1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/oopMap.hpp" 26 #include "interpreter/interpreter.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "memory/universe.hpp" 29 #include "oops/markWord.hpp" 30 #include "oops/method.hpp" 31 #include "oops/oop.inline.hpp" 32 #include "prims/methodHandles.hpp" 33 #include "runtime/continuation.hpp" 34 #include "runtime/frame.inline.hpp" 35 #include "runtime/handles.inline.hpp" 36 #include "runtime/javaCalls.hpp" 37 #include "runtime/monitorChunk.hpp" 38 #include "runtime/signature.hpp" 39 #include "runtime/stackWatermarkSet.hpp" 40 #include "runtime/stubCodeGenerator.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "vmreg_x86.inline.hpp" 43 #include "utilities/formatBuffer.hpp" 44 #ifdef COMPILER1 45 #include "c1/c1_Runtime1.hpp" 46 #include "runtime/vframeArray.hpp" 47 #endif 48 49 #ifdef ASSERT 50 void RegisterMap::check_location_valid() { 51 } 52 #endif 53 54 // Profiling/safepoint support 55 56 bool frame::safe_for_sender(JavaThread *thread) { 57 if (is_heap_frame()) { 58 return true; 59 } 60 address sp = (address)_sp; 61 address fp = (address)_fp; 62 address unextended_sp = (address)_unextended_sp; 63 64 // consider stack guards when trying to determine "safe" stack pointers 65 // sp must be within the usable part of the stack (not in guards) 66 if (!thread->is_in_usable_stack(sp)) { 67 return false; 68 } 69 70 // unextended sp must be within the stack 71 // Note: sp can be greater than unextended_sp in the case of 72 // interpreted -> interpreted calls that go through a method handle linker, 73 // since those pop the last argument (the appendix) from the stack. 74 if (!thread->is_in_stack_range_incl(unextended_sp, sp - Interpreter::stackElementSize)) { 75 return false; 76 } 77 78 // an fp must be within the stack and above (but not equal) sp 79 // second evaluation on fp+ is added to handle situation where fp is -1 80 bool fp_safe = thread->is_in_stack_range_excl(fp, sp) && 81 thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*))); 82 83 // We know sp/unextended_sp are safe only fp is questionable here 84 85 // If the current frame is known to the code cache then we can attempt to 86 // construct the sender and do some validation of it. This goes a long way 87 // toward eliminating issues when we get in frame construction code 88 89 if (_cb != nullptr ) { 90 91 // First check if frame is complete and tester is reliable 92 // Unfortunately we can only check frame complete for runtime stubs and nmethod 93 // other generic buffer blobs are more problematic so we just assume they are 94 // ok. adapter blobs never have a frame complete and are never ok. 95 96 if (!_cb->is_frame_complete_at(_pc)) { 97 if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { 98 return false; 99 } 100 } 101 102 // Could just be some random pointer within the codeBlob 103 if (!_cb->code_contains(_pc)) { 104 return false; 105 } 106 107 // Entry frame checks 108 if (is_entry_frame()) { 109 // an entry frame must have a valid fp. 110 return fp_safe && is_entry_frame_valid(thread); 111 } else if (is_upcall_stub_frame()) { 112 return fp_safe; 113 } 114 115 intptr_t* sender_sp = nullptr; 116 intptr_t* sender_unextended_sp = nullptr; 117 address sender_pc = nullptr; 118 intptr_t* saved_fp = nullptr; 119 120 if (is_interpreted_frame()) { 121 // fp must be safe 122 if (!fp_safe) { 123 return false; 124 } 125 126 sender_pc = (address) this->fp()[return_addr_offset]; 127 // for interpreted frames, the value below is the sender "raw" sp, 128 // which can be different from the sender unextended sp (the sp seen 129 // by the sender) because of current frame local variables 130 sender_sp = (intptr_t*) addr_at(sender_sp_offset); 131 sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset]; 132 saved_fp = (intptr_t*) this->fp()[link_offset]; 133 134 } else { 135 // must be some sort of compiled/runtime frame 136 // fp does not have to be safe (although it could be check for c1?) 137 138 // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc 139 if (_cb->frame_size() <= 0) { 140 return false; 141 } 142 143 sender_sp = _unextended_sp + _cb->frame_size(); 144 // Is sender_sp safe? 145 if (!thread->is_in_full_stack_checked((address)sender_sp)) { 146 return false; 147 } 148 // On Intel the return_address is always the word on the stack 149 sender_pc = (address) *(sender_sp-1); 150 // Note: frame::sender_sp_offset is only valid for compiled frame 151 intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset); 152 saved_fp = *saved_fp_addr; 153 154 // Repair the sender sp if this is a method with scalarized inline type args 155 sender_sp = repair_sender_sp(sender_sp, saved_fp_addr); 156 sender_unextended_sp = sender_sp; 157 } 158 if (Continuation::is_return_barrier_entry(sender_pc)) { 159 // sender_pc might be invalid so check that the frame 160 // actually belongs to a Continuation. 161 if (!Continuation::is_frame_in_continuation(thread, *this)) { 162 return false; 163 } 164 // If our sender_pc is the return barrier, then our "real" sender is the continuation entry 165 frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp); 166 sender_sp = s.sp(); 167 sender_pc = s.pc(); 168 } 169 170 // If the potential sender is the interpreter then we can do some more checking 171 if (Interpreter::contains(sender_pc)) { 172 173 // ebp is always saved in a recognizable place in any code we generate. However 174 // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp 175 // is really a frame pointer. 176 177 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 178 return false; 179 } 180 181 // construct the potential sender 182 183 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 184 185 return sender.is_interpreted_frame_valid(thread); 186 187 } 188 189 // We must always be able to find a recognizable pc 190 CodeBlob* sender_blob = CodeCache::find_blob(sender_pc); 191 if (sender_pc == nullptr || sender_blob == nullptr) { 192 return false; 193 } 194 195 // Could just be some random pointer within the codeBlob 196 if (!sender_blob->code_contains(sender_pc)) { 197 return false; 198 } 199 200 // We should never be able to see an adapter if the current frame is something from code cache 201 if (sender_blob->is_adapter_blob()) { 202 return false; 203 } 204 205 // Could be the call_stub 206 if (StubRoutines::returns_to_call_stub(sender_pc)) { 207 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 208 return false; 209 } 210 211 // construct the potential sender 212 213 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 214 215 // Validate the JavaCallWrapper an entry frame must have 216 address jcw = (address)sender.entry_frame_call_wrapper(); 217 218 return thread->is_in_stack_range_excl(jcw, (address)sender.fp()); 219 } else if (sender_blob->is_upcall_stub()) { 220 return false; 221 } 222 223 nmethod* nm = sender_blob->as_nmethod_or_null(); 224 if (nm != nullptr) { 225 if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) || 226 nm->method()->is_method_handle_intrinsic()) { 227 return false; 228 } 229 } 230 231 // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size 232 // because the return address counts against the callee's frame. 233 234 if (sender_blob->frame_size() <= 0) { 235 assert(!sender_blob->is_nmethod(), "should count return address at least"); 236 return false; 237 } 238 239 // We should never be able to see anything here except an nmethod. If something in the 240 // code cache (current frame) is called by an entity within the code cache that entity 241 // should not be anything but the call stub (already covered), the interpreter (already covered) 242 // or an nmethod. 243 244 if (!sender_blob->is_nmethod()) { 245 return false; 246 } 247 248 // Could put some more validation for the potential non-interpreted sender 249 // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... 250 251 // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb 252 253 // We've validated the potential sender that would be created 254 return true; 255 } 256 257 // Must be native-compiled frame. Since sender will try and use fp to find 258 // linkages it must be safe 259 260 if (!fp_safe) { 261 return false; 262 } 263 264 // Will the pc we fetch be non-zero (which we'll find at the oldest frame) 265 266 if ( (address) this->fp()[return_addr_offset] == nullptr) return false; 267 268 269 // could try and do some more potential verification of native frame if we could think of some... 270 271 return true; 272 273 } 274 275 276 void frame::patch_pc(Thread* thread, address pc) { 277 assert(_cb == CodeCache::find_blob(pc), "unexpected pc"); 278 address* pc_addr = &(((address*) sp())[-1]); 279 280 if (TracePcPatching) { 281 tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", 282 p2i(pc_addr), p2i(*pc_addr), p2i(pc)); 283 } 284 // Either the return address is the original one or we are going to 285 // patch in the same address that's already there. 286 287 assert(!Continuation::is_return_barrier_entry(*pc_addr), "return barrier"); 288 289 assert(_pc == *pc_addr || pc == *pc_addr || *pc_addr == nullptr, ""); 290 DEBUG_ONLY(address old_pc = _pc;) 291 *pc_addr = pc; 292 _pc = pc; // must be set before call to get_deopt_original_pc 293 address original_pc = get_deopt_original_pc(); 294 if (original_pc != nullptr) { 295 assert(original_pc == old_pc, "expected original PC to be stored before patching"); 296 _deopt_state = is_deoptimized; 297 _pc = original_pc; 298 } else { 299 _deopt_state = not_deoptimized; 300 } 301 assert(!is_compiled_frame() || !_cb->as_nmethod()->is_deopt_entry(_pc), "must be"); 302 303 #ifdef ASSERT 304 { 305 frame f(this->sp(), this->unextended_sp(), this->fp(), pc); 306 assert(f.is_deoptimized_frame() == this->is_deoptimized_frame() && f.pc() == this->pc() && f.raw_pc() == this->raw_pc(), 307 "must be (f.is_deoptimized_frame(): %d this->is_deoptimized_frame(): %d " 308 "f.pc(): " INTPTR_FORMAT " this->pc(): " INTPTR_FORMAT " f.raw_pc(): " INTPTR_FORMAT " this->raw_pc(): " INTPTR_FORMAT ")", 309 f.is_deoptimized_frame(), this->is_deoptimized_frame(), p2i(f.pc()), p2i(this->pc()), p2i(f.raw_pc()), p2i(this->raw_pc())); 310 } 311 #endif 312 } 313 314 intptr_t* frame::entry_frame_argument_at(int offset) const { 315 // convert offset to index to deal with tsi 316 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 317 // Entry frame's arguments are always in relation to unextended_sp() 318 return &unextended_sp()[index]; 319 } 320 321 // locals 322 323 void frame::interpreter_frame_set_locals(intptr_t* locs) { 324 assert(is_interpreted_frame(), "interpreted frame expected"); 325 // set relativized locals 326 ptr_at_put(interpreter_frame_locals_offset, (intptr_t) (locs - fp())); 327 } 328 329 // sender_sp 330 331 intptr_t* frame::interpreter_frame_sender_sp() const { 332 assert(is_interpreted_frame(), "interpreted frame expected"); 333 return (intptr_t*) at(interpreter_frame_sender_sp_offset); 334 } 335 336 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { 337 assert(is_interpreted_frame(), "interpreted frame expected"); 338 ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); 339 } 340 341 342 // monitor elements 343 344 BasicObjectLock* frame::interpreter_frame_monitor_begin() const { 345 return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); 346 } 347 348 BasicObjectLock* frame::interpreter_frame_monitor_end() const { 349 BasicObjectLock* result = (BasicObjectLock*) at_relative(interpreter_frame_monitor_block_top_offset); 350 // make sure the pointer points inside the frame 351 assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); 352 assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer: result: " INTPTR_FORMAT " fp: " INTPTR_FORMAT, p2i(result), p2i(fp())); 353 return result; 354 } 355 356 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { 357 assert(is_interpreted_frame(), "interpreted frame expected"); 358 // set relativized monitor_block_top 359 ptr_at_put(interpreter_frame_monitor_block_top_offset, (intptr_t*)value - fp()); 360 assert(at_absolute(interpreter_frame_monitor_block_top_offset) <= interpreter_frame_monitor_block_top_offset, ""); 361 } 362 363 // Used by template based interpreter deoptimization 364 void frame::interpreter_frame_set_last_sp(intptr_t* sp) { 365 assert(is_interpreted_frame(), "interpreted frame expected"); 366 // set relativized last_sp 367 ptr_at_put(interpreter_frame_last_sp_offset, sp != nullptr ? (sp - fp()) : 0); 368 } 369 370 frame frame::sender_for_entry_frame(RegisterMap* map) const { 371 assert(map != nullptr, "map must be set"); 372 // Java frame called from C; skip all C frames and return top C 373 // frame of that chunk as the sender 374 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); 375 assert(!entry_frame_is_first(), "next Java fp must be non zero"); 376 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 377 // Since we are walking the stack now this nested anchor is obviously walkable 378 // even if it wasn't when it was stacked. 379 jfa->make_walkable(); 380 map->clear(); 381 assert(map->include_argument_oops(), "should be set by clear"); 382 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 383 384 return fr; 385 } 386 387 UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const { 388 assert(frame.is_upcall_stub_frame(), "wrong frame"); 389 // need unextended_sp here, since normal sp is wrong for interpreter callees 390 return reinterpret_cast<UpcallStub::FrameData*>( 391 reinterpret_cast<address>(frame.unextended_sp()) + in_bytes(_frame_data_offset)); 392 } 393 394 bool frame::upcall_stub_frame_is_first() const { 395 assert(is_upcall_stub_frame(), "must be optimzed entry frame"); 396 UpcallStub* blob = _cb->as_upcall_stub(); 397 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 398 return jfa->last_Java_sp() == nullptr; 399 } 400 401 frame frame::sender_for_upcall_stub_frame(RegisterMap* map) const { 402 assert(map != nullptr, "map must be set"); 403 UpcallStub* blob = _cb->as_upcall_stub(); 404 // Java frame called from C; skip all C frames and return top C 405 // frame of that chunk as the sender 406 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 407 assert(!upcall_stub_frame_is_first(), "must have a frame anchor to go back to"); 408 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 409 // Since we are walking the stack now this nested anchor is obviously walkable 410 // even if it wasn't when it was stacked. 411 jfa->make_walkable(); 412 map->clear(); 413 assert(map->include_argument_oops(), "should be set by clear"); 414 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 415 416 return fr; 417 } 418 419 #if defined(ASSERT) 420 static address get_register_address_in_stub(const frame& stub_fr, VMReg reg) { 421 RegisterMap map(nullptr, 422 RegisterMap::UpdateMap::include, 423 RegisterMap::ProcessFrames::skip, 424 RegisterMap::WalkContinuation::skip); 425 stub_fr.oop_map()->update_register_map(&stub_fr, &map); 426 return map.location(reg, stub_fr.sp()); 427 } 428 #endif 429 430 JavaThread** frame::saved_thread_address(const frame& f) { 431 CodeBlob* cb = f.cb(); 432 assert(cb != nullptr && cb->is_runtime_stub(), "invalid frame"); 433 434 JavaThread** thread_addr; 435 #ifdef COMPILER1 436 if (cb == Runtime1::blob_for(C1StubId::monitorenter_id) || 437 cb == Runtime1::blob_for(C1StubId::monitorenter_nofpu_id)) { 438 thread_addr = (JavaThread**)(f.sp() + Runtime1::runtime_blob_current_thread_offset(f)); 439 } else 440 #endif 441 { 442 // c2 only saves rbp in the stub frame so nothing to do. 443 thread_addr = nullptr; 444 } 445 assert(get_register_address_in_stub(f, SharedRuntime::thread_register()) == (address)thread_addr, "wrong thread address"); 446 return thread_addr; 447 } 448 449 //------------------------------------------------------------------------------ 450 // frame::verify_deopt_original_pc 451 // 452 // Verifies the calculated original PC of a deoptimization PC for the 453 // given unextended SP. 454 #ifdef ASSERT 455 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp) { 456 frame fr; 457 458 // This is ugly but it's better than to change {get,set}_original_pc 459 // to take an SP value as argument. And it's only a debugging 460 // method anyway. 461 fr._unextended_sp = unextended_sp; 462 463 address original_pc = nm->get_original_pc(&fr); 464 assert(nm->insts_contains_inclusive(original_pc), 465 "original PC must be in the main code section of the compiled method (or must be immediately following it) original_pc: " INTPTR_FORMAT " unextended_sp: " INTPTR_FORMAT " name: %s", p2i(original_pc), p2i(unextended_sp), nm->name()); 466 } 467 #endif 468 469 //------------------------------------------------------------------------------ 470 // frame::adjust_unextended_sp 471 #ifdef ASSERT 472 void frame::adjust_unextended_sp() { 473 // On x86, sites calling method handle intrinsics and lambda forms are treated 474 // as any other call site. Therefore, no special action is needed when we are 475 // returning to any of these call sites. 476 477 if (_cb != nullptr) { 478 nmethod* sender_nm = _cb->as_nmethod_or_null(); 479 if (sender_nm != nullptr) { 480 // If the sender PC is a deoptimization point, get the original PC. 481 if (sender_nm->is_deopt_entry(_pc) || 482 sender_nm->is_deopt_mh_entry(_pc)) { 483 verify_deopt_original_pc(sender_nm, _unextended_sp); 484 } 485 } 486 } 487 } 488 #endif 489 490 //------------------------------------------------------------------------------ 491 // frame::sender_for_interpreter_frame 492 frame frame::sender_for_interpreter_frame(RegisterMap* map) const { 493 // SP is the raw SP from the sender after adapter or interpreter 494 // extension. 495 intptr_t* sender_sp = this->sender_sp(); 496 497 // This is the sp before any possible extension (adapter/locals). 498 intptr_t* unextended_sp = interpreter_frame_sender_sp(); 499 intptr_t* sender_fp = link(); 500 501 #if COMPILER2_OR_JVMCI 502 if (map->update_map()) { 503 update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); 504 } 505 #endif // COMPILER2_OR_JVMCI 506 507 address sender_pc = this->sender_pc(); 508 509 if (Continuation::is_return_barrier_entry(sender_pc)) { 510 if (map->walk_cont()) { // about to walk into an h-stack 511 return Continuation::top_frame(*this, map); 512 } else { 513 return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp); 514 } 515 } 516 517 return frame(sender_sp, unextended_sp, sender_fp, sender_pc); 518 } 519 520 bool frame::is_interpreted_frame_valid(JavaThread* thread) const { 521 assert(is_interpreted_frame(), "Not an interpreted frame"); 522 // These are reasonable sanity checks 523 if (fp() == nullptr || (intptr_t(fp()) & (wordSize-1)) != 0) { 524 return false; 525 } 526 if (sp() == nullptr || (intptr_t(sp()) & (wordSize-1)) != 0) { 527 return false; 528 } 529 if (fp() + interpreter_frame_initial_sp_offset < sp()) { 530 return false; 531 } 532 // These are hacks to keep us out of trouble. 533 // The problem with these is that they mask other problems 534 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above 535 return false; 536 } 537 538 // do some validation of frame elements 539 // first the method 540 541 Method* m = safe_interpreter_frame_method(); 542 543 // validate the method we'd find in this potential sender 544 if (!Method::is_valid_method(m)) return false; 545 546 // stack frames shouldn't be much larger than max_stack elements 547 // this test requires the use the unextended_sp which is the sp as seen by 548 // the current frame, and not sp which is the "raw" pc which could point 549 // further because of local variables of the callee method inserted after 550 // method arguments 551 if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { 552 return false; 553 } 554 555 // validate bci/bcp 556 557 address bcp = interpreter_frame_bcp(); 558 if (m->validate_bci_from_bcp(bcp) < 0) { 559 return false; 560 } 561 562 // validate ConstantPoolCache* 563 ConstantPoolCache* cp = *interpreter_frame_cache_addr(); 564 if (MetaspaceObj::is_valid(cp) == false) return false; 565 566 // validate locals 567 568 address locals = (address)interpreter_frame_locals(); 569 return thread->is_in_stack_range_incl(locals, (address)fp()); 570 } 571 572 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { 573 assert(is_interpreted_frame(), "interpreted frame expected"); 574 Method* method = interpreter_frame_method(); 575 BasicType type = method->result_type(); 576 577 intptr_t* tos_addr; 578 if (method->is_native()) { 579 // Prior to calling into the runtime to report the method_exit the possible 580 // return value is pushed to the native stack. If the result is a jfloat/jdouble 581 // then ST0 is saved before EAX/EDX. See the note in generate_native_result 582 tos_addr = (intptr_t*)sp(); 583 if (type == T_FLOAT || type == T_DOUBLE) { 584 // QQQ seems like this code is equivalent on the two platforms 585 #ifdef AMD64 586 // This is times two because we do a push(ltos) after pushing XMM0 587 // and that takes two interpreter stack slots. 588 tos_addr += 2 * Interpreter::stackElementWords; 589 #else 590 tos_addr += 2; 591 #endif // AMD64 592 } 593 } else { 594 tos_addr = (intptr_t*)interpreter_frame_tos_address(); 595 } 596 597 switch (type) { 598 case T_OBJECT : 599 case T_ARRAY : { 600 oop obj; 601 if (method->is_native()) { 602 obj = cast_to_oop(at(interpreter_frame_oop_temp_offset)); 603 } else { 604 oop* obj_p = (oop*)tos_addr; 605 obj = (obj_p == nullptr) ? (oop)nullptr : *obj_p; 606 } 607 assert(Universe::is_in_heap_or_null(obj), "sanity check"); 608 *oop_result = obj; 609 break; 610 } 611 case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; 612 case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; 613 case T_CHAR : value_result->c = *(jchar*)tos_addr; break; 614 case T_SHORT : value_result->s = *(jshort*)tos_addr; break; 615 case T_INT : value_result->i = *(jint*)tos_addr; break; 616 case T_LONG : value_result->j = *(jlong*)tos_addr; break; 617 case T_FLOAT : { 618 #ifdef AMD64 619 value_result->f = *(jfloat*)tos_addr; 620 #else 621 if (method->is_native()) { 622 jdouble d = *(jdouble*)tos_addr; // Result was in ST0 so need to convert to jfloat 623 value_result->f = (jfloat)d; 624 } else { 625 value_result->f = *(jfloat*)tos_addr; 626 } 627 #endif // AMD64 628 break; 629 } 630 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; 631 case T_VOID : /* Nothing to do */ break; 632 default : ShouldNotReachHere(); 633 } 634 635 return type; 636 } 637 638 intptr_t* frame::interpreter_frame_tos_at(jint offset) const { 639 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 640 return &interpreter_frame_tos_address()[index]; 641 } 642 643 #ifndef PRODUCT 644 645 #define DESCRIBE_FP_OFFSET(name) \ 646 values.describe(frame_no, fp() + frame::name##_offset, #name, 1) 647 648 void frame::describe_pd(FrameValues& values, int frame_no) { 649 if (is_interpreted_frame()) { 650 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 651 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 652 DESCRIBE_FP_OFFSET(interpreter_frame_method); 653 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 654 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 655 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 656 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 657 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 658 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 659 #ifdef AMD64 660 } else if (is_entry_frame()) { 661 // This could be more descriptive if we use the enum in 662 // stubGenerator to map to real names but it's most important to 663 // claim these frame slots so the error checking works. 664 for (int i = 0; i < entry_frame_after_call_words; i++) { 665 values.describe(frame_no, fp() - i, err_msg("call_stub word fp - %d", i)); 666 } 667 #endif // AMD64 668 } 669 670 if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) { 671 intptr_t* ret_pc_loc; 672 intptr_t* fp_loc; 673 if (is_interpreted_frame()) { 674 ret_pc_loc = fp() + return_addr_offset; 675 fp_loc = fp(); 676 } else { 677 ret_pc_loc = real_fp() - return_addr_offset; 678 fp_loc = real_fp() - sender_sp_offset; 679 } 680 address ret_pc = *(address*)ret_pc_loc; 681 values.describe(frame_no, ret_pc_loc, 682 Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address"); 683 values.describe(-1, fp_loc, "saved fp", 0); // "unowned" as value belongs to sender 684 } 685 } 686 687 #endif // !PRODUCT 688 689 intptr_t *frame::initial_deoptimization_info() { 690 // used to reset the saved FP 691 return fp(); 692 } 693 694 #ifndef PRODUCT 695 // This is a generic constructor which is only used by pns() in debug.cpp. 696 frame::frame(void* sp, void* fp, void* pc) { 697 init((intptr_t*)sp, (intptr_t*)fp, (address)pc); 698 } 699 700 #endif 701 702 // Check for a method with scalarized inline type arguments that needs 703 // a stack repair and return the repaired sender stack pointer. 704 intptr_t* frame::repair_sender_sp(intptr_t* sender_sp, intptr_t** saved_fp_addr) const { 705 nmethod* nm = _cb->as_nmethod_or_null(); 706 if (nm != nullptr && nm->needs_stack_repair()) { 707 // The stack increment resides just below the saved rbp on the stack 708 // and does not account for the return address. 709 intptr_t* real_frame_size_addr = (intptr_t*) (saved_fp_addr - 1); 710 int real_frame_size = ((*real_frame_size_addr) + wordSize) / wordSize; 711 assert(real_frame_size >= _cb->frame_size() && real_frame_size <= 1000000, "invalid frame size"); 712 sender_sp = unextended_sp() + real_frame_size; 713 } 714 return sender_sp; 715 } 716 717 void JavaFrameAnchor::make_walkable() { 718 // last frame set? 719 if (last_Java_sp() == nullptr) return; 720 // already walkable? 721 if (walkable()) return; 722 vmassert(last_Java_pc() == nullptr, "already walkable"); 723 _last_Java_pc = (address)_last_Java_sp[-1]; 724 vmassert(walkable(), "something went wrong"); 725 }