1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/markWord.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/method.hpp" 34 #include "oops/resolvedFieldEntry.hpp" 35 #include "oops/resolvedIndyEntry.hpp" 36 #include "oops/resolvedMethodEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/basicLock.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/javaThread.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 46 // Implementation of InterpreterMacroAssembler 47 48 void InterpreterMacroAssembler::jump_to_entry(address entry) { 49 assert(entry, "Entry must have been generated by now"); 50 jump(RuntimeAddress(entry)); 51 } 52 53 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 54 Label update, next, none; 55 56 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 57 58 interp_verify_oop(obj, atos); 59 60 testptr(obj, obj); 61 jccb(Assembler::notZero, update); 62 testptr(mdo_addr, TypeEntries::null_seen); 63 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 64 // atomic update to prevent overwriting Klass* with 0 65 lock(); 66 orptr(mdo_addr, TypeEntries::null_seen); 67 jmpb(next); 68 69 bind(update); 70 load_klass(obj, obj, rscratch1); 71 mov(rscratch1, obj); 72 73 xorptr(obj, mdo_addr); 74 testptr(obj, TypeEntries::type_klass_mask); 75 jccb(Assembler::zero, next); // klass seen before, nothing to 76 // do. The unknown bit may have been 77 // set already but no need to check. 78 79 testptr(obj, TypeEntries::type_unknown); 80 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 81 82 cmpptr(mdo_addr, 0); 83 jccb(Assembler::equal, none); 84 cmpptr(mdo_addr, TypeEntries::null_seen); 85 jccb(Assembler::equal, none); 86 87 // There is a chance that the checks above (re-reading profiling 88 // data from memory) fail if another thread has just set the 89 // profiling to this obj's klass 90 mov(obj, rscratch1); 91 xorptr(obj, mdo_addr); 92 testptr(obj, TypeEntries::type_klass_mask); 93 jccb(Assembler::zero, next); 94 95 // different than before. Cannot keep accurate profile. 96 orptr(mdo_addr, TypeEntries::type_unknown); 97 jmpb(next); 98 99 bind(none); 100 // first time here. Set profile type. 101 movptr(mdo_addr, obj); 102 #ifdef ASSERT 103 andptr(obj, TypeEntries::type_klass_mask); 104 verify_klass_ptr(obj); 105 #endif 106 107 bind(next); 108 } 109 110 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 111 if (!ProfileInterpreter) { 112 return; 113 } 114 115 if (MethodData::profile_arguments() || MethodData::profile_return()) { 116 Label profile_continue; 117 118 test_method_data_pointer(mdp, profile_continue); 119 120 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 121 122 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 123 jcc(Assembler::notEqual, profile_continue); 124 125 if (MethodData::profile_arguments()) { 126 Label done; 127 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 128 addptr(mdp, off_to_args); 129 130 for (int i = 0; i < TypeProfileArgsLimit; i++) { 131 if (i > 0 || MethodData::profile_return()) { 132 // If return value type is profiled we may have no argument to profile 133 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 134 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 135 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 136 jcc(Assembler::less, done); 137 } 138 movptr(tmp, Address(callee, Method::const_offset())); 139 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 140 // stack offset o (zero based) from the start of the argument 141 // list, for n arguments translates into offset n - o - 1 from 142 // the end of the argument list 143 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 144 subl(tmp, 1); 145 Address arg_addr = argument_address(tmp); 146 movptr(tmp, arg_addr); 147 148 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 149 profile_obj_type(tmp, mdo_arg_addr); 150 151 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 152 addptr(mdp, to_add); 153 off_to_args += to_add; 154 } 155 156 if (MethodData::profile_return()) { 157 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 158 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 159 } 160 161 bind(done); 162 163 if (MethodData::profile_return()) { 164 // We're right after the type profile for the last 165 // argument. tmp is the number of cells left in the 166 // CallTypeData/VirtualCallTypeData to reach its end. Non null 167 // if there's a return to profile. 168 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 169 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 170 addptr(mdp, tmp); 171 } 172 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 173 } else { 174 assert(MethodData::profile_return(), "either profile call args or call ret"); 175 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 176 } 177 178 // mdp points right after the end of the 179 // CallTypeData/VirtualCallTypeData, right after the cells for the 180 // return value type if there's one 181 182 bind(profile_continue); 183 } 184 } 185 186 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 187 assert_different_registers(mdp, ret, tmp, _bcp_register); 188 if (ProfileInterpreter && MethodData::profile_return()) { 189 Label profile_continue; 190 191 test_method_data_pointer(mdp, profile_continue); 192 193 if (MethodData::profile_return_jsr292_only()) { 194 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 195 196 // If we don't profile all invoke bytecodes we must make sure 197 // it's a bytecode we indeed profile. We can't go back to the 198 // beginning of the ProfileData we intend to update to check its 199 // type because we're right after it and we don't known its 200 // length 201 Label do_profile; 202 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 203 jcc(Assembler::equal, do_profile); 204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 205 jcc(Assembler::equal, do_profile); 206 get_method(tmp); 207 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 208 jcc(Assembler::notEqual, profile_continue); 209 210 bind(do_profile); 211 } 212 213 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 214 mov(tmp, ret); 215 profile_obj_type(tmp, mdo_ret_addr); 216 217 bind(profile_continue); 218 } 219 } 220 221 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 222 if (ProfileInterpreter && MethodData::profile_parameters()) { 223 Label profile_continue; 224 225 test_method_data_pointer(mdp, profile_continue); 226 227 // Load the offset of the area within the MDO used for 228 // parameters. If it's negative we're not profiling any parameters 229 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 230 testl(tmp1, tmp1); 231 jcc(Assembler::negative, profile_continue); 232 233 // Compute a pointer to the area for parameters from the offset 234 // and move the pointer to the slot for the last 235 // parameters. Collect profiling from last parameter down. 236 // mdo start + parameters offset + array length - 1 237 addptr(mdp, tmp1); 238 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 239 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 240 241 Label loop; 242 bind(loop); 243 244 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 245 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 246 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 247 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 248 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 249 250 // load offset on the stack from the slot for this parameter 251 movptr(tmp2, arg_off); 252 negptr(tmp2); 253 // read the parameter from the local area 254 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 255 256 // profile the parameter 257 profile_obj_type(tmp2, arg_type); 258 259 // go to next parameter 260 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 261 jcc(Assembler::positive, loop); 262 263 bind(profile_continue); 264 } 265 } 266 267 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 268 int number_of_arguments) { 269 // interpreter specific 270 // 271 // Note: No need to save/restore bcp & locals registers 272 // since these are callee saved registers and no blocking/ 273 // GC can happen in leaf calls. 274 // Further Note: DO NOT save/restore bcp/locals. If a caller has 275 // already saved them so that it can use rsi/rdi as temporaries 276 // then a save/restore here will DESTROY the copy the caller 277 // saved! There used to be a save_bcp() that only happened in 278 // the ASSERT path (no restore_bcp). Which caused bizarre failures 279 // when jvm built with ASSERTs. 280 #ifdef ASSERT 281 { 282 Label L; 283 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 284 jcc(Assembler::equal, L); 285 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 286 " last_sp != null"); 287 bind(L); 288 } 289 #endif 290 // super call 291 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 292 // interpreter specific 293 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 294 // but since they may not have been saved (and we don't want to 295 // save them here (see note above) the assert is invalid. 296 } 297 298 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 299 Register java_thread, 300 Register last_java_sp, 301 address entry_point, 302 int number_of_arguments, 303 bool check_exceptions) { 304 // interpreter specific 305 // 306 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 307 // really make a difference for these runtime calls, since they are 308 // slow anyway. Btw., bcp must be saved/restored since it may change 309 // due to GC. 310 save_bcp(); 311 #ifdef ASSERT 312 { 313 Label L; 314 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 315 jcc(Assembler::equal, L); 316 stop("InterpreterMacroAssembler::call_VM_base:" 317 " last_sp isn't null"); 318 bind(L); 319 } 320 #endif /* ASSERT */ 321 // super call 322 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 323 entry_point, number_of_arguments, 324 check_exceptions); 325 // interpreter specific 326 restore_bcp(); 327 restore_locals(); 328 } 329 330 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 331 address entry_point, 332 Register arg_1) { 333 assert(arg_1 == c_rarg1, ""); 334 Label resume_pc, not_preempted; 335 336 #ifdef ASSERT 337 { 338 Label L; 339 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 340 jcc(Assembler::equal, L); 341 stop("Should not have alternate return address set"); 342 bind(L); 343 } 344 #endif /* ASSERT */ 345 346 // Force freeze slow path. 347 push_cont_fastpath(); 348 349 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 350 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 351 lea(rscratch1, resume_pc); 352 push(rscratch1); 353 MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/); 354 pop(rscratch1); 355 356 pop_cont_fastpath(); 357 358 // Check if preempted. 359 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 360 cmpptr(rscratch1, NULL_WORD); 361 jccb(Assembler::zero, not_preempted); 362 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 363 jmp(rscratch1); 364 365 // In case of preemption, this is where we will resume once we finally acquire the monitor. 366 bind(resume_pc); 367 restore_after_resume(false /* is_native */); 368 369 bind(not_preempted); 370 } 371 372 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 373 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 374 call(rscratch1); 375 if (is_native) { 376 // On resume we need to set up stack as expected. 377 push(dtos); 378 push(ltos); 379 } 380 } 381 382 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 383 if (JvmtiExport::can_pop_frame()) { 384 Label L; 385 // Initiate popframe handling only if it is not already being 386 // processed. If the flag has the popframe_processing bit set, it 387 // means that this code is called *during* popframe handling - we 388 // don't want to reenter. 389 // This method is only called just after the call into the vm in 390 // call_VM_base, so the arg registers are available. 391 Register pop_cond = c_rarg0; 392 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 393 testl(pop_cond, JavaThread::popframe_pending_bit); 394 jcc(Assembler::zero, L); 395 testl(pop_cond, JavaThread::popframe_processing_bit); 396 jcc(Assembler::notZero, L); 397 // Call Interpreter::remove_activation_preserving_args_entry() to get the 398 // address of the same-named entrypoint in the generated interpreter code. 399 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 400 jmp(rax); 401 bind(L); 402 } 403 } 404 405 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 406 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); 407 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 408 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 409 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 410 411 switch (state) { 412 case atos: movptr(rax, oop_addr); 413 movptr(oop_addr, NULL_WORD); 414 interp_verify_oop(rax, state); break; 415 case ltos: movptr(rax, val_addr); break; 416 case btos: // fall through 417 case ztos: // fall through 418 case ctos: // fall through 419 case stos: // fall through 420 case itos: movl(rax, val_addr); break; 421 case ftos: load_float(val_addr); break; 422 case dtos: load_double(val_addr); break; 423 case vtos: /* nothing to do */ break; 424 default : ShouldNotReachHere(); 425 } 426 427 // Clean up tos value in the thread object 428 movl(tos_addr, ilgl); 429 movptr(val_addr, NULL_WORD); 430 } 431 432 433 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 434 if (JvmtiExport::can_force_early_return()) { 435 Label L; 436 Register tmp = c_rarg0; 437 Register rthread = r15_thread; 438 439 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 440 testptr(tmp, tmp); 441 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 442 443 // Initiate earlyret handling only if it is not already being processed. 444 // If the flag has the earlyret_processing bit set, it means that this code 445 // is called *during* earlyret handling - we don't want to reenter. 446 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 447 cmpl(tmp, JvmtiThreadState::earlyret_pending); 448 jcc(Assembler::notEqual, L); 449 450 // Call Interpreter::remove_activation_early_entry() to get the address of the 451 // same-named entrypoint in the generated interpreter code. 452 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 453 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 454 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 455 jmp(rax); 456 bind(L); 457 } 458 } 459 460 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 461 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 462 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 463 bswapl(reg); 464 shrl(reg, 16); 465 } 466 467 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 468 int bcp_offset, 469 size_t index_size) { 470 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 471 if (index_size == sizeof(u2)) { 472 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 473 } else if (index_size == sizeof(u4)) { 474 movl(index, Address(_bcp_register, bcp_offset)); 475 } else if (index_size == sizeof(u1)) { 476 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 477 } else { 478 ShouldNotReachHere(); 479 } 480 } 481 482 // Load object from cpool->resolved_references(index) 483 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 484 Register index, 485 Register tmp) { 486 assert_different_registers(result, index); 487 488 get_constant_pool(result); 489 // load pointer for resolved_references[] objArray 490 movptr(result, Address(result, ConstantPool::cache_offset())); 491 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 492 resolve_oop_handle(result, tmp); 493 load_heap_oop(result, Address(result, index, 494 UseCompressedOops ? Address::times_4 : Address::times_ptr, 495 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 496 } 497 498 // load cpool->resolved_klass_at(index) 499 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 500 Register cpool, 501 Register index) { 502 assert_different_registers(cpool, index); 503 504 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 505 Register resolved_klasses = cpool; 506 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 507 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 508 } 509 510 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 511 // subtype of super_klass. 512 // 513 // Args: 514 // rax: superklass 515 // Rsub_klass: subklass 516 // 517 // Kills: 518 // rcx, rdi 519 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 520 Label& ok_is_subtype) { 521 assert(Rsub_klass != rax, "rax holds superklass"); 522 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 523 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 524 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 525 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 526 527 // Profile the not-null value's klass. 528 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 529 530 // Do the check. 531 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 532 } 533 534 535 // Java Expression Stack 536 537 void InterpreterMacroAssembler::pop_ptr(Register r) { 538 pop(r); 539 } 540 541 void InterpreterMacroAssembler::push_ptr(Register r) { 542 push(r); 543 } 544 545 void InterpreterMacroAssembler::push_i(Register r) { 546 push(r); 547 } 548 549 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 550 push(r); 551 } 552 553 void InterpreterMacroAssembler::push_f(XMMRegister r) { 554 subptr(rsp, wordSize); 555 movflt(Address(rsp, 0), r); 556 } 557 558 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 559 movflt(r, Address(rsp, 0)); 560 addptr(rsp, wordSize); 561 } 562 563 void InterpreterMacroAssembler::push_d(XMMRegister r) { 564 subptr(rsp, 2 * wordSize); 565 movdbl(Address(rsp, 0), r); 566 } 567 568 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 569 movdbl(r, Address(rsp, 0)); 570 addptr(rsp, 2 * Interpreter::stackElementSize); 571 } 572 573 void InterpreterMacroAssembler::pop_i(Register r) { 574 // XXX can't use pop currently, upper half non clean 575 movl(r, Address(rsp, 0)); 576 addptr(rsp, wordSize); 577 } 578 579 void InterpreterMacroAssembler::pop_l(Register r) { 580 movq(r, Address(rsp, 0)); 581 addptr(rsp, 2 * Interpreter::stackElementSize); 582 } 583 584 void InterpreterMacroAssembler::push_l(Register r) { 585 subptr(rsp, 2 * wordSize); 586 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 587 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 588 } 589 590 void InterpreterMacroAssembler::pop(TosState state) { 591 switch (state) { 592 case atos: pop_ptr(); break; 593 case btos: 594 case ztos: 595 case ctos: 596 case stos: 597 case itos: pop_i(); break; 598 case ltos: pop_l(); break; 599 case ftos: pop_f(xmm0); break; 600 case dtos: pop_d(xmm0); break; 601 case vtos: /* nothing to do */ break; 602 default: ShouldNotReachHere(); 603 } 604 interp_verify_oop(rax, state); 605 } 606 607 void InterpreterMacroAssembler::push(TosState state) { 608 interp_verify_oop(rax, state); 609 switch (state) { 610 case atos: push_ptr(); break; 611 case btos: 612 case ztos: 613 case ctos: 614 case stos: 615 case itos: push_i(); break; 616 case ltos: push_l(); break; 617 case ftos: push_f(xmm0); break; 618 case dtos: push_d(xmm0); break; 619 case vtos: /* nothing to do */ break; 620 default : ShouldNotReachHere(); 621 } 622 } 623 624 // Helpers for swap and dup 625 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 626 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 627 } 628 629 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 630 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 631 } 632 633 634 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 635 // set sender sp 636 lea(_bcp_register, Address(rsp, wordSize)); 637 // record last_sp 638 mov(rcx, _bcp_register); 639 subptr(rcx, rbp); 640 sarptr(rcx, LogBytesPerWord); 641 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 642 } 643 644 645 // Jump to from_interpreted entry of a call unless single stepping is possible 646 // in this thread in which case we must call the i2i entry 647 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 648 prepare_to_jump_from_interpreted(); 649 650 if (JvmtiExport::can_post_interpreter_events()) { 651 Label run_compiled_code; 652 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 653 // compiled code in threads for which the event is enabled. Check here for 654 // interp_only_mode if these events CAN be enabled. 655 // interp_only is an int, on little endian it is sufficient to test the byte only 656 // Is a cmpl faster? 657 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); 658 jccb(Assembler::zero, run_compiled_code); 659 jmp(Address(method, Method::interpreter_entry_offset())); 660 bind(run_compiled_code); 661 } 662 663 jmp(Address(method, Method::from_interpreted_offset())); 664 } 665 666 // The following two routines provide a hook so that an implementation 667 // can schedule the dispatch in two parts. x86 does not do this. 668 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 669 // Nothing x86 specific to be done here 670 } 671 672 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 673 dispatch_next(state, step); 674 } 675 676 void InterpreterMacroAssembler::dispatch_base(TosState state, 677 address* table, 678 bool verifyoop, 679 bool generate_poll) { 680 if (VerifyActivationFrameSize) { 681 Label L; 682 mov(rcx, rbp); 683 subptr(rcx, rsp); 684 int32_t min_frame_size = 685 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 686 wordSize; 687 cmpptr(rcx, min_frame_size); 688 jcc(Assembler::greaterEqual, L); 689 stop("broken stack frame"); 690 bind(L); 691 } 692 if (verifyoop) { 693 interp_verify_oop(rax, state); 694 } 695 696 address* const safepoint_table = Interpreter::safept_table(state); 697 Label no_safepoint, dispatch; 698 if (table != safepoint_table && generate_poll) { 699 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 700 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 701 702 jccb(Assembler::zero, no_safepoint); 703 lea(rscratch1, ExternalAddress((address)safepoint_table)); 704 jmpb(dispatch); 705 } 706 707 bind(no_safepoint); 708 lea(rscratch1, ExternalAddress((address)table)); 709 bind(dispatch); 710 jmp(Address(rscratch1, rbx, Address::times_8)); 711 } 712 713 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 714 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 715 } 716 717 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 718 dispatch_base(state, Interpreter::normal_table(state)); 719 } 720 721 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 722 dispatch_base(state, Interpreter::normal_table(state), false); 723 } 724 725 726 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 727 // load next bytecode (load before advancing _bcp_register to prevent AGI) 728 load_unsigned_byte(rbx, Address(_bcp_register, step)); 729 // advance _bcp_register 730 increment(_bcp_register, step); 731 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 732 } 733 734 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 735 // load current bytecode 736 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 737 dispatch_base(state, table); 738 } 739 740 void InterpreterMacroAssembler::narrow(Register result) { 741 742 // Get method->_constMethod->_result_type 743 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 744 movptr(rcx, Address(rcx, Method::const_offset())); 745 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 746 747 Label done, notBool, notByte, notChar; 748 749 // common case first 750 cmpl(rcx, T_INT); 751 jcc(Assembler::equal, done); 752 753 // mask integer result to narrower return type. 754 cmpl(rcx, T_BOOLEAN); 755 jcc(Assembler::notEqual, notBool); 756 andl(result, 0x1); 757 jmp(done); 758 759 bind(notBool); 760 cmpl(rcx, T_BYTE); 761 jcc(Assembler::notEqual, notByte); 762 movsbl(result, result); 763 jmp(done); 764 765 bind(notByte); 766 cmpl(rcx, T_CHAR); 767 jcc(Assembler::notEqual, notChar); 768 movzwl(result, result); 769 jmp(done); 770 771 bind(notChar); 772 // cmpl(rcx, T_SHORT); // all that's left 773 // jcc(Assembler::notEqual, done); 774 movswl(result, result); 775 776 // Nothing to do for T_INT 777 bind(done); 778 } 779 780 // remove activation 781 // 782 // Apply stack watermark barrier. 783 // Unlock the receiver if this is a synchronized method. 784 // Unlock any Java monitors from synchronized blocks. 785 // Remove the activation from the stack. 786 // 787 // If there are locked Java monitors 788 // If throw_monitor_exception 789 // throws IllegalMonitorStateException 790 // Else if install_monitor_exception 791 // installs IllegalMonitorStateException 792 // Else 793 // no error processing 794 void InterpreterMacroAssembler::remove_activation( 795 TosState state, 796 Register ret_addr, 797 bool throw_monitor_exception, 798 bool install_monitor_exception, 799 bool notify_jvmdi) { 800 // Note: Registers rdx xmm0 may be in use for the 801 // result check if synchronized method 802 Label unlocked, unlock, no_unlock; 803 804 const Register rthread = r15_thread; 805 const Register robj = c_rarg1; 806 const Register rmon = c_rarg1; 807 808 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 809 // that would normally not be safe to use. Such bad returns into unsafe territory of 810 // the stack, will call InterpreterRuntime::at_unwind. 811 Label slow_path; 812 Label fast_path; 813 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 814 jmp(fast_path); 815 bind(slow_path); 816 push(state); 817 set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1); 818 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 819 reset_last_Java_frame(rthread, true); 820 pop(state); 821 bind(fast_path); 822 823 // get the value of _do_not_unlock_if_synchronized into rdx 824 const Address do_not_unlock_if_synchronized(rthread, 825 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 826 movbool(rbx, do_not_unlock_if_synchronized); 827 movbool(do_not_unlock_if_synchronized, false); // reset the flag 828 829 // get method access flags 830 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 831 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 832 testl(rcx, JVM_ACC_SYNCHRONIZED); 833 jcc(Assembler::zero, unlocked); 834 835 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 836 // is set. 837 testbool(rbx); 838 jcc(Assembler::notZero, no_unlock); 839 840 // unlock monitor 841 push(state); // save result 842 843 // BasicObjectLock will be first in list, since this is a 844 // synchronized method. However, need to check that the object has 845 // not been unlocked by an explicit monitorexit bytecode. 846 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 847 wordSize - (int) sizeof(BasicObjectLock)); 848 // We use c_rarg1/rdx so that if we go slow path it will be the correct 849 // register for unlock_object to pass to VM directly 850 lea(robj, monitor); // address of first monitor 851 852 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 853 testptr(rax, rax); 854 jcc(Assembler::notZero, unlock); 855 856 pop(state); 857 if (throw_monitor_exception) { 858 // Entry already unlocked, need to throw exception 859 call_VM(noreg, CAST_FROM_FN_PTR(address, 860 InterpreterRuntime::throw_illegal_monitor_state_exception)); 861 should_not_reach_here(); 862 } else { 863 // Monitor already unlocked during a stack unroll. If requested, 864 // install an illegal_monitor_state_exception. Continue with 865 // stack unrolling. 866 if (install_monitor_exception) { 867 call_VM(noreg, CAST_FROM_FN_PTR(address, 868 InterpreterRuntime::new_illegal_monitor_state_exception)); 869 } 870 jmp(unlocked); 871 } 872 873 bind(unlock); 874 unlock_object(robj); 875 pop(state); 876 877 // Check that for block-structured locking (i.e., that all locked 878 // objects has been unlocked) 879 bind(unlocked); 880 881 // rax, rdx: Might contain return value 882 883 // Check that all monitors are unlocked 884 { 885 Label loop, exception, entry, restart; 886 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 887 const Address monitor_block_top( 888 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 889 const Address monitor_block_bot( 890 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 891 892 bind(restart); 893 // We use c_rarg1 so that if we go slow path it will be the correct 894 // register for unlock_object to pass to VM directly 895 movptr(rmon, monitor_block_top); // derelativize pointer 896 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 897 // c_rarg1 points to current entry, starting with top-most entry 898 899 lea(rbx, monitor_block_bot); // points to word before bottom of 900 // monitor block 901 jmp(entry); 902 903 // Entry already locked, need to throw exception 904 bind(exception); 905 906 if (throw_monitor_exception) { 907 // Throw exception 908 MacroAssembler::call_VM(noreg, 909 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 910 throw_illegal_monitor_state_exception)); 911 should_not_reach_here(); 912 } else { 913 // Stack unrolling. Unlock object and install illegal_monitor_exception. 914 // Unlock does not block, so don't have to worry about the frame. 915 // We don't have to preserve c_rarg1 since we are going to throw an exception. 916 917 push(state); 918 mov(robj, rmon); // nop if robj and rmon are the same 919 unlock_object(robj); 920 pop(state); 921 922 if (install_monitor_exception) { 923 call_VM(noreg, CAST_FROM_FN_PTR(address, 924 InterpreterRuntime:: 925 new_illegal_monitor_state_exception)); 926 } 927 928 jmp(restart); 929 } 930 931 bind(loop); 932 // check if current entry is used 933 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 934 jcc(Assembler::notEqual, exception); 935 936 addptr(rmon, entry_size); // otherwise advance to next entry 937 bind(entry); 938 cmpptr(rmon, rbx); // check if bottom reached 939 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 940 } 941 942 bind(no_unlock); 943 944 // jvmti support 945 if (notify_jvmdi) { 946 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 947 } else { 948 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 949 } 950 951 // remove activation 952 // get sender sp 953 movptr(rbx, 954 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 955 if (StackReservedPages > 0) { 956 // testing if reserved zone needs to be re-enabled 957 Register rthread = r15_thread; 958 Label no_reserved_zone_enabling; 959 960 // check if already enabled - if so no re-enabling needed 961 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 962 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 963 jcc(Assembler::equal, no_reserved_zone_enabling); 964 965 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 966 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 967 968 call_VM_leaf( 969 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 970 call_VM(noreg, CAST_FROM_FN_PTR(address, 971 InterpreterRuntime::throw_delayed_StackOverflowError)); 972 should_not_reach_here(); 973 974 bind(no_reserved_zone_enabling); 975 } 976 leave(); // remove frame anchor 977 pop(ret_addr); // get return address 978 mov(rsp, rbx); // set sp to sender sp 979 pop_cont_fastpath(); 980 } 981 982 void InterpreterMacroAssembler::get_method_counters(Register method, 983 Register mcs, Label& skip) { 984 Label has_counters; 985 movptr(mcs, Address(method, Method::method_counters_offset())); 986 testptr(mcs, mcs); 987 jcc(Assembler::notZero, has_counters); 988 call_VM(noreg, CAST_FROM_FN_PTR(address, 989 InterpreterRuntime::build_method_counters), method); 990 movptr(mcs, Address(method,Method::method_counters_offset())); 991 testptr(mcs, mcs); 992 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 993 bind(has_counters); 994 } 995 996 997 // Lock object 998 // 999 // Args: 1000 // rdx, c_rarg1: BasicObjectLock to be used for locking 1001 // 1002 // Kills: 1003 // rax, rbx 1004 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1005 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1006 1007 if (LockingMode == LM_MONITOR) { 1008 call_VM_preemptable(noreg, 1009 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1010 lock_reg); 1011 } else { 1012 Label count_locking, done, slow_case; 1013 1014 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1015 const Register tmp_reg = rbx; 1016 const Register obj_reg = c_rarg3; // Will contain the oop 1017 const Register rklass_decode_tmp = rscratch1; 1018 1019 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1020 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1021 const int mark_offset = lock_offset + 1022 BasicLock::displaced_header_offset_in_bytes(); 1023 1024 // Load object pointer into obj_reg 1025 movptr(obj_reg, Address(lock_reg, obj_offset)); 1026 1027 if (DiagnoseSyncOnValueBasedClasses != 0) { 1028 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1029 testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1030 jcc(Assembler::notZero, slow_case); 1031 } 1032 1033 if (LockingMode == LM_LIGHTWEIGHT) { 1034 const Register thread = r15_thread; 1035 lightweight_lock(lock_reg, obj_reg, swap_reg, thread, tmp_reg, slow_case); 1036 } else if (LockingMode == LM_LEGACY) { 1037 // Load immediate 1 into swap_reg %rax 1038 movl(swap_reg, 1); 1039 1040 // Load (object->mark() | 1) into swap_reg %rax 1041 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1042 1043 // Save (object->mark() | 1) into BasicLock's displaced header 1044 movptr(Address(lock_reg, mark_offset), swap_reg); 1045 1046 assert(lock_offset == 0, 1047 "displaced header must be first word in BasicObjectLock"); 1048 1049 lock(); 1050 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1051 jcc(Assembler::zero, count_locking); 1052 1053 const int zero_bits = 7; 1054 1055 // Fast check for recursive lock. 1056 // 1057 // Can apply the optimization only if this is a stack lock 1058 // allocated in this thread. For efficiency, we can focus on 1059 // recently allocated stack locks (instead of reading the stack 1060 // base and checking whether 'mark' points inside the current 1061 // thread stack): 1062 // 1) (mark & zero_bits) == 0, and 1063 // 2) rsp <= mark < mark + os::pagesize() 1064 // 1065 // Warning: rsp + os::pagesize can overflow the stack base. We must 1066 // neither apply the optimization for an inflated lock allocated 1067 // just above the thread stack (this is why condition 1 matters) 1068 // nor apply the optimization if the stack lock is inside the stack 1069 // of another thread. The latter is avoided even in case of overflow 1070 // because we have guard pages at the end of all stacks. Hence, if 1071 // we go over the stack base and hit the stack of another thread, 1072 // this should not be in a writeable area that could contain a 1073 // stack lock allocated by that thread. As a consequence, a stack 1074 // lock less than page size away from rsp is guaranteed to be 1075 // owned by the current thread. 1076 // 1077 // These 3 tests can be done by evaluating the following 1078 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1079 // assuming both stack pointer and pagesize have their 1080 // least significant bits clear. 1081 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1082 subptr(swap_reg, rsp); 1083 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1084 1085 // Save the test result, for recursive case, the result is zero 1086 movptr(Address(lock_reg, mark_offset), swap_reg); 1087 jcc(Assembler::notZero, slow_case); 1088 1089 bind(count_locking); 1090 inc_held_monitor_count(); 1091 } 1092 jmp(done); 1093 1094 bind(slow_case); 1095 1096 // Call the runtime routine for slow case 1097 call_VM_preemptable(noreg, 1098 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1099 lock_reg); 1100 bind(done); 1101 } 1102 } 1103 1104 1105 // Unlocks an object. Used in monitorexit bytecode and 1106 // remove_activation. Throws an IllegalMonitorException if object is 1107 // not locked by current thread. 1108 // 1109 // Args: 1110 // rdx, c_rarg1: BasicObjectLock for lock 1111 // 1112 // Kills: 1113 // rax 1114 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1115 // rscratch1 (scratch reg) 1116 // rax, rbx, rcx, rdx 1117 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1118 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1119 1120 if (LockingMode == LM_MONITOR) { 1121 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1122 } else { 1123 Label count_locking, done, slow_case; 1124 1125 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1126 const Register header_reg = c_rarg2; // Will contain the old oopMark 1127 const Register obj_reg = c_rarg3; // Will contain the oop 1128 1129 save_bcp(); // Save in case of exception 1130 1131 if (LockingMode != LM_LIGHTWEIGHT) { 1132 // Convert from BasicObjectLock structure to object and BasicLock 1133 // structure Store the BasicLock address into %rax 1134 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1135 } 1136 1137 // Load oop into obj_reg(%c_rarg3) 1138 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1139 1140 // Free entry 1141 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1142 1143 if (LockingMode == LM_LIGHTWEIGHT) { 1144 lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case); 1145 } else if (LockingMode == LM_LEGACY) { 1146 // Load the old header from BasicLock structure 1147 movptr(header_reg, Address(swap_reg, 1148 BasicLock::displaced_header_offset_in_bytes())); 1149 1150 // Test for recursion 1151 testptr(header_reg, header_reg); 1152 1153 // zero for recursive case 1154 jcc(Assembler::zero, count_locking); 1155 1156 // Atomic swap back the old header 1157 lock(); 1158 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1159 1160 // zero for simple unlock of a stack-lock case 1161 jcc(Assembler::notZero, slow_case); 1162 1163 bind(count_locking); 1164 dec_held_monitor_count(); 1165 } 1166 jmp(done); 1167 1168 bind(slow_case); 1169 // Call the runtime routine for slow case. 1170 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1171 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1172 1173 bind(done); 1174 1175 restore_bcp(); 1176 } 1177 } 1178 1179 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1180 Label& zero_continue) { 1181 assert(ProfileInterpreter, "must be profiling interpreter"); 1182 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1183 testptr(mdp, mdp); 1184 jcc(Assembler::zero, zero_continue); 1185 } 1186 1187 1188 // Set the method data pointer for the current bcp. 1189 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1190 assert(ProfileInterpreter, "must be profiling interpreter"); 1191 Label set_mdp; 1192 push(rax); 1193 push(rbx); 1194 1195 get_method(rbx); 1196 // Test MDO to avoid the call if it is null. 1197 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1198 testptr(rax, rax); 1199 jcc(Assembler::zero, set_mdp); 1200 // rbx: method 1201 // _bcp_register: bcp 1202 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1203 // rax: mdi 1204 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1205 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1206 addptr(rbx, in_bytes(MethodData::data_offset())); 1207 addptr(rax, rbx); 1208 bind(set_mdp); 1209 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1210 pop(rbx); 1211 pop(rax); 1212 } 1213 1214 void InterpreterMacroAssembler::verify_method_data_pointer() { 1215 assert(ProfileInterpreter, "must be profiling interpreter"); 1216 #ifdef ASSERT 1217 Label verify_continue; 1218 push(rax); 1219 push(rbx); 1220 Register arg3_reg = c_rarg3; 1221 Register arg2_reg = c_rarg2; 1222 push(arg3_reg); 1223 push(arg2_reg); 1224 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1225 get_method(rbx); 1226 1227 // If the mdp is valid, it will point to a DataLayout header which is 1228 // consistent with the bcp. The converse is highly probable also. 1229 load_unsigned_short(arg2_reg, 1230 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1231 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1232 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1233 cmpptr(arg2_reg, _bcp_register); 1234 jcc(Assembler::equal, verify_continue); 1235 // rbx: method 1236 // _bcp_register: bcp 1237 // c_rarg3: mdp 1238 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1239 rbx, _bcp_register, arg3_reg); 1240 bind(verify_continue); 1241 pop(arg2_reg); 1242 pop(arg3_reg); 1243 pop(rbx); 1244 pop(rax); 1245 #endif // ASSERT 1246 } 1247 1248 1249 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1250 int constant, 1251 Register value) { 1252 assert(ProfileInterpreter, "must be profiling interpreter"); 1253 Address data(mdp_in, constant); 1254 movptr(data, value); 1255 } 1256 1257 1258 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1259 int constant, 1260 bool decrement) { 1261 // Counter address 1262 Address data(mdp_in, constant); 1263 1264 increment_mdp_data_at(data, decrement); 1265 } 1266 1267 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1268 bool decrement) { 1269 assert(ProfileInterpreter, "must be profiling interpreter"); 1270 // %%% this does 64bit counters at best it is wasting space 1271 // at worst it is a rare bug when counters overflow 1272 1273 if (decrement) { 1274 // Decrement the register. Set condition codes. 1275 addptr(data, -DataLayout::counter_increment); 1276 // If the decrement causes the counter to overflow, stay negative 1277 Label L; 1278 jcc(Assembler::negative, L); 1279 addptr(data, DataLayout::counter_increment); 1280 bind(L); 1281 } else { 1282 assert(DataLayout::counter_increment == 1, 1283 "flow-free idiom only works with 1"); 1284 // Increment the register. Set carry flag. 1285 addptr(data, DataLayout::counter_increment); 1286 // If the increment causes the counter to overflow, pull back by 1. 1287 sbbptr(data, 0); 1288 } 1289 } 1290 1291 1292 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1293 Register reg, 1294 int constant, 1295 bool decrement) { 1296 Address data(mdp_in, reg, Address::times_1, constant); 1297 1298 increment_mdp_data_at(data, decrement); 1299 } 1300 1301 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1302 int flag_byte_constant) { 1303 assert(ProfileInterpreter, "must be profiling interpreter"); 1304 int header_offset = in_bytes(DataLayout::flags_offset()); 1305 int header_bits = flag_byte_constant; 1306 // Set the flag 1307 orb(Address(mdp_in, header_offset), header_bits); 1308 } 1309 1310 1311 1312 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1313 int offset, 1314 Register value, 1315 Register test_value_out, 1316 Label& not_equal_continue) { 1317 assert(ProfileInterpreter, "must be profiling interpreter"); 1318 if (test_value_out == noreg) { 1319 cmpptr(value, Address(mdp_in, offset)); 1320 } else { 1321 // Put the test value into a register, so caller can use it: 1322 movptr(test_value_out, Address(mdp_in, offset)); 1323 cmpptr(test_value_out, value); 1324 } 1325 jcc(Assembler::notEqual, not_equal_continue); 1326 } 1327 1328 1329 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1330 int offset_of_disp) { 1331 assert(ProfileInterpreter, "must be profiling interpreter"); 1332 Address disp_address(mdp_in, offset_of_disp); 1333 addptr(mdp_in, disp_address); 1334 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1335 } 1336 1337 1338 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1339 Register reg, 1340 int offset_of_disp) { 1341 assert(ProfileInterpreter, "must be profiling interpreter"); 1342 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1343 addptr(mdp_in, disp_address); 1344 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1345 } 1346 1347 1348 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1349 int constant) { 1350 assert(ProfileInterpreter, "must be profiling interpreter"); 1351 addptr(mdp_in, constant); 1352 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1353 } 1354 1355 1356 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1357 assert(ProfileInterpreter, "must be profiling interpreter"); 1358 push(return_bci); // save/restore across call_VM 1359 call_VM(noreg, 1360 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1361 return_bci); 1362 pop(return_bci); 1363 } 1364 1365 1366 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1367 Register bumped_count) { 1368 if (ProfileInterpreter) { 1369 Label profile_continue; 1370 1371 // If no method data exists, go to profile_continue. 1372 // Otherwise, assign to mdp 1373 test_method_data_pointer(mdp, profile_continue); 1374 1375 // We are taking a branch. Increment the taken count. 1376 // We inline increment_mdp_data_at to return bumped_count in a register 1377 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1378 Address data(mdp, in_bytes(JumpData::taken_offset())); 1379 movptr(bumped_count, data); 1380 assert(DataLayout::counter_increment == 1, 1381 "flow-free idiom only works with 1"); 1382 addptr(bumped_count, DataLayout::counter_increment); 1383 sbbptr(bumped_count, 0); 1384 movptr(data, bumped_count); // Store back out 1385 1386 // The method data pointer needs to be updated to reflect the new target. 1387 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1388 bind(profile_continue); 1389 } 1390 } 1391 1392 1393 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1394 if (ProfileInterpreter) { 1395 Label profile_continue; 1396 1397 // If no method data exists, go to profile_continue. 1398 test_method_data_pointer(mdp, profile_continue); 1399 1400 // We are taking a branch. Increment the not taken count. 1401 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1402 1403 // The method data pointer needs to be updated to correspond to 1404 // the next bytecode 1405 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1406 bind(profile_continue); 1407 } 1408 } 1409 1410 void InterpreterMacroAssembler::profile_call(Register mdp) { 1411 if (ProfileInterpreter) { 1412 Label profile_continue; 1413 1414 // If no method data exists, go to profile_continue. 1415 test_method_data_pointer(mdp, profile_continue); 1416 1417 // We are making a call. Increment the count. 1418 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1419 1420 // The method data pointer needs to be updated to reflect the new target. 1421 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1422 bind(profile_continue); 1423 } 1424 } 1425 1426 1427 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1428 if (ProfileInterpreter) { 1429 Label profile_continue; 1430 1431 // If no method data exists, go to profile_continue. 1432 test_method_data_pointer(mdp, profile_continue); 1433 1434 // We are making a call. Increment the count. 1435 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1436 1437 // The method data pointer needs to be updated to reflect the new target. 1438 update_mdp_by_constant(mdp, 1439 in_bytes(VirtualCallData:: 1440 virtual_call_data_size())); 1441 bind(profile_continue); 1442 } 1443 } 1444 1445 1446 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1447 Register mdp, 1448 Register reg2, 1449 bool receiver_can_be_null) { 1450 if (ProfileInterpreter) { 1451 Label profile_continue; 1452 1453 // If no method data exists, go to profile_continue. 1454 test_method_data_pointer(mdp, profile_continue); 1455 1456 Label skip_receiver_profile; 1457 if (receiver_can_be_null) { 1458 Label not_null; 1459 testptr(receiver, receiver); 1460 jccb(Assembler::notZero, not_null); 1461 // We are making a call. Increment the count for null receiver. 1462 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1463 jmp(skip_receiver_profile); 1464 bind(not_null); 1465 } 1466 1467 // Record the receiver type. 1468 record_klass_in_profile(receiver, mdp, reg2, true); 1469 bind(skip_receiver_profile); 1470 1471 // The method data pointer needs to be updated to reflect the new target. 1472 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1473 bind(profile_continue); 1474 } 1475 } 1476 1477 // This routine creates a state machine for updating the multi-row 1478 // type profile at a virtual call site (or other type-sensitive bytecode). 1479 // The machine visits each row (of receiver/count) until the receiver type 1480 // is found, or until it runs out of rows. At the same time, it remembers 1481 // the location of the first empty row. (An empty row records null for its 1482 // receiver, and can be allocated for a newly-observed receiver type.) 1483 // Because there are two degrees of freedom in the state, a simple linear 1484 // search will not work; it must be a decision tree. Hence this helper 1485 // function is recursive, to generate the required tree structured code. 1486 // It's the interpreter, so we are trading off code space for speed. 1487 // See below for example code. 1488 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1489 Register receiver, Register mdp, 1490 Register reg2, int start_row, 1491 Label& done, bool is_virtual_call) { 1492 if (TypeProfileWidth == 0) { 1493 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1494 } else { 1495 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1496 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1497 } 1498 } 1499 1500 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1501 Label& done, int total_rows, 1502 OffsetFunction item_offset_fn, 1503 OffsetFunction item_count_offset_fn) { 1504 int last_row = total_rows - 1; 1505 assert(start_row <= last_row, "must be work left to do"); 1506 // Test this row for both the item and for null. 1507 // Take any of three different outcomes: 1508 // 1. found item => increment count and goto done 1509 // 2. found null => keep looking for case 1, maybe allocate this cell 1510 // 3. found something else => keep looking for cases 1 and 2 1511 // Case 3 is handled by a recursive call. 1512 for (int row = start_row; row <= last_row; row++) { 1513 Label next_test; 1514 bool test_for_null_also = (row == start_row); 1515 1516 // See if the item is item[n]. 1517 int item_offset = in_bytes(item_offset_fn(row)); 1518 test_mdp_data_at(mdp, item_offset, item, 1519 (test_for_null_also ? reg2 : noreg), 1520 next_test); 1521 // (Reg2 now contains the item from the CallData.) 1522 1523 // The item is item[n]. Increment count[n]. 1524 int count_offset = in_bytes(item_count_offset_fn(row)); 1525 increment_mdp_data_at(mdp, count_offset); 1526 jmp(done); 1527 bind(next_test); 1528 1529 if (test_for_null_also) { 1530 // Failed the equality check on item[n]... Test for null. 1531 testptr(reg2, reg2); 1532 if (start_row == last_row) { 1533 // The only thing left to do is handle the null case. 1534 Label found_null; 1535 jccb(Assembler::zero, found_null); 1536 // Item did not match any saved item and there is no empty row for it. 1537 // Increment total counter to indicate polymorphic case. 1538 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1539 jmp(done); 1540 bind(found_null); 1541 break; 1542 } 1543 Label found_null; 1544 // Since null is rare, make it be the branch-taken case. 1545 jcc(Assembler::zero, found_null); 1546 1547 // Put all the "Case 3" tests here. 1548 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1549 item_offset_fn, item_count_offset_fn); 1550 1551 // Found a null. Keep searching for a matching item, 1552 // but remember that this is an empty (unused) slot. 1553 bind(found_null); 1554 } 1555 } 1556 1557 // In the fall-through case, we found no matching item, but we 1558 // observed the item[start_row] is null. 1559 1560 // Fill in the item field and increment the count. 1561 int item_offset = in_bytes(item_offset_fn(start_row)); 1562 set_mdp_data_at(mdp, item_offset, item); 1563 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1564 movl(reg2, DataLayout::counter_increment); 1565 set_mdp_data_at(mdp, count_offset, reg2); 1566 if (start_row > 0) { 1567 jmp(done); 1568 } 1569 } 1570 1571 // Example state machine code for three profile rows: 1572 // // main copy of decision tree, rooted at row[1] 1573 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1574 // if (row[0].rec != nullptr) { 1575 // // inner copy of decision tree, rooted at row[1] 1576 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1577 // if (row[1].rec != nullptr) { 1578 // // degenerate decision tree, rooted at row[2] 1579 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1580 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1581 // row[2].init(rec); goto done; 1582 // } else { 1583 // // remember row[1] is empty 1584 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1585 // row[1].init(rec); goto done; 1586 // } 1587 // } else { 1588 // // remember row[0] is empty 1589 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1590 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1591 // row[0].init(rec); goto done; 1592 // } 1593 // done: 1594 1595 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1596 Register mdp, Register reg2, 1597 bool is_virtual_call) { 1598 assert(ProfileInterpreter, "must be profiling"); 1599 Label done; 1600 1601 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1602 1603 bind (done); 1604 } 1605 1606 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1607 Register mdp) { 1608 if (ProfileInterpreter) { 1609 Label profile_continue; 1610 uint row; 1611 1612 // If no method data exists, go to profile_continue. 1613 test_method_data_pointer(mdp, profile_continue); 1614 1615 // Update the total ret count. 1616 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1617 1618 for (row = 0; row < RetData::row_limit(); row++) { 1619 Label next_test; 1620 1621 // See if return_bci is equal to bci[n]: 1622 test_mdp_data_at(mdp, 1623 in_bytes(RetData::bci_offset(row)), 1624 return_bci, noreg, 1625 next_test); 1626 1627 // return_bci is equal to bci[n]. Increment the count. 1628 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1629 1630 // The method data pointer needs to be updated to reflect the new target. 1631 update_mdp_by_offset(mdp, 1632 in_bytes(RetData::bci_displacement_offset(row))); 1633 jmp(profile_continue); 1634 bind(next_test); 1635 } 1636 1637 update_mdp_for_ret(return_bci); 1638 1639 bind(profile_continue); 1640 } 1641 } 1642 1643 1644 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1645 if (ProfileInterpreter) { 1646 Label profile_continue; 1647 1648 // If no method data exists, go to profile_continue. 1649 test_method_data_pointer(mdp, profile_continue); 1650 1651 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1652 1653 // The method data pointer needs to be updated. 1654 int mdp_delta = in_bytes(BitData::bit_data_size()); 1655 if (TypeProfileCasts) { 1656 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1657 } 1658 update_mdp_by_constant(mdp, mdp_delta); 1659 1660 bind(profile_continue); 1661 } 1662 } 1663 1664 1665 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1666 if (ProfileInterpreter) { 1667 Label profile_continue; 1668 1669 // If no method data exists, go to profile_continue. 1670 test_method_data_pointer(mdp, profile_continue); 1671 1672 // The method data pointer needs to be updated. 1673 int mdp_delta = in_bytes(BitData::bit_data_size()); 1674 if (TypeProfileCasts) { 1675 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1676 1677 // Record the object type. 1678 record_klass_in_profile(klass, mdp, reg2, false); 1679 } 1680 update_mdp_by_constant(mdp, mdp_delta); 1681 1682 bind(profile_continue); 1683 } 1684 } 1685 1686 1687 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1688 if (ProfileInterpreter) { 1689 Label profile_continue; 1690 1691 // If no method data exists, go to profile_continue. 1692 test_method_data_pointer(mdp, profile_continue); 1693 1694 // Update the default case count 1695 increment_mdp_data_at(mdp, 1696 in_bytes(MultiBranchData::default_count_offset())); 1697 1698 // The method data pointer needs to be updated. 1699 update_mdp_by_offset(mdp, 1700 in_bytes(MultiBranchData:: 1701 default_displacement_offset())); 1702 1703 bind(profile_continue); 1704 } 1705 } 1706 1707 1708 void InterpreterMacroAssembler::profile_switch_case(Register index, 1709 Register mdp, 1710 Register reg2) { 1711 if (ProfileInterpreter) { 1712 Label profile_continue; 1713 1714 // If no method data exists, go to profile_continue. 1715 test_method_data_pointer(mdp, profile_continue); 1716 1717 // Build the base (index * per_case_size_in_bytes()) + 1718 // case_array_offset_in_bytes() 1719 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1720 imulptr(index, reg2); // XXX l ? 1721 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1722 1723 // Update the case count 1724 increment_mdp_data_at(mdp, 1725 index, 1726 in_bytes(MultiBranchData::relative_count_offset())); 1727 1728 // The method data pointer needs to be updated. 1729 update_mdp_by_offset(mdp, 1730 index, 1731 in_bytes(MultiBranchData:: 1732 relative_displacement_offset())); 1733 1734 bind(profile_continue); 1735 } 1736 } 1737 1738 1739 1740 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1741 if (state == atos) { 1742 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1743 } 1744 } 1745 1746 1747 // Jump if ((*counter_addr += increment) & mask) == 0 1748 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1749 Register scratch, Label* where) { 1750 // This update is actually not atomic and can lose a number of updates 1751 // under heavy contention, but the alternative of using the (contended) 1752 // atomic update here penalizes profiling paths too much. 1753 movl(scratch, counter_addr); 1754 incrementl(scratch, InvocationCounter::count_increment); 1755 movl(counter_addr, scratch); 1756 andl(scratch, mask); 1757 if (where != nullptr) { 1758 jcc(Assembler::zero, *where); 1759 } 1760 } 1761 1762 void InterpreterMacroAssembler::notify_method_entry() { 1763 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1764 // track stack depth. If it is possible to enter interp_only_mode we add 1765 // the code to check if the event should be sent. 1766 Register rthread = r15_thread; 1767 Register rarg = c_rarg1; 1768 if (JvmtiExport::can_post_interpreter_events()) { 1769 Label L; 1770 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1771 testl(rdx, rdx); 1772 jcc(Assembler::zero, L); 1773 call_VM(noreg, CAST_FROM_FN_PTR(address, 1774 InterpreterRuntime::post_method_entry)); 1775 bind(L); 1776 } 1777 1778 if (DTraceMethodProbes) { 1779 get_method(rarg); 1780 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1781 rthread, rarg); 1782 } 1783 1784 // RedefineClasses() tracing support for obsolete method entry 1785 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1786 get_method(rarg); 1787 call_VM_leaf( 1788 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1789 rthread, rarg); 1790 } 1791 } 1792 1793 1794 void InterpreterMacroAssembler::notify_method_exit( 1795 TosState state, NotifyMethodExitMode mode) { 1796 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1797 // track stack depth. If it is possible to enter interp_only_mode we add 1798 // the code to check if the event should be sent. 1799 Register rthread = r15_thread; 1800 Register rarg = c_rarg1; 1801 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1802 Label L; 1803 // Note: frame::interpreter_frame_result has a dependency on how the 1804 // method result is saved across the call to post_method_exit. If this 1805 // is changed then the interpreter_frame_result implementation will 1806 // need to be updated too. 1807 1808 // template interpreter will leave the result on the top of the stack. 1809 push(state); 1810 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1811 testl(rdx, rdx); 1812 jcc(Assembler::zero, L); 1813 call_VM(noreg, 1814 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1815 bind(L); 1816 pop(state); 1817 } 1818 1819 if (DTraceMethodProbes) { 1820 push(state); 1821 get_method(rarg); 1822 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1823 rthread, rarg); 1824 pop(state); 1825 } 1826 } 1827 1828 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1829 // Get index out of bytecode pointer 1830 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1831 // Get address of invokedynamic array 1832 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1833 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1834 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 1835 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 1836 } else { 1837 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1838 } 1839 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 1840 } 1841 1842 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1843 // Get index out of bytecode pointer 1844 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1845 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1846 1847 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 1848 // Take shortcut if the size is a power of 2 1849 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1850 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1851 } else { 1852 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1853 } 1854 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 1855 } 1856 1857 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1858 // Get index out of bytecode pointer 1859 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 1860 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1861 1862 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 1863 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1864 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 1865 }