< prev index next >

src/hotspot/cpu/aarch64/templateTable_aarch64.cpp

Print this page

 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {

 175   case Bytecodes::_fast_aputfield:
 176   case Bytecodes::_fast_bputfield:
 177   case Bytecodes::_fast_zputfield:
 178   case Bytecodes::_fast_cputfield:
 179   case Bytecodes::_fast_dputfield:
 180   case Bytecodes::_fast_fputfield:
 181   case Bytecodes::_fast_iputfield:
 182   case Bytecodes::_fast_lputfield:
 183   case Bytecodes::_fast_sputfield:
 184     {
 185       // We skip bytecode quickening for putfield instructions when
 186       // the put_code written to the constant pool cache is zero.
 187       // This is required so that every execution of this instruction
 188       // calls out to InterpreterRuntime::resolve_get_put to do
 189       // additional, required work.
 190       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 191       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 192       __ load_field_entry(temp_reg, bc_reg);
 193       if (byte_no == f1_byte) {
 194         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 736   locals_index_wide(r1);
 737   __ ldr(r0, aaddress(r1));
 738 }
 739 
 740 void TemplateTable::index_check(Register array, Register index)
 741 {
 742   // destroys r1, rscratch1
 743   // sign extend index for use by indexed load
 744   // __ movl2ptr(index, index);
 745   // check index
 746   Register length = rscratch1;
 747   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 748   __ cmpw(index, length);
 749   if (index != r1) {
 750     // ??? convention: move aberrant index into r1 for exception message
 751     assert(r1 != array, "different registers");
 752     __ mov(r1, index);
 753   }
 754   Label ok;
 755   __ br(Assembler::LO, ok);
 756     // ??? convention: move array into r3 for exception message
 757   __ mov(r3, array);
 758   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 759   __ br(rscratch1);
 760   __ bind(ok);
 761 }
 762 
 763 void TemplateTable::iaload()
 764 {
 765   transition(itos, itos);
 766   __ mov(r1, r0);
 767   __ pop_ptr(r0);
 768   // r0: array
 769   // r1: index
 770   index_check(r0, r1); // leaves index in r1, kills rscratch1
 771   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 772   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 773 }
 774 
 775 void TemplateTable::laload()
 776 {
 777   transition(itos, ltos);
 778   __ mov(r1, r0);
 779   __ pop_ptr(r0);

 799 void TemplateTable::daload()
 800 {
 801   transition(itos, dtos);
 802   __ mov(r1, r0);
 803   __ pop_ptr(r0);
 804   // r0: array
 805   // r1: index
 806   index_check(r0, r1); // leaves index in r1, kills rscratch1
 807   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 808   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 809 }
 810 
 811 void TemplateTable::aaload()
 812 {
 813   transition(itos, atos);
 814   __ mov(r1, r0);
 815   __ pop_ptr(r0);
 816   // r0: array
 817   // r1: index
 818   index_check(r0, r1); // leaves index in r1, kills rscratch1
 819   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 820   do_oop_load(_masm,
 821               Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
 822               r0,
 823               IS_ARRAY);















 824 }
 825 
 826 void TemplateTable::baload()
 827 {
 828   transition(itos, itos);
 829   __ mov(r1, r0);
 830   __ pop_ptr(r0);
 831   // r0: array
 832   // r1: index
 833   index_check(r0, r1); // leaves index in r1, kills rscratch1
 834   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 835   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 836 }
 837 
 838 void TemplateTable::caload()
 839 {
 840   transition(itos, itos);
 841   __ mov(r1, r0);
 842   __ pop_ptr(r0);
 843   // r0: array

1090   // r1:  index
1091   // r3:  array
1092   index_check(r3, r1); // prefer index in r1
1093   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1094   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1095 }
1096 
1097 void TemplateTable::dastore() {
1098   transition(dtos, vtos);
1099   __ pop_i(r1);
1100   __ pop_ptr(r3);
1101   // v0: value
1102   // r1:  index
1103   // r3:  array
1104   index_check(r3, r1); // prefer index in r1
1105   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1106   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1107 }
1108 
1109 void TemplateTable::aastore() {
1110   Label is_null, ok_is_subtype, done;
1111   transition(vtos, vtos);
1112   // stack: ..., array, index, value
1113   __ ldr(r0, at_tos());    // value
1114   __ ldr(r2, at_tos_p1()); // index
1115   __ ldr(r3, at_tos_p2()); // array
1116 
1117   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1118 
1119   index_check(r3, r2);     // kills r1




1120   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);


1121 
1122   // do array store check - check for null value first
1123   __ cbz(r0, is_null);
1124 








1125   // Move subklass into r1
1126   __ load_klass(r1, r0);
1127   // Move superklass into r0
1128   __ load_klass(r0, r3);
1129   __ ldr(r0, Address(r0,
1130                      ObjArrayKlass::element_klass_offset()));
1131   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1132 
1133   // Generate subtype check.  Blows r2, r5
1134   // Superklass in r0.  Subklass in r1.
1135   __ gen_subtype_check(r1, ok_is_subtype);


1136 
1137   // Come here on failure
1138   // object is at TOS
1139   __ b(Interpreter::_throw_ArrayStoreException_entry);
1140 
1141   // Come here on success
1142   __ bind(ok_is_subtype);
1143 
1144   // Get the value we will store
1145   __ ldr(r0, at_tos());
1146   // Now store using the appropriate barrier
1147   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1148   __ b(done);
1149 
1150   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1151   __ bind(is_null);
1152   __ profile_null_seen(r2);















1153 
1154   // Store a null
1155   do_oop_store(_masm, element_address, noreg, IS_ARRAY);











1156 
1157   // Pop stack arguments
1158   __ bind(done);
1159   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1160 }
1161 
1162 void TemplateTable::bastore()
1163 {
1164   transition(itos, vtos);
1165   __ pop_i(r1);
1166   __ pop_ptr(r3);
1167   // r0: value
1168   // r1: index
1169   // r3: array
1170   index_check(r3, r1); // prefer index in r1
1171 
1172   // Need to check whether array is boolean or byte
1173   // since both types share the bastore bytecode.
1174   __ load_klass(r2, r3);
1175   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1940   __ br(j_not(cc), not_taken);
1941   branch(false, false);
1942   __ bind(not_taken);
1943   __ profile_not_taken_branch(r0);
1944 }
1945 
1946 void TemplateTable::if_nullcmp(Condition cc)
1947 {
1948   transition(atos, vtos);
1949   // assume branch is more often taken than not (loops use backward branches)
1950   Label not_taken;
1951   if (cc == equal)
1952     __ cbnz(r0, not_taken);
1953   else
1954     __ cbz(r0, not_taken);
1955   branch(false, false);
1956   __ bind(not_taken);
1957   __ profile_not_taken_branch(r0);
1958 }
1959 
1960 void TemplateTable::if_acmp(Condition cc)
1961 {
1962   transition(atos, vtos);
1963   // assume branch is more often taken than not (loops use backward branches)
1964   Label not_taken;
1965   __ pop_ptr(r1);






































1966   __ cmpoop(r1, r0);
1967   __ br(j_not(cc), not_taken);

1968   branch(false, false);
1969   __ bind(not_taken);
1970   __ profile_not_taken_branch(r0);









1971 }
1972 

1973 void TemplateTable::ret() {
1974   transition(vtos, vtos);
1975   locals_index(r1);
1976   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1977   __ profile_ret(r1, r2);
1978   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1979   __ lea(rbcp, Address(rbcp, r1));
1980   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1981   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1982 }
1983 
1984 void TemplateTable::wide_ret() {
1985   transition(vtos, vtos);
1986   locals_index_wide(r1);
1987   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1988   __ profile_ret(r1, r2);
1989   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1990   __ lea(rbcp, Address(rbcp, r1));
1991   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1992   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2562     }
2563     // c_rarg1: object pointer or null
2564     // c_rarg2: cache entry pointer
2565     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2566                                        InterpreterRuntime::post_field_access),
2567                c_rarg1, c_rarg2);
2568     __ load_field_entry(cache, index);
2569     __ bind(L1);
2570   }
2571 }
2572 
2573 void TemplateTable::pop_and_check_object(Register r)
2574 {
2575   __ pop_ptr(r);
2576   __ null_check(r);  // for field access must check obj.
2577   __ verify_oop(r);
2578 }
2579 
2580 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2581 {
2582   const Register cache     = r4;
2583   const Register obj       = r4;



2584   const Register index     = r3;
2585   const Register tos_state = r3;
2586   const Register off       = r19;
2587   const Register flags     = r6;
2588   const Register bc        = r4; // uses same reg as obj, so don't mix them
2589 
2590   resolve_cache_and_index_for_field(byte_no, cache, index);
2591   jvmti_post_field_access(cache, index, is_static, false);





2592   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2593 
2594   if (!is_static) {
2595     // obj is on the stack
2596     pop_and_check_object(obj);
2597   }
2598 
2599   // 8179954: We need to make sure that the code generated for
2600   // volatile accesses forms a sequentially-consistent set of
2601   // operations when combined with STLR and LDAR.  Without a leading
2602   // membar it's possible for a simple Dekker test to fail if loads
2603   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2604   // the stores in one method and we interpret the loads in another.
2605   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2606     Label notVolatile;
2607     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2608     __ membar(MacroAssembler::AnyAny);
2609     __ bind(notVolatile);
2610   }
2611 

2630   __ b(Done);
2631 
2632   __ bind(notByte);
2633   __ cmp(tos_state, (u1)ztos);
2634   __ br(Assembler::NE, notBool);
2635 
2636   // ztos (same code as btos)
2637   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2638   __ push(ztos);
2639   // Rewrite bytecode to be faster
2640   if (rc == may_rewrite) {
2641     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2642     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2643   }
2644   __ b(Done);
2645 
2646   __ bind(notBool);
2647   __ cmp(tos_state, (u1)atos);
2648   __ br(Assembler::NE, notObj);
2649   // atos
2650   do_oop_load(_masm, field, r0, IN_HEAP);
2651   __ push(atos);
2652   if (rc == may_rewrite) {
2653     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);

























































2654   }
2655   __ b(Done);
2656 
2657   __ bind(notObj);
2658   __ cmp(tos_state, (u1)itos);
2659   __ br(Assembler::NE, notInt);
2660   // itos
2661   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2662   __ push(itos);
2663   // Rewrite bytecode to be faster
2664   if (rc == may_rewrite) {
2665     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2666   }
2667   __ b(Done);
2668 
2669   __ bind(notInt);
2670   __ cmp(tos_state, (u1)ctos);
2671   __ br(Assembler::NE, notChar);
2672   // ctos
2673   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2674   __ push(ctos);
2675   // Rewrite bytecode to be faster

2796     // c_rarg1: object pointer set up above (null if static)
2797     // c_rarg2: cache entry pointer
2798     // c_rarg3: jvalue object on the stack
2799     __ call_VM(noreg,
2800                CAST_FROM_FN_PTR(address,
2801                                 InterpreterRuntime::post_field_modification),
2802                c_rarg1, c_rarg2, c_rarg3);
2803     __ load_field_entry(cache, index);
2804     __ bind(L1);
2805   }
2806 }
2807 
2808 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2809   transition(vtos, vtos);
2810 
2811   const Register cache     = r2;
2812   const Register index     = r3;
2813   const Register tos_state = r3;
2814   const Register obj       = r2;
2815   const Register off       = r19;
2816   const Register flags     = r0;
2817   const Register bc        = r4;

2818 
2819   resolve_cache_and_index_for_field(byte_no, cache, index);
2820   jvmti_post_field_mod(cache, index, is_static);
2821   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2822 
2823   Label Done;
2824   __ mov(r5, flags);
2825 
2826   {
2827     Label notVolatile;
2828     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2829     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2830     __ bind(notVolatile);
2831   }
2832 
2833   // field address
2834   const Address field(obj, off);
2835 
2836   Label notByte, notBool, notInt, notShort, notChar,
2837         notLong, notFloat, notObj, notDouble;
2838 
2839   assert(btos == 0, "change code, btos != 0");
2840   __ cbnz(tos_state, notByte);
2841 
2842   // Don't rewrite putstatic, only putfield
2843   if (is_static) rc = may_not_rewrite;
2844 
2845   // btos
2846   {
2847     __ pop(btos);
2848     if (!is_static) pop_and_check_object(obj);

2857   __ cmp(tos_state, (u1)ztos);
2858   __ br(Assembler::NE, notBool);
2859 
2860   // ztos
2861   {
2862     __ pop(ztos);
2863     if (!is_static) pop_and_check_object(obj);
2864     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2865     if (rc == may_rewrite) {
2866       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2867     }
2868     __ b(Done);
2869   }
2870 
2871   __ bind(notBool);
2872   __ cmp(tos_state, (u1)atos);
2873   __ br(Assembler::NE, notObj);
2874 
2875   // atos
2876   {
2877     __ pop(atos);
2878     if (!is_static) pop_and_check_object(obj);
2879     // Store into the field
2880     do_oop_store(_masm, field, r0, IN_HEAP);
2881     if (rc == may_rewrite) {
2882       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2883     }
2884     __ b(Done);























































2885   }
2886 
2887   __ bind(notObj);
2888   __ cmp(tos_state, (u1)itos);
2889   __ br(Assembler::NE, notInt);
2890 
2891   // itos
2892   {
2893     __ pop(itos);
2894     if (!is_static) pop_and_check_object(obj);
2895     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2896     if (rc == may_rewrite) {
2897       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2898     }
2899     __ b(Done);
2900   }
2901 
2902   __ bind(notInt);
2903   __ cmp(tos_state, (u1)ctos);
2904   __ br(Assembler::NE, notChar);

2969   {
2970     __ pop(dtos);
2971     if (!is_static) pop_and_check_object(obj);
2972     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2973     if (rc == may_rewrite) {
2974       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2975     }
2976   }
2977 
2978 #ifdef ASSERT
2979   __ b(Done);
2980 
2981   __ bind(notDouble);
2982   __ stop("Bad state");
2983 #endif
2984 
2985   __ bind(Done);
2986 
2987   {
2988     Label notVolatile;
2989     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2990     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2991     __ bind(notVolatile);
2992   }
2993 }
2994 
2995 void TemplateTable::putfield(int byte_no)
2996 {
2997   putfield_or_static(byte_no, false);
2998 }
2999 
3000 void TemplateTable::nofast_putfield(int byte_no) {
3001   putfield_or_static(byte_no, false, may_not_rewrite);
3002 }
3003 
3004 void TemplateTable::putstatic(int byte_no) {
3005   putfield_or_static(byte_no, true);
3006 }
3007 
3008 void TemplateTable::jvmti_post_fast_field_mod() {
3009   if (JvmtiExport::can_post_field_modification()) {
3010     // Check to see if a field modification watch has been set before
3011     // we take the time to call into the VM.
3012     Label L2;
3013     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3014     __ ldrw(c_rarg3, Address(rscratch1));
3015     __ cbzw(c_rarg3, L2);
3016     __ pop_ptr(r19);                  // copy the object pointer from tos
3017     __ verify_oop(r19);
3018     __ push_ptr(r19);                 // put the object pointer back on tos
3019     // Save tos values before call_VM() clobbers them. Since we have
3020     // to do it for every data type, we use the saved values as the
3021     // jvalue object.
3022     switch (bytecode()) {          // load values into the jvalue object

3023     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3024     case Bytecodes::_fast_bputfield: // fall through
3025     case Bytecodes::_fast_zputfield: // fall through
3026     case Bytecodes::_fast_sputfield: // fall through
3027     case Bytecodes::_fast_cputfield: // fall through
3028     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3029     case Bytecodes::_fast_dputfield: __ push_d(); break;
3030     case Bytecodes::_fast_fputfield: __ push_f(); break;
3031     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3032 
3033     default:
3034       ShouldNotReachHere();
3035     }
3036     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3037     // access constant pool cache entry
3038     __ load_field_entry(c_rarg2, r0);
3039     __ verify_oop(r19);
3040     // r19: object pointer copied above
3041     // c_rarg2: cache entry pointer
3042     // c_rarg3: jvalue object on the stack
3043     __ call_VM(noreg,
3044                CAST_FROM_FN_PTR(address,
3045                                 InterpreterRuntime::post_field_modification),
3046                r19, c_rarg2, c_rarg3);
3047 
3048     switch (bytecode()) {             // restore tos values

3049     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3050     case Bytecodes::_fast_bputfield: // fall through
3051     case Bytecodes::_fast_zputfield: // fall through
3052     case Bytecodes::_fast_sputfield: // fall through
3053     case Bytecodes::_fast_cputfield: // fall through
3054     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3055     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3056     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3057     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3058     default: break;
3059     }
3060     __ bind(L2);
3061   }
3062 }
3063 
3064 void TemplateTable::fast_storefield(TosState state)
3065 {
3066   transition(state, vtos);
3067 
3068   ByteSize base = ConstantPoolCache::base_offset();

3075   // R1: field offset, R2: field holder, R3: flags
3076   load_resolved_field_entry(r2, r2, noreg, r1, r3);
3077 
3078   {
3079     Label notVolatile;
3080     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3081     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3082     __ bind(notVolatile);
3083   }
3084 
3085   Label notVolatile;
3086 
3087   // Get object from stack
3088   pop_and_check_object(r2);
3089 
3090   // field address
3091   const Address field(r2, r1);
3092 
3093   // access field
3094   switch (bytecode()) {



























3095   case Bytecodes::_fast_aputfield:
3096     do_oop_store(_masm, field, r0, IN_HEAP);
3097     break;
3098   case Bytecodes::_fast_lputfield:
3099     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3100     break;
3101   case Bytecodes::_fast_iputfield:
3102     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3103     break;
3104   case Bytecodes::_fast_zputfield:
3105     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3106     break;
3107   case Bytecodes::_fast_bputfield:
3108     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3109     break;
3110   case Bytecodes::_fast_sputfield:
3111     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3112     break;
3113   case Bytecodes::_fast_cputfield:
3114     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);

3167   // r0: object
3168   __ verify_oop(r0);
3169   __ null_check(r0);
3170   const Address field(r0, r1);
3171 
3172   // 8179954: We need to make sure that the code generated for
3173   // volatile accesses forms a sequentially-consistent set of
3174   // operations when combined with STLR and LDAR.  Without a leading
3175   // membar it's possible for a simple Dekker test to fail if loads
3176   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3177   // the stores in one method and we interpret the loads in another.
3178   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3179     Label notVolatile;
3180     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3181     __ membar(MacroAssembler::AnyAny);
3182     __ bind(notVolatile);
3183   }
3184 
3185   // access field
3186   switch (bytecode()) {

























3187   case Bytecodes::_fast_agetfield:
3188     do_oop_load(_masm, field, r0, IN_HEAP);
3189     __ verify_oop(r0);
3190     break;
3191   case Bytecodes::_fast_lgetfield:
3192     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3193     break;
3194   case Bytecodes::_fast_igetfield:
3195     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3196     break;
3197   case Bytecodes::_fast_bgetfield:
3198     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3199     break;
3200   case Bytecodes::_fast_sgetfield:
3201     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3202     break;
3203   case Bytecodes::_fast_cgetfield:
3204     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3205     break;
3206   case Bytecodes::_fast_fgetfield:

3585   Label initialize_header;
3586 
3587   __ get_cpool_and_tags(r4, r0);
3588   // Make sure the class we're about to instantiate has been resolved.
3589   // This is done before loading InstanceKlass to be consistent with the order
3590   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3591   const int tags_offset = Array<u1>::base_offset_in_bytes();
3592   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3593   __ lea(rscratch1, Address(rscratch1, tags_offset));
3594   __ ldarb(rscratch1, rscratch1);
3595   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3596   __ br(Assembler::NE, slow_case);
3597 
3598   // get InstanceKlass
3599   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3600 
3601   // make sure klass is initialized
3602   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3603   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3604 
3605   // get instance_size in InstanceKlass (scaled to a count of bytes)
3606   __ ldrw(r3,
3607           Address(r4,
3608                   Klass::layout_helper_offset()));
3609   // test to see if it is malformed in some way
3610   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3611 
3612   // Allocate the instance:
3613   //  If TLAB is enabled:
3614   //    Try to allocate in the TLAB.
3615   //    If fails, go to the slow path.
3616   //    Initialize the allocation.
3617   //    Exit.
3618   //
3619   //  Go to slow path.
3620 
3621   if (UseTLAB) {
3622     __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3623 
3624     if (ZeroTLAB) {
3625       // the fields have been already cleared
3626       __ b(initialize_header);
3627     }
3628 
3629     // The object is initialized before the header.  If the object size is
3630     // zero, go directly to the header initialization.
3631     int header_size = oopDesc::header_size() * HeapWordSize;
3632     assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned");
3633     __ sub(r3, r3, header_size);
3634     __ cbz(r3, initialize_header);
3635 
3636     // Initialize object fields
3637     {
3638       __ add(r2, r0, header_size);
3639       Label loop;
3640       __ bind(loop);
3641       __ str(zr, Address(__ post(r2, BytesPerLong)));
3642       __ sub(r3, r3, BytesPerLong);
3643       __ cbnz(r3, loop);
3644     }
3645 
3646     // initialize object header only.
3647     __ bind(initialize_header);
3648     if (UseCompactObjectHeaders) {
3649       __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3650       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3651     } else {
3652       __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3653       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3654       __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3655       __ store_klass(r0, r4);      // store klass last
3656     }
3657 
3658     if (DTraceAllocProbes) {
3659       // Trigger dtrace event for fastpath
3660       __ push(atos); // save the return value
3661       __ call_VM_leaf(
3662            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3663       __ pop(atos); // restore the return value
3664 
3665     }
3666     __ b(done);
3667   }
3668 
3669   // slow case
3670   __ bind(slow_case);
3671   __ get_constant_pool(c_rarg1);
3672   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3673   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3674   __ verify_oop(r0);
3675 
3676   // continue
3677   __ bind(done);
3678   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3679   __ membar(Assembler::StoreStore);
3680 }
3681 
3682 void TemplateTable::newarray() {
3683   transition(itos, atos);
3684   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3685   __ mov(c_rarg2, r0);
3686   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3687           c_rarg1, c_rarg2);

3732   __ bind(quicked);
3733   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3734   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3735 
3736   __ bind(resolved);
3737   __ load_klass(r19, r3);
3738 
3739   // Generate subtype check.  Blows r2, r5.  Object in r3.
3740   // Superklass in r0.  Subklass in r19.
3741   __ gen_subtype_check(r19, ok_is_subtype);
3742 
3743   // Come here on failure
3744   __ push(r3);
3745   // object is at TOS
3746   __ b(Interpreter::_throw_ClassCastException_entry);
3747 
3748   // Come here on success
3749   __ bind(ok_is_subtype);
3750   __ mov(r0, r3); // Restore object in r3
3751 



3752   // Collect counts on whether this test sees nulls a lot or not.
3753   if (ProfileInterpreter) {
3754     __ b(done);
3755     __ bind(is_null);
3756     __ profile_null_seen(r2);
3757   } else {
3758     __ bind(is_null);   // same as 'done'
3759   }

3760   __ bind(done);
3761 }
3762 
3763 void TemplateTable::instanceof() {
3764   transition(atos, itos);
3765   Label done, is_null, ok_is_subtype, quicked, resolved;
3766   __ cbz(r0, is_null);
3767 
3768   // Get cpool & tags index
3769   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3770   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3771   // See if bytecode has already been quicked
3772   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3773   __ lea(r1, Address(rscratch1, r19));
3774   __ ldarb(r1, r1);
3775   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3776   __ br(Assembler::EQ, quicked);
3777 
3778   __ push(atos); // save receiver for result, and for GC
3779   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

3858 //       in the assembly code structure as well
3859 //
3860 // Stack layout:
3861 //
3862 // [expressions  ] <--- esp               = expression stack top
3863 // ..
3864 // [expressions  ]
3865 // [monitor entry] <--- monitor block top = expression stack bot
3866 // ..
3867 // [monitor entry]
3868 // [frame data   ] <--- monitor block bot
3869 // ...
3870 // [saved rfp    ] <--- rfp
3871 void TemplateTable::monitorenter()
3872 {
3873   transition(atos, vtos);
3874 
3875   // check for null object
3876   __ null_check(r0);
3877 




3878   const Address monitor_block_top(
3879         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3880   const Address monitor_block_bot(
3881         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3882   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3883 
3884   Label allocated;
3885 
3886   // initialize entry pointer
3887   __ mov(c_rarg1, zr); // points to free slot or null
3888 
3889   // find a free slot in the monitor block (result in c_rarg1)
3890   {
3891     Label entry, loop, exit;
3892     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3893     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3894     // c_rarg3 points to current entry, starting with top-most entry
3895 
3896     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3897 

3959   // c_rarg1: points to monitor entry
3960   __ bind(allocated);
3961 
3962   // Increment bcp to point to the next bytecode, so exception
3963   // handling for async. exceptions work correctly.
3964   // The object has already been popped from the stack, so the
3965   // expression stack looks correct.
3966   __ increment(rbcp);
3967 
3968   // store object
3969   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3970   __ lock_object(c_rarg1);
3971 
3972   // check to make sure this monitor doesn't cause stack overflow after locking
3973   __ save_bcp();  // in case of exception
3974   __ generate_stack_overflow_check(0);
3975 
3976   // The bcp has already been incremented. Just need to dispatch to
3977   // next instruction.
3978   __ dispatch_next(vtos);





3979 }
3980 
3981 
3982 void TemplateTable::monitorexit()
3983 {
3984   transition(atos, vtos);
3985 
3986   // check for null object
3987   __ null_check(r0);
3988 












3989   const Address monitor_block_top(
3990         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3991   const Address monitor_block_bot(
3992         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3993   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3994 
3995   Label found;
3996 
3997   // find matching slot
3998   {
3999     Label entry, loop;
4000     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4001     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4002     // c_rarg1 points to current entry, starting with top-most entry
4003 
4004     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4005                                         // of monitor block
4006     __ b(entry);
4007 
4008     __ bind(loop);

 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {
 175   case Bytecodes::_fast_vputfield:
 176   case Bytecodes::_fast_aputfield:
 177   case Bytecodes::_fast_bputfield:
 178   case Bytecodes::_fast_zputfield:
 179   case Bytecodes::_fast_cputfield:
 180   case Bytecodes::_fast_dputfield:
 181   case Bytecodes::_fast_fputfield:
 182   case Bytecodes::_fast_iputfield:
 183   case Bytecodes::_fast_lputfield:
 184   case Bytecodes::_fast_sputfield:
 185     {
 186       // We skip bytecode quickening for putfield instructions when
 187       // the put_code written to the constant pool cache is zero.
 188       // This is required so that every execution of this instruction
 189       // calls out to InterpreterRuntime::resolve_get_put to do
 190       // additional, required work.
 191       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 192       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 193       __ load_field_entry(temp_reg, bc_reg);
 194       if (byte_no == f1_byte) {
 195         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 737   locals_index_wide(r1);
 738   __ ldr(r0, aaddress(r1));
 739 }
 740 
 741 void TemplateTable::index_check(Register array, Register index)
 742 {
 743   // destroys r1, rscratch1
 744   // sign extend index for use by indexed load
 745   // __ movl2ptr(index, index);
 746   // check index
 747   Register length = rscratch1;
 748   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 749   __ cmpw(index, length);
 750   if (index != r1) {
 751     // ??? convention: move aberrant index into r1 for exception message
 752     assert(r1 != array, "different registers");
 753     __ mov(r1, index);
 754   }
 755   Label ok;
 756   __ br(Assembler::LO, ok);
 757   // ??? convention: move array into r3 for exception message
 758    __ mov(r3, array);
 759    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 760    __ br(rscratch1);
 761   __ bind(ok);
 762 }
 763 
 764 void TemplateTable::iaload()
 765 {
 766   transition(itos, itos);
 767   __ mov(r1, r0);
 768   __ pop_ptr(r0);
 769   // r0: array
 770   // r1: index
 771   index_check(r0, r1); // leaves index in r1, kills rscratch1
 772   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 773   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 774 }
 775 
 776 void TemplateTable::laload()
 777 {
 778   transition(itos, ltos);
 779   __ mov(r1, r0);
 780   __ pop_ptr(r0);

 800 void TemplateTable::daload()
 801 {
 802   transition(itos, dtos);
 803   __ mov(r1, r0);
 804   __ pop_ptr(r0);
 805   // r0: array
 806   // r1: index
 807   index_check(r0, r1); // leaves index in r1, kills rscratch1
 808   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 809   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 810 }
 811 
 812 void TemplateTable::aaload()
 813 {
 814   transition(itos, atos);
 815   __ mov(r1, r0);
 816   __ pop_ptr(r0);
 817   // r0: array
 818   // r1: index
 819   index_check(r0, r1); // leaves index in r1, kills rscratch1
 820   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 821   if (UseArrayFlattening) {
 822     Label is_flat_array, done;
 823 
 824     __ test_flat_array_oop(r0, r8 /*temp*/, is_flat_array);
 825     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 826     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 827 
 828     __ b(done);
 829     __ bind(is_flat_array);
 830     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
 831     // Ensure the stores to copy the inline field contents are visible
 832     // before any subsequent store that publishes this reference.
 833     __ membar(Assembler::StoreStore);
 834     __ bind(done);
 835   } else {
 836     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 837     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 838   }
 839   __ profile_element_type(r2, r0, r4);
 840 }
 841 
 842 void TemplateTable::baload()
 843 {
 844   transition(itos, itos);
 845   __ mov(r1, r0);
 846   __ pop_ptr(r0);
 847   // r0: array
 848   // r1: index
 849   index_check(r0, r1); // leaves index in r1, kills rscratch1
 850   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 851   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 852 }
 853 
 854 void TemplateTable::caload()
 855 {
 856   transition(itos, itos);
 857   __ mov(r1, r0);
 858   __ pop_ptr(r0);
 859   // r0: array

1106   // r1:  index
1107   // r3:  array
1108   index_check(r3, r1); // prefer index in r1
1109   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1110   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1111 }
1112 
1113 void TemplateTable::dastore() {
1114   transition(dtos, vtos);
1115   __ pop_i(r1);
1116   __ pop_ptr(r3);
1117   // v0: value
1118   // r1:  index
1119   // r3:  array
1120   index_check(r3, r1); // prefer index in r1
1121   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1122   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1123 }
1124 
1125 void TemplateTable::aastore() {
1126   Label is_null, is_flat_array, ok_is_subtype, done;
1127   transition(vtos, vtos);
1128   // stack: ..., array, index, value
1129   __ ldr(r0, at_tos());    // value
1130   __ ldr(r2, at_tos_p1()); // index
1131   __ ldr(r3, at_tos_p2()); // array
1132 


1133   index_check(r3, r2);     // kills r1
1134 
1135   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1136   __ profile_multiple_element_types(r4, r0, r5, r6);
1137 
1138   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1139   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1140   // Be careful not to clobber r4 below
1141 
1142   // do array store check - check for null value first
1143   __ cbz(r0, is_null);
1144 
1145   // Move array class to r5
1146   __ load_klass(r5, r3);
1147 
1148   if (UseArrayFlattening) {
1149     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1150     __ test_flat_array_layout(r6, is_flat_array);
1151   }
1152 
1153   // Move subklass into r1
1154   __ load_klass(r1, r0);
1155 
1156   // Move array element superklass into r0
1157   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));

1158   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1159 
1160   // Generate subtype check.  Blows r2, r5
1161   // Superklass in r0.  Subklass in r1.
1162 
1163   // is "r1 <: r0" ? (value subclass <: array element superclass)
1164   __ gen_subtype_check(r1, ok_is_subtype, false);
1165 
1166   // Come here on failure
1167   // object is at TOS
1168   __ b(Interpreter::_throw_ArrayStoreException_entry);
1169 
1170   // Come here on success
1171   __ bind(ok_is_subtype);
1172 
1173   // Get the value we will store
1174   __ ldr(r0, at_tos());
1175   // Now store using the appropriate barrier
1176   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1177   __ b(done);
1178 
1179   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1180   __ bind(is_null);
1181   if (EnableValhalla) {
1182     Label is_null_into_value_array_npe, store_null;
1183 
1184     if (UseArrayFlattening) {
1185       __ test_flat_array_oop(r3, r8, is_flat_array);
1186     }
1187 
1188     // No way to store null in a null-free array
1189     __ test_null_free_array_oop(r3, r8, is_null_into_value_array_npe);
1190     __ b(store_null);
1191 
1192     __ bind(is_null_into_value_array_npe);
1193     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1194 
1195     __ bind(store_null);
1196   }
1197 
1198   // Store a null
1199   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1200   __ b(done);
1201 
1202   if (UseArrayFlattening) {
1203      Label is_type_ok;
1204     __ bind(is_flat_array); // Store non-null value to flat
1205 
1206     __ ldr(r0, at_tos());    // value
1207     __ ldr(r3, at_tos_p1()); // index
1208     __ ldr(r2, at_tos_p2()); // array
1209     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1210   }
1211 
1212   // Pop stack arguments
1213   __ bind(done);
1214   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1215 }
1216 
1217 void TemplateTable::bastore()
1218 {
1219   transition(itos, vtos);
1220   __ pop_i(r1);
1221   __ pop_ptr(r3);
1222   // r0: value
1223   // r1: index
1224   // r3: array
1225   index_check(r3, r1); // prefer index in r1
1226 
1227   // Need to check whether array is boolean or byte
1228   // since both types share the bastore bytecode.
1229   __ load_klass(r2, r3);
1230   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1995   __ br(j_not(cc), not_taken);
1996   branch(false, false);
1997   __ bind(not_taken);
1998   __ profile_not_taken_branch(r0);
1999 }
2000 
2001 void TemplateTable::if_nullcmp(Condition cc)
2002 {
2003   transition(atos, vtos);
2004   // assume branch is more often taken than not (loops use backward branches)
2005   Label not_taken;
2006   if (cc == equal)
2007     __ cbnz(r0, not_taken);
2008   else
2009     __ cbz(r0, not_taken);
2010   branch(false, false);
2011   __ bind(not_taken);
2012   __ profile_not_taken_branch(r0);
2013 }
2014 
2015 void TemplateTable::if_acmp(Condition cc) {

2016   transition(atos, vtos);
2017   // assume branch is more often taken than not (loops use backward branches)
2018   Label taken, not_taken;
2019   __ pop_ptr(r1);
2020 
2021   __ profile_acmp(r2, r1, r0, r4);
2022 
2023   Register is_inline_type_mask = rscratch1;
2024   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2025 
2026   if (EnableValhalla) {
2027     __ cmp(r1, r0);
2028     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2029 
2030     // might be substitutable, test if either r0 or r1 is null
2031     __ andr(r2, r0, r1);
2032     __ cbz(r2, (cc == equal) ? not_taken : taken);
2033 
2034     // and both are values ?
2035     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2036     __ andr(r2, r2, is_inline_type_mask);
2037     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2038     __ andr(r4, r4, is_inline_type_mask);
2039     __ andr(r2, r2, r4);
2040     __ cmp(r2,  is_inline_type_mask);
2041     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2042 
2043     // same value klass ?
2044     __ load_metadata(r2, r1);
2045     __ load_metadata(r4, r0);
2046     __ cmp(r2, r4);
2047     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2048 
2049     // Know both are the same type, let's test for substitutability...
2050     if (cc == equal) {
2051       invoke_is_substitutable(r0, r1, taken, not_taken);
2052     } else {
2053       invoke_is_substitutable(r0, r1, not_taken, taken);
2054     }
2055     __ stop("Not reachable");
2056   }
2057 
2058   __ cmpoop(r1, r0);
2059   __ br(j_not(cc), not_taken);
2060   __ bind(taken);
2061   branch(false, false);
2062   __ bind(not_taken);
2063   __ profile_not_taken_branch(r0, true);
2064 }
2065 
2066 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2067                                             Label& is_subst, Label& not_subst) {
2068 
2069   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2070   // Restored... r0 answer, jmp to outcome...
2071   __ cbz(r0, not_subst);
2072   __ b(is_subst);
2073 }
2074 
2075 
2076 void TemplateTable::ret() {
2077   transition(vtos, vtos);
2078   locals_index(r1);
2079   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2080   __ profile_ret(r1, r2);
2081   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2082   __ lea(rbcp, Address(rbcp, r1));
2083   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2084   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2085 }
2086 
2087 void TemplateTable::wide_ret() {
2088   transition(vtos, vtos);
2089   locals_index_wide(r1);
2090   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2091   __ profile_ret(r1, r2);
2092   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2093   __ lea(rbcp, Address(rbcp, r1));
2094   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2095   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2665     }
2666     // c_rarg1: object pointer or null
2667     // c_rarg2: cache entry pointer
2668     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2669                                        InterpreterRuntime::post_field_access),
2670                c_rarg1, c_rarg2);
2671     __ load_field_entry(cache, index);
2672     __ bind(L1);
2673   }
2674 }
2675 
2676 void TemplateTable::pop_and_check_object(Register r)
2677 {
2678   __ pop_ptr(r);
2679   __ null_check(r);  // for field access must check obj.
2680   __ verify_oop(r);
2681 }
2682 
2683 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2684 {
2685   const Register cache     = r2;
2686   const Register obj       = r4;
2687   const Register klass     = r5;
2688   const Register inline_klass = r7;
2689   const Register field_index = r23;
2690   const Register index     = r3;
2691   const Register tos_state = r3;
2692   const Register off       = r19;
2693   const Register flags     = r6;
2694   const Register bc        = r4; // uses same reg as obj, so don't mix them
2695 
2696   resolve_cache_and_index_for_field(byte_no, cache, index);
2697   jvmti_post_field_access(cache, index, is_static, false);
2698 
2699   // Valhalla extras
2700   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2701   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2702 
2703   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2704 
2705   if (!is_static) {
2706     // obj is on the stack
2707     pop_and_check_object(obj);
2708   }
2709 
2710   // 8179954: We need to make sure that the code generated for
2711   // volatile accesses forms a sequentially-consistent set of
2712   // operations when combined with STLR and LDAR.  Without a leading
2713   // membar it's possible for a simple Dekker test to fail if loads
2714   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2715   // the stores in one method and we interpret the loads in another.
2716   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2717     Label notVolatile;
2718     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2719     __ membar(MacroAssembler::AnyAny);
2720     __ bind(notVolatile);
2721   }
2722 

2741   __ b(Done);
2742 
2743   __ bind(notByte);
2744   __ cmp(tos_state, (u1)ztos);
2745   __ br(Assembler::NE, notBool);
2746 
2747   // ztos (same code as btos)
2748   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2749   __ push(ztos);
2750   // Rewrite bytecode to be faster
2751   if (rc == may_rewrite) {
2752     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2753     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2754   }
2755   __ b(Done);
2756 
2757   __ bind(notBool);
2758   __ cmp(tos_state, (u1)atos);
2759   __ br(Assembler::NE, notObj);
2760   // atos
2761   if (!EnableValhalla) {
2762     do_oop_load(_masm, field, r0, IN_HEAP);
2763     __ push(atos);
2764     if (rc == may_rewrite) {
2765       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2766     }
2767     __ b(Done);
2768   } else { // Valhalla
2769     if (is_static) {
2770       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2771       Label is_null_free_inline_type, uninitialized;
2772       // Issue below if the static field has not been initialized yet
2773       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_null_free_inline_type);
2774         // field is not a null free inline type
2775         __ push(atos);
2776         __ b(Done);
2777       // field is a null free inline type, must not return null even if uninitialized
2778       __ bind(is_null_free_inline_type);
2779         __ cbz(r0, uninitialized);
2780           __ push(atos);
2781           __ b(Done);
2782         __ bind(uninitialized);
2783           __ b(ExternalAddress(Interpreter::_throw_NPE_UninitializedField_entry));
2784     } else {
2785       Label is_flat, nonnull, is_inline_type, has_null_marker, rewrite_inline;
2786       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
2787       __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
2788         // Non-inline field case
2789         __ load_heap_oop(r0, field, rscratch1, rscratch2);
2790         __ push(atos);
2791         if (rc == may_rewrite) {
2792           patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2793         }
2794         __ b(Done);
2795       __ bind(is_inline_type);
2796         __ test_field_is_flat(flags, noreg /* temp */, is_flat);
2797          // field is not flat
2798           __ load_heap_oop(r0, field, rscratch1, rscratch2);
2799           __ cbnz(r0, nonnull);
2800             __ b(ExternalAddress(Interpreter::_throw_NPE_UninitializedField_entry));
2801           __ bind(nonnull);
2802           __ verify_oop(r0);
2803           __ push(atos);
2804           __ b(rewrite_inline);
2805         __ bind(is_flat);
2806         // field is flat
2807           __ mov(r0, obj);
2808           __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2809           __ verify_oop(r0);
2810           __ push(atos);
2811           __ b(rewrite_inline);
2812         __ bind(has_null_marker);
2813           call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), obj, cache);
2814           __ verify_oop(r0);
2815           __ push(atos);
2816       __ bind(rewrite_inline);
2817       if (rc == may_rewrite) {
2818         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2819       }
2820       __ b(Done);
2821     }
2822   }

2823 
2824   __ bind(notObj);
2825   __ cmp(tos_state, (u1)itos);
2826   __ br(Assembler::NE, notInt);
2827   // itos
2828   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2829   __ push(itos);
2830   // Rewrite bytecode to be faster
2831   if (rc == may_rewrite) {
2832     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2833   }
2834   __ b(Done);
2835 
2836   __ bind(notInt);
2837   __ cmp(tos_state, (u1)ctos);
2838   __ br(Assembler::NE, notChar);
2839   // ctos
2840   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2841   __ push(ctos);
2842   // Rewrite bytecode to be faster

2963     // c_rarg1: object pointer set up above (null if static)
2964     // c_rarg2: cache entry pointer
2965     // c_rarg3: jvalue object on the stack
2966     __ call_VM(noreg,
2967                CAST_FROM_FN_PTR(address,
2968                                 InterpreterRuntime::post_field_modification),
2969                c_rarg1, c_rarg2, c_rarg3);
2970     __ load_field_entry(cache, index);
2971     __ bind(L1);
2972   }
2973 }
2974 
2975 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2976   transition(vtos, vtos);
2977 
2978   const Register cache     = r2;
2979   const Register index     = r3;
2980   const Register tos_state = r3;
2981   const Register obj       = r2;
2982   const Register off       = r19;
2983   const Register flags     = r6;
2984   const Register bc        = r4;
2985   const Register inline_klass = r5;
2986 
2987   resolve_cache_and_index_for_field(byte_no, cache, index);
2988   jvmti_post_field_mod(cache, index, is_static);
2989   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2990 
2991   Label Done;


2992   {
2993     Label notVolatile;
2994     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2995     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2996     __ bind(notVolatile);
2997   }
2998 
2999   // field address
3000   const Address field(obj, off);
3001 
3002   Label notByte, notBool, notInt, notShort, notChar,
3003         notLong, notFloat, notObj, notDouble;
3004 
3005   assert(btos == 0, "change code, btos != 0");
3006   __ cbnz(tos_state, notByte);
3007 
3008   // Don't rewrite putstatic, only putfield
3009   if (is_static) rc = may_not_rewrite;
3010 
3011   // btos
3012   {
3013     __ pop(btos);
3014     if (!is_static) pop_and_check_object(obj);

3023   __ cmp(tos_state, (u1)ztos);
3024   __ br(Assembler::NE, notBool);
3025 
3026   // ztos
3027   {
3028     __ pop(ztos);
3029     if (!is_static) pop_and_check_object(obj);
3030     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3031     if (rc == may_rewrite) {
3032       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3033     }
3034     __ b(Done);
3035   }
3036 
3037   __ bind(notBool);
3038   __ cmp(tos_state, (u1)atos);
3039   __ br(Assembler::NE, notObj);
3040 
3041   // atos
3042   {
3043      if (!EnableValhalla) {
3044       __ pop(atos);
3045       if (!is_static) pop_and_check_object(obj);
3046       // Store into the field
3047       do_oop_store(_masm, field, r0, IN_HEAP);
3048       if (rc == may_rewrite) {
3049         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3050       }
3051       __ b(Done);
3052      } else { // Valhalla
3053       __ pop(atos);
3054       if (is_static) {
3055         Label is_inline_type;
3056          __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_inline_type);
3057          __ null_check(r0);
3058          __ bind(is_inline_type);
3059          do_oop_store(_masm, field, r0, IN_HEAP);
3060          __ b(Done);
3061       } else {
3062         Label is_inline_type, is_flat, has_null_marker, rewrite_not_inline, rewrite_inline;
3063         __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
3064         __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
3065         // Not an inline type
3066         pop_and_check_object(obj);
3067         // Store into the field
3068         do_oop_store(_masm, field, r0, IN_HEAP);
3069         __ bind(rewrite_not_inline);
3070         if (rc == may_rewrite) {
3071           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3072         }
3073         __ b(Done);
3074         // Implementation of the inline type semantic
3075         __ bind(is_inline_type);
3076         __ null_check(r0);
3077         __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
3078         // field is not flat
3079         pop_and_check_object(obj);
3080         // Store into the field
3081         do_oop_store(_masm, field, r0, IN_HEAP);
3082         __ b(rewrite_inline);
3083         __ bind(is_flat);
3084         __ load_field_entry(cache, index); // reload field entry (cache) because it was erased by tos_state
3085         __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
3086         __ ldr(r2, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3087         __ inline_layout_info(r2, index, r6);
3088         pop_and_check_object(obj);
3089         __ load_klass(inline_klass, r0);
3090         __ payload_address(r0, r0, inline_klass);
3091         __ add(obj, obj, off);
3092         // because we use InlineLayoutInfo, we need special value access code specialized for fields (arrays will need a different API)
3093         __ flat_field_copy(IN_HEAP, r0, obj, r6);
3094         __ b(rewrite_inline);
3095         __ bind(has_null_marker);
3096         assert_different_registers(r0, cache, r19);
3097         pop_and_check_object(r19);
3098         __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r19, r0, cache);
3099         __ bind(rewrite_inline);
3100         if (rc == may_rewrite) {
3101           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3102         }
3103         __ b(Done);
3104       }
3105      }  // Valhalla
3106   }
3107 
3108   __ bind(notObj);
3109   __ cmp(tos_state, (u1)itos);
3110   __ br(Assembler::NE, notInt);
3111 
3112   // itos
3113   {
3114     __ pop(itos);
3115     if (!is_static) pop_and_check_object(obj);
3116     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3117     if (rc == may_rewrite) {
3118       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3119     }
3120     __ b(Done);
3121   }
3122 
3123   __ bind(notInt);
3124   __ cmp(tos_state, (u1)ctos);
3125   __ br(Assembler::NE, notChar);

3190   {
3191     __ pop(dtos);
3192     if (!is_static) pop_and_check_object(obj);
3193     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3194     if (rc == may_rewrite) {
3195       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3196     }
3197   }
3198 
3199 #ifdef ASSERT
3200   __ b(Done);
3201 
3202   __ bind(notDouble);
3203   __ stop("Bad state");
3204 #endif
3205 
3206   __ bind(Done);
3207 
3208   {
3209     Label notVolatile;
3210     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3211     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3212     __ bind(notVolatile);
3213   }
3214 }
3215 
3216 void TemplateTable::putfield(int byte_no)
3217 {
3218   putfield_or_static(byte_no, false);
3219 }
3220 
3221 void TemplateTable::nofast_putfield(int byte_no) {
3222   putfield_or_static(byte_no, false, may_not_rewrite);
3223 }
3224 
3225 void TemplateTable::putstatic(int byte_no) {
3226   putfield_or_static(byte_no, true);
3227 }
3228 
3229 void TemplateTable::jvmti_post_fast_field_mod() {
3230   if (JvmtiExport::can_post_field_modification()) {
3231     // Check to see if a field modification watch has been set before
3232     // we take the time to call into the VM.
3233     Label L2;
3234     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3235     __ ldrw(c_rarg3, Address(rscratch1));
3236     __ cbzw(c_rarg3, L2);
3237     __ pop_ptr(r19);                  // copy the object pointer from tos
3238     __ verify_oop(r19);
3239     __ push_ptr(r19);                 // put the object pointer back on tos
3240     // Save tos values before call_VM() clobbers them. Since we have
3241     // to do it for every data type, we use the saved values as the
3242     // jvalue object.
3243     switch (bytecode()) {          // load values into the jvalue object
3244     case Bytecodes::_fast_vputfield: //fall through
3245     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3246     case Bytecodes::_fast_bputfield: // fall through
3247     case Bytecodes::_fast_zputfield: // fall through
3248     case Bytecodes::_fast_sputfield: // fall through
3249     case Bytecodes::_fast_cputfield: // fall through
3250     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3251     case Bytecodes::_fast_dputfield: __ push_d(); break;
3252     case Bytecodes::_fast_fputfield: __ push_f(); break;
3253     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3254 
3255     default:
3256       ShouldNotReachHere();
3257     }
3258     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3259     // access constant pool cache entry
3260     __ load_field_entry(c_rarg2, r0);
3261     __ verify_oop(r19);
3262     // r19: object pointer copied above
3263     // c_rarg2: cache entry pointer
3264     // c_rarg3: jvalue object on the stack
3265     __ call_VM(noreg,
3266                CAST_FROM_FN_PTR(address,
3267                                 InterpreterRuntime::post_field_modification),
3268                r19, c_rarg2, c_rarg3);
3269 
3270     switch (bytecode()) {             // restore tos values
3271     case Bytecodes::_fast_vputfield: //fall through
3272     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3273     case Bytecodes::_fast_bputfield: // fall through
3274     case Bytecodes::_fast_zputfield: // fall through
3275     case Bytecodes::_fast_sputfield: // fall through
3276     case Bytecodes::_fast_cputfield: // fall through
3277     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3278     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3279     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3280     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3281     default: break;
3282     }
3283     __ bind(L2);
3284   }
3285 }
3286 
3287 void TemplateTable::fast_storefield(TosState state)
3288 {
3289   transition(state, vtos);
3290 
3291   ByteSize base = ConstantPoolCache::base_offset();

3298   // R1: field offset, R2: field holder, R3: flags
3299   load_resolved_field_entry(r2, r2, noreg, r1, r3);
3300 
3301   {
3302     Label notVolatile;
3303     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3304     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3305     __ bind(notVolatile);
3306   }
3307 
3308   Label notVolatile;
3309 
3310   // Get object from stack
3311   pop_and_check_object(r2);
3312 
3313   // field address
3314   const Address field(r2, r1);
3315 
3316   // access field
3317   switch (bytecode()) {
3318   case Bytecodes::_fast_vputfield:
3319    {
3320       Label is_flat, has_null_marker, done;
3321       __ test_field_has_null_marker(r3, noreg /* temp */, has_null_marker);
3322       __ null_check(r0);
3323       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3324       // field is not flat
3325       do_oop_store(_masm, field, r0, IN_HEAP);
3326       __ b(done);
3327       __ bind(is_flat);
3328       // field is flat
3329       __ load_field_entry(r4, r3);
3330       __ load_unsigned_short(r3, Address(r4, in_bytes(ResolvedFieldEntry::field_index_offset())));
3331       __ ldr(r4, Address(r4, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3332       __ inline_layout_info(r4, r3, r5);
3333       __ load_klass(r4, r0);
3334       __ payload_address(r0, r0, r4);
3335       __ lea(rscratch1, field);
3336       __ flat_field_copy(IN_HEAP, r0, rscratch1, r5);
3337       __ b(done);
3338       __ bind(has_null_marker);
3339       __ load_field_entry(r4, r1);
3340       __ mov(r1, r2);
3341       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r1, r0, r4);
3342       __ bind(done);
3343     }
3344     break;
3345   case Bytecodes::_fast_aputfield:
3346     do_oop_store(_masm, field, r0, IN_HEAP);
3347     break;
3348   case Bytecodes::_fast_lputfield:
3349     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3350     break;
3351   case Bytecodes::_fast_iputfield:
3352     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3353     break;
3354   case Bytecodes::_fast_zputfield:
3355     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3356     break;
3357   case Bytecodes::_fast_bputfield:
3358     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3359     break;
3360   case Bytecodes::_fast_sputfield:
3361     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3362     break;
3363   case Bytecodes::_fast_cputfield:
3364     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);

3417   // r0: object
3418   __ verify_oop(r0);
3419   __ null_check(r0);
3420   const Address field(r0, r1);
3421 
3422   // 8179954: We need to make sure that the code generated for
3423   // volatile accesses forms a sequentially-consistent set of
3424   // operations when combined with STLR and LDAR.  Without a leading
3425   // membar it's possible for a simple Dekker test to fail if loads
3426   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3427   // the stores in one method and we interpret the loads in another.
3428   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3429     Label notVolatile;
3430     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3431     __ membar(MacroAssembler::AnyAny);
3432     __ bind(notVolatile);
3433   }
3434 
3435   // access field
3436   switch (bytecode()) {
3437   case Bytecodes::_fast_vgetfield:
3438     {
3439       Register index = r4, klass = r5, inline_klass = r6, tmp = r7;
3440       Label is_flat, has_null_marker, nonnull, Done;
3441       __ test_field_has_null_marker(r3, noreg /*temp*/, has_null_marker);
3442       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3443         // field is not flat
3444         __ load_heap_oop(r0, field, rscratch1, rscratch2);
3445         __ cbnz(r0, nonnull);
3446           __ b(ExternalAddress(Interpreter::_throw_NPE_UninitializedField_entry));
3447         __ bind(nonnull);
3448         __ verify_oop(r0);
3449         __ b(Done);
3450       __ bind(is_flat);
3451       // field is flat
3452         __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3453         __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3454         __ verify_oop(r0);
3455         __ b(Done);
3456       __ bind(has_null_marker);
3457         call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), r0, r2);
3458         __ verify_oop(r0);
3459       __ bind(Done);
3460     }
3461     break;
3462   case Bytecodes::_fast_agetfield:
3463     do_oop_load(_masm, field, r0, IN_HEAP);
3464     __ verify_oop(r0);
3465     break;
3466   case Bytecodes::_fast_lgetfield:
3467     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3468     break;
3469   case Bytecodes::_fast_igetfield:
3470     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3471     break;
3472   case Bytecodes::_fast_bgetfield:
3473     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3474     break;
3475   case Bytecodes::_fast_sgetfield:
3476     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3477     break;
3478   case Bytecodes::_fast_cgetfield:
3479     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3480     break;
3481   case Bytecodes::_fast_fgetfield:

3860   Label initialize_header;
3861 
3862   __ get_cpool_and_tags(r4, r0);
3863   // Make sure the class we're about to instantiate has been resolved.
3864   // This is done before loading InstanceKlass to be consistent with the order
3865   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3866   const int tags_offset = Array<u1>::base_offset_in_bytes();
3867   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3868   __ lea(rscratch1, Address(rscratch1, tags_offset));
3869   __ ldarb(rscratch1, rscratch1);
3870   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3871   __ br(Assembler::NE, slow_case);
3872 
3873   // get InstanceKlass
3874   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3875 
3876   // make sure klass is initialized
3877   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3878   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3879 
3880   __ allocate_instance(r4, r0, r3, r1, true, slow_case);




















































3881     if (DTraceAllocProbes) {
3882       // Trigger dtrace event for fastpath
3883       __ push(atos); // save the return value
3884       __ call_VM_leaf(
3885            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3886       __ pop(atos); // restore the return value
3887 
3888     }
3889   __ b(done);

3890 
3891   // slow case
3892   __ bind(slow_case);
3893   __ get_constant_pool(c_rarg1);
3894   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3895   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3896   __ verify_oop(r0);
3897 
3898   // continue
3899   __ bind(done);
3900   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3901   __ membar(Assembler::StoreStore);
3902 }
3903 
3904 void TemplateTable::newarray() {
3905   transition(itos, atos);
3906   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3907   __ mov(c_rarg2, r0);
3908   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3909           c_rarg1, c_rarg2);

3954   __ bind(quicked);
3955   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3956   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3957 
3958   __ bind(resolved);
3959   __ load_klass(r19, r3);
3960 
3961   // Generate subtype check.  Blows r2, r5.  Object in r3.
3962   // Superklass in r0.  Subklass in r19.
3963   __ gen_subtype_check(r19, ok_is_subtype);
3964 
3965   // Come here on failure
3966   __ push(r3);
3967   // object is at TOS
3968   __ b(Interpreter::_throw_ClassCastException_entry);
3969 
3970   // Come here on success
3971   __ bind(ok_is_subtype);
3972   __ mov(r0, r3); // Restore object in r3
3973 
3974   __ b(done);
3975   __ bind(is_null);
3976 
3977   // Collect counts on whether this test sees nulls a lot or not.
3978   if (ProfileInterpreter) {


3979     __ profile_null_seen(r2);


3980   }
3981 
3982   __ bind(done);
3983 }
3984 
3985 void TemplateTable::instanceof() {
3986   transition(atos, itos);
3987   Label done, is_null, ok_is_subtype, quicked, resolved;
3988   __ cbz(r0, is_null);
3989 
3990   // Get cpool & tags index
3991   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3992   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3993   // See if bytecode has already been quicked
3994   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3995   __ lea(r1, Address(rscratch1, r19));
3996   __ ldarb(r1, r1);
3997   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3998   __ br(Assembler::EQ, quicked);
3999 
4000   __ push(atos); // save receiver for result, and for GC
4001   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

4080 //       in the assembly code structure as well
4081 //
4082 // Stack layout:
4083 //
4084 // [expressions  ] <--- esp               = expression stack top
4085 // ..
4086 // [expressions  ]
4087 // [monitor entry] <--- monitor block top = expression stack bot
4088 // ..
4089 // [monitor entry]
4090 // [frame data   ] <--- monitor block bot
4091 // ...
4092 // [saved rfp    ] <--- rfp
4093 void TemplateTable::monitorenter()
4094 {
4095   transition(atos, vtos);
4096 
4097   // check for null object
4098   __ null_check(r0);
4099 
4100   Label is_inline_type;
4101   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4102   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4103 
4104   const Address monitor_block_top(
4105         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4106   const Address monitor_block_bot(
4107         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4108   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4109 
4110   Label allocated;
4111 
4112   // initialize entry pointer
4113   __ mov(c_rarg1, zr); // points to free slot or null
4114 
4115   // find a free slot in the monitor block (result in c_rarg1)
4116   {
4117     Label entry, loop, exit;
4118     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4119     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4120     // c_rarg3 points to current entry, starting with top-most entry
4121 
4122     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4123 

4185   // c_rarg1: points to monitor entry
4186   __ bind(allocated);
4187 
4188   // Increment bcp to point to the next bytecode, so exception
4189   // handling for async. exceptions work correctly.
4190   // The object has already been popped from the stack, so the
4191   // expression stack looks correct.
4192   __ increment(rbcp);
4193 
4194   // store object
4195   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4196   __ lock_object(c_rarg1);
4197 
4198   // check to make sure this monitor doesn't cause stack overflow after locking
4199   __ save_bcp();  // in case of exception
4200   __ generate_stack_overflow_check(0);
4201 
4202   // The bcp has already been incremented. Just need to dispatch to
4203   // next instruction.
4204   __ dispatch_next(vtos);
4205 
4206   __ bind(is_inline_type);
4207   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4208                     InterpreterRuntime::throw_identity_exception), r0);
4209   __ should_not_reach_here();
4210 }
4211 
4212 
4213 void TemplateTable::monitorexit()
4214 {
4215   transition(atos, vtos);
4216 
4217   // check for null object
4218   __ null_check(r0);
4219 
4220   const int is_inline_type_mask = markWord::inline_type_pattern;
4221   Label has_identity;
4222   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4223   __ mov(rscratch2, is_inline_type_mask);
4224   __ andr(rscratch1, rscratch1, rscratch2);
4225   __ cmp(rscratch1, rscratch2);
4226   __ br(Assembler::NE, has_identity);
4227   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4228                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4229   __ should_not_reach_here();
4230   __ bind(has_identity);
4231 
4232   const Address monitor_block_top(
4233         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4234   const Address monitor_block_bot(
4235         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4236   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4237 
4238   Label found;
4239 
4240   // find matching slot
4241   {
4242     Label entry, loop;
4243     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4244     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4245     // c_rarg1 points to current entry, starting with top-most entry
4246 
4247     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4248                                         // of monitor block
4249     __ b(entry);
4250 
4251     __ bind(loop);
< prev index next >