1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "crc32c.h" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/barrierSetAssembler.hpp" 34 #include "gc/shared/collectedHeap.inline.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 #include "interpreter/bytecodeHistogram.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "jvm.h" 39 #include "memory/resourceArea.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/accessDecorators.hpp" 42 #include "oops/compressedKlass.inline.hpp" 43 #include "oops/compressedOops.inline.hpp" 44 #include "oops/klass.inline.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/continuation.hpp" 47 #include "runtime/interfaceSupport.inline.hpp" 48 #include "runtime/javaThread.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/objectMonitor.hpp" 51 #include "runtime/os.hpp" 52 #include "runtime/safepoint.hpp" 53 #include "runtime/safepointMechanism.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "runtime/stubRoutines.hpp" 56 #include "utilities/checkedCast.hpp" 57 #include "utilities/macros.hpp" 58 59 #ifdef PRODUCT 60 #define BLOCK_COMMENT(str) /* nothing */ 61 #define STOP(error) stop(error) 62 #else 63 #define BLOCK_COMMENT(str) block_comment(str) 64 #define STOP(error) block_comment(error); stop(error) 65 #endif 66 67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 68 69 #ifdef ASSERT 70 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 71 #endif 72 73 static const Assembler::Condition reverse[] = { 74 Assembler::noOverflow /* overflow = 0x0 */ , 75 Assembler::overflow /* noOverflow = 0x1 */ , 76 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 77 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 78 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 79 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 80 Assembler::above /* belowEqual = 0x6 */ , 81 Assembler::belowEqual /* above = 0x7 */ , 82 Assembler::positive /* negative = 0x8 */ , 83 Assembler::negative /* positive = 0x9 */ , 84 Assembler::noParity /* parity = 0xa */ , 85 Assembler::parity /* noParity = 0xb */ , 86 Assembler::greaterEqual /* less = 0xc */ , 87 Assembler::less /* greaterEqual = 0xd */ , 88 Assembler::greater /* lessEqual = 0xe */ , 89 Assembler::lessEqual /* greater = 0xf, */ 90 91 }; 92 93 94 // Implementation of MacroAssembler 95 96 // First all the versions that have distinct versions depending on 32/64 bit 97 // Unless the difference is trivial (1 line or so). 98 99 #ifndef _LP64 100 101 // 32bit versions 102 103 Address MacroAssembler::as_Address(AddressLiteral adr) { 104 return Address(adr.target(), adr.rspec()); 105 } 106 107 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 108 assert(rscratch == noreg, ""); 109 return Address::make_array(adr); 110 } 111 112 void MacroAssembler::call_VM_leaf_base(address entry_point, 113 int number_of_arguments) { 114 call(RuntimeAddress(entry_point)); 115 increment(rsp, number_of_arguments * wordSize); 116 } 117 118 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 119 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 120 } 121 122 123 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 124 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 125 } 126 127 void MacroAssembler::cmpoop(Address src1, jobject obj) { 128 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 129 } 130 131 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 132 assert(rscratch == noreg, "redundant"); 133 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 134 } 135 136 void MacroAssembler::extend_sign(Register hi, Register lo) { 137 // According to Intel Doc. AP-526, "Integer Divide", p.18. 138 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 139 cdql(); 140 } else { 141 movl(hi, lo); 142 sarl(hi, 31); 143 } 144 } 145 146 void MacroAssembler::jC2(Register tmp, Label& L) { 147 // set parity bit if FPU flag C2 is set (via rax) 148 save_rax(tmp); 149 fwait(); fnstsw_ax(); 150 sahf(); 151 restore_rax(tmp); 152 // branch 153 jcc(Assembler::parity, L); 154 } 155 156 void MacroAssembler::jnC2(Register tmp, Label& L) { 157 // set parity bit if FPU flag C2 is set (via rax) 158 save_rax(tmp); 159 fwait(); fnstsw_ax(); 160 sahf(); 161 restore_rax(tmp); 162 // branch 163 jcc(Assembler::noParity, L); 164 } 165 166 // 32bit can do a case table jump in one instruction but we no longer allow the base 167 // to be installed in the Address class 168 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 169 assert(rscratch == noreg, "not needed"); 170 jmp(as_Address(entry, noreg)); 171 } 172 173 // Note: y_lo will be destroyed 174 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 175 // Long compare for Java (semantics as described in JVM spec.) 176 Label high, low, done; 177 178 cmpl(x_hi, y_hi); 179 jcc(Assembler::less, low); 180 jcc(Assembler::greater, high); 181 // x_hi is the return register 182 xorl(x_hi, x_hi); 183 cmpl(x_lo, y_lo); 184 jcc(Assembler::below, low); 185 jcc(Assembler::equal, done); 186 187 bind(high); 188 xorl(x_hi, x_hi); 189 increment(x_hi); 190 jmp(done); 191 192 bind(low); 193 xorl(x_hi, x_hi); 194 decrementl(x_hi); 195 196 bind(done); 197 } 198 199 void MacroAssembler::lea(Register dst, AddressLiteral src) { 200 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 201 } 202 203 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 204 assert(rscratch == noreg, "not needed"); 205 206 // leal(dst, as_Address(adr)); 207 // see note in movl as to why we must use a move 208 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 209 } 210 211 void MacroAssembler::leave() { 212 mov(rsp, rbp); 213 pop(rbp); 214 } 215 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 217 // Multiplication of two Java long values stored on the stack 218 // as illustrated below. Result is in rdx:rax. 219 // 220 // rsp ---> [ ?? ] \ \ 221 // .... | y_rsp_offset | 222 // [ y_lo ] / (in bytes) | x_rsp_offset 223 // [ y_hi ] | (in bytes) 224 // .... | 225 // [ x_lo ] / 226 // [ x_hi ] 227 // .... 228 // 229 // Basic idea: lo(result) = lo(x_lo * y_lo) 230 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 231 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 232 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 233 Label quick; 234 // load x_hi, y_hi and check if quick 235 // multiplication is possible 236 movl(rbx, x_hi); 237 movl(rcx, y_hi); 238 movl(rax, rbx); 239 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 240 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 241 // do full multiplication 242 // 1st step 243 mull(y_lo); // x_hi * y_lo 244 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 245 // 2nd step 246 movl(rax, x_lo); 247 mull(rcx); // x_lo * y_hi 248 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 249 // 3rd step 250 bind(quick); // note: rbx, = 0 if quick multiply! 251 movl(rax, x_lo); 252 mull(y_lo); // x_lo * y_lo 253 addl(rdx, rbx); // correct hi(x_lo * y_lo) 254 } 255 256 void MacroAssembler::lneg(Register hi, Register lo) { 257 negl(lo); 258 adcl(hi, 0); 259 negl(hi); 260 } 261 262 void MacroAssembler::lshl(Register hi, Register lo) { 263 // Java shift left long support (semantics as described in JVM spec., p.305) 264 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 265 // shift value is in rcx ! 266 assert(hi != rcx, "must not use rcx"); 267 assert(lo != rcx, "must not use rcx"); 268 const Register s = rcx; // shift count 269 const int n = BitsPerWord; 270 Label L; 271 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 272 cmpl(s, n); // if (s < n) 273 jcc(Assembler::less, L); // else (s >= n) 274 movl(hi, lo); // x := x << n 275 xorl(lo, lo); 276 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 277 bind(L); // s (mod n) < n 278 shldl(hi, lo); // x := x << s 279 shll(lo); 280 } 281 282 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 284 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 285 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 286 assert(hi != rcx, "must not use rcx"); 287 assert(lo != rcx, "must not use rcx"); 288 const Register s = rcx; // shift count 289 const int n = BitsPerWord; 290 Label L; 291 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 292 cmpl(s, n); // if (s < n) 293 jcc(Assembler::less, L); // else (s >= n) 294 movl(lo, hi); // x := x >> n 295 if (sign_extension) sarl(hi, 31); 296 else xorl(hi, hi); 297 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 298 bind(L); // s (mod n) < n 299 shrdl(lo, hi); // x := x >> s 300 if (sign_extension) sarl(hi); 301 else shrl(hi); 302 } 303 304 void MacroAssembler::movoop(Register dst, jobject obj) { 305 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 306 } 307 308 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 309 assert(rscratch == noreg, "redundant"); 310 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 311 } 312 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 314 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 315 } 316 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 318 assert(rscratch == noreg, "redundant"); 319 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 320 } 321 322 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 323 if (src.is_lval()) { 324 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 325 } else { 326 movl(dst, as_Address(src)); 327 } 328 } 329 330 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 331 assert(rscratch == noreg, "redundant"); 332 movl(as_Address(dst, noreg), src); 333 } 334 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 336 movl(dst, as_Address(src, noreg)); 337 } 338 339 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 340 assert(rscratch == noreg, "redundant"); 341 movl(dst, src); 342 } 343 344 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 345 assert(rscratch == noreg, "redundant"); 346 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 347 } 348 349 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 350 assert(rscratch == noreg, "redundant"); 351 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 352 } 353 354 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 355 assert(rscratch == noreg, "redundant"); 356 if (src.is_lval()) { 357 push_literal32((int32_t)src.target(), src.rspec()); 358 } else { 359 pushl(as_Address(src)); 360 } 361 } 362 363 static void pass_arg0(MacroAssembler* masm, Register arg) { 364 masm->push(arg); 365 } 366 367 static void pass_arg1(MacroAssembler* masm, Register arg) { 368 masm->push(arg); 369 } 370 371 static void pass_arg2(MacroAssembler* masm, Register arg) { 372 masm->push(arg); 373 } 374 375 static void pass_arg3(MacroAssembler* masm, Register arg) { 376 masm->push(arg); 377 } 378 379 #ifndef PRODUCT 380 extern "C" void findpc(intptr_t x); 381 #endif 382 383 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 384 // In order to get locks to work, we need to fake a in_VM state 385 JavaThread* thread = JavaThread::current(); 386 JavaThreadState saved_state = thread->thread_state(); 387 thread->set_thread_state(_thread_in_vm); 388 if (ShowMessageBoxOnError) { 389 JavaThread* thread = JavaThread::current(); 390 JavaThreadState saved_state = thread->thread_state(); 391 thread->set_thread_state(_thread_in_vm); 392 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 393 ttyLocker ttyl; 394 BytecodeCounter::print(); 395 } 396 // To see where a verify_oop failed, get $ebx+40/X for this frame. 397 // This is the value of eip which points to where verify_oop will return. 398 if (os::message_box(msg, "Execution stopped, print registers?")) { 399 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 400 BREAKPOINT; 401 } 402 } 403 fatal("DEBUG MESSAGE: %s", msg); 404 } 405 406 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 407 ttyLocker ttyl; 408 DebuggingContext debugging{}; 409 tty->print_cr("eip = 0x%08x", eip); 410 #ifndef PRODUCT 411 if ((WizardMode || Verbose) && PrintMiscellaneous) { 412 tty->cr(); 413 findpc(eip); 414 tty->cr(); 415 } 416 #endif 417 #define PRINT_REG(rax) \ 418 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 419 PRINT_REG(rax); 420 PRINT_REG(rbx); 421 PRINT_REG(rcx); 422 PRINT_REG(rdx); 423 PRINT_REG(rdi); 424 PRINT_REG(rsi); 425 PRINT_REG(rbp); 426 PRINT_REG(rsp); 427 #undef PRINT_REG 428 // Print some words near top of staack. 429 int* dump_sp = (int*) rsp; 430 for (int col1 = 0; col1 < 8; col1++) { 431 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 432 os::print_location(tty, *dump_sp++); 433 } 434 for (int row = 0; row < 16; row++) { 435 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 436 for (int col = 0; col < 8; col++) { 437 tty->print(" 0x%08x", *dump_sp++); 438 } 439 tty->cr(); 440 } 441 // Print some instructions around pc: 442 Disassembler::decode((address)eip-64, (address)eip); 443 tty->print_cr("--------"); 444 Disassembler::decode((address)eip, (address)eip+32); 445 } 446 447 void MacroAssembler::stop(const char* msg) { 448 // push address of message 449 ExternalAddress message((address)msg); 450 pushptr(message.addr(), noreg); 451 { Label L; call(L, relocInfo::none); bind(L); } // push eip 452 pusha(); // push registers 453 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 454 hlt(); 455 } 456 457 void MacroAssembler::warn(const char* msg) { 458 push_CPU_state(); 459 460 // push address of message 461 ExternalAddress message((address)msg); 462 pushptr(message.addr(), noreg); 463 464 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 465 addl(rsp, wordSize); // discard argument 466 pop_CPU_state(); 467 } 468 469 void MacroAssembler::print_state() { 470 { Label L; call(L, relocInfo::none); bind(L); } // push eip 471 pusha(); // push registers 472 473 push_CPU_state(); 474 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 475 pop_CPU_state(); 476 477 popa(); 478 addl(rsp, wordSize); 479 } 480 481 #else // _LP64 482 483 // 64 bit versions 484 485 Address MacroAssembler::as_Address(AddressLiteral adr) { 486 // amd64 always does this as a pc-rel 487 // we can be absolute or disp based on the instruction type 488 // jmp/call are displacements others are absolute 489 assert(!adr.is_lval(), "must be rval"); 490 assert(reachable(adr), "must be"); 491 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 492 493 } 494 495 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 496 AddressLiteral base = adr.base(); 497 lea(rscratch, base); 498 Address index = adr.index(); 499 assert(index._disp == 0, "must not have disp"); // maybe it can? 500 Address array(rscratch, index._index, index._scale, index._disp); 501 return array; 502 } 503 504 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 505 Label L, E; 506 507 #ifdef _WIN64 508 // Windows always allocates space for it's register args 509 assert(num_args <= 4, "only register arguments supported"); 510 subq(rsp, frame::arg_reg_save_area_bytes); 511 #endif 512 513 // Align stack if necessary 514 testl(rsp, 15); 515 jcc(Assembler::zero, L); 516 517 subq(rsp, 8); 518 call(RuntimeAddress(entry_point)); 519 addq(rsp, 8); 520 jmp(E); 521 522 bind(L); 523 call(RuntimeAddress(entry_point)); 524 525 bind(E); 526 527 #ifdef _WIN64 528 // restore stack pointer 529 addq(rsp, frame::arg_reg_save_area_bytes); 530 #endif 531 532 } 533 534 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 535 assert(!src2.is_lval(), "should use cmpptr"); 536 assert(rscratch != noreg || always_reachable(src2), "missing"); 537 538 if (reachable(src2)) { 539 cmpq(src1, as_Address(src2)); 540 } else { 541 lea(rscratch, src2); 542 Assembler::cmpq(src1, Address(rscratch, 0)); 543 } 544 } 545 546 int MacroAssembler::corrected_idivq(Register reg) { 547 // Full implementation of Java ldiv and lrem; checks for special 548 // case as described in JVM spec., p.243 & p.271. The function 549 // returns the (pc) offset of the idivl instruction - may be needed 550 // for implicit exceptions. 551 // 552 // normal case special case 553 // 554 // input : rax: dividend min_long 555 // reg: divisor (may not be eax/edx) -1 556 // 557 // output: rax: quotient (= rax idiv reg) min_long 558 // rdx: remainder (= rax irem reg) 0 559 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 560 static const int64_t min_long = 0x8000000000000000; 561 Label normal_case, special_case; 562 563 // check for special case 564 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 565 jcc(Assembler::notEqual, normal_case); 566 xorl(rdx, rdx); // prepare rdx for possible special case (where 567 // remainder = 0) 568 cmpq(reg, -1); 569 jcc(Assembler::equal, special_case); 570 571 // handle normal case 572 bind(normal_case); 573 cdqq(); 574 int idivq_offset = offset(); 575 idivq(reg); 576 577 // normal and special case exit 578 bind(special_case); 579 580 return idivq_offset; 581 } 582 583 void MacroAssembler::decrementq(Register reg, int value) { 584 if (value == min_jint) { subq(reg, value); return; } 585 if (value < 0) { incrementq(reg, -value); return; } 586 if (value == 0) { ; return; } 587 if (value == 1 && UseIncDec) { decq(reg) ; return; } 588 /* else */ { subq(reg, value) ; return; } 589 } 590 591 void MacroAssembler::decrementq(Address dst, int value) { 592 if (value == min_jint) { subq(dst, value); return; } 593 if (value < 0) { incrementq(dst, -value); return; } 594 if (value == 0) { ; return; } 595 if (value == 1 && UseIncDec) { decq(dst) ; return; } 596 /* else */ { subq(dst, value) ; return; } 597 } 598 599 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 600 assert(rscratch != noreg || always_reachable(dst), "missing"); 601 602 if (reachable(dst)) { 603 incrementq(as_Address(dst)); 604 } else { 605 lea(rscratch, dst); 606 incrementq(Address(rscratch, 0)); 607 } 608 } 609 610 void MacroAssembler::incrementq(Register reg, int value) { 611 if (value == min_jint) { addq(reg, value); return; } 612 if (value < 0) { decrementq(reg, -value); return; } 613 if (value == 0) { ; return; } 614 if (value == 1 && UseIncDec) { incq(reg) ; return; } 615 /* else */ { addq(reg, value) ; return; } 616 } 617 618 void MacroAssembler::incrementq(Address dst, int value) { 619 if (value == min_jint) { addq(dst, value); return; } 620 if (value < 0) { decrementq(dst, -value); return; } 621 if (value == 0) { ; return; } 622 if (value == 1 && UseIncDec) { incq(dst) ; return; } 623 /* else */ { addq(dst, value) ; return; } 624 } 625 626 // 32bit can do a case table jump in one instruction but we no longer allow the base 627 // to be installed in the Address class 628 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 629 lea(rscratch, entry.base()); 630 Address dispatch = entry.index(); 631 assert(dispatch._base == noreg, "must be"); 632 dispatch._base = rscratch; 633 jmp(dispatch); 634 } 635 636 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 637 ShouldNotReachHere(); // 64bit doesn't use two regs 638 cmpq(x_lo, y_lo); 639 } 640 641 void MacroAssembler::lea(Register dst, AddressLiteral src) { 642 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 643 } 644 645 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 646 lea(rscratch, adr); 647 movptr(dst, rscratch); 648 } 649 650 void MacroAssembler::leave() { 651 // %%% is this really better? Why not on 32bit too? 652 emit_int8((unsigned char)0xC9); // LEAVE 653 } 654 655 void MacroAssembler::lneg(Register hi, Register lo) { 656 ShouldNotReachHere(); // 64bit doesn't use two regs 657 negq(lo); 658 } 659 660 void MacroAssembler::movoop(Register dst, jobject obj) { 661 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 662 } 663 664 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 665 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 666 movq(dst, rscratch); 667 } 668 669 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 670 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 671 } 672 673 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 674 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 675 movq(dst, rscratch); 676 } 677 678 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 679 if (src.is_lval()) { 680 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 681 } else { 682 if (reachable(src)) { 683 movq(dst, as_Address(src)); 684 } else { 685 lea(dst, src); 686 movq(dst, Address(dst, 0)); 687 } 688 } 689 } 690 691 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 692 movq(as_Address(dst, rscratch), src); 693 } 694 695 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 696 movq(dst, as_Address(src, dst /*rscratch*/)); 697 } 698 699 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 700 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 701 if (is_simm32(src)) { 702 movptr(dst, checked_cast<int32_t>(src)); 703 } else { 704 mov64(rscratch, src); 705 movq(dst, rscratch); 706 } 707 } 708 709 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 710 movoop(rscratch, obj); 711 push(rscratch); 712 } 713 714 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 715 mov_metadata(rscratch, obj); 716 push(rscratch); 717 } 718 719 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 720 lea(rscratch, src); 721 if (src.is_lval()) { 722 push(rscratch); 723 } else { 724 pushq(Address(rscratch, 0)); 725 } 726 } 727 728 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 729 reset_last_Java_frame(r15_thread, clear_fp); 730 } 731 732 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 733 Register last_java_fp, 734 address last_java_pc, 735 Register rscratch) { 736 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 737 } 738 739 static void pass_arg0(MacroAssembler* masm, Register arg) { 740 if (c_rarg0 != arg ) { 741 masm->mov(c_rarg0, arg); 742 } 743 } 744 745 static void pass_arg1(MacroAssembler* masm, Register arg) { 746 if (c_rarg1 != arg ) { 747 masm->mov(c_rarg1, arg); 748 } 749 } 750 751 static void pass_arg2(MacroAssembler* masm, Register arg) { 752 if (c_rarg2 != arg ) { 753 masm->mov(c_rarg2, arg); 754 } 755 } 756 757 static void pass_arg3(MacroAssembler* masm, Register arg) { 758 if (c_rarg3 != arg ) { 759 masm->mov(c_rarg3, arg); 760 } 761 } 762 763 void MacroAssembler::stop(const char* msg) { 764 if (ShowMessageBoxOnError) { 765 address rip = pc(); 766 pusha(); // get regs on stack 767 lea(c_rarg1, InternalAddress(rip)); 768 movq(c_rarg2, rsp); // pass pointer to regs array 769 } 770 lea(c_rarg0, ExternalAddress((address) msg)); 771 andq(rsp, -16); // align stack as required by ABI 772 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 773 hlt(); 774 } 775 776 void MacroAssembler::warn(const char* msg) { 777 push(rbp); 778 movq(rbp, rsp); 779 andq(rsp, -16); // align stack as required by push_CPU_state and call 780 push_CPU_state(); // keeps alignment at 16 bytes 781 782 lea(c_rarg0, ExternalAddress((address) msg)); 783 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 784 785 pop_CPU_state(); 786 mov(rsp, rbp); 787 pop(rbp); 788 } 789 790 void MacroAssembler::print_state() { 791 address rip = pc(); 792 pusha(); // get regs on stack 793 push(rbp); 794 movq(rbp, rsp); 795 andq(rsp, -16); // align stack as required by push_CPU_state and call 796 push_CPU_state(); // keeps alignment at 16 bytes 797 798 lea(c_rarg0, InternalAddress(rip)); 799 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 800 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 801 802 pop_CPU_state(); 803 mov(rsp, rbp); 804 pop(rbp); 805 popa(); 806 } 807 808 #ifndef PRODUCT 809 extern "C" void findpc(intptr_t x); 810 #endif 811 812 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 813 // In order to get locks to work, we need to fake a in_VM state 814 if (ShowMessageBoxOnError) { 815 JavaThread* thread = JavaThread::current(); 816 JavaThreadState saved_state = thread->thread_state(); 817 thread->set_thread_state(_thread_in_vm); 818 #ifndef PRODUCT 819 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 820 ttyLocker ttyl; 821 BytecodeCounter::print(); 822 } 823 #endif 824 // To see where a verify_oop failed, get $ebx+40/X for this frame. 825 // XXX correct this offset for amd64 826 // This is the value of eip which points to where verify_oop will return. 827 if (os::message_box(msg, "Execution stopped, print registers?")) { 828 print_state64(pc, regs); 829 BREAKPOINT; 830 } 831 } 832 fatal("DEBUG MESSAGE: %s", msg); 833 } 834 835 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 836 ttyLocker ttyl; 837 DebuggingContext debugging{}; 838 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 839 #ifndef PRODUCT 840 tty->cr(); 841 findpc(pc); 842 tty->cr(); 843 #endif 844 #define PRINT_REG(rax, value) \ 845 { tty->print("%s = ", #rax); os::print_location(tty, value); } 846 PRINT_REG(rax, regs[15]); 847 PRINT_REG(rbx, regs[12]); 848 PRINT_REG(rcx, regs[14]); 849 PRINT_REG(rdx, regs[13]); 850 PRINT_REG(rdi, regs[8]); 851 PRINT_REG(rsi, regs[9]); 852 PRINT_REG(rbp, regs[10]); 853 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 854 PRINT_REG(rsp, (intptr_t)(®s[16])); 855 PRINT_REG(r8 , regs[7]); 856 PRINT_REG(r9 , regs[6]); 857 PRINT_REG(r10, regs[5]); 858 PRINT_REG(r11, regs[4]); 859 PRINT_REG(r12, regs[3]); 860 PRINT_REG(r13, regs[2]); 861 PRINT_REG(r14, regs[1]); 862 PRINT_REG(r15, regs[0]); 863 #undef PRINT_REG 864 // Print some words near the top of the stack. 865 int64_t* rsp = ®s[16]; 866 int64_t* dump_sp = rsp; 867 for (int col1 = 0; col1 < 8; col1++) { 868 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 869 os::print_location(tty, *dump_sp++); 870 } 871 for (int row = 0; row < 25; row++) { 872 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 873 for (int col = 0; col < 4; col++) { 874 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 875 } 876 tty->cr(); 877 } 878 // Print some instructions around pc: 879 Disassembler::decode((address)pc-64, (address)pc); 880 tty->print_cr("--------"); 881 Disassembler::decode((address)pc, (address)pc+32); 882 } 883 884 // The java_calling_convention describes stack locations as ideal slots on 885 // a frame with no abi restrictions. Since we must observe abi restrictions 886 // (like the placement of the register window) the slots must be biased by 887 // the following value. 888 static int reg2offset_in(VMReg r) { 889 // Account for saved rbp and return address 890 // This should really be in_preserve_stack_slots 891 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 892 } 893 894 static int reg2offset_out(VMReg r) { 895 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 896 } 897 898 // A long move 899 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 900 901 // The calling conventions assures us that each VMregpair is either 902 // all really one physical register or adjacent stack slots. 903 904 if (src.is_single_phys_reg() ) { 905 if (dst.is_single_phys_reg()) { 906 if (dst.first() != src.first()) { 907 mov(dst.first()->as_Register(), src.first()->as_Register()); 908 } 909 } else { 910 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 911 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 912 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 913 } 914 } else if (dst.is_single_phys_reg()) { 915 assert(src.is_single_reg(), "not a stack pair"); 916 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 917 } else { 918 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 919 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 920 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 921 } 922 } 923 924 // A double move 925 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 926 927 // The calling conventions assures us that each VMregpair is either 928 // all really one physical register or adjacent stack slots. 929 930 if (src.is_single_phys_reg() ) { 931 if (dst.is_single_phys_reg()) { 932 // In theory these overlap but the ordering is such that this is likely a nop 933 if ( src.first() != dst.first()) { 934 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 935 } 936 } else { 937 assert(dst.is_single_reg(), "not a stack pair"); 938 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 939 } 940 } else if (dst.is_single_phys_reg()) { 941 assert(src.is_single_reg(), "not a stack pair"); 942 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 943 } else { 944 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 945 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 946 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 947 } 948 } 949 950 951 // A float arg may have to do float reg int reg conversion 952 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 953 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 954 955 // The calling conventions assures us that each VMregpair is either 956 // all really one physical register or adjacent stack slots. 957 958 if (src.first()->is_stack()) { 959 if (dst.first()->is_stack()) { 960 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 961 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 962 } else { 963 // stack to reg 964 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 965 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 966 } 967 } else if (dst.first()->is_stack()) { 968 // reg to stack 969 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 970 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 971 } else { 972 // reg to reg 973 // In theory these overlap but the ordering is such that this is likely a nop 974 if ( src.first() != dst.first()) { 975 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 976 } 977 } 978 } 979 980 // On 64 bit we will store integer like items to the stack as 981 // 64 bits items (x86_32/64 abi) even though java would only store 982 // 32bits for a parameter. On 32bit it will simply be 32 bits 983 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 984 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 985 if (src.first()->is_stack()) { 986 if (dst.first()->is_stack()) { 987 // stack to stack 988 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 989 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 990 } else { 991 // stack to reg 992 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 993 } 994 } else if (dst.first()->is_stack()) { 995 // reg to stack 996 // Do we really have to sign extend??? 997 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 998 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 999 } else { 1000 // Do we really have to sign extend??? 1001 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1002 if (dst.first() != src.first()) { 1003 movq(dst.first()->as_Register(), src.first()->as_Register()); 1004 } 1005 } 1006 } 1007 1008 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1009 if (src.first()->is_stack()) { 1010 if (dst.first()->is_stack()) { 1011 // stack to stack 1012 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1013 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1014 } else { 1015 // stack to reg 1016 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1017 } 1018 } else if (dst.first()->is_stack()) { 1019 // reg to stack 1020 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1021 } else { 1022 if (dst.first() != src.first()) { 1023 movq(dst.first()->as_Register(), src.first()->as_Register()); 1024 } 1025 } 1026 } 1027 1028 // An oop arg. Must pass a handle not the oop itself 1029 void MacroAssembler::object_move(OopMap* map, 1030 int oop_handle_offset, 1031 int framesize_in_slots, 1032 VMRegPair src, 1033 VMRegPair dst, 1034 bool is_receiver, 1035 int* receiver_offset) { 1036 1037 // must pass a handle. First figure out the location we use as a handle 1038 1039 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1040 1041 // See if oop is null if it is we need no handle 1042 1043 if (src.first()->is_stack()) { 1044 1045 // Oop is already on the stack as an argument 1046 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1047 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1048 if (is_receiver) { 1049 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1050 } 1051 1052 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1053 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1054 // conditionally move a null 1055 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1056 } else { 1057 1058 // Oop is in a register we must store it to the space we reserve 1059 // on the stack for oop_handles and pass a handle if oop is non-null 1060 1061 const Register rOop = src.first()->as_Register(); 1062 int oop_slot; 1063 if (rOop == j_rarg0) 1064 oop_slot = 0; 1065 else if (rOop == j_rarg1) 1066 oop_slot = 1; 1067 else if (rOop == j_rarg2) 1068 oop_slot = 2; 1069 else if (rOop == j_rarg3) 1070 oop_slot = 3; 1071 else if (rOop == j_rarg4) 1072 oop_slot = 4; 1073 else { 1074 assert(rOop == j_rarg5, "wrong register"); 1075 oop_slot = 5; 1076 } 1077 1078 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1079 int offset = oop_slot*VMRegImpl::stack_slot_size; 1080 1081 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1082 // Store oop in handle area, may be null 1083 movptr(Address(rsp, offset), rOop); 1084 if (is_receiver) { 1085 *receiver_offset = offset; 1086 } 1087 1088 cmpptr(rOop, NULL_WORD); 1089 lea(rHandle, Address(rsp, offset)); 1090 // conditionally move a null from the handle area where it was just stored 1091 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1092 } 1093 1094 // If arg is on the stack then place it otherwise it is already in correct reg. 1095 if (dst.first()->is_stack()) { 1096 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1097 } 1098 } 1099 1100 #endif // _LP64 1101 1102 // Now versions that are common to 32/64 bit 1103 1104 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1105 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1106 } 1107 1108 void MacroAssembler::addptr(Register dst, Register src) { 1109 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1110 } 1111 1112 void MacroAssembler::addptr(Address dst, Register src) { 1113 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1114 } 1115 1116 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1117 assert(rscratch != noreg || always_reachable(src), "missing"); 1118 1119 if (reachable(src)) { 1120 Assembler::addsd(dst, as_Address(src)); 1121 } else { 1122 lea(rscratch, src); 1123 Assembler::addsd(dst, Address(rscratch, 0)); 1124 } 1125 } 1126 1127 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1128 assert(rscratch != noreg || always_reachable(src), "missing"); 1129 1130 if (reachable(src)) { 1131 addss(dst, as_Address(src)); 1132 } else { 1133 lea(rscratch, src); 1134 addss(dst, Address(rscratch, 0)); 1135 } 1136 } 1137 1138 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1139 assert(rscratch != noreg || always_reachable(src), "missing"); 1140 1141 if (reachable(src)) { 1142 Assembler::addpd(dst, as_Address(src)); 1143 } else { 1144 lea(rscratch, src); 1145 Assembler::addpd(dst, Address(rscratch, 0)); 1146 } 1147 } 1148 1149 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1150 // Stub code is generated once and never copied. 1151 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1152 void MacroAssembler::align64() { 1153 align(64, (uint)(uintptr_t)pc()); 1154 } 1155 1156 void MacroAssembler::align32() { 1157 align(32, (uint)(uintptr_t)pc()); 1158 } 1159 1160 void MacroAssembler::align(uint modulus) { 1161 // 8273459: Ensure alignment is possible with current segment alignment 1162 assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1163 align(modulus, offset()); 1164 } 1165 1166 void MacroAssembler::align(uint modulus, uint target) { 1167 if (target % modulus != 0) { 1168 nop(modulus - (target % modulus)); 1169 } 1170 } 1171 1172 void MacroAssembler::push_f(XMMRegister r) { 1173 subptr(rsp, wordSize); 1174 movflt(Address(rsp, 0), r); 1175 } 1176 1177 void MacroAssembler::pop_f(XMMRegister r) { 1178 movflt(r, Address(rsp, 0)); 1179 addptr(rsp, wordSize); 1180 } 1181 1182 void MacroAssembler::push_d(XMMRegister r) { 1183 subptr(rsp, 2 * wordSize); 1184 movdbl(Address(rsp, 0), r); 1185 } 1186 1187 void MacroAssembler::pop_d(XMMRegister r) { 1188 movdbl(r, Address(rsp, 0)); 1189 addptr(rsp, 2 * Interpreter::stackElementSize); 1190 } 1191 1192 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1193 // Used in sign-masking with aligned address. 1194 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1195 assert(rscratch != noreg || always_reachable(src), "missing"); 1196 1197 if (reachable(src)) { 1198 Assembler::andpd(dst, as_Address(src)); 1199 } else { 1200 lea(rscratch, src); 1201 Assembler::andpd(dst, Address(rscratch, 0)); 1202 } 1203 } 1204 1205 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1206 // Used in sign-masking with aligned address. 1207 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1208 assert(rscratch != noreg || always_reachable(src), "missing"); 1209 1210 if (reachable(src)) { 1211 Assembler::andps(dst, as_Address(src)); 1212 } else { 1213 lea(rscratch, src); 1214 Assembler::andps(dst, Address(rscratch, 0)); 1215 } 1216 } 1217 1218 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1219 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1220 } 1221 1222 #ifdef _LP64 1223 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1224 assert(rscratch != noreg || always_reachable(src), "missing"); 1225 1226 if (reachable(src)) { 1227 andq(dst, as_Address(src)); 1228 } else { 1229 lea(rscratch, src); 1230 andq(dst, Address(rscratch, 0)); 1231 } 1232 } 1233 #endif 1234 1235 void MacroAssembler::atomic_incl(Address counter_addr) { 1236 lock(); 1237 incrementl(counter_addr); 1238 } 1239 1240 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1241 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1242 1243 if (reachable(counter_addr)) { 1244 atomic_incl(as_Address(counter_addr)); 1245 } else { 1246 lea(rscratch, counter_addr); 1247 atomic_incl(Address(rscratch, 0)); 1248 } 1249 } 1250 1251 #ifdef _LP64 1252 void MacroAssembler::atomic_incq(Address counter_addr) { 1253 lock(); 1254 incrementq(counter_addr); 1255 } 1256 1257 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1258 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1259 1260 if (reachable(counter_addr)) { 1261 atomic_incq(as_Address(counter_addr)); 1262 } else { 1263 lea(rscratch, counter_addr); 1264 atomic_incq(Address(rscratch, 0)); 1265 } 1266 } 1267 #endif 1268 1269 // Writes to stack successive pages until offset reached to check for 1270 // stack overflow + shadow pages. This clobbers tmp. 1271 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1272 movptr(tmp, rsp); 1273 // Bang stack for total size given plus shadow page size. 1274 // Bang one page at a time because large size can bang beyond yellow and 1275 // red zones. 1276 Label loop; 1277 bind(loop); 1278 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1279 subptr(tmp, (int)os::vm_page_size()); 1280 subl(size, (int)os::vm_page_size()); 1281 jcc(Assembler::greater, loop); 1282 1283 // Bang down shadow pages too. 1284 // At this point, (tmp-0) is the last address touched, so don't 1285 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1286 // was post-decremented.) Skip this address by starting at i=1, and 1287 // touch a few more pages below. N.B. It is important to touch all 1288 // the way down including all pages in the shadow zone. 1289 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1290 // this could be any sized move but this is can be a debugging crumb 1291 // so the bigger the better. 1292 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1293 } 1294 } 1295 1296 void MacroAssembler::reserved_stack_check() { 1297 // testing if reserved zone needs to be enabled 1298 Label no_reserved_zone_enabling; 1299 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1300 NOT_LP64(get_thread(rsi);) 1301 1302 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1303 jcc(Assembler::below, no_reserved_zone_enabling); 1304 1305 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1306 jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 1307 should_not_reach_here(); 1308 1309 bind(no_reserved_zone_enabling); 1310 } 1311 1312 void MacroAssembler::c2bool(Register x) { 1313 // implements x == 0 ? 0 : 1 1314 // note: must only look at least-significant byte of x 1315 // since C-style booleans are stored in one byte 1316 // only! (was bug) 1317 andl(x, 0xFF); 1318 setb(Assembler::notZero, x); 1319 } 1320 1321 // Wouldn't need if AddressLiteral version had new name 1322 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1323 Assembler::call(L, rtype); 1324 } 1325 1326 void MacroAssembler::call(Register entry) { 1327 Assembler::call(entry); 1328 } 1329 1330 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1331 assert(rscratch != noreg || always_reachable(entry), "missing"); 1332 1333 if (reachable(entry)) { 1334 Assembler::call_literal(entry.target(), entry.rspec()); 1335 } else { 1336 lea(rscratch, entry); 1337 Assembler::call(rscratch); 1338 } 1339 } 1340 1341 void MacroAssembler::ic_call(address entry, jint method_index) { 1342 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1343 #ifdef _LP64 1344 // Needs full 64-bit immediate for later patching. 1345 mov64(rax, (int64_t)Universe::non_oop_word()); 1346 #else 1347 movptr(rax, (intptr_t)Universe::non_oop_word()); 1348 #endif 1349 call(AddressLiteral(entry, rh)); 1350 } 1351 1352 int MacroAssembler::ic_check_size() { 1353 return LP64_ONLY(14) NOT_LP64(12); 1354 } 1355 1356 int MacroAssembler::ic_check(int end_alignment) { 1357 Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx); 1358 Register data = rax; 1359 Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx); 1360 1361 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1362 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1363 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1364 // before the inline cache check here, and not after 1365 align(end_alignment, offset() + ic_check_size()); 1366 1367 int uep_offset = offset(); 1368 1369 if (UseCompressedClassPointers) { 1370 movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1371 cmpl(temp, Address(data, CompiledICData::speculated_klass_offset())); 1372 } else { 1373 movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 1374 cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset())); 1375 } 1376 1377 // if inline cache check fails, then jump to runtime routine 1378 jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1379 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1380 1381 return uep_offset; 1382 } 1383 1384 void MacroAssembler::emit_static_call_stub() { 1385 // Static stub relocation also tags the Method* in the code-stream. 1386 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1387 // This is recognized as unresolved by relocs/nativeinst/ic code. 1388 jump(RuntimeAddress(pc())); 1389 } 1390 1391 // Implementation of call_VM versions 1392 1393 void MacroAssembler::call_VM(Register oop_result, 1394 address entry_point, 1395 bool check_exceptions) { 1396 Label C, E; 1397 call(C, relocInfo::none); 1398 jmp(E); 1399 1400 bind(C); 1401 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1402 ret(0); 1403 1404 bind(E); 1405 } 1406 1407 void MacroAssembler::call_VM(Register oop_result, 1408 address entry_point, 1409 Register arg_1, 1410 bool check_exceptions) { 1411 Label C, E; 1412 call(C, relocInfo::none); 1413 jmp(E); 1414 1415 bind(C); 1416 pass_arg1(this, arg_1); 1417 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1418 ret(0); 1419 1420 bind(E); 1421 } 1422 1423 void MacroAssembler::call_VM(Register oop_result, 1424 address entry_point, 1425 Register arg_1, 1426 Register arg_2, 1427 bool check_exceptions) { 1428 Label C, E; 1429 call(C, relocInfo::none); 1430 jmp(E); 1431 1432 bind(C); 1433 1434 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1435 1436 pass_arg2(this, arg_2); 1437 pass_arg1(this, arg_1); 1438 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1439 ret(0); 1440 1441 bind(E); 1442 } 1443 1444 void MacroAssembler::call_VM(Register oop_result, 1445 address entry_point, 1446 Register arg_1, 1447 Register arg_2, 1448 Register arg_3, 1449 bool check_exceptions) { 1450 Label C, E; 1451 call(C, relocInfo::none); 1452 jmp(E); 1453 1454 bind(C); 1455 1456 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1457 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1458 pass_arg3(this, arg_3); 1459 pass_arg2(this, arg_2); 1460 pass_arg1(this, arg_1); 1461 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1462 ret(0); 1463 1464 bind(E); 1465 } 1466 1467 void MacroAssembler::call_VM(Register oop_result, 1468 Register last_java_sp, 1469 address entry_point, 1470 int number_of_arguments, 1471 bool check_exceptions) { 1472 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1473 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1474 } 1475 1476 void MacroAssembler::call_VM(Register oop_result, 1477 Register last_java_sp, 1478 address entry_point, 1479 Register arg_1, 1480 bool check_exceptions) { 1481 pass_arg1(this, arg_1); 1482 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1483 } 1484 1485 void MacroAssembler::call_VM(Register oop_result, 1486 Register last_java_sp, 1487 address entry_point, 1488 Register arg_1, 1489 Register arg_2, 1490 bool check_exceptions) { 1491 1492 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1493 pass_arg2(this, arg_2); 1494 pass_arg1(this, arg_1); 1495 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1496 } 1497 1498 void MacroAssembler::call_VM(Register oop_result, 1499 Register last_java_sp, 1500 address entry_point, 1501 Register arg_1, 1502 Register arg_2, 1503 Register arg_3, 1504 bool check_exceptions) { 1505 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1506 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1507 pass_arg3(this, arg_3); 1508 pass_arg2(this, arg_2); 1509 pass_arg1(this, arg_1); 1510 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1511 } 1512 1513 void MacroAssembler::super_call_VM(Register oop_result, 1514 Register last_java_sp, 1515 address entry_point, 1516 int number_of_arguments, 1517 bool check_exceptions) { 1518 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1519 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1520 } 1521 1522 void MacroAssembler::super_call_VM(Register oop_result, 1523 Register last_java_sp, 1524 address entry_point, 1525 Register arg_1, 1526 bool check_exceptions) { 1527 pass_arg1(this, arg_1); 1528 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1529 } 1530 1531 void MacroAssembler::super_call_VM(Register oop_result, 1532 Register last_java_sp, 1533 address entry_point, 1534 Register arg_1, 1535 Register arg_2, 1536 bool check_exceptions) { 1537 1538 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1539 pass_arg2(this, arg_2); 1540 pass_arg1(this, arg_1); 1541 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1542 } 1543 1544 void MacroAssembler::super_call_VM(Register oop_result, 1545 Register last_java_sp, 1546 address entry_point, 1547 Register arg_1, 1548 Register arg_2, 1549 Register arg_3, 1550 bool check_exceptions) { 1551 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1552 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1553 pass_arg3(this, arg_3); 1554 pass_arg2(this, arg_2); 1555 pass_arg1(this, arg_1); 1556 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1557 } 1558 1559 void MacroAssembler::call_VM_base(Register oop_result, 1560 Register java_thread, 1561 Register last_java_sp, 1562 address entry_point, 1563 int number_of_arguments, 1564 bool check_exceptions) { 1565 // determine java_thread register 1566 if (!java_thread->is_valid()) { 1567 #ifdef _LP64 1568 java_thread = r15_thread; 1569 #else 1570 java_thread = rdi; 1571 get_thread(java_thread); 1572 #endif // LP64 1573 } 1574 // determine last_java_sp register 1575 if (!last_java_sp->is_valid()) { 1576 last_java_sp = rsp; 1577 } 1578 // debugging support 1579 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1580 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1581 #ifdef ASSERT 1582 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1583 // r12 is the heapbase. 1584 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1585 #endif // ASSERT 1586 1587 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1588 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1589 1590 // push java thread (becomes first argument of C function) 1591 1592 NOT_LP64(push(java_thread); number_of_arguments++); 1593 LP64_ONLY(mov(c_rarg0, r15_thread)); 1594 1595 // set last Java frame before call 1596 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1597 1598 // Only interpreter should have to set fp 1599 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1600 1601 // do the call, remove parameters 1602 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1603 1604 // restore the thread (cannot use the pushed argument since arguments 1605 // may be overwritten by C code generated by an optimizing compiler); 1606 // however can use the register value directly if it is callee saved. 1607 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1608 // rdi & rsi (also r15) are callee saved -> nothing to do 1609 #ifdef ASSERT 1610 guarantee(java_thread != rax, "change this code"); 1611 push(rax); 1612 { Label L; 1613 get_thread(rax); 1614 cmpptr(java_thread, rax); 1615 jcc(Assembler::equal, L); 1616 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1617 bind(L); 1618 } 1619 pop(rax); 1620 #endif 1621 } else { 1622 get_thread(java_thread); 1623 } 1624 // reset last Java frame 1625 // Only interpreter should have to clear fp 1626 reset_last_Java_frame(java_thread, true); 1627 1628 // C++ interp handles this in the interpreter 1629 check_and_handle_popframe(java_thread); 1630 check_and_handle_earlyret(java_thread); 1631 1632 if (check_exceptions) { 1633 // check for pending exceptions (java_thread is set upon return) 1634 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1635 #ifndef _LP64 1636 jump_cc(Assembler::notEqual, 1637 RuntimeAddress(StubRoutines::forward_exception_entry())); 1638 #else 1639 // This used to conditionally jump to forward_exception however it is 1640 // possible if we relocate that the branch will not reach. So we must jump 1641 // around so we can always reach 1642 1643 Label ok; 1644 jcc(Assembler::equal, ok); 1645 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1646 bind(ok); 1647 #endif // LP64 1648 } 1649 1650 // get oop result if there is one and reset the value in the thread 1651 if (oop_result->is_valid()) { 1652 get_vm_result(oop_result, java_thread); 1653 } 1654 } 1655 1656 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1657 1658 // Calculate the value for last_Java_sp 1659 // somewhat subtle. call_VM does an intermediate call 1660 // which places a return address on the stack just under the 1661 // stack pointer as the user finished with it. This allows 1662 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1663 // On 32bit we then have to push additional args on the stack to accomplish 1664 // the actual requested call. On 64bit call_VM only can use register args 1665 // so the only extra space is the return address that call_VM created. 1666 // This hopefully explains the calculations here. 1667 1668 #ifdef _LP64 1669 // We've pushed one address, correct last_Java_sp 1670 lea(rax, Address(rsp, wordSize)); 1671 #else 1672 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1673 #endif // LP64 1674 1675 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1676 1677 } 1678 1679 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1680 void MacroAssembler::call_VM_leaf0(address entry_point) { 1681 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1682 } 1683 1684 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1685 call_VM_leaf_base(entry_point, number_of_arguments); 1686 } 1687 1688 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1689 pass_arg0(this, arg_0); 1690 call_VM_leaf(entry_point, 1); 1691 } 1692 1693 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1694 1695 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1696 pass_arg1(this, arg_1); 1697 pass_arg0(this, arg_0); 1698 call_VM_leaf(entry_point, 2); 1699 } 1700 1701 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1702 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1703 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1704 pass_arg2(this, arg_2); 1705 pass_arg1(this, arg_1); 1706 pass_arg0(this, arg_0); 1707 call_VM_leaf(entry_point, 3); 1708 } 1709 1710 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1711 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1712 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1713 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1714 pass_arg3(this, arg_3); 1715 pass_arg2(this, arg_2); 1716 pass_arg1(this, arg_1); 1717 pass_arg0(this, arg_0); 1718 call_VM_leaf(entry_point, 3); 1719 } 1720 1721 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1722 pass_arg0(this, arg_0); 1723 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1724 } 1725 1726 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1727 LP64_ONLY(assert_different_registers(arg_0, c_rarg1)); 1728 pass_arg1(this, arg_1); 1729 pass_arg0(this, arg_0); 1730 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1731 } 1732 1733 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1734 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2)); 1735 LP64_ONLY(assert_different_registers(arg_1, c_rarg2)); 1736 pass_arg2(this, arg_2); 1737 pass_arg1(this, arg_1); 1738 pass_arg0(this, arg_0); 1739 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1740 } 1741 1742 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1743 LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3)); 1744 LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3)); 1745 LP64_ONLY(assert_different_registers(arg_2, c_rarg3)); 1746 pass_arg3(this, arg_3); 1747 pass_arg2(this, arg_2); 1748 pass_arg1(this, arg_1); 1749 pass_arg0(this, arg_0); 1750 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1751 } 1752 1753 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1754 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1755 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1756 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1757 } 1758 1759 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1760 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1761 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1762 } 1763 1764 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1765 } 1766 1767 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1768 } 1769 1770 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1771 assert(rscratch != noreg || always_reachable(src1), "missing"); 1772 1773 if (reachable(src1)) { 1774 cmpl(as_Address(src1), imm); 1775 } else { 1776 lea(rscratch, src1); 1777 cmpl(Address(rscratch, 0), imm); 1778 } 1779 } 1780 1781 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1782 assert(!src2.is_lval(), "use cmpptr"); 1783 assert(rscratch != noreg || always_reachable(src2), "missing"); 1784 1785 if (reachable(src2)) { 1786 cmpl(src1, as_Address(src2)); 1787 } else { 1788 lea(rscratch, src2); 1789 cmpl(src1, Address(rscratch, 0)); 1790 } 1791 } 1792 1793 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1794 Assembler::cmpl(src1, imm); 1795 } 1796 1797 void MacroAssembler::cmp32(Register src1, Address src2) { 1798 Assembler::cmpl(src1, src2); 1799 } 1800 1801 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1802 ucomisd(opr1, opr2); 1803 1804 Label L; 1805 if (unordered_is_less) { 1806 movl(dst, -1); 1807 jcc(Assembler::parity, L); 1808 jcc(Assembler::below , L); 1809 movl(dst, 0); 1810 jcc(Assembler::equal , L); 1811 increment(dst); 1812 } else { // unordered is greater 1813 movl(dst, 1); 1814 jcc(Assembler::parity, L); 1815 jcc(Assembler::above , L); 1816 movl(dst, 0); 1817 jcc(Assembler::equal , L); 1818 decrementl(dst); 1819 } 1820 bind(L); 1821 } 1822 1823 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1824 ucomiss(opr1, opr2); 1825 1826 Label L; 1827 if (unordered_is_less) { 1828 movl(dst, -1); 1829 jcc(Assembler::parity, L); 1830 jcc(Assembler::below , L); 1831 movl(dst, 0); 1832 jcc(Assembler::equal , L); 1833 increment(dst); 1834 } else { // unordered is greater 1835 movl(dst, 1); 1836 jcc(Assembler::parity, L); 1837 jcc(Assembler::above , L); 1838 movl(dst, 0); 1839 jcc(Assembler::equal , L); 1840 decrementl(dst); 1841 } 1842 bind(L); 1843 } 1844 1845 1846 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1847 assert(rscratch != noreg || always_reachable(src1), "missing"); 1848 1849 if (reachable(src1)) { 1850 cmpb(as_Address(src1), imm); 1851 } else { 1852 lea(rscratch, src1); 1853 cmpb(Address(rscratch, 0), imm); 1854 } 1855 } 1856 1857 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1858 #ifdef _LP64 1859 assert(rscratch != noreg || always_reachable(src2), "missing"); 1860 1861 if (src2.is_lval()) { 1862 movptr(rscratch, src2); 1863 Assembler::cmpq(src1, rscratch); 1864 } else if (reachable(src2)) { 1865 cmpq(src1, as_Address(src2)); 1866 } else { 1867 lea(rscratch, src2); 1868 Assembler::cmpq(src1, Address(rscratch, 0)); 1869 } 1870 #else 1871 assert(rscratch == noreg, "not needed"); 1872 if (src2.is_lval()) { 1873 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1874 } else { 1875 cmpl(src1, as_Address(src2)); 1876 } 1877 #endif // _LP64 1878 } 1879 1880 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1881 assert(src2.is_lval(), "not a mem-mem compare"); 1882 #ifdef _LP64 1883 // moves src2's literal address 1884 movptr(rscratch, src2); 1885 Assembler::cmpq(src1, rscratch); 1886 #else 1887 assert(rscratch == noreg, "not needed"); 1888 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1889 #endif // _LP64 1890 } 1891 1892 void MacroAssembler::cmpoop(Register src1, Register src2) { 1893 cmpptr(src1, src2); 1894 } 1895 1896 void MacroAssembler::cmpoop(Register src1, Address src2) { 1897 cmpptr(src1, src2); 1898 } 1899 1900 #ifdef _LP64 1901 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1902 movoop(rscratch, src2); 1903 cmpptr(src1, rscratch); 1904 } 1905 #endif 1906 1907 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1908 assert(rscratch != noreg || always_reachable(adr), "missing"); 1909 1910 if (reachable(adr)) { 1911 lock(); 1912 cmpxchgptr(reg, as_Address(adr)); 1913 } else { 1914 lea(rscratch, adr); 1915 lock(); 1916 cmpxchgptr(reg, Address(rscratch, 0)); 1917 } 1918 } 1919 1920 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1921 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1922 } 1923 1924 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1925 assert(rscratch != noreg || always_reachable(src), "missing"); 1926 1927 if (reachable(src)) { 1928 Assembler::comisd(dst, as_Address(src)); 1929 } else { 1930 lea(rscratch, src); 1931 Assembler::comisd(dst, Address(rscratch, 0)); 1932 } 1933 } 1934 1935 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1936 assert(rscratch != noreg || always_reachable(src), "missing"); 1937 1938 if (reachable(src)) { 1939 Assembler::comiss(dst, as_Address(src)); 1940 } else { 1941 lea(rscratch, src); 1942 Assembler::comiss(dst, Address(rscratch, 0)); 1943 } 1944 } 1945 1946 1947 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1948 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1949 1950 Condition negated_cond = negate_condition(cond); 1951 Label L; 1952 jcc(negated_cond, L); 1953 pushf(); // Preserve flags 1954 atomic_incl(counter_addr, rscratch); 1955 popf(); 1956 bind(L); 1957 } 1958 1959 int MacroAssembler::corrected_idivl(Register reg) { 1960 // Full implementation of Java idiv and irem; checks for 1961 // special case as described in JVM spec., p.243 & p.271. 1962 // The function returns the (pc) offset of the idivl 1963 // instruction - may be needed for implicit exceptions. 1964 // 1965 // normal case special case 1966 // 1967 // input : rax,: dividend min_int 1968 // reg: divisor (may not be rax,/rdx) -1 1969 // 1970 // output: rax,: quotient (= rax, idiv reg) min_int 1971 // rdx: remainder (= rax, irem reg) 0 1972 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1973 const int min_int = 0x80000000; 1974 Label normal_case, special_case; 1975 1976 // check for special case 1977 cmpl(rax, min_int); 1978 jcc(Assembler::notEqual, normal_case); 1979 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1980 cmpl(reg, -1); 1981 jcc(Assembler::equal, special_case); 1982 1983 // handle normal case 1984 bind(normal_case); 1985 cdql(); 1986 int idivl_offset = offset(); 1987 idivl(reg); 1988 1989 // normal and special case exit 1990 bind(special_case); 1991 1992 return idivl_offset; 1993 } 1994 1995 1996 1997 void MacroAssembler::decrementl(Register reg, int value) { 1998 if (value == min_jint) {subl(reg, value) ; return; } 1999 if (value < 0) { incrementl(reg, -value); return; } 2000 if (value == 0) { ; return; } 2001 if (value == 1 && UseIncDec) { decl(reg) ; return; } 2002 /* else */ { subl(reg, value) ; return; } 2003 } 2004 2005 void MacroAssembler::decrementl(Address dst, int value) { 2006 if (value == min_jint) {subl(dst, value) ; return; } 2007 if (value < 0) { incrementl(dst, -value); return; } 2008 if (value == 0) { ; return; } 2009 if (value == 1 && UseIncDec) { decl(dst) ; return; } 2010 /* else */ { subl(dst, value) ; return; } 2011 } 2012 2013 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 2014 assert(shift_value > 0, "illegal shift value"); 2015 Label _is_positive; 2016 testl (reg, reg); 2017 jcc (Assembler::positive, _is_positive); 2018 int offset = (1 << shift_value) - 1 ; 2019 2020 if (offset == 1) { 2021 incrementl(reg); 2022 } else { 2023 addl(reg, offset); 2024 } 2025 2026 bind (_is_positive); 2027 sarl(reg, shift_value); 2028 } 2029 2030 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2031 assert(rscratch != noreg || always_reachable(src), "missing"); 2032 2033 if (reachable(src)) { 2034 Assembler::divsd(dst, as_Address(src)); 2035 } else { 2036 lea(rscratch, src); 2037 Assembler::divsd(dst, Address(rscratch, 0)); 2038 } 2039 } 2040 2041 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2042 assert(rscratch != noreg || always_reachable(src), "missing"); 2043 2044 if (reachable(src)) { 2045 Assembler::divss(dst, as_Address(src)); 2046 } else { 2047 lea(rscratch, src); 2048 Assembler::divss(dst, Address(rscratch, 0)); 2049 } 2050 } 2051 2052 void MacroAssembler::enter() { 2053 push(rbp); 2054 mov(rbp, rsp); 2055 } 2056 2057 void MacroAssembler::post_call_nop() { 2058 if (!Continuations::enabled()) { 2059 return; 2060 } 2061 InstructionMark im(this); 2062 relocate(post_call_nop_Relocation::spec()); 2063 InlineSkippedInstructionsCounter skipCounter(this); 2064 emit_int8((uint8_t)0x0f); 2065 emit_int8((uint8_t)0x1f); 2066 emit_int8((uint8_t)0x84); 2067 emit_int8((uint8_t)0x00); 2068 emit_int32(0x00); 2069 } 2070 2071 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2072 void MacroAssembler::fat_nop() { 2073 if (UseAddressNop) { 2074 addr_nop_5(); 2075 } else { 2076 emit_int8((uint8_t)0x26); // es: 2077 emit_int8((uint8_t)0x2e); // cs: 2078 emit_int8((uint8_t)0x64); // fs: 2079 emit_int8((uint8_t)0x65); // gs: 2080 emit_int8((uint8_t)0x90); 2081 } 2082 } 2083 2084 #ifndef _LP64 2085 void MacroAssembler::fcmp(Register tmp) { 2086 fcmp(tmp, 1, true, true); 2087 } 2088 2089 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2090 assert(!pop_right || pop_left, "usage error"); 2091 if (VM_Version::supports_cmov()) { 2092 assert(tmp == noreg, "unneeded temp"); 2093 if (pop_left) { 2094 fucomip(index); 2095 } else { 2096 fucomi(index); 2097 } 2098 if (pop_right) { 2099 fpop(); 2100 } 2101 } else { 2102 assert(tmp != noreg, "need temp"); 2103 if (pop_left) { 2104 if (pop_right) { 2105 fcompp(); 2106 } else { 2107 fcomp(index); 2108 } 2109 } else { 2110 fcom(index); 2111 } 2112 // convert FPU condition into eflags condition via rax, 2113 save_rax(tmp); 2114 fwait(); fnstsw_ax(); 2115 sahf(); 2116 restore_rax(tmp); 2117 } 2118 // condition codes set as follows: 2119 // 2120 // CF (corresponds to C0) if x < y 2121 // PF (corresponds to C2) if unordered 2122 // ZF (corresponds to C3) if x = y 2123 } 2124 2125 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2126 fcmp2int(dst, unordered_is_less, 1, true, true); 2127 } 2128 2129 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2130 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2131 Label L; 2132 if (unordered_is_less) { 2133 movl(dst, -1); 2134 jcc(Assembler::parity, L); 2135 jcc(Assembler::below , L); 2136 movl(dst, 0); 2137 jcc(Assembler::equal , L); 2138 increment(dst); 2139 } else { // unordered is greater 2140 movl(dst, 1); 2141 jcc(Assembler::parity, L); 2142 jcc(Assembler::above , L); 2143 movl(dst, 0); 2144 jcc(Assembler::equal , L); 2145 decrementl(dst); 2146 } 2147 bind(L); 2148 } 2149 2150 void MacroAssembler::fld_d(AddressLiteral src) { 2151 fld_d(as_Address(src)); 2152 } 2153 2154 void MacroAssembler::fld_s(AddressLiteral src) { 2155 fld_s(as_Address(src)); 2156 } 2157 2158 void MacroAssembler::fldcw(AddressLiteral src) { 2159 fldcw(as_Address(src)); 2160 } 2161 2162 void MacroAssembler::fpop() { 2163 ffree(); 2164 fincstp(); 2165 } 2166 2167 void MacroAssembler::fremr(Register tmp) { 2168 save_rax(tmp); 2169 { Label L; 2170 bind(L); 2171 fprem(); 2172 fwait(); fnstsw_ax(); 2173 sahf(); 2174 jcc(Assembler::parity, L); 2175 } 2176 restore_rax(tmp); 2177 // Result is in ST0. 2178 // Note: fxch & fpop to get rid of ST1 2179 // (otherwise FPU stack could overflow eventually) 2180 fxch(1); 2181 fpop(); 2182 } 2183 2184 void MacroAssembler::empty_FPU_stack() { 2185 if (VM_Version::supports_mmx()) { 2186 emms(); 2187 } else { 2188 for (int i = 8; i-- > 0; ) ffree(i); 2189 } 2190 } 2191 #endif // !LP64 2192 2193 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2194 assert(rscratch != noreg || always_reachable(src), "missing"); 2195 if (reachable(src)) { 2196 Assembler::mulpd(dst, as_Address(src)); 2197 } else { 2198 lea(rscratch, src); 2199 Assembler::mulpd(dst, Address(rscratch, 0)); 2200 } 2201 } 2202 2203 void MacroAssembler::load_float(Address src) { 2204 #ifdef _LP64 2205 movflt(xmm0, src); 2206 #else 2207 if (UseSSE >= 1) { 2208 movflt(xmm0, src); 2209 } else { 2210 fld_s(src); 2211 } 2212 #endif // LP64 2213 } 2214 2215 void MacroAssembler::store_float(Address dst) { 2216 #ifdef _LP64 2217 movflt(dst, xmm0); 2218 #else 2219 if (UseSSE >= 1) { 2220 movflt(dst, xmm0); 2221 } else { 2222 fstp_s(dst); 2223 } 2224 #endif // LP64 2225 } 2226 2227 void MacroAssembler::load_double(Address src) { 2228 #ifdef _LP64 2229 movdbl(xmm0, src); 2230 #else 2231 if (UseSSE >= 2) { 2232 movdbl(xmm0, src); 2233 } else { 2234 fld_d(src); 2235 } 2236 #endif // LP64 2237 } 2238 2239 void MacroAssembler::store_double(Address dst) { 2240 #ifdef _LP64 2241 movdbl(dst, xmm0); 2242 #else 2243 if (UseSSE >= 2) { 2244 movdbl(dst, xmm0); 2245 } else { 2246 fstp_d(dst); 2247 } 2248 #endif // LP64 2249 } 2250 2251 // dst = c = a * b + c 2252 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2253 Assembler::vfmadd231sd(c, a, b); 2254 if (dst != c) { 2255 movdbl(dst, c); 2256 } 2257 } 2258 2259 // dst = c = a * b + c 2260 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2261 Assembler::vfmadd231ss(c, a, b); 2262 if (dst != c) { 2263 movflt(dst, c); 2264 } 2265 } 2266 2267 // dst = c = a * b + c 2268 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2269 Assembler::vfmadd231pd(c, a, b, vector_len); 2270 if (dst != c) { 2271 vmovdqu(dst, c); 2272 } 2273 } 2274 2275 // dst = c = a * b + c 2276 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2277 Assembler::vfmadd231ps(c, a, b, vector_len); 2278 if (dst != c) { 2279 vmovdqu(dst, c); 2280 } 2281 } 2282 2283 // dst = c = a * b + c 2284 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2285 Assembler::vfmadd231pd(c, a, b, vector_len); 2286 if (dst != c) { 2287 vmovdqu(dst, c); 2288 } 2289 } 2290 2291 // dst = c = a * b + c 2292 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2293 Assembler::vfmadd231ps(c, a, b, vector_len); 2294 if (dst != c) { 2295 vmovdqu(dst, c); 2296 } 2297 } 2298 2299 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2300 assert(rscratch != noreg || always_reachable(dst), "missing"); 2301 2302 if (reachable(dst)) { 2303 incrementl(as_Address(dst)); 2304 } else { 2305 lea(rscratch, dst); 2306 incrementl(Address(rscratch, 0)); 2307 } 2308 } 2309 2310 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2311 incrementl(as_Address(dst, rscratch)); 2312 } 2313 2314 void MacroAssembler::incrementl(Register reg, int value) { 2315 if (value == min_jint) {addl(reg, value) ; return; } 2316 if (value < 0) { decrementl(reg, -value); return; } 2317 if (value == 0) { ; return; } 2318 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2319 /* else */ { addl(reg, value) ; return; } 2320 } 2321 2322 void MacroAssembler::incrementl(Address dst, int value) { 2323 if (value == min_jint) {addl(dst, value) ; return; } 2324 if (value < 0) { decrementl(dst, -value); return; } 2325 if (value == 0) { ; return; } 2326 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2327 /* else */ { addl(dst, value) ; return; } 2328 } 2329 2330 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2331 assert(rscratch != noreg || always_reachable(dst), "missing"); 2332 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump"); 2333 if (reachable(dst)) { 2334 jmp_literal(dst.target(), dst.rspec()); 2335 } else { 2336 lea(rscratch, dst); 2337 jmp(rscratch); 2338 } 2339 } 2340 2341 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2342 assert(rscratch != noreg || always_reachable(dst), "missing"); 2343 assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc"); 2344 if (reachable(dst)) { 2345 InstructionMark im(this); 2346 relocate(dst.reloc()); 2347 const int short_size = 2; 2348 const int long_size = 6; 2349 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2350 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2351 // 0111 tttn #8-bit disp 2352 emit_int8(0x70 | cc); 2353 emit_int8((offs - short_size) & 0xFF); 2354 } else { 2355 // 0000 1111 1000 tttn #32-bit disp 2356 emit_int8(0x0F); 2357 emit_int8((unsigned char)(0x80 | cc)); 2358 emit_int32(offs - long_size); 2359 } 2360 } else { 2361 #ifdef ASSERT 2362 warning("reversing conditional branch"); 2363 #endif /* ASSERT */ 2364 Label skip; 2365 jccb(reverse[cc], skip); 2366 lea(rscratch, dst); 2367 Assembler::jmp(rscratch); 2368 bind(skip); 2369 } 2370 } 2371 2372 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2373 assert(rscratch != noreg || always_reachable(src), "missing"); 2374 2375 if (reachable(src)) { 2376 Assembler::ldmxcsr(as_Address(src)); 2377 } else { 2378 lea(rscratch, src); 2379 Assembler::ldmxcsr(Address(rscratch, 0)); 2380 } 2381 } 2382 2383 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2384 int off; 2385 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2386 off = offset(); 2387 movsbl(dst, src); // movsxb 2388 } else { 2389 off = load_unsigned_byte(dst, src); 2390 shll(dst, 24); 2391 sarl(dst, 24); 2392 } 2393 return off; 2394 } 2395 2396 // Note: load_signed_short used to be called load_signed_word. 2397 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2398 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2399 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2400 int MacroAssembler::load_signed_short(Register dst, Address src) { 2401 int off; 2402 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2403 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2404 // version but this is what 64bit has always done. This seems to imply 2405 // that users are only using 32bits worth. 2406 off = offset(); 2407 movswl(dst, src); // movsxw 2408 } else { 2409 off = load_unsigned_short(dst, src); 2410 shll(dst, 16); 2411 sarl(dst, 16); 2412 } 2413 return off; 2414 } 2415 2416 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2417 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2418 // and "3.9 Partial Register Penalties", p. 22). 2419 int off; 2420 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2421 off = offset(); 2422 movzbl(dst, src); // movzxb 2423 } else { 2424 xorl(dst, dst); 2425 off = offset(); 2426 movb(dst, src); 2427 } 2428 return off; 2429 } 2430 2431 // Note: load_unsigned_short used to be called load_unsigned_word. 2432 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2433 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2434 // and "3.9 Partial Register Penalties", p. 22). 2435 int off; 2436 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2437 off = offset(); 2438 movzwl(dst, src); // movzxw 2439 } else { 2440 xorl(dst, dst); 2441 off = offset(); 2442 movw(dst, src); 2443 } 2444 return off; 2445 } 2446 2447 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2448 switch (size_in_bytes) { 2449 #ifndef _LP64 2450 case 8: 2451 assert(dst2 != noreg, "second dest register required"); 2452 movl(dst, src); 2453 movl(dst2, src.plus_disp(BytesPerInt)); 2454 break; 2455 #else 2456 case 8: movq(dst, src); break; 2457 #endif 2458 case 4: movl(dst, src); break; 2459 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2460 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2461 default: ShouldNotReachHere(); 2462 } 2463 } 2464 2465 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2466 switch (size_in_bytes) { 2467 #ifndef _LP64 2468 case 8: 2469 assert(src2 != noreg, "second source register required"); 2470 movl(dst, src); 2471 movl(dst.plus_disp(BytesPerInt), src2); 2472 break; 2473 #else 2474 case 8: movq(dst, src); break; 2475 #endif 2476 case 4: movl(dst, src); break; 2477 case 2: movw(dst, src); break; 2478 case 1: movb(dst, src); break; 2479 default: ShouldNotReachHere(); 2480 } 2481 } 2482 2483 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2484 assert(rscratch != noreg || always_reachable(dst), "missing"); 2485 2486 if (reachable(dst)) { 2487 movl(as_Address(dst), src); 2488 } else { 2489 lea(rscratch, dst); 2490 movl(Address(rscratch, 0), src); 2491 } 2492 } 2493 2494 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2495 if (reachable(src)) { 2496 movl(dst, as_Address(src)); 2497 } else { 2498 lea(dst, src); 2499 movl(dst, Address(dst, 0)); 2500 } 2501 } 2502 2503 // C++ bool manipulation 2504 2505 void MacroAssembler::movbool(Register dst, Address src) { 2506 if(sizeof(bool) == 1) 2507 movb(dst, src); 2508 else if(sizeof(bool) == 2) 2509 movw(dst, src); 2510 else if(sizeof(bool) == 4) 2511 movl(dst, src); 2512 else 2513 // unsupported 2514 ShouldNotReachHere(); 2515 } 2516 2517 void MacroAssembler::movbool(Address dst, bool boolconst) { 2518 if(sizeof(bool) == 1) 2519 movb(dst, (int) boolconst); 2520 else if(sizeof(bool) == 2) 2521 movw(dst, (int) boolconst); 2522 else if(sizeof(bool) == 4) 2523 movl(dst, (int) boolconst); 2524 else 2525 // unsupported 2526 ShouldNotReachHere(); 2527 } 2528 2529 void MacroAssembler::movbool(Address dst, Register src) { 2530 if(sizeof(bool) == 1) 2531 movb(dst, src); 2532 else if(sizeof(bool) == 2) 2533 movw(dst, src); 2534 else if(sizeof(bool) == 4) 2535 movl(dst, src); 2536 else 2537 // unsupported 2538 ShouldNotReachHere(); 2539 } 2540 2541 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2542 assert(rscratch != noreg || always_reachable(src), "missing"); 2543 2544 if (reachable(src)) { 2545 movdl(dst, as_Address(src)); 2546 } else { 2547 lea(rscratch, src); 2548 movdl(dst, Address(rscratch, 0)); 2549 } 2550 } 2551 2552 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2553 assert(rscratch != noreg || always_reachable(src), "missing"); 2554 2555 if (reachable(src)) { 2556 movq(dst, as_Address(src)); 2557 } else { 2558 lea(rscratch, src); 2559 movq(dst, Address(rscratch, 0)); 2560 } 2561 } 2562 2563 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2564 assert(rscratch != noreg || always_reachable(src), "missing"); 2565 2566 if (reachable(src)) { 2567 if (UseXmmLoadAndClearUpper) { 2568 movsd (dst, as_Address(src)); 2569 } else { 2570 movlpd(dst, as_Address(src)); 2571 } 2572 } else { 2573 lea(rscratch, src); 2574 if (UseXmmLoadAndClearUpper) { 2575 movsd (dst, Address(rscratch, 0)); 2576 } else { 2577 movlpd(dst, Address(rscratch, 0)); 2578 } 2579 } 2580 } 2581 2582 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2583 assert(rscratch != noreg || always_reachable(src), "missing"); 2584 2585 if (reachable(src)) { 2586 movss(dst, as_Address(src)); 2587 } else { 2588 lea(rscratch, src); 2589 movss(dst, Address(rscratch, 0)); 2590 } 2591 } 2592 2593 void MacroAssembler::movptr(Register dst, Register src) { 2594 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2595 } 2596 2597 void MacroAssembler::movptr(Register dst, Address src) { 2598 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2599 } 2600 2601 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2602 void MacroAssembler::movptr(Register dst, intptr_t src) { 2603 #ifdef _LP64 2604 if (is_uimm32(src)) { 2605 movl(dst, checked_cast<uint32_t>(src)); 2606 } else if (is_simm32(src)) { 2607 movq(dst, checked_cast<int32_t>(src)); 2608 } else { 2609 mov64(dst, src); 2610 } 2611 #else 2612 movl(dst, src); 2613 #endif 2614 } 2615 2616 void MacroAssembler::movptr(Address dst, Register src) { 2617 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2618 } 2619 2620 void MacroAssembler::movptr(Address dst, int32_t src) { 2621 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2622 } 2623 2624 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2625 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2626 Assembler::movdqu(dst, src); 2627 } 2628 2629 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2630 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2631 Assembler::movdqu(dst, src); 2632 } 2633 2634 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2635 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2636 Assembler::movdqu(dst, src); 2637 } 2638 2639 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2640 assert(rscratch != noreg || always_reachable(src), "missing"); 2641 2642 if (reachable(src)) { 2643 movdqu(dst, as_Address(src)); 2644 } else { 2645 lea(rscratch, src); 2646 movdqu(dst, Address(rscratch, 0)); 2647 } 2648 } 2649 2650 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2651 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2652 Assembler::vmovdqu(dst, src); 2653 } 2654 2655 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2656 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2657 Assembler::vmovdqu(dst, src); 2658 } 2659 2660 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2661 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2662 Assembler::vmovdqu(dst, src); 2663 } 2664 2665 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2666 assert(rscratch != noreg || always_reachable(src), "missing"); 2667 2668 if (reachable(src)) { 2669 vmovdqu(dst, as_Address(src)); 2670 } 2671 else { 2672 lea(rscratch, src); 2673 vmovdqu(dst, Address(rscratch, 0)); 2674 } 2675 } 2676 2677 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2678 assert(rscratch != noreg || always_reachable(src), "missing"); 2679 2680 if (vector_len == AVX_512bit) { 2681 evmovdquq(dst, src, AVX_512bit, rscratch); 2682 } else if (vector_len == AVX_256bit) { 2683 vmovdqu(dst, src, rscratch); 2684 } else { 2685 movdqu(dst, src, rscratch); 2686 } 2687 } 2688 2689 void MacroAssembler::kmov(KRegister dst, Address src) { 2690 if (VM_Version::supports_avx512bw()) { 2691 kmovql(dst, src); 2692 } else { 2693 assert(VM_Version::supports_evex(), ""); 2694 kmovwl(dst, src); 2695 } 2696 } 2697 2698 void MacroAssembler::kmov(Address dst, KRegister src) { 2699 if (VM_Version::supports_avx512bw()) { 2700 kmovql(dst, src); 2701 } else { 2702 assert(VM_Version::supports_evex(), ""); 2703 kmovwl(dst, src); 2704 } 2705 } 2706 2707 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2708 if (VM_Version::supports_avx512bw()) { 2709 kmovql(dst, src); 2710 } else { 2711 assert(VM_Version::supports_evex(), ""); 2712 kmovwl(dst, src); 2713 } 2714 } 2715 2716 void MacroAssembler::kmov(Register dst, KRegister src) { 2717 if (VM_Version::supports_avx512bw()) { 2718 kmovql(dst, src); 2719 } else { 2720 assert(VM_Version::supports_evex(), ""); 2721 kmovwl(dst, src); 2722 } 2723 } 2724 2725 void MacroAssembler::kmov(KRegister dst, Register src) { 2726 if (VM_Version::supports_avx512bw()) { 2727 kmovql(dst, src); 2728 } else { 2729 assert(VM_Version::supports_evex(), ""); 2730 kmovwl(dst, src); 2731 } 2732 } 2733 2734 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2735 assert(rscratch != noreg || always_reachable(src), "missing"); 2736 2737 if (reachable(src)) { 2738 kmovql(dst, as_Address(src)); 2739 } else { 2740 lea(rscratch, src); 2741 kmovql(dst, Address(rscratch, 0)); 2742 } 2743 } 2744 2745 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2746 assert(rscratch != noreg || always_reachable(src), "missing"); 2747 2748 if (reachable(src)) { 2749 kmovwl(dst, as_Address(src)); 2750 } else { 2751 lea(rscratch, src); 2752 kmovwl(dst, Address(rscratch, 0)); 2753 } 2754 } 2755 2756 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2757 int vector_len, Register rscratch) { 2758 assert(rscratch != noreg || always_reachable(src), "missing"); 2759 2760 if (reachable(src)) { 2761 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2762 } else { 2763 lea(rscratch, src); 2764 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2765 } 2766 } 2767 2768 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2769 int vector_len, Register rscratch) { 2770 assert(rscratch != noreg || always_reachable(src), "missing"); 2771 2772 if (reachable(src)) { 2773 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2774 } else { 2775 lea(rscratch, src); 2776 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2777 } 2778 } 2779 2780 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2781 assert(rscratch != noreg || always_reachable(src), "missing"); 2782 2783 if (reachable(src)) { 2784 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2785 } else { 2786 lea(rscratch, src); 2787 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2788 } 2789 } 2790 2791 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2792 assert(rscratch != noreg || always_reachable(src), "missing"); 2793 2794 if (reachable(src)) { 2795 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2796 } else { 2797 lea(rscratch, src); 2798 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2799 } 2800 } 2801 2802 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2803 assert(rscratch != noreg || always_reachable(src), "missing"); 2804 2805 if (reachable(src)) { 2806 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2807 } else { 2808 lea(rscratch, src); 2809 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2810 } 2811 } 2812 2813 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2814 assert(rscratch != noreg || always_reachable(src), "missing"); 2815 2816 if (reachable(src)) { 2817 Assembler::movdqa(dst, as_Address(src)); 2818 } else { 2819 lea(rscratch, src); 2820 Assembler::movdqa(dst, Address(rscratch, 0)); 2821 } 2822 } 2823 2824 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2825 assert(rscratch != noreg || always_reachable(src), "missing"); 2826 2827 if (reachable(src)) { 2828 Assembler::movsd(dst, as_Address(src)); 2829 } else { 2830 lea(rscratch, src); 2831 Assembler::movsd(dst, Address(rscratch, 0)); 2832 } 2833 } 2834 2835 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2836 assert(rscratch != noreg || always_reachable(src), "missing"); 2837 2838 if (reachable(src)) { 2839 Assembler::movss(dst, as_Address(src)); 2840 } else { 2841 lea(rscratch, src); 2842 Assembler::movss(dst, Address(rscratch, 0)); 2843 } 2844 } 2845 2846 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2847 assert(rscratch != noreg || always_reachable(src), "missing"); 2848 2849 if (reachable(src)) { 2850 Assembler::movddup(dst, as_Address(src)); 2851 } else { 2852 lea(rscratch, src); 2853 Assembler::movddup(dst, Address(rscratch, 0)); 2854 } 2855 } 2856 2857 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2858 assert(rscratch != noreg || always_reachable(src), "missing"); 2859 2860 if (reachable(src)) { 2861 Assembler::vmovddup(dst, as_Address(src), vector_len); 2862 } else { 2863 lea(rscratch, src); 2864 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2865 } 2866 } 2867 2868 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2869 assert(rscratch != noreg || always_reachable(src), "missing"); 2870 2871 if (reachable(src)) { 2872 Assembler::mulsd(dst, as_Address(src)); 2873 } else { 2874 lea(rscratch, src); 2875 Assembler::mulsd(dst, Address(rscratch, 0)); 2876 } 2877 } 2878 2879 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2880 assert(rscratch != noreg || always_reachable(src), "missing"); 2881 2882 if (reachable(src)) { 2883 Assembler::mulss(dst, as_Address(src)); 2884 } else { 2885 lea(rscratch, src); 2886 Assembler::mulss(dst, Address(rscratch, 0)); 2887 } 2888 } 2889 2890 void MacroAssembler::null_check(Register reg, int offset) { 2891 if (needs_explicit_null_check(offset)) { 2892 // provoke OS null exception if reg is null by 2893 // accessing M[reg] w/o changing any (non-CC) registers 2894 // NOTE: cmpl is plenty here to provoke a segv 2895 cmpptr(rax, Address(reg, 0)); 2896 // Note: should probably use testl(rax, Address(reg, 0)); 2897 // may be shorter code (however, this version of 2898 // testl needs to be implemented first) 2899 } else { 2900 // nothing to do, (later) access of M[reg + offset] 2901 // will provoke OS null exception if reg is null 2902 } 2903 } 2904 2905 void MacroAssembler::os_breakpoint() { 2906 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2907 // (e.g., MSVC can't call ps() otherwise) 2908 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2909 } 2910 2911 void MacroAssembler::unimplemented(const char* what) { 2912 const char* buf = nullptr; 2913 { 2914 ResourceMark rm; 2915 stringStream ss; 2916 ss.print("unimplemented: %s", what); 2917 buf = code_string(ss.as_string()); 2918 } 2919 stop(buf); 2920 } 2921 2922 #ifdef _LP64 2923 #define XSTATE_BV 0x200 2924 #endif 2925 2926 void MacroAssembler::pop_CPU_state() { 2927 pop_FPU_state(); 2928 pop_IU_state(); 2929 } 2930 2931 void MacroAssembler::pop_FPU_state() { 2932 #ifndef _LP64 2933 frstor(Address(rsp, 0)); 2934 #else 2935 fxrstor(Address(rsp, 0)); 2936 #endif 2937 addptr(rsp, FPUStateSizeInWords * wordSize); 2938 } 2939 2940 void MacroAssembler::pop_IU_state() { 2941 popa(); 2942 LP64_ONLY(addq(rsp, 8)); 2943 popf(); 2944 } 2945 2946 // Save Integer and Float state 2947 // Warning: Stack must be 16 byte aligned (64bit) 2948 void MacroAssembler::push_CPU_state() { 2949 push_IU_state(); 2950 push_FPU_state(); 2951 } 2952 2953 void MacroAssembler::push_FPU_state() { 2954 subptr(rsp, FPUStateSizeInWords * wordSize); 2955 #ifndef _LP64 2956 fnsave(Address(rsp, 0)); 2957 fwait(); 2958 #else 2959 fxsave(Address(rsp, 0)); 2960 #endif // LP64 2961 } 2962 2963 void MacroAssembler::push_IU_state() { 2964 // Push flags first because pusha kills them 2965 pushf(); 2966 // Make sure rsp stays 16-byte aligned 2967 LP64_ONLY(subq(rsp, 8)); 2968 pusha(); 2969 } 2970 2971 void MacroAssembler::push_cont_fastpath() { 2972 if (!Continuations::enabled()) return; 2973 2974 #ifndef _LP64 2975 Register rthread = rax; 2976 Register rrealsp = rbx; 2977 push(rthread); 2978 push(rrealsp); 2979 2980 get_thread(rthread); 2981 2982 // The code below wants the original RSP. 2983 // Move it back after the pushes above. 2984 movptr(rrealsp, rsp); 2985 addptr(rrealsp, 2*wordSize); 2986 #else 2987 Register rthread = r15_thread; 2988 Register rrealsp = rsp; 2989 #endif 2990 2991 Label done; 2992 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 2993 jccb(Assembler::belowEqual, done); 2994 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 2995 bind(done); 2996 2997 #ifndef _LP64 2998 pop(rrealsp); 2999 pop(rthread); 3000 #endif 3001 } 3002 3003 void MacroAssembler::pop_cont_fastpath() { 3004 if (!Continuations::enabled()) return; 3005 3006 #ifndef _LP64 3007 Register rthread = rax; 3008 Register rrealsp = rbx; 3009 push(rthread); 3010 push(rrealsp); 3011 3012 get_thread(rthread); 3013 3014 // The code below wants the original RSP. 3015 // Move it back after the pushes above. 3016 movptr(rrealsp, rsp); 3017 addptr(rrealsp, 2*wordSize); 3018 #else 3019 Register rthread = r15_thread; 3020 Register rrealsp = rsp; 3021 #endif 3022 3023 Label done; 3024 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3025 jccb(Assembler::below, done); 3026 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3027 bind(done); 3028 3029 #ifndef _LP64 3030 pop(rrealsp); 3031 pop(rthread); 3032 #endif 3033 } 3034 3035 void MacroAssembler::inc_held_monitor_count() { 3036 #ifndef _LP64 3037 Register thread = rax; 3038 push(thread); 3039 get_thread(thread); 3040 incrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3041 pop(thread); 3042 #else // LP64 3043 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3044 #endif 3045 } 3046 3047 void MacroAssembler::dec_held_monitor_count() { 3048 #ifndef _LP64 3049 Register thread = rax; 3050 push(thread); 3051 get_thread(thread); 3052 decrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3053 pop(thread); 3054 #else // LP64 3055 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3056 #endif 3057 } 3058 3059 #ifdef ASSERT 3060 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3061 #ifdef _LP64 3062 Label no_cont; 3063 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3064 testl(cont, cont); 3065 jcc(Assembler::zero, no_cont); 3066 stop(name); 3067 bind(no_cont); 3068 #else 3069 Unimplemented(); 3070 #endif 3071 } 3072 #endif 3073 3074 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3075 if (!java_thread->is_valid()) { 3076 java_thread = rdi; 3077 get_thread(java_thread); 3078 } 3079 // we must set sp to zero to clear frame 3080 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3081 // must clear fp, so that compiled frames are not confused; it is 3082 // possible that we need it only for debugging 3083 if (clear_fp) { 3084 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3085 } 3086 // Always clear the pc because it could have been set by make_walkable() 3087 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3088 vzeroupper(); 3089 } 3090 3091 void MacroAssembler::restore_rax(Register tmp) { 3092 if (tmp == noreg) pop(rax); 3093 else if (tmp != rax) mov(rax, tmp); 3094 } 3095 3096 void MacroAssembler::round_to(Register reg, int modulus) { 3097 addptr(reg, modulus - 1); 3098 andptr(reg, -modulus); 3099 } 3100 3101 void MacroAssembler::save_rax(Register tmp) { 3102 if (tmp == noreg) push(rax); 3103 else if (tmp != rax) mov(tmp, rax); 3104 } 3105 3106 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3107 if (at_return) { 3108 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3109 // we may safely use rsp instead to perform the stack watermark check. 3110 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3111 jcc(Assembler::above, slow_path); 3112 return; 3113 } 3114 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3115 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3116 } 3117 3118 // Calls to C land 3119 // 3120 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3121 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3122 // has to be reset to 0. This is required to allow proper stack traversal. 3123 void MacroAssembler::set_last_Java_frame(Register java_thread, 3124 Register last_java_sp, 3125 Register last_java_fp, 3126 address last_java_pc, 3127 Register rscratch) { 3128 vzeroupper(); 3129 // determine java_thread register 3130 if (!java_thread->is_valid()) { 3131 java_thread = rdi; 3132 get_thread(java_thread); 3133 } 3134 // determine last_java_sp register 3135 if (!last_java_sp->is_valid()) { 3136 last_java_sp = rsp; 3137 } 3138 // last_java_fp is optional 3139 if (last_java_fp->is_valid()) { 3140 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3141 } 3142 // last_java_pc is optional 3143 if (last_java_pc != nullptr) { 3144 Address java_pc(java_thread, 3145 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3146 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3147 } 3148 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3149 } 3150 3151 void MacroAssembler::shlptr(Register dst, int imm8) { 3152 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3153 } 3154 3155 void MacroAssembler::shrptr(Register dst, int imm8) { 3156 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3157 } 3158 3159 void MacroAssembler::sign_extend_byte(Register reg) { 3160 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3161 movsbl(reg, reg); // movsxb 3162 } else { 3163 shll(reg, 24); 3164 sarl(reg, 24); 3165 } 3166 } 3167 3168 void MacroAssembler::sign_extend_short(Register reg) { 3169 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3170 movswl(reg, reg); // movsxw 3171 } else { 3172 shll(reg, 16); 3173 sarl(reg, 16); 3174 } 3175 } 3176 3177 void MacroAssembler::testl(Address dst, int32_t imm32) { 3178 if (imm32 >= 0 && is8bit(imm32)) { 3179 testb(dst, imm32); 3180 } else { 3181 Assembler::testl(dst, imm32); 3182 } 3183 } 3184 3185 void MacroAssembler::testl(Register dst, int32_t imm32) { 3186 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3187 testb(dst, imm32); 3188 } else { 3189 Assembler::testl(dst, imm32); 3190 } 3191 } 3192 3193 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3194 assert(always_reachable(src), "Address should be reachable"); 3195 testl(dst, as_Address(src)); 3196 } 3197 3198 #ifdef _LP64 3199 3200 void MacroAssembler::testq(Address dst, int32_t imm32) { 3201 if (imm32 >= 0) { 3202 testl(dst, imm32); 3203 } else { 3204 Assembler::testq(dst, imm32); 3205 } 3206 } 3207 3208 void MacroAssembler::testq(Register dst, int32_t imm32) { 3209 if (imm32 >= 0) { 3210 testl(dst, imm32); 3211 } else { 3212 Assembler::testq(dst, imm32); 3213 } 3214 } 3215 3216 #endif 3217 3218 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3219 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3220 Assembler::pcmpeqb(dst, src); 3221 } 3222 3223 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3224 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3225 Assembler::pcmpeqw(dst, src); 3226 } 3227 3228 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3229 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3230 Assembler::pcmpestri(dst, src, imm8); 3231 } 3232 3233 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3234 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3235 Assembler::pcmpestri(dst, src, imm8); 3236 } 3237 3238 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3239 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3240 Assembler::pmovzxbw(dst, src); 3241 } 3242 3243 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3244 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3245 Assembler::pmovzxbw(dst, src); 3246 } 3247 3248 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3249 assert((src->encoding() < 16),"XMM register should be 0-15"); 3250 Assembler::pmovmskb(dst, src); 3251 } 3252 3253 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3254 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3255 Assembler::ptest(dst, src); 3256 } 3257 3258 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3259 assert(rscratch != noreg || always_reachable(src), "missing"); 3260 3261 if (reachable(src)) { 3262 Assembler::sqrtss(dst, as_Address(src)); 3263 } else { 3264 lea(rscratch, src); 3265 Assembler::sqrtss(dst, Address(rscratch, 0)); 3266 } 3267 } 3268 3269 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3270 assert(rscratch != noreg || always_reachable(src), "missing"); 3271 3272 if (reachable(src)) { 3273 Assembler::subsd(dst, as_Address(src)); 3274 } else { 3275 lea(rscratch, src); 3276 Assembler::subsd(dst, Address(rscratch, 0)); 3277 } 3278 } 3279 3280 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3281 assert(rscratch != noreg || always_reachable(src), "missing"); 3282 3283 if (reachable(src)) { 3284 Assembler::roundsd(dst, as_Address(src), rmode); 3285 } else { 3286 lea(rscratch, src); 3287 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3288 } 3289 } 3290 3291 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3292 assert(rscratch != noreg || always_reachable(src), "missing"); 3293 3294 if (reachable(src)) { 3295 Assembler::subss(dst, as_Address(src)); 3296 } else { 3297 lea(rscratch, src); 3298 Assembler::subss(dst, Address(rscratch, 0)); 3299 } 3300 } 3301 3302 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3303 assert(rscratch != noreg || always_reachable(src), "missing"); 3304 3305 if (reachable(src)) { 3306 Assembler::ucomisd(dst, as_Address(src)); 3307 } else { 3308 lea(rscratch, src); 3309 Assembler::ucomisd(dst, Address(rscratch, 0)); 3310 } 3311 } 3312 3313 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3314 assert(rscratch != noreg || always_reachable(src), "missing"); 3315 3316 if (reachable(src)) { 3317 Assembler::ucomiss(dst, as_Address(src)); 3318 } else { 3319 lea(rscratch, src); 3320 Assembler::ucomiss(dst, Address(rscratch, 0)); 3321 } 3322 } 3323 3324 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3325 assert(rscratch != noreg || always_reachable(src), "missing"); 3326 3327 // Used in sign-bit flipping with aligned address. 3328 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3329 if (reachable(src)) { 3330 Assembler::xorpd(dst, as_Address(src)); 3331 } else { 3332 lea(rscratch, src); 3333 Assembler::xorpd(dst, Address(rscratch, 0)); 3334 } 3335 } 3336 3337 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3338 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3339 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3340 } 3341 else { 3342 Assembler::xorpd(dst, src); 3343 } 3344 } 3345 3346 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3347 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3348 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3349 } else { 3350 Assembler::xorps(dst, src); 3351 } 3352 } 3353 3354 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3355 assert(rscratch != noreg || always_reachable(src), "missing"); 3356 3357 // Used in sign-bit flipping with aligned address. 3358 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3359 if (reachable(src)) { 3360 Assembler::xorps(dst, as_Address(src)); 3361 } else { 3362 lea(rscratch, src); 3363 Assembler::xorps(dst, Address(rscratch, 0)); 3364 } 3365 } 3366 3367 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3368 assert(rscratch != noreg || always_reachable(src), "missing"); 3369 3370 // Used in sign-bit flipping with aligned address. 3371 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3372 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3373 if (reachable(src)) { 3374 Assembler::pshufb(dst, as_Address(src)); 3375 } else { 3376 lea(rscratch, src); 3377 Assembler::pshufb(dst, Address(rscratch, 0)); 3378 } 3379 } 3380 3381 // AVX 3-operands instructions 3382 3383 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3384 assert(rscratch != noreg || always_reachable(src), "missing"); 3385 3386 if (reachable(src)) { 3387 vaddsd(dst, nds, as_Address(src)); 3388 } else { 3389 lea(rscratch, src); 3390 vaddsd(dst, nds, Address(rscratch, 0)); 3391 } 3392 } 3393 3394 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3395 assert(rscratch != noreg || always_reachable(src), "missing"); 3396 3397 if (reachable(src)) { 3398 vaddss(dst, nds, as_Address(src)); 3399 } else { 3400 lea(rscratch, src); 3401 vaddss(dst, nds, Address(rscratch, 0)); 3402 } 3403 } 3404 3405 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3406 assert(UseAVX > 0, "requires some form of AVX"); 3407 assert(rscratch != noreg || always_reachable(src), "missing"); 3408 3409 if (reachable(src)) { 3410 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3411 } else { 3412 lea(rscratch, src); 3413 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3414 } 3415 } 3416 3417 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3418 assert(UseAVX > 0, "requires some form of AVX"); 3419 assert(rscratch != noreg || always_reachable(src), "missing"); 3420 3421 if (reachable(src)) { 3422 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3423 } else { 3424 lea(rscratch, src); 3425 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3426 } 3427 } 3428 3429 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3430 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3431 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3432 3433 vandps(dst, nds, negate_field, vector_len, rscratch); 3434 } 3435 3436 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3437 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3438 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3439 3440 vandpd(dst, nds, negate_field, vector_len, rscratch); 3441 } 3442 3443 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3444 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3445 Assembler::vpaddb(dst, nds, src, vector_len); 3446 } 3447 3448 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3449 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3450 Assembler::vpaddb(dst, nds, src, vector_len); 3451 } 3452 3453 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3454 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3455 Assembler::vpaddw(dst, nds, src, vector_len); 3456 } 3457 3458 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3459 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3460 Assembler::vpaddw(dst, nds, src, vector_len); 3461 } 3462 3463 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3464 assert(rscratch != noreg || always_reachable(src), "missing"); 3465 3466 if (reachable(src)) { 3467 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3468 } else { 3469 lea(rscratch, src); 3470 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3471 } 3472 } 3473 3474 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3475 assert(rscratch != noreg || always_reachable(src), "missing"); 3476 3477 if (reachable(src)) { 3478 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3479 } else { 3480 lea(rscratch, src); 3481 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3482 } 3483 } 3484 3485 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3486 assert(rscratch != noreg || always_reachable(src), "missing"); 3487 3488 if (reachable(src)) { 3489 Assembler::vbroadcasti128(dst, as_Address(src), vector_len); 3490 } else { 3491 lea(rscratch, src); 3492 Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len); 3493 } 3494 } 3495 3496 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3497 assert(rscratch != noreg || always_reachable(src), "missing"); 3498 3499 if (reachable(src)) { 3500 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3501 } else { 3502 lea(rscratch, src); 3503 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3504 } 3505 } 3506 3507 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3508 assert(rscratch != noreg || always_reachable(src), "missing"); 3509 3510 if (reachable(src)) { 3511 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3512 } else { 3513 lea(rscratch, src); 3514 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3515 } 3516 } 3517 3518 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3519 assert(rscratch != noreg || always_reachable(src), "missing"); 3520 3521 if (reachable(src)) { 3522 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3523 } else { 3524 lea(rscratch, src); 3525 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3526 } 3527 } 3528 3529 // Vector float blend 3530 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3531 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3532 // WARN: Allow dst == (src1|src2), mask == scratch 3533 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3534 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst; 3535 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3536 if (blend_emulation && scratch_available && dst_available) { 3537 if (compute_mask) { 3538 vpsrad(scratch, mask, 32, vector_len); 3539 mask = scratch; 3540 } 3541 if (dst == src1) { 3542 vpandn(dst, mask, src1, vector_len); // if mask == 0, src1 3543 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3544 } else { 3545 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3546 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1 3547 } 3548 vpor(dst, dst, scratch, vector_len); 3549 } else { 3550 Assembler::vblendvps(dst, src1, src2, mask, vector_len); 3551 } 3552 } 3553 3554 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg) 3555 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) { 3556 // WARN: Allow dst == (src1|src2), mask == scratch 3557 bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1; 3558 bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask); 3559 bool dst_available = dst != mask && (dst != src1 || dst != src2); 3560 if (blend_emulation && scratch_available && dst_available) { 3561 if (compute_mask) { 3562 vpxor(scratch, scratch, scratch, vector_len); 3563 vpcmpgtq(scratch, scratch, mask, vector_len); 3564 mask = scratch; 3565 } 3566 if (dst == src1) { 3567 vpandn(dst, mask, src1, vector_len); // if mask == 0, src 3568 vpand (scratch, mask, src2, vector_len); // if mask == 1, src2 3569 } else { 3570 vpand (dst, mask, src2, vector_len); // if mask == 1, src2 3571 vpandn(scratch, mask, src1, vector_len); // if mask == 0, src 3572 } 3573 vpor(dst, dst, scratch, vector_len); 3574 } else { 3575 Assembler::vblendvpd(dst, src1, src2, mask, vector_len); 3576 } 3577 } 3578 3579 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3580 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3581 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3582 } 3583 3584 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) { 3585 assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3586 Assembler::vpcmpeqb(dst, src1, src2, vector_len); 3587 } 3588 3589 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3590 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3591 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3592 } 3593 3594 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3595 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3596 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3597 } 3598 3599 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3600 assert(rscratch != noreg || always_reachable(src), "missing"); 3601 3602 if (reachable(src)) { 3603 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3604 } else { 3605 lea(rscratch, src); 3606 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3607 } 3608 } 3609 3610 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3611 int comparison, bool is_signed, int vector_len, Register rscratch) { 3612 assert(rscratch != noreg || always_reachable(src), "missing"); 3613 3614 if (reachable(src)) { 3615 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3616 } else { 3617 lea(rscratch, src); 3618 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3619 } 3620 } 3621 3622 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3623 int comparison, bool is_signed, int vector_len, Register rscratch) { 3624 assert(rscratch != noreg || always_reachable(src), "missing"); 3625 3626 if (reachable(src)) { 3627 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3628 } else { 3629 lea(rscratch, src); 3630 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3631 } 3632 } 3633 3634 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3635 int comparison, bool is_signed, int vector_len, Register rscratch) { 3636 assert(rscratch != noreg || always_reachable(src), "missing"); 3637 3638 if (reachable(src)) { 3639 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3640 } else { 3641 lea(rscratch, src); 3642 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3643 } 3644 } 3645 3646 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3647 int comparison, bool is_signed, int vector_len, Register rscratch) { 3648 assert(rscratch != noreg || always_reachable(src), "missing"); 3649 3650 if (reachable(src)) { 3651 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3652 } else { 3653 lea(rscratch, src); 3654 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3655 } 3656 } 3657 3658 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3659 if (width == Assembler::Q) { 3660 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3661 } else { 3662 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3663 } 3664 } 3665 3666 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3667 int eq_cond_enc = 0x29; 3668 int gt_cond_enc = 0x37; 3669 if (width != Assembler::Q) { 3670 eq_cond_enc = 0x74 + width; 3671 gt_cond_enc = 0x64 + width; 3672 } 3673 switch (cond) { 3674 case eq: 3675 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3676 break; 3677 case neq: 3678 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3679 vallones(xtmp, vector_len); 3680 vpxor(dst, xtmp, dst, vector_len); 3681 break; 3682 case le: 3683 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3684 vallones(xtmp, vector_len); 3685 vpxor(dst, xtmp, dst, vector_len); 3686 break; 3687 case nlt: 3688 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3689 vallones(xtmp, vector_len); 3690 vpxor(dst, xtmp, dst, vector_len); 3691 break; 3692 case lt: 3693 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3694 break; 3695 case nle: 3696 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3697 break; 3698 default: 3699 assert(false, "Should not reach here"); 3700 } 3701 } 3702 3703 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3704 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3705 Assembler::vpmovzxbw(dst, src, vector_len); 3706 } 3707 3708 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3709 assert((src->encoding() < 16),"XMM register should be 0-15"); 3710 Assembler::vpmovmskb(dst, src, vector_len); 3711 } 3712 3713 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3714 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3715 Assembler::vpmullw(dst, nds, src, vector_len); 3716 } 3717 3718 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3719 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3720 Assembler::vpmullw(dst, nds, src, vector_len); 3721 } 3722 3723 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3724 assert((UseAVX > 0), "AVX support is needed"); 3725 assert(rscratch != noreg || always_reachable(src), "missing"); 3726 3727 if (reachable(src)) { 3728 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3729 } else { 3730 lea(rscratch, src); 3731 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3732 } 3733 } 3734 3735 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3736 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3737 Assembler::vpsubb(dst, nds, src, vector_len); 3738 } 3739 3740 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3741 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3742 Assembler::vpsubb(dst, nds, src, vector_len); 3743 } 3744 3745 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3746 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3747 Assembler::vpsubw(dst, nds, src, vector_len); 3748 } 3749 3750 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3751 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3752 Assembler::vpsubw(dst, nds, src, vector_len); 3753 } 3754 3755 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3756 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3757 Assembler::vpsraw(dst, nds, shift, vector_len); 3758 } 3759 3760 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3761 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3762 Assembler::vpsraw(dst, nds, shift, vector_len); 3763 } 3764 3765 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3766 assert(UseAVX > 2,""); 3767 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3768 vector_len = 2; 3769 } 3770 Assembler::evpsraq(dst, nds, shift, vector_len); 3771 } 3772 3773 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3774 assert(UseAVX > 2,""); 3775 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3776 vector_len = 2; 3777 } 3778 Assembler::evpsraq(dst, nds, shift, vector_len); 3779 } 3780 3781 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3782 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3783 Assembler::vpsrlw(dst, nds, shift, vector_len); 3784 } 3785 3786 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3787 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3788 Assembler::vpsrlw(dst, nds, shift, vector_len); 3789 } 3790 3791 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3792 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3793 Assembler::vpsllw(dst, nds, shift, vector_len); 3794 } 3795 3796 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3797 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3798 Assembler::vpsllw(dst, nds, shift, vector_len); 3799 } 3800 3801 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3802 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3803 Assembler::vptest(dst, src); 3804 } 3805 3806 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3807 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3808 Assembler::punpcklbw(dst, src); 3809 } 3810 3811 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3812 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3813 Assembler::pshufd(dst, src, mode); 3814 } 3815 3816 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3817 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3818 Assembler::pshuflw(dst, src, mode); 3819 } 3820 3821 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3822 assert(rscratch != noreg || always_reachable(src), "missing"); 3823 3824 if (reachable(src)) { 3825 vandpd(dst, nds, as_Address(src), vector_len); 3826 } else { 3827 lea(rscratch, src); 3828 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3829 } 3830 } 3831 3832 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3833 assert(rscratch != noreg || always_reachable(src), "missing"); 3834 3835 if (reachable(src)) { 3836 vandps(dst, nds, as_Address(src), vector_len); 3837 } else { 3838 lea(rscratch, src); 3839 vandps(dst, nds, Address(rscratch, 0), vector_len); 3840 } 3841 } 3842 3843 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3844 bool merge, int vector_len, Register rscratch) { 3845 assert(rscratch != noreg || always_reachable(src), "missing"); 3846 3847 if (reachable(src)) { 3848 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3849 } else { 3850 lea(rscratch, src); 3851 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3852 } 3853 } 3854 3855 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3856 assert(rscratch != noreg || always_reachable(src), "missing"); 3857 3858 if (reachable(src)) { 3859 vdivsd(dst, nds, as_Address(src)); 3860 } else { 3861 lea(rscratch, src); 3862 vdivsd(dst, nds, Address(rscratch, 0)); 3863 } 3864 } 3865 3866 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3867 assert(rscratch != noreg || always_reachable(src), "missing"); 3868 3869 if (reachable(src)) { 3870 vdivss(dst, nds, as_Address(src)); 3871 } else { 3872 lea(rscratch, src); 3873 vdivss(dst, nds, Address(rscratch, 0)); 3874 } 3875 } 3876 3877 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3878 assert(rscratch != noreg || always_reachable(src), "missing"); 3879 3880 if (reachable(src)) { 3881 vmulsd(dst, nds, as_Address(src)); 3882 } else { 3883 lea(rscratch, src); 3884 vmulsd(dst, nds, Address(rscratch, 0)); 3885 } 3886 } 3887 3888 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3889 assert(rscratch != noreg || always_reachable(src), "missing"); 3890 3891 if (reachable(src)) { 3892 vmulss(dst, nds, as_Address(src)); 3893 } else { 3894 lea(rscratch, src); 3895 vmulss(dst, nds, Address(rscratch, 0)); 3896 } 3897 } 3898 3899 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3900 assert(rscratch != noreg || always_reachable(src), "missing"); 3901 3902 if (reachable(src)) { 3903 vsubsd(dst, nds, as_Address(src)); 3904 } else { 3905 lea(rscratch, src); 3906 vsubsd(dst, nds, Address(rscratch, 0)); 3907 } 3908 } 3909 3910 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3911 assert(rscratch != noreg || always_reachable(src), "missing"); 3912 3913 if (reachable(src)) { 3914 vsubss(dst, nds, as_Address(src)); 3915 } else { 3916 lea(rscratch, src); 3917 vsubss(dst, nds, Address(rscratch, 0)); 3918 } 3919 } 3920 3921 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3922 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3923 assert(rscratch != noreg || always_reachable(src), "missing"); 3924 3925 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3926 } 3927 3928 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3929 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3930 assert(rscratch != noreg || always_reachable(src), "missing"); 3931 3932 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3933 } 3934 3935 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3936 assert(rscratch != noreg || always_reachable(src), "missing"); 3937 3938 if (reachable(src)) { 3939 vxorpd(dst, nds, as_Address(src), vector_len); 3940 } else { 3941 lea(rscratch, src); 3942 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3943 } 3944 } 3945 3946 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3947 assert(rscratch != noreg || always_reachable(src), "missing"); 3948 3949 if (reachable(src)) { 3950 vxorps(dst, nds, as_Address(src), vector_len); 3951 } else { 3952 lea(rscratch, src); 3953 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3954 } 3955 } 3956 3957 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3958 assert(rscratch != noreg || always_reachable(src), "missing"); 3959 3960 if (UseAVX > 1 || (vector_len < 1)) { 3961 if (reachable(src)) { 3962 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3963 } else { 3964 lea(rscratch, src); 3965 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3966 } 3967 } else { 3968 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3969 } 3970 } 3971 3972 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3973 assert(rscratch != noreg || always_reachable(src), "missing"); 3974 3975 if (reachable(src)) { 3976 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3977 } else { 3978 lea(rscratch, src); 3979 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3980 } 3981 } 3982 3983 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3984 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3985 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3986 // The inverted mask is sign-extended 3987 andptr(possibly_non_local, inverted_mask); 3988 } 3989 3990 void MacroAssembler::resolve_jobject(Register value, 3991 Register thread, 3992 Register tmp) { 3993 assert_different_registers(value, thread, tmp); 3994 Label done, tagged, weak_tagged; 3995 testptr(value, value); 3996 jcc(Assembler::zero, done); // Use null as-is. 3997 testptr(value, JNIHandles::tag_mask); // Test for tag. 3998 jcc(Assembler::notZero, tagged); 3999 4000 // Resolve local handle 4001 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 4002 verify_oop(value); 4003 jmp(done); 4004 4005 bind(tagged); 4006 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 4007 jcc(Assembler::notZero, weak_tagged); 4008 4009 // Resolve global handle 4010 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4011 verify_oop(value); 4012 jmp(done); 4013 4014 bind(weak_tagged); 4015 // Resolve jweak. 4016 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4017 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 4018 verify_oop(value); 4019 4020 bind(done); 4021 } 4022 4023 void MacroAssembler::resolve_global_jobject(Register value, 4024 Register thread, 4025 Register tmp) { 4026 assert_different_registers(value, thread, tmp); 4027 Label done; 4028 4029 testptr(value, value); 4030 jcc(Assembler::zero, done); // Use null as-is. 4031 4032 #ifdef ASSERT 4033 { 4034 Label valid_global_tag; 4035 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 4036 jcc(Assembler::notZero, valid_global_tag); 4037 stop("non global jobject using resolve_global_jobject"); 4038 bind(valid_global_tag); 4039 } 4040 #endif 4041 4042 // Resolve global handle 4043 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 4044 verify_oop(value); 4045 4046 bind(done); 4047 } 4048 4049 void MacroAssembler::subptr(Register dst, int32_t imm32) { 4050 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 4051 } 4052 4053 // Force generation of a 4 byte immediate value even if it fits into 8bit 4054 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 4055 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 4056 } 4057 4058 void MacroAssembler::subptr(Register dst, Register src) { 4059 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 4060 } 4061 4062 // C++ bool manipulation 4063 void MacroAssembler::testbool(Register dst) { 4064 if(sizeof(bool) == 1) 4065 testb(dst, 0xff); 4066 else if(sizeof(bool) == 2) { 4067 // testw implementation needed for two byte bools 4068 ShouldNotReachHere(); 4069 } else if(sizeof(bool) == 4) 4070 testl(dst, dst); 4071 else 4072 // unsupported 4073 ShouldNotReachHere(); 4074 } 4075 4076 void MacroAssembler::testptr(Register dst, Register src) { 4077 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 4078 } 4079 4080 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4081 void MacroAssembler::tlab_allocate(Register thread, Register obj, 4082 Register var_size_in_bytes, 4083 int con_size_in_bytes, 4084 Register t1, 4085 Register t2, 4086 Label& slow_case) { 4087 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4088 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4089 } 4090 4091 RegSet MacroAssembler::call_clobbered_gp_registers() { 4092 RegSet regs; 4093 #ifdef _LP64 4094 regs += RegSet::of(rax, rcx, rdx); 4095 #ifndef WINDOWS 4096 regs += RegSet::of(rsi, rdi); 4097 #endif 4098 regs += RegSet::range(r8, r11); 4099 #else 4100 regs += RegSet::of(rax, rcx, rdx); 4101 #endif 4102 #ifdef _LP64 4103 if (UseAPX) { 4104 regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1)); 4105 } 4106 #endif 4107 return regs; 4108 } 4109 4110 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4111 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4112 #if defined(WINDOWS) && defined(_LP64) 4113 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4114 if (num_xmm_registers > 16) { 4115 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4116 } 4117 return result; 4118 #else 4119 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4120 #endif 4121 } 4122 4123 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4124 4125 #ifndef _LP64 4126 static bool use_x87_registers() { return UseSSE < 2; } 4127 #endif 4128 static bool use_xmm_registers() { return UseSSE >= 1; } 4129 4130 // C1 only ever uses the first double/float of the XMM register. 4131 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4132 4133 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4134 if (UseSSE == 1) { 4135 masm->movflt(Address(rsp, offset), reg); 4136 } else { 4137 masm->movdbl(Address(rsp, offset), reg); 4138 } 4139 } 4140 4141 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4142 if (UseSSE == 1) { 4143 masm->movflt(reg, Address(rsp, offset)); 4144 } else { 4145 masm->movdbl(reg, Address(rsp, offset)); 4146 } 4147 } 4148 4149 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, 4150 bool save_fpu, int& gp_area_size, 4151 int& fp_area_size, int& xmm_area_size) { 4152 4153 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4154 StackAlignmentInBytes); 4155 #ifdef _LP64 4156 fp_area_size = 0; 4157 #else 4158 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4159 #endif 4160 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4161 4162 return gp_area_size + fp_area_size + xmm_area_size; 4163 } 4164 4165 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4166 block_comment("push_call_clobbered_registers start"); 4167 // Regular registers 4168 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4169 4170 int gp_area_size; 4171 int fp_area_size; 4172 int xmm_area_size; 4173 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4174 gp_area_size, fp_area_size, xmm_area_size); 4175 subptr(rsp, total_save_size); 4176 4177 push_set(gp_registers_to_push, 0); 4178 4179 #ifndef _LP64 4180 if (save_fpu && use_x87_registers()) { 4181 fnsave(Address(rsp, gp_area_size)); 4182 fwait(); 4183 } 4184 #endif 4185 if (save_fpu && use_xmm_registers()) { 4186 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4187 } 4188 4189 block_comment("push_call_clobbered_registers end"); 4190 } 4191 4192 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4193 block_comment("pop_call_clobbered_registers start"); 4194 4195 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4196 4197 int gp_area_size; 4198 int fp_area_size; 4199 int xmm_area_size; 4200 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4201 gp_area_size, fp_area_size, xmm_area_size); 4202 4203 if (restore_fpu && use_xmm_registers()) { 4204 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4205 } 4206 #ifndef _LP64 4207 if (restore_fpu && use_x87_registers()) { 4208 frstor(Address(rsp, gp_area_size)); 4209 } 4210 #endif 4211 4212 pop_set(gp_registers_to_pop, 0); 4213 4214 addptr(rsp, total_save_size); 4215 4216 vzeroupper(); 4217 4218 block_comment("pop_call_clobbered_registers end"); 4219 } 4220 4221 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4222 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4223 int spill_offset = offset; 4224 4225 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4226 save_xmm_register(this, spill_offset, *it); 4227 spill_offset += xmm_save_size(); 4228 } 4229 } 4230 4231 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4232 int restore_size = set.size() * xmm_save_size(); 4233 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4234 4235 int restore_offset = offset + restore_size - xmm_save_size(); 4236 4237 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4238 restore_xmm_register(this, restore_offset, *it); 4239 restore_offset -= xmm_save_size(); 4240 } 4241 } 4242 4243 void MacroAssembler::push_set(RegSet set, int offset) { 4244 int spill_offset; 4245 if (offset == -1) { 4246 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4247 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4248 subptr(rsp, aligned_size); 4249 spill_offset = 0; 4250 } else { 4251 spill_offset = offset; 4252 } 4253 4254 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4255 movptr(Address(rsp, spill_offset), *it); 4256 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4257 } 4258 } 4259 4260 void MacroAssembler::pop_set(RegSet set, int offset) { 4261 4262 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4263 int restore_size = set.size() * gp_reg_size; 4264 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4265 4266 int restore_offset; 4267 if (offset == -1) { 4268 restore_offset = restore_size - gp_reg_size; 4269 } else { 4270 restore_offset = offset + restore_size - gp_reg_size; 4271 } 4272 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4273 movptr(*it, Address(rsp, restore_offset)); 4274 restore_offset -= gp_reg_size; 4275 } 4276 4277 if (offset == -1) { 4278 addptr(rsp, aligned_size); 4279 } 4280 } 4281 4282 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4283 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4284 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4285 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4286 Label done; 4287 4288 testptr(length_in_bytes, length_in_bytes); 4289 jcc(Assembler::zero, done); 4290 4291 // initialize topmost word, divide index by 2, check if odd and test if zero 4292 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4293 #ifdef ASSERT 4294 { 4295 Label L; 4296 testptr(length_in_bytes, BytesPerWord - 1); 4297 jcc(Assembler::zero, L); 4298 stop("length must be a multiple of BytesPerWord"); 4299 bind(L); 4300 } 4301 #endif 4302 Register index = length_in_bytes; 4303 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4304 if (UseIncDec) { 4305 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4306 } else { 4307 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4308 shrptr(index, 1); 4309 } 4310 #ifndef _LP64 4311 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4312 { 4313 Label even; 4314 // note: if index was a multiple of 8, then it cannot 4315 // be 0 now otherwise it must have been 0 before 4316 // => if it is even, we don't need to check for 0 again 4317 jcc(Assembler::carryClear, even); 4318 // clear topmost word (no jump would be needed if conditional assignment worked here) 4319 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4320 // index could be 0 now, must check again 4321 jcc(Assembler::zero, done); 4322 bind(even); 4323 } 4324 #endif // !_LP64 4325 // initialize remaining object fields: index is a multiple of 2 now 4326 { 4327 Label loop; 4328 bind(loop); 4329 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4330 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4331 decrement(index); 4332 jcc(Assembler::notZero, loop); 4333 } 4334 4335 bind(done); 4336 } 4337 4338 // Look up the method for a megamorphic invokeinterface call. 4339 // The target method is determined by <intf_klass, itable_index>. 4340 // The receiver klass is in recv_klass. 4341 // On success, the result will be in method_result, and execution falls through. 4342 // On failure, execution transfers to the given label. 4343 void MacroAssembler::lookup_interface_method(Register recv_klass, 4344 Register intf_klass, 4345 RegisterOrConstant itable_index, 4346 Register method_result, 4347 Register scan_temp, 4348 Label& L_no_such_interface, 4349 bool return_method) { 4350 assert_different_registers(recv_klass, intf_klass, scan_temp); 4351 assert_different_registers(method_result, intf_klass, scan_temp); 4352 assert(recv_klass != method_result || !return_method, 4353 "recv_klass can be destroyed when method isn't needed"); 4354 4355 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4356 "caller must use same register for non-constant itable index as for method"); 4357 4358 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4359 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4360 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4361 int scan_step = itableOffsetEntry::size() * wordSize; 4362 int vte_size = vtableEntry::size_in_bytes(); 4363 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4364 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4365 4366 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4367 4368 // Could store the aligned, prescaled offset in the klass. 4369 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4370 4371 if (return_method) { 4372 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4373 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4374 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4375 } 4376 4377 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4378 // if (scan->interface() == intf) { 4379 // result = (klass + scan->offset() + itable_index); 4380 // } 4381 // } 4382 Label search, found_method; 4383 4384 for (int peel = 1; peel >= 0; peel--) { 4385 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4386 cmpptr(intf_klass, method_result); 4387 4388 if (peel) { 4389 jccb(Assembler::equal, found_method); 4390 } else { 4391 jccb(Assembler::notEqual, search); 4392 // (invert the test to fall through to found_method...) 4393 } 4394 4395 if (!peel) break; 4396 4397 bind(search); 4398 4399 // Check that the previous entry is non-null. A null entry means that 4400 // the receiver class doesn't implement the interface, and wasn't the 4401 // same as when the caller was compiled. 4402 testptr(method_result, method_result); 4403 jcc(Assembler::zero, L_no_such_interface); 4404 addptr(scan_temp, scan_step); 4405 } 4406 4407 bind(found_method); 4408 4409 if (return_method) { 4410 // Got a hit. 4411 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4412 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4413 } 4414 } 4415 4416 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4417 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 4418 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4419 // The target method is determined by <holder_klass, itable_index>. 4420 // The receiver klass is in recv_klass. 4421 // On success, the result will be in method_result, and execution falls through. 4422 // On failure, execution transfers to the given label. 4423 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4424 Register holder_klass, 4425 Register resolved_klass, 4426 Register method_result, 4427 Register scan_temp, 4428 Register temp_reg2, 4429 Register receiver, 4430 int itable_index, 4431 Label& L_no_such_interface) { 4432 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4433 Register temp_itbl_klass = method_result; 4434 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4435 4436 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4437 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4438 int scan_step = itableOffsetEntry::size() * wordSize; 4439 int vte_size = vtableEntry::size_in_bytes(); 4440 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4441 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4442 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4443 assert(vte_size == wordSize, "adjust times_vte_scale"); 4444 4445 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4446 4447 // temp_itbl_klass = recv_klass.itable[0] 4448 // scan_temp = &recv_klass.itable[0] + step 4449 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4450 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4451 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4452 xorptr(temp_reg, temp_reg); 4453 4454 // Initial checks: 4455 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4456 // - if (itable[0] == 0), no such interface 4457 // - if (itable[0] == holder_klass), shortcut to "holder found" 4458 cmpptr(holder_klass, resolved_klass); 4459 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4460 testptr(temp_itbl_klass, temp_itbl_klass); 4461 jccb(Assembler::zero, L_no_such_interface); 4462 cmpptr(holder_klass, temp_itbl_klass); 4463 jccb(Assembler::equal, L_holder_found); 4464 4465 // Loop: Look for holder_klass record in itable 4466 // do { 4467 // tmp = itable[index]; 4468 // index += step; 4469 // if (tmp == holder_klass) { 4470 // goto L_holder_found; // Found! 4471 // } 4472 // } while (tmp != 0); 4473 // goto L_no_such_interface // Not found. 4474 Label L_scan_holder; 4475 bind(L_scan_holder); 4476 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4477 addptr(scan_temp, scan_step); 4478 cmpptr(holder_klass, temp_itbl_klass); 4479 jccb(Assembler::equal, L_holder_found); 4480 testptr(temp_itbl_klass, temp_itbl_klass); 4481 jccb(Assembler::notZero, L_scan_holder); 4482 4483 jmpb(L_no_such_interface); 4484 4485 // Loop: Look for resolved_class record in itable 4486 // do { 4487 // tmp = itable[index]; 4488 // index += step; 4489 // if (tmp == holder_klass) { 4490 // // Also check if we have met a holder klass 4491 // holder_tmp = itable[index-step-ioffset]; 4492 // } 4493 // if (tmp == resolved_klass) { 4494 // goto L_resolved_found; // Found! 4495 // } 4496 // } while (tmp != 0); 4497 // goto L_no_such_interface // Not found. 4498 // 4499 Label L_loop_scan_resolved; 4500 bind(L_loop_scan_resolved); 4501 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4502 addptr(scan_temp, scan_step); 4503 bind(L_loop_scan_resolved_entry); 4504 cmpptr(holder_klass, temp_itbl_klass); 4505 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4506 cmpptr(resolved_klass, temp_itbl_klass); 4507 jccb(Assembler::equal, L_resolved_found); 4508 testptr(temp_itbl_klass, temp_itbl_klass); 4509 jccb(Assembler::notZero, L_loop_scan_resolved); 4510 4511 jmpb(L_no_such_interface); 4512 4513 Label L_ready; 4514 4515 // See if we already have a holder klass. If not, go and scan for it. 4516 bind(L_resolved_found); 4517 testptr(temp_reg, temp_reg); 4518 jccb(Assembler::zero, L_scan_holder); 4519 jmpb(L_ready); 4520 4521 bind(L_holder_found); 4522 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4523 4524 // Finally, temp_reg contains holder_klass vtable offset 4525 bind(L_ready); 4526 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4527 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4528 load_klass(scan_temp, receiver, noreg); 4529 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4530 } else { 4531 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4532 } 4533 } 4534 4535 4536 // virtual method calling 4537 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4538 RegisterOrConstant vtable_index, 4539 Register method_result) { 4540 const ByteSize base = Klass::vtable_start_offset(); 4541 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4542 Address vtable_entry_addr(recv_klass, 4543 vtable_index, Address::times_ptr, 4544 base + vtableEntry::method_offset()); 4545 movptr(method_result, vtable_entry_addr); 4546 } 4547 4548 4549 void MacroAssembler::check_klass_subtype(Register sub_klass, 4550 Register super_klass, 4551 Register temp_reg, 4552 Label& L_success) { 4553 Label L_failure; 4554 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4555 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4556 bind(L_failure); 4557 } 4558 4559 4560 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4561 Register super_klass, 4562 Register temp_reg, 4563 Label* L_success, 4564 Label* L_failure, 4565 Label* L_slow_path, 4566 RegisterOrConstant super_check_offset) { 4567 assert_different_registers(sub_klass, super_klass, temp_reg); 4568 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4569 if (super_check_offset.is_register()) { 4570 assert_different_registers(sub_klass, super_klass, 4571 super_check_offset.as_register()); 4572 } else if (must_load_sco) { 4573 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4574 } 4575 4576 Label L_fallthrough; 4577 int label_nulls = 0; 4578 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4579 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4580 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4581 assert(label_nulls <= 1, "at most one null in the batch"); 4582 4583 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4584 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4585 Address super_check_offset_addr(super_klass, sco_offset); 4586 4587 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4588 // range of a jccb. If this routine grows larger, reconsider at 4589 // least some of these. 4590 #define local_jcc(assembler_cond, label) \ 4591 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4592 else jcc( assembler_cond, label) /*omit semi*/ 4593 4594 // Hacked jmp, which may only be used just before L_fallthrough. 4595 #define final_jmp(label) \ 4596 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4597 else jmp(label) /*omit semi*/ 4598 4599 // If the pointers are equal, we are done (e.g., String[] elements). 4600 // This self-check enables sharing of secondary supertype arrays among 4601 // non-primary types such as array-of-interface. Otherwise, each such 4602 // type would need its own customized SSA. 4603 // We move this check to the front of the fast path because many 4604 // type checks are in fact trivially successful in this manner, 4605 // so we get a nicely predicted branch right at the start of the check. 4606 cmpptr(sub_klass, super_klass); 4607 local_jcc(Assembler::equal, *L_success); 4608 4609 // Check the supertype display: 4610 if (must_load_sco) { 4611 // Positive movl does right thing on LP64. 4612 movl(temp_reg, super_check_offset_addr); 4613 super_check_offset = RegisterOrConstant(temp_reg); 4614 } 4615 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4616 cmpptr(super_klass, super_check_addr); // load displayed supertype 4617 4618 // This check has worked decisively for primary supers. 4619 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4620 // (Secondary supers are interfaces and very deeply nested subtypes.) 4621 // This works in the same check above because of a tricky aliasing 4622 // between the super_cache and the primary super display elements. 4623 // (The 'super_check_addr' can address either, as the case requires.) 4624 // Note that the cache is updated below if it does not help us find 4625 // what we need immediately. 4626 // So if it was a primary super, we can just fail immediately. 4627 // Otherwise, it's the slow path for us (no success at this point). 4628 4629 if (super_check_offset.is_register()) { 4630 local_jcc(Assembler::equal, *L_success); 4631 cmpl(super_check_offset.as_register(), sc_offset); 4632 if (L_failure == &L_fallthrough) { 4633 local_jcc(Assembler::equal, *L_slow_path); 4634 } else { 4635 local_jcc(Assembler::notEqual, *L_failure); 4636 final_jmp(*L_slow_path); 4637 } 4638 } else if (super_check_offset.as_constant() == sc_offset) { 4639 // Need a slow path; fast failure is impossible. 4640 if (L_slow_path == &L_fallthrough) { 4641 local_jcc(Assembler::equal, *L_success); 4642 } else { 4643 local_jcc(Assembler::notEqual, *L_slow_path); 4644 final_jmp(*L_success); 4645 } 4646 } else { 4647 // No slow path; it's a fast decision. 4648 if (L_failure == &L_fallthrough) { 4649 local_jcc(Assembler::equal, *L_success); 4650 } else { 4651 local_jcc(Assembler::notEqual, *L_failure); 4652 final_jmp(*L_success); 4653 } 4654 } 4655 4656 bind(L_fallthrough); 4657 4658 #undef local_jcc 4659 #undef final_jmp 4660 } 4661 4662 4663 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 4664 Register super_klass, 4665 Register temp_reg, 4666 Register temp2_reg, 4667 Label* L_success, 4668 Label* L_failure, 4669 bool set_cond_codes) { 4670 assert_different_registers(sub_klass, super_klass, temp_reg); 4671 if (temp2_reg != noreg) 4672 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4673 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4674 4675 Label L_fallthrough; 4676 int label_nulls = 0; 4677 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4678 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4679 assert(label_nulls <= 1, "at most one null in the batch"); 4680 4681 // a couple of useful fields in sub_klass: 4682 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4683 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4684 Address secondary_supers_addr(sub_klass, ss_offset); 4685 Address super_cache_addr( sub_klass, sc_offset); 4686 4687 // Do a linear scan of the secondary super-klass chain. 4688 // This code is rarely used, so simplicity is a virtue here. 4689 // The repne_scan instruction uses fixed registers, which we must spill. 4690 // Don't worry too much about pre-existing connections with the input regs. 4691 4692 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4693 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4694 4695 // Get super_klass value into rax (even if it was in rdi or rcx). 4696 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4697 if (super_klass != rax) { 4698 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4699 mov(rax, super_klass); 4700 } 4701 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4702 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4703 4704 #ifndef PRODUCT 4705 uint* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4706 ExternalAddress pst_counter_addr((address) pst_counter); 4707 NOT_LP64( incrementl(pst_counter_addr) ); 4708 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4709 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4710 #endif //PRODUCT 4711 4712 // We will consult the secondary-super array. 4713 movptr(rdi, secondary_supers_addr); 4714 // Load the array length. (Positive movl does right thing on LP64.) 4715 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4716 // Skip to start of data. 4717 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4718 4719 // Scan RCX words at [RDI] for an occurrence of RAX. 4720 // Set NZ/Z based on last compare. 4721 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4722 // not change flags (only scas instruction which is repeated sets flags). 4723 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4724 4725 testptr(rax,rax); // Set Z = 0 4726 repne_scan(); 4727 4728 // Unspill the temp. registers: 4729 if (pushed_rdi) pop(rdi); 4730 if (pushed_rcx) pop(rcx); 4731 if (pushed_rax) pop(rax); 4732 4733 if (set_cond_codes) { 4734 // Special hack for the AD files: rdi is guaranteed non-zero. 4735 assert(!pushed_rdi, "rdi must be left non-null"); 4736 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4737 } 4738 4739 if (L_failure == &L_fallthrough) 4740 jccb(Assembler::notEqual, *L_failure); 4741 else jcc(Assembler::notEqual, *L_failure); 4742 4743 // Success. Cache the super we found and proceed in triumph. 4744 movptr(super_cache_addr, super_klass); 4745 4746 if (L_success != &L_fallthrough) { 4747 jmp(*L_success); 4748 } 4749 4750 #undef IS_A_TEMP 4751 4752 bind(L_fallthrough); 4753 } 4754 4755 #ifndef _LP64 4756 4757 // 32-bit x86 only: always use the linear search. 4758 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4759 Register super_klass, 4760 Register temp_reg, 4761 Register temp2_reg, 4762 Label* L_success, 4763 Label* L_failure, 4764 bool set_cond_codes) { 4765 check_klass_subtype_slow_path_linear 4766 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 4767 } 4768 4769 #else // _LP64 4770 4771 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4772 Register super_klass, 4773 Register temp_reg, 4774 Register temp2_reg, 4775 Label* L_success, 4776 Label* L_failure, 4777 bool set_cond_codes) { 4778 assert(set_cond_codes == false, "must be false on 64-bit x86"); 4779 check_klass_subtype_slow_path 4780 (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg, 4781 L_success, L_failure); 4782 } 4783 4784 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4785 Register super_klass, 4786 Register temp_reg, 4787 Register temp2_reg, 4788 Register temp3_reg, 4789 Register temp4_reg, 4790 Label* L_success, 4791 Label* L_failure) { 4792 if (UseSecondarySupersTable) { 4793 check_klass_subtype_slow_path_table 4794 (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg, 4795 L_success, L_failure); 4796 } else { 4797 check_klass_subtype_slow_path_linear 4798 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false); 4799 } 4800 } 4801 4802 Register MacroAssembler::allocate_if_noreg(Register r, 4803 RegSetIterator<Register> &available_regs, 4804 RegSet ®s_to_push) { 4805 if (!r->is_valid()) { 4806 r = *available_regs++; 4807 regs_to_push += r; 4808 } 4809 return r; 4810 } 4811 4812 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 4813 Register super_klass, 4814 Register temp_reg, 4815 Register temp2_reg, 4816 Register temp3_reg, 4817 Register result_reg, 4818 Label* L_success, 4819 Label* L_failure) { 4820 // NB! Callers may assume that, when temp2_reg is a valid register, 4821 // this code sets it to a nonzero value. 4822 bool temp2_reg_was_valid = temp2_reg->is_valid(); 4823 4824 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 4825 4826 Label L_fallthrough; 4827 int label_nulls = 0; 4828 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4829 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4830 assert(label_nulls <= 1, "at most one null in the batch"); 4831 4832 BLOCK_COMMENT("check_klass_subtype_slow_path_table"); 4833 4834 RegSetIterator<Register> available_regs 4835 = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin(); 4836 4837 RegSet pushed_regs; 4838 4839 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 4840 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 4841 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 4842 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 4843 Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs); 4844 4845 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg); 4846 4847 { 4848 4849 int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4850 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4851 subptr(rsp, aligned_size); 4852 push_set(pushed_regs, 0); 4853 4854 lookup_secondary_supers_table_var(sub_klass, 4855 super_klass, 4856 temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg); 4857 cmpq(result_reg, 0); 4858 4859 // Unspill the temp. registers: 4860 pop_set(pushed_regs, 0); 4861 // Increment SP but do not clobber flags. 4862 lea(rsp, Address(rsp, aligned_size)); 4863 } 4864 4865 if (temp2_reg_was_valid) { 4866 movq(temp2_reg, 1); 4867 } 4868 4869 jcc(Assembler::notEqual, *L_failure); 4870 4871 if (L_success != &L_fallthrough) { 4872 jmp(*L_success); 4873 } 4874 4875 bind(L_fallthrough); 4876 } 4877 4878 // population_count variant for running without the POPCNT 4879 // instruction, which was introduced with SSE4.2 in 2008. 4880 void MacroAssembler::population_count(Register dst, Register src, 4881 Register scratch1, Register scratch2) { 4882 assert_different_registers(src, scratch1, scratch2); 4883 if (UsePopCountInstruction) { 4884 Assembler::popcntq(dst, src); 4885 } else { 4886 assert_different_registers(src, scratch1, scratch2); 4887 assert_different_registers(dst, scratch1, scratch2); 4888 Label loop, done; 4889 4890 mov(scratch1, src); 4891 // dst = 0; 4892 // while(scratch1 != 0) { 4893 // dst++; 4894 // scratch1 &= (scratch1 - 1); 4895 // } 4896 xorl(dst, dst); 4897 testq(scratch1, scratch1); 4898 jccb(Assembler::equal, done); 4899 { 4900 bind(loop); 4901 incq(dst); 4902 movq(scratch2, scratch1); 4903 decq(scratch2); 4904 andq(scratch1, scratch2); 4905 jccb(Assembler::notEqual, loop); 4906 } 4907 bind(done); 4908 } 4909 } 4910 4911 // Ensure that the inline code and the stub are using the same registers. 4912 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 4913 do { \ 4914 assert(r_super_klass == rax, "mismatch"); \ 4915 assert(r_array_base == rbx, "mismatch"); \ 4916 assert(r_array_length == rcx, "mismatch"); \ 4917 assert(r_array_index == rdx, "mismatch"); \ 4918 assert(r_sub_klass == rsi || r_sub_klass == noreg, "mismatch"); \ 4919 assert(r_bitmap == r11 || r_bitmap == noreg, "mismatch"); \ 4920 assert(result == rdi || result == noreg, "mismatch"); \ 4921 } while(0) 4922 4923 // Versions of salq and rorq that don't need count to be in rcx 4924 4925 void MacroAssembler::salq(Register dest, Register count) { 4926 if (count == rcx) { 4927 Assembler::salq(dest); 4928 } else { 4929 assert_different_registers(rcx, dest); 4930 xchgq(rcx, count); 4931 Assembler::salq(dest); 4932 xchgq(rcx, count); 4933 } 4934 } 4935 4936 void MacroAssembler::rorq(Register dest, Register count) { 4937 if (count == rcx) { 4938 Assembler::rorq(dest); 4939 } else { 4940 assert_different_registers(rcx, dest); 4941 xchgq(rcx, count); 4942 Assembler::rorq(dest); 4943 xchgq(rcx, count); 4944 } 4945 } 4946 4947 // Return true: we succeeded in generating this code 4948 // 4949 // At runtime, return 0 in result if r_super_klass is a superclass of 4950 // r_sub_klass, otherwise return nonzero. Use this if you know the 4951 // super_klass_slot of the class you're looking for. This is always 4952 // the case for instanceof and checkcast. 4953 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 4954 Register r_super_klass, 4955 Register temp1, 4956 Register temp2, 4957 Register temp3, 4958 Register temp4, 4959 Register result, 4960 u1 super_klass_slot) { 4961 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 4962 4963 Label L_fallthrough, L_success, L_failure; 4964 4965 BLOCK_COMMENT("lookup_secondary_supers_table {"); 4966 4967 const Register 4968 r_array_index = temp1, 4969 r_array_length = temp2, 4970 r_array_base = temp3, 4971 r_bitmap = temp4; 4972 4973 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 4974 4975 xorq(result, result); // = 0 4976 4977 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 4978 movq(r_array_index, r_bitmap); 4979 4980 // First check the bitmap to see if super_klass might be present. If 4981 // the bit is zero, we are certain that super_klass is not one of 4982 // the secondary supers. 4983 u1 bit = super_klass_slot; 4984 { 4985 // NB: If the count in a x86 shift instruction is 0, the flags are 4986 // not affected, so we do a testq instead. 4987 int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit; 4988 if (shift_count != 0) { 4989 salq(r_array_index, shift_count); 4990 } else { 4991 testq(r_array_index, r_array_index); 4992 } 4993 } 4994 // We test the MSB of r_array_index, i.e. its sign bit 4995 jcc(Assembler::positive, L_failure); 4996 4997 // Get the first array index that can contain super_klass into r_array_index. 4998 if (bit != 0) { 4999 population_count(r_array_index, r_array_index, temp2, temp3); 5000 } else { 5001 movl(r_array_index, 1); 5002 } 5003 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5004 5005 // We will consult the secondary-super array. 5006 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5007 5008 // We're asserting that the first word in an Array<Klass*> is the 5009 // length, and the second word is the first word of the data. If 5010 // that ever changes, r_array_base will have to be adjusted here. 5011 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5012 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5013 5014 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5015 jccb(Assembler::equal, L_success); 5016 5017 // Is there another entry to check? Consult the bitmap. 5018 btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK); 5019 jccb(Assembler::carryClear, L_failure); 5020 5021 // Linear probe. Rotate the bitmap so that the next bit to test is 5022 // in Bit 1. 5023 if (bit != 0) { 5024 rorq(r_bitmap, bit); 5025 } 5026 5027 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5028 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5029 // Kills: r_array_length. 5030 // Returns: result. 5031 call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub())); 5032 // Result (0/1) is in rdi 5033 jmpb(L_fallthrough); 5034 5035 bind(L_failure); 5036 incq(result); // 0 => 1 5037 5038 bind(L_success); 5039 // result = 0; 5040 5041 bind(L_fallthrough); 5042 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5043 5044 if (VerifySecondarySupers) { 5045 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5046 temp1, temp2, temp3); 5047 } 5048 } 5049 5050 // At runtime, return 0 in result if r_super_klass is a superclass of 5051 // r_sub_klass, otherwise return nonzero. Use this version of 5052 // lookup_secondary_supers_table() if you don't know ahead of time 5053 // which superclass will be searched for. Used by interpreter and 5054 // runtime stubs. It is larger and has somewhat greater latency than 5055 // the version above, which takes a constant super_klass_slot. 5056 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 5057 Register r_super_klass, 5058 Register temp1, 5059 Register temp2, 5060 Register temp3, 5061 Register temp4, 5062 Register result) { 5063 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result); 5064 assert_different_registers(r_sub_klass, r_super_klass, rcx); 5065 RegSet temps = RegSet::of(temp1, temp2, temp3, temp4); 5066 5067 Label L_fallthrough, L_success, L_failure; 5068 5069 BLOCK_COMMENT("lookup_secondary_supers_table {"); 5070 5071 RegSetIterator<Register> available_regs = (temps - rcx).begin(); 5072 5073 // FIXME. Once we are sure that all paths reaching this point really 5074 // do pass rcx as one of our temps we can get rid of the following 5075 // workaround. 5076 assert(temps.contains(rcx), "fix this code"); 5077 5078 // We prefer to have our shift count in rcx. If rcx is one of our 5079 // temps, use it for slot. If not, pick any of our temps. 5080 Register slot; 5081 if (!temps.contains(rcx)) { 5082 slot = *available_regs++; 5083 } else { 5084 slot = rcx; 5085 } 5086 5087 const Register r_array_index = *available_regs++; 5088 const Register r_bitmap = *available_regs++; 5089 5090 // The logic above guarantees this property, but we state it here. 5091 assert_different_registers(r_array_index, r_bitmap, rcx); 5092 5093 movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 5094 movq(r_array_index, r_bitmap); 5095 5096 // First check the bitmap to see if super_klass might be present. If 5097 // the bit is zero, we are certain that super_klass is not one of 5098 // the secondary supers. 5099 movb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 5100 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 5101 salq(r_array_index, slot); 5102 5103 testq(r_array_index, r_array_index); 5104 // We test the MSB of r_array_index, i.e. its sign bit 5105 jcc(Assembler::positive, L_failure); 5106 5107 const Register r_array_base = *available_regs++; 5108 5109 // Get the first array index that can contain super_klass into r_array_index. 5110 population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot); 5111 5112 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 5113 5114 // We will consult the secondary-super array. 5115 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5116 5117 // We're asserting that the first word in an Array<Klass*> is the 5118 // length, and the second word is the first word of the data. If 5119 // that ever changes, r_array_base will have to be adjusted here. 5120 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 5121 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 5122 5123 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5124 jccb(Assembler::equal, L_success); 5125 5126 // Restore slot to its true value 5127 xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64) 5128 5129 // Linear probe. Rotate the bitmap so that the next bit to test is 5130 // in Bit 1. 5131 rorq(r_bitmap, slot); 5132 5133 // Is there another entry to check? Consult the bitmap. 5134 btq(r_bitmap, 1); 5135 jccb(Assembler::carryClear, L_failure); 5136 5137 // Calls into the stub generated by lookup_secondary_supers_table_slow_path. 5138 // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap. 5139 // Kills: r_array_length. 5140 // Returns: result. 5141 lookup_secondary_supers_table_slow_path(r_super_klass, 5142 r_array_base, 5143 r_array_index, 5144 r_bitmap, 5145 /*temp1*/result, 5146 /*temp2*/slot, 5147 &L_success, 5148 nullptr); 5149 5150 bind(L_failure); 5151 movq(result, 1); 5152 jmpb(L_fallthrough); 5153 5154 bind(L_success); 5155 xorq(result, result); // = 0 5156 5157 bind(L_fallthrough); 5158 BLOCK_COMMENT("} lookup_secondary_supers_table"); 5159 5160 if (VerifySecondarySupers) { 5161 verify_secondary_supers_table(r_sub_klass, r_super_klass, result, 5162 temp1, temp2, temp3); 5163 } 5164 } 5165 5166 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit, 5167 Label* L_success, Label* L_failure) { 5168 Label L_loop, L_fallthrough; 5169 { 5170 int label_nulls = 0; 5171 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5172 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5173 assert(label_nulls <= 1, "at most one null in the batch"); 5174 } 5175 bind(L_loop); 5176 cmpq(value, Address(addr, count, Address::times_8)); 5177 jcc(Assembler::equal, *L_success); 5178 addl(count, 1); 5179 cmpl(count, limit); 5180 jcc(Assembler::less, L_loop); 5181 5182 if (&L_fallthrough != L_failure) { 5183 jmp(*L_failure); 5184 } 5185 bind(L_fallthrough); 5186 } 5187 5188 // Called by code generated by check_klass_subtype_slow_path 5189 // above. This is called when there is a collision in the hashed 5190 // lookup in the secondary supers array. 5191 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 5192 Register r_array_base, 5193 Register r_array_index, 5194 Register r_bitmap, 5195 Register temp1, 5196 Register temp2, 5197 Label* L_success, 5198 Label* L_failure) { 5199 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2); 5200 5201 const Register 5202 r_array_length = temp1, 5203 r_sub_klass = noreg, 5204 result = noreg; 5205 5206 Label L_fallthrough; 5207 int label_nulls = 0; 5208 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 5209 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 5210 assert(label_nulls <= 1, "at most one null in the batch"); 5211 5212 // Load the array length. 5213 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5214 // And adjust the array base to point to the data. 5215 // NB! Effectively increments current slot index by 1. 5216 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 5217 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5218 5219 // Linear probe 5220 Label L_huge; 5221 5222 // The bitmap is full to bursting. 5223 // Implicit invariant: BITMAP_FULL implies (length > 0) 5224 cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2); 5225 jcc(Assembler::greater, L_huge); 5226 5227 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 5228 // current slot (at secondary_supers[r_array_index]) has not yet 5229 // been inspected, and r_array_index may be out of bounds if we 5230 // wrapped around the end of the array. 5231 5232 { // This is conventional linear probing, but instead of terminating 5233 // when a null entry is found in the table, we maintain a bitmap 5234 // in which a 0 indicates missing entries. 5235 // The check above guarantees there are 0s in the bitmap, so the loop 5236 // eventually terminates. 5237 5238 xorl(temp2, temp2); // = 0; 5239 5240 Label L_again; 5241 bind(L_again); 5242 5243 // Check for array wraparound. 5244 cmpl(r_array_index, r_array_length); 5245 cmovl(Assembler::greaterEqual, r_array_index, temp2); 5246 5247 cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8)); 5248 jcc(Assembler::equal, *L_success); 5249 5250 // If the next bit in bitmap is zero, we're done. 5251 btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now 5252 jcc(Assembler::carryClear, *L_failure); 5253 5254 rorq(r_bitmap, 1); // Bits 1/2 => 0/1 5255 addl(r_array_index, 1); 5256 5257 jmp(L_again); 5258 } 5259 5260 { // Degenerate case: more than 64 secondary supers. 5261 // FIXME: We could do something smarter here, maybe a vectorized 5262 // comparison or a binary search, but is that worth any added 5263 // complexity? 5264 bind(L_huge); 5265 xorl(r_array_index, r_array_index); // = 0 5266 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, 5267 L_success, 5268 (&L_fallthrough != L_failure ? L_failure : nullptr)); 5269 5270 bind(L_fallthrough); 5271 } 5272 } 5273 5274 struct VerifyHelperArguments { 5275 Klass* _super; 5276 Klass* _sub; 5277 intptr_t _linear_result; 5278 intptr_t _table_result; 5279 }; 5280 5281 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) { 5282 Klass::on_secondary_supers_verification_failure(args->_super, 5283 args->_sub, 5284 args->_linear_result, 5285 args->_table_result, 5286 msg); 5287 } 5288 5289 // Make sure that the hashed lookup and a linear scan agree. 5290 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 5291 Register r_super_klass, 5292 Register result, 5293 Register temp1, 5294 Register temp2, 5295 Register temp3) { 5296 const Register 5297 r_array_index = temp1, 5298 r_array_length = temp2, 5299 r_array_base = temp3, 5300 r_bitmap = noreg; 5301 5302 BLOCK_COMMENT("verify_secondary_supers_table {"); 5303 5304 Label L_success, L_failure, L_check, L_done; 5305 5306 movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 5307 movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 5308 // And adjust the array base to point to the data. 5309 addptr(r_array_base, Array<Klass*>::base_offset_in_bytes()); 5310 5311 testl(r_array_length, r_array_length); // array_length == 0? 5312 jcc(Assembler::zero, L_failure); 5313 5314 movl(r_array_index, 0); 5315 repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success); 5316 // fall through to L_failure 5317 5318 const Register linear_result = r_array_index; // reuse temp1 5319 5320 bind(L_failure); // not present 5321 movl(linear_result, 1); 5322 jmp(L_check); 5323 5324 bind(L_success); // present 5325 movl(linear_result, 0); 5326 5327 bind(L_check); 5328 cmpl(linear_result, result); 5329 jcc(Assembler::equal, L_done); 5330 5331 { // To avoid calling convention issues, build a record on the stack 5332 // and pass the pointer to that instead. 5333 push(result); 5334 push(linear_result); 5335 push(r_sub_klass); 5336 push(r_super_klass); 5337 movptr(c_rarg1, rsp); 5338 movptr(c_rarg0, (uintptr_t) "mismatch"); 5339 call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper))); 5340 should_not_reach_here(); 5341 } 5342 bind(L_done); 5343 5344 BLOCK_COMMENT("} verify_secondary_supers_table"); 5345 } 5346 5347 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS 5348 5349 #endif // LP64 5350 5351 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 5352 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 5353 5354 Label L_fallthrough; 5355 if (L_fast_path == nullptr) { 5356 L_fast_path = &L_fallthrough; 5357 } else if (L_slow_path == nullptr) { 5358 L_slow_path = &L_fallthrough; 5359 } 5360 5361 // Fast path check: class is fully initialized. 5362 // init_state needs acquire, but x86 is TSO, and so we are already good. 5363 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 5364 jcc(Assembler::equal, *L_fast_path); 5365 5366 // Fast path check: current thread is initializer thread 5367 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 5368 if (L_slow_path == &L_fallthrough) { 5369 jcc(Assembler::equal, *L_fast_path); 5370 bind(*L_slow_path); 5371 } else if (L_fast_path == &L_fallthrough) { 5372 jcc(Assembler::notEqual, *L_slow_path); 5373 bind(*L_fast_path); 5374 } else { 5375 Unimplemented(); 5376 } 5377 } 5378 5379 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 5380 if (VM_Version::supports_cmov()) { 5381 cmovl(cc, dst, src); 5382 } else { 5383 Label L; 5384 jccb(negate_condition(cc), L); 5385 movl(dst, src); 5386 bind(L); 5387 } 5388 } 5389 5390 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 5391 if (VM_Version::supports_cmov()) { 5392 cmovl(cc, dst, src); 5393 } else { 5394 Label L; 5395 jccb(negate_condition(cc), L); 5396 movl(dst, src); 5397 bind(L); 5398 } 5399 } 5400 5401 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 5402 if (!VerifyOops) return; 5403 5404 BLOCK_COMMENT("verify_oop {"); 5405 #ifdef _LP64 5406 push(rscratch1); 5407 #endif 5408 push(rax); // save rax 5409 push(reg); // pass register argument 5410 5411 // Pass register number to verify_oop_subroutine 5412 const char* b = nullptr; 5413 { 5414 ResourceMark rm; 5415 stringStream ss; 5416 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 5417 b = code_string(ss.as_string()); 5418 } 5419 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5420 pushptr(buffer.addr(), rscratch1); 5421 5422 // call indirectly to solve generation ordering problem 5423 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5424 call(rax); 5425 // Caller pops the arguments (oop, message) and restores rax, r10 5426 BLOCK_COMMENT("} verify_oop"); 5427 } 5428 5429 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 5430 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 5431 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 5432 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 5433 vpternlogd(dst, 0xFF, dst, dst, vector_len); 5434 } else if (VM_Version::supports_avx()) { 5435 vpcmpeqd(dst, dst, dst, vector_len); 5436 } else { 5437 assert(VM_Version::supports_sse2(), ""); 5438 pcmpeqd(dst, dst); 5439 } 5440 } 5441 5442 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 5443 int extra_slot_offset) { 5444 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 5445 int stackElementSize = Interpreter::stackElementSize; 5446 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 5447 #ifdef ASSERT 5448 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 5449 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 5450 #endif 5451 Register scale_reg = noreg; 5452 Address::ScaleFactor scale_factor = Address::no_scale; 5453 if (arg_slot.is_constant()) { 5454 offset += arg_slot.as_constant() * stackElementSize; 5455 } else { 5456 scale_reg = arg_slot.as_register(); 5457 scale_factor = Address::times(stackElementSize); 5458 } 5459 offset += wordSize; // return PC is on stack 5460 return Address(rsp, scale_reg, scale_factor, offset); 5461 } 5462 5463 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 5464 if (!VerifyOops) return; 5465 5466 #ifdef _LP64 5467 push(rscratch1); 5468 #endif 5469 push(rax); // save rax, 5470 // addr may contain rsp so we will have to adjust it based on the push 5471 // we just did (and on 64 bit we do two pushes) 5472 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 5473 // stores rax into addr which is backwards of what was intended. 5474 if (addr.uses(rsp)) { 5475 lea(rax, addr); 5476 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 5477 } else { 5478 pushptr(addr); 5479 } 5480 5481 // Pass register number to verify_oop_subroutine 5482 const char* b = nullptr; 5483 { 5484 ResourceMark rm; 5485 stringStream ss; 5486 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 5487 b = code_string(ss.as_string()); 5488 } 5489 AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate()); 5490 pushptr(buffer.addr(), rscratch1); 5491 5492 // call indirectly to solve generation ordering problem 5493 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 5494 call(rax); 5495 // Caller pops the arguments (addr, message) and restores rax, r10. 5496 } 5497 5498 void MacroAssembler::verify_tlab() { 5499 #ifdef ASSERT 5500 if (UseTLAB && VerifyOops) { 5501 Label next, ok; 5502 Register t1 = rsi; 5503 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 5504 5505 push(t1); 5506 NOT_LP64(push(thread_reg)); 5507 NOT_LP64(get_thread(thread_reg)); 5508 5509 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5510 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 5511 jcc(Assembler::aboveEqual, next); 5512 STOP("assert(top >= start)"); 5513 should_not_reach_here(); 5514 5515 bind(next); 5516 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 5517 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 5518 jcc(Assembler::aboveEqual, ok); 5519 STOP("assert(top <= end)"); 5520 should_not_reach_here(); 5521 5522 bind(ok); 5523 NOT_LP64(pop(thread_reg)); 5524 pop(t1); 5525 } 5526 #endif 5527 } 5528 5529 class ControlWord { 5530 public: 5531 int32_t _value; 5532 5533 int rounding_control() const { return (_value >> 10) & 3 ; } 5534 int precision_control() const { return (_value >> 8) & 3 ; } 5535 bool precision() const { return ((_value >> 5) & 1) != 0; } 5536 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5537 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5538 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5539 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5540 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5541 5542 void print() const { 5543 // rounding control 5544 const char* rc; 5545 switch (rounding_control()) { 5546 case 0: rc = "round near"; break; 5547 case 1: rc = "round down"; break; 5548 case 2: rc = "round up "; break; 5549 case 3: rc = "chop "; break; 5550 default: 5551 rc = nullptr; // silence compiler warnings 5552 fatal("Unknown rounding control: %d", rounding_control()); 5553 }; 5554 // precision control 5555 const char* pc; 5556 switch (precision_control()) { 5557 case 0: pc = "24 bits "; break; 5558 case 1: pc = "reserved"; break; 5559 case 2: pc = "53 bits "; break; 5560 case 3: pc = "64 bits "; break; 5561 default: 5562 pc = nullptr; // silence compiler warnings 5563 fatal("Unknown precision control: %d", precision_control()); 5564 }; 5565 // flags 5566 char f[9]; 5567 f[0] = ' '; 5568 f[1] = ' '; 5569 f[2] = (precision ()) ? 'P' : 'p'; 5570 f[3] = (underflow ()) ? 'U' : 'u'; 5571 f[4] = (overflow ()) ? 'O' : 'o'; 5572 f[5] = (zero_divide ()) ? 'Z' : 'z'; 5573 f[6] = (denormalized()) ? 'D' : 'd'; 5574 f[7] = (invalid ()) ? 'I' : 'i'; 5575 f[8] = '\x0'; 5576 // output 5577 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 5578 } 5579 5580 }; 5581 5582 class StatusWord { 5583 public: 5584 int32_t _value; 5585 5586 bool busy() const { return ((_value >> 15) & 1) != 0; } 5587 bool C3() const { return ((_value >> 14) & 1) != 0; } 5588 bool C2() const { return ((_value >> 10) & 1) != 0; } 5589 bool C1() const { return ((_value >> 9) & 1) != 0; } 5590 bool C0() const { return ((_value >> 8) & 1) != 0; } 5591 int top() const { return (_value >> 11) & 7 ; } 5592 bool error_status() const { return ((_value >> 7) & 1) != 0; } 5593 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 5594 bool precision() const { return ((_value >> 5) & 1) != 0; } 5595 bool underflow() const { return ((_value >> 4) & 1) != 0; } 5596 bool overflow() const { return ((_value >> 3) & 1) != 0; } 5597 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 5598 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 5599 bool invalid() const { return ((_value >> 0) & 1) != 0; } 5600 5601 void print() const { 5602 // condition codes 5603 char c[5]; 5604 c[0] = (C3()) ? '3' : '-'; 5605 c[1] = (C2()) ? '2' : '-'; 5606 c[2] = (C1()) ? '1' : '-'; 5607 c[3] = (C0()) ? '0' : '-'; 5608 c[4] = '\x0'; 5609 // flags 5610 char f[9]; 5611 f[0] = (error_status()) ? 'E' : '-'; 5612 f[1] = (stack_fault ()) ? 'S' : '-'; 5613 f[2] = (precision ()) ? 'P' : '-'; 5614 f[3] = (underflow ()) ? 'U' : '-'; 5615 f[4] = (overflow ()) ? 'O' : '-'; 5616 f[5] = (zero_divide ()) ? 'Z' : '-'; 5617 f[6] = (denormalized()) ? 'D' : '-'; 5618 f[7] = (invalid ()) ? 'I' : '-'; 5619 f[8] = '\x0'; 5620 // output 5621 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 5622 } 5623 5624 }; 5625 5626 class TagWord { 5627 public: 5628 int32_t _value; 5629 5630 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 5631 5632 void print() const { 5633 printf("%04x", _value & 0xFFFF); 5634 } 5635 5636 }; 5637 5638 class FPU_Register { 5639 public: 5640 int32_t _m0; 5641 int32_t _m1; 5642 int16_t _ex; 5643 5644 bool is_indefinite() const { 5645 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 5646 } 5647 5648 void print() const { 5649 char sign = (_ex < 0) ? '-' : '+'; 5650 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 5651 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 5652 }; 5653 5654 }; 5655 5656 class FPU_State { 5657 public: 5658 enum { 5659 register_size = 10, 5660 number_of_registers = 8, 5661 register_mask = 7 5662 }; 5663 5664 ControlWord _control_word; 5665 StatusWord _status_word; 5666 TagWord _tag_word; 5667 int32_t _error_offset; 5668 int32_t _error_selector; 5669 int32_t _data_offset; 5670 int32_t _data_selector; 5671 int8_t _register[register_size * number_of_registers]; 5672 5673 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 5674 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 5675 5676 const char* tag_as_string(int tag) const { 5677 switch (tag) { 5678 case 0: return "valid"; 5679 case 1: return "zero"; 5680 case 2: return "special"; 5681 case 3: return "empty"; 5682 } 5683 ShouldNotReachHere(); 5684 return nullptr; 5685 } 5686 5687 void print() const { 5688 // print computation registers 5689 { int t = _status_word.top(); 5690 for (int i = 0; i < number_of_registers; i++) { 5691 int j = (i - t) & register_mask; 5692 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 5693 st(j)->print(); 5694 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 5695 } 5696 } 5697 printf("\n"); 5698 // print control registers 5699 printf("ctrl = "); _control_word.print(); printf("\n"); 5700 printf("stat = "); _status_word .print(); printf("\n"); 5701 printf("tags = "); _tag_word .print(); printf("\n"); 5702 } 5703 5704 }; 5705 5706 class Flag_Register { 5707 public: 5708 int32_t _value; 5709 5710 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5711 bool direction() const { return ((_value >> 10) & 1) != 0; } 5712 bool sign() const { return ((_value >> 7) & 1) != 0; } 5713 bool zero() const { return ((_value >> 6) & 1) != 0; } 5714 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5715 bool parity() const { return ((_value >> 2) & 1) != 0; } 5716 bool carry() const { return ((_value >> 0) & 1) != 0; } 5717 5718 void print() const { 5719 // flags 5720 char f[8]; 5721 f[0] = (overflow ()) ? 'O' : '-'; 5722 f[1] = (direction ()) ? 'D' : '-'; 5723 f[2] = (sign ()) ? 'S' : '-'; 5724 f[3] = (zero ()) ? 'Z' : '-'; 5725 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5726 f[5] = (parity ()) ? 'P' : '-'; 5727 f[6] = (carry ()) ? 'C' : '-'; 5728 f[7] = '\x0'; 5729 // output 5730 printf("%08x flags = %s", _value, f); 5731 } 5732 5733 }; 5734 5735 class IU_Register { 5736 public: 5737 int32_t _value; 5738 5739 void print() const { 5740 printf("%08x %11d", _value, _value); 5741 } 5742 5743 }; 5744 5745 class IU_State { 5746 public: 5747 Flag_Register _eflags; 5748 IU_Register _rdi; 5749 IU_Register _rsi; 5750 IU_Register _rbp; 5751 IU_Register _rsp; 5752 IU_Register _rbx; 5753 IU_Register _rdx; 5754 IU_Register _rcx; 5755 IU_Register _rax; 5756 5757 void print() const { 5758 // computation registers 5759 printf("rax, = "); _rax.print(); printf("\n"); 5760 printf("rbx, = "); _rbx.print(); printf("\n"); 5761 printf("rcx = "); _rcx.print(); printf("\n"); 5762 printf("rdx = "); _rdx.print(); printf("\n"); 5763 printf("rdi = "); _rdi.print(); printf("\n"); 5764 printf("rsi = "); _rsi.print(); printf("\n"); 5765 printf("rbp, = "); _rbp.print(); printf("\n"); 5766 printf("rsp = "); _rsp.print(); printf("\n"); 5767 printf("\n"); 5768 // control registers 5769 printf("flgs = "); _eflags.print(); printf("\n"); 5770 } 5771 }; 5772 5773 5774 class CPU_State { 5775 public: 5776 FPU_State _fpu_state; 5777 IU_State _iu_state; 5778 5779 void print() const { 5780 printf("--------------------------------------------------\n"); 5781 _iu_state .print(); 5782 printf("\n"); 5783 _fpu_state.print(); 5784 printf("--------------------------------------------------\n"); 5785 } 5786 5787 }; 5788 5789 5790 static void _print_CPU_state(CPU_State* state) { 5791 state->print(); 5792 }; 5793 5794 5795 void MacroAssembler::print_CPU_state() { 5796 push_CPU_state(); 5797 push(rsp); // pass CPU state 5798 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5799 addptr(rsp, wordSize); // discard argument 5800 pop_CPU_state(); 5801 } 5802 5803 5804 #ifndef _LP64 5805 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5806 static int counter = 0; 5807 FPU_State* fs = &state->_fpu_state; 5808 counter++; 5809 // For leaf calls, only verify that the top few elements remain empty. 5810 // We only need 1 empty at the top for C2 code. 5811 if( stack_depth < 0 ) { 5812 if( fs->tag_for_st(7) != 3 ) { 5813 printf("FPR7 not empty\n"); 5814 state->print(); 5815 assert(false, "error"); 5816 return false; 5817 } 5818 return true; // All other stack states do not matter 5819 } 5820 5821 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5822 "bad FPU control word"); 5823 5824 // compute stack depth 5825 int i = 0; 5826 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5827 int d = i; 5828 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5829 // verify findings 5830 if (i != FPU_State::number_of_registers) { 5831 // stack not contiguous 5832 printf("%s: stack not contiguous at ST%d\n", s, i); 5833 state->print(); 5834 assert(false, "error"); 5835 return false; 5836 } 5837 // check if computed stack depth corresponds to expected stack depth 5838 if (stack_depth < 0) { 5839 // expected stack depth is -stack_depth or less 5840 if (d > -stack_depth) { 5841 // too many elements on the stack 5842 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5843 state->print(); 5844 assert(false, "error"); 5845 return false; 5846 } 5847 } else { 5848 // expected stack depth is stack_depth 5849 if (d != stack_depth) { 5850 // wrong stack depth 5851 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5852 state->print(); 5853 assert(false, "error"); 5854 return false; 5855 } 5856 } 5857 // everything is cool 5858 return true; 5859 } 5860 5861 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5862 if (!VerifyFPU) return; 5863 push_CPU_state(); 5864 push(rsp); // pass CPU state 5865 ExternalAddress msg((address) s); 5866 // pass message string s 5867 pushptr(msg.addr(), noreg); 5868 push(stack_depth); // pass stack depth 5869 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5870 addptr(rsp, 3 * wordSize); // discard arguments 5871 // check for error 5872 { Label L; 5873 testl(rax, rax); 5874 jcc(Assembler::notZero, L); 5875 int3(); // break if error condition 5876 bind(L); 5877 } 5878 pop_CPU_state(); 5879 } 5880 #endif // _LP64 5881 5882 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5883 // Either restore the MXCSR register after returning from the JNI Call 5884 // or verify that it wasn't changed (with -Xcheck:jni flag). 5885 if (VM_Version::supports_sse()) { 5886 if (RestoreMXCSROnJNICalls) { 5887 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5888 } else if (CheckJNICalls) { 5889 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5890 } 5891 } 5892 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5893 vzeroupper(); 5894 5895 #ifndef _LP64 5896 // Either restore the x87 floating pointer control word after returning 5897 // from the JNI call or verify that it wasn't changed. 5898 if (CheckJNICalls) { 5899 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5900 } 5901 #endif // _LP64 5902 } 5903 5904 // ((OopHandle)result).resolve(); 5905 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5906 assert_different_registers(result, tmp); 5907 5908 // Only 64 bit platforms support GCs that require a tmp register 5909 // Only IN_HEAP loads require a thread_tmp register 5910 // OopHandle::resolve is an indirection like jobject. 5911 access_load_at(T_OBJECT, IN_NATIVE, 5912 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5913 } 5914 5915 // ((WeakHandle)result).resolve(); 5916 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5917 assert_different_registers(rresult, rtmp); 5918 Label resolved; 5919 5920 // A null weak handle resolves to null. 5921 cmpptr(rresult, 0); 5922 jcc(Assembler::equal, resolved); 5923 5924 // Only 64 bit platforms support GCs that require a tmp register 5925 // Only IN_HEAP loads require a thread_tmp register 5926 // WeakHandle::resolve is an indirection like jweak. 5927 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5928 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5929 bind(resolved); 5930 } 5931 5932 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5933 // get mirror 5934 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5935 load_method_holder(mirror, method); 5936 movptr(mirror, Address(mirror, mirror_offset)); 5937 resolve_oop_handle(mirror, tmp); 5938 } 5939 5940 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5941 load_method_holder(rresult, rmethod); 5942 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5943 } 5944 5945 void MacroAssembler::load_method_holder(Register holder, Register method) { 5946 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5947 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5948 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5949 } 5950 5951 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5952 assert_different_registers(src, tmp); 5953 assert_different_registers(dst, tmp); 5954 #ifdef _LP64 5955 if (UseCompressedClassPointers) { 5956 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5957 decode_klass_not_null(dst, tmp); 5958 } else 5959 #endif 5960 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5961 } 5962 5963 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5964 assert_different_registers(src, tmp); 5965 assert_different_registers(dst, tmp); 5966 #ifdef _LP64 5967 if (UseCompressedClassPointers) { 5968 encode_klass_not_null(src, tmp); 5969 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5970 } else 5971 #endif 5972 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5973 } 5974 5975 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5976 Register tmp1, Register thread_tmp) { 5977 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5978 decorators = AccessInternal::decorator_fixup(decorators, type); 5979 bool as_raw = (decorators & AS_RAW) != 0; 5980 if (as_raw) { 5981 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5982 } else { 5983 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5984 } 5985 } 5986 5987 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5988 Register tmp1, Register tmp2, Register tmp3) { 5989 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5990 decorators = AccessInternal::decorator_fixup(decorators, type); 5991 bool as_raw = (decorators & AS_RAW) != 0; 5992 if (as_raw) { 5993 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5994 } else { 5995 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5996 } 5997 } 5998 5999 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 6000 Register thread_tmp, DecoratorSet decorators) { 6001 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 6002 } 6003 6004 // Doesn't do verification, generates fixed size code 6005 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 6006 Register thread_tmp, DecoratorSet decorators) { 6007 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 6008 } 6009 6010 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 6011 Register tmp2, Register tmp3, DecoratorSet decorators) { 6012 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 6013 } 6014 6015 // Used for storing nulls. 6016 void MacroAssembler::store_heap_oop_null(Address dst) { 6017 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 6018 } 6019 6020 #ifdef _LP64 6021 void MacroAssembler::store_klass_gap(Register dst, Register src) { 6022 if (UseCompressedClassPointers) { 6023 // Store to klass gap in destination 6024 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 6025 } 6026 } 6027 6028 #ifdef ASSERT 6029 void MacroAssembler::verify_heapbase(const char* msg) { 6030 assert (UseCompressedOops, "should be compressed"); 6031 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6032 if (CheckCompressedOops) { 6033 Label ok; 6034 ExternalAddress src2(CompressedOops::base_addr()); 6035 const bool is_src2_reachable = reachable(src2); 6036 if (!is_src2_reachable) { 6037 push(rscratch1); // cmpptr trashes rscratch1 6038 } 6039 cmpptr(r12_heapbase, src2, rscratch1); 6040 jcc(Assembler::equal, ok); 6041 STOP(msg); 6042 bind(ok); 6043 if (!is_src2_reachable) { 6044 pop(rscratch1); 6045 } 6046 } 6047 } 6048 #endif 6049 6050 // Algorithm must match oop.inline.hpp encode_heap_oop. 6051 void MacroAssembler::encode_heap_oop(Register r) { 6052 #ifdef ASSERT 6053 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 6054 #endif 6055 verify_oop_msg(r, "broken oop in encode_heap_oop"); 6056 if (CompressedOops::base() == nullptr) { 6057 if (CompressedOops::shift() != 0) { 6058 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6059 shrq(r, LogMinObjAlignmentInBytes); 6060 } 6061 return; 6062 } 6063 testq(r, r); 6064 cmovq(Assembler::equal, r, r12_heapbase); 6065 subq(r, r12_heapbase); 6066 shrq(r, LogMinObjAlignmentInBytes); 6067 } 6068 6069 void MacroAssembler::encode_heap_oop_not_null(Register r) { 6070 #ifdef ASSERT 6071 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 6072 if (CheckCompressedOops) { 6073 Label ok; 6074 testq(r, r); 6075 jcc(Assembler::notEqual, ok); 6076 STOP("null oop passed to encode_heap_oop_not_null"); 6077 bind(ok); 6078 } 6079 #endif 6080 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 6081 if (CompressedOops::base() != nullptr) { 6082 subq(r, r12_heapbase); 6083 } 6084 if (CompressedOops::shift() != 0) { 6085 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6086 shrq(r, LogMinObjAlignmentInBytes); 6087 } 6088 } 6089 6090 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 6091 #ifdef ASSERT 6092 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 6093 if (CheckCompressedOops) { 6094 Label ok; 6095 testq(src, src); 6096 jcc(Assembler::notEqual, ok); 6097 STOP("null oop passed to encode_heap_oop_not_null2"); 6098 bind(ok); 6099 } 6100 #endif 6101 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 6102 if (dst != src) { 6103 movq(dst, src); 6104 } 6105 if (CompressedOops::base() != nullptr) { 6106 subq(dst, r12_heapbase); 6107 } 6108 if (CompressedOops::shift() != 0) { 6109 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6110 shrq(dst, LogMinObjAlignmentInBytes); 6111 } 6112 } 6113 6114 void MacroAssembler::decode_heap_oop(Register r) { 6115 #ifdef ASSERT 6116 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 6117 #endif 6118 if (CompressedOops::base() == nullptr) { 6119 if (CompressedOops::shift() != 0) { 6120 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6121 shlq(r, LogMinObjAlignmentInBytes); 6122 } 6123 } else { 6124 Label done; 6125 shlq(r, LogMinObjAlignmentInBytes); 6126 jccb(Assembler::equal, done); 6127 addq(r, r12_heapbase); 6128 bind(done); 6129 } 6130 verify_oop_msg(r, "broken oop in decode_heap_oop"); 6131 } 6132 6133 void MacroAssembler::decode_heap_oop_not_null(Register r) { 6134 // Note: it will change flags 6135 assert (UseCompressedOops, "should only be used for compressed headers"); 6136 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6137 // Cannot assert, unverified entry point counts instructions (see .ad file) 6138 // vtableStubs also counts instructions in pd_code_size_limit. 6139 // Also do not verify_oop as this is called by verify_oop. 6140 if (CompressedOops::shift() != 0) { 6141 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6142 shlq(r, LogMinObjAlignmentInBytes); 6143 if (CompressedOops::base() != nullptr) { 6144 addq(r, r12_heapbase); 6145 } 6146 } else { 6147 assert (CompressedOops::base() == nullptr, "sanity"); 6148 } 6149 } 6150 6151 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 6152 // Note: it will change flags 6153 assert (UseCompressedOops, "should only be used for compressed headers"); 6154 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6155 // Cannot assert, unverified entry point counts instructions (see .ad file) 6156 // vtableStubs also counts instructions in pd_code_size_limit. 6157 // Also do not verify_oop as this is called by verify_oop. 6158 if (CompressedOops::shift() != 0) { 6159 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 6160 if (LogMinObjAlignmentInBytes == Address::times_8) { 6161 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 6162 } else { 6163 if (dst != src) { 6164 movq(dst, src); 6165 } 6166 shlq(dst, LogMinObjAlignmentInBytes); 6167 if (CompressedOops::base() != nullptr) { 6168 addq(dst, r12_heapbase); 6169 } 6170 } 6171 } else { 6172 assert (CompressedOops::base() == nullptr, "sanity"); 6173 if (dst != src) { 6174 movq(dst, src); 6175 } 6176 } 6177 } 6178 6179 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 6180 assert_different_registers(r, tmp); 6181 if (CompressedKlassPointers::base() != nullptr) { 6182 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6183 subq(r, tmp); 6184 } 6185 if (CompressedKlassPointers::shift() != 0) { 6186 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 6187 shrq(r, LogKlassAlignmentInBytes); 6188 } 6189 } 6190 6191 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 6192 assert_different_registers(src, dst); 6193 if (CompressedKlassPointers::base() != nullptr) { 6194 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 6195 addq(dst, src); 6196 } else { 6197 movptr(dst, src); 6198 } 6199 if (CompressedKlassPointers::shift() != 0) { 6200 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 6201 shrq(dst, LogKlassAlignmentInBytes); 6202 } 6203 } 6204 6205 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 6206 assert_different_registers(r, tmp); 6207 // Note: it will change flags 6208 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 6209 // Cannot assert, unverified entry point counts instructions (see .ad file) 6210 // vtableStubs also counts instructions in pd_code_size_limit. 6211 // Also do not verify_oop as this is called by verify_oop. 6212 if (CompressedKlassPointers::shift() != 0) { 6213 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 6214 shlq(r, LogKlassAlignmentInBytes); 6215 } 6216 if (CompressedKlassPointers::base() != nullptr) { 6217 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 6218 addq(r, tmp); 6219 } 6220 } 6221 6222 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 6223 assert_different_registers(src, dst); 6224 // Note: it will change flags 6225 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6226 // Cannot assert, unverified entry point counts instructions (see .ad file) 6227 // vtableStubs also counts instructions in pd_code_size_limit. 6228 // Also do not verify_oop as this is called by verify_oop. 6229 6230 if (CompressedKlassPointers::base() == nullptr && 6231 CompressedKlassPointers::shift() == 0) { 6232 // The best case scenario is that there is no base or shift. Then it is already 6233 // a pointer that needs nothing but a register rename. 6234 movl(dst, src); 6235 } else { 6236 if (CompressedKlassPointers::base() != nullptr) { 6237 mov64(dst, (int64_t)CompressedKlassPointers::base()); 6238 } else { 6239 xorq(dst, dst); 6240 } 6241 if (CompressedKlassPointers::shift() != 0) { 6242 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 6243 assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?"); 6244 leaq(dst, Address(dst, src, Address::times_8, 0)); 6245 } else { 6246 addq(dst, src); 6247 } 6248 } 6249 } 6250 6251 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 6252 assert (UseCompressedOops, "should only be used for compressed headers"); 6253 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6254 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6255 int oop_index = oop_recorder()->find_index(obj); 6256 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6257 mov_narrow_oop(dst, oop_index, rspec); 6258 } 6259 6260 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 6261 assert (UseCompressedOops, "should only be used for compressed headers"); 6262 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6263 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6264 int oop_index = oop_recorder()->find_index(obj); 6265 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6266 mov_narrow_oop(dst, oop_index, rspec); 6267 } 6268 6269 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 6270 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6271 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6272 int klass_index = oop_recorder()->find_index(k); 6273 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6274 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6275 } 6276 6277 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 6278 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6279 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6280 int klass_index = oop_recorder()->find_index(k); 6281 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6282 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6283 } 6284 6285 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 6286 assert (UseCompressedOops, "should only be used for compressed headers"); 6287 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6288 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6289 int oop_index = oop_recorder()->find_index(obj); 6290 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6291 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6292 } 6293 6294 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 6295 assert (UseCompressedOops, "should only be used for compressed headers"); 6296 assert (Universe::heap() != nullptr, "java heap should be initialized"); 6297 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6298 int oop_index = oop_recorder()->find_index(obj); 6299 RelocationHolder rspec = oop_Relocation::spec(oop_index); 6300 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 6301 } 6302 6303 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 6304 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6305 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6306 int klass_index = oop_recorder()->find_index(k); 6307 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6308 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6309 } 6310 6311 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 6312 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 6313 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 6314 int klass_index = oop_recorder()->find_index(k); 6315 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 6316 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 6317 } 6318 6319 void MacroAssembler::reinit_heapbase() { 6320 if (UseCompressedOops) { 6321 if (Universe::heap() != nullptr) { 6322 if (CompressedOops::base() == nullptr) { 6323 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 6324 } else { 6325 mov64(r12_heapbase, (int64_t)CompressedOops::base()); 6326 } 6327 } else { 6328 movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr())); 6329 } 6330 } 6331 } 6332 6333 #endif // _LP64 6334 6335 #if COMPILER2_OR_JVMCI 6336 6337 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 6338 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6339 // cnt - number of qwords (8-byte words). 6340 // base - start address, qword aligned. 6341 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 6342 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 6343 if (use64byteVector) { 6344 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 6345 } else if (MaxVectorSize >= 32) { 6346 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 6347 } else { 6348 pxor(xtmp, xtmp); 6349 } 6350 jmp(L_zero_64_bytes); 6351 6352 BIND(L_loop); 6353 if (MaxVectorSize >= 32) { 6354 fill64(base, 0, xtmp, use64byteVector); 6355 } else { 6356 movdqu(Address(base, 0), xtmp); 6357 movdqu(Address(base, 16), xtmp); 6358 movdqu(Address(base, 32), xtmp); 6359 movdqu(Address(base, 48), xtmp); 6360 } 6361 addptr(base, 64); 6362 6363 BIND(L_zero_64_bytes); 6364 subptr(cnt, 8); 6365 jccb(Assembler::greaterEqual, L_loop); 6366 6367 // Copy trailing 64 bytes 6368 if (use64byteVector) { 6369 addptr(cnt, 8); 6370 jccb(Assembler::equal, L_end); 6371 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 6372 jmp(L_end); 6373 } else { 6374 addptr(cnt, 4); 6375 jccb(Assembler::less, L_tail); 6376 if (MaxVectorSize >= 32) { 6377 vmovdqu(Address(base, 0), xtmp); 6378 } else { 6379 movdqu(Address(base, 0), xtmp); 6380 movdqu(Address(base, 16), xtmp); 6381 } 6382 } 6383 addptr(base, 32); 6384 subptr(cnt, 4); 6385 6386 BIND(L_tail); 6387 addptr(cnt, 4); 6388 jccb(Assembler::lessEqual, L_end); 6389 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 6390 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 6391 } else { 6392 decrement(cnt); 6393 6394 BIND(L_sloop); 6395 movq(Address(base, 0), xtmp); 6396 addptr(base, 8); 6397 decrement(cnt); 6398 jccb(Assembler::greaterEqual, L_sloop); 6399 } 6400 BIND(L_end); 6401 } 6402 6403 // Clearing constant sized memory using YMM/ZMM registers. 6404 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 6405 assert(UseAVX > 2 && VM_Version::supports_avx512vl(), ""); 6406 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 6407 6408 int vector64_count = (cnt & (~0x7)) >> 3; 6409 cnt = cnt & 0x7; 6410 const int fill64_per_loop = 4; 6411 const int max_unrolled_fill64 = 8; 6412 6413 // 64 byte initialization loop. 6414 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 6415 int start64 = 0; 6416 if (vector64_count > max_unrolled_fill64) { 6417 Label LOOP; 6418 Register index = rtmp; 6419 6420 start64 = vector64_count - (vector64_count % fill64_per_loop); 6421 6422 movl(index, 0); 6423 BIND(LOOP); 6424 for (int i = 0; i < fill64_per_loop; i++) { 6425 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 6426 } 6427 addl(index, fill64_per_loop * 64); 6428 cmpl(index, start64 * 64); 6429 jccb(Assembler::less, LOOP); 6430 } 6431 for (int i = start64; i < vector64_count; i++) { 6432 fill64(base, i * 64, xtmp, use64byteVector); 6433 } 6434 6435 // Clear remaining 64 byte tail. 6436 int disp = vector64_count * 64; 6437 if (cnt) { 6438 switch (cnt) { 6439 case 1: 6440 movq(Address(base, disp), xtmp); 6441 break; 6442 case 2: 6443 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 6444 break; 6445 case 3: 6446 movl(rtmp, 0x7); 6447 kmovwl(mask, rtmp); 6448 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 6449 break; 6450 case 4: 6451 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6452 break; 6453 case 5: 6454 if (use64byteVector) { 6455 movl(rtmp, 0x1F); 6456 kmovwl(mask, rtmp); 6457 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6458 } else { 6459 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6460 movq(Address(base, disp + 32), xtmp); 6461 } 6462 break; 6463 case 6: 6464 if (use64byteVector) { 6465 movl(rtmp, 0x3F); 6466 kmovwl(mask, rtmp); 6467 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6468 } else { 6469 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6470 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 6471 } 6472 break; 6473 case 7: 6474 if (use64byteVector) { 6475 movl(rtmp, 0x7F); 6476 kmovwl(mask, rtmp); 6477 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 6478 } else { 6479 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 6480 movl(rtmp, 0x7); 6481 kmovwl(mask, rtmp); 6482 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 6483 } 6484 break; 6485 default: 6486 fatal("Unexpected length : %d\n",cnt); 6487 break; 6488 } 6489 } 6490 } 6491 6492 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 6493 bool is_large, KRegister mask) { 6494 // cnt - number of qwords (8-byte words). 6495 // base - start address, qword aligned. 6496 // is_large - if optimizers know cnt is larger than InitArrayShortSize 6497 assert(base==rdi, "base register must be edi for rep stos"); 6498 assert(tmp==rax, "tmp register must be eax for rep stos"); 6499 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 6500 assert(InitArrayShortSize % BytesPerLong == 0, 6501 "InitArrayShortSize should be the multiple of BytesPerLong"); 6502 6503 Label DONE; 6504 if (!is_large || !UseXMMForObjInit) { 6505 xorptr(tmp, tmp); 6506 } 6507 6508 if (!is_large) { 6509 Label LOOP, LONG; 6510 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 6511 jccb(Assembler::greater, LONG); 6512 6513 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6514 6515 decrement(cnt); 6516 jccb(Assembler::negative, DONE); // Zero length 6517 6518 // Use individual pointer-sized stores for small counts: 6519 BIND(LOOP); 6520 movptr(Address(base, cnt, Address::times_ptr), tmp); 6521 decrement(cnt); 6522 jccb(Assembler::greaterEqual, LOOP); 6523 jmpb(DONE); 6524 6525 BIND(LONG); 6526 } 6527 6528 // Use longer rep-prefixed ops for non-small counts: 6529 if (UseFastStosb) { 6530 shlptr(cnt, 3); // convert to number of bytes 6531 rep_stosb(); 6532 } else if (UseXMMForObjInit) { 6533 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 6534 } else { 6535 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 6536 rep_stos(); 6537 } 6538 6539 BIND(DONE); 6540 } 6541 6542 #endif //COMPILER2_OR_JVMCI 6543 6544 6545 void MacroAssembler::generate_fill(BasicType t, bool aligned, 6546 Register to, Register value, Register count, 6547 Register rtmp, XMMRegister xtmp) { 6548 ShortBranchVerifier sbv(this); 6549 assert_different_registers(to, value, count, rtmp); 6550 Label L_exit; 6551 Label L_fill_2_bytes, L_fill_4_bytes; 6552 6553 #if defined(COMPILER2) && defined(_LP64) 6554 if(MaxVectorSize >=32 && 6555 VM_Version::supports_avx512vlbw() && 6556 VM_Version::supports_bmi2()) { 6557 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 6558 return; 6559 } 6560 #endif 6561 6562 int shift = -1; 6563 switch (t) { 6564 case T_BYTE: 6565 shift = 2; 6566 break; 6567 case T_SHORT: 6568 shift = 1; 6569 break; 6570 case T_INT: 6571 shift = 0; 6572 break; 6573 default: ShouldNotReachHere(); 6574 } 6575 6576 if (t == T_BYTE) { 6577 andl(value, 0xff); 6578 movl(rtmp, value); 6579 shll(rtmp, 8); 6580 orl(value, rtmp); 6581 } 6582 if (t == T_SHORT) { 6583 andl(value, 0xffff); 6584 } 6585 if (t == T_BYTE || t == T_SHORT) { 6586 movl(rtmp, value); 6587 shll(rtmp, 16); 6588 orl(value, rtmp); 6589 } 6590 6591 cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 6592 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 6593 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 6594 Label L_skip_align2; 6595 // align source address at 4 bytes address boundary 6596 if (t == T_BYTE) { 6597 Label L_skip_align1; 6598 // One byte misalignment happens only for byte arrays 6599 testptr(to, 1); 6600 jccb(Assembler::zero, L_skip_align1); 6601 movb(Address(to, 0), value); 6602 increment(to); 6603 decrement(count); 6604 BIND(L_skip_align1); 6605 } 6606 // Two bytes misalignment happens only for byte and short (char) arrays 6607 testptr(to, 2); 6608 jccb(Assembler::zero, L_skip_align2); 6609 movw(Address(to, 0), value); 6610 addptr(to, 2); 6611 subptr(count, 1<<(shift-1)); 6612 BIND(L_skip_align2); 6613 } 6614 if (UseSSE < 2) { 6615 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6616 // Fill 32-byte chunks 6617 subptr(count, 8 << shift); 6618 jcc(Assembler::less, L_check_fill_8_bytes); 6619 align(16); 6620 6621 BIND(L_fill_32_bytes_loop); 6622 6623 for (int i = 0; i < 32; i += 4) { 6624 movl(Address(to, i), value); 6625 } 6626 6627 addptr(to, 32); 6628 subptr(count, 8 << shift); 6629 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6630 BIND(L_check_fill_8_bytes); 6631 addptr(count, 8 << shift); 6632 jccb(Assembler::zero, L_exit); 6633 jmpb(L_fill_8_bytes); 6634 6635 // 6636 // length is too short, just fill qwords 6637 // 6638 BIND(L_fill_8_bytes_loop); 6639 movl(Address(to, 0), value); 6640 movl(Address(to, 4), value); 6641 addptr(to, 8); 6642 BIND(L_fill_8_bytes); 6643 subptr(count, 1 << (shift + 1)); 6644 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6645 // fall through to fill 4 bytes 6646 } else { 6647 Label L_fill_32_bytes; 6648 if (!UseUnalignedLoadStores) { 6649 // align to 8 bytes, we know we are 4 byte aligned to start 6650 testptr(to, 4); 6651 jccb(Assembler::zero, L_fill_32_bytes); 6652 movl(Address(to, 0), value); 6653 addptr(to, 4); 6654 subptr(count, 1<<shift); 6655 } 6656 BIND(L_fill_32_bytes); 6657 { 6658 assert( UseSSE >= 2, "supported cpu only" ); 6659 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 6660 movdl(xtmp, value); 6661 if (UseAVX >= 2 && UseUnalignedLoadStores) { 6662 Label L_check_fill_32_bytes; 6663 if (UseAVX > 2) { 6664 // Fill 64-byte chunks 6665 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 6666 6667 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 6668 cmpptr(count, VM_Version::avx3_threshold()); 6669 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 6670 6671 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 6672 6673 subptr(count, 16 << shift); 6674 jccb(Assembler::less, L_check_fill_32_bytes); 6675 align(16); 6676 6677 BIND(L_fill_64_bytes_loop_avx3); 6678 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 6679 addptr(to, 64); 6680 subptr(count, 16 << shift); 6681 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 6682 jmpb(L_check_fill_32_bytes); 6683 6684 BIND(L_check_fill_64_bytes_avx2); 6685 } 6686 // Fill 64-byte chunks 6687 Label L_fill_64_bytes_loop; 6688 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 6689 6690 subptr(count, 16 << shift); 6691 jcc(Assembler::less, L_check_fill_32_bytes); 6692 align(16); 6693 6694 BIND(L_fill_64_bytes_loop); 6695 vmovdqu(Address(to, 0), xtmp); 6696 vmovdqu(Address(to, 32), xtmp); 6697 addptr(to, 64); 6698 subptr(count, 16 << shift); 6699 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6700 6701 BIND(L_check_fill_32_bytes); 6702 addptr(count, 8 << shift); 6703 jccb(Assembler::less, L_check_fill_8_bytes); 6704 vmovdqu(Address(to, 0), xtmp); 6705 addptr(to, 32); 6706 subptr(count, 8 << shift); 6707 6708 BIND(L_check_fill_8_bytes); 6709 // clean upper bits of YMM registers 6710 movdl(xtmp, value); 6711 pshufd(xtmp, xtmp, 0); 6712 } else { 6713 // Fill 32-byte chunks 6714 pshufd(xtmp, xtmp, 0); 6715 6716 subptr(count, 8 << shift); 6717 jcc(Assembler::less, L_check_fill_8_bytes); 6718 align(16); 6719 6720 BIND(L_fill_32_bytes_loop); 6721 6722 if (UseUnalignedLoadStores) { 6723 movdqu(Address(to, 0), xtmp); 6724 movdqu(Address(to, 16), xtmp); 6725 } else { 6726 movq(Address(to, 0), xtmp); 6727 movq(Address(to, 8), xtmp); 6728 movq(Address(to, 16), xtmp); 6729 movq(Address(to, 24), xtmp); 6730 } 6731 6732 addptr(to, 32); 6733 subptr(count, 8 << shift); 6734 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6735 6736 BIND(L_check_fill_8_bytes); 6737 } 6738 addptr(count, 8 << shift); 6739 jccb(Assembler::zero, L_exit); 6740 jmpb(L_fill_8_bytes); 6741 6742 // 6743 // length is too short, just fill qwords 6744 // 6745 BIND(L_fill_8_bytes_loop); 6746 movq(Address(to, 0), xtmp); 6747 addptr(to, 8); 6748 BIND(L_fill_8_bytes); 6749 subptr(count, 1 << (shift + 1)); 6750 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6751 } 6752 } 6753 // fill trailing 4 bytes 6754 BIND(L_fill_4_bytes); 6755 testl(count, 1<<shift); 6756 jccb(Assembler::zero, L_fill_2_bytes); 6757 movl(Address(to, 0), value); 6758 if (t == T_BYTE || t == T_SHORT) { 6759 Label L_fill_byte; 6760 addptr(to, 4); 6761 BIND(L_fill_2_bytes); 6762 // fill trailing 2 bytes 6763 testl(count, 1<<(shift-1)); 6764 jccb(Assembler::zero, L_fill_byte); 6765 movw(Address(to, 0), value); 6766 if (t == T_BYTE) { 6767 addptr(to, 2); 6768 BIND(L_fill_byte); 6769 // fill trailing byte 6770 testl(count, 1); 6771 jccb(Assembler::zero, L_exit); 6772 movb(Address(to, 0), value); 6773 } else { 6774 BIND(L_fill_byte); 6775 } 6776 } else { 6777 BIND(L_fill_2_bytes); 6778 } 6779 BIND(L_exit); 6780 } 6781 6782 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6783 switch(type) { 6784 case T_BYTE: 6785 case T_BOOLEAN: 6786 evpbroadcastb(dst, src, vector_len); 6787 break; 6788 case T_SHORT: 6789 case T_CHAR: 6790 evpbroadcastw(dst, src, vector_len); 6791 break; 6792 case T_INT: 6793 case T_FLOAT: 6794 evpbroadcastd(dst, src, vector_len); 6795 break; 6796 case T_LONG: 6797 case T_DOUBLE: 6798 evpbroadcastq(dst, src, vector_len); 6799 break; 6800 default: 6801 fatal("Unhandled type : %s", type2name(type)); 6802 break; 6803 } 6804 } 6805 6806 // encode char[] to byte[] in ISO_8859_1 or ASCII 6807 //@IntrinsicCandidate 6808 //private static int implEncodeISOArray(byte[] sa, int sp, 6809 //byte[] da, int dp, int len) { 6810 // int i = 0; 6811 // for (; i < len; i++) { 6812 // char c = StringUTF16.getChar(sa, sp++); 6813 // if (c > '\u00FF') 6814 // break; 6815 // da[dp++] = (byte)c; 6816 // } 6817 // return i; 6818 //} 6819 // 6820 //@IntrinsicCandidate 6821 //private static int implEncodeAsciiArray(char[] sa, int sp, 6822 // byte[] da, int dp, int len) { 6823 // int i = 0; 6824 // for (; i < len; i++) { 6825 // char c = sa[sp++]; 6826 // if (c >= '\u0080') 6827 // break; 6828 // da[dp++] = (byte)c; 6829 // } 6830 // return i; 6831 //} 6832 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6833 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6834 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6835 Register tmp5, Register result, bool ascii) { 6836 6837 // rsi: src 6838 // rdi: dst 6839 // rdx: len 6840 // rcx: tmp5 6841 // rax: result 6842 ShortBranchVerifier sbv(this); 6843 assert_different_registers(src, dst, len, tmp5, result); 6844 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6845 6846 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6847 int short_mask = ascii ? 0xff80 : 0xff00; 6848 6849 // set result 6850 xorl(result, result); 6851 // check for zero length 6852 testl(len, len); 6853 jcc(Assembler::zero, L_done); 6854 6855 movl(result, len); 6856 6857 // Setup pointers 6858 lea(src, Address(src, len, Address::times_2)); // char[] 6859 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6860 negptr(len); 6861 6862 if (UseSSE42Intrinsics || UseAVX >= 2) { 6863 Label L_copy_8_chars, L_copy_8_chars_exit; 6864 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6865 6866 if (UseAVX >= 2) { 6867 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6868 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6869 movdl(tmp1Reg, tmp5); 6870 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6871 jmp(L_chars_32_check); 6872 6873 bind(L_copy_32_chars); 6874 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6875 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6876 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6877 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6878 jccb(Assembler::notZero, L_copy_32_chars_exit); 6879 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6880 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6881 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6882 6883 bind(L_chars_32_check); 6884 addptr(len, 32); 6885 jcc(Assembler::lessEqual, L_copy_32_chars); 6886 6887 bind(L_copy_32_chars_exit); 6888 subptr(len, 16); 6889 jccb(Assembler::greater, L_copy_16_chars_exit); 6890 6891 } else if (UseSSE42Intrinsics) { 6892 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6893 movdl(tmp1Reg, tmp5); 6894 pshufd(tmp1Reg, tmp1Reg, 0); 6895 jmpb(L_chars_16_check); 6896 } 6897 6898 bind(L_copy_16_chars); 6899 if (UseAVX >= 2) { 6900 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6901 vptest(tmp2Reg, tmp1Reg); 6902 jcc(Assembler::notZero, L_copy_16_chars_exit); 6903 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6904 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6905 } else { 6906 if (UseAVX > 0) { 6907 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6908 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6909 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6910 } else { 6911 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6912 por(tmp2Reg, tmp3Reg); 6913 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6914 por(tmp2Reg, tmp4Reg); 6915 } 6916 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6917 jccb(Assembler::notZero, L_copy_16_chars_exit); 6918 packuswb(tmp3Reg, tmp4Reg); 6919 } 6920 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6921 6922 bind(L_chars_16_check); 6923 addptr(len, 16); 6924 jcc(Assembler::lessEqual, L_copy_16_chars); 6925 6926 bind(L_copy_16_chars_exit); 6927 if (UseAVX >= 2) { 6928 // clean upper bits of YMM registers 6929 vpxor(tmp2Reg, tmp2Reg); 6930 vpxor(tmp3Reg, tmp3Reg); 6931 vpxor(tmp4Reg, tmp4Reg); 6932 movdl(tmp1Reg, tmp5); 6933 pshufd(tmp1Reg, tmp1Reg, 0); 6934 } 6935 subptr(len, 8); 6936 jccb(Assembler::greater, L_copy_8_chars_exit); 6937 6938 bind(L_copy_8_chars); 6939 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6940 ptest(tmp3Reg, tmp1Reg); 6941 jccb(Assembler::notZero, L_copy_8_chars_exit); 6942 packuswb(tmp3Reg, tmp1Reg); 6943 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6944 addptr(len, 8); 6945 jccb(Assembler::lessEqual, L_copy_8_chars); 6946 6947 bind(L_copy_8_chars_exit); 6948 subptr(len, 8); 6949 jccb(Assembler::zero, L_done); 6950 } 6951 6952 bind(L_copy_1_char); 6953 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6954 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6955 jccb(Assembler::notZero, L_copy_1_char_exit); 6956 movb(Address(dst, len, Address::times_1, 0), tmp5); 6957 addptr(len, 1); 6958 jccb(Assembler::less, L_copy_1_char); 6959 6960 bind(L_copy_1_char_exit); 6961 addptr(result, len); // len is negative count of not processed elements 6962 6963 bind(L_done); 6964 } 6965 6966 #ifdef _LP64 6967 /** 6968 * Helper for multiply_to_len(). 6969 */ 6970 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6971 addq(dest_lo, src1); 6972 adcq(dest_hi, 0); 6973 addq(dest_lo, src2); 6974 adcq(dest_hi, 0); 6975 } 6976 6977 /** 6978 * Multiply 64 bit by 64 bit first loop. 6979 */ 6980 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6981 Register y, Register y_idx, Register z, 6982 Register carry, Register product, 6983 Register idx, Register kdx) { 6984 // 6985 // jlong carry, x[], y[], z[]; 6986 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6987 // huge_128 product = y[idx] * x[xstart] + carry; 6988 // z[kdx] = (jlong)product; 6989 // carry = (jlong)(product >>> 64); 6990 // } 6991 // z[xstart] = carry; 6992 // 6993 6994 Label L_first_loop, L_first_loop_exit; 6995 Label L_one_x, L_one_y, L_multiply; 6996 6997 decrementl(xstart); 6998 jcc(Assembler::negative, L_one_x); 6999 7000 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7001 rorq(x_xstart, 32); // convert big-endian to little-endian 7002 7003 bind(L_first_loop); 7004 decrementl(idx); 7005 jcc(Assembler::negative, L_first_loop_exit); 7006 decrementl(idx); 7007 jcc(Assembler::negative, L_one_y); 7008 movq(y_idx, Address(y, idx, Address::times_4, 0)); 7009 rorq(y_idx, 32); // convert big-endian to little-endian 7010 bind(L_multiply); 7011 movq(product, x_xstart); 7012 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 7013 addq(product, carry); 7014 adcq(rdx, 0); 7015 subl(kdx, 2); 7016 movl(Address(z, kdx, Address::times_4, 4), product); 7017 shrq(product, 32); 7018 movl(Address(z, kdx, Address::times_4, 0), product); 7019 movq(carry, rdx); 7020 jmp(L_first_loop); 7021 7022 bind(L_one_y); 7023 movl(y_idx, Address(y, 0)); 7024 jmp(L_multiply); 7025 7026 bind(L_one_x); 7027 movl(x_xstart, Address(x, 0)); 7028 jmp(L_first_loop); 7029 7030 bind(L_first_loop_exit); 7031 } 7032 7033 /** 7034 * Multiply 64 bit by 64 bit and add 128 bit. 7035 */ 7036 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 7037 Register yz_idx, Register idx, 7038 Register carry, Register product, int offset) { 7039 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 7040 // z[kdx] = (jlong)product; 7041 7042 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 7043 rorq(yz_idx, 32); // convert big-endian to little-endian 7044 movq(product, x_xstart); 7045 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7046 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 7047 rorq(yz_idx, 32); // convert big-endian to little-endian 7048 7049 add2_with_carry(rdx, product, carry, yz_idx); 7050 7051 movl(Address(z, idx, Address::times_4, offset+4), product); 7052 shrq(product, 32); 7053 movl(Address(z, idx, Address::times_4, offset), product); 7054 7055 } 7056 7057 /** 7058 * Multiply 128 bit by 128 bit. Unrolled inner loop. 7059 */ 7060 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 7061 Register yz_idx, Register idx, Register jdx, 7062 Register carry, Register product, 7063 Register carry2) { 7064 // jlong carry, x[], y[], z[]; 7065 // int kdx = ystart+1; 7066 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7067 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 7068 // z[kdx+idx+1] = (jlong)product; 7069 // jlong carry2 = (jlong)(product >>> 64); 7070 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 7071 // z[kdx+idx] = (jlong)product; 7072 // carry = (jlong)(product >>> 64); 7073 // } 7074 // idx += 2; 7075 // if (idx > 0) { 7076 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 7077 // z[kdx+idx] = (jlong)product; 7078 // carry = (jlong)(product >>> 64); 7079 // } 7080 // 7081 7082 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7083 7084 movl(jdx, idx); 7085 andl(jdx, 0xFFFFFFFC); 7086 shrl(jdx, 2); 7087 7088 bind(L_third_loop); 7089 subl(jdx, 1); 7090 jcc(Assembler::negative, L_third_loop_exit); 7091 subl(idx, 4); 7092 7093 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 7094 movq(carry2, rdx); 7095 7096 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 7097 movq(carry, rdx); 7098 jmp(L_third_loop); 7099 7100 bind (L_third_loop_exit); 7101 7102 andl (idx, 0x3); 7103 jcc(Assembler::zero, L_post_third_loop_done); 7104 7105 Label L_check_1; 7106 subl(idx, 2); 7107 jcc(Assembler::negative, L_check_1); 7108 7109 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 7110 movq(carry, rdx); 7111 7112 bind (L_check_1); 7113 addl (idx, 0x2); 7114 andl (idx, 0x1); 7115 subl(idx, 1); 7116 jcc(Assembler::negative, L_post_third_loop_done); 7117 7118 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 7119 movq(product, x_xstart); 7120 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 7121 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 7122 7123 add2_with_carry(rdx, product, yz_idx, carry); 7124 7125 movl(Address(z, idx, Address::times_4, 0), product); 7126 shrq(product, 32); 7127 7128 shlq(rdx, 32); 7129 orq(product, rdx); 7130 movq(carry, product); 7131 7132 bind(L_post_third_loop_done); 7133 } 7134 7135 /** 7136 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 7137 * 7138 */ 7139 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 7140 Register carry, Register carry2, 7141 Register idx, Register jdx, 7142 Register yz_idx1, Register yz_idx2, 7143 Register tmp, Register tmp3, Register tmp4) { 7144 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 7145 7146 // jlong carry, x[], y[], z[]; 7147 // int kdx = ystart+1; 7148 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 7149 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 7150 // jlong carry2 = (jlong)(tmp3 >>> 64); 7151 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 7152 // carry = (jlong)(tmp4 >>> 64); 7153 // z[kdx+idx+1] = (jlong)tmp3; 7154 // z[kdx+idx] = (jlong)tmp4; 7155 // } 7156 // idx += 2; 7157 // if (idx > 0) { 7158 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 7159 // z[kdx+idx] = (jlong)yz_idx1; 7160 // carry = (jlong)(yz_idx1 >>> 64); 7161 // } 7162 // 7163 7164 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 7165 7166 movl(jdx, idx); 7167 andl(jdx, 0xFFFFFFFC); 7168 shrl(jdx, 2); 7169 7170 bind(L_third_loop); 7171 subl(jdx, 1); 7172 jcc(Assembler::negative, L_third_loop_exit); 7173 subl(idx, 4); 7174 7175 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 7176 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 7177 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 7178 rorxq(yz_idx2, yz_idx2, 32); 7179 7180 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7181 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 7182 7183 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 7184 rorxq(yz_idx1, yz_idx1, 32); 7185 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7186 rorxq(yz_idx2, yz_idx2, 32); 7187 7188 if (VM_Version::supports_adx()) { 7189 adcxq(tmp3, carry); 7190 adoxq(tmp3, yz_idx1); 7191 7192 adcxq(tmp4, tmp); 7193 adoxq(tmp4, yz_idx2); 7194 7195 movl(carry, 0); // does not affect flags 7196 adcxq(carry2, carry); 7197 adoxq(carry2, carry); 7198 } else { 7199 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 7200 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 7201 } 7202 movq(carry, carry2); 7203 7204 movl(Address(z, idx, Address::times_4, 12), tmp3); 7205 shrq(tmp3, 32); 7206 movl(Address(z, idx, Address::times_4, 8), tmp3); 7207 7208 movl(Address(z, idx, Address::times_4, 4), tmp4); 7209 shrq(tmp4, 32); 7210 movl(Address(z, idx, Address::times_4, 0), tmp4); 7211 7212 jmp(L_third_loop); 7213 7214 bind (L_third_loop_exit); 7215 7216 andl (idx, 0x3); 7217 jcc(Assembler::zero, L_post_third_loop_done); 7218 7219 Label L_check_1; 7220 subl(idx, 2); 7221 jcc(Assembler::negative, L_check_1); 7222 7223 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 7224 rorxq(yz_idx1, yz_idx1, 32); 7225 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 7226 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 7227 rorxq(yz_idx2, yz_idx2, 32); 7228 7229 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 7230 7231 movl(Address(z, idx, Address::times_4, 4), tmp3); 7232 shrq(tmp3, 32); 7233 movl(Address(z, idx, Address::times_4, 0), tmp3); 7234 movq(carry, tmp4); 7235 7236 bind (L_check_1); 7237 addl (idx, 0x2); 7238 andl (idx, 0x1); 7239 subl(idx, 1); 7240 jcc(Assembler::negative, L_post_third_loop_done); 7241 movl(tmp4, Address(y, idx, Address::times_4, 0)); 7242 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 7243 movl(tmp4, Address(z, idx, Address::times_4, 0)); 7244 7245 add2_with_carry(carry2, tmp3, tmp4, carry); 7246 7247 movl(Address(z, idx, Address::times_4, 0), tmp3); 7248 shrq(tmp3, 32); 7249 7250 shlq(carry2, 32); 7251 orq(tmp3, carry2); 7252 movq(carry, tmp3); 7253 7254 bind(L_post_third_loop_done); 7255 } 7256 7257 /** 7258 * Code for BigInteger::multiplyToLen() intrinsic. 7259 * 7260 * rdi: x 7261 * rax: xlen 7262 * rsi: y 7263 * rcx: ylen 7264 * r8: z 7265 * r11: tmp0 7266 * r12: tmp1 7267 * r13: tmp2 7268 * r14: tmp3 7269 * r15: tmp4 7270 * rbx: tmp5 7271 * 7272 */ 7273 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0, 7274 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 7275 ShortBranchVerifier sbv(this); 7276 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 7277 7278 push(tmp0); 7279 push(tmp1); 7280 push(tmp2); 7281 push(tmp3); 7282 push(tmp4); 7283 push(tmp5); 7284 7285 push(xlen); 7286 7287 const Register idx = tmp1; 7288 const Register kdx = tmp2; 7289 const Register xstart = tmp3; 7290 7291 const Register y_idx = tmp4; 7292 const Register carry = tmp5; 7293 const Register product = xlen; 7294 const Register x_xstart = tmp0; 7295 7296 // First Loop. 7297 // 7298 // final static long LONG_MASK = 0xffffffffL; 7299 // int xstart = xlen - 1; 7300 // int ystart = ylen - 1; 7301 // long carry = 0; 7302 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 7303 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 7304 // z[kdx] = (int)product; 7305 // carry = product >>> 32; 7306 // } 7307 // z[xstart] = (int)carry; 7308 // 7309 7310 movl(idx, ylen); // idx = ylen; 7311 lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen; 7312 xorq(carry, carry); // carry = 0; 7313 7314 Label L_done; 7315 7316 movl(xstart, xlen); 7317 decrementl(xstart); 7318 jcc(Assembler::negative, L_done); 7319 7320 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 7321 7322 Label L_second_loop; 7323 testl(kdx, kdx); 7324 jcc(Assembler::zero, L_second_loop); 7325 7326 Label L_carry; 7327 subl(kdx, 1); 7328 jcc(Assembler::zero, L_carry); 7329 7330 movl(Address(z, kdx, Address::times_4, 0), carry); 7331 shrq(carry, 32); 7332 subl(kdx, 1); 7333 7334 bind(L_carry); 7335 movl(Address(z, kdx, Address::times_4, 0), carry); 7336 7337 // Second and third (nested) loops. 7338 // 7339 // for (int i = xstart-1; i >= 0; i--) { // Second loop 7340 // carry = 0; 7341 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 7342 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 7343 // (z[k] & LONG_MASK) + carry; 7344 // z[k] = (int)product; 7345 // carry = product >>> 32; 7346 // } 7347 // z[i] = (int)carry; 7348 // } 7349 // 7350 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 7351 7352 const Register jdx = tmp1; 7353 7354 bind(L_second_loop); 7355 xorl(carry, carry); // carry = 0; 7356 movl(jdx, ylen); // j = ystart+1 7357 7358 subl(xstart, 1); // i = xstart-1; 7359 jcc(Assembler::negative, L_done); 7360 7361 push (z); 7362 7363 Label L_last_x; 7364 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 7365 subl(xstart, 1); // i = xstart-1; 7366 jcc(Assembler::negative, L_last_x); 7367 7368 if (UseBMI2Instructions) { 7369 movq(rdx, Address(x, xstart, Address::times_4, 0)); 7370 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 7371 } else { 7372 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 7373 rorq(x_xstart, 32); // convert big-endian to little-endian 7374 } 7375 7376 Label L_third_loop_prologue; 7377 bind(L_third_loop_prologue); 7378 7379 push (x); 7380 push (xstart); 7381 push (ylen); 7382 7383 7384 if (UseBMI2Instructions) { 7385 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 7386 } else { // !UseBMI2Instructions 7387 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 7388 } 7389 7390 pop(ylen); 7391 pop(xlen); 7392 pop(x); 7393 pop(z); 7394 7395 movl(tmp3, xlen); 7396 addl(tmp3, 1); 7397 movl(Address(z, tmp3, Address::times_4, 0), carry); 7398 subl(tmp3, 1); 7399 jccb(Assembler::negative, L_done); 7400 7401 shrq(carry, 32); 7402 movl(Address(z, tmp3, Address::times_4, 0), carry); 7403 jmp(L_second_loop); 7404 7405 // Next infrequent code is moved outside loops. 7406 bind(L_last_x); 7407 if (UseBMI2Instructions) { 7408 movl(rdx, Address(x, 0)); 7409 } else { 7410 movl(x_xstart, Address(x, 0)); 7411 } 7412 jmp(L_third_loop_prologue); 7413 7414 bind(L_done); 7415 7416 pop(xlen); 7417 7418 pop(tmp5); 7419 pop(tmp4); 7420 pop(tmp3); 7421 pop(tmp2); 7422 pop(tmp1); 7423 pop(tmp0); 7424 } 7425 7426 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 7427 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 7428 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 7429 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 7430 Label VECTOR8_TAIL, VECTOR4_TAIL; 7431 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 7432 Label SAME_TILL_END, DONE; 7433 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 7434 7435 //scale is in rcx in both Win64 and Unix 7436 ShortBranchVerifier sbv(this); 7437 7438 shlq(length); 7439 xorq(result, result); 7440 7441 if ((AVX3Threshold == 0) && (UseAVX > 2) && 7442 VM_Version::supports_avx512vlbw()) { 7443 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 7444 7445 cmpq(length, 64); 7446 jcc(Assembler::less, VECTOR32_TAIL); 7447 7448 movq(tmp1, length); 7449 andq(tmp1, 0x3F); // tail count 7450 andq(length, ~(0x3F)); //vector count 7451 7452 bind(VECTOR64_LOOP); 7453 // AVX512 code to compare 64 byte vectors. 7454 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 7455 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 7456 kortestql(k7, k7); 7457 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 7458 addq(result, 64); 7459 subq(length, 64); 7460 jccb(Assembler::notZero, VECTOR64_LOOP); 7461 7462 //bind(VECTOR64_TAIL); 7463 testq(tmp1, tmp1); 7464 jcc(Assembler::zero, SAME_TILL_END); 7465 7466 //bind(VECTOR64_TAIL); 7467 // AVX512 code to compare up to 63 byte vectors. 7468 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 7469 shlxq(tmp2, tmp2, tmp1); 7470 notq(tmp2); 7471 kmovql(k3, tmp2); 7472 7473 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 7474 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 7475 7476 ktestql(k7, k3); 7477 jcc(Assembler::below, SAME_TILL_END); // not mismatch 7478 7479 bind(VECTOR64_NOT_EQUAL); 7480 kmovql(tmp1, k7); 7481 notq(tmp1); 7482 tzcntq(tmp1, tmp1); 7483 addq(result, tmp1); 7484 shrq(result); 7485 jmp(DONE); 7486 bind(VECTOR32_TAIL); 7487 } 7488 7489 cmpq(length, 8); 7490 jcc(Assembler::equal, VECTOR8_LOOP); 7491 jcc(Assembler::less, VECTOR4_TAIL); 7492 7493 if (UseAVX >= 2) { 7494 Label VECTOR16_TAIL, VECTOR32_LOOP; 7495 7496 cmpq(length, 16); 7497 jcc(Assembler::equal, VECTOR16_LOOP); 7498 jcc(Assembler::less, VECTOR8_LOOP); 7499 7500 cmpq(length, 32); 7501 jccb(Assembler::less, VECTOR16_TAIL); 7502 7503 subq(length, 32); 7504 bind(VECTOR32_LOOP); 7505 vmovdqu(rymm0, Address(obja, result)); 7506 vmovdqu(rymm1, Address(objb, result)); 7507 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 7508 vptest(rymm2, rymm2); 7509 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 7510 addq(result, 32); 7511 subq(length, 32); 7512 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 7513 addq(length, 32); 7514 jcc(Assembler::equal, SAME_TILL_END); 7515 //falling through if less than 32 bytes left //close the branch here. 7516 7517 bind(VECTOR16_TAIL); 7518 cmpq(length, 16); 7519 jccb(Assembler::less, VECTOR8_TAIL); 7520 bind(VECTOR16_LOOP); 7521 movdqu(rymm0, Address(obja, result)); 7522 movdqu(rymm1, Address(objb, result)); 7523 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 7524 ptest(rymm2, rymm2); 7525 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7526 addq(result, 16); 7527 subq(length, 16); 7528 jcc(Assembler::equal, SAME_TILL_END); 7529 //falling through if less than 16 bytes left 7530 } else {//regular intrinsics 7531 7532 cmpq(length, 16); 7533 jccb(Assembler::less, VECTOR8_TAIL); 7534 7535 subq(length, 16); 7536 bind(VECTOR16_LOOP); 7537 movdqu(rymm0, Address(obja, result)); 7538 movdqu(rymm1, Address(objb, result)); 7539 pxor(rymm0, rymm1); 7540 ptest(rymm0, rymm0); 7541 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 7542 addq(result, 16); 7543 subq(length, 16); 7544 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 7545 addq(length, 16); 7546 jcc(Assembler::equal, SAME_TILL_END); 7547 //falling through if less than 16 bytes left 7548 } 7549 7550 bind(VECTOR8_TAIL); 7551 cmpq(length, 8); 7552 jccb(Assembler::less, VECTOR4_TAIL); 7553 bind(VECTOR8_LOOP); 7554 movq(tmp1, Address(obja, result)); 7555 movq(tmp2, Address(objb, result)); 7556 xorq(tmp1, tmp2); 7557 testq(tmp1, tmp1); 7558 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 7559 addq(result, 8); 7560 subq(length, 8); 7561 jcc(Assembler::equal, SAME_TILL_END); 7562 //falling through if less than 8 bytes left 7563 7564 bind(VECTOR4_TAIL); 7565 cmpq(length, 4); 7566 jccb(Assembler::less, BYTES_TAIL); 7567 bind(VECTOR4_LOOP); 7568 movl(tmp1, Address(obja, result)); 7569 xorl(tmp1, Address(objb, result)); 7570 testl(tmp1, tmp1); 7571 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 7572 addq(result, 4); 7573 subq(length, 4); 7574 jcc(Assembler::equal, SAME_TILL_END); 7575 //falling through if less than 4 bytes left 7576 7577 bind(BYTES_TAIL); 7578 bind(BYTES_LOOP); 7579 load_unsigned_byte(tmp1, Address(obja, result)); 7580 load_unsigned_byte(tmp2, Address(objb, result)); 7581 xorl(tmp1, tmp2); 7582 testl(tmp1, tmp1); 7583 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7584 decq(length); 7585 jcc(Assembler::zero, SAME_TILL_END); 7586 incq(result); 7587 load_unsigned_byte(tmp1, Address(obja, result)); 7588 load_unsigned_byte(tmp2, Address(objb, result)); 7589 xorl(tmp1, tmp2); 7590 testl(tmp1, tmp1); 7591 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7592 decq(length); 7593 jcc(Assembler::zero, SAME_TILL_END); 7594 incq(result); 7595 load_unsigned_byte(tmp1, Address(obja, result)); 7596 load_unsigned_byte(tmp2, Address(objb, result)); 7597 xorl(tmp1, tmp2); 7598 testl(tmp1, tmp1); 7599 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 7600 jmp(SAME_TILL_END); 7601 7602 if (UseAVX >= 2) { 7603 bind(VECTOR32_NOT_EQUAL); 7604 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 7605 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 7606 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 7607 vpmovmskb(tmp1, rymm0); 7608 bsfq(tmp1, tmp1); 7609 addq(result, tmp1); 7610 shrq(result); 7611 jmp(DONE); 7612 } 7613 7614 bind(VECTOR16_NOT_EQUAL); 7615 if (UseAVX >= 2) { 7616 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 7617 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 7618 pxor(rymm0, rymm2); 7619 } else { 7620 pcmpeqb(rymm2, rymm2); 7621 pxor(rymm0, rymm1); 7622 pcmpeqb(rymm0, rymm1); 7623 pxor(rymm0, rymm2); 7624 } 7625 pmovmskb(tmp1, rymm0); 7626 bsfq(tmp1, tmp1); 7627 addq(result, tmp1); 7628 shrq(result); 7629 jmpb(DONE); 7630 7631 bind(VECTOR8_NOT_EQUAL); 7632 bind(VECTOR4_NOT_EQUAL); 7633 bsfq(tmp1, tmp1); 7634 shrq(tmp1, 3); 7635 addq(result, tmp1); 7636 bind(BYTES_NOT_EQUAL); 7637 shrq(result); 7638 jmpb(DONE); 7639 7640 bind(SAME_TILL_END); 7641 mov64(result, -1); 7642 7643 bind(DONE); 7644 } 7645 7646 //Helper functions for square_to_len() 7647 7648 /** 7649 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 7650 * Preserves x and z and modifies rest of the registers. 7651 */ 7652 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7653 // Perform square and right shift by 1 7654 // Handle odd xlen case first, then for even xlen do the following 7655 // jlong carry = 0; 7656 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 7657 // huge_128 product = x[j:j+1] * x[j:j+1]; 7658 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 7659 // z[i+2:i+3] = (jlong)(product >>> 1); 7660 // carry = (jlong)product; 7661 // } 7662 7663 xorq(tmp5, tmp5); // carry 7664 xorq(rdxReg, rdxReg); 7665 xorl(tmp1, tmp1); // index for x 7666 xorl(tmp4, tmp4); // index for z 7667 7668 Label L_first_loop, L_first_loop_exit; 7669 7670 testl(xlen, 1); 7671 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 7672 7673 // Square and right shift by 1 the odd element using 32 bit multiply 7674 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 7675 imulq(raxReg, raxReg); 7676 shrq(raxReg, 1); 7677 adcq(tmp5, 0); 7678 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 7679 incrementl(tmp1); 7680 addl(tmp4, 2); 7681 7682 // Square and right shift by 1 the rest using 64 bit multiply 7683 bind(L_first_loop); 7684 cmpptr(tmp1, xlen); 7685 jccb(Assembler::equal, L_first_loop_exit); 7686 7687 // Square 7688 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 7689 rorq(raxReg, 32); // convert big-endian to little-endian 7690 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 7691 7692 // Right shift by 1 and save carry 7693 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 7694 rcrq(rdxReg, 1); 7695 rcrq(raxReg, 1); 7696 adcq(tmp5, 0); 7697 7698 // Store result in z 7699 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7700 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7701 7702 // Update indices for x and z 7703 addl(tmp1, 2); 7704 addl(tmp4, 4); 7705 jmp(L_first_loop); 7706 7707 bind(L_first_loop_exit); 7708 } 7709 7710 7711 /** 7712 * Perform the following multiply add operation using BMI2 instructions 7713 * carry:sum = sum + op1*op2 + carry 7714 * op2 should be in rdx 7715 * op2 is preserved, all other registers are modified 7716 */ 7717 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7718 // assert op2 is rdx 7719 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7720 addq(sum, carry); 7721 adcq(tmp2, 0); 7722 addq(sum, op1); 7723 adcq(tmp2, 0); 7724 movq(carry, tmp2); 7725 } 7726 7727 /** 7728 * Perform the following multiply add operation: 7729 * carry:sum = sum + op1*op2 + carry 7730 * Preserves op1, op2 and modifies rest of registers 7731 */ 7732 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7733 // rdx:rax = op1 * op2 7734 movq(raxReg, op2); 7735 mulq(op1); 7736 7737 // rdx:rax = sum + carry + rdx:rax 7738 addq(sum, carry); 7739 adcq(rdxReg, 0); 7740 addq(sum, raxReg); 7741 adcq(rdxReg, 0); 7742 7743 // carry:sum = rdx:sum 7744 movq(carry, rdxReg); 7745 } 7746 7747 /** 7748 * Add 64 bit long carry into z[] with carry propagation. 7749 * Preserves z and carry register values and modifies rest of registers. 7750 * 7751 */ 7752 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7753 Label L_fourth_loop, L_fourth_loop_exit; 7754 7755 movl(tmp1, 1); 7756 subl(zlen, 2); 7757 addq(Address(z, zlen, Address::times_4, 0), carry); 7758 7759 bind(L_fourth_loop); 7760 jccb(Assembler::carryClear, L_fourth_loop_exit); 7761 subl(zlen, 2); 7762 jccb(Assembler::negative, L_fourth_loop_exit); 7763 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7764 jmp(L_fourth_loop); 7765 bind(L_fourth_loop_exit); 7766 } 7767 7768 /** 7769 * Shift z[] left by 1 bit. 7770 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7771 * 7772 */ 7773 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7774 7775 Label L_fifth_loop, L_fifth_loop_exit; 7776 7777 // Fifth loop 7778 // Perform primitiveLeftShift(z, zlen, 1) 7779 7780 const Register prev_carry = tmp1; 7781 const Register new_carry = tmp4; 7782 const Register value = tmp2; 7783 const Register zidx = tmp3; 7784 7785 // int zidx, carry; 7786 // long value; 7787 // carry = 0; 7788 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7789 // (carry:value) = (z[i] << 1) | carry ; 7790 // z[i] = value; 7791 // } 7792 7793 movl(zidx, zlen); 7794 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7795 7796 bind(L_fifth_loop); 7797 decl(zidx); // Use decl to preserve carry flag 7798 decl(zidx); 7799 jccb(Assembler::negative, L_fifth_loop_exit); 7800 7801 if (UseBMI2Instructions) { 7802 movq(value, Address(z, zidx, Address::times_4, 0)); 7803 rclq(value, 1); 7804 rorxq(value, value, 32); 7805 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7806 } 7807 else { 7808 // clear new_carry 7809 xorl(new_carry, new_carry); 7810 7811 // Shift z[i] by 1, or in previous carry and save new carry 7812 movq(value, Address(z, zidx, Address::times_4, 0)); 7813 shlq(value, 1); 7814 adcl(new_carry, 0); 7815 7816 orq(value, prev_carry); 7817 rorq(value, 0x20); 7818 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7819 7820 // Set previous carry = new carry 7821 movl(prev_carry, new_carry); 7822 } 7823 jmp(L_fifth_loop); 7824 7825 bind(L_fifth_loop_exit); 7826 } 7827 7828 7829 /** 7830 * Code for BigInteger::squareToLen() intrinsic 7831 * 7832 * rdi: x 7833 * rsi: len 7834 * r8: z 7835 * rcx: zlen 7836 * r12: tmp1 7837 * r13: tmp2 7838 * r14: tmp3 7839 * r15: tmp4 7840 * rbx: tmp5 7841 * 7842 */ 7843 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7844 7845 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7846 push(tmp1); 7847 push(tmp2); 7848 push(tmp3); 7849 push(tmp4); 7850 push(tmp5); 7851 7852 // First loop 7853 // Store the squares, right shifted one bit (i.e., divided by 2). 7854 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7855 7856 // Add in off-diagonal sums. 7857 // 7858 // Second, third (nested) and fourth loops. 7859 // zlen +=2; 7860 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7861 // carry = 0; 7862 // long op2 = x[xidx:xidx+1]; 7863 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7864 // k -= 2; 7865 // long op1 = x[j:j+1]; 7866 // long sum = z[k:k+1]; 7867 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7868 // z[k:k+1] = sum; 7869 // } 7870 // add_one_64(z, k, carry, tmp_regs); 7871 // } 7872 7873 const Register carry = tmp5; 7874 const Register sum = tmp3; 7875 const Register op1 = tmp4; 7876 Register op2 = tmp2; 7877 7878 push(zlen); 7879 push(len); 7880 addl(zlen,2); 7881 bind(L_second_loop); 7882 xorq(carry, carry); 7883 subl(zlen, 4); 7884 subl(len, 2); 7885 push(zlen); 7886 push(len); 7887 cmpl(len, 0); 7888 jccb(Assembler::lessEqual, L_second_loop_exit); 7889 7890 // Multiply an array by one 64 bit long. 7891 if (UseBMI2Instructions) { 7892 op2 = rdxReg; 7893 movq(op2, Address(x, len, Address::times_4, 0)); 7894 rorxq(op2, op2, 32); 7895 } 7896 else { 7897 movq(op2, Address(x, len, Address::times_4, 0)); 7898 rorq(op2, 32); 7899 } 7900 7901 bind(L_third_loop); 7902 decrementl(len); 7903 jccb(Assembler::negative, L_third_loop_exit); 7904 decrementl(len); 7905 jccb(Assembler::negative, L_last_x); 7906 7907 movq(op1, Address(x, len, Address::times_4, 0)); 7908 rorq(op1, 32); 7909 7910 bind(L_multiply); 7911 subl(zlen, 2); 7912 movq(sum, Address(z, zlen, Address::times_4, 0)); 7913 7914 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7915 if (UseBMI2Instructions) { 7916 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7917 } 7918 else { 7919 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7920 } 7921 7922 movq(Address(z, zlen, Address::times_4, 0), sum); 7923 7924 jmp(L_third_loop); 7925 bind(L_third_loop_exit); 7926 7927 // Fourth loop 7928 // Add 64 bit long carry into z with carry propagation. 7929 // Uses offsetted zlen. 7930 add_one_64(z, zlen, carry, tmp1); 7931 7932 pop(len); 7933 pop(zlen); 7934 jmp(L_second_loop); 7935 7936 // Next infrequent code is moved outside loops. 7937 bind(L_last_x); 7938 movl(op1, Address(x, 0)); 7939 jmp(L_multiply); 7940 7941 bind(L_second_loop_exit); 7942 pop(len); 7943 pop(zlen); 7944 pop(len); 7945 pop(zlen); 7946 7947 // Fifth loop 7948 // Shift z left 1 bit. 7949 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7950 7951 // z[zlen-1] |= x[len-1] & 1; 7952 movl(tmp3, Address(x, len, Address::times_4, -4)); 7953 andl(tmp3, 1); 7954 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7955 7956 pop(tmp5); 7957 pop(tmp4); 7958 pop(tmp3); 7959 pop(tmp2); 7960 pop(tmp1); 7961 } 7962 7963 /** 7964 * Helper function for mul_add() 7965 * Multiply the in[] by int k and add to out[] starting at offset offs using 7966 * 128 bit by 32 bit multiply and return the carry in tmp5. 7967 * Only quad int aligned length of in[] is operated on in this function. 7968 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7969 * This function preserves out, in and k registers. 7970 * len and offset point to the appropriate index in "in" & "out" correspondingly 7971 * tmp5 has the carry. 7972 * other registers are temporary and are modified. 7973 * 7974 */ 7975 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7976 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7977 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7978 7979 Label L_first_loop, L_first_loop_exit; 7980 7981 movl(tmp1, len); 7982 shrl(tmp1, 2); 7983 7984 bind(L_first_loop); 7985 subl(tmp1, 1); 7986 jccb(Assembler::negative, L_first_loop_exit); 7987 7988 subl(len, 4); 7989 subl(offset, 4); 7990 7991 Register op2 = tmp2; 7992 const Register sum = tmp3; 7993 const Register op1 = tmp4; 7994 const Register carry = tmp5; 7995 7996 if (UseBMI2Instructions) { 7997 op2 = rdxReg; 7998 } 7999 8000 movq(op1, Address(in, len, Address::times_4, 8)); 8001 rorq(op1, 32); 8002 movq(sum, Address(out, offset, Address::times_4, 8)); 8003 rorq(sum, 32); 8004 if (UseBMI2Instructions) { 8005 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8006 } 8007 else { 8008 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8009 } 8010 // Store back in big endian from little endian 8011 rorq(sum, 0x20); 8012 movq(Address(out, offset, Address::times_4, 8), sum); 8013 8014 movq(op1, Address(in, len, Address::times_4, 0)); 8015 rorq(op1, 32); 8016 movq(sum, Address(out, offset, Address::times_4, 0)); 8017 rorq(sum, 32); 8018 if (UseBMI2Instructions) { 8019 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8020 } 8021 else { 8022 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8023 } 8024 // Store back in big endian from little endian 8025 rorq(sum, 0x20); 8026 movq(Address(out, offset, Address::times_4, 0), sum); 8027 8028 jmp(L_first_loop); 8029 bind(L_first_loop_exit); 8030 } 8031 8032 /** 8033 * Code for BigInteger::mulAdd() intrinsic 8034 * 8035 * rdi: out 8036 * rsi: in 8037 * r11: offs (out.length - offset) 8038 * rcx: len 8039 * r8: k 8040 * r12: tmp1 8041 * r13: tmp2 8042 * r14: tmp3 8043 * r15: tmp4 8044 * rbx: tmp5 8045 * Multiply the in[] by word k and add to out[], return the carry in rax 8046 */ 8047 void MacroAssembler::mul_add(Register out, Register in, Register offs, 8048 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 8049 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 8050 8051 Label L_carry, L_last_in, L_done; 8052 8053 // carry = 0; 8054 // for (int j=len-1; j >= 0; j--) { 8055 // long product = (in[j] & LONG_MASK) * kLong + 8056 // (out[offs] & LONG_MASK) + carry; 8057 // out[offs--] = (int)product; 8058 // carry = product >>> 32; 8059 // } 8060 // 8061 push(tmp1); 8062 push(tmp2); 8063 push(tmp3); 8064 push(tmp4); 8065 push(tmp5); 8066 8067 Register op2 = tmp2; 8068 const Register sum = tmp3; 8069 const Register op1 = tmp4; 8070 const Register carry = tmp5; 8071 8072 if (UseBMI2Instructions) { 8073 op2 = rdxReg; 8074 movl(op2, k); 8075 } 8076 else { 8077 movl(op2, k); 8078 } 8079 8080 xorq(carry, carry); 8081 8082 //First loop 8083 8084 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 8085 //The carry is in tmp5 8086 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 8087 8088 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 8089 decrementl(len); 8090 jccb(Assembler::negative, L_carry); 8091 decrementl(len); 8092 jccb(Assembler::negative, L_last_in); 8093 8094 movq(op1, Address(in, len, Address::times_4, 0)); 8095 rorq(op1, 32); 8096 8097 subl(offs, 2); 8098 movq(sum, Address(out, offs, Address::times_4, 0)); 8099 rorq(sum, 32); 8100 8101 if (UseBMI2Instructions) { 8102 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 8103 } 8104 else { 8105 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 8106 } 8107 8108 // Store back in big endian from little endian 8109 rorq(sum, 0x20); 8110 movq(Address(out, offs, Address::times_4, 0), sum); 8111 8112 testl(len, len); 8113 jccb(Assembler::zero, L_carry); 8114 8115 //Multiply the last in[] entry, if any 8116 bind(L_last_in); 8117 movl(op1, Address(in, 0)); 8118 movl(sum, Address(out, offs, Address::times_4, -4)); 8119 8120 movl(raxReg, k); 8121 mull(op1); //tmp4 * eax -> edx:eax 8122 addl(sum, carry); 8123 adcl(rdxReg, 0); 8124 addl(sum, raxReg); 8125 adcl(rdxReg, 0); 8126 movl(carry, rdxReg); 8127 8128 movl(Address(out, offs, Address::times_4, -4), sum); 8129 8130 bind(L_carry); 8131 //return tmp5/carry as carry in rax 8132 movl(rax, carry); 8133 8134 bind(L_done); 8135 pop(tmp5); 8136 pop(tmp4); 8137 pop(tmp3); 8138 pop(tmp2); 8139 pop(tmp1); 8140 } 8141 #endif 8142 8143 /** 8144 * Emits code to update CRC-32 with a byte value according to constants in table 8145 * 8146 * @param [in,out]crc Register containing the crc. 8147 * @param [in]val Register containing the byte to fold into the CRC. 8148 * @param [in]table Register containing the table of crc constants. 8149 * 8150 * uint32_t crc; 8151 * val = crc_table[(val ^ crc) & 0xFF]; 8152 * crc = val ^ (crc >> 8); 8153 * 8154 */ 8155 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 8156 xorl(val, crc); 8157 andl(val, 0xFF); 8158 shrl(crc, 8); // unsigned shift 8159 xorl(crc, Address(table, val, Address::times_4, 0)); 8160 } 8161 8162 /** 8163 * Fold 128-bit data chunk 8164 */ 8165 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 8166 if (UseAVX > 0) { 8167 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 8168 vpclmulldq(xcrc, xK, xcrc); // [63:0] 8169 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 8170 pxor(xcrc, xtmp); 8171 } else { 8172 movdqa(xtmp, xcrc); 8173 pclmulhdq(xtmp, xK); // [123:64] 8174 pclmulldq(xcrc, xK); // [63:0] 8175 pxor(xcrc, xtmp); 8176 movdqu(xtmp, Address(buf, offset)); 8177 pxor(xcrc, xtmp); 8178 } 8179 } 8180 8181 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 8182 if (UseAVX > 0) { 8183 vpclmulhdq(xtmp, xK, xcrc); 8184 vpclmulldq(xcrc, xK, xcrc); 8185 pxor(xcrc, xbuf); 8186 pxor(xcrc, xtmp); 8187 } else { 8188 movdqa(xtmp, xcrc); 8189 pclmulhdq(xtmp, xK); 8190 pclmulldq(xcrc, xK); 8191 pxor(xcrc, xbuf); 8192 pxor(xcrc, xtmp); 8193 } 8194 } 8195 8196 /** 8197 * 8-bit folds to compute 32-bit CRC 8198 * 8199 * uint64_t xcrc; 8200 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 8201 */ 8202 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 8203 movdl(tmp, xcrc); 8204 andl(tmp, 0xFF); 8205 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 8206 psrldq(xcrc, 1); // unsigned shift one byte 8207 pxor(xcrc, xtmp); 8208 } 8209 8210 /** 8211 * uint32_t crc; 8212 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 8213 */ 8214 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 8215 movl(tmp, crc); 8216 andl(tmp, 0xFF); 8217 shrl(crc, 8); 8218 xorl(crc, Address(table, tmp, Address::times_4, 0)); 8219 } 8220 8221 /** 8222 * @param crc register containing existing CRC (32-bit) 8223 * @param buf register pointing to input byte buffer (byte*) 8224 * @param len register containing number of bytes 8225 * @param table register that will contain address of CRC table 8226 * @param tmp scratch register 8227 */ 8228 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 8229 assert_different_registers(crc, buf, len, table, tmp, rax); 8230 8231 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8232 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8233 8234 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8235 // context for the registers used, where all instructions below are using 128-bit mode 8236 // On EVEX without VL and BW, these instructions will all be AVX. 8237 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 8238 notl(crc); // ~crc 8239 cmpl(len, 16); 8240 jcc(Assembler::less, L_tail); 8241 8242 // Align buffer to 16 bytes 8243 movl(tmp, buf); 8244 andl(tmp, 0xF); 8245 jccb(Assembler::zero, L_aligned); 8246 subl(tmp, 16); 8247 addl(len, tmp); 8248 8249 align(4); 8250 BIND(L_align_loop); 8251 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8252 update_byte_crc32(crc, rax, table); 8253 increment(buf); 8254 incrementl(tmp); 8255 jccb(Assembler::less, L_align_loop); 8256 8257 BIND(L_aligned); 8258 movl(tmp, len); // save 8259 shrl(len, 4); 8260 jcc(Assembler::zero, L_tail_restore); 8261 8262 // Fold crc into first bytes of vector 8263 movdqa(xmm1, Address(buf, 0)); 8264 movdl(rax, xmm1); 8265 xorl(crc, rax); 8266 if (VM_Version::supports_sse4_1()) { 8267 pinsrd(xmm1, crc, 0); 8268 } else { 8269 pinsrw(xmm1, crc, 0); 8270 shrl(crc, 16); 8271 pinsrw(xmm1, crc, 1); 8272 } 8273 addptr(buf, 16); 8274 subl(len, 4); // len > 0 8275 jcc(Assembler::less, L_fold_tail); 8276 8277 movdqa(xmm2, Address(buf, 0)); 8278 movdqa(xmm3, Address(buf, 16)); 8279 movdqa(xmm4, Address(buf, 32)); 8280 addptr(buf, 48); 8281 subl(len, 3); 8282 jcc(Assembler::lessEqual, L_fold_512b); 8283 8284 // Fold total 512 bits of polynomial on each iteration, 8285 // 128 bits per each of 4 parallel streams. 8286 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 8287 8288 align32(); 8289 BIND(L_fold_512b_loop); 8290 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8291 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 8292 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 8293 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 8294 addptr(buf, 64); 8295 subl(len, 4); 8296 jcc(Assembler::greater, L_fold_512b_loop); 8297 8298 // Fold 512 bits to 128 bits. 8299 BIND(L_fold_512b); 8300 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8301 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 8302 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 8303 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 8304 8305 // Fold the rest of 128 bits data chunks 8306 BIND(L_fold_tail); 8307 addl(len, 3); 8308 jccb(Assembler::lessEqual, L_fold_128b); 8309 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 8310 8311 BIND(L_fold_tail_loop); 8312 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 8313 addptr(buf, 16); 8314 decrementl(len); 8315 jccb(Assembler::greater, L_fold_tail_loop); 8316 8317 // Fold 128 bits in xmm1 down into 32 bits in crc register. 8318 BIND(L_fold_128b); 8319 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 8320 if (UseAVX > 0) { 8321 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 8322 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 8323 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 8324 } else { 8325 movdqa(xmm2, xmm0); 8326 pclmulqdq(xmm2, xmm1, 0x1); 8327 movdqa(xmm3, xmm0); 8328 pand(xmm3, xmm2); 8329 pclmulqdq(xmm0, xmm3, 0x1); 8330 } 8331 psrldq(xmm1, 8); 8332 psrldq(xmm2, 4); 8333 pxor(xmm0, xmm1); 8334 pxor(xmm0, xmm2); 8335 8336 // 8 8-bit folds to compute 32-bit CRC. 8337 for (int j = 0; j < 4; j++) { 8338 fold_8bit_crc32(xmm0, table, xmm1, rax); 8339 } 8340 movdl(crc, xmm0); // mov 32 bits to general register 8341 for (int j = 0; j < 4; j++) { 8342 fold_8bit_crc32(crc, table, rax); 8343 } 8344 8345 BIND(L_tail_restore); 8346 movl(len, tmp); // restore 8347 BIND(L_tail); 8348 andl(len, 0xf); 8349 jccb(Assembler::zero, L_exit); 8350 8351 // Fold the rest of bytes 8352 align(4); 8353 BIND(L_tail_loop); 8354 movsbl(rax, Address(buf, 0)); // load byte with sign extension 8355 update_byte_crc32(crc, rax, table); 8356 increment(buf); 8357 decrementl(len); 8358 jccb(Assembler::greater, L_tail_loop); 8359 8360 BIND(L_exit); 8361 notl(crc); // ~c 8362 } 8363 8364 #ifdef _LP64 8365 // Helper function for AVX 512 CRC32 8366 // Fold 512-bit data chunks 8367 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 8368 Register pos, int offset) { 8369 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 8370 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 8371 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 8372 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 8373 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 8374 } 8375 8376 // Helper function for AVX 512 CRC32 8377 // Compute CRC32 for < 256B buffers 8378 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 8379 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 8380 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 8381 8382 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 8383 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 8384 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 8385 8386 // check if there is enough buffer to be able to fold 16B at a time 8387 cmpl(len, 32); 8388 jcc(Assembler::less, L_less_than_32); 8389 8390 // if there is, load the constants 8391 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 8392 movdl(xmm0, crc); // get the initial crc value 8393 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8394 pxor(xmm7, xmm0); 8395 8396 // update the buffer pointer 8397 addl(pos, 16); 8398 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 8399 subl(len, 32); 8400 jmp(L_16B_reduction_loop); 8401 8402 bind(L_less_than_32); 8403 //mov initial crc to the return value. this is necessary for zero - length buffers. 8404 movl(rax, crc); 8405 testl(len, len); 8406 jcc(Assembler::equal, L_cleanup); 8407 8408 movdl(xmm0, crc); //get the initial crc value 8409 8410 cmpl(len, 16); 8411 jcc(Assembler::equal, L_exact_16_left); 8412 jcc(Assembler::less, L_less_than_16_left); 8413 8414 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 8415 pxor(xmm7, xmm0); //xor the initial crc value 8416 addl(pos, 16); 8417 subl(len, 16); 8418 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 8419 jmp(L_get_last_two_xmms); 8420 8421 bind(L_less_than_16_left); 8422 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 8423 pxor(xmm1, xmm1); 8424 movptr(tmp1, rsp); 8425 movdqu(Address(tmp1, 0 * 16), xmm1); 8426 8427 cmpl(len, 4); 8428 jcc(Assembler::less, L_only_less_than_4); 8429 8430 //backup the counter value 8431 movl(tmp2, len); 8432 cmpl(len, 8); 8433 jcc(Assembler::less, L_less_than_8_left); 8434 8435 //load 8 Bytes 8436 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 8437 movq(Address(tmp1, 0 * 16), rax); 8438 addptr(tmp1, 8); 8439 subl(len, 8); 8440 addl(pos, 8); 8441 8442 bind(L_less_than_8_left); 8443 cmpl(len, 4); 8444 jcc(Assembler::less, L_less_than_4_left); 8445 8446 //load 4 Bytes 8447 movl(rax, Address(buf, pos, Address::times_1, 0)); 8448 movl(Address(tmp1, 0 * 16), rax); 8449 addptr(tmp1, 4); 8450 subl(len, 4); 8451 addl(pos, 4); 8452 8453 bind(L_less_than_4_left); 8454 cmpl(len, 2); 8455 jcc(Assembler::less, L_less_than_2_left); 8456 8457 // load 2 Bytes 8458 movw(rax, Address(buf, pos, Address::times_1, 0)); 8459 movl(Address(tmp1, 0 * 16), rax); 8460 addptr(tmp1, 2); 8461 subl(len, 2); 8462 addl(pos, 2); 8463 8464 bind(L_less_than_2_left); 8465 cmpl(len, 1); 8466 jcc(Assembler::less, L_zero_left); 8467 8468 // load 1 Byte 8469 movb(rax, Address(buf, pos, Address::times_1, 0)); 8470 movb(Address(tmp1, 0 * 16), rax); 8471 8472 bind(L_zero_left); 8473 movdqu(xmm7, Address(rsp, 0)); 8474 pxor(xmm7, xmm0); //xor the initial crc value 8475 8476 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8477 movdqu(xmm0, Address(rax, tmp2)); 8478 pshufb(xmm7, xmm0); 8479 jmp(L_128_done); 8480 8481 bind(L_exact_16_left); 8482 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 8483 pxor(xmm7, xmm0); //xor the initial crc value 8484 jmp(L_128_done); 8485 8486 bind(L_only_less_than_4); 8487 cmpl(len, 3); 8488 jcc(Assembler::less, L_only_less_than_3); 8489 8490 // load 3 Bytes 8491 movb(rax, Address(buf, pos, Address::times_1, 0)); 8492 movb(Address(tmp1, 0), rax); 8493 8494 movb(rax, Address(buf, pos, Address::times_1, 1)); 8495 movb(Address(tmp1, 1), rax); 8496 8497 movb(rax, Address(buf, pos, Address::times_1, 2)); 8498 movb(Address(tmp1, 2), rax); 8499 8500 movdqu(xmm7, Address(rsp, 0)); 8501 pxor(xmm7, xmm0); //xor the initial crc value 8502 8503 pslldq(xmm7, 0x5); 8504 jmp(L_barrett); 8505 bind(L_only_less_than_3); 8506 cmpl(len, 2); 8507 jcc(Assembler::less, L_only_less_than_2); 8508 8509 // load 2 Bytes 8510 movb(rax, Address(buf, pos, Address::times_1, 0)); 8511 movb(Address(tmp1, 0), rax); 8512 8513 movb(rax, Address(buf, pos, Address::times_1, 1)); 8514 movb(Address(tmp1, 1), rax); 8515 8516 movdqu(xmm7, Address(rsp, 0)); 8517 pxor(xmm7, xmm0); //xor the initial crc value 8518 8519 pslldq(xmm7, 0x6); 8520 jmp(L_barrett); 8521 8522 bind(L_only_less_than_2); 8523 //load 1 Byte 8524 movb(rax, Address(buf, pos, Address::times_1, 0)); 8525 movb(Address(tmp1, 0), rax); 8526 8527 movdqu(xmm7, Address(rsp, 0)); 8528 pxor(xmm7, xmm0); //xor the initial crc value 8529 8530 pslldq(xmm7, 0x7); 8531 } 8532 8533 /** 8534 * Compute CRC32 using AVX512 instructions 8535 * param crc register containing existing CRC (32-bit) 8536 * param buf register pointing to input byte buffer (byte*) 8537 * param len register containing number of bytes 8538 * param table address of crc or crc32c table 8539 * param tmp1 scratch register 8540 * param tmp2 scratch register 8541 * return rax result register 8542 * 8543 * This routine is identical for crc32c with the exception of the precomputed constant 8544 * table which will be passed as the table argument. The calculation steps are 8545 * the same for both variants. 8546 */ 8547 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 8548 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 8549 8550 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 8551 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 8552 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 8553 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 8554 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 8555 8556 const Register pos = r12; 8557 push(r12); 8558 subptr(rsp, 16 * 2 + 8); 8559 8560 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 8561 // context for the registers used, where all instructions below are using 128-bit mode 8562 // On EVEX without VL and BW, these instructions will all be AVX. 8563 movl(pos, 0); 8564 8565 // check if smaller than 256B 8566 cmpl(len, 256); 8567 jcc(Assembler::less, L_less_than_256); 8568 8569 // load the initial crc value 8570 movdl(xmm10, crc); 8571 8572 // receive the initial 64B data, xor the initial crc value 8573 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 8574 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 8575 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 8576 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 8577 8578 subl(len, 256); 8579 cmpl(len, 256); 8580 jcc(Assembler::less, L_fold_128_B_loop); 8581 8582 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 8583 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 8584 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 8585 subl(len, 256); 8586 8587 bind(L_fold_256_B_loop); 8588 addl(pos, 256); 8589 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 8590 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 8591 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 8592 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 8593 8594 subl(len, 256); 8595 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 8596 8597 // Fold 256 into 128 8598 addl(pos, 256); 8599 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 8600 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 8601 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 8602 8603 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 8604 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 8605 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 8606 8607 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 8608 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 8609 8610 addl(len, 128); 8611 jmp(L_fold_128_B_register); 8612 8613 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 8614 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 8615 8616 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 8617 bind(L_fold_128_B_loop); 8618 addl(pos, 128); 8619 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 8620 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 8621 8622 subl(len, 128); 8623 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 8624 8625 addl(pos, 128); 8626 8627 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 8628 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 8629 bind(L_fold_128_B_register); 8630 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 8631 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 8632 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 8633 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 8634 // save last that has no multiplicand 8635 vextracti64x2(xmm7, xmm4, 3); 8636 8637 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 8638 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 8639 // Needed later in reduction loop 8640 movdqu(xmm10, Address(table, 1 * 16)); 8641 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 8642 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 8643 8644 // Swap 1,0,3,2 - 01 00 11 10 8645 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 8646 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 8647 vextracti128(xmm5, xmm8, 1); 8648 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 8649 8650 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 8651 // instead of a cmp instruction, we use the negative flag with the jl instruction 8652 addl(len, 128 - 16); 8653 jcc(Assembler::less, L_final_reduction_for_128); 8654 8655 bind(L_16B_reduction_loop); 8656 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8657 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8658 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8659 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 8660 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8661 addl(pos, 16); 8662 subl(len, 16); 8663 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 8664 8665 bind(L_final_reduction_for_128); 8666 addl(len, 16); 8667 jcc(Assembler::equal, L_128_done); 8668 8669 bind(L_get_last_two_xmms); 8670 movdqu(xmm2, xmm7); 8671 addl(pos, len); 8672 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 8673 subl(pos, len); 8674 8675 // get rid of the extra data that was loaded before 8676 // load the shift constant 8677 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 8678 movdqu(xmm0, Address(rax, len)); 8679 addl(rax, len); 8680 8681 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8682 //Change mask to 512 8683 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 8684 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 8685 8686 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 8687 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 8688 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8689 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 8690 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 8691 8692 bind(L_128_done); 8693 // compute crc of a 128-bit value 8694 movdqu(xmm10, Address(table, 3 * 16)); 8695 movdqu(xmm0, xmm7); 8696 8697 // 64b fold 8698 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8699 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8700 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8701 8702 // 32b fold 8703 movdqu(xmm0, xmm7); 8704 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8705 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8706 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8707 jmp(L_barrett); 8708 8709 bind(L_less_than_256); 8710 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8711 8712 //barrett reduction 8713 bind(L_barrett); 8714 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8715 movdqu(xmm1, xmm7); 8716 movdqu(xmm2, xmm7); 8717 movdqu(xmm10, Address(table, 4 * 16)); 8718 8719 pclmulqdq(xmm7, xmm10, 0x0); 8720 pxor(xmm7, xmm2); 8721 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8722 movdqu(xmm2, xmm7); 8723 pclmulqdq(xmm7, xmm10, 0x10); 8724 pxor(xmm7, xmm2); 8725 pxor(xmm7, xmm1); 8726 pextrd(crc, xmm7, 2); 8727 8728 bind(L_cleanup); 8729 addptr(rsp, 16 * 2 + 8); 8730 pop(r12); 8731 } 8732 8733 // S. Gueron / Information Processing Letters 112 (2012) 184 8734 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8735 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8736 // Output: the 64-bit carry-less product of B * CONST 8737 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8738 Register tmp1, Register tmp2, Register tmp3) { 8739 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8740 if (n > 0) { 8741 addq(tmp3, n * 256 * 8); 8742 } 8743 // Q1 = TABLEExt[n][B & 0xFF]; 8744 movl(tmp1, in); 8745 andl(tmp1, 0x000000FF); 8746 shll(tmp1, 3); 8747 addq(tmp1, tmp3); 8748 movq(tmp1, Address(tmp1, 0)); 8749 8750 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8751 movl(tmp2, in); 8752 shrl(tmp2, 8); 8753 andl(tmp2, 0x000000FF); 8754 shll(tmp2, 3); 8755 addq(tmp2, tmp3); 8756 movq(tmp2, Address(tmp2, 0)); 8757 8758 shlq(tmp2, 8); 8759 xorq(tmp1, tmp2); 8760 8761 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8762 movl(tmp2, in); 8763 shrl(tmp2, 16); 8764 andl(tmp2, 0x000000FF); 8765 shll(tmp2, 3); 8766 addq(tmp2, tmp3); 8767 movq(tmp2, Address(tmp2, 0)); 8768 8769 shlq(tmp2, 16); 8770 xorq(tmp1, tmp2); 8771 8772 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8773 shrl(in, 24); 8774 andl(in, 0x000000FF); 8775 shll(in, 3); 8776 addq(in, tmp3); 8777 movq(in, Address(in, 0)); 8778 8779 shlq(in, 24); 8780 xorq(in, tmp1); 8781 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8782 } 8783 8784 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8785 Register in_out, 8786 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8787 XMMRegister w_xtmp2, 8788 Register tmp1, 8789 Register n_tmp2, Register n_tmp3) { 8790 if (is_pclmulqdq_supported) { 8791 movdl(w_xtmp1, in_out); // modified blindly 8792 8793 movl(tmp1, const_or_pre_comp_const_index); 8794 movdl(w_xtmp2, tmp1); 8795 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8796 8797 movdq(in_out, w_xtmp1); 8798 } else { 8799 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8800 } 8801 } 8802 8803 // Recombination Alternative 2: No bit-reflections 8804 // T1 = (CRC_A * U1) << 1 8805 // T2 = (CRC_B * U2) << 1 8806 // C1 = T1 >> 32 8807 // C2 = T2 >> 32 8808 // T1 = T1 & 0xFFFFFFFF 8809 // T2 = T2 & 0xFFFFFFFF 8810 // T1 = CRC32(0, T1) 8811 // T2 = CRC32(0, T2) 8812 // C1 = C1 ^ T1 8813 // C2 = C2 ^ T2 8814 // CRC = C1 ^ C2 ^ CRC_C 8815 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8816 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8817 Register tmp1, Register tmp2, 8818 Register n_tmp3) { 8819 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8820 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8821 shlq(in_out, 1); 8822 movl(tmp1, in_out); 8823 shrq(in_out, 32); 8824 xorl(tmp2, tmp2); 8825 crc32(tmp2, tmp1, 4); 8826 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8827 shlq(in1, 1); 8828 movl(tmp1, in1); 8829 shrq(in1, 32); 8830 xorl(tmp2, tmp2); 8831 crc32(tmp2, tmp1, 4); 8832 xorl(in1, tmp2); 8833 xorl(in_out, in1); 8834 xorl(in_out, in2); 8835 } 8836 8837 // Set N to predefined value 8838 // Subtract from a length of a buffer 8839 // execute in a loop: 8840 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8841 // for i = 1 to N do 8842 // CRC_A = CRC32(CRC_A, A[i]) 8843 // CRC_B = CRC32(CRC_B, B[i]) 8844 // CRC_C = CRC32(CRC_C, C[i]) 8845 // end for 8846 // Recombine 8847 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8848 Register in_out1, Register in_out2, Register in_out3, 8849 Register tmp1, Register tmp2, Register tmp3, 8850 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8851 Register tmp4, Register tmp5, 8852 Register n_tmp6) { 8853 Label L_processPartitions; 8854 Label L_processPartition; 8855 Label L_exit; 8856 8857 bind(L_processPartitions); 8858 cmpl(in_out1, 3 * size); 8859 jcc(Assembler::less, L_exit); 8860 xorl(tmp1, tmp1); 8861 xorl(tmp2, tmp2); 8862 movq(tmp3, in_out2); 8863 addq(tmp3, size); 8864 8865 bind(L_processPartition); 8866 crc32(in_out3, Address(in_out2, 0), 8); 8867 crc32(tmp1, Address(in_out2, size), 8); 8868 crc32(tmp2, Address(in_out2, size * 2), 8); 8869 addq(in_out2, 8); 8870 cmpq(in_out2, tmp3); 8871 jcc(Assembler::less, L_processPartition); 8872 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8873 w_xtmp1, w_xtmp2, w_xtmp3, 8874 tmp4, tmp5, 8875 n_tmp6); 8876 addq(in_out2, 2 * size); 8877 subl(in_out1, 3 * size); 8878 jmp(L_processPartitions); 8879 8880 bind(L_exit); 8881 } 8882 #else 8883 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 8884 Register tmp1, Register tmp2, Register tmp3, 8885 XMMRegister xtmp1, XMMRegister xtmp2) { 8886 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8887 if (n > 0) { 8888 addl(tmp3, n * 256 * 8); 8889 } 8890 // Q1 = TABLEExt[n][B & 0xFF]; 8891 movl(tmp1, in_out); 8892 andl(tmp1, 0x000000FF); 8893 shll(tmp1, 3); 8894 addl(tmp1, tmp3); 8895 movq(xtmp1, Address(tmp1, 0)); 8896 8897 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8898 movl(tmp2, in_out); 8899 shrl(tmp2, 8); 8900 andl(tmp2, 0x000000FF); 8901 shll(tmp2, 3); 8902 addl(tmp2, tmp3); 8903 movq(xtmp2, Address(tmp2, 0)); 8904 8905 psllq(xtmp2, 8); 8906 pxor(xtmp1, xtmp2); 8907 8908 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8909 movl(tmp2, in_out); 8910 shrl(tmp2, 16); 8911 andl(tmp2, 0x000000FF); 8912 shll(tmp2, 3); 8913 addl(tmp2, tmp3); 8914 movq(xtmp2, Address(tmp2, 0)); 8915 8916 psllq(xtmp2, 16); 8917 pxor(xtmp1, xtmp2); 8918 8919 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8920 shrl(in_out, 24); 8921 andl(in_out, 0x000000FF); 8922 shll(in_out, 3); 8923 addl(in_out, tmp3); 8924 movq(xtmp2, Address(in_out, 0)); 8925 8926 psllq(xtmp2, 24); 8927 pxor(xtmp1, xtmp2); // Result in CXMM 8928 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8929 } 8930 8931 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8932 Register in_out, 8933 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8934 XMMRegister w_xtmp2, 8935 Register tmp1, 8936 Register n_tmp2, Register n_tmp3) { 8937 if (is_pclmulqdq_supported) { 8938 movdl(w_xtmp1, in_out); 8939 8940 movl(tmp1, const_or_pre_comp_const_index); 8941 movdl(w_xtmp2, tmp1); 8942 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8943 // Keep result in XMM since GPR is 32 bit in length 8944 } else { 8945 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 8946 } 8947 } 8948 8949 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8950 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8951 Register tmp1, Register tmp2, 8952 Register n_tmp3) { 8953 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8954 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8955 8956 psllq(w_xtmp1, 1); 8957 movdl(tmp1, w_xtmp1); 8958 psrlq(w_xtmp1, 32); 8959 movdl(in_out, w_xtmp1); 8960 8961 xorl(tmp2, tmp2); 8962 crc32(tmp2, tmp1, 4); 8963 xorl(in_out, tmp2); 8964 8965 psllq(w_xtmp2, 1); 8966 movdl(tmp1, w_xtmp2); 8967 psrlq(w_xtmp2, 32); 8968 movdl(in1, w_xtmp2); 8969 8970 xorl(tmp2, tmp2); 8971 crc32(tmp2, tmp1, 4); 8972 xorl(in1, tmp2); 8973 xorl(in_out, in1); 8974 xorl(in_out, in2); 8975 } 8976 8977 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8978 Register in_out1, Register in_out2, Register in_out3, 8979 Register tmp1, Register tmp2, Register tmp3, 8980 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8981 Register tmp4, Register tmp5, 8982 Register n_tmp6) { 8983 Label L_processPartitions; 8984 Label L_processPartition; 8985 Label L_exit; 8986 8987 bind(L_processPartitions); 8988 cmpl(in_out1, 3 * size); 8989 jcc(Assembler::less, L_exit); 8990 xorl(tmp1, tmp1); 8991 xorl(tmp2, tmp2); 8992 movl(tmp3, in_out2); 8993 addl(tmp3, size); 8994 8995 bind(L_processPartition); 8996 crc32(in_out3, Address(in_out2, 0), 4); 8997 crc32(tmp1, Address(in_out2, size), 4); 8998 crc32(tmp2, Address(in_out2, size*2), 4); 8999 crc32(in_out3, Address(in_out2, 0+4), 4); 9000 crc32(tmp1, Address(in_out2, size+4), 4); 9001 crc32(tmp2, Address(in_out2, size*2+4), 4); 9002 addl(in_out2, 8); 9003 cmpl(in_out2, tmp3); 9004 jcc(Assembler::less, L_processPartition); 9005 9006 push(tmp3); 9007 push(in_out1); 9008 push(in_out2); 9009 tmp4 = tmp3; 9010 tmp5 = in_out1; 9011 n_tmp6 = in_out2; 9012 9013 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 9014 w_xtmp1, w_xtmp2, w_xtmp3, 9015 tmp4, tmp5, 9016 n_tmp6); 9017 9018 pop(in_out2); 9019 pop(in_out1); 9020 pop(tmp3); 9021 9022 addl(in_out2, 2 * size); 9023 subl(in_out1, 3 * size); 9024 jmp(L_processPartitions); 9025 9026 bind(L_exit); 9027 } 9028 #endif //LP64 9029 9030 #ifdef _LP64 9031 // Algorithm 2: Pipelined usage of the CRC32 instruction. 9032 // Input: A buffer I of L bytes. 9033 // Output: the CRC32C value of the buffer. 9034 // Notations: 9035 // Write L = 24N + r, with N = floor (L/24). 9036 // r = L mod 24 (0 <= r < 24). 9037 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 9038 // N quadwords, and R consists of r bytes. 9039 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 9040 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 9041 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 9042 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 9043 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9044 Register tmp1, Register tmp2, Register tmp3, 9045 Register tmp4, Register tmp5, Register tmp6, 9046 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9047 bool is_pclmulqdq_supported) { 9048 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9049 Label L_wordByWord; 9050 Label L_byteByByteProlog; 9051 Label L_byteByByte; 9052 Label L_exit; 9053 9054 if (is_pclmulqdq_supported ) { 9055 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 9056 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); 9057 9058 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 9059 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 9060 9061 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 9062 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 9063 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 9064 } else { 9065 const_or_pre_comp_const_index[0] = 1; 9066 const_or_pre_comp_const_index[1] = 0; 9067 9068 const_or_pre_comp_const_index[2] = 3; 9069 const_or_pre_comp_const_index[3] = 2; 9070 9071 const_or_pre_comp_const_index[4] = 5; 9072 const_or_pre_comp_const_index[5] = 4; 9073 } 9074 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9075 in2, in1, in_out, 9076 tmp1, tmp2, tmp3, 9077 w_xtmp1, w_xtmp2, w_xtmp3, 9078 tmp4, tmp5, 9079 tmp6); 9080 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9081 in2, in1, in_out, 9082 tmp1, tmp2, tmp3, 9083 w_xtmp1, w_xtmp2, w_xtmp3, 9084 tmp4, tmp5, 9085 tmp6); 9086 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9087 in2, in1, in_out, 9088 tmp1, tmp2, tmp3, 9089 w_xtmp1, w_xtmp2, w_xtmp3, 9090 tmp4, tmp5, 9091 tmp6); 9092 movl(tmp1, in2); 9093 andl(tmp1, 0x00000007); 9094 negl(tmp1); 9095 addl(tmp1, in2); 9096 addq(tmp1, in1); 9097 9098 cmpq(in1, tmp1); 9099 jccb(Assembler::greaterEqual, L_byteByByteProlog); 9100 align(16); 9101 BIND(L_wordByWord); 9102 crc32(in_out, Address(in1, 0), 8); 9103 addq(in1, 8); 9104 cmpq(in1, tmp1); 9105 jcc(Assembler::less, L_wordByWord); 9106 9107 BIND(L_byteByByteProlog); 9108 andl(in2, 0x00000007); 9109 movl(tmp2, 1); 9110 9111 cmpl(tmp2, in2); 9112 jccb(Assembler::greater, L_exit); 9113 BIND(L_byteByByte); 9114 crc32(in_out, Address(in1, 0), 1); 9115 incq(in1); 9116 incl(tmp2); 9117 cmpl(tmp2, in2); 9118 jcc(Assembler::lessEqual, L_byteByByte); 9119 9120 BIND(L_exit); 9121 } 9122 #else 9123 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 9124 Register tmp1, Register tmp2, Register tmp3, 9125 Register tmp4, Register tmp5, Register tmp6, 9126 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 9127 bool is_pclmulqdq_supported) { 9128 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 9129 Label L_wordByWord; 9130 Label L_byteByByteProlog; 9131 Label L_byteByByte; 9132 Label L_exit; 9133 9134 if (is_pclmulqdq_supported) { 9135 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 9136 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); 9137 9138 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 9139 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 9140 9141 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 9142 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 9143 } else { 9144 const_or_pre_comp_const_index[0] = 1; 9145 const_or_pre_comp_const_index[1] = 0; 9146 9147 const_or_pre_comp_const_index[2] = 3; 9148 const_or_pre_comp_const_index[3] = 2; 9149 9150 const_or_pre_comp_const_index[4] = 5; 9151 const_or_pre_comp_const_index[5] = 4; 9152 } 9153 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 9154 in2, in1, in_out, 9155 tmp1, tmp2, tmp3, 9156 w_xtmp1, w_xtmp2, w_xtmp3, 9157 tmp4, tmp5, 9158 tmp6); 9159 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 9160 in2, in1, in_out, 9161 tmp1, tmp2, tmp3, 9162 w_xtmp1, w_xtmp2, w_xtmp3, 9163 tmp4, tmp5, 9164 tmp6); 9165 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 9166 in2, in1, in_out, 9167 tmp1, tmp2, tmp3, 9168 w_xtmp1, w_xtmp2, w_xtmp3, 9169 tmp4, tmp5, 9170 tmp6); 9171 movl(tmp1, in2); 9172 andl(tmp1, 0x00000007); 9173 negl(tmp1); 9174 addl(tmp1, in2); 9175 addl(tmp1, in1); 9176 9177 BIND(L_wordByWord); 9178 cmpl(in1, tmp1); 9179 jcc(Assembler::greaterEqual, L_byteByByteProlog); 9180 crc32(in_out, Address(in1,0), 4); 9181 addl(in1, 4); 9182 jmp(L_wordByWord); 9183 9184 BIND(L_byteByByteProlog); 9185 andl(in2, 0x00000007); 9186 movl(tmp2, 1); 9187 9188 BIND(L_byteByByte); 9189 cmpl(tmp2, in2); 9190 jccb(Assembler::greater, L_exit); 9191 movb(tmp1, Address(in1, 0)); 9192 crc32(in_out, tmp1, 1); 9193 incl(in1); 9194 incl(tmp2); 9195 jmp(L_byteByByte); 9196 9197 BIND(L_exit); 9198 } 9199 #endif // LP64 9200 #undef BIND 9201 #undef BLOCK_COMMENT 9202 9203 // Compress char[] array to byte[]. 9204 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 9205 // Return the array length if every element in array can be encoded, 9206 // otherwise, the index of first non-latin1 (> 0xff) character. 9207 // @IntrinsicCandidate 9208 // public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 9209 // for (int i = 0; i < len; i++) { 9210 // char c = src[srcOff]; 9211 // if (c > 0xff) { 9212 // return i; // return index of non-latin1 char 9213 // } 9214 // dst[dstOff] = (byte)c; 9215 // srcOff++; 9216 // dstOff++; 9217 // } 9218 // return len; 9219 // } 9220 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 9221 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 9222 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 9223 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 9224 Label copy_chars_loop, done, reset_sp, copy_tail; 9225 9226 // rsi: src 9227 // rdi: dst 9228 // rdx: len 9229 // rcx: tmp5 9230 // rax: result 9231 9232 // rsi holds start addr of source char[] to be compressed 9233 // rdi holds start addr of destination byte[] 9234 // rdx holds length 9235 9236 assert(len != result, ""); 9237 9238 // save length for return 9239 movl(result, len); 9240 9241 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 9242 VM_Version::supports_avx512vlbw() && 9243 VM_Version::supports_bmi2()) { 9244 9245 Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail; 9246 9247 // alignment 9248 Label post_alignment; 9249 9250 // if length of the string is less than 32, handle it the old fashioned way 9251 testl(len, -32); 9252 jcc(Assembler::zero, below_threshold); 9253 9254 // First check whether a character is compressible ( <= 0xFF). 9255 // Create mask to test for Unicode chars inside zmm vector 9256 movl(tmp5, 0x00FF); 9257 evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit); 9258 9259 testl(len, -64); 9260 jccb(Assembler::zero, post_alignment); 9261 9262 movl(tmp5, dst); 9263 andl(tmp5, (32 - 1)); 9264 negl(tmp5); 9265 andl(tmp5, (32 - 1)); 9266 9267 // bail out when there is nothing to be done 9268 testl(tmp5, 0xFFFFFFFF); 9269 jccb(Assembler::zero, post_alignment); 9270 9271 // ~(~0 << len), where len is the # of remaining elements to process 9272 movl(len, 0xFFFFFFFF); 9273 shlxl(len, len, tmp5); 9274 notl(len); 9275 kmovdl(mask2, len); 9276 movl(len, result); 9277 9278 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9279 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9280 ktestd(mask1, mask2); 9281 jcc(Assembler::carryClear, copy_tail); 9282 9283 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9284 9285 addptr(src, tmp5); 9286 addptr(src, tmp5); 9287 addptr(dst, tmp5); 9288 subl(len, tmp5); 9289 9290 bind(post_alignment); 9291 // end of alignment 9292 9293 movl(tmp5, len); 9294 andl(tmp5, (32 - 1)); // tail count (in chars) 9295 andl(len, ~(32 - 1)); // vector count (in chars) 9296 jccb(Assembler::zero, copy_loop_tail); 9297 9298 lea(src, Address(src, len, Address::times_2)); 9299 lea(dst, Address(dst, len, Address::times_1)); 9300 negptr(len); 9301 9302 bind(copy_32_loop); 9303 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 9304 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 9305 kortestdl(mask1, mask1); 9306 jccb(Assembler::carryClear, reset_for_copy_tail); 9307 9308 // All elements in current processed chunk are valid candidates for 9309 // compression. Write a truncated byte elements to the memory. 9310 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 9311 addptr(len, 32); 9312 jccb(Assembler::notZero, copy_32_loop); 9313 9314 bind(copy_loop_tail); 9315 // bail out when there is nothing to be done 9316 testl(tmp5, 0xFFFFFFFF); 9317 jcc(Assembler::zero, done); 9318 9319 movl(len, tmp5); 9320 9321 // ~(~0 << len), where len is the # of remaining elements to process 9322 movl(tmp5, 0xFFFFFFFF); 9323 shlxl(tmp5, tmp5, len); 9324 notl(tmp5); 9325 9326 kmovdl(mask2, tmp5); 9327 9328 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 9329 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 9330 ktestd(mask1, mask2); 9331 jcc(Assembler::carryClear, copy_tail); 9332 9333 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 9334 jmp(done); 9335 9336 bind(reset_for_copy_tail); 9337 lea(src, Address(src, tmp5, Address::times_2)); 9338 lea(dst, Address(dst, tmp5, Address::times_1)); 9339 subptr(len, tmp5); 9340 jmp(copy_chars_loop); 9341 9342 bind(below_threshold); 9343 } 9344 9345 if (UseSSE42Intrinsics) { 9346 Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail; 9347 9348 // vectored compression 9349 testl(len, 0xfffffff8); 9350 jcc(Assembler::zero, copy_tail); 9351 9352 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 9353 movdl(tmp1Reg, tmp5); 9354 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 9355 9356 andl(len, 0xfffffff0); 9357 jccb(Assembler::zero, copy_16); 9358 9359 // compress 16 chars per iter 9360 pxor(tmp4Reg, tmp4Reg); 9361 9362 lea(src, Address(src, len, Address::times_2)); 9363 lea(dst, Address(dst, len, Address::times_1)); 9364 negptr(len); 9365 9366 bind(copy_32_loop); 9367 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 9368 por(tmp4Reg, tmp2Reg); 9369 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 9370 por(tmp4Reg, tmp3Reg); 9371 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 9372 jccb(Assembler::notZero, reset_for_copy_tail); 9373 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 9374 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 9375 addptr(len, 16); 9376 jccb(Assembler::notZero, copy_32_loop); 9377 9378 // compress next vector of 8 chars (if any) 9379 bind(copy_16); 9380 // len = 0 9381 testl(result, 0x00000008); // check if there's a block of 8 chars to compress 9382 jccb(Assembler::zero, copy_tail_sse); 9383 9384 pxor(tmp3Reg, tmp3Reg); 9385 9386 movdqu(tmp2Reg, Address(src, 0)); 9387 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 9388 jccb(Assembler::notZero, reset_for_copy_tail); 9389 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 9390 movq(Address(dst, 0), tmp2Reg); 9391 addptr(src, 16); 9392 addptr(dst, 8); 9393 jmpb(copy_tail_sse); 9394 9395 bind(reset_for_copy_tail); 9396 movl(tmp5, result); 9397 andl(tmp5, 0x0000000f); 9398 lea(src, Address(src, tmp5, Address::times_2)); 9399 lea(dst, Address(dst, tmp5, Address::times_1)); 9400 subptr(len, tmp5); 9401 jmpb(copy_chars_loop); 9402 9403 bind(copy_tail_sse); 9404 movl(len, result); 9405 andl(len, 0x00000007); // tail count (in chars) 9406 } 9407 // compress 1 char per iter 9408 bind(copy_tail); 9409 testl(len, len); 9410 jccb(Assembler::zero, done); 9411 lea(src, Address(src, len, Address::times_2)); 9412 lea(dst, Address(dst, len, Address::times_1)); 9413 negptr(len); 9414 9415 bind(copy_chars_loop); 9416 load_unsigned_short(tmp5, Address(src, len, Address::times_2)); 9417 testl(tmp5, 0xff00); // check if Unicode char 9418 jccb(Assembler::notZero, reset_sp); 9419 movb(Address(dst, len, Address::times_1), tmp5); // ASCII char; compress to 1 byte 9420 increment(len); 9421 jccb(Assembler::notZero, copy_chars_loop); 9422 9423 // add len then return (len will be zero if compress succeeded, otherwise negative) 9424 bind(reset_sp); 9425 addl(result, len); 9426 9427 bind(done); 9428 } 9429 9430 // Inflate byte[] array to char[]. 9431 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 9432 // @IntrinsicCandidate 9433 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 9434 // for (int i = 0; i < len; i++) { 9435 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 9436 // } 9437 // } 9438 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 9439 XMMRegister tmp1, Register tmp2, KRegister mask) { 9440 Label copy_chars_loop, done, below_threshold, avx3_threshold; 9441 // rsi: src 9442 // rdi: dst 9443 // rdx: len 9444 // rcx: tmp2 9445 9446 // rsi holds start addr of source byte[] to be inflated 9447 // rdi holds start addr of destination char[] 9448 // rdx holds length 9449 assert_different_registers(src, dst, len, tmp2); 9450 movl(tmp2, len); 9451 if ((UseAVX > 2) && // AVX512 9452 VM_Version::supports_avx512vlbw() && 9453 VM_Version::supports_bmi2()) { 9454 9455 Label copy_32_loop, copy_tail; 9456 Register tmp3_aliased = len; 9457 9458 // if length of the string is less than 16, handle it in an old fashioned way 9459 testl(len, -16); 9460 jcc(Assembler::zero, below_threshold); 9461 9462 testl(len, -1 * AVX3Threshold); 9463 jcc(Assembler::zero, avx3_threshold); 9464 9465 // In order to use only one arithmetic operation for the main loop we use 9466 // this pre-calculation 9467 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 9468 andl(len, -32); // vector count 9469 jccb(Assembler::zero, copy_tail); 9470 9471 lea(src, Address(src, len, Address::times_1)); 9472 lea(dst, Address(dst, len, Address::times_2)); 9473 negptr(len); 9474 9475 9476 // inflate 32 chars per iter 9477 bind(copy_32_loop); 9478 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 9479 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 9480 addptr(len, 32); 9481 jcc(Assembler::notZero, copy_32_loop); 9482 9483 bind(copy_tail); 9484 // bail out when there is nothing to be done 9485 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 9486 jcc(Assembler::zero, done); 9487 9488 // ~(~0 << length), where length is the # of remaining elements to process 9489 movl(tmp3_aliased, -1); 9490 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 9491 notl(tmp3_aliased); 9492 kmovdl(mask, tmp3_aliased); 9493 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 9494 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 9495 9496 jmp(done); 9497 bind(avx3_threshold); 9498 } 9499 if (UseSSE42Intrinsics) { 9500 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 9501 9502 if (UseAVX > 1) { 9503 andl(tmp2, (16 - 1)); 9504 andl(len, -16); 9505 jccb(Assembler::zero, copy_new_tail); 9506 } else { 9507 andl(tmp2, 0x00000007); // tail count (in chars) 9508 andl(len, 0xfffffff8); // vector count (in chars) 9509 jccb(Assembler::zero, copy_tail); 9510 } 9511 9512 // vectored inflation 9513 lea(src, Address(src, len, Address::times_1)); 9514 lea(dst, Address(dst, len, Address::times_2)); 9515 negptr(len); 9516 9517 if (UseAVX > 1) { 9518 bind(copy_16_loop); 9519 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 9520 vmovdqu(Address(dst, len, Address::times_2), tmp1); 9521 addptr(len, 16); 9522 jcc(Assembler::notZero, copy_16_loop); 9523 9524 bind(below_threshold); 9525 bind(copy_new_tail); 9526 movl(len, tmp2); 9527 andl(tmp2, 0x00000007); 9528 andl(len, 0xFFFFFFF8); 9529 jccb(Assembler::zero, copy_tail); 9530 9531 pmovzxbw(tmp1, Address(src, 0)); 9532 movdqu(Address(dst, 0), tmp1); 9533 addptr(src, 8); 9534 addptr(dst, 2 * 8); 9535 9536 jmp(copy_tail, true); 9537 } 9538 9539 // inflate 8 chars per iter 9540 bind(copy_8_loop); 9541 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 9542 movdqu(Address(dst, len, Address::times_2), tmp1); 9543 addptr(len, 8); 9544 jcc(Assembler::notZero, copy_8_loop); 9545 9546 bind(copy_tail); 9547 movl(len, tmp2); 9548 9549 cmpl(len, 4); 9550 jccb(Assembler::less, copy_bytes); 9551 9552 movdl(tmp1, Address(src, 0)); // load 4 byte chars 9553 pmovzxbw(tmp1, tmp1); 9554 movq(Address(dst, 0), tmp1); 9555 subptr(len, 4); 9556 addptr(src, 4); 9557 addptr(dst, 8); 9558 9559 bind(copy_bytes); 9560 } else { 9561 bind(below_threshold); 9562 } 9563 9564 testl(len, len); 9565 jccb(Assembler::zero, done); 9566 lea(src, Address(src, len, Address::times_1)); 9567 lea(dst, Address(dst, len, Address::times_2)); 9568 negptr(len); 9569 9570 // inflate 1 char per iter 9571 bind(copy_chars_loop); 9572 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 9573 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 9574 increment(len); 9575 jcc(Assembler::notZero, copy_chars_loop); 9576 9577 bind(done); 9578 } 9579 9580 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) { 9581 switch(type) { 9582 case T_BYTE: 9583 case T_BOOLEAN: 9584 evmovdqub(dst, kmask, src, merge, vector_len); 9585 break; 9586 case T_CHAR: 9587 case T_SHORT: 9588 evmovdquw(dst, kmask, src, merge, vector_len); 9589 break; 9590 case T_INT: 9591 case T_FLOAT: 9592 evmovdqul(dst, kmask, src, merge, vector_len); 9593 break; 9594 case T_LONG: 9595 case T_DOUBLE: 9596 evmovdquq(dst, kmask, src, merge, vector_len); 9597 break; 9598 default: 9599 fatal("Unexpected type argument %s", type2name(type)); 9600 break; 9601 } 9602 } 9603 9604 9605 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 9606 switch(type) { 9607 case T_BYTE: 9608 case T_BOOLEAN: 9609 evmovdqub(dst, kmask, src, merge, vector_len); 9610 break; 9611 case T_CHAR: 9612 case T_SHORT: 9613 evmovdquw(dst, kmask, src, merge, vector_len); 9614 break; 9615 case T_INT: 9616 case T_FLOAT: 9617 evmovdqul(dst, kmask, src, merge, vector_len); 9618 break; 9619 case T_LONG: 9620 case T_DOUBLE: 9621 evmovdquq(dst, kmask, src, merge, vector_len); 9622 break; 9623 default: 9624 fatal("Unexpected type argument %s", type2name(type)); 9625 break; 9626 } 9627 } 9628 9629 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 9630 switch(type) { 9631 case T_BYTE: 9632 case T_BOOLEAN: 9633 evmovdqub(dst, kmask, src, merge, vector_len); 9634 break; 9635 case T_CHAR: 9636 case T_SHORT: 9637 evmovdquw(dst, kmask, src, merge, vector_len); 9638 break; 9639 case T_INT: 9640 case T_FLOAT: 9641 evmovdqul(dst, kmask, src, merge, vector_len); 9642 break; 9643 case T_LONG: 9644 case T_DOUBLE: 9645 evmovdquq(dst, kmask, src, merge, vector_len); 9646 break; 9647 default: 9648 fatal("Unexpected type argument %s", type2name(type)); 9649 break; 9650 } 9651 } 9652 9653 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 9654 switch(masklen) { 9655 case 2: 9656 knotbl(dst, src); 9657 movl(rtmp, 3); 9658 kmovbl(ktmp, rtmp); 9659 kandbl(dst, ktmp, dst); 9660 break; 9661 case 4: 9662 knotbl(dst, src); 9663 movl(rtmp, 15); 9664 kmovbl(ktmp, rtmp); 9665 kandbl(dst, ktmp, dst); 9666 break; 9667 case 8: 9668 knotbl(dst, src); 9669 break; 9670 case 16: 9671 knotwl(dst, src); 9672 break; 9673 case 32: 9674 knotdl(dst, src); 9675 break; 9676 case 64: 9677 knotql(dst, src); 9678 break; 9679 default: 9680 fatal("Unexpected vector length %d", masklen); 9681 break; 9682 } 9683 } 9684 9685 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9686 switch(type) { 9687 case T_BOOLEAN: 9688 case T_BYTE: 9689 kandbl(dst, src1, src2); 9690 break; 9691 case T_CHAR: 9692 case T_SHORT: 9693 kandwl(dst, src1, src2); 9694 break; 9695 case T_INT: 9696 case T_FLOAT: 9697 kanddl(dst, src1, src2); 9698 break; 9699 case T_LONG: 9700 case T_DOUBLE: 9701 kandql(dst, src1, src2); 9702 break; 9703 default: 9704 fatal("Unexpected type argument %s", type2name(type)); 9705 break; 9706 } 9707 } 9708 9709 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9710 switch(type) { 9711 case T_BOOLEAN: 9712 case T_BYTE: 9713 korbl(dst, src1, src2); 9714 break; 9715 case T_CHAR: 9716 case T_SHORT: 9717 korwl(dst, src1, src2); 9718 break; 9719 case T_INT: 9720 case T_FLOAT: 9721 kordl(dst, src1, src2); 9722 break; 9723 case T_LONG: 9724 case T_DOUBLE: 9725 korql(dst, src1, src2); 9726 break; 9727 default: 9728 fatal("Unexpected type argument %s", type2name(type)); 9729 break; 9730 } 9731 } 9732 9733 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9734 switch(type) { 9735 case T_BOOLEAN: 9736 case T_BYTE: 9737 kxorbl(dst, src1, src2); 9738 break; 9739 case T_CHAR: 9740 case T_SHORT: 9741 kxorwl(dst, src1, src2); 9742 break; 9743 case T_INT: 9744 case T_FLOAT: 9745 kxordl(dst, src1, src2); 9746 break; 9747 case T_LONG: 9748 case T_DOUBLE: 9749 kxorql(dst, src1, src2); 9750 break; 9751 default: 9752 fatal("Unexpected type argument %s", type2name(type)); 9753 break; 9754 } 9755 } 9756 9757 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9758 switch(type) { 9759 case T_BOOLEAN: 9760 case T_BYTE: 9761 evpermb(dst, mask, nds, src, merge, vector_len); break; 9762 case T_CHAR: 9763 case T_SHORT: 9764 evpermw(dst, mask, nds, src, merge, vector_len); break; 9765 case T_INT: 9766 case T_FLOAT: 9767 evpermd(dst, mask, nds, src, merge, vector_len); break; 9768 case T_LONG: 9769 case T_DOUBLE: 9770 evpermq(dst, mask, nds, src, merge, vector_len); break; 9771 default: 9772 fatal("Unexpected type argument %s", type2name(type)); break; 9773 } 9774 } 9775 9776 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9777 switch(type) { 9778 case T_BOOLEAN: 9779 case T_BYTE: 9780 evpermb(dst, mask, nds, src, merge, vector_len); break; 9781 case T_CHAR: 9782 case T_SHORT: 9783 evpermw(dst, mask, nds, src, merge, vector_len); break; 9784 case T_INT: 9785 case T_FLOAT: 9786 evpermd(dst, mask, nds, src, merge, vector_len); break; 9787 case T_LONG: 9788 case T_DOUBLE: 9789 evpermq(dst, mask, nds, src, merge, vector_len); break; 9790 default: 9791 fatal("Unexpected type argument %s", type2name(type)); break; 9792 } 9793 } 9794 9795 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9796 switch(type) { 9797 case T_BYTE: 9798 evpminub(dst, mask, nds, src, merge, vector_len); break; 9799 case T_SHORT: 9800 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9801 case T_INT: 9802 evpminud(dst, mask, nds, src, merge, vector_len); break; 9803 case T_LONG: 9804 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9805 default: 9806 fatal("Unexpected type argument %s", type2name(type)); break; 9807 } 9808 } 9809 9810 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9811 switch(type) { 9812 case T_BYTE: 9813 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9814 case T_SHORT: 9815 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9816 case T_INT: 9817 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9818 case T_LONG: 9819 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9820 default: 9821 fatal("Unexpected type argument %s", type2name(type)); break; 9822 } 9823 } 9824 9825 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9826 switch(type) { 9827 case T_BYTE: 9828 evpminub(dst, mask, nds, src, merge, vector_len); break; 9829 case T_SHORT: 9830 evpminuw(dst, mask, nds, src, merge, vector_len); break; 9831 case T_INT: 9832 evpminud(dst, mask, nds, src, merge, vector_len); break; 9833 case T_LONG: 9834 evpminuq(dst, mask, nds, src, merge, vector_len); break; 9835 default: 9836 fatal("Unexpected type argument %s", type2name(type)); break; 9837 } 9838 } 9839 9840 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9841 switch(type) { 9842 case T_BYTE: 9843 evpmaxub(dst, mask, nds, src, merge, vector_len); break; 9844 case T_SHORT: 9845 evpmaxuw(dst, mask, nds, src, merge, vector_len); break; 9846 case T_INT: 9847 evpmaxud(dst, mask, nds, src, merge, vector_len); break; 9848 case T_LONG: 9849 evpmaxuq(dst, mask, nds, src, merge, vector_len); break; 9850 default: 9851 fatal("Unexpected type argument %s", type2name(type)); break; 9852 } 9853 } 9854 9855 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9856 switch(type) { 9857 case T_BYTE: 9858 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9859 case T_SHORT: 9860 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9861 case T_INT: 9862 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9863 case T_LONG: 9864 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9865 default: 9866 fatal("Unexpected type argument %s", type2name(type)); break; 9867 } 9868 } 9869 9870 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9871 switch(type) { 9872 case T_BYTE: 9873 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9874 case T_SHORT: 9875 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9876 case T_INT: 9877 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9878 case T_LONG: 9879 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9880 default: 9881 fatal("Unexpected type argument %s", type2name(type)); break; 9882 } 9883 } 9884 9885 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9886 switch(type) { 9887 case T_BYTE: 9888 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9889 case T_SHORT: 9890 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9891 case T_INT: 9892 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9893 case T_LONG: 9894 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9895 default: 9896 fatal("Unexpected type argument %s", type2name(type)); break; 9897 } 9898 } 9899 9900 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9901 switch(type) { 9902 case T_BYTE: 9903 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9904 case T_SHORT: 9905 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9906 case T_INT: 9907 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9908 case T_LONG: 9909 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9910 default: 9911 fatal("Unexpected type argument %s", type2name(type)); break; 9912 } 9913 } 9914 9915 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9916 switch(type) { 9917 case T_INT: 9918 evpxord(dst, mask, nds, src, merge, vector_len); break; 9919 case T_LONG: 9920 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9921 default: 9922 fatal("Unexpected type argument %s", type2name(type)); break; 9923 } 9924 } 9925 9926 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9927 switch(type) { 9928 case T_INT: 9929 evpxord(dst, mask, nds, src, merge, vector_len); break; 9930 case T_LONG: 9931 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9932 default: 9933 fatal("Unexpected type argument %s", type2name(type)); break; 9934 } 9935 } 9936 9937 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9938 switch(type) { 9939 case T_INT: 9940 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9941 case T_LONG: 9942 evporq(dst, mask, nds, src, merge, vector_len); break; 9943 default: 9944 fatal("Unexpected type argument %s", type2name(type)); break; 9945 } 9946 } 9947 9948 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9949 switch(type) { 9950 case T_INT: 9951 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9952 case T_LONG: 9953 evporq(dst, mask, nds, src, merge, vector_len); break; 9954 default: 9955 fatal("Unexpected type argument %s", type2name(type)); break; 9956 } 9957 } 9958 9959 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9960 switch(type) { 9961 case T_INT: 9962 evpandd(dst, mask, nds, src, merge, vector_len); break; 9963 case T_LONG: 9964 evpandq(dst, mask, nds, src, merge, vector_len); break; 9965 default: 9966 fatal("Unexpected type argument %s", type2name(type)); break; 9967 } 9968 } 9969 9970 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9971 switch(type) { 9972 case T_INT: 9973 evpandd(dst, mask, nds, src, merge, vector_len); break; 9974 case T_LONG: 9975 evpandq(dst, mask, nds, src, merge, vector_len); break; 9976 default: 9977 fatal("Unexpected type argument %s", type2name(type)); break; 9978 } 9979 } 9980 9981 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9982 switch(masklen) { 9983 case 8: 9984 kortestbl(src1, src2); 9985 break; 9986 case 16: 9987 kortestwl(src1, src2); 9988 break; 9989 case 32: 9990 kortestdl(src1, src2); 9991 break; 9992 case 64: 9993 kortestql(src1, src2); 9994 break; 9995 default: 9996 fatal("Unexpected mask length %d", masklen); 9997 break; 9998 } 9999 } 10000 10001 10002 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 10003 switch(masklen) { 10004 case 8: 10005 ktestbl(src1, src2); 10006 break; 10007 case 16: 10008 ktestwl(src1, src2); 10009 break; 10010 case 32: 10011 ktestdl(src1, src2); 10012 break; 10013 case 64: 10014 ktestql(src1, src2); 10015 break; 10016 default: 10017 fatal("Unexpected mask length %d", masklen); 10018 break; 10019 } 10020 } 10021 10022 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10023 switch(type) { 10024 case T_INT: 10025 evprold(dst, mask, src, shift, merge, vlen_enc); break; 10026 case T_LONG: 10027 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 10028 default: 10029 fatal("Unexpected type argument %s", type2name(type)); break; 10030 break; 10031 } 10032 } 10033 10034 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 10035 switch(type) { 10036 case T_INT: 10037 evprord(dst, mask, src, shift, merge, vlen_enc); break; 10038 case T_LONG: 10039 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 10040 default: 10041 fatal("Unexpected type argument %s", type2name(type)); break; 10042 } 10043 } 10044 10045 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10046 switch(type) { 10047 case T_INT: 10048 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 10049 case T_LONG: 10050 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 10051 default: 10052 fatal("Unexpected type argument %s", type2name(type)); break; 10053 } 10054 } 10055 10056 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 10057 switch(type) { 10058 case T_INT: 10059 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 10060 case T_LONG: 10061 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 10062 default: 10063 fatal("Unexpected type argument %s", type2name(type)); break; 10064 } 10065 } 10066 10067 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10068 assert(rscratch != noreg || always_reachable(src), "missing"); 10069 10070 if (reachable(src)) { 10071 evpandq(dst, nds, as_Address(src), vector_len); 10072 } else { 10073 lea(rscratch, src); 10074 evpandq(dst, nds, Address(rscratch, 0), vector_len); 10075 } 10076 } 10077 10078 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 10079 assert(rscratch != noreg || always_reachable(src), "missing"); 10080 10081 if (reachable(src)) { 10082 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 10083 } else { 10084 lea(rscratch, src); 10085 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 10086 } 10087 } 10088 10089 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10090 assert(rscratch != noreg || always_reachable(src), "missing"); 10091 10092 if (reachable(src)) { 10093 evporq(dst, nds, as_Address(src), vector_len); 10094 } else { 10095 lea(rscratch, src); 10096 evporq(dst, nds, Address(rscratch, 0), vector_len); 10097 } 10098 } 10099 10100 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10101 assert(rscratch != noreg || always_reachable(src), "missing"); 10102 10103 if (reachable(src)) { 10104 vpshufb(dst, nds, as_Address(src), vector_len); 10105 } else { 10106 lea(rscratch, src); 10107 vpshufb(dst, nds, Address(rscratch, 0), vector_len); 10108 } 10109 } 10110 10111 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 10112 assert(rscratch != noreg || always_reachable(src), "missing"); 10113 10114 if (reachable(src)) { 10115 Assembler::vpor(dst, nds, as_Address(src), vector_len); 10116 } else { 10117 lea(rscratch, src); 10118 Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len); 10119 } 10120 } 10121 10122 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 10123 assert(rscratch != noreg || always_reachable(src3), "missing"); 10124 10125 if (reachable(src3)) { 10126 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 10127 } else { 10128 lea(rscratch, src3); 10129 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 10130 } 10131 } 10132 10133 #if COMPILER2_OR_JVMCI 10134 10135 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 10136 Register length, Register temp, int vec_enc) { 10137 // Computing mask for predicated vector store. 10138 movptr(temp, -1); 10139 bzhiq(temp, temp, length); 10140 kmov(mask, temp); 10141 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 10142 } 10143 10144 // Set memory operation for length "less than" 64 bytes. 10145 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 10146 XMMRegister xmm, KRegister mask, Register length, 10147 Register temp, bool use64byteVector) { 10148 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10149 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10150 if (!use64byteVector) { 10151 fill32(dst, disp, xmm); 10152 subptr(length, 32 >> shift); 10153 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 10154 } else { 10155 assert(MaxVectorSize == 64, "vector length != 64"); 10156 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 10157 } 10158 } 10159 10160 10161 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 10162 XMMRegister xmm, KRegister mask, Register length, 10163 Register temp) { 10164 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10165 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 10166 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 10167 } 10168 10169 10170 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 10171 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10172 vmovdqu(dst, xmm); 10173 } 10174 10175 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 10176 fill32(Address(dst, disp), xmm); 10177 } 10178 10179 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 10180 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 10181 if (!use64byteVector) { 10182 fill32(dst, xmm); 10183 fill32(dst.plus_disp(32), xmm); 10184 } else { 10185 evmovdquq(dst, xmm, Assembler::AVX_512bit); 10186 } 10187 } 10188 10189 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 10190 fill64(Address(dst, disp), xmm, use64byteVector); 10191 } 10192 10193 #ifdef _LP64 10194 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 10195 Register count, Register rtmp, XMMRegister xtmp) { 10196 Label L_exit; 10197 Label L_fill_start; 10198 Label L_fill_64_bytes; 10199 Label L_fill_96_bytes; 10200 Label L_fill_128_bytes; 10201 Label L_fill_128_bytes_loop; 10202 Label L_fill_128_loop_header; 10203 Label L_fill_128_bytes_loop_header; 10204 Label L_fill_128_bytes_loop_pre_header; 10205 Label L_fill_zmm_sequence; 10206 10207 int shift = -1; 10208 int avx3threshold = VM_Version::avx3_threshold(); 10209 switch(type) { 10210 case T_BYTE: shift = 0; 10211 break; 10212 case T_SHORT: shift = 1; 10213 break; 10214 case T_INT: shift = 2; 10215 break; 10216 /* Uncomment when LONG fill stubs are supported. 10217 case T_LONG: shift = 3; 10218 break; 10219 */ 10220 default: 10221 fatal("Unhandled type: %s\n", type2name(type)); 10222 } 10223 10224 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 10225 10226 if (MaxVectorSize == 64) { 10227 cmpq(count, avx3threshold >> shift); 10228 jcc(Assembler::greater, L_fill_zmm_sequence); 10229 } 10230 10231 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 10232 10233 bind(L_fill_start); 10234 10235 cmpq(count, 32 >> shift); 10236 jccb(Assembler::greater, L_fill_64_bytes); 10237 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 10238 jmp(L_exit); 10239 10240 bind(L_fill_64_bytes); 10241 cmpq(count, 64 >> shift); 10242 jccb(Assembler::greater, L_fill_96_bytes); 10243 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 10244 jmp(L_exit); 10245 10246 bind(L_fill_96_bytes); 10247 cmpq(count, 96 >> shift); 10248 jccb(Assembler::greater, L_fill_128_bytes); 10249 fill64(to, 0, xtmp); 10250 subq(count, 64 >> shift); 10251 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 10252 jmp(L_exit); 10253 10254 bind(L_fill_128_bytes); 10255 cmpq(count, 128 >> shift); 10256 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 10257 fill64(to, 0, xtmp); 10258 fill32(to, 64, xtmp); 10259 subq(count, 96 >> shift); 10260 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 10261 jmp(L_exit); 10262 10263 bind(L_fill_128_bytes_loop_pre_header); 10264 { 10265 mov(rtmp, to); 10266 andq(rtmp, 31); 10267 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 10268 negq(rtmp); 10269 addq(rtmp, 32); 10270 mov64(r8, -1L); 10271 bzhiq(r8, r8, rtmp); 10272 kmovql(k2, r8); 10273 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 10274 addq(to, rtmp); 10275 shrq(rtmp, shift); 10276 subq(count, rtmp); 10277 } 10278 10279 cmpq(count, 128 >> shift); 10280 jcc(Assembler::less, L_fill_start); 10281 10282 bind(L_fill_128_bytes_loop_header); 10283 subq(count, 128 >> shift); 10284 10285 align32(); 10286 bind(L_fill_128_bytes_loop); 10287 fill64(to, 0, xtmp); 10288 fill64(to, 64, xtmp); 10289 addq(to, 128); 10290 subq(count, 128 >> shift); 10291 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 10292 10293 addq(count, 128 >> shift); 10294 jcc(Assembler::zero, L_exit); 10295 jmp(L_fill_start); 10296 } 10297 10298 if (MaxVectorSize == 64) { 10299 // Sequence using 64 byte ZMM register. 10300 Label L_fill_128_bytes_zmm; 10301 Label L_fill_192_bytes_zmm; 10302 Label L_fill_192_bytes_loop_zmm; 10303 Label L_fill_192_bytes_loop_header_zmm; 10304 Label L_fill_192_bytes_loop_pre_header_zmm; 10305 Label L_fill_start_zmm_sequence; 10306 10307 bind(L_fill_zmm_sequence); 10308 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 10309 10310 bind(L_fill_start_zmm_sequence); 10311 cmpq(count, 64 >> shift); 10312 jccb(Assembler::greater, L_fill_128_bytes_zmm); 10313 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 10314 jmp(L_exit); 10315 10316 bind(L_fill_128_bytes_zmm); 10317 cmpq(count, 128 >> shift); 10318 jccb(Assembler::greater, L_fill_192_bytes_zmm); 10319 fill64(to, 0, xtmp, true); 10320 subq(count, 64 >> shift); 10321 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 10322 jmp(L_exit); 10323 10324 bind(L_fill_192_bytes_zmm); 10325 cmpq(count, 192 >> shift); 10326 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 10327 fill64(to, 0, xtmp, true); 10328 fill64(to, 64, xtmp, true); 10329 subq(count, 128 >> shift); 10330 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 10331 jmp(L_exit); 10332 10333 bind(L_fill_192_bytes_loop_pre_header_zmm); 10334 { 10335 movq(rtmp, to); 10336 andq(rtmp, 63); 10337 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 10338 negq(rtmp); 10339 addq(rtmp, 64); 10340 mov64(r8, -1L); 10341 bzhiq(r8, r8, rtmp); 10342 kmovql(k2, r8); 10343 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 10344 addq(to, rtmp); 10345 shrq(rtmp, shift); 10346 subq(count, rtmp); 10347 } 10348 10349 cmpq(count, 192 >> shift); 10350 jcc(Assembler::less, L_fill_start_zmm_sequence); 10351 10352 bind(L_fill_192_bytes_loop_header_zmm); 10353 subq(count, 192 >> shift); 10354 10355 align32(); 10356 bind(L_fill_192_bytes_loop_zmm); 10357 fill64(to, 0, xtmp, true); 10358 fill64(to, 64, xtmp, true); 10359 fill64(to, 128, xtmp, true); 10360 addq(to, 192); 10361 subq(count, 192 >> shift); 10362 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 10363 10364 addq(count, 192 >> shift); 10365 jcc(Assembler::zero, L_exit); 10366 jmp(L_fill_start_zmm_sequence); 10367 } 10368 bind(L_exit); 10369 } 10370 #endif 10371 #endif //COMPILER2_OR_JVMCI 10372 10373 10374 #ifdef _LP64 10375 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 10376 Label done; 10377 cvttss2sil(dst, src); 10378 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10379 cmpl(dst, 0x80000000); // float_sign_flip 10380 jccb(Assembler::notEqual, done); 10381 subptr(rsp, 8); 10382 movflt(Address(rsp, 0), src); 10383 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 10384 pop(dst); 10385 bind(done); 10386 } 10387 10388 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 10389 Label done; 10390 cvttsd2sil(dst, src); 10391 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 10392 cmpl(dst, 0x80000000); // float_sign_flip 10393 jccb(Assembler::notEqual, done); 10394 subptr(rsp, 8); 10395 movdbl(Address(rsp, 0), src); 10396 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 10397 pop(dst); 10398 bind(done); 10399 } 10400 10401 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 10402 Label done; 10403 cvttss2siq(dst, src); 10404 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10405 jccb(Assembler::notEqual, done); 10406 subptr(rsp, 8); 10407 movflt(Address(rsp, 0), src); 10408 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 10409 pop(dst); 10410 bind(done); 10411 } 10412 10413 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10414 // Following code is line by line assembly translation rounding algorithm. 10415 // Please refer to java.lang.Math.round(float) algorithm for details. 10416 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 10417 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 10418 const int32_t FloatConsts_EXP_BIAS = 127; 10419 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 10420 const int32_t MINUS_32 = 0xFFFFFFE0; 10421 Label L_special_case, L_block1, L_exit; 10422 movl(rtmp, FloatConsts_EXP_BIT_MASK); 10423 movdl(dst, src); 10424 andl(dst, rtmp); 10425 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 10426 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 10427 subl(rtmp, dst); 10428 movl(rcx, rtmp); 10429 movl(dst, MINUS_32); 10430 testl(rtmp, dst); 10431 jccb(Assembler::notEqual, L_special_case); 10432 movdl(dst, src); 10433 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 10434 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 10435 movdl(rtmp, src); 10436 testl(rtmp, rtmp); 10437 jccb(Assembler::greaterEqual, L_block1); 10438 negl(dst); 10439 bind(L_block1); 10440 sarl(dst); 10441 addl(dst, 0x1); 10442 sarl(dst, 0x1); 10443 jmp(L_exit); 10444 bind(L_special_case); 10445 convert_f2i(dst, src); 10446 bind(L_exit); 10447 } 10448 10449 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 10450 // Following code is line by line assembly translation rounding algorithm. 10451 // Please refer to java.lang.Math.round(double) algorithm for details. 10452 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 10453 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 10454 const int64_t DoubleConsts_EXP_BIAS = 1023; 10455 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 10456 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 10457 Label L_special_case, L_block1, L_exit; 10458 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 10459 movq(dst, src); 10460 andq(dst, rtmp); 10461 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 10462 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 10463 subq(rtmp, dst); 10464 movq(rcx, rtmp); 10465 mov64(dst, MINUS_64); 10466 testq(rtmp, dst); 10467 jccb(Assembler::notEqual, L_special_case); 10468 movq(dst, src); 10469 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 10470 andq(dst, rtmp); 10471 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 10472 orq(dst, rtmp); 10473 movq(rtmp, src); 10474 testq(rtmp, rtmp); 10475 jccb(Assembler::greaterEqual, L_block1); 10476 negq(dst); 10477 bind(L_block1); 10478 sarq(dst); 10479 addq(dst, 0x1); 10480 sarq(dst, 0x1); 10481 jmp(L_exit); 10482 bind(L_special_case); 10483 convert_d2l(dst, src); 10484 bind(L_exit); 10485 } 10486 10487 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 10488 Label done; 10489 cvttsd2siq(dst, src); 10490 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 10491 jccb(Assembler::notEqual, done); 10492 subptr(rsp, 8); 10493 movdbl(Address(rsp, 0), src); 10494 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 10495 pop(dst); 10496 bind(done); 10497 } 10498 10499 void MacroAssembler::cache_wb(Address line) 10500 { 10501 // 64 bit cpus always support clflush 10502 assert(VM_Version::supports_clflush(), "clflush should be available"); 10503 bool optimized = VM_Version::supports_clflushopt(); 10504 bool no_evict = VM_Version::supports_clwb(); 10505 10506 // prefer clwb (writeback without evict) otherwise 10507 // prefer clflushopt (potentially parallel writeback with evict) 10508 // otherwise fallback on clflush (serial writeback with evict) 10509 10510 if (optimized) { 10511 if (no_evict) { 10512 clwb(line); 10513 } else { 10514 clflushopt(line); 10515 } 10516 } else { 10517 // no need for fence when using CLFLUSH 10518 clflush(line); 10519 } 10520 } 10521 10522 void MacroAssembler::cache_wbsync(bool is_pre) 10523 { 10524 assert(VM_Version::supports_clflush(), "clflush should be available"); 10525 bool optimized = VM_Version::supports_clflushopt(); 10526 bool no_evict = VM_Version::supports_clwb(); 10527 10528 // pick the correct implementation 10529 10530 if (!is_pre && (optimized || no_evict)) { 10531 // need an sfence for post flush when using clflushopt or clwb 10532 // otherwise no no need for any synchroniaztion 10533 10534 sfence(); 10535 } 10536 } 10537 10538 #endif // _LP64 10539 10540 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 10541 switch (cond) { 10542 // Note some conditions are synonyms for others 10543 case Assembler::zero: return Assembler::notZero; 10544 case Assembler::notZero: return Assembler::zero; 10545 case Assembler::less: return Assembler::greaterEqual; 10546 case Assembler::lessEqual: return Assembler::greater; 10547 case Assembler::greater: return Assembler::lessEqual; 10548 case Assembler::greaterEqual: return Assembler::less; 10549 case Assembler::below: return Assembler::aboveEqual; 10550 case Assembler::belowEqual: return Assembler::above; 10551 case Assembler::above: return Assembler::belowEqual; 10552 case Assembler::aboveEqual: return Assembler::below; 10553 case Assembler::overflow: return Assembler::noOverflow; 10554 case Assembler::noOverflow: return Assembler::overflow; 10555 case Assembler::negative: return Assembler::positive; 10556 case Assembler::positive: return Assembler::negative; 10557 case Assembler::parity: return Assembler::noParity; 10558 case Assembler::noParity: return Assembler::parity; 10559 } 10560 ShouldNotReachHere(); return Assembler::overflow; 10561 } 10562 10563 // 32-bit Windows has its own fast-path implementation 10564 // of get_thread 10565 #if !defined(WIN32) || defined(_LP64) 10566 10567 // This is simply a call to Thread::current() 10568 void MacroAssembler::get_thread(Register thread) { 10569 if (thread != rax) { 10570 push(rax); 10571 } 10572 LP64_ONLY(push(rdi);) 10573 LP64_ONLY(push(rsi);) 10574 push(rdx); 10575 push(rcx); 10576 #ifdef _LP64 10577 push(r8); 10578 push(r9); 10579 push(r10); 10580 push(r11); 10581 #endif 10582 10583 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 10584 10585 #ifdef _LP64 10586 pop(r11); 10587 pop(r10); 10588 pop(r9); 10589 pop(r8); 10590 #endif 10591 pop(rcx); 10592 pop(rdx); 10593 LP64_ONLY(pop(rsi);) 10594 LP64_ONLY(pop(rdi);) 10595 if (thread != rax) { 10596 mov(thread, rax); 10597 pop(rax); 10598 } 10599 } 10600 10601 10602 #endif // !WIN32 || _LP64 10603 10604 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 10605 Label L_stack_ok; 10606 if (bias == 0) { 10607 testptr(sp, 2 * wordSize - 1); 10608 } else { 10609 // lea(tmp, Address(rsp, bias); 10610 mov(tmp, sp); 10611 addptr(tmp, bias); 10612 testptr(tmp, 2 * wordSize - 1); 10613 } 10614 jcc(Assembler::equal, L_stack_ok); 10615 block_comment(msg); 10616 stop(msg); 10617 bind(L_stack_ok); 10618 } 10619 10620 // Implements lightweight-locking. 10621 // 10622 // obj: the object to be locked 10623 // reg_rax: rax 10624 // thread: the thread which attempts to lock obj 10625 // tmp: a temporary register 10626 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10627 assert(reg_rax == rax, ""); 10628 assert_different_registers(basic_lock, obj, reg_rax, thread, tmp); 10629 10630 Label push; 10631 const Register top = tmp; 10632 10633 // Preload the markWord. It is important that this is the first 10634 // instruction emitted as it is part of C1's null check semantics. 10635 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10636 10637 if (UseObjectMonitorTable) { 10638 // Clear cache in case fast locking succeeds. 10639 movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0); 10640 } 10641 10642 // Load top. 10643 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10644 10645 // Check if the lock-stack is full. 10646 cmpl(top, LockStack::end_offset()); 10647 jcc(Assembler::greaterEqual, slow); 10648 10649 // Check for recursion. 10650 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10651 jcc(Assembler::equal, push); 10652 10653 // Check header for monitor (0b10). 10654 testptr(reg_rax, markWord::monitor_value); 10655 jcc(Assembler::notZero, slow); 10656 10657 // Try to lock. Transition lock bits 0b01 => 0b00 10658 movptr(tmp, reg_rax); 10659 andptr(tmp, ~(int32_t)markWord::unlocked_value); 10660 orptr(reg_rax, markWord::unlocked_value); 10661 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10662 jcc(Assembler::notEqual, slow); 10663 10664 // Restore top, CAS clobbers register. 10665 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10666 10667 bind(push); 10668 // After successful lock, push object on lock-stack. 10669 movptr(Address(thread, top), obj); 10670 incrementl(top, oopSize); 10671 movl(Address(thread, JavaThread::lock_stack_top_offset()), top); 10672 } 10673 10674 // Implements lightweight-unlocking. 10675 // 10676 // obj: the object to be unlocked 10677 // reg_rax: rax 10678 // thread: the thread 10679 // tmp: a temporary register 10680 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) { 10681 assert(reg_rax == rax, ""); 10682 assert_different_registers(obj, reg_rax, thread, tmp); 10683 10684 Label unlocked, push_and_slow; 10685 const Register top = tmp; 10686 10687 // Check if obj is top of lock-stack. 10688 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10689 cmpptr(obj, Address(thread, top, Address::times_1, -oopSize)); 10690 jcc(Assembler::notEqual, slow); 10691 10692 // Pop lock-stack. 10693 DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);) 10694 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10695 10696 // Check if recursive. 10697 cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize)); 10698 jcc(Assembler::equal, unlocked); 10699 10700 // Not recursive. Check header for monitor (0b10). 10701 movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes())); 10702 testptr(reg_rax, markWord::monitor_value); 10703 jcc(Assembler::notZero, push_and_slow); 10704 10705 #ifdef ASSERT 10706 // Check header not unlocked (0b01). 10707 Label not_unlocked; 10708 testptr(reg_rax, markWord::unlocked_value); 10709 jcc(Assembler::zero, not_unlocked); 10710 stop("lightweight_unlock already unlocked"); 10711 bind(not_unlocked); 10712 #endif 10713 10714 // Try to unlock. Transition lock bits 0b00 => 0b01 10715 movptr(tmp, reg_rax); 10716 orptr(tmp, markWord::unlocked_value); 10717 lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 10718 jcc(Assembler::equal, unlocked); 10719 10720 bind(push_and_slow); 10721 // Restore lock-stack and handle the unlock in runtime. 10722 #ifdef ASSERT 10723 movl(top, Address(thread, JavaThread::lock_stack_top_offset())); 10724 movptr(Address(thread, top), obj); 10725 #endif 10726 addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 10727 jmp(slow); 10728 10729 bind(unlocked); 10730 } 10731 10732 #ifdef _LP64 10733 // Saves legacy GPRs state on stack. 10734 void MacroAssembler::save_legacy_gprs() { 10735 subq(rsp, 16 * wordSize); 10736 movq(Address(rsp, 15 * wordSize), rax); 10737 movq(Address(rsp, 14 * wordSize), rcx); 10738 movq(Address(rsp, 13 * wordSize), rdx); 10739 movq(Address(rsp, 12 * wordSize), rbx); 10740 movq(Address(rsp, 10 * wordSize), rbp); 10741 movq(Address(rsp, 9 * wordSize), rsi); 10742 movq(Address(rsp, 8 * wordSize), rdi); 10743 movq(Address(rsp, 7 * wordSize), r8); 10744 movq(Address(rsp, 6 * wordSize), r9); 10745 movq(Address(rsp, 5 * wordSize), r10); 10746 movq(Address(rsp, 4 * wordSize), r11); 10747 movq(Address(rsp, 3 * wordSize), r12); 10748 movq(Address(rsp, 2 * wordSize), r13); 10749 movq(Address(rsp, wordSize), r14); 10750 movq(Address(rsp, 0), r15); 10751 } 10752 10753 // Resotres back legacy GPRs state from stack. 10754 void MacroAssembler::restore_legacy_gprs() { 10755 movq(r15, Address(rsp, 0)); 10756 movq(r14, Address(rsp, wordSize)); 10757 movq(r13, Address(rsp, 2 * wordSize)); 10758 movq(r12, Address(rsp, 3 * wordSize)); 10759 movq(r11, Address(rsp, 4 * wordSize)); 10760 movq(r10, Address(rsp, 5 * wordSize)); 10761 movq(r9, Address(rsp, 6 * wordSize)); 10762 movq(r8, Address(rsp, 7 * wordSize)); 10763 movq(rdi, Address(rsp, 8 * wordSize)); 10764 movq(rsi, Address(rsp, 9 * wordSize)); 10765 movq(rbp, Address(rsp, 10 * wordSize)); 10766 movq(rbx, Address(rsp, 12 * wordSize)); 10767 movq(rdx, Address(rsp, 13 * wordSize)); 10768 movq(rcx, Address(rsp, 14 * wordSize)); 10769 movq(rax, Address(rsp, 15 * wordSize)); 10770 addq(rsp, 16 * wordSize); 10771 } 10772 10773 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) { 10774 if (VM_Version::supports_apx_f()) { 10775 esetzucc(comparison, dst); 10776 } else { 10777 setb(comparison, dst); 10778 movzbl(dst, dst); 10779 } 10780 } 10781 #endif