1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compiler_globals.hpp" 26 #include "interp_masm_x86.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "logging/log.hpp" 30 #include "oops/arrayOop.hpp" 31 #include "oops/constMethodFlags.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "oops/inlineKlass.hpp" 36 #include "oops/resolvedFieldEntry.hpp" 37 #include "oops/resolvedIndyEntry.hpp" 38 #include "oops/resolvedMethodEntry.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 // Implementation of InterpreterMacroAssembler 49 50 void InterpreterMacroAssembler::jump_to_entry(address entry) { 51 assert(entry, "Entry must have been generated by now"); 52 jump(RuntimeAddress(entry)); 53 } 54 55 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 56 Label update, next, none; 57 58 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 59 60 interp_verify_oop(obj, atos); 61 62 testptr(obj, obj); 63 jccb(Assembler::notZero, update); 64 testptr(mdo_addr, TypeEntries::null_seen); 65 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 66 // atomic update to prevent overwriting Klass* with 0 67 lock(); 68 orptr(mdo_addr, TypeEntries::null_seen); 69 jmpb(next); 70 71 bind(update); 72 load_klass(obj, obj, rscratch1); 73 mov(rscratch1, obj); 74 75 xorptr(obj, mdo_addr); 76 testptr(obj, TypeEntries::type_klass_mask); 77 jccb(Assembler::zero, next); // klass seen before, nothing to 78 // do. The unknown bit may have been 79 // set already but no need to check. 80 81 testptr(obj, TypeEntries::type_unknown); 82 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 83 84 cmpptr(mdo_addr, 0); 85 jccb(Assembler::equal, none); 86 cmpptr(mdo_addr, TypeEntries::null_seen); 87 jccb(Assembler::equal, none); 88 89 // There is a chance that the checks above (re-reading profiling 90 // data from memory) fail if another thread has just set the 91 // profiling to this obj's klass 92 mov(obj, rscratch1); 93 xorptr(obj, mdo_addr); 94 testptr(obj, TypeEntries::type_klass_mask); 95 jccb(Assembler::zero, next); 96 97 // different than before. Cannot keep accurate profile. 98 orptr(mdo_addr, TypeEntries::type_unknown); 99 jmpb(next); 100 101 bind(none); 102 // first time here. Set profile type. 103 movptr(mdo_addr, obj); 104 #ifdef ASSERT 105 andptr(obj, TypeEntries::type_klass_mask); 106 verify_klass_ptr(obj); 107 #endif 108 109 bind(next); 110 } 111 112 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 113 if (!ProfileInterpreter) { 114 return; 115 } 116 117 if (MethodData::profile_arguments() || MethodData::profile_return()) { 118 Label profile_continue; 119 120 test_method_data_pointer(mdp, profile_continue); 121 122 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 123 124 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 125 jcc(Assembler::notEqual, profile_continue); 126 127 if (MethodData::profile_arguments()) { 128 Label done; 129 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 130 addptr(mdp, off_to_args); 131 132 for (int i = 0; i < TypeProfileArgsLimit; i++) { 133 if (i > 0 || MethodData::profile_return()) { 134 // If return value type is profiled we may have no argument to profile 135 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 136 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 137 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 138 jcc(Assembler::less, done); 139 } 140 movptr(tmp, Address(callee, Method::const_offset())); 141 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 142 // stack offset o (zero based) from the start of the argument 143 // list, for n arguments translates into offset n - o - 1 from 144 // the end of the argument list 145 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 146 subl(tmp, 1); 147 Address arg_addr = argument_address(tmp); 148 movptr(tmp, arg_addr); 149 150 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 151 profile_obj_type(tmp, mdo_arg_addr); 152 153 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 154 addptr(mdp, to_add); 155 off_to_args += to_add; 156 } 157 158 if (MethodData::profile_return()) { 159 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 160 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 161 } 162 163 bind(done); 164 165 if (MethodData::profile_return()) { 166 // We're right after the type profile for the last 167 // argument. tmp is the number of cells left in the 168 // CallTypeData/VirtualCallTypeData to reach its end. Non null 169 // if there's a return to profile. 170 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 171 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 172 addptr(mdp, tmp); 173 } 174 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 175 } else { 176 assert(MethodData::profile_return(), "either profile call args or call ret"); 177 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 178 } 179 180 // mdp points right after the end of the 181 // CallTypeData/VirtualCallTypeData, right after the cells for the 182 // return value type if there's one 183 184 bind(profile_continue); 185 } 186 } 187 188 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 189 assert_different_registers(mdp, ret, tmp, _bcp_register); 190 if (ProfileInterpreter && MethodData::profile_return()) { 191 Label profile_continue; 192 193 test_method_data_pointer(mdp, profile_continue); 194 195 if (MethodData::profile_return_jsr292_only()) { 196 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 197 198 // If we don't profile all invoke bytecodes we must make sure 199 // it's a bytecode we indeed profile. We can't go back to the 200 // beginning of the ProfileData we intend to update to check its 201 // type because we're right after it and we don't known its 202 // length 203 Label do_profile; 204 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 205 jcc(Assembler::equal, do_profile); 206 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 207 jcc(Assembler::equal, do_profile); 208 get_method(tmp); 209 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 210 jcc(Assembler::notEqual, profile_continue); 211 212 bind(do_profile); 213 } 214 215 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 216 mov(tmp, ret); 217 profile_obj_type(tmp, mdo_ret_addr); 218 219 bind(profile_continue); 220 } 221 } 222 223 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 224 if (ProfileInterpreter && MethodData::profile_parameters()) { 225 Label profile_continue; 226 227 test_method_data_pointer(mdp, profile_continue); 228 229 // Load the offset of the area within the MDO used for 230 // parameters. If it's negative we're not profiling any parameters 231 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 232 testl(tmp1, tmp1); 233 jcc(Assembler::negative, profile_continue); 234 235 // Compute a pointer to the area for parameters from the offset 236 // and move the pointer to the slot for the last 237 // parameters. Collect profiling from last parameter down. 238 // mdo start + parameters offset + array length - 1 239 addptr(mdp, tmp1); 240 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 241 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 242 243 Label loop; 244 bind(loop); 245 246 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 247 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 248 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 249 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 250 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 251 252 // load offset on the stack from the slot for this parameter 253 movptr(tmp2, arg_off); 254 negptr(tmp2); 255 // read the parameter from the local area 256 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 257 258 // profile the parameter 259 profile_obj_type(tmp2, arg_type); 260 261 // go to next parameter 262 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 263 jcc(Assembler::positive, loop); 264 265 bind(profile_continue); 266 } 267 } 268 269 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 270 int number_of_arguments) { 271 // interpreter specific 272 // 273 // Note: No need to save/restore bcp & locals registers 274 // since these are callee saved registers and no blocking/ 275 // GC can happen in leaf calls. 276 // Further Note: DO NOT save/restore bcp/locals. If a caller has 277 // already saved them so that it can use rsi/rdi as temporaries 278 // then a save/restore here will DESTROY the copy the caller 279 // saved! There used to be a save_bcp() that only happened in 280 // the ASSERT path (no restore_bcp). Which caused bizarre failures 281 // when jvm built with ASSERTs. 282 #ifdef ASSERT 283 { 284 Label L; 285 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 286 jcc(Assembler::equal, L); 287 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 288 " last_sp != null"); 289 bind(L); 290 } 291 #endif 292 // super call 293 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 294 // interpreter specific 295 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 296 // but since they may not have been saved (and we don't want to 297 // save them here (see note above) the assert is invalid. 298 } 299 300 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 301 Register java_thread, 302 Register last_java_sp, 303 address entry_point, 304 int number_of_arguments, 305 bool check_exceptions) { 306 // interpreter specific 307 // 308 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 309 // really make a difference for these runtime calls, since they are 310 // slow anyway. Btw., bcp must be saved/restored since it may change 311 // due to GC. 312 save_bcp(); 313 #ifdef ASSERT 314 { 315 Label L; 316 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 317 jcc(Assembler::equal, L); 318 stop("InterpreterMacroAssembler::call_VM_base:" 319 " last_sp isn't null"); 320 bind(L); 321 } 322 #endif /* ASSERT */ 323 // super call 324 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 325 entry_point, number_of_arguments, 326 check_exceptions); 327 // interpreter specific 328 restore_bcp(); 329 restore_locals(); 330 } 331 332 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 333 address entry_point, 334 Register arg_1) { 335 assert(arg_1 == c_rarg1, ""); 336 Label resume_pc, not_preempted; 337 338 #ifdef ASSERT 339 { 340 Label L; 341 cmpptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 342 jcc(Assembler::equal, L); 343 stop("Should not have alternate return address set"); 344 bind(L); 345 } 346 #endif /* ASSERT */ 347 348 // Force freeze slow path. 349 push_cont_fastpath(); 350 351 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 352 // Note: call_VM_helper requires last_Java_pc for anchor to be at the top of the stack. 353 lea(rscratch1, resume_pc); 354 push(rscratch1); 355 MacroAssembler::call_VM_helper(oop_result, entry_point, 1, false /*check_exceptions*/); 356 pop(rscratch1); 357 358 pop_cont_fastpath(); 359 360 // Check if preempted. 361 movptr(rscratch1, Address(r15_thread, JavaThread::preempt_alternate_return_offset())); 362 cmpptr(rscratch1, NULL_WORD); 363 jccb(Assembler::zero, not_preempted); 364 movptr(Address(r15_thread, JavaThread::preempt_alternate_return_offset()), NULL_WORD); 365 jmp(rscratch1); 366 367 // In case of preemption, this is where we will resume once we finally acquire the monitor. 368 bind(resume_pc); 369 restore_after_resume(false /* is_native */); 370 371 bind(not_preempted); 372 } 373 374 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 375 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 376 call(rscratch1); 377 if (is_native) { 378 // On resume we need to set up stack as expected. 379 push(dtos); 380 push(ltos); 381 } 382 } 383 384 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 385 if (JvmtiExport::can_pop_frame()) { 386 Label L; 387 // Initiate popframe handling only if it is not already being 388 // processed. If the flag has the popframe_processing bit set, it 389 // means that this code is called *during* popframe handling - we 390 // don't want to reenter. 391 // This method is only called just after the call into the vm in 392 // call_VM_base, so the arg registers are available. 393 Register pop_cond = c_rarg0; 394 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 395 testl(pop_cond, JavaThread::popframe_pending_bit); 396 jcc(Assembler::zero, L); 397 testl(pop_cond, JavaThread::popframe_processing_bit); 398 jcc(Assembler::notZero, L); 399 // Call Interpreter::remove_activation_preserving_args_entry() to get the 400 // address of the same-named entrypoint in the generated interpreter code. 401 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 402 jmp(rax); 403 bind(L); 404 } 405 } 406 407 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 408 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); 409 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 410 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 411 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 412 413 switch (state) { 414 case atos: movptr(rax, oop_addr); 415 movptr(oop_addr, NULL_WORD); 416 interp_verify_oop(rax, state); break; 417 case ltos: movptr(rax, val_addr); break; 418 case btos: // fall through 419 case ztos: // fall through 420 case ctos: // fall through 421 case stos: // fall through 422 case itos: movl(rax, val_addr); break; 423 case ftos: load_float(val_addr); break; 424 case dtos: load_double(val_addr); break; 425 case vtos: /* nothing to do */ break; 426 default : ShouldNotReachHere(); 427 } 428 429 // Clean up tos value in the thread object 430 movl(tos_addr, ilgl); 431 movptr(val_addr, NULL_WORD); 432 } 433 434 435 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 436 if (JvmtiExport::can_force_early_return()) { 437 Label L; 438 Register tmp = c_rarg0; 439 Register rthread = r15_thread; 440 441 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 442 testptr(tmp, tmp); 443 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 444 445 // Initiate earlyret handling only if it is not already being processed. 446 // If the flag has the earlyret_processing bit set, it means that this code 447 // is called *during* earlyret handling - we don't want to reenter. 448 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 449 cmpl(tmp, JvmtiThreadState::earlyret_pending); 450 jcc(Assembler::notEqual, L); 451 452 // Call Interpreter::remove_activation_early_entry() to get the address of the 453 // same-named entrypoint in the generated interpreter code. 454 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 455 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 456 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 457 jmp(rax); 458 bind(L); 459 } 460 } 461 462 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 463 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 464 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 465 bswapl(reg); 466 shrl(reg, 16); 467 } 468 469 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 470 int bcp_offset, 471 size_t index_size) { 472 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 473 if (index_size == sizeof(u2)) { 474 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 475 } else if (index_size == sizeof(u4)) { 476 movl(index, Address(_bcp_register, bcp_offset)); 477 } else if (index_size == sizeof(u1)) { 478 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 479 } else { 480 ShouldNotReachHere(); 481 } 482 } 483 484 // Load object from cpool->resolved_references(index) 485 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 486 Register index, 487 Register tmp) { 488 assert_different_registers(result, index); 489 490 get_constant_pool(result); 491 // load pointer for resolved_references[] objArray 492 movptr(result, Address(result, ConstantPool::cache_offset())); 493 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 494 resolve_oop_handle(result, tmp); 495 load_heap_oop(result, Address(result, index, 496 UseCompressedOops ? Address::times_4 : Address::times_ptr, 497 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 498 } 499 500 // load cpool->resolved_klass_at(index) 501 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 502 Register cpool, 503 Register index) { 504 assert_different_registers(cpool, index); 505 506 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 507 Register resolved_klasses = cpool; 508 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 509 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 510 } 511 512 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 513 // subtype of super_klass. 514 // 515 // Args: 516 // rax: superklass 517 // Rsub_klass: subklass 518 // 519 // Kills: 520 // rcx, rdi 521 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 522 Label& ok_is_subtype, 523 bool profile) { 524 assert(Rsub_klass != rax, "rax holds superklass"); 525 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 526 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 527 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 528 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 529 530 // Profile the not-null value's klass. 531 if (profile) { 532 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 533 } 534 535 // Do the check. 536 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 537 } 538 539 540 // Java Expression Stack 541 542 void InterpreterMacroAssembler::pop_ptr(Register r) { 543 pop(r); 544 } 545 546 void InterpreterMacroAssembler::push_ptr(Register r) { 547 push(r); 548 } 549 550 void InterpreterMacroAssembler::push_i(Register r) { 551 push(r); 552 } 553 554 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 555 push(r); 556 } 557 558 void InterpreterMacroAssembler::push_f(XMMRegister r) { 559 subptr(rsp, wordSize); 560 movflt(Address(rsp, 0), r); 561 } 562 563 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 564 movflt(r, Address(rsp, 0)); 565 addptr(rsp, wordSize); 566 } 567 568 void InterpreterMacroAssembler::push_d(XMMRegister r) { 569 subptr(rsp, 2 * wordSize); 570 movdbl(Address(rsp, 0), r); 571 } 572 573 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 574 movdbl(r, Address(rsp, 0)); 575 addptr(rsp, 2 * Interpreter::stackElementSize); 576 } 577 578 void InterpreterMacroAssembler::pop_i(Register r) { 579 // XXX can't use pop currently, upper half non clean 580 movl(r, Address(rsp, 0)); 581 addptr(rsp, wordSize); 582 } 583 584 void InterpreterMacroAssembler::pop_l(Register r) { 585 movq(r, Address(rsp, 0)); 586 addptr(rsp, 2 * Interpreter::stackElementSize); 587 } 588 589 void InterpreterMacroAssembler::push_l(Register r) { 590 subptr(rsp, 2 * wordSize); 591 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 592 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 593 } 594 595 void InterpreterMacroAssembler::pop(TosState state) { 596 switch (state) { 597 case atos: pop_ptr(); break; 598 case btos: 599 case ztos: 600 case ctos: 601 case stos: 602 case itos: pop_i(); break; 603 case ltos: pop_l(); break; 604 case ftos: pop_f(xmm0); break; 605 case dtos: pop_d(xmm0); break; 606 case vtos: /* nothing to do */ break; 607 default: ShouldNotReachHere(); 608 } 609 interp_verify_oop(rax, state); 610 } 611 612 void InterpreterMacroAssembler::push(TosState state) { 613 interp_verify_oop(rax, state); 614 switch (state) { 615 case atos: push_ptr(); break; 616 case btos: 617 case ztos: 618 case ctos: 619 case stos: 620 case itos: push_i(); break; 621 case ltos: push_l(); break; 622 case ftos: push_f(xmm0); break; 623 case dtos: push_d(xmm0); break; 624 case vtos: /* nothing to do */ break; 625 default : ShouldNotReachHere(); 626 } 627 } 628 629 // Helpers for swap and dup 630 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 631 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 632 } 633 634 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 635 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 636 } 637 638 639 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 640 // set sender sp 641 lea(_bcp_register, Address(rsp, wordSize)); 642 // record last_sp 643 mov(rcx, _bcp_register); 644 subptr(rcx, rbp); 645 sarptr(rcx, LogBytesPerWord); 646 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx); 647 } 648 649 650 // Jump to from_interpreted entry of a call unless single stepping is possible 651 // in this thread in which case we must call the i2i entry 652 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 653 prepare_to_jump_from_interpreted(); 654 655 if (JvmtiExport::can_post_interpreter_events()) { 656 Label run_compiled_code; 657 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 658 // compiled code in threads for which the event is enabled. Check here for 659 // interp_only_mode if these events CAN be enabled. 660 // interp_only is an int, on little endian it is sufficient to test the byte only 661 // Is a cmpl faster? 662 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); 663 jccb(Assembler::zero, run_compiled_code); 664 jmp(Address(method, Method::interpreter_entry_offset())); 665 bind(run_compiled_code); 666 } 667 668 jmp(Address(method, Method::from_interpreted_offset())); 669 } 670 671 // The following two routines provide a hook so that an implementation 672 // can schedule the dispatch in two parts. x86 does not do this. 673 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 674 // Nothing x86 specific to be done here 675 } 676 677 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 678 dispatch_next(state, step); 679 } 680 681 void InterpreterMacroAssembler::dispatch_base(TosState state, 682 address* table, 683 bool verifyoop, 684 bool generate_poll) { 685 if (VerifyActivationFrameSize) { 686 Label L; 687 mov(rcx, rbp); 688 subptr(rcx, rsp); 689 int32_t min_frame_size = 690 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 691 wordSize; 692 cmpptr(rcx, min_frame_size); 693 jcc(Assembler::greaterEqual, L); 694 stop("broken stack frame"); 695 bind(L); 696 } 697 if (verifyoop) { 698 interp_verify_oop(rax, state); 699 } 700 701 address* const safepoint_table = Interpreter::safept_table(state); 702 Label no_safepoint, dispatch; 703 if (table != safepoint_table && generate_poll) { 704 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 705 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 706 707 jccb(Assembler::zero, no_safepoint); 708 lea(rscratch1, ExternalAddress((address)safepoint_table)); 709 jmpb(dispatch); 710 } 711 712 bind(no_safepoint); 713 lea(rscratch1, ExternalAddress((address)table)); 714 bind(dispatch); 715 jmp(Address(rscratch1, rbx, Address::times_8)); 716 } 717 718 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 719 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 720 } 721 722 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 723 dispatch_base(state, Interpreter::normal_table(state)); 724 } 725 726 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 727 dispatch_base(state, Interpreter::normal_table(state), false); 728 } 729 730 731 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 732 // load next bytecode (load before advancing _bcp_register to prevent AGI) 733 load_unsigned_byte(rbx, Address(_bcp_register, step)); 734 // advance _bcp_register 735 increment(_bcp_register, step); 736 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 737 } 738 739 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 740 // load current bytecode 741 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 742 dispatch_base(state, table); 743 } 744 745 void InterpreterMacroAssembler::narrow(Register result) { 746 747 // Get method->_constMethod->_result_type 748 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 749 movptr(rcx, Address(rcx, Method::const_offset())); 750 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 751 752 Label done, notBool, notByte, notChar; 753 754 // common case first 755 cmpl(rcx, T_INT); 756 jcc(Assembler::equal, done); 757 758 // mask integer result to narrower return type. 759 cmpl(rcx, T_BOOLEAN); 760 jcc(Assembler::notEqual, notBool); 761 andl(result, 0x1); 762 jmp(done); 763 764 bind(notBool); 765 cmpl(rcx, T_BYTE); 766 jcc(Assembler::notEqual, notByte); 767 movsbl(result, result); 768 jmp(done); 769 770 bind(notByte); 771 cmpl(rcx, T_CHAR); 772 jcc(Assembler::notEqual, notChar); 773 movzwl(result, result); 774 jmp(done); 775 776 bind(notChar); 777 // cmpl(rcx, T_SHORT); // all that's left 778 // jcc(Assembler::notEqual, done); 779 movswl(result, result); 780 781 // Nothing to do for T_INT 782 bind(done); 783 } 784 785 // remove activation 786 // 787 // Apply stack watermark barrier. 788 // Unlock the receiver if this is a synchronized method. 789 // Unlock any Java monitors from synchronized blocks. 790 // Remove the activation from the stack. 791 // 792 // If there are locked Java monitors 793 // If throw_monitor_exception 794 // throws IllegalMonitorStateException 795 // Else if install_monitor_exception 796 // installs IllegalMonitorStateException 797 // Else 798 // no error processing 799 void InterpreterMacroAssembler::remove_activation( 800 TosState state, 801 Register ret_addr, 802 bool throw_monitor_exception, 803 bool install_monitor_exception, 804 bool notify_jvmdi) { 805 // Note: Registers rdx xmm0 may be in use for the 806 // result check if synchronized method 807 Label unlocked, unlock, no_unlock; 808 809 const Register rthread = r15_thread; 810 const Register robj = c_rarg1; 811 const Register rmon = c_rarg1; 812 813 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 814 // that would normally not be safe to use. Such bad returns into unsafe territory of 815 // the stack, will call InterpreterRuntime::at_unwind. 816 Label slow_path; 817 Label fast_path; 818 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 819 jmp(fast_path); 820 bind(slow_path); 821 push(state); 822 set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1); 823 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 824 reset_last_Java_frame(rthread, true); 825 pop(state); 826 bind(fast_path); 827 828 // get the value of _do_not_unlock_if_synchronized into rdx 829 const Address do_not_unlock_if_synchronized(rthread, 830 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 831 movbool(rbx, do_not_unlock_if_synchronized); 832 movbool(do_not_unlock_if_synchronized, false); // reset the flag 833 834 // get method access flags 835 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 836 load_unsigned_short(rcx, Address(rcx, Method::access_flags_offset())); 837 testl(rcx, JVM_ACC_SYNCHRONIZED); 838 jcc(Assembler::zero, unlocked); 839 840 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 841 // is set. 842 testbool(rbx); 843 jcc(Assembler::notZero, no_unlock); 844 845 // unlock monitor 846 push(state); // save result 847 848 // BasicObjectLock will be first in list, since this is a 849 // synchronized method. However, need to check that the object has 850 // not been unlocked by an explicit monitorexit bytecode. 851 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 852 wordSize - (int) sizeof(BasicObjectLock)); 853 // We use c_rarg1/rdx so that if we go slow path it will be the correct 854 // register for unlock_object to pass to VM directly 855 lea(robj, monitor); // address of first monitor 856 857 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 858 testptr(rax, rax); 859 jcc(Assembler::notZero, unlock); 860 861 pop(state); 862 if (throw_monitor_exception) { 863 // Entry already unlocked, need to throw exception 864 call_VM(noreg, CAST_FROM_FN_PTR(address, 865 InterpreterRuntime::throw_illegal_monitor_state_exception)); 866 should_not_reach_here(); 867 } else { 868 // Monitor already unlocked during a stack unroll. If requested, 869 // install an illegal_monitor_state_exception. Continue with 870 // stack unrolling. 871 if (install_monitor_exception) { 872 call_VM(noreg, CAST_FROM_FN_PTR(address, 873 InterpreterRuntime::new_illegal_monitor_state_exception)); 874 } 875 jmp(unlocked); 876 } 877 878 bind(unlock); 879 unlock_object(robj); 880 pop(state); 881 882 // Check that for block-structured locking (i.e., that all locked 883 // objects has been unlocked) 884 bind(unlocked); 885 886 // rax, rdx: Might contain return value 887 888 // Check that all monitors are unlocked 889 { 890 Label loop, exception, entry, restart; 891 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 892 const Address monitor_block_top( 893 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 894 const Address monitor_block_bot( 895 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 896 897 bind(restart); 898 // We use c_rarg1 so that if we go slow path it will be the correct 899 // register for unlock_object to pass to VM directly 900 movptr(rmon, monitor_block_top); // derelativize pointer 901 lea(rmon, Address(rbp, rmon, Address::times_ptr)); 902 // c_rarg1 points to current entry, starting with top-most entry 903 904 lea(rbx, monitor_block_bot); // points to word before bottom of 905 // monitor block 906 jmp(entry); 907 908 // Entry already locked, need to throw exception 909 bind(exception); 910 911 if (throw_monitor_exception) { 912 // Throw exception 913 MacroAssembler::call_VM(noreg, 914 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 915 throw_illegal_monitor_state_exception)); 916 should_not_reach_here(); 917 } else { 918 // Stack unrolling. Unlock object and install illegal_monitor_exception. 919 // Unlock does not block, so don't have to worry about the frame. 920 // We don't have to preserve c_rarg1 since we are going to throw an exception. 921 922 push(state); 923 mov(robj, rmon); // nop if robj and rmon are the same 924 unlock_object(robj); 925 pop(state); 926 927 if (install_monitor_exception) { 928 call_VM(noreg, CAST_FROM_FN_PTR(address, 929 InterpreterRuntime:: 930 new_illegal_monitor_state_exception)); 931 } 932 933 jmp(restart); 934 } 935 936 bind(loop); 937 // check if current entry is used 938 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 939 jcc(Assembler::notEqual, exception); 940 941 addptr(rmon, entry_size); // otherwise advance to next entry 942 bind(entry); 943 cmpptr(rmon, rbx); // check if bottom reached 944 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 945 } 946 947 bind(no_unlock); 948 949 // jvmti support 950 if (notify_jvmdi) { 951 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 952 } else { 953 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 954 } 955 956 if (StackReservedPages > 0) { 957 movptr(rbx, 958 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 959 // testing if reserved zone needs to be re-enabled 960 Register rthread = r15_thread; 961 Label no_reserved_zone_enabling; 962 963 // check if already enabled - if so no re-enabling needed 964 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 965 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 966 jcc(Assembler::equal, no_reserved_zone_enabling); 967 968 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 969 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 970 971 call_VM_leaf( 972 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 973 call_VM(noreg, CAST_FROM_FN_PTR(address, 974 InterpreterRuntime::throw_delayed_StackOverflowError)); 975 should_not_reach_here(); 976 977 bind(no_reserved_zone_enabling); 978 } 979 980 // remove activation 981 // get sender sp 982 movptr(rbx, 983 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 984 985 if (state == atos && InlineTypeReturnedAsFields) { 986 // Check if we are returning an non-null inline type and load its fields into registers 987 Label skip; 988 test_oop_is_not_inline_type(rax, rscratch1, skip); 989 990 #ifndef _LP64 991 super_call_VM_leaf(StubRoutines::load_inline_type_fields_in_regs()); 992 #else 993 // Load fields from a buffered value with an inline class specific handler 994 load_klass(rdi, rax, rscratch1); 995 movptr(rdi, Address(rdi, InstanceKlass::adr_inlineklass_fixed_block_offset())); 996 movptr(rdi, Address(rdi, InlineKlass::unpack_handler_offset())); 997 // Unpack handler can be null if inline type is not scalarizable in returns 998 testptr(rdi, rdi); 999 jcc(Assembler::zero, skip); 1000 call(rdi); 1001 #endif 1002 #ifdef ASSERT 1003 // TODO 8284443 Enable 1004 if (StressCallingConvention && false) { 1005 Label skip_stress; 1006 movptr(rscratch1, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1007 movl(rscratch1, Address(rscratch1, Method::flags_offset())); 1008 testl(rcx, MethodFlags::has_scalarized_return_flag()); 1009 jcc(Assembler::zero, skip_stress); 1010 load_klass(rax, rax, rscratch1); 1011 orptr(rax, 1); 1012 bind(skip_stress); 1013 } 1014 #endif 1015 // call above kills the value in rbx. Reload it. 1016 movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1017 bind(skip); 1018 } 1019 leave(); // remove frame anchor 1020 pop(ret_addr); // get return address 1021 mov(rsp, rbx); // set sp to sender sp 1022 pop_cont_fastpath(); 1023 } 1024 1025 void InterpreterMacroAssembler::get_method_counters(Register method, 1026 Register mcs, Label& skip) { 1027 Label has_counters; 1028 movptr(mcs, Address(method, Method::method_counters_offset())); 1029 testptr(mcs, mcs); 1030 jcc(Assembler::notZero, has_counters); 1031 call_VM(noreg, CAST_FROM_FN_PTR(address, 1032 InterpreterRuntime::build_method_counters), method); 1033 movptr(mcs, Address(method,Method::method_counters_offset())); 1034 testptr(mcs, mcs); 1035 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1036 bind(has_counters); 1037 } 1038 1039 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 1040 Register t1, Register t2, 1041 bool clear_fields, Label& alloc_failed) { 1042 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 1043 if (DTraceMethodProbes) { 1044 // Trigger dtrace event for fastpath 1045 push(atos); 1046 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 1047 pop(atos); 1048 } 1049 } 1050 1051 void InterpreterMacroAssembler::read_flat_field(Register entry, Register tmp1, Register tmp2, Register obj) { 1052 Label alloc_failed, done; 1053 const Register alloc_temp = LP64_ONLY(rscratch1) NOT_LP64(rsi); 1054 const Register dst_temp = LP64_ONLY(rscratch2) NOT_LP64(rdi); 1055 assert_different_registers(obj, entry, tmp1, tmp2, dst_temp, r8, r9); 1056 1057 // FIXME: code below could be re-written to better use InlineLayoutInfo data structure 1058 // see aarch64 version 1059 1060 // Grap the inline field klass 1061 const Register field_klass = tmp1; 1062 load_unsigned_short(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset()))); 1063 movptr(tmp1, Address(entry, ResolvedFieldEntry::field_holder_offset())); 1064 get_inline_type_field_klass(tmp1, tmp2, field_klass); 1065 1066 // allocate buffer 1067 push(obj); // push object being read from // FIXME spilling on stack could probably be avoided by using tmp2 1068 allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed); 1069 1070 // Have an oop instance buffer, copy into it 1071 load_unsigned_short(r9, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset()))); 1072 movptr(r8, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 1073 inline_layout_info(r8, r9, r8); // holder, index, info => InlineLayoutInfo into r8 1074 1075 payload_addr(obj, dst_temp, field_klass); 1076 pop(alloc_temp); // restore object being read from 1077 load_sized_value(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 1078 lea(tmp2, Address(alloc_temp, tmp2)); 1079 // call_VM_leaf, clobbers a few regs, save restore new obj 1080 push(obj); 1081 // access_value_copy(IS_DEST_UNINITIALIZED, tmp2, dst_temp, field_klass); 1082 flat_field_copy(IS_DEST_UNINITIALIZED, tmp2, dst_temp, r8); 1083 pop(obj); 1084 jmp(done); 1085 1086 bind(alloc_failed); 1087 pop(obj); 1088 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 1089 obj, entry); 1090 get_vm_result(obj, r15_thread); 1091 bind(done); 1092 } 1093 1094 // Lock object 1095 // 1096 // Args: 1097 // rdx, c_rarg1: BasicObjectLock to be used for locking 1098 // 1099 // Kills: 1100 // rax, rbx 1101 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1102 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1103 1104 if (LockingMode == LM_MONITOR) { 1105 call_VM_preemptable(noreg, 1106 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1107 lock_reg); 1108 } else { 1109 Label count_locking, done, slow_case; 1110 1111 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1112 const Register tmp_reg = rbx; 1113 const Register obj_reg = c_rarg3; // Will contain the oop 1114 const Register rklass_decode_tmp = rscratch1; 1115 1116 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1117 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1118 const int mark_offset = lock_offset + 1119 BasicLock::displaced_header_offset_in_bytes(); 1120 1121 // Load object pointer into obj_reg 1122 movptr(obj_reg, Address(lock_reg, obj_offset)); 1123 1124 if (DiagnoseSyncOnValueBasedClasses != 0) { 1125 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1126 testb(Address(tmp_reg, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1127 jcc(Assembler::notZero, slow_case); 1128 } 1129 1130 if (LockingMode == LM_LIGHTWEIGHT) { 1131 const Register thread = r15_thread; 1132 lightweight_lock(lock_reg, obj_reg, swap_reg, thread, tmp_reg, slow_case); 1133 } else if (LockingMode == LM_LEGACY) { 1134 // Load immediate 1 into swap_reg %rax 1135 movl(swap_reg, 1); 1136 1137 // Load (object->mark() | 1) into swap_reg %rax 1138 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1139 if (EnableValhalla) { 1140 // Mask inline_type bit such that we go to the slow path if object is an inline type 1141 andptr(swap_reg, ~((int) markWord::inline_type_bit_in_place)); 1142 } 1143 1144 // Save (object->mark() | 1) into BasicLock's displaced header 1145 movptr(Address(lock_reg, mark_offset), swap_reg); 1146 1147 assert(lock_offset == 0, 1148 "displaced header must be first word in BasicObjectLock"); 1149 1150 lock(); 1151 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1152 jcc(Assembler::zero, count_locking); 1153 1154 const int zero_bits = 7; 1155 1156 // Fast check for recursive lock. 1157 // 1158 // Can apply the optimization only if this is a stack lock 1159 // allocated in this thread. For efficiency, we can focus on 1160 // recently allocated stack locks (instead of reading the stack 1161 // base and checking whether 'mark' points inside the current 1162 // thread stack): 1163 // 1) (mark & zero_bits) == 0, and 1164 // 2) rsp <= mark < mark + os::pagesize() 1165 // 1166 // Warning: rsp + os::pagesize can overflow the stack base. We must 1167 // neither apply the optimization for an inflated lock allocated 1168 // just above the thread stack (this is why condition 1 matters) 1169 // nor apply the optimization if the stack lock is inside the stack 1170 // of another thread. The latter is avoided even in case of overflow 1171 // because we have guard pages at the end of all stacks. Hence, if 1172 // we go over the stack base and hit the stack of another thread, 1173 // this should not be in a writeable area that could contain a 1174 // stack lock allocated by that thread. As a consequence, a stack 1175 // lock less than page size away from rsp is guaranteed to be 1176 // owned by the current thread. 1177 // 1178 // These 3 tests can be done by evaluating the following 1179 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1180 // assuming both stack pointer and pagesize have their 1181 // least significant bits clear. 1182 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1183 subptr(swap_reg, rsp); 1184 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1185 1186 // Save the test result, for recursive case, the result is zero 1187 movptr(Address(lock_reg, mark_offset), swap_reg); 1188 jcc(Assembler::notZero, slow_case); 1189 1190 bind(count_locking); 1191 inc_held_monitor_count(); 1192 } 1193 jmp(done); 1194 1195 bind(slow_case); 1196 1197 // Call the runtime routine for slow case 1198 call_VM_preemptable(noreg, 1199 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1200 lock_reg); 1201 bind(done); 1202 } 1203 } 1204 1205 1206 // Unlocks an object. Used in monitorexit bytecode and 1207 // remove_activation. Throws an IllegalMonitorException if object is 1208 // not locked by current thread. 1209 // 1210 // Args: 1211 // rdx, c_rarg1: BasicObjectLock for lock 1212 // 1213 // Kills: 1214 // rax 1215 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1216 // rscratch1 (scratch reg) 1217 // rax, rbx, rcx, rdx 1218 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1219 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 1220 1221 if (LockingMode == LM_MONITOR) { 1222 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1223 } else { 1224 Label count_locking, done, slow_case; 1225 1226 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1227 const Register header_reg = c_rarg2; // Will contain the old oopMark 1228 const Register obj_reg = c_rarg3; // Will contain the oop 1229 1230 save_bcp(); // Save in case of exception 1231 1232 if (LockingMode != LM_LIGHTWEIGHT) { 1233 // Convert from BasicObjectLock structure to object and BasicLock 1234 // structure Store the BasicLock address into %rax 1235 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1236 } 1237 1238 // Load oop into obj_reg(%c_rarg3) 1239 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1240 1241 // Free entry 1242 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1243 1244 if (LockingMode == LM_LIGHTWEIGHT) { 1245 lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case); 1246 } else if (LockingMode == LM_LEGACY) { 1247 // Load the old header from BasicLock structure 1248 movptr(header_reg, Address(swap_reg, 1249 BasicLock::displaced_header_offset_in_bytes())); 1250 1251 // Test for recursion 1252 testptr(header_reg, header_reg); 1253 1254 // zero for recursive case 1255 jcc(Assembler::zero, count_locking); 1256 1257 // Atomic swap back the old header 1258 lock(); 1259 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1260 1261 // zero for simple unlock of a stack-lock case 1262 jcc(Assembler::notZero, slow_case); 1263 1264 bind(count_locking); 1265 dec_held_monitor_count(); 1266 } 1267 jmp(done); 1268 1269 bind(slow_case); 1270 // Call the runtime routine for slow case. 1271 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1272 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1273 1274 bind(done); 1275 1276 restore_bcp(); 1277 } 1278 } 1279 1280 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1281 Label& zero_continue) { 1282 assert(ProfileInterpreter, "must be profiling interpreter"); 1283 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1284 testptr(mdp, mdp); 1285 jcc(Assembler::zero, zero_continue); 1286 } 1287 1288 1289 // Set the method data pointer for the current bcp. 1290 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1291 assert(ProfileInterpreter, "must be profiling interpreter"); 1292 Label set_mdp; 1293 push(rax); 1294 push(rbx); 1295 1296 get_method(rbx); 1297 // Test MDO to avoid the call if it is null. 1298 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1299 testptr(rax, rax); 1300 jcc(Assembler::zero, set_mdp); 1301 // rbx: method 1302 // _bcp_register: bcp 1303 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1304 // rax: mdi 1305 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1306 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1307 addptr(rbx, in_bytes(MethodData::data_offset())); 1308 addptr(rax, rbx); 1309 bind(set_mdp); 1310 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1311 pop(rbx); 1312 pop(rax); 1313 } 1314 1315 void InterpreterMacroAssembler::verify_method_data_pointer() { 1316 assert(ProfileInterpreter, "must be profiling interpreter"); 1317 #ifdef ASSERT 1318 Label verify_continue; 1319 push(rax); 1320 push(rbx); 1321 Register arg3_reg = c_rarg3; 1322 Register arg2_reg = c_rarg2; 1323 push(arg3_reg); 1324 push(arg2_reg); 1325 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1326 get_method(rbx); 1327 1328 // If the mdp is valid, it will point to a DataLayout header which is 1329 // consistent with the bcp. The converse is highly probable also. 1330 load_unsigned_short(arg2_reg, 1331 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1332 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1333 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1334 cmpptr(arg2_reg, _bcp_register); 1335 jcc(Assembler::equal, verify_continue); 1336 // rbx: method 1337 // _bcp_register: bcp 1338 // c_rarg3: mdp 1339 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1340 rbx, _bcp_register, arg3_reg); 1341 bind(verify_continue); 1342 pop(arg2_reg); 1343 pop(arg3_reg); 1344 pop(rbx); 1345 pop(rax); 1346 #endif // ASSERT 1347 } 1348 1349 1350 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1351 int constant, 1352 Register value) { 1353 assert(ProfileInterpreter, "must be profiling interpreter"); 1354 Address data(mdp_in, constant); 1355 movptr(data, value); 1356 } 1357 1358 1359 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1360 int constant, 1361 bool decrement) { 1362 // Counter address 1363 Address data(mdp_in, constant); 1364 1365 increment_mdp_data_at(data, decrement); 1366 } 1367 1368 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1369 bool decrement) { 1370 assert(ProfileInterpreter, "must be profiling interpreter"); 1371 // %%% this does 64bit counters at best it is wasting space 1372 // at worst it is a rare bug when counters overflow 1373 1374 if (decrement) { 1375 // Decrement the register. Set condition codes. 1376 addptr(data, -DataLayout::counter_increment); 1377 // If the decrement causes the counter to overflow, stay negative 1378 Label L; 1379 jcc(Assembler::negative, L); 1380 addptr(data, DataLayout::counter_increment); 1381 bind(L); 1382 } else { 1383 assert(DataLayout::counter_increment == 1, 1384 "flow-free idiom only works with 1"); 1385 // Increment the register. Set carry flag. 1386 addptr(data, DataLayout::counter_increment); 1387 // If the increment causes the counter to overflow, pull back by 1. 1388 sbbptr(data, 0); 1389 } 1390 } 1391 1392 1393 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1394 Register reg, 1395 int constant, 1396 bool decrement) { 1397 Address data(mdp_in, reg, Address::times_1, constant); 1398 1399 increment_mdp_data_at(data, decrement); 1400 } 1401 1402 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1403 int flag_byte_constant) { 1404 assert(ProfileInterpreter, "must be profiling interpreter"); 1405 int header_offset = in_bytes(DataLayout::flags_offset()); 1406 int header_bits = flag_byte_constant; 1407 // Set the flag 1408 orb(Address(mdp_in, header_offset), header_bits); 1409 } 1410 1411 1412 1413 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1414 int offset, 1415 Register value, 1416 Register test_value_out, 1417 Label& not_equal_continue) { 1418 assert(ProfileInterpreter, "must be profiling interpreter"); 1419 if (test_value_out == noreg) { 1420 cmpptr(value, Address(mdp_in, offset)); 1421 } else { 1422 // Put the test value into a register, so caller can use it: 1423 movptr(test_value_out, Address(mdp_in, offset)); 1424 cmpptr(test_value_out, value); 1425 } 1426 jcc(Assembler::notEqual, not_equal_continue); 1427 } 1428 1429 1430 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1431 int offset_of_disp) { 1432 assert(ProfileInterpreter, "must be profiling interpreter"); 1433 Address disp_address(mdp_in, offset_of_disp); 1434 addptr(mdp_in, disp_address); 1435 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1436 } 1437 1438 1439 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1440 Register reg, 1441 int offset_of_disp) { 1442 assert(ProfileInterpreter, "must be profiling interpreter"); 1443 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1444 addptr(mdp_in, disp_address); 1445 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1446 } 1447 1448 1449 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1450 int constant) { 1451 assert(ProfileInterpreter, "must be profiling interpreter"); 1452 addptr(mdp_in, constant); 1453 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1454 } 1455 1456 1457 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1458 assert(ProfileInterpreter, "must be profiling interpreter"); 1459 push(return_bci); // save/restore across call_VM 1460 call_VM(noreg, 1461 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1462 return_bci); 1463 pop(return_bci); 1464 } 1465 1466 1467 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1468 Register bumped_count) { 1469 if (ProfileInterpreter) { 1470 Label profile_continue; 1471 1472 // If no method data exists, go to profile_continue. 1473 // Otherwise, assign to mdp 1474 test_method_data_pointer(mdp, profile_continue); 1475 1476 // We are taking a branch. Increment the taken count. 1477 // We inline increment_mdp_data_at to return bumped_count in a register 1478 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1479 Address data(mdp, in_bytes(JumpData::taken_offset())); 1480 movptr(bumped_count, data); 1481 assert(DataLayout::counter_increment == 1, 1482 "flow-free idiom only works with 1"); 1483 addptr(bumped_count, DataLayout::counter_increment); 1484 sbbptr(bumped_count, 0); 1485 movptr(data, bumped_count); // Store back out 1486 1487 // The method data pointer needs to be updated to reflect the new target. 1488 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1489 bind(profile_continue); 1490 } 1491 } 1492 1493 1494 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1495 if (ProfileInterpreter) { 1496 Label profile_continue; 1497 1498 // If no method data exists, go to profile_continue. 1499 test_method_data_pointer(mdp, profile_continue); 1500 1501 // We are taking a branch. Increment the not taken count. 1502 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1503 1504 // The method data pointer needs to be updated to correspond to 1505 // the next bytecode 1506 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()): in_bytes(BranchData::branch_data_size())); 1507 bind(profile_continue); 1508 } 1509 } 1510 1511 void InterpreterMacroAssembler::profile_call(Register mdp) { 1512 if (ProfileInterpreter) { 1513 Label profile_continue; 1514 1515 // If no method data exists, go to profile_continue. 1516 test_method_data_pointer(mdp, profile_continue); 1517 1518 // We are making a call. Increment the count. 1519 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1520 1521 // The method data pointer needs to be updated to reflect the new target. 1522 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1523 bind(profile_continue); 1524 } 1525 } 1526 1527 1528 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1529 if (ProfileInterpreter) { 1530 Label profile_continue; 1531 1532 // If no method data exists, go to profile_continue. 1533 test_method_data_pointer(mdp, profile_continue); 1534 1535 // We are making a call. Increment the count. 1536 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1537 1538 // The method data pointer needs to be updated to reflect the new target. 1539 update_mdp_by_constant(mdp, 1540 in_bytes(VirtualCallData:: 1541 virtual_call_data_size())); 1542 bind(profile_continue); 1543 } 1544 } 1545 1546 1547 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1548 Register mdp, 1549 Register reg2, 1550 bool receiver_can_be_null) { 1551 if (ProfileInterpreter) { 1552 Label profile_continue; 1553 1554 // If no method data exists, go to profile_continue. 1555 test_method_data_pointer(mdp, profile_continue); 1556 1557 Label skip_receiver_profile; 1558 if (receiver_can_be_null) { 1559 Label not_null; 1560 testptr(receiver, receiver); 1561 jccb(Assembler::notZero, not_null); 1562 // We are making a call. Increment the count for null receiver. 1563 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1564 jmp(skip_receiver_profile); 1565 bind(not_null); 1566 } 1567 1568 // Record the receiver type. 1569 record_klass_in_profile(receiver, mdp, reg2); 1570 bind(skip_receiver_profile); 1571 1572 // The method data pointer needs to be updated to reflect the new target. 1573 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1574 bind(profile_continue); 1575 } 1576 } 1577 1578 // This routine creates a state machine for updating the multi-row 1579 // type profile at a virtual call site (or other type-sensitive bytecode). 1580 // The machine visits each row (of receiver/count) until the receiver type 1581 // is found, or until it runs out of rows. At the same time, it remembers 1582 // the location of the first empty row. (An empty row records null for its 1583 // receiver, and can be allocated for a newly-observed receiver type.) 1584 // Because there are two degrees of freedom in the state, a simple linear 1585 // search will not work; it must be a decision tree. Hence this helper 1586 // function is recursive, to generate the required tree structured code. 1587 // It's the interpreter, so we are trading off code space for speed. 1588 // See below for example code. 1589 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register mdp, 1590 Register reg2, int start_row, 1591 Label& done) { 1592 if (TypeProfileWidth == 0) { 1593 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1594 } else { 1595 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1596 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1597 } 1598 } 1599 1600 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, 1601 Label& done, int total_rows, 1602 OffsetFunction item_offset_fn, 1603 OffsetFunction item_count_offset_fn) { 1604 int last_row = total_rows - 1; 1605 assert(start_row <= last_row, "must be work left to do"); 1606 // Test this row for both the item and for null. 1607 // Take any of three different outcomes: 1608 // 1. found item => increment count and goto done 1609 // 2. found null => keep looking for case 1, maybe allocate this cell 1610 // 3. found something else => keep looking for cases 1 and 2 1611 // Case 3 is handled by a recursive call. 1612 for (int row = start_row; row <= last_row; row++) { 1613 Label next_test; 1614 bool test_for_null_also = (row == start_row); 1615 1616 // See if the item is item[n]. 1617 int item_offset = in_bytes(item_offset_fn(row)); 1618 test_mdp_data_at(mdp, item_offset, item, 1619 (test_for_null_also ? reg2 : noreg), 1620 next_test); 1621 // (Reg2 now contains the item from the CallData.) 1622 1623 // The item is item[n]. Increment count[n]. 1624 int count_offset = in_bytes(item_count_offset_fn(row)); 1625 increment_mdp_data_at(mdp, count_offset); 1626 jmp(done); 1627 bind(next_test); 1628 1629 if (test_for_null_also) { 1630 // Failed the equality check on item[n]... Test for null. 1631 testptr(reg2, reg2); 1632 if (start_row == last_row) { 1633 // The only thing left to do is handle the null case. 1634 Label found_null; 1635 jccb(Assembler::zero, found_null); 1636 // Item did not match any saved item and there is no empty row for it. 1637 // Increment total counter to indicate polymorphic case. 1638 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1639 jmp(done); 1640 bind(found_null); 1641 break; 1642 } 1643 Label found_null; 1644 // Since null is rare, make it be the branch-taken case. 1645 jcc(Assembler::zero, found_null); 1646 1647 // Put all the "Case 3" tests here. 1648 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1649 item_offset_fn, item_count_offset_fn); 1650 1651 // Found a null. Keep searching for a matching item, 1652 // but remember that this is an empty (unused) slot. 1653 bind(found_null); 1654 } 1655 } 1656 1657 // In the fall-through case, we found no matching item, but we 1658 // observed the item[start_row] is null. 1659 1660 // Fill in the item field and increment the count. 1661 int item_offset = in_bytes(item_offset_fn(start_row)); 1662 set_mdp_data_at(mdp, item_offset, item); 1663 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1664 movl(reg2, DataLayout::counter_increment); 1665 set_mdp_data_at(mdp, count_offset, reg2); 1666 if (start_row > 0) { 1667 jmp(done); 1668 } 1669 } 1670 1671 // Example state machine code for three profile rows: 1672 // // main copy of decision tree, rooted at row[1] 1673 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1674 // if (row[0].rec != nullptr) { 1675 // // inner copy of decision tree, rooted at row[1] 1676 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1677 // if (row[1].rec != nullptr) { 1678 // // degenerate decision tree, rooted at row[2] 1679 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1680 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1681 // row[2].init(rec); goto done; 1682 // } else { 1683 // // remember row[1] is empty 1684 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1685 // row[1].init(rec); goto done; 1686 // } 1687 // } else { 1688 // // remember row[0] is empty 1689 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1690 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1691 // row[0].init(rec); goto done; 1692 // } 1693 // done: 1694 1695 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2) { 1696 assert(ProfileInterpreter, "must be profiling"); 1697 Label done; 1698 1699 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1700 1701 bind (done); 1702 } 1703 1704 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1705 Register mdp) { 1706 if (ProfileInterpreter) { 1707 Label profile_continue; 1708 uint row; 1709 1710 // If no method data exists, go to profile_continue. 1711 test_method_data_pointer(mdp, profile_continue); 1712 1713 // Update the total ret count. 1714 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1715 1716 for (row = 0; row < RetData::row_limit(); row++) { 1717 Label next_test; 1718 1719 // See if return_bci is equal to bci[n]: 1720 test_mdp_data_at(mdp, 1721 in_bytes(RetData::bci_offset(row)), 1722 return_bci, noreg, 1723 next_test); 1724 1725 // return_bci is equal to bci[n]. Increment the count. 1726 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1727 1728 // The method data pointer needs to be updated to reflect the new target. 1729 update_mdp_by_offset(mdp, 1730 in_bytes(RetData::bci_displacement_offset(row))); 1731 jmp(profile_continue); 1732 bind(next_test); 1733 } 1734 1735 update_mdp_for_ret(return_bci); 1736 1737 bind(profile_continue); 1738 } 1739 } 1740 1741 1742 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1743 if (ProfileInterpreter) { 1744 Label profile_continue; 1745 1746 // If no method data exists, go to profile_continue. 1747 test_method_data_pointer(mdp, profile_continue); 1748 1749 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1750 1751 // The method data pointer needs to be updated. 1752 int mdp_delta = in_bytes(BitData::bit_data_size()); 1753 if (TypeProfileCasts) { 1754 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1755 } 1756 update_mdp_by_constant(mdp, mdp_delta); 1757 1758 bind(profile_continue); 1759 } 1760 } 1761 1762 1763 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1764 if (ProfileInterpreter) { 1765 Label profile_continue; 1766 1767 // If no method data exists, go to profile_continue. 1768 test_method_data_pointer(mdp, profile_continue); 1769 1770 // The method data pointer needs to be updated. 1771 int mdp_delta = in_bytes(BitData::bit_data_size()); 1772 if (TypeProfileCasts) { 1773 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1774 1775 // Record the object type. 1776 record_klass_in_profile(klass, mdp, reg2); 1777 } 1778 update_mdp_by_constant(mdp, mdp_delta); 1779 1780 bind(profile_continue); 1781 } 1782 } 1783 1784 1785 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1786 if (ProfileInterpreter) { 1787 Label profile_continue; 1788 1789 // If no method data exists, go to profile_continue. 1790 test_method_data_pointer(mdp, profile_continue); 1791 1792 // Update the default case count 1793 increment_mdp_data_at(mdp, 1794 in_bytes(MultiBranchData::default_count_offset())); 1795 1796 // The method data pointer needs to be updated. 1797 update_mdp_by_offset(mdp, 1798 in_bytes(MultiBranchData:: 1799 default_displacement_offset())); 1800 1801 bind(profile_continue); 1802 } 1803 } 1804 1805 1806 void InterpreterMacroAssembler::profile_switch_case(Register index, 1807 Register mdp, 1808 Register reg2) { 1809 if (ProfileInterpreter) { 1810 Label profile_continue; 1811 1812 // If no method data exists, go to profile_continue. 1813 test_method_data_pointer(mdp, profile_continue); 1814 1815 // Build the base (index * per_case_size_in_bytes()) + 1816 // case_array_offset_in_bytes() 1817 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1818 imulptr(index, reg2); // XXX l ? 1819 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1820 1821 // Update the case count 1822 increment_mdp_data_at(mdp, 1823 index, 1824 in_bytes(MultiBranchData::relative_count_offset())); 1825 1826 // The method data pointer needs to be updated. 1827 update_mdp_by_offset(mdp, 1828 index, 1829 in_bytes(MultiBranchData:: 1830 relative_displacement_offset())); 1831 1832 bind(profile_continue); 1833 } 1834 } 1835 1836 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp, 1837 Register array, 1838 Register tmp) { 1839 if (ProfileInterpreter) { 1840 Label profile_continue; 1841 1842 // If no method data exists, go to profile_continue. 1843 test_method_data_pointer(mdp, profile_continue); 1844 1845 mov(tmp, array); 1846 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset()))); 1847 1848 Label not_flat; 1849 test_non_flat_array_oop(array, tmp, not_flat); 1850 1851 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant()); 1852 1853 bind(not_flat); 1854 1855 Label not_null_free; 1856 test_non_null_free_array_oop(array, tmp, not_null_free); 1857 1858 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant()); 1859 1860 bind(not_null_free); 1861 1862 bind(profile_continue); 1863 } 1864 } 1865 1866 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp, 1867 Register array, 1868 Register tmp); 1869 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp, 1870 Register array, 1871 Register tmp); 1872 1873 1874 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) { 1875 if (ProfileInterpreter) { 1876 Label profile_continue; 1877 1878 // If no method data exists, go to profile_continue. 1879 test_method_data_pointer(mdp, profile_continue); 1880 1881 Label done, update; 1882 testptr(element, element); 1883 jccb(Assembler::notZero, update); 1884 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1885 jmp(done); 1886 1887 bind(update); 1888 load_klass(tmp, element, rscratch1); 1889 1890 // Record the object type. 1891 record_klass_in_profile(tmp, mdp, tmp2); 1892 1893 bind(done); 1894 1895 // The method data pointer needs to be updated. 1896 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size())); 1897 1898 bind(profile_continue); 1899 } 1900 } 1901 1902 void InterpreterMacroAssembler::profile_element_type(Register mdp, 1903 Register element, 1904 Register tmp) { 1905 if (ProfileInterpreter) { 1906 Label profile_continue; 1907 1908 // If no method data exists, go to profile_continue. 1909 test_method_data_pointer(mdp, profile_continue); 1910 1911 mov(tmp, element); 1912 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset()))); 1913 1914 // The method data pointer needs to be updated. 1915 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size())); 1916 1917 bind(profile_continue); 1918 } 1919 } 1920 1921 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1922 Register left, 1923 Register right, 1924 Register tmp) { 1925 if (ProfileInterpreter) { 1926 Label profile_continue; 1927 1928 // If no method data exists, go to profile_continue. 1929 test_method_data_pointer(mdp, profile_continue); 1930 1931 mov(tmp, left); 1932 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1933 1934 Label left_not_inline_type; 1935 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1936 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1937 bind(left_not_inline_type); 1938 1939 mov(tmp, right); 1940 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1941 1942 Label right_not_inline_type; 1943 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1944 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1945 bind(right_not_inline_type); 1946 1947 bind(profile_continue); 1948 } 1949 } 1950 1951 1952 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1953 if (state == atos) { 1954 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1955 } 1956 } 1957 1958 1959 // Jump if ((*counter_addr += increment) & mask) == 0 1960 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 1961 Register scratch, Label* where) { 1962 // This update is actually not atomic and can lose a number of updates 1963 // under heavy contention, but the alternative of using the (contended) 1964 // atomic update here penalizes profiling paths too much. 1965 movl(scratch, counter_addr); 1966 incrementl(scratch, InvocationCounter::count_increment); 1967 movl(counter_addr, scratch); 1968 andl(scratch, mask); 1969 if (where != nullptr) { 1970 jcc(Assembler::zero, *where); 1971 } 1972 } 1973 1974 void InterpreterMacroAssembler::notify_method_entry() { 1975 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1976 // track stack depth. If it is possible to enter interp_only_mode we add 1977 // the code to check if the event should be sent. 1978 Register rthread = r15_thread; 1979 Register rarg = c_rarg1; 1980 if (JvmtiExport::can_post_interpreter_events()) { 1981 Label L; 1982 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 1983 testl(rdx, rdx); 1984 jcc(Assembler::zero, L); 1985 call_VM(noreg, CAST_FROM_FN_PTR(address, 1986 InterpreterRuntime::post_method_entry)); 1987 bind(L); 1988 } 1989 1990 if (DTraceMethodProbes) { 1991 get_method(rarg); 1992 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1993 rthread, rarg); 1994 } 1995 1996 // RedefineClasses() tracing support for obsolete method entry 1997 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1998 get_method(rarg); 1999 call_VM_leaf( 2000 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2001 rthread, rarg); 2002 } 2003 } 2004 2005 2006 void InterpreterMacroAssembler::notify_method_exit( 2007 TosState state, NotifyMethodExitMode mode) { 2008 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2009 // track stack depth. If it is possible to enter interp_only_mode we add 2010 // the code to check if the event should be sent. 2011 Register rthread = r15_thread; 2012 Register rarg = c_rarg1; 2013 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2014 Label L; 2015 // Note: frame::interpreter_frame_result has a dependency on how the 2016 // method result is saved across the call to post_method_exit. If this 2017 // is changed then the interpreter_frame_result implementation will 2018 // need to be updated too. 2019 2020 // template interpreter will leave the result on the top of the stack. 2021 push(state); 2022 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2023 testl(rdx, rdx); 2024 jcc(Assembler::zero, L); 2025 call_VM(noreg, 2026 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2027 bind(L); 2028 pop(state); 2029 } 2030 2031 if (DTraceMethodProbes) { 2032 push(state); 2033 get_method(rarg); 2034 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2035 rthread, rarg); 2036 pop(state); 2037 } 2038 } 2039 2040 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2041 // Get index out of bytecode pointer 2042 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2043 // Get address of invokedynamic array 2044 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2045 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2046 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 2047 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 2048 } else { 2049 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 2050 } 2051 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 2052 } 2053 2054 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 2055 // Get index out of bytecode pointer 2056 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2057 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2058 2059 movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset())); 2060 // Take shortcut if the size is a power of 2 2061 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 2062 shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 2063 } else { 2064 imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 2065 } 2066 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes())); 2067 } 2068 2069 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 2070 // Get index out of bytecode pointer 2071 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2072 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2073 2074 movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset())); 2075 imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 2076 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes())); 2077 }