp, -16);
 786 
 787   // Note: the restored frame is not necessarily interpreted.
 788   // Use the shared runtime version of the StackOverflowError.
 789   assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated");
 790   __ far_jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
 791 
 792   // all done with frame size check
 793   __ bind(after_frame_check);
 794 }
 795 
 796 // Allocate monitor and lock method (asm interpreter)
 797 //
 798 // Args:
 799 //      rmethod: Method*
 800 //      rlocals: locals
 801 //
 802 // Kills:
 803 //      r0
 804 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 805 //      rscratch1, rscratch2 (scratch regs)
 806 void TemplateInterpreterGenerator::lock_method() {
 807   // synchronize method
 808   const Address access_flags(rmethod, Method::access_flags_offset());
 809   const Address monitor_block_top(
 810         rfp,
 811         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 812   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 813 
 814 #ifdef ASSERT
 815   {
 816     Label L;
 817     __ ldrh(r0, access_flags);
 818     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 819     __ br(Assembler::NE, L);
 820     __ stop("method doesn't need synchronization");
 821     __ bind(L);
 822   }
 823 #endif // ASSERT
 824 
 825   // get synchronization object
 826   {
 827     Label done;
 828     __ ldrh(r0, access_flags);
 829     __ tst(r0, JVM_ACC_STATIC);
 830     // get receiver (assume this is frequent case)
 831     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 832     __ br(Assembler::EQ, done);
 833     __ load_mirror(r0, rmethod, r5, rscratch2);
 834 
 835 #ifdef ASSERT
 836     {
 837       Label L;
 838       __ cbnz(r0, L);
 839       __ stop("synchronization object is null");
 840       __ bind(L);
 841     }
 842 #endif // ASSERT
 843 
 844     __ bind(done);
 845   }
 846 
 847   // add space for monitor & lock
 848   __ check_extended_sp();
 849   __ sub(sp, sp, entry_size); // add space for a monitor entry
 850   __ sub(esp, esp, entry_size);
 851   __ sub(rscratch1, sp, rfp);
 852   __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 853   __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
 854   __ sub(rscratch1, esp, rfp);
 855   __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 856   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 857 
 858   // store object
 859   __ str(r0, Address(esp, BasicObjectLock::obj_offset()));
 860   __ mov(c_rarg1, esp); // object address
 861   __ lock_object(c_rarg1);
 862 }
 863 
 864 // Generate a fixed interpreter frame. This is identical setup for
 865 // interpreted methods and for native methods hence the shared code.
 866 //
 867 // Args:
 868 //      lr: return address
 869 //      rmethod: Method*
 870 //      rlocals: pointer to locals
 871 //      rcpool: cp cache
 872 //      stack_pointer: previous sp
 873 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 874   // initialize fixed part of activation frame
 875   if (native_call) {
 876     __ sub(esp, sp, 14 *  wordSize);
 877     __ mov(rbcp, zr);
 878     __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset);
 879     __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize)));
 880     // add 2 zero-initialized slots for native calls
 881     __ stp(zr, zr, Address(sp, 12 * wordSize));
 882   } else {
 883     __ sub(esp, sp, 12 *  wordSize);
 884     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));    // get ConstMethod
 885     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
 886     __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset);
 887     __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize)));
 888   }
 889 
 890   if (ProfileInterpreter) {
 891     Label method_data_continue;
 892     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 893     __ cbz(rscratch1, method_data_continue);
 894     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 895     __ bind(method_data_continue);
 896     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 897   } else {
 898     __ stp(zr, rmethod, Address(sp, 6 * wordSize));         // save Method* (no mdp)
 899   }
 900 
 901   __ protect_return_address();
 902   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 903   __ lea(rfp, Address(sp, 10 * wordSize));
 904 
 905   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
 906   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
 907   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset()));
 908   __ sub(rscratch1, rlocals, rfp);
 909   __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize);   // rscratch1 = rlocals - fp();
 910   // Store relativized rlocals, see frame::interpreter_frame_locals().
 911   __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize));
 912 
 913   // set sender sp
 914   // leave last_sp as null
 915   __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize));
 916 
 917   // Get mirror
 918   __ load_mirror(r10, rmethod, r5, rscratch2);
 919   if (! native_call) {
 920     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 921     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 922     __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries()));
 923     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 924     __ andr(rscratch1, rscratch1, -16);
 925     __ sub(rscratch2, rscratch1, rfp);
 926     __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize);
 927     // Store extended SP and mirror
 928     __ stp(r10, rscratch2, Address(sp, 4 * wordSize));
 929     // Move SP out of the way
 930     __ mov(sp, rscratch1);
 931   } else {
 932     // Make sure there is room for the exception oop pushed in case method throws
 933     // an exception (see TemplateInterpreterGenerator::generate_throw_exception())
 934     __ sub(rscratch1, sp, 2 * wordSize);
 935     __ sub(rscratch2, rscratch1, rfp);
 936     __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize);
 937     __ stp(r10, rscratch2, Address(sp, 4 * wordSize));
 938     __ mov(sp, rscratch1);
 939   }
 940 }
 941 
 942 // End of helpers
 943 
 944 // Various method entries
 945 //------------------------------------------------------------------------------------------------------------------------
 946 //
 947 //
 948 
 949 // Method entry for java.lang.ref.Reference.get.
 950 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 951   // Code: _aload_0, _getfield, _areturn
 952   // parameter size = 1
 953   //
 954   // The code that gets generated by this routine is split into 2 parts:
 955   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 956   //    2. The slow path - which is an expansion of the regular method entry.
 957   //
 958   // Notes:-
 959   // * In the G1 code we do not check whether we need to block for
 960   //   a safepoint. If G1 is enabled then we must execute the specialized
 961   //   code for Reference.get (except when the Reference object is null)
 962   //   so that we can log the value in the referent field with an SATB
 963   //   update buffer.
 964   //   If the code for the getfield template is modified so that the
 965   //   G1 pre-barrier code is executed when the current method is
 966   //   Reference.get() then going through the normal method entry
 967   //   will be fine.
 968   // * The G1 code can, however, check the receiver object (the instance
 969   //   of java.lang.Reference) and jump to the slow path if null. If the
 970   //   Reference object is null then we obviously cannot fetch the referent
 971   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 972   //   regular method entry code to generate the NPE.
 973   //
 974   // This code is based on generate_accessor_entry.
 975   //
 976   // rmethod: Method*
 977   // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path
 978 
 979   // LR is live.  It must be saved around calls.
 980 
 981   address entry = __ pc();
 982 
 983   const int referent_offset = java_lang_ref_Reference::referent_offset();
 984 
 985   Label slow_path;
 986   const Register local_0 = c_rarg0;
 987   // Check if local 0 != null
 988   // If the receiver is null then it is OK to jump to the slow path.
 989   __ ldr(local_0, Address(esp, 0));
 990   __ cbz(local_0, slow_path);
 991 
 992   // Load the value of the referent field.
 993   const Address field_address(local_0, referent_offset);
 994   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
 995   bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2);
 996 
 997   // areturn
 998   __ andr(sp, r19_sender_sp, -16);  // done with stack
 999   __ ret(lr);
1000 
1001   // generate a vanilla interpreter entry as the slow path
1002   __ bind(slow_path);
1003   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
1004   return entry;
1005 
1006 }
1007 
1008 /**
1009  * Method entry for static native methods:
1010  *   int java.util.zip.CRC32.update(int crc, int b)
1011  */
1012 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1013   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1014   address entry = __ pc();
1015 
1016   // rmethod: Method*
1017   // r19_sender_sp: senderSP must preserved for slow path
1018   // esp: args
1019 
1020   Label slow_path;
1021   // If we need a safepoint check, generate full interpreter entry.
1022   __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */);
1023 
1024   // We don't generate local frame and don't align stack because
1025   // we call stub code and there is no safepoint on this path.
1026 
1027   // Load parameters
1028   const Register crc = c_rarg0;  // crc
1029   const Register val = c_rarg1;  // source java byte value
1030   const Register tbl = c_rarg2;  // scratch
1031 
1032   // Arguments are reversed on java expression stack
1033   __ ldrw(val, Address(esp, 0));              // byte value
1034   __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
1035 
1036   uint64_t offset;
1037   __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
1038   __ add(tbl, tbl, offset);
1039 
1040   __ mvnw(crc, crc); // ~crc
1041   __ update_byte_crc32(crc, val, tbl);
1042   __ mvnw(crc, crc); // ~crc
1043 
1044   // result in c_rarg0
1045 
1046   __ andr(sp, r19_sender_sp, -16);
1047   __ ret(lr);
1048 
1049   // generate a vanilla native entry as the slow path
1050   __ bind(slow_path);
1051   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1052   return entry;
1053 }
1054 
1055 /**
1056  * Method entry for static native methods:
1057  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1058  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1059  */
1060 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1061   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1062   address entry = __ pc();
1063 
1064   // rmethod,: Method*
1065   // r19_sender_sp: senderSP must preserved for slow path
1066 
1067   Label slow_path;
1068   // If we need a safepoint check, generate full interpreter entry.
1069   __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */);
1070 
1071   // We don't generate local frame and don't align stack because
1072   // we call stub code and there is no safepoint on this path.
1073 
1074   // Load parameters
1075   const Register crc = c_rarg0;  // crc
1076   const Register buf = c_rarg1;  // source java byte array address
1077   const Register len = c_rarg2;  // length
1078   const Register off = len;      // offset (never overlaps with 'len')
1079 
1080   // Arguments are reversed on java expression stack
1081   // Calculate address of start element
1082   if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1083     __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1084     __ ldrw(off, Address(esp, wordSize)); // offset
1085     __ add(buf, buf, off); // + offset
1086     __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1087   } else {
1088     __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1089     __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1090     __ ldrw(off, Address(esp, wordSize)); // offset
1091     __ add(buf, buf, off); // + offset
1092     __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1093   }
1094   // Can now load 'len' since we're finished with 'off'
1095   __ ldrw(len, Address(esp, 0x0)); // Length
1096 
1097   __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP
1098 
1099   // We are frameless so we can just jump to the stub.
1100   __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1101 
1102   // generate a vanilla native entry as the slow path
1103   __ bind(slow_path);
1104   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1105   return entry;
1106 }
1107 
1108 /**
1109  * Method entry for intrinsic-candidate (non-native) methods:
1110  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1111  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1112  * Unlike CRC32, CRC32C does not have any methods marked as native
1113  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1114  */
1115 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1116   assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1117   address entry = __ pc();
1118 
1119   // Prepare jump to stub using parameters from the stack
1120   const Register crc = c_rarg0; // initial crc
1121   const Register buf = c_rarg1; // source java byte array address
1122   const Register len = c_rarg2; // len argument to the kernel
1123 
1124   const Register end = len; // index of last element to process
1125   const Register off = crc; // offset
1126 
1127   __ ldrw(end, Address(esp)); // int end
1128   __ ldrw(off, Address(esp, wordSize)); // int offset
1129   __ sub(len, end, off);
1130   __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
1131   __ add(buf, buf, off); // + offset
1132   if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1133     __ ldrw(crc, Address(esp, 4*wordSize)); // long crc
1134   } else {
1135     __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1136     __ ldrw(crc, Address(esp, 3*wordSize)); // long crc
1137   }
1138 
1139   __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP
1140 
1141   // Jump to the stub.
1142   __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
1143 
1144   return entry;
1145 }
1146 
1147 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1148   // See more discussion in stackOverflow.hpp.
1149 
1150   const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size());
1151   const int page_size = (int)os::vm_page_size();
1152   const int n_shadow_pages = shadow_zone_size / page_size;
1153 
1154 #ifdef ASSERT
1155   Label L_good_limit;
1156   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit()));
1157   __ cbnz(rscratch1, L_good_limit);
1158   __ stop("shadow zone safe limit is not initialized");
1159   __ bind(L_good_limit);
1160 
1161   Label L_good_watermark;
1162   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1163   __ cbnz(rscratch1, L_good_watermark);
1164   __ stop("shadow zone growth watermark is not initialized");
1165   __ bind(L_good_watermark);
1166 #endif
1167 
1168   Label L_done;
1169 
1170   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1171   __ cmp(sp, rscratch1);
1172   __ br(Assembler::HI, L_done);
1173 
1174   for (int p = 1; p <= n_shadow_pages; p++) {
1175     __ sub(rscratch2, sp, p*page_size);
1176     __ str(zr, Address(rscratch2));
1177   }
1178 
1179   // Record the new watermark, but only if the update is above the safe limit.
1180   // Otherwise, the next time around the check above would pass the safe limit.
1181   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit()));
1182   __ cmp(sp, rscratch1);
1183   __ br(Assembler::LS, L_done);
1184   __ mov(rscratch1, sp);
1185   __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1186 
1187   __ bind(L_done);
1188 }
1189 
1190 // Interpreter stub for calling a native method. (asm interpreter)
1191 // This sets up a somewhat different looking stack for calling the
1192 // native method than the typical interpreter frame setup.
1193 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1194   // determine code generation flags
1195   bool inc_counter  = UseCompiler || CountCompiledCalls;
1196 
1197   // r1: Method*
1198   // rscratch1: sender sp
1199 
1200   address entry_point = __ pc();
1201 
1202   const Address constMethod       (rmethod, Method::const_offset());
1203   const Address access_flags      (rmethod, Method::access_flags_offset());
1204   const Address size_of_parameters(r2, ConstMethod::
1205                                        size_of_parameters_offset());
1206 
1207   // get parameter size (always needed)
1208   __ ldr(r2, constMethod);
1209   __ load_unsigned_short(r2, size_of_parameters);
1210 
1211   // Native calls don't need the stack size check since they have no
1212   // expression stack and the arguments are already on the stack and
1213   // we only add a handful of words to the stack.
1214 
1215   // rmethod: Method*
1216   // r2: size of parameters
1217   // rscratch1: sender sp
1218 
1219   // for natives the size of locals is zero
1220 
1221   // compute beginning of parameters (rlocals)
1222   __ add(rlocals, esp, r2, ext::uxtx, 3);
1223   __ add(rlocals, rlocals, -wordSize);
1224 
1225   // Pull SP back to minimum size: this avoids holes in the stack
1226   __ andr(sp, esp, -16);
1227 
1228   // initialize fixed part of activation frame
1229   generate_fixed_frame(true);
1230 
1231   // make sure method is native & not abstract
1232 #ifdef ASSERT
1233   __ ldrh(r0, access_flags);
1234   {
1235     Label L;
1236     __ tst(r0, JVM_ACC_NATIVE);
1237     __ br(Assembler::NE, L);
1238     __ stop("tried to execute non-native method as native");
1239     __ bind(L);
1240   }
1241   {
1242     Label L;
1243     __ tst(r0, JVM_ACC_ABSTRACT);
1244     __ br(Assembler::EQ, L);
1245     __ stop("tried to execute abstract method in interpreter");
1246     __ bind(L);
1247   }
1248 #endif
1249 
1250   // Since at this point in the method invocation the exception
1251   // handler would try to exit the monitor of synchronized methods
1252   // which hasn't been entered yet, we set the thread local variable
1253   // _do_not_unlock_if_synchronized to true. The remove_activation
1254   // will check this flag.
1255 
1256    const Address do_not_unlock_if_synchronized(rthread,
1257         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1258   __ mov(rscratch2, true);
1259   __ strb(rscratch2, do_not_unlock_if_synchronized);
1260 
1261   // increment invocation count & check for overflow
1262   Label invocation_counter_overflow;
1263   if (inc_counter) {
1264     generate_counter_incr(&invocation_counter_overflow);
1265   }
1266 
1267   Label continue_after_compile;
1268   __ bind(continue_after_compile);
1269 
1270   bang_stack_shadow_pages(true);
1271 
1272   // reset the _do_not_unlock_if_synchronized flag
1273   __ strb(zr, do_not_unlock_if_synchronized);
1274 
1275   // check for synchronized methods
1276   // Must happen AFTER invocation_counter check and stack overflow check,
1277   // so method is not locked if overflows.
1278   if (synchronized) {
1279     lock_method();
1280   } else {
1281     // no synchronization necessary
1282 #ifdef ASSERT
1283     {
1284       Label L;
1285       __ ldrh(r0, access_flags);
1286       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1287       __ br(Assembler::EQ, L);
1288       __ stop("method needs synchronization");
1289       __ bind(L);
1290     }
1291 #endif
1292   }
1293 
1294   // start execution
1295 #ifdef ASSERT
1296   {
1297     Label L;
1298     const Address monitor_block_top(rfp,
1299                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1300     __ ldr(rscratch1, monitor_block_top);
1301     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1302     __ cmp(esp, rscratch1);
1303     __ br(Assembler::EQ, L);
1304     __ stop("broken stack frame setup in interpreter 1");
1305     __ bind(L);
1306   }
1307 #endif
1308 
1309   // jvmti support
1310   __ notify_method_entry();
1311 
1312   // work registers
1313   const Register t = r17;
1314   const Register result_handler = r19;
1315 
1316   // allocate space for parameters
1317   __ ldr(t, Address(rmethod, Method::const_offset()));
1318   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1319 
1320   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1321   __ andr(sp, rscratch1, -16);
1322   __ mov(esp, rscratch1);
1323 
1324   // get signature handler
1325   {
1326     Label L;
1327     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1328     __ cbnz(t, L);
1329     __ call_VM(noreg,
1330                CAST_FROM_FN_PTR(address,
1331                                 InterpreterRuntime::prepare_native_call),
1332                rmethod);
1333     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1334     __ bind(L);
1335   }
1336 
1337   // call signature handler
1338   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1339          "adjust this code");
1340   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1341          "adjust this code");
1342   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1343           "adjust this code");
1344 
1345   // The generated handlers do not touch rmethod (the method).
1346   // However, large signatures cannot be cached and are generated
1347   // each time here.  The slow-path generator can do a GC on return,
1348   // so we must reload it after the call.
1349   __ blr(t);
1350   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1351 
1352 
1353   // result handler is in r0
1354   // set result handler
1355   __ mov(result_handler, r0);
1356   // Save it in the frame in case of preemption; we cannot rely on callee saved registers.
1357   __ str(r0, Address(rfp, frame::interpreter_frame_result_handler_offset * wordSize));
1358 
1359   // pass mirror handle if static call
1360   {
1361     Label L;
1362     __ ldrh(t, Address(rmethod, Method::access_flags_offset()));
1363     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1364     // get mirror
1365     __ load_mirror(t, rmethod, r10, rscratch2);
1366     // copy mirror into activation frame
1367     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1368     // pass handle to mirror
1369     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1370     __ bind(L);
1371   }
1372 
1373   // get native function entry point in r10
1374   {
1375     Label L;
1376     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1377     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1378     __ lea(rscratch2, unsatisfied);
1379     __ ldr(rscratch2, rscratch2);
1380     __ cmp(r10, rscratch2);
1381     __ br(Assembler::NE, L);
1382     __ call_VM(noreg,
1383                CAST_FROM_FN_PTR(address,
1384                                 InterpreterRuntime::prepare_native_call),
1385                rmethod);
1386     __ get_method(rmethod);
1387     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1388     __ bind(L);
1389   }
1390 
1391   // pass JNIEnv
1392   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1393 
1394   // It is enough that the pc() points into the right code
1395   // segment. It does not have to be the correct return pc.
1396   // For convenience we use the pc we want to resume to in
1397   // case of preemption on Object.wait.
1398   Label native_return;
1399   __ set_last_Java_frame(esp, rfp, native_return, rscratch1);
1400 
1401   // change thread state
1402 #ifdef ASSERT
1403   {
1404     Label L;
1405     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1406     __ cmp(t, (u1)_thread_in_Java);
1407     __ br(Assembler::EQ, L);
1408     __ stop("Wrong thread state in native stub");
1409     __ bind(L);
1410   }
1411 #endif
1412 
1413   // Change state to native
1414   __ mov(rscratch1, _thread_in_native);
1415   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1416   __ stlrw(rscratch1, rscratch2);
1417 
1418   __ push_cont_fastpath();
1419 
1420   // Call the native method.
1421   __ blr(r10);
1422 
1423   __ pop_cont_fastpath();
1424 
1425   __ get_method(rmethod);
1426   // result potentially in r0 or v0
1427 
1428   // Restore cpu control state after JNI call
1429   __ restore_cpu_control_state_after_jni(rscratch1, rscratch2);
1430 
1431   // make room for the pushes we're about to do
1432   __ sub(rscratch1, esp, 4 * wordSize);
1433   __ andr(sp, rscratch1, -16);
1434 
1435   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1436   // in order to extract the result of a method call. If the order of these
1437   // pushes change or anything else is added to the stack then the code in
1438   // interpreter_frame_result must also change.
1439   __ push(dtos);
1440   __ push(ltos);
1441 
1442   __ verify_sve_vector_length();
1443 
1444   // change thread state
1445   __ mov(rscratch1, _thread_in_native_trans);
1446   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1447   __ stlrw(rscratch1, rscratch2);
1448 
1449   // Force this write out before the read below
1450   if (!UseSystemMemoryBarrier) {
1451     __ dmb(Assembler::ISH);
1452   }
1453 
1454   // check for safepoint operation in progress and/or pending suspend requests
1455   {
1456     Label L, Continue;
1457 
1458     // No need for acquire as Java threads always disarm themselves.
1459     __ safepoint_poll(L, true /* at_return */, false /* acquire */, false /* in_nmethod */);
1460     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1461     __ cbz(rscratch2, Continue);
1462     __ bind(L);
1463 
1464     // Don't use call_VM as it will see a possible pending exception
1465     // and forward it and never return here preventing us from
1466     // clearing _last_native_pc down below. So we do a runtime call by
1467     // hand.
1468     //
1469     __ mov(c_rarg0, rthread);
1470     __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1471     __ blr(rscratch2);
1472     __ get_method(rmethod);
1473     __ reinit_heapbase();
1474     __ bind(Continue);
1475   }
1476 
1477   // change thread state
1478   __ mov(rscratch1, _thread_in_Java);
1479   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1480   __ stlrw(rscratch1, rscratch2);
1481 
1482   if (LockingMode != LM_LEGACY) {
1483     // Check preemption for Object.wait()
1484     Label not_preempted;
1485     __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1486     __ cbz(rscratch1, not_preempted);
1487     __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1488     __ br(rscratch1);
1489     __ bind(native_return);
1490     __ restore_after_resume(true /* is_native */);
1491     // reload result_handler
1492     __ ldr(result_handler, Address(rfp, frame::interpreter_frame_result_handler_offset*wordSize));
1493     __ bind(not_preempted);
1494   } else {
1495     // any pc will do so just use this one for LM_LEGACY to keep code together.
1496     __ bind(native_return);
1497   }
1498 
1499   // reset_last_Java_frame
1500   __ reset_last_Java_frame(true);
1501 
1502   if (CheckJNICalls) {
1503     // clear_pending_jni_exception_check
1504     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1505   }
1506 
1507   // reset handle block
1508   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1509   __ str(zr, Address(t, JNIHandleBlock::top_offset()));
1510 
1511   // If result is an oop unbox and store it in frame where gc will see it
1512   // and result handler will pick it up
1513 
1514   {
1515     Label no_oop;
1516     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1517     __ cmp(t, result_handler);
1518     __ br(Assembler::NE, no_oop);
1519     // Unbox oop result, e.g. JNIHandles::resolve result.
1520     __ pop(ltos);
1521     __ resolve_jobject(r0, t, rscratch2);
1522     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1523     // keep stack depth as expected by pushing oop which will eventually be discarded
1524     __ push(ltos);
1525     __ bind(no_oop);
1526   }
1527 
1528   {
1529     Label no_reguard;
1530     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1531     __ ldrw(rscratch1, Address(rscratch1));
1532     __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled);
1533     __ br(Assembler::NE, no_reguard);
1534 
1535     __ push_call_clobbered_registers();
1536     __ mov(c_rarg0, rthread);
1537     __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1538     __ blr(rscratch2);
1539     __ pop_call_clobbered_registers();
1540 
1541     __ bind(no_reguard);
1542   }
1543 
1544   // The method register is junk from after the thread_in_native transition
1545   // until here.  Also can't call_VM until the bcp has been
1546   // restored.  Need bcp for throwing exception below so get it now.
1547   __ get_method(rmethod);
1548 
1549   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1550   // rbcp == code_base()
1551   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1552   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1553   // handle exceptions (exception handling will handle unlocking!)
1554   {
1555     Label L;
1556     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1557     __ cbz(rscratch1, L);
1558     // Note: At some point we may want to unify this with the code
1559     // used in call_VM_base(); i.e., we should use the
1560     // StubRoutines::forward_exception code. For now this doesn't work
1561     // here because the rsp is not correctly set at this point.
1562     __ MacroAssembler::call_VM(noreg,
1563                                CAST_FROM_FN_PTR(address,
1564                                InterpreterRuntime::throw_pending_exception));
1565     __ should_not_reach_here();
1566     __ bind(L);
1567   }
1568 
1569   // do unlocking if necessary
1570   {
1571     Label L;
1572     __ ldrh(t, Address(rmethod, Method::access_flags_offset()));
1573     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1574     // the code below should be shared with interpreter macro
1575     // assembler implementation
1576     {
1577       Label unlock;
1578       // BasicObjectLock will be first in list, since this is a
1579       // synchronized method. However, need to check that the object
1580       // has not been unlocked by an explicit monitorexit bytecode.
1581 
1582       // monitor expect in c_rarg1 for slow unlock path
1583       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1584                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1585                                           wordSize - sizeof(BasicObjectLock))));
1586 
1587       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset()));
1588       __ cbnz(t, unlock);
1589 
1590       // Entry already unlocked, need to throw exception
1591       __ MacroAssembler::call_VM(noreg,
1592                                  CAST_FROM_FN_PTR(address,
1593                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1594       __ should_not_reach_here();
1595 
1596       __ bind(unlock);
1597       __ unlock_object(c_rarg1);
1598     }
1599     __ bind(L);
1600   }
1601 
1602   // jvmti support
1603   // Note: This must happen _after_ handling/throwing any exceptions since
1604   //       the exception handler code notifies the runtime of method exits
1605   //       too. If this happens before, method entry/exit notifications are
1606   //       not properly paired (was bug - gri 11/22/99).
1607   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1608 
1609   // restore potential result in r0:d0, call result handler to
1610   // restore potential result in ST0 & handle result
1611 
1612   __ pop(ltos);
1613   __ pop(dtos);
1614 
1615   __ blr(result_handler);
1616 
1617   // remove activation
1618   __ ldr(esp, Address(rfp,
1619                     frame::interpreter_frame_sender_sp_offset *
1620                     wordSize)); // get sender sp
1621   // remove frame anchor
1622   __ leave();
1623 
1624   // restore sender sp
1625   __ mov(sp, esp);
1626 
1627   __ ret(lr);
1628 
1629   if (inc_counter) {
1630     // Handle overflow of counter and compile method
1631     __ bind(invocation_counter_overflow);
1632     generate_counter_overflow(continue_after_compile);
1633   }
1634 
1635   return entry_point;
1636 }
1637 
1638 //
1639 // Generic interpreted method entry to (asm) interpreter
1640 //
1641 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1642   // determine code generation flags
1643   bool inc_counter  = UseCompiler || CountCompiledCalls;
1644 
1645   // rscratch1: sender sp
1646   address entry_point = __ pc();
1647 
1648   const Address constMethod(rmethod, Method::const_offset());
1649   const Address access_flags(rmethod, Method::access_flags_offset());
1650   const Address size_of_parameters(r3,
1651                                    ConstMethod::size_of_parameters_offset());
1652   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1653 
1654   // get parameter size (always needed)
1655   // need to load the const method first
1656   __ ldr(r3, constMethod);
1657   __ load_unsigned_short(r2, size_of_parameters);
1658 
1659   // r2: size of parameters
1660 
1661   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1662   __ sub(r3, r3, r2); // r3 = no. of additional locals
1663 
1664   // see if we've got enough room on the stack for locals plus overhead.
1665   generate_stack_overflow_check();
1666 
1667   // compute beginning of parameters (rlocals)
1668   __ add(rlocals, esp, r2, ext::uxtx, 3);
1669   __ sub(rlocals, rlocals, wordSize);
1670 
1671   __ mov(rscratch1, esp);
1672 
1673   // r3 - # of additional locals
1674   // allocate space for locals
1675   // explicitly initialize locals
1676   // Initializing memory allocated for locals in the same direction as
1677   // the stack grows to ensure page initialization order according
1678   // to windows-aarch64 stack page growth requirement (see
1679   // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack)
1680   {
1681     Label exit, loop;
1682     __ ands(zr, r3, r3);
1683     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1684     __ bind(loop);
1685     __ str(zr, Address(__ pre(rscratch1, -wordSize)));
1686     __ sub(r3, r3, 1); // until everything initialized
1687     __ cbnz(r3, loop);
1688     __ bind(exit);
1689   }
1690 
1691   // Padding between locals and fixed part of activation frame to ensure
1692   // SP is always 16-byte aligned.
1693   __ andr(sp, rscratch1, -16);
1694 
1695   // And the base dispatch table
1696   __ get_dispatch();
1697 
1698   // initialize fixed part of activation frame
1699   generate_fixed_frame(false);
1700 
1701   // make sure method is not native & not abstract
1702 #ifdef ASSERT
1703   __ ldrh(r0, access_flags);
1704   {
1705     Label L;
1706     __ tst(r0, JVM_ACC_NATIVE);
1707     __ br(Assembler::EQ, L);
1708     __ stop("tried to execute native method as non-native");
1709     __ bind(L);
1710   }
1711  {
1712     Label L;
1713     __ tst(r0, JVM_ACC_ABSTRACT);
1714     __ br(Assembler::EQ, L);
1715     __ stop("tried to execute abstract method in interpreter");
1716     __ bind(L);
1717   }
1718 #endif
1719 
1720   // Since at this point in the method invocation the exception
1721   // handler would try to exit the monitor of synchronized methods
1722   // which hasn't been entered yet, we set the thread local variable
1723   // _do_not_unlock_if_synchronized to true. The remove_activation
1724   // will check this flag.
1725 
1726    const Address do_not_unlock_if_synchronized(rthread,
1727         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1728   __ mov(rscratch2, true);
1729   __ strb(rscratch2, do_not_unlock_if_synchronized);
1730 
1731   Register mdp = r3;
1732   __ profile_parameters_type(mdp, r1, r2);
1733 
1734   // increment invocation count & check for overflow
1735   Label invocation_counter_overflow;
1736   if (inc_counter) {
1737     generate_counter_incr(&invocation_counter_overflow);
1738   }
1739 
1740   Label continue_after_compile;
1741   __ bind(continue_after_compile);
1742 
1743   bang_stack_shadow_pages(false);
1744 
1745   // reset the _do_not_unlock_if_synchronized flag
1746   __ strb(zr, do_not_unlock_if_synchronized);
1747 
1748   // check for synchronized methods
1749   // Must happen AFTER invocation_counter check and stack overflow check,
1750   // so method is not locked if overflows.
1751   if (synchronized) {
1752     // Allocate monitor and lock method
1753     lock_method();
1754   } else {
1755     // no synchronization necessary
1756 #ifdef ASSERT
1757     {
1758       Label L;
1759       __ ldrh(r0, access_flags);
1760       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1761       __ br(Assembler::EQ, L);
1762       __ stop("method needs synchronization");
1763       __ bind(L);
1764     }
1765 #endif
1766   }
1767 
1768   // start execution
1769 #ifdef ASSERT
1770   {
1771     Label L;
1772      const Address monitor_block_top (rfp,
1773                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1774     __ ldr(rscratch1, monitor_block_top);
1775     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1776     __ cmp(esp, rscratch1);
1777     __ br(Assembler::EQ, L);
1778     __ stop("broken stack frame setup in interpreter 2");
1779     __ bind(L);
1780   }
1781 #endif
1782 
1783   // jvmti support
1784   __ notify_method_entry();
1785 
1786   __ dispatch_next(vtos);
1787 
1788   // invocation counter overflow
1789   if (inc_counter) {
1790     // Handle overflow of counter and compile method
1791     __ bind(invocation_counter_overflow);
1792     generate_counter_overflow(continue_after_compile);
1793   }
1794 
1795   return entry_point;
1796 }
1797 
1798 // Method entry for java.lang.Thread.currentThread
1799 address TemplateInterpreterGenerator::generate_currentThread() {
1800   address entry_point = __ pc();
1801 
1802   __ ldr(r0, Address(rthread, JavaThread::vthread_offset()));
1803   __ resolve_oop_handle(r0, rscratch1, rscratch2);
1804   __ ret(lr);
1805 
1806   return entry_point;
1807 }
1808 
1809 //-----------------------------------------------------------------------------
1810 // Exceptions
1811 
1812 void TemplateInterpreterGenerator::generate_throw_exception() {
1813   // Entry point in previous activation (i.e., if the caller was
1814   // interpreted)
1815   Interpreter::_rethrow_exception_entry = __ pc();
1816   // Restore sp to interpreter_frame_last_sp even though we are going
1817   // to empty the expression stack for the exception processing.
1818   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1819   // r0: exception
1820   // r3: return address/pc that threw exception
1821   __ restore_bcp();    // rbcp points to call/send
1822   __ restore_locals();
1823   __ restore_constant_pool_cache();
1824   __ reinit_heapbase();  // restore rheapbase as heapbase.
1825   __ get_dispatch();
1826 
1827   // Entry point for exceptions thrown within interpreter code
1828   Interpreter::_throw_exception_entry = __ pc();
1829   // If we came here via a NullPointerException on the receiver of a
1830   // method, rmethod may be corrupt.
1831   __ get_method(rmethod);
1832   // expression stack is undefined here
1833   // r0: exception
1834   // rbcp: exception bcp
1835   __ verify_oop(r0);
1836   __ mov(c_rarg1, r0);
1837 
1838   // expression stack must be empty before entering the VM in case of
1839   // an exception
1840   __ empty_expression_stack();
1841   // find exception handler address and preserve exception oop
1842   __ call_VM(r3,
1843              CAST_FROM_FN_PTR(address,
1844                           InterpreterRuntime::exception_handler_for_exception),
1845              c_rarg1);
1846 
1847   // Restore machine SP
1848   __ restore_sp_after_call();
1849 
1850   // r0: exception handler entry point
1851   // r3: preserved exception oop
1852   // rbcp: bcp for exception handler
1853   __ push_ptr(r3); // push exception which is now the only value on the stack
1854   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1855 
1856   // If the exception is not handled in the current frame the frame is
1857   // removed and the exception is rethrown (i.e. exception
1858   // continuation is _rethrow_exception).
1859   //
1860   // Note: At this point the bci is still the bxi for the instruction
1861   // which caused the exception and the expression stack is
1862   // empty. Thus, for any VM calls at this point, GC will find a legal
1863   // oop map (with empty expression stack).
1864 
1865   //
1866   // JVMTI PopFrame support
1867   //
1868 
1869   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1870   __ empty_expression_stack();
1871   // Set the popframe_processing bit in pending_popframe_condition
1872   // indicating that we are currently handling popframe, so that
1873   // call_VMs that may happen later do not trigger new popframe
1874   // handling cycles.
1875   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1876   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1877   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1878 
1879   {
1880     // Check to see whether we are returning to a deoptimized frame.
1881     // (The PopFrame call ensures that the caller of the popped frame is
1882     // either interpreted or compiled and deoptimizes it if compiled.)
1883     // In this case, we can't call dispatch_next() after the frame is
1884     // popped, but instead must save the incoming arguments and restore
1885     // them after deoptimization has occurred.
1886     //
1887     // Note that we don't compare the return PC against the
1888     // deoptimization blob's unpack entry because of the presence of
1889     // adapter frames in C2.
1890     Label caller_not_deoptimized;
1891     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1892     // This is a return address, so requires authenticating for PAC.
1893     __ authenticate_return_address(c_rarg1);
1894     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1895                                InterpreterRuntime::interpreter_contains), c_rarg1);
1896     __ cbnz(r0, caller_not_deoptimized);
1897 
1898     // Compute size of arguments for saving when returning to
1899     // deoptimized caller
1900     __ get_method(r0);
1901     __ ldr(r0, Address(r0, Method::const_offset()));
1902     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1903                                                     size_of_parameters_offset())));
1904     __ lsl(r0, r0, Interpreter::logStackElementSize);
1905     __ restore_locals(); // XXX do we need this?
1906     __ sub(rlocals, rlocals, r0);
1907     __ add(rlocals, rlocals, wordSize);
1908     // Save these arguments
1909     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1910                                            Deoptimization::
1911                                            popframe_preserve_args),
1912                           rthread, r0, rlocals);
1913 
1914     __ remove_activation(vtos,
1915                          /* throw_monitor_exception */ false,
1916                          /* install_monitor_exception */ false,
1917                          /* notify_jvmdi */ false);
1918 
1919     // Inform deoptimization that it is responsible for restoring
1920     // these arguments
1921     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1922     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1923 
1924     // Continue in deoptimization handler
1925     __ ret(lr);
1926 
1927     __ bind(caller_not_deoptimized);
1928   }
1929 
1930   __ remove_activation(vtos,
1931                        /* throw_monitor_exception */ false,
1932                        /* install_monitor_exception */ false,
1933                        /* notify_jvmdi */ false);
1934 
1935   // Restore the last_sp and null it out
1936   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1937   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1938   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1939 
1940   __ restore_bcp();
1941   __ restore_locals();
1942   __ restore_constant_pool_cache();
1943   __ get_method(rmethod);
1944   __ get_dispatch();
1945 
1946   // The method data pointer was incremented already during
1947   // call profiling. We have to restore the mdp for the current bcp.
1948   if (ProfileInterpreter) {
1949     __ set_method_data_pointer_for_bcp();
1950   }
1951 
1952   // Clear the popframe condition flag
1953   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1954   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1955 
1956 #if INCLUDE_JVMTI
1957   {
1958     Label L_done;
1959 
1960     __ ldrb(rscratch1, Address(rbcp, 0));
1961     __ cmpw(rscratch1, Bytecodes::_invokestatic);
1962     __ br(Assembler::NE, L_done);
1963 
1964     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1965     // Detect such a case in the InterpreterRuntime function and return the member name argument, or null.
1966 
1967     __ ldr(c_rarg0, Address(rlocals, 0));
1968     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1969 
1970     __ cbz(r0, L_done);
1971 
1972     __ str(r0, Address(esp, 0));
1973     __ bind(L_done);
1974   }
1975 #endif // INCLUDE_JVMTI
1976 
1977   // Restore machine SP
1978   __ restore_sp_after_call();
1979 
1980   __ dispatch_next(vtos);
1981   // end of PopFrame support
1982 
1983   Interpreter::_remove_activation_entry = __ pc();
1984 
1985   // preserve exception over this code sequence
1986   __ pop_ptr(r0);
1987   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1988   // remove the activation (without doing throws on illegalMonitorExceptions)
1989   __ remove_activation(vtos, false, true, false);
1990   // restore exception
1991   __ get_vm_result(r0, rthread);
1992 
1993   // In between activations - previous activation type unknown yet
1994   // compute continuation point - the continuation point expects the
1995   // following registers set up:
1996   //
1997   // r0: exception
1998   // lr: return address/pc that threw exception
1999   // esp: expression stack of caller
2000   // rfp: fp of caller
2001   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
2002   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2003                           SharedRuntime::exception_handler_for_return_address),
2004                         rthread, lr);
2005   __ mov(r1, r0);                               // save exception handler
2006   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
2007   // We might be returning to a deopt handler that expects r3 to
2008   // contain the exception pc
2009   __ mov(r3, lr);
2010   // Note that an "issuing PC" is actually the next PC after the call
2011   __ br(r1);                                    // jump to exception
2012                                                 // handler of caller
2013 }
2014 
2015 
2016 //
2017 // JVMTI ForceEarlyReturn support
2018 //
2019 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2020   address entry = __ pc();
2021 
2022   __ restore_bcp();
2023   __ restore_locals();
2024   __ empty_expression_stack();
2025   __ load_earlyret_value(state);
2026 
2027   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
2028   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
2029 
2030   // Clear the earlyret state
2031   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
2032   __ str(zr, cond_addr);
2033 
2034   __ remove_activation(state,
2035                        false, /* throw_monitor_exception */
2036                        false, /* install_monitor_exception */
2037                        true); /* notify_jvmdi */
2038   __ ret(lr);
2039 
2040   return entry;
2041 } // end of ForceEarlyReturn support
2042 
2043 
2044 
2045 //-----------------------------------------------------------------------------
2046 // Helper for vtos entry point generation
2047 
2048 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2049                                                          address& bep,
2050                                                          address& cep,
2051                                                          address& sep,
2052                                                          address& aep,
2053                                                          address& iep,
2054                                                          address& lep,
2055                                                          address& fep,
2056                                                          address& dep,
2057                                                          address& vep) {
2058   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2059   Label L;
2060   aep = __ pc();     // atos entry point
2061       __ push_ptr();
2062       __ b(L);
2063   fep = __ pc();     // ftos entry point
2064       __ push_f();
2065       __ b(L);
2066   dep = __ pc();     // dtos entry point
2067       __ push_d();
2068       __ b(L);
2069   lep = __ pc();     // ltos entry point
2070       __ push_l();
2071       __ b(L);
2072   bep = cep = sep = iep = __ pc();     // [bcsi]tos entry point
2073       __ push_i();
2074   vep = __ pc();     // vtos entry point
2075   __ bind(L);
2076   generate_and_dispatch(t);
2077 }
2078 
2079 //-----------------------------------------------------------------------------
2080 
2081 // Non-product code
2082 #ifndef PRODUCT
2083 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2084   address entry = __ pc();
2085 
2086   __ protect_return_address();
2087   __ push(lr);
2088   __ push(state);
2089   __ push(RegSet::range(r0, r15), sp);
2090   __ mov(c_rarg2, r0);  // Pass itos
2091   __ call_VM(noreg,
2092              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
2093              c_rarg1, c_rarg2, c_rarg3);
2094   __ pop(RegSet::range(r0, r15), sp);
2095   __ pop(state);
2096   __ pop(lr);
2097   __ authenticate_return_address();
2098   __ ret(lr);                                   // return from result handler
2099 
2100   return entry;
2101 }
2102 
2103 void TemplateInterpreterGenerator::count_bytecode() {
2104   __ mov(r10, (address) &BytecodeCounter::_counter_value);
2105   __ atomic_add(noreg, 1, r10);
2106 }
2107 
2108 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2109   __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]);
2110   __ atomic_addw(noreg, 1, r10);
2111 }
2112 
2113 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2114   // Calculate new index for counter:
2115   //   _index = (_index >> log2_number_of_codes) |
2116   //            (bytecode << log2_number_of_codes);
2117   Register index_addr = rscratch1;
2118   Register index = rscratch2;
2119   __ mov(index_addr, (address) &BytecodePairHistogram::_index);
2120   __ ldrw(index, index_addr);
2121   __ mov(r10,
2122          ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2123   __ orrw(index, r10, index, Assembler::LSR,
2124           BytecodePairHistogram::log2_number_of_codes);
2125   __ strw(index, index_addr);
2126 
2127   // Bump bucket contents:
2128   //   _counters[_index] ++;
2129   Register counter_addr = rscratch1;
2130   __ mov(r10, (address) &BytecodePairHistogram::_counters);
2131   __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt)));
2132   __ atomic_addw(noreg, 1, counter_addr);
2133 }
2134 
2135 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2136   // Call a little run-time stub to avoid blow-up for each bytecode.
2137   // The run-time runtime saves the right registers, depending on
2138   // the tosca in-state for the given template.
2139 
2140   assert(Interpreter::trace_code(t->tos_in()) != nullptr,
2141          "entry must have been generated");
2142   __ bl(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
2143   __ reinit_heapbase();
2144 }
2145 
2146 
2147 void TemplateInterpreterGenerator::stop_interpreter_at() {
2148   Label L;
2149   __ push(rscratch1);
2150   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2151   __ ldr(rscratch1, Address(rscratch1));
2152   __ mov(rscratch2, StopInterpreterAt);
2153   __ cmp(rscratch1, rscratch2);
2154   __ br(Assembler::NE, L);
2155   __ brk(0);
2156   __ bind(L);
2157   __ pop(rscratch1);
2158 }
2159 
2160 #endif // !PRODUCT