1 /*
   2  * Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2024 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "memory/universe.hpp"
  37 #include "nativeInst_s390.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/safepointMechanism.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "utilities/macros.hpp"
  44 #include "utilities/powerOfTwo.hpp"
  45 #include "vmreg_s390.inline.hpp"
  46 
  47 #define __ _masm->
  48 
  49 #ifndef PRODUCT
  50 #undef __
  51 #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)->
  52 #endif
  53 
  54 //------------------------------------------------------------
  55 
  56 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  57   // Not used on ZARCH_64
  58   ShouldNotCallThis();
  59   return false;
  60 }
  61 
  62 LIR_Opr LIR_Assembler::receiverOpr() {
  63   return FrameMap::Z_R2_oop_opr;
  64 }
  65 
  66 LIR_Opr LIR_Assembler::osrBufferPointer() {
  67   return FrameMap::Z_R2_opr;
  68 }
  69 
  70 int LIR_Assembler::initial_frame_size_in_bytes() const {
  71   return in_bytes(frame_map()->framesize_in_bytes());
  72 }
  73 
  74 // Inline cache check: done before the frame is built.
  75 // The inline cached class is in Z_inline_cache(Z_R9).
  76 // We fetch the class of the receiver and compare it with the cached class.
  77 // If they do not match we jump to the slow case.
  78 int LIR_Assembler::check_icache() {
  79   return __ ic_check(CodeEntryAlignment);
  80 }
  81 
  82 void LIR_Assembler::clinit_barrier(ciMethod* method) {
  83   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
  84 
  85   Label L_skip_barrier;
  86   Register klass = Z_R1_scratch;
  87 
  88   metadata2reg(method->holder()->constant_encoding(), klass);
  89   __ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/);
  90 
  91   __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub());
  92   __ z_br(klass);
  93 
  94   __ bind(L_skip_barrier);
  95 }
  96 
  97 void LIR_Assembler::osr_entry() {
  98   // On-stack-replacement entry sequence (interpreter frame layout described in frame_s390.hpp):
  99   //
 100   //   1. Create a new compiled activation.
 101   //   2. Initialize local variables in the compiled activation. The expression stack must be empty
 102   //      at the osr_bci; it is not initialized.
 103   //   3. Jump to the continuation address in compiled code to resume execution.
 104 
 105   // OSR entry point
 106   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 107   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 108   ValueStack* entry_state = osr_entry->end()->state();
 109   int number_of_locks = entry_state->locks_size();
 110 
 111   // Create a frame for the compiled activation.
 112   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 113 
 114   // OSR buffer is
 115   //
 116   // locals[nlocals-1..0]
 117   // monitors[number_of_locks-1..0]
 118   //
 119   // Locals is a direct copy of the interpreter frame so in the osr buffer
 120   // the first slot in the local array is the last local from the interpreter
 121   // and the last slot is local[0] (receiver) from the interpreter
 122   //
 123   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 124   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 125   // in the interpreter frame (the method lock if a sync method)
 126 
 127   // Initialize monitors in the compiled activation.
 128   //   I0: pointer to osr buffer
 129   //
 130   // All other registers are dead at this point and the locals will be
 131   // copied into place by code emitted in the IR.
 132 
 133   Register OSR_buf = osrBufferPointer()->as_register();
 134   {
 135     assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 136 
 137     const int locals_space = BytesPerWord * method() -> max_locals();
 138     int monitor_offset = locals_space + (2 * BytesPerWord) * (number_of_locks - 1);
 139     bool large_offset = !Immediate::is_simm20(monitor_offset + BytesPerWord) && number_of_locks > 0;
 140 
 141     if (large_offset) {
 142       // z_lg can only handle displacement upto 20bit signed binary integer
 143       __ z_algfi(OSR_buf, locals_space);
 144       monitor_offset -= locals_space;
 145     }
 146 
 147     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 148     // the OSR buffer using 2 word entries: first the lock and then
 149     // the oop.
 150     for (int i = 0; i < number_of_locks; i++) {
 151       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 152       // Verify the interpreter's monitor has a non-null object.
 153       __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is null", __LINE__);
 154       // Copy the lock field into the compiled activation.
 155       __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf);
 156       __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i));
 157       __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf);
 158       __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i));
 159     }
 160 
 161     if (large_offset) {
 162       __ z_slgfi(OSR_buf, locals_space);
 163     }
 164   }
 165 }
 166 
 167 // --------------------------------------------------------------------------------------------
 168 
 169 address LIR_Assembler::emit_call_c(address a) {
 170   __ align_call_far_patchable(__ pc());
 171   address call_addr = __ call_c_opt(a);
 172   if (call_addr == nullptr) {
 173     bailout("const section overflow");
 174   }
 175   return call_addr;
 176 }
 177 
 178 int LIR_Assembler::emit_exception_handler() {
 179   // Generate code for exception handler.
 180   address handler_base = __ start_a_stub(exception_handler_size());
 181   if (handler_base == nullptr) {
 182     // Not enough space left for the handler.
 183     bailout("exception handler overflow");
 184     return -1;
 185   }
 186 
 187   int offset = code_offset();
 188 
 189   address a = Runtime1::entry_for (C1StubId::handle_exception_from_callee_id);
 190   address call_addr = emit_call_c(a);
 191   CHECK_BAILOUT_(-1);
 192   __ should_not_reach_here();
 193   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 194   __ end_a_stub();
 195 
 196   return offset;
 197 }
 198 
 199 // Emit the code to remove the frame from the stack in the exception
 200 // unwind path.
 201 int LIR_Assembler::emit_unwind_handler() {
 202 #ifndef PRODUCT
 203   if (CommentedAssembly) {
 204     _masm->block_comment("Unwind handler");
 205   }
 206 #endif
 207 
 208   int offset = code_offset();
 209   Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved.
 210   Register Rtmp1                      = Z_R11;
 211   Register Rtmp2                      = Z_R12;
 212 
 213   // Fetch the exception from TLS and clear out exception related thread state.
 214   Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset());
 215   Address exc_pc_addr  = Address(Z_thread, JavaThread::exception_pc_offset());
 216   __ z_lg(Z_EXC_OOP, exc_oop_addr);
 217   __ clear_mem(exc_oop_addr, sizeof(oop));
 218   __ clear_mem(exc_pc_addr, sizeof(intptr_t));
 219 
 220   __ bind(_unwind_handler_entry);
 221   __ verify_not_null_oop(Z_EXC_OOP);
 222   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 223     __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception.
 224   }
 225 
 226   // Perform needed unlocking.
 227   MonitorExitStub* stub = nullptr;
 228   if (method()->is_synchronized()) {
 229     // C1StubId::monitorexit_id expects lock address in Z_R1_scratch.
 230     LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch);
 231     monitor_address(0, lock);
 232     stub = new MonitorExitStub(lock, true, 0);
 233     if (LockingMode == LM_MONITOR) {
 234       __ branch_optimized(Assembler::bcondAlways, *stub->entry());
 235     } else {
 236       __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry());
 237     }
 238     __ bind(*stub->continuation());
 239   }
 240 
 241   if (compilation()->env()->dtrace_method_probes()) {
 242     ShouldNotReachHere(); // Not supported.
 243 #if 0
 244     __ mov(rdi, r15_thread);
 245     __ mov_metadata(rsi, method()->constant_encoding());
 246     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 247 #endif
 248   }
 249 
 250   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 251     __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved);  // Restore the exception.
 252   }
 253 
 254   // Remove the activation and dispatch to the unwind handler.
 255   __ pop_frame();
 256   __ z_lg(Z_EXC_PC, _z_common_abi(return_pc), Z_SP);
 257 
 258   // Z_EXC_OOP: exception oop
 259   // Z_EXC_PC: exception pc
 260 
 261   // Dispatch to the unwind logic.
 262   __ load_const_optimized(Z_R5, Runtime1::entry_for (C1StubId::unwind_exception_id));
 263   __ z_br(Z_R5);
 264 
 265   // Emit the slow path assembly.
 266   if (stub != nullptr) {
 267     stub->emit_code(this);
 268   }
 269 
 270   return offset;
 271 }
 272 
 273 int LIR_Assembler::emit_deopt_handler() {
 274   // Generate code for exception handler.
 275   address handler_base = __ start_a_stub(deopt_handler_size());
 276   if (handler_base == nullptr) {
 277     // Not enough space left for the handler.
 278     bailout("deopt handler overflow");
 279     return -1;
 280   }  int offset = code_offset();
 281   // Size must be constant (see HandlerImpl::emit_deopt_handler).
 282   __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack());
 283   __ call(Z_R1_scratch);
 284   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 285   __ end_a_stub();
 286 
 287   return offset;
 288 }
 289 
 290 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 291   if (o == nullptr) {
 292     __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove.
 293   } else {
 294     AddressLiteral a = __ allocate_oop_address(o);
 295     bool success = __ load_oop_from_toc(reg, a, reg);
 296     if (!success) {
 297       bailout("const section overflow");
 298     }
 299   }
 300 }
 301 
 302 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 303   // Allocate a new index in table to hold the object once it's been patched.
 304   int oop_index = __ oop_recorder()->allocate_oop_index(nullptr);
 305   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 306 
 307   AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index));
 308   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 309   // The null will be dynamically patched later so the sequence to
 310   // load the address literal must not be optimized.
 311   __ load_const(reg, addrlit);
 312 
 313   patching_epilog(patch, lir_patch_normal, reg, info);
 314 }
 315 
 316 void LIR_Assembler::metadata2reg(Metadata* md, Register reg) {
 317   bool success = __ set_metadata_constant(md, reg);
 318   if (!success) {
 319     bailout("const section overflow");
 320     return;
 321   }
 322 }
 323 
 324 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 325   // Allocate a new index in table to hold the klass once it's been patched.
 326   int index = __ oop_recorder()->allocate_metadata_index(nullptr);
 327   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 328   AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index));
 329   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 330   // The null will be dynamically patched later so the sequence to
 331   // load the address literal must not be optimized.
 332   __ load_const(reg, addrlit);
 333 
 334   patching_epilog(patch, lir_patch_normal, reg, info);
 335 }
 336 
 337 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 338   switch (op->code()) {
 339     case lir_idiv:
 340     case lir_irem:
 341       arithmetic_idiv(op->code(),
 342                       op->in_opr1(),
 343                       op->in_opr2(),
 344                       op->in_opr3(),
 345                       op->result_opr(),
 346                       op->info());
 347       break;
 348     case lir_fmad: {
 349       const FloatRegister opr1 = op->in_opr1()->as_double_reg(),
 350                           opr2 = op->in_opr2()->as_double_reg(),
 351                           opr3 = op->in_opr3()->as_double_reg(),
 352                           res  = op->result_opr()->as_double_reg();
 353       __ z_madbr(opr3, opr1, opr2);
 354       if (res != opr3) { __ z_ldr(res, opr3); }
 355     } break;
 356     case lir_fmaf: {
 357       const FloatRegister opr1 = op->in_opr1()->as_float_reg(),
 358                           opr2 = op->in_opr2()->as_float_reg(),
 359                           opr3 = op->in_opr3()->as_float_reg(),
 360                           res  = op->result_opr()->as_float_reg();
 361       __ z_maebr(opr3, opr1, opr2);
 362       if (res != opr3) { __ z_ler(res, opr3); }
 363     } break;
 364     default: ShouldNotReachHere(); break;
 365   }
 366 }
 367 
 368 
 369 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 370 #ifdef ASSERT
 371   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
 372   if (op->block() != nullptr)  { _branch_target_blocks.append(op->block()); }
 373   if (op->ublock() != nullptr) { _branch_target_blocks.append(op->ublock()); }
 374 #endif
 375 
 376   if (op->cond() == lir_cond_always) {
 377     if (op->info() != nullptr) { add_debug_info_for_branch(op->info()); }
 378     __ branch_optimized(Assembler::bcondAlways, *(op->label()));
 379   } else {
 380     Assembler::branch_condition acond = Assembler::bcondZero;
 381     if (op->code() == lir_cond_float_branch) {
 382       assert(op->ublock() != nullptr, "must have unordered successor");
 383       __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label()));
 384     }
 385     switch (op->cond()) {
 386       case lir_cond_equal:        acond = Assembler::bcondEqual;     break;
 387       case lir_cond_notEqual:     acond = Assembler::bcondNotEqual;  break;
 388       case lir_cond_less:         acond = Assembler::bcondLow;       break;
 389       case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;   break;
 390       case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;    break;
 391       case lir_cond_greater:      acond = Assembler::bcondHigh;      break;
 392       case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;   break;
 393       case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;    break;
 394       default:                         ShouldNotReachHere();
 395     }
 396     __ branch_optimized(acond,*(op->label()));
 397   }
 398 }
 399 
 400 
 401 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 402   LIR_Opr src  = op->in_opr();
 403   LIR_Opr dest = op->result_opr();
 404 
 405   switch (op->bytecode()) {
 406     case Bytecodes::_i2l:
 407       __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT);
 408       break;
 409 
 410     case Bytecodes::_l2i:
 411       __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG);
 412       break;
 413 
 414     case Bytecodes::_i2b:
 415       __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT);
 416       break;
 417 
 418     case Bytecodes::_i2c:
 419       __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT);
 420       break;
 421 
 422     case Bytecodes::_i2s:
 423       __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT);
 424       break;
 425 
 426     case Bytecodes::_f2d:
 427       assert(dest->is_double_fpu(), "check");
 428       __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT);
 429       break;
 430 
 431     case Bytecodes::_d2f:
 432       assert(dest->is_single_fpu(), "check");
 433       __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE);
 434       break;
 435 
 436     case Bytecodes::_i2f:
 437       __ z_cefbr(dest->as_float_reg(), src->as_register());
 438       break;
 439 
 440     case Bytecodes::_i2d:
 441       __ z_cdfbr(dest->as_double_reg(), src->as_register());
 442       break;
 443 
 444     case Bytecodes::_l2f:
 445       __ z_cegbr(dest->as_float_reg(), src->as_register_lo());
 446       break;
 447     case Bytecodes::_l2d:
 448       __ z_cdgbr(dest->as_double_reg(), src->as_register_lo());
 449       break;
 450 
 451     case Bytecodes::_f2i:
 452     case Bytecodes::_f2l: {
 453       Label done;
 454       FloatRegister Rsrc = src->as_float_reg();
 455       Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo());
 456       __ clear_reg(Rdst, true, false);
 457       __ z_cebr(Rsrc, Rsrc);
 458       __ z_brno(done); // NaN -> 0
 459       if (op->bytecode() == Bytecodes::_f2i) {
 460         __ z_cfebr(Rdst, Rsrc, Assembler::to_zero);
 461       } else { // op->bytecode() == Bytecodes::_f2l
 462         __ z_cgebr(Rdst, Rsrc, Assembler::to_zero);
 463       }
 464       __ bind(done);
 465     }
 466     break;
 467 
 468     case Bytecodes::_d2i:
 469     case Bytecodes::_d2l: {
 470       Label done;
 471       FloatRegister Rsrc = src->as_double_reg();
 472       Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo());
 473       __ clear_reg(Rdst, true, false);  // Don't set CC.
 474       __ z_cdbr(Rsrc, Rsrc);
 475       __ z_brno(done); // NaN -> 0
 476       if (op->bytecode() == Bytecodes::_d2i) {
 477         __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero);
 478       } else { // Bytecodes::_d2l
 479         __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero);
 480       }
 481       __ bind(done);
 482     }
 483     break;
 484 
 485     default: ShouldNotReachHere();
 486   }
 487 }
 488 
 489 void LIR_Assembler::align_call(LIR_Code code) {
 490   // End of call instruction must be 4 byte aligned.
 491   int offset = __ offset();
 492   switch (code) {
 493     case lir_icvirtual_call:
 494       offset += MacroAssembler::load_const_from_toc_size();
 495       // no break
 496     case lir_static_call:
 497     case lir_optvirtual_call:
 498     case lir_dynamic_call:
 499       offset += NativeCall::call_far_pcrelative_displacement_offset;
 500       break;
 501     default: ShouldNotReachHere();
 502   }
 503   if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) {
 504     __ nop();
 505   }
 506 }
 507 
 508 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 509   assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0,
 510          "must be aligned (offset=%d)", __ offset());
 511   assert(rtype == relocInfo::none ||
 512          rtype == relocInfo::opt_virtual_call_type ||
 513          rtype == relocInfo::static_call_type, "unexpected rtype");
 514   // Prepend each BRASL with a nop.
 515   __ relocate(rtype);
 516   __ z_nop();
 517   __ z_brasl(Z_R14, op->addr());
 518   add_call_info(code_offset(), op->info());
 519 }
 520 
 521 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 522   address virtual_call_oop_addr = nullptr;
 523   AddressLiteral empty_ic((address) Universe::non_oop_word());
 524   virtual_call_oop_addr = __ pc();
 525   bool success = __ load_const_from_toc(Z_inline_cache, empty_ic);
 526   if (!success) {
 527     bailout("const section overflow");
 528     return;
 529   }
 530 
 531   // CALL to fixup routine. Fixup routine uses ScopeDesc info
 532   // to determine who we intended to call.
 533   __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
 534   call(op, relocInfo::none);
 535 }
 536 
 537 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 538   if (from_reg != to_reg) __ z_lgr(to_reg, from_reg);
 539 }
 540 
 541 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 542   assert(src->is_constant(), "should not call otherwise");
 543   assert(dest->is_stack(), "should not call otherwise");
 544   LIR_Const* c = src->as_constant_ptr();
 545 
 546   unsigned int lmem = 0;
 547   unsigned int lcon = 0;
 548   int64_t cbits = 0;
 549   Address dest_addr;
 550   switch (c->type()) {
 551     case T_INT:  // fall through
 552     case T_FLOAT:
 553       dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 554       lmem = 4; lcon = 4; cbits = c->as_jint_bits();
 555       break;
 556 
 557     case T_ADDRESS:
 558       dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 559       lmem = 8; lcon = 4; cbits = c->as_jint_bits();
 560       break;
 561 
 562     case T_OBJECT:
 563       dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 564       if (c->as_jobject() == nullptr) {
 565         __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8);
 566       } else {
 567         jobject2reg(c->as_jobject(), Z_R1_scratch);
 568         __ reg2mem_opt(Z_R1_scratch, dest_addr, true);
 569       }
 570       return;
 571 
 572     case T_LONG:  // fall through
 573     case T_DOUBLE:
 574       dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 575       lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
 576       break;
 577 
 578     default:
 579       ShouldNotReachHere();
 580   }
 581 
 582   __ store_const(dest_addr, cbits, lmem, lcon);
 583 }
 584 
 585 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 586   assert(src->is_constant(), "should not call otherwise");
 587   assert(dest->is_address(), "should not call otherwise");
 588 
 589   LIR_Const* c = src->as_constant_ptr();
 590   Address addr = as_Address(dest->as_address_ptr());
 591 
 592   int store_offset = -1;
 593 
 594   if (dest->as_address_ptr()->index()->is_valid()) {
 595     switch (type) {
 596       case T_INT:    // fall through
 597       case T_FLOAT:
 598         __ load_const_optimized(Z_R0_scratch, c->as_jint_bits());
 599         store_offset = __ offset();
 600         if (Immediate::is_uimm12(addr.disp())) {
 601           __ z_st(Z_R0_scratch, addr);
 602         } else {
 603           __ z_sty(Z_R0_scratch, addr);
 604         }
 605         break;
 606 
 607       case T_ADDRESS:
 608         __ load_const_optimized(Z_R1_scratch, c->as_jint_bits());
 609         store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 610         break;
 611 
 612       case T_OBJECT:  // fall through
 613       case T_ARRAY:
 614         if (c->as_jobject() == nullptr) {
 615           if (UseCompressedOops && !wide) {
 616             __ clear_reg(Z_R1_scratch, false);
 617             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
 618           } else {
 619             __ clear_reg(Z_R1_scratch, true);
 620             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 621           }
 622         } else {
 623           jobject2reg(c->as_jobject(), Z_R1_scratch);
 624           if (UseCompressedOops && !wide) {
 625             __ encode_heap_oop(Z_R1_scratch);
 626             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
 627           } else {
 628             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 629           }
 630         }
 631         assert(store_offset >= 0, "check");
 632         break;
 633 
 634       case T_LONG:    // fall through
 635       case T_DOUBLE:
 636         __ load_const_optimized(Z_R1_scratch, (int64_t)(c->as_jlong_bits()));
 637         store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 638         break;
 639 
 640       case T_BOOLEAN: // fall through
 641       case T_BYTE:
 642         __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint()));
 643         store_offset = __ offset();
 644         if (Immediate::is_uimm12(addr.disp())) {
 645           __ z_stc(Z_R0_scratch, addr);
 646         } else {
 647           __ z_stcy(Z_R0_scratch, addr);
 648         }
 649         break;
 650 
 651       case T_CHAR:    // fall through
 652       case T_SHORT:
 653         __ load_const_optimized(Z_R0_scratch, (int16_t)(c->as_jint()));
 654         store_offset = __ offset();
 655         if (Immediate::is_uimm12(addr.disp())) {
 656           __ z_sth(Z_R0_scratch, addr);
 657         } else {
 658           __ z_sthy(Z_R0_scratch, addr);
 659         }
 660         break;
 661 
 662       default:
 663         ShouldNotReachHere();
 664     }
 665 
 666   } else { // no index
 667 
 668     unsigned int lmem = 0;
 669     unsigned int lcon = 0;
 670     int64_t cbits = 0;
 671 
 672     switch (type) {
 673       case T_INT:    // fall through
 674       case T_FLOAT:
 675         lmem = 4; lcon = 4; cbits = c->as_jint_bits();
 676         break;
 677 
 678       case T_ADDRESS:
 679         lmem = 8; lcon = 4; cbits = c->as_jint_bits();
 680         break;
 681 
 682       case T_OBJECT:  // fall through
 683       case T_ARRAY:
 684         if (c->as_jobject() == nullptr) {
 685           if (UseCompressedOops && !wide) {
 686             store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4);
 687           } else {
 688             store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8);
 689           }
 690         } else {
 691           jobject2reg(c->as_jobject(), Z_R1_scratch);
 692           if (UseCompressedOops && !wide) {
 693             __ encode_heap_oop(Z_R1_scratch);
 694             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
 695           } else {
 696             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 697           }
 698         }
 699         assert(store_offset >= 0, "check");
 700         break;
 701 
 702       case T_LONG:    // fall through
 703       case T_DOUBLE:
 704         lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
 705         break;
 706 
 707       case T_BOOLEAN: // fall through
 708       case T_BYTE:
 709         lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint());
 710         break;
 711 
 712       case T_CHAR:    // fall through
 713       case T_SHORT:
 714         lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint());
 715         break;
 716 
 717       default:
 718         ShouldNotReachHere();
 719     }
 720 
 721     if (store_offset == -1) {
 722       store_offset = __ store_const(addr, cbits, lmem, lcon);
 723       assert(store_offset >= 0, "check");
 724     }
 725   }
 726 
 727   if (info != nullptr) {
 728     add_debug_info_for_null_check(store_offset, info);
 729   }
 730 }
 731 
 732 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 733   assert(src->is_constant(), "should not call otherwise");
 734   assert(dest->is_register(), "should not call otherwise");
 735   LIR_Const* c = src->as_constant_ptr();
 736 
 737   switch (c->type()) {
 738     case T_INT: {
 739       assert(patch_code == lir_patch_none, "no patching handled here");
 740       __ load_const_optimized(dest->as_register(), c->as_jint());
 741       break;
 742     }
 743 
 744     case T_ADDRESS: {
 745       assert(patch_code == lir_patch_none, "no patching handled here");
 746       __ load_const_optimized(dest->as_register(), c->as_jint());
 747       break;
 748     }
 749 
 750     case T_LONG: {
 751       assert(patch_code == lir_patch_none, "no patching handled here");
 752       __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong());
 753       break;
 754     }
 755 
 756     case T_OBJECT: {
 757       if (patch_code != lir_patch_none) {
 758         jobject2reg_with_patching(dest->as_register(), info);
 759       } else {
 760         jobject2reg(c->as_jobject(), dest->as_register());
 761       }
 762       break;
 763     }
 764 
 765     case T_METADATA: {
 766       if (patch_code != lir_patch_none) {
 767         klass2reg_with_patching(dest->as_register(), info);
 768       } else {
 769         metadata2reg(c->as_metadata(), dest->as_register());
 770       }
 771       break;
 772     }
 773 
 774     case T_FLOAT: {
 775       Register toc_reg = Z_R1_scratch;
 776       __ load_toc(toc_reg);
 777       address const_addr = __ float_constant(c->as_jfloat());
 778       if (const_addr == nullptr) {
 779         bailout("const section overflow");
 780         break;
 781       }
 782       int displ = const_addr - _masm->code()->consts()->start();
 783       if (dest->is_single_fpu()) {
 784         __ z_ley(dest->as_float_reg(), displ, toc_reg);
 785       } else {
 786         assert(dest->is_single_cpu(), "Must be a cpu register.");
 787         __ z_ly(dest->as_register(), displ, toc_reg);
 788       }
 789     }
 790     break;
 791 
 792     case T_DOUBLE: {
 793       Register toc_reg = Z_R1_scratch;
 794       __ load_toc(toc_reg);
 795       address const_addr = __ double_constant(c->as_jdouble());
 796       if (const_addr == nullptr) {
 797         bailout("const section overflow");
 798         break;
 799       }
 800       int displ = const_addr - _masm->code()->consts()->start();
 801       if (dest->is_double_fpu()) {
 802         __ z_ldy(dest->as_double_reg(), displ, toc_reg);
 803       } else {
 804         assert(dest->is_double_cpu(), "Must be a long register.");
 805         __ z_lg(dest->as_register_lo(), displ, toc_reg);
 806       }
 807     }
 808     break;
 809 
 810     default:
 811       ShouldNotReachHere();
 812   }
 813 }
 814 
 815 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 816   if (addr->base()->is_illegal()) {
 817     Unimplemented();
 818   }
 819 
 820   Register base = addr->base()->as_pointer_register();
 821 
 822   if (addr->index()->is_illegal()) {
 823     return Address(base, addr->disp());
 824   } else if (addr->index()->is_cpu_register()) {
 825     Register index = addr->index()->as_pointer_register();
 826     return Address(base, index, addr->disp());
 827   } else if (addr->index()->is_constant()) {
 828     intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp();
 829     return Address(base, addr_offset);
 830   } else {
 831     ShouldNotReachHere();
 832     return Address();
 833   }
 834 }
 835 
 836 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 837   switch (type) {
 838     case T_INT:
 839     case T_FLOAT: {
 840       Register tmp = Z_R1_scratch;
 841       Address from = frame_map()->address_for_slot(src->single_stack_ix());
 842       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
 843       __ mem2reg_opt(tmp, from, false);
 844       __ reg2mem_opt(tmp, to, false);
 845       break;
 846     }
 847     case T_ADDRESS:
 848     case T_OBJECT: {
 849       Register tmp = Z_R1_scratch;
 850       Address from = frame_map()->address_for_slot(src->single_stack_ix());
 851       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
 852       __ mem2reg_opt(tmp, from, true);
 853       __ reg2mem_opt(tmp, to, true);
 854       break;
 855     }
 856     case T_LONG:
 857     case T_DOUBLE: {
 858       Register tmp = Z_R1_scratch;
 859       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
 860       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
 861       __ mem2reg_opt(tmp, from, true);
 862       __ reg2mem_opt(tmp, to, true);
 863       break;
 864     }
 865 
 866     default:
 867       ShouldNotReachHere();
 868   }
 869 }
 870 
 871 // 4-byte accesses only! Don't use it to access 8 bytes!
 872 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 873   ShouldNotCallThis();
 874   return Address(); // unused
 875 }
 876 
 877 // 4-byte accesses only! Don't use it to access 8 bytes!
 878 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 879   ShouldNotCallThis();
 880   return Address(); // unused
 881 }
 882 
 883 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code,
 884                             CodeEmitInfo* info, bool wide) {
 885 
 886   assert(type != T_METADATA, "load of metadata ptr not supported");
 887   LIR_Address* addr = src_opr->as_address_ptr();
 888   LIR_Opr to_reg = dest;
 889 
 890   Register src = addr->base()->as_pointer_register();
 891   Register disp_reg = Z_R0;
 892   int disp_value = addr->disp();
 893   bool needs_patching = (patch_code != lir_patch_none);
 894 
 895   if (addr->base()->type() == T_OBJECT) {
 896     __ verify_oop(src, FILE_AND_LINE);
 897   }
 898 
 899   PatchingStub* patch = nullptr;
 900   if (needs_patching) {
 901     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 902     assert(!to_reg->is_double_cpu() ||
 903            patch_code == lir_patch_none ||
 904            patch_code == lir_patch_normal, "patching doesn't match register");
 905   }
 906 
 907   if (addr->index()->is_illegal()) {
 908     if (!Immediate::is_simm20(disp_value)) {
 909       if (needs_patching) {
 910         __ load_const(Z_R1_scratch, (intptr_t)0);
 911       } else {
 912         __ load_const_optimized(Z_R1_scratch, disp_value);
 913       }
 914       disp_reg = Z_R1_scratch;
 915       disp_value = 0;
 916     }
 917   } else {
 918     if (!Immediate::is_simm20(disp_value)) {
 919       __ load_const_optimized(Z_R1_scratch, disp_value);
 920       __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
 921       disp_reg = Z_R1_scratch;
 922       disp_value = 0;
 923     }
 924     disp_reg = addr->index()->as_pointer_register();
 925   }
 926 
 927   // Remember the offset of the load. The patching_epilog must be done
 928   // before the call to add_debug_info, otherwise the PcDescs don't get
 929   // entered in increasing order.
 930   int offset = code_offset();
 931 
 932   assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
 933 
 934   bool short_disp = Immediate::is_uimm12(disp_value);
 935 
 936   switch (type) {
 937     case T_BOOLEAN: // fall through
 938     case T_BYTE  :  __ z_lb(dest->as_register(),   disp_value, disp_reg, src); break;
 939     case T_CHAR  :  __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break;
 940     case T_SHORT :
 941       if (short_disp) {
 942                     __ z_lh(dest->as_register(),   disp_value, disp_reg, src);
 943       } else {
 944                     __ z_lhy(dest->as_register(),  disp_value, disp_reg, src);
 945       }
 946       break;
 947     case T_INT   :
 948       if (short_disp) {
 949                     __ z_l(dest->as_register(),    disp_value, disp_reg, src);
 950       } else {
 951                     __ z_ly(dest->as_register(),   disp_value, disp_reg, src);
 952       }
 953       break;
 954     case T_ADDRESS:
 955       __ z_lg(dest->as_register(), disp_value, disp_reg, src);
 956       break;
 957     case T_ARRAY : // fall through
 958     case T_OBJECT:
 959     {
 960       if (UseCompressedOops && !wide) {
 961         __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
 962         __ oop_decoder(dest->as_register(), dest->as_register(), true);
 963       } else {
 964         __ z_lg(dest->as_register(), disp_value, disp_reg, src);
 965       }
 966       __ verify_oop(dest->as_register(), FILE_AND_LINE);
 967       break;
 968     }
 969     case T_FLOAT:
 970       if (short_disp) {
 971                     __ z_le(dest->as_float_reg(),  disp_value, disp_reg, src);
 972       } else {
 973                     __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src);
 974       }
 975       break;
 976     case T_DOUBLE:
 977       if (short_disp) {
 978                     __ z_ld(dest->as_double_reg(),  disp_value, disp_reg, src);
 979       } else {
 980                     __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src);
 981       }
 982       break;
 983     case T_LONG  :  __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break;
 984     default      : ShouldNotReachHere();
 985   }
 986 
 987   if (patch != nullptr) {
 988     patching_epilog(patch, patch_code, src, info);
 989   }
 990   if (info != nullptr) add_debug_info_for_null_check(offset, info);
 991 }
 992 
 993 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 994   assert(src->is_stack(), "should not call otherwise");
 995   assert(dest->is_register(), "should not call otherwise");
 996 
 997   if (dest->is_single_cpu()) {
 998     if (is_reference_type(type)) {
 999       __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
1000       __ verify_oop(dest->as_register(), FILE_AND_LINE);
1001     } else if (type == T_METADATA || type == T_ADDRESS) {
1002       __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
1003     } else {
1004       __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false);
1005     }
1006   } else if (dest->is_double_cpu()) {
1007     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix());
1008     __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true);
1009   } else if (dest->is_single_fpu()) {
1010     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1011     __ mem2freg_opt(dest->as_float_reg(), src_addr, false);
1012   } else if (dest->is_double_fpu()) {
1013     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1014     __ mem2freg_opt(dest->as_double_reg(), src_addr, true);
1015   } else {
1016     ShouldNotReachHere();
1017   }
1018 }
1019 
1020 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1021   assert(src->is_register(), "should not call otherwise");
1022   assert(dest->is_stack(), "should not call otherwise");
1023 
1024   if (src->is_single_cpu()) {
1025     const Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
1026     if (is_reference_type(type)) {
1027       __ verify_oop(src->as_register(), FILE_AND_LINE);
1028       __ reg2mem_opt(src->as_register(), dst, true);
1029     } else if (type == T_METADATA || type == T_ADDRESS) {
1030       __ reg2mem_opt(src->as_register(), dst, true);
1031     } else {
1032       __ reg2mem_opt(src->as_register(), dst, false);
1033     }
1034   } else if (src->is_double_cpu()) {
1035     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix());
1036     __ reg2mem_opt(src->as_register_lo(), dstLO, true);
1037   } else if (src->is_single_fpu()) {
1038     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1039     __ freg2mem_opt(src->as_float_reg(), dst_addr, false);
1040   } else if (src->is_double_fpu()) {
1041     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1042     __ freg2mem_opt(src->as_double_reg(), dst_addr, true);
1043   } else {
1044     ShouldNotReachHere();
1045   }
1046 }
1047 
1048 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1049   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1050     if (from_reg->is_double_fpu()) {
1051       // double to double moves
1052       assert(to_reg->is_double_fpu(), "should match");
1053       __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg());
1054     } else {
1055       // float to float moves
1056       assert(to_reg->is_single_fpu(), "should match");
1057       __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg());
1058     }
1059   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1060     if (from_reg->is_double_cpu()) {
1061       __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register());
1062     } else if (to_reg->is_double_cpu()) {
1063       // int to int moves
1064       __ z_lgr(to_reg->as_register_lo(), from_reg->as_register());
1065     } else {
1066       // int to int moves
1067       __ z_lgr(to_reg->as_register(), from_reg->as_register());
1068     }
1069   } else {
1070     ShouldNotReachHere();
1071   }
1072   if (is_reference_type(to_reg->type())) {
1073     __ verify_oop(to_reg->as_register(), FILE_AND_LINE);
1074   }
1075 }
1076 
1077 void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type,
1078                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1079                             bool wide) {
1080   assert(type != T_METADATA, "store of metadata ptr not supported");
1081   LIR_Address* addr = dest_opr->as_address_ptr();
1082 
1083   Register dest = addr->base()->as_pointer_register();
1084   Register disp_reg = Z_R0;
1085   int disp_value = addr->disp();
1086   bool needs_patching = (patch_code != lir_patch_none);
1087 
1088   if (addr->base()->is_oop_register()) {
1089     __ verify_oop(dest, FILE_AND_LINE);
1090   }
1091 
1092   PatchingStub* patch = nullptr;
1093   if (needs_patching) {
1094     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1095     assert(!from->is_double_cpu() ||
1096            patch_code == lir_patch_none ||
1097            patch_code == lir_patch_normal, "patching doesn't match register");
1098   }
1099 
1100   assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption");
1101   if (addr->index()->is_illegal()) {
1102     if (!Immediate::is_simm20(disp_value)) {
1103       if (needs_patching) {
1104         __ load_const(Z_R1_scratch, (intptr_t)0);
1105       } else {
1106         __ load_const_optimized(Z_R1_scratch, disp_value);
1107       }
1108       disp_reg = Z_R1_scratch;
1109       disp_value = 0;
1110     }
1111   } else {
1112     if (!Immediate::is_simm20(disp_value)) {
1113       __ load_const_optimized(Z_R1_scratch, disp_value);
1114       __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
1115       disp_reg = Z_R1_scratch;
1116       disp_value = 0;
1117     }
1118     disp_reg = addr->index()->as_pointer_register();
1119   }
1120 
1121   assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
1122 
1123   if (is_reference_type(type)) {
1124     __ verify_oop(from->as_register(), FILE_AND_LINE);
1125   }
1126 
1127   bool short_disp = Immediate::is_uimm12(disp_value);
1128 
1129   // Remember the offset of the store. The patching_epilog must be done
1130   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1131   // entered in increasing order.
1132   int offset = code_offset();
1133   switch (type) {
1134     case T_BOOLEAN: // fall through
1135     case T_BYTE  :
1136       if (short_disp) {
1137                     __ z_stc(from->as_register(),  disp_value, disp_reg, dest);
1138       } else {
1139                     __ z_stcy(from->as_register(), disp_value, disp_reg, dest);
1140       }
1141       break;
1142     case T_CHAR  : // fall through
1143     case T_SHORT :
1144       if (short_disp) {
1145                     __ z_sth(from->as_register(),  disp_value, disp_reg, dest);
1146       } else {
1147                     __ z_sthy(from->as_register(), disp_value, disp_reg, dest);
1148       }
1149       break;
1150     case T_INT   :
1151       if (short_disp) {
1152                     __ z_st(from->as_register(),  disp_value, disp_reg, dest);
1153       } else {
1154                     __ z_sty(from->as_register(), disp_value, disp_reg, dest);
1155       }
1156       break;
1157     case T_LONG  :  __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break;
1158     case T_ADDRESS: __ z_stg(from->as_register(),    disp_value, disp_reg, dest); break;
1159       break;
1160     case T_ARRAY : // fall through
1161     case T_OBJECT:
1162       {
1163         if (UseCompressedOops && !wide) {
1164           Register compressed_src = Z_R14;
1165           __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true);
1166           offset = code_offset();
1167           if (short_disp) {
1168             __ z_st(compressed_src,  disp_value, disp_reg, dest);
1169           } else {
1170             __ z_sty(compressed_src, disp_value, disp_reg, dest);
1171           }
1172         } else {
1173           __ z_stg(from->as_register(), disp_value, disp_reg, dest);
1174         }
1175         break;
1176       }
1177     case T_FLOAT :
1178       if (short_disp) {
1179         __ z_ste(from->as_float_reg(),  disp_value, disp_reg, dest);
1180       } else {
1181         __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest);
1182       }
1183       break;
1184     case T_DOUBLE:
1185       if (short_disp) {
1186         __ z_std(from->as_double_reg(),  disp_value, disp_reg, dest);
1187       } else {
1188         __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest);
1189       }
1190       break;
1191     default: ShouldNotReachHere();
1192   }
1193 
1194   if (patch != nullptr) {
1195     patching_epilog(patch, patch_code, dest, info);
1196   }
1197 
1198   if (info != nullptr) add_debug_info_for_null_check(offset, info);
1199 }
1200 
1201 
1202 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
1203   assert(result->is_illegal() ||
1204          (result->is_single_cpu() && result->as_register() == Z_R2) ||
1205          (result->is_double_cpu() && result->as_register_lo() == Z_R2) ||
1206          (result->is_single_fpu() && result->as_float_reg() == Z_F0) ||
1207          (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention");
1208 
1209   __ z_lg(Z_R1_scratch, Address(Z_thread, JavaThread::polling_page_offset()));
1210 
1211   // Pop the frame before the safepoint code.
1212   __ pop_frame_restore_retPC(initial_frame_size_in_bytes());
1213 
1214   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1215     __ reserved_stack_check(Z_R14);
1216   }
1217 
1218   // We need to mark the code position where the load from the safepoint
1219   // polling page was emitted as relocInfo::poll_return_type here.
1220   __ relocate(relocInfo::poll_return_type);
1221   __ load_from_polling_page(Z_R1_scratch);
1222 
1223   __ z_br(Z_R14); // Return to caller.
1224 }
1225 
1226 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1227   const Register poll_addr = tmp->as_register_lo();
1228   __ z_lg(poll_addr, Address(Z_thread, JavaThread::polling_page_offset()));
1229   guarantee(info != nullptr, "Shouldn't be null");
1230   add_debug_info_for_branch(info);
1231   int offset = __ offset();
1232   __ relocate(relocInfo::poll_type);
1233   __ load_from_polling_page(poll_addr);
1234   return offset;
1235 }
1236 
1237 void LIR_Assembler::emit_static_call_stub() {
1238 
1239   // Stub is fixed up when the corresponding call is converted from calling
1240   // compiled code to calling interpreted code.
1241 
1242   address call_pc = __ pc();
1243   address stub = __ start_a_stub(call_stub_size());
1244   if (stub == nullptr) {
1245     bailout("static call stub overflow");
1246     return;
1247   }
1248 
1249   int start = __ offset();
1250 
1251   __ relocate(static_stub_Relocation::spec(call_pc));
1252 
1253   // See also Matcher::interpreter_method_reg().
1254   AddressLiteral meta = __ allocate_metadata_address(nullptr);
1255   bool success = __ load_const_from_toc(Z_method, meta);
1256 
1257   __ set_inst_mark();
1258   AddressLiteral a((address)-1);
1259   success = success && __ load_const_from_toc(Z_R1, a);
1260   if (!success) {
1261     bailout("const section overflow");
1262     return;
1263   }
1264 
1265   __ z_br(Z_R1);
1266   assert(__ offset() - start <= call_stub_size(), "stub too big");
1267   __ end_a_stub(); // Update current stubs pointer and restore insts_end.
1268 }
1269 
1270 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1271   bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual;
1272   if (opr1->is_single_cpu()) {
1273     Register reg1 = opr1->as_register();
1274     if (opr2->is_single_cpu()) {
1275       // cpu register - cpu register
1276       if (is_reference_type(opr1->type())) {
1277         __ z_clgr(reg1, opr2->as_register());
1278       } else {
1279         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1280         if (unsigned_comp) {
1281           __ z_clr(reg1, opr2->as_register());
1282         } else {
1283           __ z_cr(reg1, opr2->as_register());
1284         }
1285       }
1286     } else if (opr2->is_stack()) {
1287       // cpu register - stack
1288       if (is_reference_type(opr1->type())) {
1289         __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1290       } else {
1291         if (unsigned_comp) {
1292           __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1293         } else {
1294           __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1295         }
1296       }
1297     } else if (opr2->is_constant()) {
1298       // cpu register - constant
1299       LIR_Const* c = opr2->as_constant_ptr();
1300       if (c->type() == T_INT) {
1301         if (unsigned_comp) {
1302           __ z_clfi(reg1, c->as_jint());
1303         } else {
1304           __ z_cfi(reg1, c->as_jint());
1305         }
1306       } else if (c->type() == T_METADATA) {
1307         // We only need, for now, comparison with null for metadata.
1308         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1309         Metadata* m = c->as_metadata();
1310         if (m == nullptr) {
1311           __ z_cghi(reg1, 0);
1312         } else {
1313           ShouldNotReachHere();
1314         }
1315       } else if (is_reference_type(c->type())) {
1316         // In 64bit oops are single register.
1317         jobject o = c->as_jobject();
1318         if (o == nullptr) {
1319           __ z_ltgr(reg1, reg1);
1320         } else {
1321           jobject2reg(o, Z_R1_scratch);
1322           __ z_cgr(reg1, Z_R1_scratch);
1323         }
1324       } else {
1325         fatal("unexpected type: %s", basictype_to_str(c->type()));
1326       }
1327       // cpu register - address
1328     } else if (opr2->is_address()) {
1329       if (op->info() != nullptr) {
1330         add_debug_info_for_null_check_here(op->info());
1331       }
1332       if (unsigned_comp) {
1333         __ z_cly(reg1, as_Address(opr2->as_address_ptr()));
1334       } else {
1335         __ z_cy(reg1, as_Address(opr2->as_address_ptr()));
1336       }
1337     } else {
1338       ShouldNotReachHere();
1339     }
1340 
1341   } else if (opr1->is_double_cpu()) {
1342     assert(!unsigned_comp, "unexpected");
1343     Register xlo = opr1->as_register_lo();
1344     Register xhi = opr1->as_register_hi();
1345     if (opr2->is_double_cpu()) {
1346       __ z_cgr(xlo, opr2->as_register_lo());
1347     } else if (opr2->is_constant()) {
1348       // cpu register - constant 0
1349       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
1350       __ z_ltgr(xlo, xlo);
1351     } else {
1352       ShouldNotReachHere();
1353     }
1354 
1355   } else if (opr1->is_single_fpu()) {
1356     if (opr2->is_single_fpu()) {
1357       __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg());
1358     } else {
1359       // stack slot
1360       Address addr = frame_map()->address_for_slot(opr2->single_stack_ix());
1361       if (Immediate::is_uimm12(addr.disp())) {
1362         __ z_ceb(opr1->as_float_reg(), addr);
1363       } else {
1364         __ z_ley(Z_fscratch_1, addr);
1365         __ z_cebr(opr1->as_float_reg(), Z_fscratch_1);
1366       }
1367     }
1368   } else if (opr1->is_double_fpu()) {
1369     if (opr2->is_double_fpu()) {
1370     __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg());
1371     } else {
1372       // stack slot
1373       Address addr = frame_map()->address_for_slot(opr2->double_stack_ix());
1374       if (Immediate::is_uimm12(addr.disp())) {
1375         __ z_cdb(opr1->as_double_reg(), addr);
1376       } else {
1377         __ z_ldy(Z_fscratch_1, addr);
1378         __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1);
1379       }
1380     }
1381   } else {
1382     ShouldNotReachHere();
1383   }
1384 }
1385 
1386 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
1387   Label    done;
1388   Register dreg = dst->as_register();
1389 
1390   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1391     assert((left->is_single_fpu() && right->is_single_fpu()) ||
1392            (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types");
1393     bool is_single = left->is_single_fpu();
1394     bool is_unordered_less = (code == lir_ucmp_fd2i);
1395     FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg();
1396     FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg();
1397     if (is_single) {
1398       __ z_cebr(lreg, rreg);
1399     } else {
1400       __ z_cdbr(lreg, rreg);
1401     }
1402     if (VM_Version::has_LoadStoreConditional()) {
1403       Register one       = Z_R0_scratch;
1404       Register minus_one = Z_R1_scratch;
1405       __ z_lghi(minus_one, -1);
1406       __ z_lghi(one,  1);
1407       __ z_lghi(dreg, 0);
1408       __ z_locgr(dreg, one,       is_unordered_less ? Assembler::bcondHigh            : Assembler::bcondHighOrNotOrdered);
1409       __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow);
1410     } else {
1411       __ clear_reg(dreg, true, false);
1412       __ z_bre(done); // if (left == right) dst = 0
1413 
1414       // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1
1415       __ z_lhi(dreg, 1);
1416       __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done);
1417 
1418       // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1
1419       __ z_lhi(dreg, -1);
1420     }
1421   } else {
1422     assert(code == lir_cmp_l2i, "check");
1423     if (VM_Version::has_LoadStoreConditional()) {
1424       Register one       = Z_R0_scratch;
1425       Register minus_one = Z_R1_scratch;
1426       __ z_cgr(left->as_register_lo(), right->as_register_lo());
1427       __ z_lghi(minus_one, -1);
1428       __ z_lghi(one,  1);
1429       __ z_lghi(dreg, 0);
1430       __ z_locgr(dreg, one, Assembler::bcondHigh);
1431       __ z_locgr(dreg, minus_one, Assembler::bcondLow);
1432     } else {
1433       __ z_cgr(left->as_register_lo(), right->as_register_lo());
1434       __ z_lghi(dreg,  0);     // eq value
1435       __ z_bre(done);
1436       __ z_lghi(dreg,  1);     // gt value
1437       __ z_brh(done);
1438       __ z_lghi(dreg, -1);     // lt value
1439     }
1440   }
1441   __ bind(done);
1442 }
1443 
1444 // result = condition ? opr1 : opr2
1445 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1446                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1447   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on s390");
1448 
1449   Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual;
1450   switch (condition) {
1451     case lir_cond_equal:        acond = Assembler::bcondEqual;    ncond = Assembler::bcondNotEqual; break;
1452     case lir_cond_notEqual:     acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual;    break;
1453     case lir_cond_less:         acond = Assembler::bcondLow;      ncond = Assembler::bcondNotLow;   break;
1454     case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
1455     case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
1456     case lir_cond_greater:      acond = Assembler::bcondHigh;     ncond = Assembler::bcondNotHigh;  break;
1457     case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
1458     case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
1459     default:                    ShouldNotReachHere();
1460   }
1461 
1462   if (opr1->is_cpu_register()) {
1463     reg2reg(opr1, result);
1464   } else if (opr1->is_stack()) {
1465     stack2reg(opr1, result, result->type());
1466   } else if (opr1->is_constant()) {
1467     const2reg(opr1, result, lir_patch_none, nullptr);
1468   } else {
1469     ShouldNotReachHere();
1470   }
1471 
1472   if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) {
1473     // Optimized version that does not require a branch.
1474     if (opr2->is_single_cpu()) {
1475       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1476       __ z_locgr(result->as_register(), opr2->as_register(), ncond);
1477     } else if (opr2->is_double_cpu()) {
1478       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1479       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1480       __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond);
1481     } else if (opr2->is_single_stack()) {
1482       __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond);
1483     } else if (opr2->is_double_stack()) {
1484       __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond);
1485     } else {
1486       ShouldNotReachHere();
1487     }
1488   } else {
1489     Label skip;
1490     __ z_brc(acond, skip);
1491     if (opr2->is_cpu_register()) {
1492       reg2reg(opr2, result);
1493     } else if (opr2->is_stack()) {
1494       stack2reg(opr2, result, result->type());
1495     } else if (opr2->is_constant()) {
1496       const2reg(opr2, result, lir_patch_none, nullptr);
1497     } else {
1498       ShouldNotReachHere();
1499     }
1500     __ bind(skip);
1501   }
1502 }
1503 
1504 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1505                              CodeEmitInfo* info, bool pop_fpu_stack) {
1506   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1507 
1508   if (left->is_single_cpu()) {
1509     assert(left == dest, "left and dest must be equal");
1510     Register lreg = left->as_register();
1511 
1512     if (right->is_single_cpu()) {
1513       // cpu register - cpu register
1514       Register rreg = right->as_register();
1515       switch (code) {
1516         case lir_add: __ z_ar (lreg, rreg); break;
1517         case lir_sub: __ z_sr (lreg, rreg); break;
1518         case lir_mul: __ z_msr(lreg, rreg); break;
1519         default: ShouldNotReachHere();
1520       }
1521 
1522     } else if (right->is_stack()) {
1523       // cpu register - stack
1524       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1525       switch (code) {
1526         case lir_add: __ z_ay(lreg, raddr); break;
1527         case lir_sub: __ z_sy(lreg, raddr); break;
1528         default: ShouldNotReachHere();
1529       }
1530 
1531     } else if (right->is_constant()) {
1532       // cpu register - constant
1533       jint c = right->as_constant_ptr()->as_jint();
1534       switch (code) {
1535         case lir_add: __ z_agfi(lreg, c);  break;
1536         case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint
1537         case lir_mul: __ z_msfi(lreg, c);  break;
1538         default: ShouldNotReachHere();
1539       }
1540 
1541     } else {
1542       ShouldNotReachHere();
1543     }
1544 
1545   } else if (left->is_double_cpu()) {
1546     assert(left == dest, "left and dest must be equal");
1547     Register lreg_lo = left->as_register_lo();
1548     Register lreg_hi = left->as_register_hi();
1549 
1550     if (right->is_double_cpu()) {
1551       // cpu register - cpu register
1552       Register rreg_lo = right->as_register_lo();
1553       Register rreg_hi = right->as_register_hi();
1554       assert_different_registers(lreg_lo, rreg_lo);
1555       switch (code) {
1556         case lir_add:
1557           __ z_agr(lreg_lo, rreg_lo);
1558           break;
1559         case lir_sub:
1560           __ z_sgr(lreg_lo, rreg_lo);
1561           break;
1562         case lir_mul:
1563           __ z_msgr(lreg_lo, rreg_lo);
1564           break;
1565         default:
1566           ShouldNotReachHere();
1567       }
1568 
1569     } else if (right->is_constant()) {
1570       // cpu register - constant
1571       jlong c = right->as_constant_ptr()->as_jlong_bits();
1572       switch (code) {
1573         case lir_add: __ z_agfi(lreg_lo, c); break;
1574         case lir_sub:
1575           if (c != min_jint) {
1576                       __ z_agfi(lreg_lo, -c);
1577           } else {
1578             // -min_jint cannot be represented as simm32 in z_agfi
1579             // min_jint sign extended:      0xffffffff80000000
1580             // -min_jint as 64 bit integer: 0x0000000080000000
1581             // 0x80000000 can be represented as uimm32 in z_algfi
1582             // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000
1583                       __ z_algfi(lreg_lo, UCONST64(0x80000000));
1584           }
1585           break;
1586         case lir_mul: __ z_msgfi(lreg_lo, c); break;
1587         default:
1588           ShouldNotReachHere();
1589       }
1590 
1591     } else {
1592       ShouldNotReachHere();
1593     }
1594 
1595   } else if (left->is_single_fpu()) {
1596     assert(left == dest, "left and dest must be equal");
1597     FloatRegister lreg = left->as_float_reg();
1598     FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg;
1599     Address raddr;
1600 
1601     if (rreg == fnoreg) {
1602       assert(right->is_single_stack(), "constants should be loaded into register");
1603       raddr = frame_map()->address_for_slot(right->single_stack_ix());
1604       if (!Immediate::is_uimm12(raddr.disp())) {
1605         __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false);
1606       }
1607     }
1608 
1609     if (rreg != fnoreg) {
1610       switch (code) {
1611         case lir_add: __ z_aebr(lreg, rreg);  break;
1612         case lir_sub: __ z_sebr(lreg, rreg);  break;
1613         case lir_mul: __ z_meebr(lreg, rreg); break;
1614         case lir_div: __ z_debr(lreg, rreg);  break;
1615         default: ShouldNotReachHere();
1616       }
1617     } else {
1618       switch (code) {
1619         case lir_add: __ z_aeb(lreg, raddr);  break;
1620         case lir_sub: __ z_seb(lreg, raddr);  break;
1621         case lir_mul: __ z_meeb(lreg, raddr);  break;
1622         case lir_div: __ z_deb(lreg, raddr);  break;
1623         default: ShouldNotReachHere();
1624       }
1625     }
1626   } else if (left->is_double_fpu()) {
1627     assert(left == dest, "left and dest must be equal");
1628     FloatRegister lreg = left->as_double_reg();
1629     FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg;
1630     Address raddr;
1631 
1632     if (rreg == fnoreg) {
1633       assert(right->is_double_stack(), "constants should be loaded into register");
1634       raddr = frame_map()->address_for_slot(right->double_stack_ix());
1635       if (!Immediate::is_uimm12(raddr.disp())) {
1636         __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true);
1637       }
1638     }
1639 
1640     if (rreg != fnoreg) {
1641       switch (code) {
1642         case lir_add: __ z_adbr(lreg, rreg); break;
1643         case lir_sub: __ z_sdbr(lreg, rreg); break;
1644         case lir_mul: __ z_mdbr(lreg, rreg); break;
1645         case lir_div: __ z_ddbr(lreg, rreg); break;
1646         default: ShouldNotReachHere();
1647       }
1648     } else {
1649       switch (code) {
1650         case lir_add: __ z_adb(lreg, raddr); break;
1651         case lir_sub: __ z_sdb(lreg, raddr); break;
1652         case lir_mul: __ z_mdb(lreg, raddr); break;
1653         case lir_div: __ z_ddb(lreg, raddr); break;
1654         default: ShouldNotReachHere();
1655       }
1656     }
1657   } else if (left->is_address()) {
1658     assert(left == dest, "left and dest must be equal");
1659     assert(code == lir_add, "unsupported operation");
1660     assert(right->is_constant(), "unsupported operand");
1661     jint c = right->as_constant_ptr()->as_jint();
1662     LIR_Address* lir_addr = left->as_address_ptr();
1663     Address addr = as_Address(lir_addr);
1664     switch (lir_addr->type()) {
1665       case T_INT:
1666         __ add2mem_32(addr, c, Z_R1_scratch);
1667         break;
1668       case T_LONG:
1669         __ add2mem_64(addr, c, Z_R1_scratch);
1670         break;
1671       default:
1672         ShouldNotReachHere();
1673     }
1674   } else {
1675     ShouldNotReachHere();
1676   }
1677 }
1678 
1679 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1680   switch (code) {
1681     case lir_sqrt: {
1682       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1683       FloatRegister src_reg = value->as_double_reg();
1684       FloatRegister dst_reg = dest->as_double_reg();
1685       __ z_sqdbr(dst_reg, src_reg);
1686       break;
1687     }
1688     case lir_abs: {
1689       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1690       FloatRegister src_reg = value->as_double_reg();
1691       FloatRegister dst_reg = dest->as_double_reg();
1692       __ z_lpdbr(dst_reg, src_reg);
1693       break;
1694     }
1695     default: {
1696       ShouldNotReachHere();
1697       break;
1698     }
1699   }
1700 }
1701 
1702 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1703   if (left->is_single_cpu()) {
1704     Register reg = left->as_register();
1705     if (right->is_constant()) {
1706       int val = right->as_constant_ptr()->as_jint();
1707       switch (code) {
1708         case lir_logic_and: __ z_nilf(reg, val); break;
1709         case lir_logic_or:  __ z_oilf(reg, val); break;
1710         case lir_logic_xor: __ z_xilf(reg, val); break;
1711         default: ShouldNotReachHere();
1712       }
1713     } else if (right->is_stack()) {
1714       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1715       switch (code) {
1716         case lir_logic_and: __ z_ny(reg, raddr); break;
1717         case lir_logic_or:  __ z_oy(reg, raddr); break;
1718         case lir_logic_xor: __ z_xy(reg, raddr); break;
1719         default: ShouldNotReachHere();
1720       }
1721     } else {
1722       Register rright = right->as_register();
1723       switch (code) {
1724         case lir_logic_and: __ z_nr(reg, rright); break;
1725         case lir_logic_or : __ z_or(reg, rright); break;
1726         case lir_logic_xor: __ z_xr(reg, rright); break;
1727         default: ShouldNotReachHere();
1728       }
1729     }
1730     move_regs(reg, dst->as_register());
1731   } else {
1732     Register l_lo = left->as_register_lo();
1733     if (right->is_constant()) {
1734       __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong());
1735       switch (code) {
1736         case lir_logic_and:
1737           __ z_ngr(l_lo, Z_R1_scratch);
1738           break;
1739         case lir_logic_or:
1740           __ z_ogr(l_lo, Z_R1_scratch);
1741           break;
1742         case lir_logic_xor:
1743           __ z_xgr(l_lo, Z_R1_scratch);
1744           break;
1745         default: ShouldNotReachHere();
1746       }
1747     } else {
1748       Register r_lo;
1749       if (is_reference_type(right->type())) {
1750         r_lo = right->as_register();
1751       } else {
1752         r_lo = right->as_register_lo();
1753       }
1754       switch (code) {
1755         case lir_logic_and:
1756           __ z_ngr(l_lo, r_lo);
1757           break;
1758         case lir_logic_or:
1759           __ z_ogr(l_lo, r_lo);
1760           break;
1761         case lir_logic_xor:
1762           __ z_xgr(l_lo, r_lo);
1763           break;
1764         default: ShouldNotReachHere();
1765       }
1766     }
1767 
1768     Register dst_lo = dst->as_register_lo();
1769 
1770     move_regs(l_lo, dst_lo);
1771   }
1772 }
1773 
1774 // See operand selection in LIRGenerator::do_ArithmeticOp_Int().
1775 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
1776   if (left->is_double_cpu()) {
1777     // 64 bit integer case
1778     assert(left->is_double_cpu(), "left must be register");
1779     assert(right->is_double_cpu() || is_power_of_2(right->as_jlong()),
1780            "right must be register or power of 2 constant");
1781     assert(result->is_double_cpu(), "result must be register");
1782 
1783     Register lreg = left->as_register_lo();
1784     Register dreg = result->as_register_lo();
1785 
1786     if (right->is_constant()) {
1787       // Convert division by a power of two into some shifts and logical operations.
1788       Register treg1 = Z_R0_scratch;
1789       Register treg2 = Z_R1_scratch;
1790       jlong divisor = right->as_jlong();
1791       jlong log_divisor = log2i_exact(right->as_jlong());
1792 
1793       if (divisor == min_jlong) {
1794         // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1.
1795         if (dreg == lreg) {
1796           NearLabel done;
1797           __ load_const_optimized(treg2, min_jlong);
1798           __ z_cgr(lreg, treg2);
1799           __ z_lghi(dreg, 0);           // Preserves condition code.
1800           __ z_brne(done);
1801           __ z_lghi(dreg, 1);           // min_jlong / min_jlong = 1
1802           __ bind(done);
1803         } else {
1804           assert_different_registers(dreg, lreg);
1805           NearLabel done;
1806           __ z_lghi(dreg, 0);
1807           __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done);
1808           __ z_lghi(dreg, 1);
1809           __ bind(done);
1810         }
1811         return;
1812       }
1813       __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG);
1814       if (divisor == 2) {
1815         __ z_srlg(treg2, dreg, 63);     // dividend < 0 ? 1 : 0
1816       } else {
1817         __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
1818         __ and_imm(treg2, divisor - 1, treg1, true);
1819       }
1820       if (code == lir_idiv) {
1821         __ z_agr(dreg, treg2);
1822         __ z_srag(dreg, dreg, log_divisor);
1823       } else {
1824         assert(code == lir_irem, "check");
1825         __ z_agr(treg2, dreg);
1826         __ and_imm(treg2, ~(divisor - 1), treg1, true);
1827         __ z_sgr(dreg, treg2);
1828       }
1829       return;
1830     }
1831 
1832     // Divisor is not a power of 2 constant.
1833     Register rreg = right->as_register_lo();
1834     Register treg = temp->as_register_lo();
1835     assert(right->is_double_cpu(), "right must be register");
1836     assert(lreg == Z_R11, "see ldivInOpr()");
1837     assert(rreg != lreg, "right register must not be same as left register");
1838     assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) ||
1839            (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()");
1840 
1841     Register R1 = lreg->predecessor();
1842     Register R2 = rreg;
1843     assert(code != lir_idiv || lreg==dreg, "see code below");
1844     if (code == lir_idiv) {
1845       __ z_lcgr(lreg, lreg);
1846     } else {
1847       __ clear_reg(dreg, true, false);
1848     }
1849     NearLabel done;
1850     __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done);
1851     if (code == lir_idiv) {
1852       __ z_lcgr(lreg, lreg); // Revert lcgr above.
1853     }
1854     if (ImplicitDiv0Checks) {
1855       // No debug info because the idiv won't trap.
1856       // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1857       // which is unnecessary, too.
1858       add_debug_info_for_div0(__ offset(), info);
1859     }
1860     __ z_dsgr(R1, R2);
1861     __ bind(done);
1862     return;
1863   }
1864 
1865   // 32 bit integer case
1866 
1867   assert(left->is_single_cpu(), "left must be register");
1868   assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant");
1869   assert(result->is_single_cpu(), "result must be register");
1870 
1871   Register lreg = left->as_register();
1872   Register dreg = result->as_register();
1873 
1874   if (right->is_constant()) {
1875     // Convert division by a power of two into some shifts and logical operations.
1876     Register treg1 = Z_R0_scratch;
1877     Register treg2 = Z_R1_scratch;
1878     jlong divisor = right->as_jint();
1879     jlong log_divisor = log2i_exact(right->as_jint());
1880     __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend
1881     if (divisor == 2) {
1882       __ z_srlg(treg2, dreg, 63);     // dividend < 0 ?  1 : 0
1883     } else {
1884       __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
1885       __ and_imm(treg2, divisor - 1, treg1, true);
1886     }
1887     if (code == lir_idiv) {
1888       __ z_agr(dreg, treg2);
1889       __ z_srag(dreg, dreg, log_divisor);
1890     } else {
1891       assert(code == lir_irem, "check");
1892       __ z_agr(treg2, dreg);
1893       __ and_imm(treg2, ~(divisor - 1), treg1, true);
1894       __ z_sgr(dreg, treg2);
1895     }
1896     return;
1897   }
1898 
1899   // Divisor is not a power of 2 constant.
1900   Register rreg = right->as_register();
1901   Register treg = temp->as_register();
1902   assert(right->is_single_cpu(), "right must be register");
1903   assert(lreg == Z_R11, "left register must be rax,");
1904   assert(rreg != lreg, "right register must not be same as left register");
1905   assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10)
1906       || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()");
1907 
1908   Register R1 = lreg->predecessor();
1909   Register R2 = rreg;
1910   __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend
1911   if (ImplicitDiv0Checks) {
1912     // No debug info because the idiv won't trap.
1913     // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1914     // which is unnecessary, too.
1915     add_debug_info_for_div0(__ offset(), info);
1916   }
1917   __ z_dsgfr(R1, R2);
1918 }
1919 
1920 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1921   assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1922   assert(exceptionPC->as_register() == Z_EXC_PC, "should match");
1923 
1924   // Exception object is not added to oop map by LinearScan
1925   // (LinearScan assumes that no oops are in fixed registers).
1926   info->add_register_oop(exceptionOop);
1927 
1928   // Reuse the debug info from the safepoint poll for the throw op itself.
1929   __ get_PC(Z_EXC_PC);
1930   add_call_info(__ offset(), info); // for exception handler
1931   address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? C1StubId::handle_exception_id
1932                                                                     : C1StubId::handle_exception_nofpu_id);
1933   emit_call_c(stub);
1934 }
1935 
1936 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1937   assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1938 
1939   __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry);
1940 }
1941 
1942 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1943   ciArrayKlass* default_type = op->expected_type();
1944   Register src = op->src()->as_register();
1945   Register dst = op->dst()->as_register();
1946   Register src_pos = op->src_pos()->as_register();
1947   Register dst_pos = op->dst_pos()->as_register();
1948   Register length  = op->length()->as_register();
1949   Register tmp = op->tmp()->as_register();
1950 
1951   CodeStub* stub = op->stub();
1952   int flags = op->flags();
1953   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
1954   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1955 
1956   // If we don't know anything, just go through the generic arraycopy.
1957   if (default_type == nullptr) {
1958     address copyfunc_addr = StubRoutines::generic_arraycopy();
1959 
1960     if (copyfunc_addr == nullptr) {
1961       // Take a slow path for generic arraycopy.
1962       __ branch_optimized(Assembler::bcondAlways, *stub->entry());
1963       __ bind(*stub->continuation());
1964       return;
1965     }
1966 
1967     // Save outgoing arguments in callee saved registers (C convention) in case
1968     // a call to System.arraycopy is needed.
1969     Register callee_saved_src     = Z_R10;
1970     Register callee_saved_src_pos = Z_R11;
1971     Register callee_saved_dst     = Z_R12;
1972     Register callee_saved_dst_pos = Z_R13;
1973     Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
1974 
1975     __ lgr_if_needed(callee_saved_src, src);
1976     __ lgr_if_needed(callee_saved_src_pos, src_pos);
1977     __ lgr_if_needed(callee_saved_dst, dst);
1978     __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
1979     __ lgr_if_needed(callee_saved_length, length);
1980 
1981     // C function requires 64 bit values.
1982     __ z_lgfr(src_pos, src_pos);
1983     __ z_lgfr(dst_pos, dst_pos);
1984     __ z_lgfr(length, length);
1985 
1986     // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint.
1987 
1988     // The arguments are in the corresponding registers.
1989     assert(Z_ARG1 == src,     "assumption");
1990     assert(Z_ARG2 == src_pos, "assumption");
1991     assert(Z_ARG3 == dst,     "assumption");
1992     assert(Z_ARG4 == dst_pos, "assumption");
1993     assert(Z_ARG5 == length,  "assumption");
1994 #ifndef PRODUCT
1995     if (PrintC1Statistics) {
1996       __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt);
1997       __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
1998     }
1999 #endif
2000     emit_call_c(copyfunc_addr);
2001     CHECK_BAILOUT();
2002 
2003     __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
2004 
2005     __ z_lgr(tmp, Z_RET);
2006     __ z_xilf(tmp, -1);
2007 
2008     // Restore values from callee saved registers so they are where the stub
2009     // expects them.
2010     __ lgr_if_needed(src, callee_saved_src);
2011     __ lgr_if_needed(src_pos, callee_saved_src_pos);
2012     __ lgr_if_needed(dst, callee_saved_dst);
2013     __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
2014     __ lgr_if_needed(length, callee_saved_length);
2015 
2016     __ z_sr(length, tmp);
2017     __ z_ar(src_pos, tmp);
2018     __ z_ar(dst_pos, tmp);
2019     __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2020 
2021     __ bind(*stub->continuation());
2022     return;
2023   }
2024 
2025   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2026 
2027   int elem_size = type2aelembytes(basic_type);
2028   int shift_amount;
2029 
2030   switch (elem_size) {
2031     case 1 :
2032       shift_amount = 0;
2033       break;
2034     case 2 :
2035       shift_amount = 1;
2036       break;
2037     case 4 :
2038       shift_amount = 2;
2039       break;
2040     case 8 :
2041       shift_amount = 3;
2042       break;
2043     default:
2044       shift_amount = -1;
2045       ShouldNotReachHere();
2046   }
2047 
2048   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2049   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2050   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2051   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2052 
2053   // Length and pos's are all sign extended at this point on 64bit.
2054 
2055   // test for null
2056   if (flags & LIR_OpArrayCopy::src_null_check) {
2057     __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry());
2058   }
2059   if (flags & LIR_OpArrayCopy::dst_null_check) {
2060     __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry());
2061   }
2062 
2063   // Check if negative.
2064   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2065     __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
2066   }
2067   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2068     __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
2069   }
2070 
2071   // If the compiler was not able to prove that exact type of the source or the destination
2072   // of the arraycopy is an array type, check at runtime if the source or the destination is
2073   // an instance type.
2074   if (flags & LIR_OpArrayCopy::type_check) {
2075     assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions");
2076 
2077     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2078       __ load_klass(tmp, dst);
2079       __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2080       __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2081     }
2082 
2083     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2084       __ load_klass(tmp, src);
2085       __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2086       __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2087     }
2088   }
2089 
2090   if (flags & LIR_OpArrayCopy::src_range_check) {
2091     __ z_la(tmp, Address(src_pos, length));
2092     __ z_cl(tmp, src_length_addr);
2093     __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2094   }
2095   if (flags & LIR_OpArrayCopy::dst_range_check) {
2096     __ z_la(tmp, Address(dst_pos, length));
2097     __ z_cl(tmp, dst_length_addr);
2098     __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2099   }
2100 
2101   if (flags & LIR_OpArrayCopy::length_positive_check) {
2102     __ z_ltr(length, length);
2103     __ branch_optimized(Assembler::bcondNegative, *stub->entry());
2104   }
2105 
2106   // Stubs require 64 bit values.
2107   __ z_lgfr(src_pos, src_pos); // int -> long
2108   __ z_lgfr(dst_pos, dst_pos); // int -> long
2109   __ z_lgfr(length, length);   // int -> long
2110 
2111   if (flags & LIR_OpArrayCopy::type_check) {
2112     // We don't know the array types are compatible.
2113     if (basic_type != T_OBJECT) {
2114       // Simple test for basic type arrays.
2115       if (UseCompressedClassPointers) {
2116         __ z_l(tmp, src_klass_addr);
2117         __ z_c(tmp, dst_klass_addr);
2118       } else {
2119         __ z_lg(tmp, src_klass_addr);
2120         __ z_cg(tmp, dst_klass_addr);
2121       }
2122       __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2123     } else {
2124       // For object arrays, if src is a sub class of dst then we can
2125       // safely do the copy.
2126       NearLabel cont, slow;
2127       Register src_klass = Z_R1_scratch;
2128       Register dst_klass = Z_R10;
2129 
2130       __ load_klass(src_klass, src);
2131       __ load_klass(dst_klass, dst);
2132 
2133       __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, nullptr);
2134 
2135       store_parameter(src_klass, 0); // sub
2136       store_parameter(dst_klass, 1); // super
2137       emit_call_c(Runtime1::entry_for (C1StubId::slow_subtype_check_id));
2138       CHECK_BAILOUT2(cont, slow);
2139       // Sets condition code 0 for match (2 otherwise).
2140       __ branch_optimized(Assembler::bcondEqual, cont);
2141 
2142       __ bind(slow);
2143 
2144       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2145       if (copyfunc_addr != nullptr) { // use stub if available
2146         // Src is not a sub class of dst so we have to do a
2147         // per-element check.
2148 
2149         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2150         if ((flags & mask) != mask) {
2151           // Check that at least both of them object arrays.
2152           assert(flags & mask, "one of the two should be known to be an object array");
2153 
2154           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2155             __ load_klass(tmp, src);
2156           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2157             __ load_klass(tmp, dst);
2158           }
2159           Address klass_lh_addr(tmp, Klass::layout_helper_offset());
2160           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2161           __ load_const_optimized(Z_R1_scratch, objArray_lh);
2162           __ z_c(Z_R1_scratch, klass_lh_addr);
2163           __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2164         }
2165 
2166         // Save outgoing arguments in callee saved registers (C convention) in case
2167         // a call to System.arraycopy is needed.
2168         Register callee_saved_src     = Z_R10;
2169         Register callee_saved_src_pos = Z_R11;
2170         Register callee_saved_dst     = Z_R12;
2171         Register callee_saved_dst_pos = Z_R13;
2172         Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
2173 
2174         __ lgr_if_needed(callee_saved_src, src);
2175         __ lgr_if_needed(callee_saved_src_pos, src_pos);
2176         __ lgr_if_needed(callee_saved_dst, dst);
2177         __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
2178         __ lgr_if_needed(callee_saved_length, length);
2179 
2180         __ z_llgfr(length, length); // Higher 32bits must be null.
2181 
2182         __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset
2183         __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset
2184 
2185         __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type)));
2186         assert_different_registers(Z_ARG1, dst, dst_pos, length);
2187         __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type)));
2188         assert_different_registers(Z_ARG2, dst, length);
2189 
2190         __ z_lgr(Z_ARG3, length);
2191         assert_different_registers(Z_ARG3, dst);
2192 
2193         __ load_klass(Z_ARG5, dst);
2194         __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset()));
2195         __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset()));
2196         emit_call_c(copyfunc_addr);
2197         CHECK_BAILOUT2(cont, slow);
2198 
2199 #ifndef PRODUCT
2200         if (PrintC1Statistics) {
2201           NearLabel failed;
2202           __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed);
2203           __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt);
2204           __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2205           __ bind(failed);
2206         }
2207 #endif
2208 
2209         __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
2210 
2211 #ifndef PRODUCT
2212         if (PrintC1Statistics) {
2213           __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt);
2214           __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2215         }
2216 #endif
2217 
2218         __ z_lgr(tmp, Z_RET);
2219         __ z_xilf(tmp, -1);
2220 
2221         // Restore previously spilled arguments
2222         __ lgr_if_needed(src, callee_saved_src);
2223         __ lgr_if_needed(src_pos, callee_saved_src_pos);
2224         __ lgr_if_needed(dst, callee_saved_dst);
2225         __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
2226         __ lgr_if_needed(length, callee_saved_length);
2227 
2228         __ z_sr(length, tmp);
2229         __ z_ar(src_pos, tmp);
2230         __ z_ar(dst_pos, tmp);
2231       }
2232 
2233       __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2234 
2235       __ bind(cont);
2236     }
2237   }
2238 
2239 #ifdef ASSERT
2240   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2241     // Sanity check the known type with the incoming class. For the
2242     // primitive case the types must match exactly with src.klass and
2243     // dst.klass each exactly matching the default type. For the
2244     // object array case, if no type check is needed then either the
2245     // dst type is exactly the expected type and the src type is a
2246     // subtype which we can't check or src is the same array as dst
2247     // but not necessarily exactly of type default_type.
2248     NearLabel known_ok, halt;
2249     metadata2reg(default_type->constant_encoding(), tmp);
2250     if (UseCompressedClassPointers) {
2251       __ encode_klass_not_null(tmp);
2252     }
2253 
2254     if (basic_type != T_OBJECT) {
2255       if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
2256       else                                    { __ z_cg(tmp, dst_klass_addr); }
2257       __ branch_optimized(Assembler::bcondNotEqual, halt);
2258       if (UseCompressedClassPointers)         { __ z_c (tmp, src_klass_addr); }
2259       else                                    { __ z_cg(tmp, src_klass_addr); }
2260       __ branch_optimized(Assembler::bcondEqual, known_ok);
2261     } else {
2262       if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
2263       else                                    { __ z_cg(tmp, dst_klass_addr); }
2264       __ branch_optimized(Assembler::bcondEqual, known_ok);
2265       __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok);
2266     }
2267     __ bind(halt);
2268     __ stop("incorrect type information in arraycopy");
2269     __ bind(known_ok);
2270   }
2271 #endif
2272 
2273 #ifndef PRODUCT
2274   if (PrintC1Statistics) {
2275     __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type));
2276     __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2277   }
2278 #endif
2279 
2280   __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset
2281   __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset
2282 
2283   assert_different_registers(Z_ARG1, dst, dst_pos, length);
2284   __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type)));
2285   assert_different_registers(Z_ARG2, length);
2286   __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type)));
2287   __ lgr_if_needed(Z_ARG3, length);
2288 
2289   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2290   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2291   const char *name;
2292   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2293   __ call_VM_leaf(entry);
2294 
2295   if (stub != nullptr) {
2296     __ bind(*stub->continuation());
2297   }
2298 }
2299 
2300 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2301   if (dest->is_single_cpu()) {
2302     if (left->type() == T_OBJECT) {
2303       switch (code) {
2304         case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2305         case lir_shr:  __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2306         case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2307         default: ShouldNotReachHere();
2308       }
2309     } else {
2310       assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2311       Register masked_count = Z_R1_scratch;
2312       __ z_lr(masked_count, count->as_register());
2313       __ z_nill(masked_count, 31);
2314       switch (code) {
2315         case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break;
2316         case lir_shr:  __ z_sra  (dest->as_register(), 0, masked_count); break;
2317         case lir_ushr: __ z_srl  (dest->as_register(), 0, masked_count); break;
2318         default: ShouldNotReachHere();
2319       }
2320     }
2321   } else {
2322     switch (code) {
2323       case lir_shl:  __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2324       case lir_shr:  __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2325       case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2326       default: ShouldNotReachHere();
2327     }
2328   }
2329 }
2330 
2331 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2332   if (left->type() == T_OBJECT) {
2333     count = count & 63;  // Shouldn't shift by more than sizeof(intptr_t).
2334     Register l = left->as_register();
2335     Register d = dest->as_register_lo();
2336     switch (code) {
2337       case lir_shl:  __ z_sllg (d, l, count); break;
2338       case lir_shr:  __ z_srag (d, l, count); break;
2339       case lir_ushr: __ z_srlg (d, l, count); break;
2340       default: ShouldNotReachHere();
2341     }
2342     return;
2343   }
2344   if (dest->is_single_cpu()) {
2345     assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2346     count = count & 0x1F; // Java spec
2347     switch (code) {
2348       case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), count); break;
2349       case lir_shr:  __ z_sra  (dest->as_register(), count); break;
2350       case lir_ushr: __ z_srl  (dest->as_register(), count); break;
2351       default: ShouldNotReachHere();
2352     }
2353   } else if (dest->is_double_cpu()) {
2354     count = count & 63; // Java spec
2355     Register l = left->as_pointer_register();
2356     Register d = dest->as_pointer_register();
2357     switch (code) {
2358       case lir_shl:  __ z_sllg (d, l, count); break;
2359       case lir_shr:  __ z_srag (d, l, count); break;
2360       case lir_ushr: __ z_srlg (d, l, count); break;
2361       default: ShouldNotReachHere();
2362     }
2363   } else {
2364     ShouldNotReachHere();
2365   }
2366 }
2367 
2368 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2369   if (op->init_check()) {
2370     // Make sure klass is initialized & doesn't have finalizer.
2371     // init_state needs acquire, but S390 is TSO, and so we are already good.
2372     const int state_offset = in_bytes(InstanceKlass::init_state_offset());
2373     Register iklass = op->klass()->as_register();
2374     add_debug_info_for_null_check_here(op->stub()->info());
2375     if (Immediate::is_uimm12(state_offset)) {
2376       __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
2377     } else {
2378       __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
2379     }
2380     __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far.
2381   }
2382   __ allocate_object(op->obj()->as_register(),
2383                      op->tmp1()->as_register(),
2384                      op->tmp2()->as_register(),
2385                      op->header_size(),
2386                      op->object_size(),
2387                      op->klass()->as_register(),
2388                      *op->stub()->entry());
2389   __ bind(*op->stub()->continuation());
2390   __ verify_oop(op->obj()->as_register(), FILE_AND_LINE);
2391 }
2392 
2393 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2394   Register len = op->len()->as_register();
2395   __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend
2396 
2397   if (UseSlowPath ||
2398       (!UseFastNewObjectArray && (is_reference_type(op->type()))) ||
2399       (!UseFastNewTypeArray   && (!is_reference_type(op->type())))) {
2400     __ z_brul(*op->stub()->entry());
2401   } else {
2402     __ allocate_array(op->obj()->as_register(),
2403                       op->len()->as_register(),
2404                       op->tmp1()->as_register(),
2405                       op->tmp2()->as_register(),
2406                       arrayOopDesc::base_offset_in_bytes(op->type()),
2407                       type2aelembytes(op->type()),
2408                       op->klass()->as_register(),
2409                       *op->stub()->entry(),
2410                       op->zero_array());
2411   }
2412   __ bind(*op->stub()->continuation());
2413 }
2414 
2415 void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data,
2416                                         Register recv, Register tmp1, Label* update_done) {
2417   uint i;
2418   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2419     Label next_test;
2420     // See if the receiver is receiver[n].
2421     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2422     __ z_cg(recv, receiver_addr);
2423     __ z_brne(next_test);
2424     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
2425     __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2426     __ branch_optimized(Assembler::bcondAlways, *update_done);
2427     __ bind(next_test);
2428   }
2429 
2430   // Didn't find receiver; find next empty slot and fill it in.
2431   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2432     Label next_test;
2433     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2434     __ z_ltg(Z_R0_scratch, recv_addr);
2435     __ z_brne(next_test);
2436     __ z_stg(recv, recv_addr);
2437     __ load_const_optimized(tmp1, DataLayout::counter_increment);
2438     __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo);
2439     __ branch_optimized(Assembler::bcondAlways, *update_done);
2440     __ bind(next_test);
2441   }
2442 }
2443 
2444 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2445                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2446   Unimplemented();
2447 }
2448 
2449 void LIR_Assembler::store_parameter(Register r, int param_num) {
2450   assert(param_num >= 0, "invalid num");
2451   int offset_in_bytes = param_num * BytesPerWord;
2452   check_reserved_argument_area(offset_in_bytes);
2453   offset_in_bytes += FrameMap::first_available_sp_in_frame;
2454   __ z_stg(r, offset_in_bytes, Z_SP);
2455 }
2456 
2457 void LIR_Assembler::store_parameter(jint c, int param_num) {
2458   assert(param_num >= 0, "invalid num");
2459   int offset_in_bytes = param_num * BytesPerWord;
2460   check_reserved_argument_area(offset_in_bytes);
2461   offset_in_bytes += FrameMap::first_available_sp_in_frame;
2462   __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true);
2463 }
2464 
2465 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2466   // We always need a stub for the failure case.
2467   CodeStub* stub = op->stub();
2468   Register obj = op->object()->as_register();
2469   Register k_RInfo = op->tmp1()->as_register();
2470   Register klass_RInfo = op->tmp2()->as_register();
2471   Register dst = op->result_opr()->as_register();
2472   Register Rtmp1 = Z_R1_scratch;
2473   ciKlass* k = op->klass();
2474 
2475   assert(!op->tmp3()->is_valid(), "tmp3's not needed");
2476 
2477   // Check if it needs to be profiled.
2478   ciMethodData* md = nullptr;
2479   ciProfileData* data = nullptr;
2480 
2481   if (op->should_profile()) {
2482     ciMethod* method = op->profiled_method();
2483     assert(method != nullptr, "Should have method");
2484     int bci = op->profiled_bci();
2485     md = method->method_data_or_null();
2486     assert(md != nullptr, "Sanity");
2487     data = md->bci_to_data(bci);
2488     assert(data != nullptr,                "need data for type check");
2489     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2490   }
2491 
2492   // Temp operands do not overlap with inputs, if this is their last
2493   // use (end of range is exclusive), so a register conflict is possible.
2494   if (obj == k_RInfo) {
2495     k_RInfo = dst;
2496   } else if (obj == klass_RInfo) {
2497     klass_RInfo = dst;
2498   }
2499   assert_different_registers(obj, k_RInfo, klass_RInfo);
2500 
2501   if (op->should_profile()) {
2502     Register mdo = klass_RInfo;
2503     metadata2reg(md->constant_encoding(), mdo);
2504     NearLabel not_null;
2505     __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2506     // Object is null; update MDO and exit.
2507     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2508     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2509     __ or2mem_8(data_addr, header_bits);
2510     __ branch_optimized(Assembler::bcondAlways, *obj_is_null);
2511     __ bind(not_null);
2512 
2513     NearLabel update_done;
2514     Register recv = k_RInfo;
2515     __ load_klass(recv, obj);
2516     type_profile_helper(mdo, md, data, recv, Rtmp1, &update_done);
2517     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2518     __ add2mem_64(counter_addr, DataLayout::counter_increment, Rtmp1);
2519     __ bind(update_done);
2520   } else {
2521     __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null);
2522   }
2523 
2524   Label *failure_target = failure;
2525   Label *success_target = success;
2526 
2527   // Patching may screw with our temporaries,
2528   // so let's do it before loading the class.
2529   if (k->is_loaded()) {
2530     metadata2reg(k->constant_encoding(), k_RInfo);
2531   } else {
2532     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2533   }
2534   assert(obj != k_RInfo, "must be different");
2535 
2536   __ verify_oop(obj, FILE_AND_LINE);
2537 
2538   // Get object class.
2539   // Not a safepoint as obj null check happens earlier.
2540   if (op->fast_check()) {
2541     if (UseCompressedClassPointers) {
2542       __ load_klass(klass_RInfo, obj);
2543       __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target);
2544     } else {
2545       __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
2546       __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2547     }
2548     // Successful cast, fall through to profile or jump.
2549   } else {
2550     bool need_slow_path = !k->is_loaded() ||
2551                           ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset()));
2552     intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L;
2553     __ load_klass(klass_RInfo, obj);
2554     // Perform the fast part of the checking logic.
2555     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1,
2556                                      (need_slow_path ? success_target : nullptr),
2557                                      failure_target, nullptr,
2558                                      RegisterOrConstant(super_check_offset));
2559     if (need_slow_path) {
2560       // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2561       address a = Runtime1::entry_for (C1StubId::slow_subtype_check_id);
2562       store_parameter(klass_RInfo, 0); // sub
2563       store_parameter(k_RInfo, 1);     // super
2564       emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2565       __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2566       // Fall through to success case.
2567     }
2568   }
2569 
2570   __ branch_optimized(Assembler::bcondAlways, *success);
2571 }
2572 
2573 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2574   LIR_Code code = op->code();
2575   if (code == lir_store_check) {
2576     Register value = op->object()->as_register();
2577     Register array = op->array()->as_register();
2578     Register k_RInfo = op->tmp1()->as_register();
2579     Register klass_RInfo = op->tmp2()->as_register();
2580     Register Rtmp1 = Z_R1_scratch;
2581 
2582     CodeStub* stub = op->stub();
2583 
2584     // Check if it needs to be profiled.
2585     ciMethodData* md = nullptr;
2586     ciProfileData* data = nullptr;
2587 
2588     assert_different_registers(value, k_RInfo, klass_RInfo);
2589 
2590     if (op->should_profile()) {
2591       ciMethod* method = op->profiled_method();
2592       assert(method != nullptr, "Should have method");
2593       int bci = op->profiled_bci();
2594       md = method->method_data_or_null();
2595       assert(md != nullptr, "Sanity");
2596       data = md->bci_to_data(bci);
2597       assert(data != nullptr,                "need data for type check");
2598       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2599     }
2600     NearLabel done;
2601     Label *success_target = &done;
2602     Label *failure_target = stub->entry();
2603 
2604     if (op->should_profile()) {
2605       Register mdo = klass_RInfo;
2606       metadata2reg(md->constant_encoding(), mdo);
2607       NearLabel not_null;
2608       __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2609       // Object is null; update MDO and exit.
2610       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2611       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2612       __ or2mem_8(data_addr, header_bits);
2613       __ branch_optimized(Assembler::bcondAlways, done);
2614       __ bind(not_null);
2615 
2616       NearLabel update_done;
2617       Register recv = k_RInfo;
2618       __ load_klass(recv, value);
2619       type_profile_helper(mdo, md, data, recv, Rtmp1, &update_done);
2620       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2621       __ add2mem_64(counter_addr, DataLayout::counter_increment, Rtmp1);
2622       __ bind(update_done);
2623     } else {
2624       __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done);
2625     }
2626 
2627     add_debug_info_for_null_check_here(op->info_for_exception());
2628     __ load_klass(k_RInfo, array);
2629     __ load_klass(klass_RInfo, value);
2630 
2631     // Get instance klass (it's already uncompressed).
2632     __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
2633     // Perform the fast part of the checking logic.
2634     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
2635     // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2636     address a = Runtime1::entry_for (C1StubId::slow_subtype_check_id);
2637     store_parameter(klass_RInfo, 0); // sub
2638     store_parameter(k_RInfo, 1);     // super
2639     emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2640     __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2641     // Fall through to success case.
2642 
2643     __ bind(done);
2644   } else {
2645     if (code == lir_checkcast) {
2646       Register obj = op->object()->as_register();
2647       Register dst = op->result_opr()->as_register();
2648       NearLabel success;
2649       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2650       __ bind(success);
2651       __ lgr_if_needed(dst, obj);
2652     } else {
2653       if (code == lir_instanceof) {
2654         Register obj = op->object()->as_register();
2655         Register dst = op->result_opr()->as_register();
2656         NearLabel success, failure, done;
2657         emit_typecheck_helper(op, &success, &failure, &failure);
2658         __ bind(failure);
2659         __ clear_reg(dst);
2660         __ branch_optimized(Assembler::bcondAlways, done);
2661         __ bind(success);
2662         __ load_const_optimized(dst, 1);
2663         __ bind(done);
2664       } else {
2665         ShouldNotReachHere();
2666       }
2667     }
2668   }
2669 }
2670 
2671 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2672   Register addr = op->addr()->as_pointer_register();
2673   Register t1_cmp = Z_R1_scratch;
2674   if (op->code() == lir_cas_long) {
2675     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2676     Register new_value_lo = op->new_value()->as_register_lo();
2677     __ z_lgr(t1_cmp, cmp_value_lo);
2678     // Perform the compare and swap operation.
2679     __ z_csg(t1_cmp, new_value_lo, 0, addr);
2680   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2681     Register cmp_value = op->cmp_value()->as_register();
2682     Register new_value = op->new_value()->as_register();
2683     if (op->code() == lir_cas_obj) {
2684       if (UseCompressedOops) {
2685                  t1_cmp = op->tmp1()->as_register();
2686         Register t2_new = op->tmp2()->as_register();
2687         assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new);
2688         __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/);
2689         __ oop_encoder(t2_new, new_value, true /*maybe null*/);
2690         __ z_cs(t1_cmp, t2_new, 0, addr);
2691       } else {
2692         __ z_lgr(t1_cmp, cmp_value);
2693         __ z_csg(t1_cmp, new_value, 0, addr);
2694       }
2695     } else {
2696       __ z_lr(t1_cmp, cmp_value);
2697       __ z_cs(t1_cmp, new_value, 0, addr);
2698     }
2699   } else {
2700     ShouldNotReachHere(); // new lir_cas_??
2701   }
2702 }
2703 
2704 void LIR_Assembler::breakpoint() {
2705   Unimplemented();
2706   //  __ breakpoint_trap();
2707 }
2708 
2709 void LIR_Assembler::push(LIR_Opr opr) {
2710   ShouldNotCallThis(); // unused
2711 }
2712 
2713 void LIR_Assembler::pop(LIR_Opr opr) {
2714   ShouldNotCallThis(); // unused
2715 }
2716 
2717 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2718   Address addr = frame_map()->address_for_monitor_lock(monitor_no);
2719   __ add2reg(dst_opr->as_register(), addr.disp(), addr.base());
2720 }
2721 
2722 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2723   Register obj = op->obj_opr()->as_register();  // May not be an oop.
2724   Register hdr = op->hdr_opr()->as_register();
2725   Register lock = op->lock_opr()->as_register();
2726   if (LockingMode == LM_MONITOR) {
2727     if (op->info() != nullptr) {
2728       add_debug_info_for_null_check_here(op->info());
2729       __ null_check(obj);
2730     }
2731     __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry());
2732   } else if (op->code() == lir_lock) {
2733     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2734     // Add debug info for NullPointerException only if one is possible.
2735     if (op->info() != nullptr) {
2736       add_debug_info_for_null_check_here(op->info());
2737     }
2738     __ lock_object(hdr, obj, lock, *op->stub()->entry());
2739     // done
2740   } else if (op->code() == lir_unlock) {
2741     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2742     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2743   } else {
2744     ShouldNotReachHere();
2745   }
2746   __ bind(*op->stub()->continuation());
2747 }
2748 
2749 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2750   Register obj = op->obj()->as_pointer_register();
2751   Register result = op->result_opr()->as_pointer_register();
2752 
2753   CodeEmitInfo* info = op->info();
2754   if (info != nullptr) {
2755     add_debug_info_for_null_check_here(info);
2756   }
2757 
2758   if (UseCompressedClassPointers) {
2759     __ z_llgf(result, Address(obj, oopDesc::klass_offset_in_bytes()));
2760     __ decode_klass_not_null(result);
2761   } else {
2762     __ z_lg(result, Address(obj, oopDesc::klass_offset_in_bytes()));
2763   }
2764 }
2765 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2766   ciMethod* method = op->profiled_method();
2767   int bci          = op->profiled_bci();
2768   ciMethod* callee = op->profiled_callee();
2769 
2770   // Update counter for all call types.
2771   ciMethodData* md = method->method_data_or_null();
2772   assert(md != nullptr, "Sanity");
2773   ciProfileData* data = md->bci_to_data(bci);
2774   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2775   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2776   Register mdo  = op->mdo()->as_register();
2777   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2778   Register tmp1 = op->tmp1()->as_register_lo();
2779   metadata2reg(md->constant_encoding(), mdo);
2780 
2781   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2782   // Perform additional virtual call profiling for invokevirtual and
2783   // invokeinterface bytecodes
2784   if (op->should_profile_receiver_type()) {
2785     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2786     Register recv = op->recv()->as_register();
2787     assert_different_registers(mdo, tmp1, recv);
2788     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2789     ciKlass* known_klass = op->known_holder();
2790     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2791       // We know the type that will be seen at this call site; we can
2792       // statically update the MethodData* rather than needing to do
2793       // dynamic tests on the receiver type.
2794 
2795       // NOTE: we should probably put a lock around this search to
2796       // avoid collisions by concurrent compilations.
2797       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2798       uint i;
2799       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2800         ciKlass* receiver = vc_data->receiver(i);
2801         if (known_klass->equals(receiver)) {
2802           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2803           __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2804           return;
2805         }
2806       }
2807 
2808       // Receiver type not found in profile data. Select an empty slot.
2809 
2810       // Note that this is less efficient than it should be because it
2811       // always does a write to the receiver part of the
2812       // VirtualCallData rather than just the first time.
2813       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2814         ciKlass* receiver = vc_data->receiver(i);
2815         if (receiver == nullptr) {
2816           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2817           metadata2reg(known_klass->constant_encoding(), tmp1);
2818           __ z_stg(tmp1, recv_addr);
2819           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2820           __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2821           return;
2822         }
2823       }
2824     } else {
2825       __ load_klass(recv, recv);
2826       NearLabel update_done;
2827       type_profile_helper(mdo, md, data, recv, tmp1, &update_done);
2828       // Receiver did not match any saved receiver and there is no empty row for it.
2829       // Increment total counter to indicate polymorphic case.
2830       __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2831       __ bind(update_done);
2832     }
2833   } else {
2834     // static call
2835     __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2836   }
2837 }
2838 
2839 void LIR_Assembler::align_backward_branch_target() {
2840   __ align(OptoLoopAlignment);
2841 }
2842 
2843 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2844   ShouldNotCallThis(); // There are no delay slots on ZARCH_64.
2845 }
2846 
2847 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2848   // tmp must be unused
2849   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2850   assert(left->is_register(), "can only handle registers");
2851 
2852   if (left->is_single_cpu()) {
2853     __ z_lcr(dest->as_register(), left->as_register());
2854   } else if (left->is_single_fpu()) {
2855     __ z_lcebr(dest->as_float_reg(), left->as_float_reg());
2856   } else if (left->is_double_fpu()) {
2857     __ z_lcdbr(dest->as_double_reg(), left->as_double_reg());
2858   } else {
2859     assert(left->is_double_cpu(), "Must be a long");
2860     __ z_lcgr(dest->as_register_lo(), left->as_register_lo());
2861   }
2862 }
2863 
2864 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2865                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2866   assert(!tmp->is_valid(), "don't need temporary");
2867   emit_call_c(dest);
2868   CHECK_BAILOUT();
2869   if (info != nullptr) {
2870     add_call_info_here(info);
2871   }
2872 }
2873 
2874 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2875   ShouldNotCallThis(); // not needed on ZARCH_64
2876 }
2877 
2878 void LIR_Assembler::membar() {
2879   __ z_fence();
2880 }
2881 
2882 void LIR_Assembler::membar_acquire() {
2883   __ z_acquire();
2884 }
2885 
2886 void LIR_Assembler::membar_release() {
2887   __ z_release();
2888 }
2889 
2890 void LIR_Assembler::membar_loadload() {
2891   __ z_acquire();
2892 }
2893 
2894 void LIR_Assembler::membar_storestore() {
2895   __ z_release();
2896 }
2897 
2898 void LIR_Assembler::membar_loadstore() {
2899   __ z_acquire();
2900 }
2901 
2902 void LIR_Assembler::membar_storeload() {
2903   __ z_fence();
2904 }
2905 
2906 void LIR_Assembler::on_spin_wait() {
2907   Unimplemented();
2908 }
2909 
2910 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2911   assert(patch_code == lir_patch_none, "Patch code not supported");
2912   LIR_Address* addr = addr_opr->as_address_ptr();
2913   assert(addr->scale() == LIR_Address::times_1, "scaling unsupported");
2914   __ load_address(dest->as_pointer_register(), as_Address(addr));
2915 }
2916 
2917 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2918   ShouldNotCallThis(); // unused
2919 }
2920 
2921 #ifdef ASSERT
2922 // Emit run-time assertion.
2923 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2924   Unimplemented();
2925 }
2926 #endif
2927 
2928 void LIR_Assembler::peephole(LIR_List*) {
2929   // Do nothing for now.
2930 }
2931 
2932 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2933   assert(code == lir_xadd, "lir_xchg not supported");
2934   Address src_addr = as_Address(src->as_address_ptr());
2935   Register base = src_addr.base();
2936   intptr_t disp = src_addr.disp();
2937   if (src_addr.index()->is_valid()) {
2938     // LAA and LAAG do not support index register.
2939     __ load_address(Z_R1_scratch, src_addr);
2940     base = Z_R1_scratch;
2941     disp = 0;
2942   }
2943   if (data->type() == T_INT) {
2944     __ z_laa(dest->as_register(), data->as_register(), disp, base);
2945   } else if (data->type() == T_LONG) {
2946     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
2947     __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base);
2948   } else {
2949     ShouldNotReachHere();
2950   }
2951 }
2952 
2953 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2954   Register obj = op->obj()->as_register();
2955   Register tmp1 = op->tmp()->as_pointer_register();
2956   Register tmp2 = Z_R1_scratch;
2957   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2958   ciKlass* exact_klass = op->exact_klass();
2959   intptr_t current_klass = op->current_klass();
2960   bool not_null = op->not_null();
2961   bool no_conflict = op->no_conflict();
2962 
2963   Label update, next, none, null_seen, init_klass;
2964 
2965   bool do_null = !not_null;
2966   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2967   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2968 
2969   assert(do_null || do_update, "why are we here?");
2970   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2971 
2972   __ verify_oop(obj, FILE_AND_LINE);
2973 
2974   if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) {
2975     __ z_ltgr(tmp1, obj);
2976   }
2977   if (do_null) {
2978     __ z_brnz(update);
2979     if (!TypeEntries::was_null_seen(current_klass)) {
2980       __ z_lg(tmp1, mdo_addr);
2981       __ z_oill(tmp1, TypeEntries::null_seen);
2982       __ z_stg(tmp1, mdo_addr);
2983     }
2984     if (do_update) {
2985       __ z_bru(next);
2986     }
2987   } else {
2988     __ asm_assert(Assembler::bcondNotZero, "unexpected null obj", __LINE__);
2989   }
2990 
2991   __ bind(update);
2992 
2993   if (do_update) {
2994 #ifdef ASSERT
2995     if (exact_klass != nullptr) {
2996       __ load_klass(tmp1, tmp1);
2997       metadata2reg(exact_klass->constant_encoding(), tmp2);
2998       __ z_cgr(tmp1, tmp2);
2999       __ asm_assert(Assembler::bcondEqual, "exact klass and actual klass differ", __LINE__);
3000     }
3001 #endif
3002 
3003     Label do_update;
3004     __ z_lg(tmp2, mdo_addr);
3005 
3006     if (!no_conflict) {
3007       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3008         if (exact_klass != nullptr) {
3009           metadata2reg(exact_klass->constant_encoding(), tmp1);
3010         } else {
3011           __ load_klass(tmp1, tmp1);
3012         }
3013 
3014         // Klass seen before: nothing to do (regardless of unknown bit).
3015         __ z_lgr(Z_R0_scratch, tmp2);
3016         assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
3017         __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
3018         __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
3019 
3020         // Already unknown: Nothing to do anymore.
3021         __ z_tmll(tmp2, TypeEntries::type_unknown);
3022         __ z_brc(Assembler::bcondAllOne, next);
3023 
3024         if (TypeEntries::is_type_none(current_klass)) {
3025           __ z_lgr(Z_R0_scratch, tmp2);
3026           assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
3027           __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
3028           __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass);
3029         }
3030       } else {
3031         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3032                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3033 
3034         // Already unknown: Nothing to do anymore.
3035         __ z_tmll(tmp2, TypeEntries::type_unknown);
3036         __ z_brc(Assembler::bcondAllOne, next);
3037       }
3038 
3039       // Different than before. Cannot keep accurate profile.
3040       __ z_oill(tmp2, TypeEntries::type_unknown);
3041       __ z_bru(do_update);
3042     } else {
3043       // There's a single possible klass at this profile point.
3044       assert(exact_klass != nullptr, "should be");
3045       if (TypeEntries::is_type_none(current_klass)) {
3046         metadata2reg(exact_klass->constant_encoding(), tmp1);
3047         __ z_lgr(Z_R0_scratch, tmp2);
3048         assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
3049         __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
3050         __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
3051 #ifdef ASSERT
3052         {
3053           Label ok;
3054           __ z_lgr(Z_R0_scratch, tmp2);
3055           assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
3056           __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
3057           __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok);
3058           __ stop("unexpected profiling mismatch");
3059           __ bind(ok);
3060         }
3061 #endif
3062 
3063       } else {
3064         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3065                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3066 
3067         // Already unknown: Nothing to do anymore.
3068         __ z_tmll(tmp2, TypeEntries::type_unknown);
3069         __ z_brc(Assembler::bcondAllOne, next);
3070         __ z_oill(tmp2, TypeEntries::type_unknown);
3071         __ z_bru(do_update);
3072       }
3073     }
3074 
3075     __ bind(init_klass);
3076     // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3077     __ z_ogr(tmp2, tmp1);
3078 
3079     __ bind(do_update);
3080     __ z_stg(tmp2, mdo_addr);
3081 
3082     __ bind(next);
3083   }
3084 }
3085 
3086 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) {
3087   Unimplemented();
3088 }
3089 
3090 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3091   assert(op->crc()->is_single_cpu(), "crc must be register");
3092   assert(op->val()->is_single_cpu(), "byte value must be register");
3093   assert(op->result_opr()->is_single_cpu(), "result must be register");
3094   Register crc = op->crc()->as_register();
3095   Register val = op->val()->as_register();
3096   Register res = op->result_opr()->as_register();
3097 
3098   assert_different_registers(val, crc, res);
3099 
3100   __ load_const_optimized(res, StubRoutines::crc_table_addr());
3101   __ kernel_crc32_singleByteReg(crc, val, res, true);
3102   __ z_lgfr(res, crc);
3103 }
3104 
3105 #undef __