1 /*
    2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
    3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    4  *
    5  * This code is free software; you can redistribute it and/or modify it
    6  * under the terms of the GNU General Public License version 2 only, as
    7  * published by the Free Software Foundation.
    8  *
    9  * This code is distributed in the hope that it will be useful, but WITHOUT
   10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   12  * version 2 for more details (a copy is included in the LICENSE file that
   13  * accompanied this code).
   14  *
   15  * You should have received a copy of the GNU General Public License version
   16  * 2 along with this work; if not, write to the Free Software Foundation,
   17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   18  *
   19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   20  * or visit www.oracle.com if you need additional information or have any
   21  * questions.
   22  *
   23  */
   24 
   25 #include "precompiled.hpp"
   26 #include "asm/assembler.hpp"
   27 #include "asm/assembler.inline.hpp"
   28 #include "code/compiledIC.hpp"
   29 #include "compiler/compiler_globals.hpp"
   30 #include "compiler/disassembler.hpp"
   31 #include "ci/ciInlineKlass.hpp"
   32 #include "crc32c.h"
   33 #include "gc/shared/barrierSet.hpp"
   34 #include "gc/shared/barrierSetAssembler.hpp"
   35 #include "gc/shared/collectedHeap.inline.hpp"
   36 #include "gc/shared/tlab_globals.hpp"
   37 #include "interpreter/bytecodeHistogram.hpp"
   38 #include "interpreter/interpreter.hpp"
   39 #include "jvm.h"
   40 #include "memory/resourceArea.hpp"
   41 #include "memory/universe.hpp"
   42 #include "oops/accessDecorators.hpp"
   43 #include "oops/compressedKlass.inline.hpp"
   44 #include "oops/compressedOops.inline.hpp"
   45 #include "oops/klass.inline.hpp"
   46 #include "oops/resolvedFieldEntry.hpp"
   47 #include "prims/methodHandles.hpp"
   48 #include "runtime/continuation.hpp"
   49 #include "runtime/interfaceSupport.inline.hpp"
   50 #include "runtime/javaThread.hpp"
   51 #include "runtime/jniHandles.hpp"
   52 #include "runtime/objectMonitor.hpp"
   53 #include "runtime/os.hpp"
   54 #include "runtime/safepoint.hpp"
   55 #include "runtime/safepointMechanism.hpp"
   56 #include "runtime/sharedRuntime.hpp"
   57 #include "runtime/signature_cc.hpp"
   58 #include "runtime/stubRoutines.hpp"
   59 #include "utilities/checkedCast.hpp"
   60 #include "utilities/macros.hpp"
   61 #include "vmreg_x86.inline.hpp"
   62 #ifdef COMPILER2
   63 #include "opto/output.hpp"
   64 #endif
   65 
   66 #ifdef PRODUCT
   67 #define BLOCK_COMMENT(str) /* nothing */
   68 #define STOP(error) stop(error)
   69 #else
   70 #define BLOCK_COMMENT(str) block_comment(str)
   71 #define STOP(error) block_comment(error); stop(error)
   72 #endif
   73 
   74 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
   75 
   76 #ifdef ASSERT
   77 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
   78 #endif
   79 
   80 static const Assembler::Condition reverse[] = {
   81     Assembler::noOverflow     /* overflow      = 0x0 */ ,
   82     Assembler::overflow       /* noOverflow    = 0x1 */ ,
   83     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
   84     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
   85     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
   86     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
   87     Assembler::above          /* belowEqual    = 0x6 */ ,
   88     Assembler::belowEqual     /* above         = 0x7 */ ,
   89     Assembler::positive       /* negative      = 0x8 */ ,
   90     Assembler::negative       /* positive      = 0x9 */ ,
   91     Assembler::noParity       /* parity        = 0xa */ ,
   92     Assembler::parity         /* noParity      = 0xb */ ,
   93     Assembler::greaterEqual   /* less          = 0xc */ ,
   94     Assembler::less           /* greaterEqual  = 0xd */ ,
   95     Assembler::greater        /* lessEqual     = 0xe */ ,
   96     Assembler::lessEqual      /* greater       = 0xf, */
   97 
   98 };
   99 
  100 
  101 // Implementation of MacroAssembler
  102 
  103 // First all the versions that have distinct versions depending on 32/64 bit
  104 // Unless the difference is trivial (1 line or so).
  105 
  106 #ifndef _LP64
  107 
  108 // 32bit versions
  109 
  110 Address MacroAssembler::as_Address(AddressLiteral adr) {
  111   return Address(adr.target(), adr.rspec());
  112 }
  113 
  114 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  115   assert(rscratch == noreg, "");
  116   return Address::make_array(adr);
  117 }
  118 
  119 void MacroAssembler::call_VM_leaf_base(address entry_point,
  120                                        int number_of_arguments) {
  121   call(RuntimeAddress(entry_point));
  122   increment(rsp, number_of_arguments * wordSize);
  123 }
  124 
  125 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  126   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  127 }
  128 
  129 
  130 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  131   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  132 }
  133 
  134 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  135   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  136 }
  137 
  138 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) {
  139   assert(rscratch == noreg, "redundant");
  140   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  141 }
  142 
  143 void MacroAssembler::extend_sign(Register hi, Register lo) {
  144   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  145   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  146     cdql();
  147   } else {
  148     movl(hi, lo);
  149     sarl(hi, 31);
  150   }
  151 }
  152 
  153 void MacroAssembler::jC2(Register tmp, Label& L) {
  154   // set parity bit if FPU flag C2 is set (via rax)
  155   save_rax(tmp);
  156   fwait(); fnstsw_ax();
  157   sahf();
  158   restore_rax(tmp);
  159   // branch
  160   jcc(Assembler::parity, L);
  161 }
  162 
  163 void MacroAssembler::jnC2(Register tmp, Label& L) {
  164   // set parity bit if FPU flag C2 is set (via rax)
  165   save_rax(tmp);
  166   fwait(); fnstsw_ax();
  167   sahf();
  168   restore_rax(tmp);
  169   // branch
  170   jcc(Assembler::noParity, L);
  171 }
  172 
  173 // 32bit can do a case table jump in one instruction but we no longer allow the base
  174 // to be installed in the Address class
  175 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  176   assert(rscratch == noreg, "not needed");
  177   jmp(as_Address(entry, noreg));
  178 }
  179 
  180 // Note: y_lo will be destroyed
  181 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  182   // Long compare for Java (semantics as described in JVM spec.)
  183   Label high, low, done;
  184 
  185   cmpl(x_hi, y_hi);
  186   jcc(Assembler::less, low);
  187   jcc(Assembler::greater, high);
  188   // x_hi is the return register
  189   xorl(x_hi, x_hi);
  190   cmpl(x_lo, y_lo);
  191   jcc(Assembler::below, low);
  192   jcc(Assembler::equal, done);
  193 
  194   bind(high);
  195   xorl(x_hi, x_hi);
  196   increment(x_hi);
  197   jmp(done);
  198 
  199   bind(low);
  200   xorl(x_hi, x_hi);
  201   decrementl(x_hi);
  202 
  203   bind(done);
  204 }
  205 
  206 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  207   mov_literal32(dst, (int32_t)src.target(), src.rspec());
  208 }
  209 
  210 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  211   assert(rscratch == noreg, "not needed");
  212 
  213   // leal(dst, as_Address(adr));
  214   // see note in movl as to why we must use a move
  215   mov_literal32(dst, (int32_t)adr.target(), adr.rspec());
  216 }
  217 
  218 void MacroAssembler::leave() {
  219   mov(rsp, rbp);
  220   pop(rbp);
  221 }
  222 
  223 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  224   // Multiplication of two Java long values stored on the stack
  225   // as illustrated below. Result is in rdx:rax.
  226   //
  227   // rsp ---> [  ??  ] \               \
  228   //            ....    | y_rsp_offset  |
  229   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  230   //          [ y_hi ]                  | (in bytes)
  231   //            ....                    |
  232   //          [ x_lo ]                 /
  233   //          [ x_hi ]
  234   //            ....
  235   //
  236   // Basic idea: lo(result) = lo(x_lo * y_lo)
  237   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  238   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  239   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  240   Label quick;
  241   // load x_hi, y_hi and check if quick
  242   // multiplication is possible
  243   movl(rbx, x_hi);
  244   movl(rcx, y_hi);
  245   movl(rax, rbx);
  246   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  247   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  248   // do full multiplication
  249   // 1st step
  250   mull(y_lo);                                    // x_hi * y_lo
  251   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  252   // 2nd step
  253   movl(rax, x_lo);
  254   mull(rcx);                                     // x_lo * y_hi
  255   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  256   // 3rd step
  257   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  258   movl(rax, x_lo);
  259   mull(y_lo);                                    // x_lo * y_lo
  260   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  261 }
  262 
  263 void MacroAssembler::lneg(Register hi, Register lo) {
  264   negl(lo);
  265   adcl(hi, 0);
  266   negl(hi);
  267 }
  268 
  269 void MacroAssembler::lshl(Register hi, Register lo) {
  270   // Java shift left long support (semantics as described in JVM spec., p.305)
  271   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  272   // shift value is in rcx !
  273   assert(hi != rcx, "must not use rcx");
  274   assert(lo != rcx, "must not use rcx");
  275   const Register s = rcx;                        // shift count
  276   const int      n = BitsPerWord;
  277   Label L;
  278   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  279   cmpl(s, n);                                    // if (s < n)
  280   jcc(Assembler::less, L);                       // else (s >= n)
  281   movl(hi, lo);                                  // x := x << n
  282   xorl(lo, lo);
  283   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  284   bind(L);                                       // s (mod n) < n
  285   shldl(hi, lo);                                 // x := x << s
  286   shll(lo);
  287 }
  288 
  289 
  290 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  291   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  292   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  293   assert(hi != rcx, "must not use rcx");
  294   assert(lo != rcx, "must not use rcx");
  295   const Register s = rcx;                        // shift count
  296   const int      n = BitsPerWord;
  297   Label L;
  298   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  299   cmpl(s, n);                                    // if (s < n)
  300   jcc(Assembler::less, L);                       // else (s >= n)
  301   movl(lo, hi);                                  // x := x >> n
  302   if (sign_extension) sarl(hi, 31);
  303   else                xorl(hi, hi);
  304   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  305   bind(L);                                       // s (mod n) < n
  306   shrdl(lo, hi);                                 // x := x >> s
  307   if (sign_extension) sarl(hi);
  308   else                shrl(hi);
  309 }
  310 
  311 void MacroAssembler::movoop(Register dst, jobject obj) {
  312   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  313 }
  314 
  315 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  316   assert(rscratch == noreg, "redundant");
  317   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  318 }
  319 
  320 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  321   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  322 }
  323 
  324 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  325   assert(rscratch == noreg, "redundant");
  326   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  327 }
  328 
  329 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  330   if (src.is_lval()) {
  331     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  332   } else {
  333     movl(dst, as_Address(src));
  334   }
  335 }
  336 
  337 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  338   assert(rscratch == noreg, "redundant");
  339   movl(as_Address(dst, noreg), src);
  340 }
  341 
  342 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  343   movl(dst, as_Address(src, noreg));
  344 }
  345 
  346 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  347   assert(rscratch == noreg, "redundant");
  348   movl(dst, src);
  349 }
  350 
  351 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  352   assert(rscratch == noreg, "redundant");
  353   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  354 }
  355 
  356 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  357   assert(rscratch == noreg, "redundant");
  358   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  359 }
  360 
  361 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  362   assert(rscratch == noreg, "redundant");
  363   if (src.is_lval()) {
  364     push_literal32((int32_t)src.target(), src.rspec());
  365   } else {
  366     pushl(as_Address(src));
  367   }
  368 }
  369 
  370 static void pass_arg0(MacroAssembler* masm, Register arg) {
  371   masm->push(arg);
  372 }
  373 
  374 static void pass_arg1(MacroAssembler* masm, Register arg) {
  375   masm->push(arg);
  376 }
  377 
  378 static void pass_arg2(MacroAssembler* masm, Register arg) {
  379   masm->push(arg);
  380 }
  381 
  382 static void pass_arg3(MacroAssembler* masm, Register arg) {
  383   masm->push(arg);
  384 }
  385 
  386 #ifndef PRODUCT
  387 extern "C" void findpc(intptr_t x);
  388 #endif
  389 
  390 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  391   // In order to get locks to work, we need to fake a in_VM state
  392   JavaThread* thread = JavaThread::current();
  393   JavaThreadState saved_state = thread->thread_state();
  394   thread->set_thread_state(_thread_in_vm);
  395   if (ShowMessageBoxOnError) {
  396     JavaThread* thread = JavaThread::current();
  397     JavaThreadState saved_state = thread->thread_state();
  398     thread->set_thread_state(_thread_in_vm);
  399     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  400       ttyLocker ttyl;
  401       BytecodeCounter::print();
  402     }
  403     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  404     // This is the value of eip which points to where verify_oop will return.
  405     if (os::message_box(msg, "Execution stopped, print registers?")) {
  406       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  407       BREAKPOINT;
  408     }
  409   }
  410   fatal("DEBUG MESSAGE: %s", msg);
  411 }
  412 
  413 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  414   ttyLocker ttyl;
  415   DebuggingContext debugging{};
  416   tty->print_cr("eip = 0x%08x", eip);
  417 #ifndef PRODUCT
  418   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  419     tty->cr();
  420     findpc(eip);
  421     tty->cr();
  422   }
  423 #endif
  424 #define PRINT_REG(rax) \
  425   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  426   PRINT_REG(rax);
  427   PRINT_REG(rbx);
  428   PRINT_REG(rcx);
  429   PRINT_REG(rdx);
  430   PRINT_REG(rdi);
  431   PRINT_REG(rsi);
  432   PRINT_REG(rbp);
  433   PRINT_REG(rsp);
  434 #undef PRINT_REG
  435   // Print some words near top of staack.
  436   int* dump_sp = (int*) rsp;
  437   for (int col1 = 0; col1 < 8; col1++) {
  438     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  439     os::print_location(tty, *dump_sp++);
  440   }
  441   for (int row = 0; row < 16; row++) {
  442     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  443     for (int col = 0; col < 8; col++) {
  444       tty->print(" 0x%08x", *dump_sp++);
  445     }
  446     tty->cr();
  447   }
  448   // Print some instructions around pc:
  449   Disassembler::decode((address)eip-64, (address)eip);
  450   tty->print_cr("--------");
  451   Disassembler::decode((address)eip, (address)eip+32);
  452 }
  453 
  454 void MacroAssembler::stop(const char* msg) {
  455   // push address of message
  456   ExternalAddress message((address)msg);
  457   pushptr(message.addr(), noreg);
  458   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  459   pusha();                                            // push registers
  460   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  461   hlt();
  462 }
  463 
  464 void MacroAssembler::warn(const char* msg) {
  465   push_CPU_state();
  466 
  467   // push address of message
  468   ExternalAddress message((address)msg);
  469   pushptr(message.addr(), noreg);
  470 
  471   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  472   addl(rsp, wordSize);       // discard argument
  473   pop_CPU_state();
  474 }
  475 
  476 void MacroAssembler::print_state() {
  477   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  478   pusha();                                            // push registers
  479 
  480   push_CPU_state();
  481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  482   pop_CPU_state();
  483 
  484   popa();
  485   addl(rsp, wordSize);
  486 }
  487 
  488 #else // _LP64
  489 
  490 // 64 bit versions
  491 
  492 Address MacroAssembler::as_Address(AddressLiteral adr) {
  493   // amd64 always does this as a pc-rel
  494   // we can be absolute or disp based on the instruction type
  495   // jmp/call are displacements others are absolute
  496   assert(!adr.is_lval(), "must be rval");
  497   assert(reachable(adr), "must be");
  498   return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc());
  499 
  500 }
  501 
  502 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) {
  503   AddressLiteral base = adr.base();
  504   lea(rscratch, base);
  505   Address index = adr.index();
  506   assert(index._disp == 0, "must not have disp"); // maybe it can?
  507   Address array(rscratch, index._index, index._scale, index._disp);
  508   return array;
  509 }
  510 
  511 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  512   Label L, E;
  513 
  514 #ifdef _WIN64
  515   // Windows always allocates space for it's register args
  516   assert(num_args <= 4, "only register arguments supported");
  517   subq(rsp,  frame::arg_reg_save_area_bytes);
  518 #endif
  519 
  520   // Align stack if necessary
  521   testl(rsp, 15);
  522   jcc(Assembler::zero, L);
  523 
  524   subq(rsp, 8);
  525   call(RuntimeAddress(entry_point));
  526   addq(rsp, 8);
  527   jmp(E);
  528 
  529   bind(L);
  530   call(RuntimeAddress(entry_point));
  531 
  532   bind(E);
  533 
  534 #ifdef _WIN64
  535   // restore stack pointer
  536   addq(rsp, frame::arg_reg_save_area_bytes);
  537 #endif
  538 
  539 }
  540 
  541 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) {
  542   assert(!src2.is_lval(), "should use cmpptr");
  543   assert(rscratch != noreg || always_reachable(src2), "missing");
  544 
  545   if (reachable(src2)) {
  546     cmpq(src1, as_Address(src2));
  547   } else {
  548     lea(rscratch, src2);
  549     Assembler::cmpq(src1, Address(rscratch, 0));
  550   }
  551 }
  552 
  553 int MacroAssembler::corrected_idivq(Register reg) {
  554   // Full implementation of Java ldiv and lrem; checks for special
  555   // case as described in JVM spec., p.243 & p.271.  The function
  556   // returns the (pc) offset of the idivl instruction - may be needed
  557   // for implicit exceptions.
  558   //
  559   //         normal case                           special case
  560   //
  561   // input : rax: dividend                         min_long
  562   //         reg: divisor   (may not be eax/edx)   -1
  563   //
  564   // output: rax: quotient  (= rax idiv reg)       min_long
  565   //         rdx: remainder (= rax irem reg)       0
  566   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  567   static const int64_t min_long = 0x8000000000000000;
  568   Label normal_case, special_case;
  569 
  570   // check for special case
  571   cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/);
  572   jcc(Assembler::notEqual, normal_case);
  573   xorl(rdx, rdx); // prepare rdx for possible special case (where
  574                   // remainder = 0)
  575   cmpq(reg, -1);
  576   jcc(Assembler::equal, special_case);
  577 
  578   // handle normal case
  579   bind(normal_case);
  580   cdqq();
  581   int idivq_offset = offset();
  582   idivq(reg);
  583 
  584   // normal and special case exit
  585   bind(special_case);
  586 
  587   return idivq_offset;
  588 }
  589 
  590 void MacroAssembler::decrementq(Register reg, int value) {
  591   if (value == min_jint) { subq(reg, value); return; }
  592   if (value <  0) { incrementq(reg, -value); return; }
  593   if (value == 0) {                        ; return; }
  594   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  595   /* else */      { subq(reg, value)       ; return; }
  596 }
  597 
  598 void MacroAssembler::decrementq(Address dst, int value) {
  599   if (value == min_jint) { subq(dst, value); return; }
  600   if (value <  0) { incrementq(dst, -value); return; }
  601   if (value == 0) {                        ; return; }
  602   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  603   /* else */      { subq(dst, value)       ; return; }
  604 }
  605 
  606 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) {
  607   assert(rscratch != noreg || always_reachable(dst), "missing");
  608 
  609   if (reachable(dst)) {
  610     incrementq(as_Address(dst));
  611   } else {
  612     lea(rscratch, dst);
  613     incrementq(Address(rscratch, 0));
  614   }
  615 }
  616 
  617 void MacroAssembler::incrementq(Register reg, int value) {
  618   if (value == min_jint) { addq(reg, value); return; }
  619   if (value <  0) { decrementq(reg, -value); return; }
  620   if (value == 0) {                        ; return; }
  621   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  622   /* else */      { addq(reg, value)       ; return; }
  623 }
  624 
  625 void MacroAssembler::incrementq(Address dst, int value) {
  626   if (value == min_jint) { addq(dst, value); return; }
  627   if (value <  0) { decrementq(dst, -value); return; }
  628   if (value == 0) {                        ; return; }
  629   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  630   /* else */      { addq(dst, value)       ; return; }
  631 }
  632 
  633 // 32bit can do a case table jump in one instruction but we no longer allow the base
  634 // to be installed in the Address class
  635 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) {
  636   lea(rscratch, entry.base());
  637   Address dispatch = entry.index();
  638   assert(dispatch._base == noreg, "must be");
  639   dispatch._base = rscratch;
  640   jmp(dispatch);
  641 }
  642 
  643 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  644   ShouldNotReachHere(); // 64bit doesn't use two regs
  645   cmpq(x_lo, y_lo);
  646 }
  647 
  648 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  649   mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  650 }
  651 
  652 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) {
  653   lea(rscratch, adr);
  654   movptr(dst, rscratch);
  655 }
  656 
  657 void MacroAssembler::leave() {
  658   // %%% is this really better? Why not on 32bit too?
  659   emit_int8((unsigned char)0xC9); // LEAVE
  660 }
  661 
  662 void MacroAssembler::lneg(Register hi, Register lo) {
  663   ShouldNotReachHere(); // 64bit doesn't use two regs
  664   negq(lo);
  665 }
  666 
  667 void MacroAssembler::movoop(Register dst, jobject obj) {
  668   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  669 }
  670 
  671 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) {
  672   mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  673   movq(dst, rscratch);
  674 }
  675 
  676 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  677   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  678 }
  679 
  680 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) {
  681   mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  682   movq(dst, rscratch);
  683 }
  684 
  685 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  686   if (src.is_lval()) {
  687     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  688   } else {
  689     if (reachable(src)) {
  690       movq(dst, as_Address(src));
  691     } else {
  692       lea(dst, src);
  693       movq(dst, Address(dst, 0));
  694     }
  695   }
  696 }
  697 
  698 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) {
  699   movq(as_Address(dst, rscratch), src);
  700 }
  701 
  702 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  703   movq(dst, as_Address(src, dst /*rscratch*/));
  704 }
  705 
  706 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  707 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) {
  708   if (is_simm32(src)) {
  709     movptr(dst, checked_cast<int32_t>(src));
  710   } else {
  711     mov64(rscratch, src);
  712     movq(dst, rscratch);
  713   }
  714 }
  715 
  716 void MacroAssembler::pushoop(jobject obj, Register rscratch) {
  717   movoop(rscratch, obj);
  718   push(rscratch);
  719 }
  720 
  721 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) {
  722   mov_metadata(rscratch, obj);
  723   push(rscratch);
  724 }
  725 
  726 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) {
  727   lea(rscratch, src);
  728   if (src.is_lval()) {
  729     push(rscratch);
  730   } else {
  731     pushq(Address(rscratch, 0));
  732   }
  733 }
  734 
  735 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
  736   reset_last_Java_frame(r15_thread, clear_fp);
  737 }
  738 
  739 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  740                                          Register last_java_fp,
  741                                          address  last_java_pc,
  742                                          Register rscratch) {
  743   set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch);
  744 }
  745 
  746 static void pass_arg0(MacroAssembler* masm, Register arg) {
  747   if (c_rarg0 != arg ) {
  748     masm->mov(c_rarg0, arg);
  749   }
  750 }
  751 
  752 static void pass_arg1(MacroAssembler* masm, Register arg) {
  753   if (c_rarg1 != arg ) {
  754     masm->mov(c_rarg1, arg);
  755   }
  756 }
  757 
  758 static void pass_arg2(MacroAssembler* masm, Register arg) {
  759   if (c_rarg2 != arg ) {
  760     masm->mov(c_rarg2, arg);
  761   }
  762 }
  763 
  764 static void pass_arg3(MacroAssembler* masm, Register arg) {
  765   if (c_rarg3 != arg ) {
  766     masm->mov(c_rarg3, arg);
  767   }
  768 }
  769 
  770 void MacroAssembler::stop(const char* msg) {
  771   if (ShowMessageBoxOnError) {
  772     address rip = pc();
  773     pusha(); // get regs on stack
  774     lea(c_rarg1, InternalAddress(rip));
  775     movq(c_rarg2, rsp); // pass pointer to regs array
  776   }
  777   lea(c_rarg0, ExternalAddress((address) msg));
  778   andq(rsp, -16); // align stack as required by ABI
  779   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  780   hlt();
  781 }
  782 
  783 void MacroAssembler::warn(const char* msg) {
  784   push(rbp);
  785   movq(rbp, rsp);
  786   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  787   push_CPU_state();   // keeps alignment at 16 bytes
  788 
  789   lea(c_rarg0, ExternalAddress((address) msg));
  790   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  791 
  792   pop_CPU_state();
  793   mov(rsp, rbp);
  794   pop(rbp);
  795 }
  796 
  797 void MacroAssembler::print_state() {
  798   address rip = pc();
  799   pusha();            // get regs on stack
  800   push(rbp);
  801   movq(rbp, rsp);
  802   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  803   push_CPU_state();   // keeps alignment at 16 bytes
  804 
  805   lea(c_rarg0, InternalAddress(rip));
  806   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  807   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  808 
  809   pop_CPU_state();
  810   mov(rsp, rbp);
  811   pop(rbp);
  812   popa();
  813 }
  814 
  815 #ifndef PRODUCT
  816 extern "C" void findpc(intptr_t x);
  817 #endif
  818 
  819 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  820   // In order to get locks to work, we need to fake a in_VM state
  821   if (ShowMessageBoxOnError) {
  822     JavaThread* thread = JavaThread::current();
  823     JavaThreadState saved_state = thread->thread_state();
  824     thread->set_thread_state(_thread_in_vm);
  825 #ifndef PRODUCT
  826     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  827       ttyLocker ttyl;
  828       BytecodeCounter::print();
  829     }
  830 #endif
  831     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  832     // XXX correct this offset for amd64
  833     // This is the value of eip which points to where verify_oop will return.
  834     if (os::message_box(msg, "Execution stopped, print registers?")) {
  835       print_state64(pc, regs);
  836       BREAKPOINT;
  837     }
  838   }
  839   fatal("DEBUG MESSAGE: %s", msg);
  840 }
  841 
  842 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  843   ttyLocker ttyl;
  844   DebuggingContext debugging{};
  845   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
  846 #ifndef PRODUCT
  847   tty->cr();
  848   findpc(pc);
  849   tty->cr();
  850 #endif
  851 #define PRINT_REG(rax, value) \
  852   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  853   PRINT_REG(rax, regs[15]);
  854   PRINT_REG(rbx, regs[12]);
  855   PRINT_REG(rcx, regs[14]);
  856   PRINT_REG(rdx, regs[13]);
  857   PRINT_REG(rdi, regs[8]);
  858   PRINT_REG(rsi, regs[9]);
  859   PRINT_REG(rbp, regs[10]);
  860   // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp
  861   PRINT_REG(rsp, (intptr_t)(&regs[16]));
  862   PRINT_REG(r8 , regs[7]);
  863   PRINT_REG(r9 , regs[6]);
  864   PRINT_REG(r10, regs[5]);
  865   PRINT_REG(r11, regs[4]);
  866   PRINT_REG(r12, regs[3]);
  867   PRINT_REG(r13, regs[2]);
  868   PRINT_REG(r14, regs[1]);
  869   PRINT_REG(r15, regs[0]);
  870 #undef PRINT_REG
  871   // Print some words near the top of the stack.
  872   int64_t* rsp = &regs[16];
  873   int64_t* dump_sp = rsp;
  874   for (int col1 = 0; col1 < 8; col1++) {
  875     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  876     os::print_location(tty, *dump_sp++);
  877   }
  878   for (int row = 0; row < 25; row++) {
  879     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  880     for (int col = 0; col < 4; col++) {
  881       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
  882     }
  883     tty->cr();
  884   }
  885   // Print some instructions around pc:
  886   Disassembler::decode((address)pc-64, (address)pc);
  887   tty->print_cr("--------");
  888   Disassembler::decode((address)pc, (address)pc+32);
  889 }
  890 
  891 // The java_calling_convention describes stack locations as ideal slots on
  892 // a frame with no abi restrictions. Since we must observe abi restrictions
  893 // (like the placement of the register window) the slots must be biased by
  894 // the following value.
  895 static int reg2offset_in(VMReg r) {
  896   // Account for saved rbp and return address
  897   // This should really be in_preserve_stack_slots
  898   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
  899 }
  900 
  901 static int reg2offset_out(VMReg r) {
  902   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
  903 }
  904 
  905 // A long move
  906 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  907 
  908   // The calling conventions assures us that each VMregpair is either
  909   // all really one physical register or adjacent stack slots.
  910 
  911   if (src.is_single_phys_reg() ) {
  912     if (dst.is_single_phys_reg()) {
  913       if (dst.first() != src.first()) {
  914         mov(dst.first()->as_Register(), src.first()->as_Register());
  915       }
  916     } else {
  917       assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)",
  918              src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name());
  919       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
  920     }
  921   } else if (dst.is_single_phys_reg()) {
  922     assert(src.is_single_reg(),  "not a stack pair");
  923     movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  924   } else {
  925     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  926     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  927     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  928   }
  929 }
  930 
  931 // A double move
  932 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  933 
  934   // The calling conventions assures us that each VMregpair is either
  935   // all really one physical register or adjacent stack slots.
  936 
  937   if (src.is_single_phys_reg() ) {
  938     if (dst.is_single_phys_reg()) {
  939       // In theory these overlap but the ordering is such that this is likely a nop
  940       if ( src.first() != dst.first()) {
  941         movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  942       }
  943     } else {
  944       assert(dst.is_single_reg(), "not a stack pair");
  945       movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  946     }
  947   } else if (dst.is_single_phys_reg()) {
  948     assert(src.is_single_reg(),  "not a stack pair");
  949     movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  950   } else {
  951     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  952     movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  953     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  954   }
  955 }
  956 
  957 
  958 // A float arg may have to do float reg int reg conversion
  959 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  960   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  961 
  962   // The calling conventions assures us that each VMregpair is either
  963   // all really one physical register or adjacent stack slots.
  964 
  965   if (src.first()->is_stack()) {
  966     if (dst.first()->is_stack()) {
  967       movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  968       movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  969     } else {
  970       // stack to reg
  971       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  972       movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  973     }
  974   } else if (dst.first()->is_stack()) {
  975     // reg to stack
  976     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  977     movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister());
  978   } else {
  979     // reg to reg
  980     // In theory these overlap but the ordering is such that this is likely a nop
  981     if ( src.first() != dst.first()) {
  982       movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  983     }
  984   }
  985 }
  986 
  987 // On 64 bit we will store integer like items to the stack as
  988 // 64 bits items (x86_32/64 abi) even though java would only store
  989 // 32bits for a parameter. On 32bit it will simply be 32 bits
  990 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  991 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) {
  992   if (src.first()->is_stack()) {
  993     if (dst.first()->is_stack()) {
  994       // stack to stack
  995       movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
  996       movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp);
  997     } else {
  998       // stack to reg
  999       movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias));
 1000     }
 1001   } else if (dst.first()->is_stack()) {
 1002     // reg to stack
 1003     // Do we really have to sign extend???
 1004     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 1005     movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register());
 1006   } else {
 1007     // Do we really have to sign extend???
 1008     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 1009     if (dst.first() != src.first()) {
 1010       movq(dst.first()->as_Register(), src.first()->as_Register());
 1011     }
 1012   }
 1013 }
 1014 
 1015 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) {
 1016   if (src.first()->is_stack()) {
 1017     if (dst.first()->is_stack()) {
 1018       // stack to stack
 1019       movq(rax, Address(rbp, reg2offset_in(src.first())));
 1020       movq(Address(rsp, reg2offset_out(dst.first())), rax);
 1021     } else {
 1022       // stack to reg
 1023       movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 1024     }
 1025   } else if (dst.first()->is_stack()) {
 1026     // reg to stack
 1027     movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 1028   } else {
 1029     if (dst.first() != src.first()) {
 1030       movq(dst.first()->as_Register(), src.first()->as_Register());
 1031     }
 1032   }
 1033 }
 1034 
 1035 // An oop arg. Must pass a handle not the oop itself
 1036 void MacroAssembler::object_move(OopMap* map,
 1037                         int oop_handle_offset,
 1038                         int framesize_in_slots,
 1039                         VMRegPair src,
 1040                         VMRegPair dst,
 1041                         bool is_receiver,
 1042                         int* receiver_offset) {
 1043 
 1044   // must pass a handle. First figure out the location we use as a handle
 1045 
 1046   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 1047 
 1048   // See if oop is null if it is we need no handle
 1049 
 1050   if (src.first()->is_stack()) {
 1051 
 1052     // Oop is already on the stack as an argument
 1053     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 1054     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 1055     if (is_receiver) {
 1056       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 1057     }
 1058 
 1059     cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD);
 1060     lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 1061     // conditionally move a null
 1062     cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 1063   } else {
 1064 
 1065     // Oop is in a register we must store it to the space we reserve
 1066     // on the stack for oop_handles and pass a handle if oop is non-null
 1067 
 1068     const Register rOop = src.first()->as_Register();
 1069     int oop_slot;
 1070     if (rOop == j_rarg0)
 1071       oop_slot = 0;
 1072     else if (rOop == j_rarg1)
 1073       oop_slot = 1;
 1074     else if (rOop == j_rarg2)
 1075       oop_slot = 2;
 1076     else if (rOop == j_rarg3)
 1077       oop_slot = 3;
 1078     else if (rOop == j_rarg4)
 1079       oop_slot = 4;
 1080     else {
 1081       assert(rOop == j_rarg5, "wrong register");
 1082       oop_slot = 5;
 1083     }
 1084 
 1085     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
 1086     int offset = oop_slot*VMRegImpl::stack_slot_size;
 1087 
 1088     map->set_oop(VMRegImpl::stack2reg(oop_slot));
 1089     // Store oop in handle area, may be null
 1090     movptr(Address(rsp, offset), rOop);
 1091     if (is_receiver) {
 1092       *receiver_offset = offset;
 1093     }
 1094 
 1095     cmpptr(rOop, NULL_WORD);
 1096     lea(rHandle, Address(rsp, offset));
 1097     // conditionally move a null from the handle area where it was just stored
 1098     cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
 1099   }
 1100 
 1101   // If arg is on the stack then place it otherwise it is already in correct reg.
 1102   if (dst.first()->is_stack()) {
 1103     movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 1104   }
 1105 }
 1106 
 1107 #endif // _LP64
 1108 
 1109 // Now versions that are common to 32/64 bit
 1110 
 1111 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 1112   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 1113 }
 1114 
 1115 void MacroAssembler::addptr(Register dst, Register src) {
 1116   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1117 }
 1118 
 1119 void MacroAssembler::addptr(Address dst, Register src) {
 1120   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 1121 }
 1122 
 1123 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1124   assert(rscratch != noreg || always_reachable(src), "missing");
 1125 
 1126   if (reachable(src)) {
 1127     Assembler::addsd(dst, as_Address(src));
 1128   } else {
 1129     lea(rscratch, src);
 1130     Assembler::addsd(dst, Address(rscratch, 0));
 1131   }
 1132 }
 1133 
 1134 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1135   assert(rscratch != noreg || always_reachable(src), "missing");
 1136 
 1137   if (reachable(src)) {
 1138     addss(dst, as_Address(src));
 1139   } else {
 1140     lea(rscratch, src);
 1141     addss(dst, Address(rscratch, 0));
 1142   }
 1143 }
 1144 
 1145 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1146   assert(rscratch != noreg || always_reachable(src), "missing");
 1147 
 1148   if (reachable(src)) {
 1149     Assembler::addpd(dst, as_Address(src));
 1150   } else {
 1151     lea(rscratch, src);
 1152     Assembler::addpd(dst, Address(rscratch, 0));
 1153   }
 1154 }
 1155 
 1156 // See 8273459.  Function for ensuring 64-byte alignment, intended for stubs only.
 1157 // Stub code is generated once and never copied.
 1158 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes.
 1159 void MacroAssembler::align64() {
 1160   align(64, (uint)(uintptr_t)pc());
 1161 }
 1162 
 1163 void MacroAssembler::align32() {
 1164   align(32, (uint)(uintptr_t)pc());
 1165 }
 1166 
 1167 void MacroAssembler::align(uint modulus) {
 1168   // 8273459: Ensure alignment is possible with current segment alignment
 1169   assert(modulus <= (uintx)CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment");
 1170   align(modulus, offset());
 1171 }
 1172 
 1173 void MacroAssembler::align(uint modulus, uint target) {
 1174   if (target % modulus != 0) {
 1175     nop(modulus - (target % modulus));
 1176   }
 1177 }
 1178 
 1179 void MacroAssembler::push_f(XMMRegister r) {
 1180   subptr(rsp, wordSize);
 1181   movflt(Address(rsp, 0), r);
 1182 }
 1183 
 1184 void MacroAssembler::pop_f(XMMRegister r) {
 1185   movflt(r, Address(rsp, 0));
 1186   addptr(rsp, wordSize);
 1187 }
 1188 
 1189 void MacroAssembler::push_d(XMMRegister r) {
 1190   subptr(rsp, 2 * wordSize);
 1191   movdbl(Address(rsp, 0), r);
 1192 }
 1193 
 1194 void MacroAssembler::pop_d(XMMRegister r) {
 1195   movdbl(r, Address(rsp, 0));
 1196   addptr(rsp, 2 * Interpreter::stackElementSize);
 1197 }
 1198 
 1199 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1200   // Used in sign-masking with aligned address.
 1201   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1202   assert(rscratch != noreg || always_reachable(src), "missing");
 1203 
 1204   if (reachable(src)) {
 1205     Assembler::andpd(dst, as_Address(src));
 1206   } else {
 1207     lea(rscratch, src);
 1208     Assembler::andpd(dst, Address(rscratch, 0));
 1209   }
 1210 }
 1211 
 1212 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1213   // Used in sign-masking with aligned address.
 1214   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 1215   assert(rscratch != noreg || always_reachable(src), "missing");
 1216 
 1217   if (reachable(src)) {
 1218     Assembler::andps(dst, as_Address(src));
 1219   } else {
 1220     lea(rscratch, src);
 1221     Assembler::andps(dst, Address(rscratch, 0));
 1222   }
 1223 }
 1224 
 1225 void MacroAssembler::andptr(Register dst, int32_t imm32) {
 1226   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
 1227 }
 1228 
 1229 #ifdef _LP64
 1230 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) {
 1231   assert(rscratch != noreg || always_reachable(src), "missing");
 1232 
 1233   if (reachable(src)) {
 1234     andq(dst, as_Address(src));
 1235   } else {
 1236     lea(rscratch, src);
 1237     andq(dst, Address(rscratch, 0));
 1238   }
 1239 }
 1240 #endif
 1241 
 1242 void MacroAssembler::atomic_incl(Address counter_addr) {
 1243   lock();
 1244   incrementl(counter_addr);
 1245 }
 1246 
 1247 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) {
 1248   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1249 
 1250   if (reachable(counter_addr)) {
 1251     atomic_incl(as_Address(counter_addr));
 1252   } else {
 1253     lea(rscratch, counter_addr);
 1254     atomic_incl(Address(rscratch, 0));
 1255   }
 1256 }
 1257 
 1258 #ifdef _LP64
 1259 void MacroAssembler::atomic_incq(Address counter_addr) {
 1260   lock();
 1261   incrementq(counter_addr);
 1262 }
 1263 
 1264 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) {
 1265   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1266 
 1267   if (reachable(counter_addr)) {
 1268     atomic_incq(as_Address(counter_addr));
 1269   } else {
 1270     lea(rscratch, counter_addr);
 1271     atomic_incq(Address(rscratch, 0));
 1272   }
 1273 }
 1274 #endif
 1275 
 1276 // Writes to stack successive pages until offset reached to check for
 1277 // stack overflow + shadow pages.  This clobbers tmp.
 1278 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
 1279   movptr(tmp, rsp);
 1280   // Bang stack for total size given plus shadow page size.
 1281   // Bang one page at a time because large size can bang beyond yellow and
 1282   // red zones.
 1283   Label loop;
 1284   bind(loop);
 1285   movl(Address(tmp, (-(int)os::vm_page_size())), size );
 1286   subptr(tmp, (int)os::vm_page_size());
 1287   subl(size, (int)os::vm_page_size());
 1288   jcc(Assembler::greater, loop);
 1289 
 1290   // Bang down shadow pages too.
 1291   // At this point, (tmp-0) is the last address touched, so don't
 1292   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
 1293   // was post-decremented.)  Skip this address by starting at i=1, and
 1294   // touch a few more pages below.  N.B.  It is important to touch all
 1295   // the way down including all pages in the shadow zone.
 1296   for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) {
 1297     // this could be any sized move but this is can be a debugging crumb
 1298     // so the bigger the better.
 1299     movptr(Address(tmp, (-i*(int)os::vm_page_size())), size );
 1300   }
 1301 }
 1302 
 1303 void MacroAssembler::reserved_stack_check() {
 1304   // testing if reserved zone needs to be enabled
 1305   Label no_reserved_zone_enabling;
 1306   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 1307   NOT_LP64(get_thread(rsi);)
 1308 
 1309   cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
 1310   jcc(Assembler::below, no_reserved_zone_enabling);
 1311 
 1312   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
 1313   jump(RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
 1314   should_not_reach_here();
 1315 
 1316   bind(no_reserved_zone_enabling);
 1317 }
 1318 
 1319 void MacroAssembler::c2bool(Register x) {
 1320   // implements x == 0 ? 0 : 1
 1321   // note: must only look at least-significant byte of x
 1322   //       since C-style booleans are stored in one byte
 1323   //       only! (was bug)
 1324   andl(x, 0xFF);
 1325   setb(Assembler::notZero, x);
 1326 }
 1327 
 1328 // Wouldn't need if AddressLiteral version had new name
 1329 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
 1330   Assembler::call(L, rtype);
 1331 }
 1332 
 1333 void MacroAssembler::call(Register entry) {
 1334   Assembler::call(entry);
 1335 }
 1336 
 1337 void MacroAssembler::call(AddressLiteral entry, Register rscratch) {
 1338   assert(rscratch != noreg || always_reachable(entry), "missing");
 1339 
 1340   if (reachable(entry)) {
 1341     Assembler::call_literal(entry.target(), entry.rspec());
 1342   } else {
 1343     lea(rscratch, entry);
 1344     Assembler::call(rscratch);
 1345   }
 1346 }
 1347 
 1348 void MacroAssembler::ic_call(address entry, jint method_index) {
 1349   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 1350 #ifdef _LP64
 1351   // Needs full 64-bit immediate for later patching.
 1352   mov64(rax, (int64_t)Universe::non_oop_word());
 1353 #else
 1354   movptr(rax, (intptr_t)Universe::non_oop_word());
 1355 #endif
 1356   call(AddressLiteral(entry, rh));
 1357 }
 1358 
 1359 int MacroAssembler::ic_check_size() {
 1360   return LP64_ONLY(14) NOT_LP64(12);
 1361 }
 1362 
 1363 int MacroAssembler::ic_check(int end_alignment) {
 1364   Register receiver = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
 1365   Register data = rax;
 1366   Register temp = LP64_ONLY(rscratch1) NOT_LP64(rbx);
 1367 
 1368   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
 1369   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
 1370   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
 1371   // before the inline cache check here, and not after
 1372   align(end_alignment, offset() + ic_check_size());
 1373 
 1374   int uep_offset = offset();
 1375 
 1376   if (UseCompressedClassPointers) {
 1377     movl(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1378     cmpl(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1379   } else {
 1380     movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 1381     cmpptr(temp, Address(data, CompiledICData::speculated_klass_offset()));
 1382   }
 1383 
 1384   // if inline cache check fails, then jump to runtime routine
 1385   jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 1386   assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
 1387 
 1388   return uep_offset;
 1389 }
 1390 
 1391 void MacroAssembler::emit_static_call_stub() {
 1392   // Static stub relocation also tags the Method* in the code-stream.
 1393   mov_metadata(rbx, (Metadata*) nullptr);  // Method is zapped till fixup time.
 1394   // This is recognized as unresolved by relocs/nativeinst/ic code.
 1395   jump(RuntimeAddress(pc()));
 1396 }
 1397 
 1398 // Implementation of call_VM versions
 1399 
 1400 void MacroAssembler::call_VM(Register oop_result,
 1401                              address entry_point,
 1402                              bool check_exceptions) {
 1403   Label C, E;
 1404   call(C, relocInfo::none);
 1405   jmp(E);
 1406 
 1407   bind(C);
 1408   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 1409   ret(0);
 1410 
 1411   bind(E);
 1412 }
 1413 
 1414 void MacroAssembler::call_VM(Register oop_result,
 1415                              address entry_point,
 1416                              Register arg_1,
 1417                              bool check_exceptions) {
 1418   Label C, E;
 1419   call(C, relocInfo::none);
 1420   jmp(E);
 1421 
 1422   bind(C);
 1423   pass_arg1(this, arg_1);
 1424   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 1425   ret(0);
 1426 
 1427   bind(E);
 1428 }
 1429 
 1430 void MacroAssembler::call_VM(Register oop_result,
 1431                              address entry_point,
 1432                              Register arg_1,
 1433                              Register arg_2,
 1434                              bool check_exceptions) {
 1435   Label C, E;
 1436   call(C, relocInfo::none);
 1437   jmp(E);
 1438 
 1439   bind(C);
 1440 
 1441   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1442 
 1443   pass_arg2(this, arg_2);
 1444   pass_arg1(this, arg_1);
 1445   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 1446   ret(0);
 1447 
 1448   bind(E);
 1449 }
 1450 
 1451 void MacroAssembler::call_VM(Register oop_result,
 1452                              address entry_point,
 1453                              Register arg_1,
 1454                              Register arg_2,
 1455                              Register arg_3,
 1456                              bool check_exceptions) {
 1457   Label C, E;
 1458   call(C, relocInfo::none);
 1459   jmp(E);
 1460 
 1461   bind(C);
 1462 
 1463   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1464   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1465   pass_arg3(this, arg_3);
 1466   pass_arg2(this, arg_2);
 1467   pass_arg1(this, arg_1);
 1468   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 1469   ret(0);
 1470 
 1471   bind(E);
 1472 }
 1473 
 1474 void MacroAssembler::call_VM(Register oop_result,
 1475                              Register last_java_sp,
 1476                              address entry_point,
 1477                              int number_of_arguments,
 1478                              bool check_exceptions) {
 1479   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1480   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1481 }
 1482 
 1483 void MacroAssembler::call_VM(Register oop_result,
 1484                              Register last_java_sp,
 1485                              address entry_point,
 1486                              Register arg_1,
 1487                              bool check_exceptions) {
 1488   pass_arg1(this, arg_1);
 1489   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1490 }
 1491 
 1492 void MacroAssembler::call_VM(Register oop_result,
 1493                              Register last_java_sp,
 1494                              address entry_point,
 1495                              Register arg_1,
 1496                              Register arg_2,
 1497                              bool check_exceptions) {
 1498 
 1499   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1500   pass_arg2(this, arg_2);
 1501   pass_arg1(this, arg_1);
 1502   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1503 }
 1504 
 1505 void MacroAssembler::call_VM(Register oop_result,
 1506                              Register last_java_sp,
 1507                              address entry_point,
 1508                              Register arg_1,
 1509                              Register arg_2,
 1510                              Register arg_3,
 1511                              bool check_exceptions) {
 1512   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1513   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1514   pass_arg3(this, arg_3);
 1515   pass_arg2(this, arg_2);
 1516   pass_arg1(this, arg_1);
 1517   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1518 }
 1519 
 1520 void MacroAssembler::super_call_VM(Register oop_result,
 1521                                    Register last_java_sp,
 1522                                    address entry_point,
 1523                                    int number_of_arguments,
 1524                                    bool check_exceptions) {
 1525   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
 1526   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 1527 }
 1528 
 1529 void MacroAssembler::super_call_VM(Register oop_result,
 1530                                    Register last_java_sp,
 1531                                    address entry_point,
 1532                                    Register arg_1,
 1533                                    bool check_exceptions) {
 1534   pass_arg1(this, arg_1);
 1535   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 1536 }
 1537 
 1538 void MacroAssembler::super_call_VM(Register oop_result,
 1539                                    Register last_java_sp,
 1540                                    address entry_point,
 1541                                    Register arg_1,
 1542                                    Register arg_2,
 1543                                    bool check_exceptions) {
 1544 
 1545   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1546   pass_arg2(this, arg_2);
 1547   pass_arg1(this, arg_1);
 1548   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 1549 }
 1550 
 1551 void MacroAssembler::super_call_VM(Register oop_result,
 1552                                    Register last_java_sp,
 1553                                    address entry_point,
 1554                                    Register arg_1,
 1555                                    Register arg_2,
 1556                                    Register arg_3,
 1557                                    bool check_exceptions) {
 1558   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1559   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1560   pass_arg3(this, arg_3);
 1561   pass_arg2(this, arg_2);
 1562   pass_arg1(this, arg_1);
 1563   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 1564 }
 1565 
 1566 void MacroAssembler::call_VM_base(Register oop_result,
 1567                                   Register java_thread,
 1568                                   Register last_java_sp,
 1569                                   address  entry_point,
 1570                                   int      number_of_arguments,
 1571                                   bool     check_exceptions) {
 1572   // determine java_thread register
 1573   if (!java_thread->is_valid()) {
 1574 #ifdef _LP64
 1575     java_thread = r15_thread;
 1576 #else
 1577     java_thread = rdi;
 1578     get_thread(java_thread);
 1579 #endif // LP64
 1580   }
 1581   // determine last_java_sp register
 1582   if (!last_java_sp->is_valid()) {
 1583     last_java_sp = rsp;
 1584   }
 1585   // debugging support
 1586   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 1587   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
 1588 #ifdef ASSERT
 1589   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 1590   // r12 is the heapbase.
 1591   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
 1592 #endif // ASSERT
 1593 
 1594   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 1595   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 1596 
 1597   // push java thread (becomes first argument of C function)
 1598 
 1599   NOT_LP64(push(java_thread); number_of_arguments++);
 1600   LP64_ONLY(mov(c_rarg0, r15_thread));
 1601 
 1602   // set last Java frame before call
 1603   assert(last_java_sp != rbp, "can't use ebp/rbp");
 1604 
 1605   // Only interpreter should have to set fp
 1606   set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1);
 1607 
 1608   // do the call, remove parameters
 1609   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 1610 
 1611   // restore the thread (cannot use the pushed argument since arguments
 1612   // may be overwritten by C code generated by an optimizing compiler);
 1613   // however can use the register value directly if it is callee saved.
 1614   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
 1615     // rdi & rsi (also r15) are callee saved -> nothing to do
 1616 #ifdef ASSERT
 1617     guarantee(java_thread != rax, "change this code");
 1618     push(rax);
 1619     { Label L;
 1620       get_thread(rax);
 1621       cmpptr(java_thread, rax);
 1622       jcc(Assembler::equal, L);
 1623       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
 1624       bind(L);
 1625     }
 1626     pop(rax);
 1627 #endif
 1628   } else {
 1629     get_thread(java_thread);
 1630   }
 1631   // reset last Java frame
 1632   // Only interpreter should have to clear fp
 1633   reset_last_Java_frame(java_thread, true);
 1634 
 1635    // C++ interp handles this in the interpreter
 1636   check_and_handle_popframe(java_thread);
 1637   check_and_handle_earlyret(java_thread);
 1638 
 1639   if (check_exceptions) {
 1640     // check for pending exceptions (java_thread is set upon return)
 1641     cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
 1642 #ifndef _LP64
 1643     jump_cc(Assembler::notEqual,
 1644             RuntimeAddress(StubRoutines::forward_exception_entry()));
 1645 #else
 1646     // This used to conditionally jump to forward_exception however it is
 1647     // possible if we relocate that the branch will not reach. So we must jump
 1648     // around so we can always reach
 1649 
 1650     Label ok;
 1651     jcc(Assembler::equal, ok);
 1652     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 1653     bind(ok);
 1654 #endif // LP64
 1655   }
 1656 
 1657   // get oop result if there is one and reset the value in the thread
 1658   if (oop_result->is_valid()) {
 1659     get_vm_result(oop_result, java_thread);
 1660   }
 1661 }
 1662 
 1663 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 1664 
 1665   // Calculate the value for last_Java_sp
 1666   // somewhat subtle. call_VM does an intermediate call
 1667   // which places a return address on the stack just under the
 1668   // stack pointer as the user finished with it. This allows
 1669   // use to retrieve last_Java_pc from last_Java_sp[-1].
 1670   // On 32bit we then have to push additional args on the stack to accomplish
 1671   // the actual requested call. On 64bit call_VM only can use register args
 1672   // so the only extra space is the return address that call_VM created.
 1673   // This hopefully explains the calculations here.
 1674 
 1675 #ifdef _LP64
 1676   // We've pushed one address, correct last_Java_sp
 1677   lea(rax, Address(rsp, wordSize));
 1678 #else
 1679   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
 1680 #endif // LP64
 1681 
 1682   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
 1683 
 1684 }
 1685 
 1686 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
 1687 void MacroAssembler::call_VM_leaf0(address entry_point) {
 1688   MacroAssembler::call_VM_leaf_base(entry_point, 0);
 1689 }
 1690 
 1691 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
 1692   call_VM_leaf_base(entry_point, number_of_arguments);
 1693 }
 1694 
 1695 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
 1696   pass_arg0(this, arg_0);
 1697   call_VM_leaf(entry_point, 1);
 1698 }
 1699 
 1700 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1701 
 1702   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1703   pass_arg1(this, arg_1);
 1704   pass_arg0(this, arg_0);
 1705   call_VM_leaf(entry_point, 2);
 1706 }
 1707 
 1708 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1709   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1710   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1711   pass_arg2(this, arg_2);
 1712   pass_arg1(this, arg_1);
 1713   pass_arg0(this, arg_0);
 1714   call_VM_leaf(entry_point, 3);
 1715 }
 1716 
 1717 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1718   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1719   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1720   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1721   pass_arg3(this, arg_3);
 1722   pass_arg2(this, arg_2);
 1723   pass_arg1(this, arg_1);
 1724   pass_arg0(this, arg_0);
 1725   call_VM_leaf(entry_point, 3);
 1726 }
 1727 
 1728 void MacroAssembler::super_call_VM_leaf(address entry_point) {
 1729   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1730 }
 1731 
 1732 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
 1733   pass_arg0(this, arg_0);
 1734   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 1735 }
 1736 
 1737 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
 1738   LP64_ONLY(assert_different_registers(arg_0, c_rarg1));
 1739   pass_arg1(this, arg_1);
 1740   pass_arg0(this, arg_0);
 1741   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 1742 }
 1743 
 1744 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
 1745   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2));
 1746   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
 1747   pass_arg2(this, arg_2);
 1748   pass_arg1(this, arg_1);
 1749   pass_arg0(this, arg_0);
 1750   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 1751 }
 1752 
 1753 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
 1754   LP64_ONLY(assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3));
 1755   LP64_ONLY(assert_different_registers(arg_1, c_rarg2, c_rarg3));
 1756   LP64_ONLY(assert_different_registers(arg_2, c_rarg3));
 1757   pass_arg3(this, arg_3);
 1758   pass_arg2(this, arg_2);
 1759   pass_arg1(this, arg_1);
 1760   pass_arg0(this, arg_0);
 1761   MacroAssembler::call_VM_leaf_base(entry_point, 4);
 1762 }
 1763 
 1764 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 1765   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 1766   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
 1767   verify_oop_msg(oop_result, "broken oop in call_VM_base");
 1768 }
 1769 
 1770 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 1771   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 1772   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 1773 }
 1774 
 1775 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
 1776 }
 1777 
 1778 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
 1779 }
 1780 
 1781 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) {
 1782   assert(rscratch != noreg || always_reachable(src1), "missing");
 1783 
 1784   if (reachable(src1)) {
 1785     cmpl(as_Address(src1), imm);
 1786   } else {
 1787     lea(rscratch, src1);
 1788     cmpl(Address(rscratch, 0), imm);
 1789   }
 1790 }
 1791 
 1792 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) {
 1793   assert(!src2.is_lval(), "use cmpptr");
 1794   assert(rscratch != noreg || always_reachable(src2), "missing");
 1795 
 1796   if (reachable(src2)) {
 1797     cmpl(src1, as_Address(src2));
 1798   } else {
 1799     lea(rscratch, src2);
 1800     cmpl(src1, Address(rscratch, 0));
 1801   }
 1802 }
 1803 
 1804 void MacroAssembler::cmp32(Register src1, int32_t imm) {
 1805   Assembler::cmpl(src1, imm);
 1806 }
 1807 
 1808 void MacroAssembler::cmp32(Register src1, Address src2) {
 1809   Assembler::cmpl(src1, src2);
 1810 }
 1811 
 1812 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1813   ucomisd(opr1, opr2);
 1814 
 1815   Label L;
 1816   if (unordered_is_less) {
 1817     movl(dst, -1);
 1818     jcc(Assembler::parity, L);
 1819     jcc(Assembler::below , L);
 1820     movl(dst, 0);
 1821     jcc(Assembler::equal , L);
 1822     increment(dst);
 1823   } else { // unordered is greater
 1824     movl(dst, 1);
 1825     jcc(Assembler::parity, L);
 1826     jcc(Assembler::above , L);
 1827     movl(dst, 0);
 1828     jcc(Assembler::equal , L);
 1829     decrementl(dst);
 1830   }
 1831   bind(L);
 1832 }
 1833 
 1834 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
 1835   ucomiss(opr1, opr2);
 1836 
 1837   Label L;
 1838   if (unordered_is_less) {
 1839     movl(dst, -1);
 1840     jcc(Assembler::parity, L);
 1841     jcc(Assembler::below , L);
 1842     movl(dst, 0);
 1843     jcc(Assembler::equal , L);
 1844     increment(dst);
 1845   } else { // unordered is greater
 1846     movl(dst, 1);
 1847     jcc(Assembler::parity, L);
 1848     jcc(Assembler::above , L);
 1849     movl(dst, 0);
 1850     jcc(Assembler::equal , L);
 1851     decrementl(dst);
 1852   }
 1853   bind(L);
 1854 }
 1855 
 1856 
 1857 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) {
 1858   assert(rscratch != noreg || always_reachable(src1), "missing");
 1859 
 1860   if (reachable(src1)) {
 1861     cmpb(as_Address(src1), imm);
 1862   } else {
 1863     lea(rscratch, src1);
 1864     cmpb(Address(rscratch, 0), imm);
 1865   }
 1866 }
 1867 
 1868 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) {
 1869 #ifdef _LP64
 1870   assert(rscratch != noreg || always_reachable(src2), "missing");
 1871 
 1872   if (src2.is_lval()) {
 1873     movptr(rscratch, src2);
 1874     Assembler::cmpq(src1, rscratch);
 1875   } else if (reachable(src2)) {
 1876     cmpq(src1, as_Address(src2));
 1877   } else {
 1878     lea(rscratch, src2);
 1879     Assembler::cmpq(src1, Address(rscratch, 0));
 1880   }
 1881 #else
 1882   assert(rscratch == noreg, "not needed");
 1883   if (src2.is_lval()) {
 1884     cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1885   } else {
 1886     cmpl(src1, as_Address(src2));
 1887   }
 1888 #endif // _LP64
 1889 }
 1890 
 1891 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) {
 1892   assert(src2.is_lval(), "not a mem-mem compare");
 1893 #ifdef _LP64
 1894   // moves src2's literal address
 1895   movptr(rscratch, src2);
 1896   Assembler::cmpq(src1, rscratch);
 1897 #else
 1898   assert(rscratch == noreg, "not needed");
 1899   cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
 1900 #endif // _LP64
 1901 }
 1902 
 1903 void MacroAssembler::cmpoop(Register src1, Register src2) {
 1904   cmpptr(src1, src2);
 1905 }
 1906 
 1907 void MacroAssembler::cmpoop(Register src1, Address src2) {
 1908   cmpptr(src1, src2);
 1909 }
 1910 
 1911 #ifdef _LP64
 1912 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) {
 1913   movoop(rscratch, src2);
 1914   cmpptr(src1, rscratch);
 1915 }
 1916 #endif
 1917 
 1918 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) {
 1919   assert(rscratch != noreg || always_reachable(adr), "missing");
 1920 
 1921   if (reachable(adr)) {
 1922     lock();
 1923     cmpxchgptr(reg, as_Address(adr));
 1924   } else {
 1925     lea(rscratch, adr);
 1926     lock();
 1927     cmpxchgptr(reg, Address(rscratch, 0));
 1928   }
 1929 }
 1930 
 1931 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
 1932   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
 1933 }
 1934 
 1935 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1936   assert(rscratch != noreg || always_reachable(src), "missing");
 1937 
 1938   if (reachable(src)) {
 1939     Assembler::comisd(dst, as_Address(src));
 1940   } else {
 1941     lea(rscratch, src);
 1942     Assembler::comisd(dst, Address(rscratch, 0));
 1943   }
 1944 }
 1945 
 1946 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 1947   assert(rscratch != noreg || always_reachable(src), "missing");
 1948 
 1949   if (reachable(src)) {
 1950     Assembler::comiss(dst, as_Address(src));
 1951   } else {
 1952     lea(rscratch, src);
 1953     Assembler::comiss(dst, Address(rscratch, 0));
 1954   }
 1955 }
 1956 
 1957 
 1958 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) {
 1959   assert(rscratch != noreg || always_reachable(counter_addr), "missing");
 1960 
 1961   Condition negated_cond = negate_condition(cond);
 1962   Label L;
 1963   jcc(negated_cond, L);
 1964   pushf(); // Preserve flags
 1965   atomic_incl(counter_addr, rscratch);
 1966   popf();
 1967   bind(L);
 1968 }
 1969 
 1970 int MacroAssembler::corrected_idivl(Register reg) {
 1971   // Full implementation of Java idiv and irem; checks for
 1972   // special case as described in JVM spec., p.243 & p.271.
 1973   // The function returns the (pc) offset of the idivl
 1974   // instruction - may be needed for implicit exceptions.
 1975   //
 1976   //         normal case                           special case
 1977   //
 1978   // input : rax,: dividend                         min_int
 1979   //         reg: divisor   (may not be rax,/rdx)   -1
 1980   //
 1981   // output: rax,: quotient  (= rax, idiv reg)       min_int
 1982   //         rdx: remainder (= rax, irem reg)       0
 1983   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
 1984   const int min_int = 0x80000000;
 1985   Label normal_case, special_case;
 1986 
 1987   // check for special case
 1988   cmpl(rax, min_int);
 1989   jcc(Assembler::notEqual, normal_case);
 1990   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
 1991   cmpl(reg, -1);
 1992   jcc(Assembler::equal, special_case);
 1993 
 1994   // handle normal case
 1995   bind(normal_case);
 1996   cdql();
 1997   int idivl_offset = offset();
 1998   idivl(reg);
 1999 
 2000   // normal and special case exit
 2001   bind(special_case);
 2002 
 2003   return idivl_offset;
 2004 }
 2005 
 2006 
 2007 
 2008 void MacroAssembler::decrementl(Register reg, int value) {
 2009   if (value == min_jint) {subl(reg, value) ; return; }
 2010   if (value <  0) { incrementl(reg, -value); return; }
 2011   if (value == 0) {                        ; return; }
 2012   if (value == 1 && UseIncDec) { decl(reg) ; return; }
 2013   /* else */      { subl(reg, value)       ; return; }
 2014 }
 2015 
 2016 void MacroAssembler::decrementl(Address dst, int value) {
 2017   if (value == min_jint) {subl(dst, value) ; return; }
 2018   if (value <  0) { incrementl(dst, -value); return; }
 2019   if (value == 0) {                        ; return; }
 2020   if (value == 1 && UseIncDec) { decl(dst) ; return; }
 2021   /* else */      { subl(dst, value)       ; return; }
 2022 }
 2023 
 2024 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
 2025   assert(shift_value > 0, "illegal shift value");
 2026   Label _is_positive;
 2027   testl (reg, reg);
 2028   jcc (Assembler::positive, _is_positive);
 2029   int offset = (1 << shift_value) - 1 ;
 2030 
 2031   if (offset == 1) {
 2032     incrementl(reg);
 2033   } else {
 2034     addl(reg, offset);
 2035   }
 2036 
 2037   bind (_is_positive);
 2038   sarl(reg, shift_value);
 2039 }
 2040 
 2041 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2042   assert(rscratch != noreg || always_reachable(src), "missing");
 2043 
 2044   if (reachable(src)) {
 2045     Assembler::divsd(dst, as_Address(src));
 2046   } else {
 2047     lea(rscratch, src);
 2048     Assembler::divsd(dst, Address(rscratch, 0));
 2049   }
 2050 }
 2051 
 2052 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2053   assert(rscratch != noreg || always_reachable(src), "missing");
 2054 
 2055   if (reachable(src)) {
 2056     Assembler::divss(dst, as_Address(src));
 2057   } else {
 2058     lea(rscratch, src);
 2059     Assembler::divss(dst, Address(rscratch, 0));
 2060   }
 2061 }
 2062 
 2063 void MacroAssembler::enter() {
 2064   push(rbp);
 2065   mov(rbp, rsp);
 2066 }
 2067 
 2068 void MacroAssembler::post_call_nop() {
 2069   if (!Continuations::enabled()) {
 2070     return;
 2071   }
 2072   InstructionMark im(this);
 2073   relocate(post_call_nop_Relocation::spec());
 2074   InlineSkippedInstructionsCounter skipCounter(this);
 2075   emit_int8((uint8_t)0x0f);
 2076   emit_int8((uint8_t)0x1f);
 2077   emit_int8((uint8_t)0x84);
 2078   emit_int8((uint8_t)0x00);
 2079   emit_int32(0x00);
 2080 }
 2081 
 2082 // A 5 byte nop that is safe for patching (see patch_verified_entry)
 2083 void MacroAssembler::fat_nop() {
 2084   if (UseAddressNop) {
 2085     addr_nop_5();
 2086   } else {
 2087     emit_int8((uint8_t)0x26); // es:
 2088     emit_int8((uint8_t)0x2e); // cs:
 2089     emit_int8((uint8_t)0x64); // fs:
 2090     emit_int8((uint8_t)0x65); // gs:
 2091     emit_int8((uint8_t)0x90);
 2092   }
 2093 }
 2094 
 2095 #ifndef _LP64
 2096 void MacroAssembler::fcmp(Register tmp) {
 2097   fcmp(tmp, 1, true, true);
 2098 }
 2099 
 2100 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
 2101   assert(!pop_right || pop_left, "usage error");
 2102   if (VM_Version::supports_cmov()) {
 2103     assert(tmp == noreg, "unneeded temp");
 2104     if (pop_left) {
 2105       fucomip(index);
 2106     } else {
 2107       fucomi(index);
 2108     }
 2109     if (pop_right) {
 2110       fpop();
 2111     }
 2112   } else {
 2113     assert(tmp != noreg, "need temp");
 2114     if (pop_left) {
 2115       if (pop_right) {
 2116         fcompp();
 2117       } else {
 2118         fcomp(index);
 2119       }
 2120     } else {
 2121       fcom(index);
 2122     }
 2123     // convert FPU condition into eflags condition via rax,
 2124     save_rax(tmp);
 2125     fwait(); fnstsw_ax();
 2126     sahf();
 2127     restore_rax(tmp);
 2128   }
 2129   // condition codes set as follows:
 2130   //
 2131   // CF (corresponds to C0) if x < y
 2132   // PF (corresponds to C2) if unordered
 2133   // ZF (corresponds to C3) if x = y
 2134 }
 2135 
 2136 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
 2137   fcmp2int(dst, unordered_is_less, 1, true, true);
 2138 }
 2139 
 2140 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
 2141   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
 2142   Label L;
 2143   if (unordered_is_less) {
 2144     movl(dst, -1);
 2145     jcc(Assembler::parity, L);
 2146     jcc(Assembler::below , L);
 2147     movl(dst, 0);
 2148     jcc(Assembler::equal , L);
 2149     increment(dst);
 2150   } else { // unordered is greater
 2151     movl(dst, 1);
 2152     jcc(Assembler::parity, L);
 2153     jcc(Assembler::above , L);
 2154     movl(dst, 0);
 2155     jcc(Assembler::equal , L);
 2156     decrementl(dst);
 2157   }
 2158   bind(L);
 2159 }
 2160 
 2161 void MacroAssembler::fld_d(AddressLiteral src) {
 2162   fld_d(as_Address(src));
 2163 }
 2164 
 2165 void MacroAssembler::fld_s(AddressLiteral src) {
 2166   fld_s(as_Address(src));
 2167 }
 2168 
 2169 void MacroAssembler::fldcw(AddressLiteral src) {
 2170   fldcw(as_Address(src));
 2171 }
 2172 
 2173 void MacroAssembler::fpop() {
 2174   ffree();
 2175   fincstp();
 2176 }
 2177 
 2178 void MacroAssembler::fremr(Register tmp) {
 2179   save_rax(tmp);
 2180   { Label L;
 2181     bind(L);
 2182     fprem();
 2183     fwait(); fnstsw_ax();
 2184     sahf();
 2185     jcc(Assembler::parity, L);
 2186   }
 2187   restore_rax(tmp);
 2188   // Result is in ST0.
 2189   // Note: fxch & fpop to get rid of ST1
 2190   // (otherwise FPU stack could overflow eventually)
 2191   fxch(1);
 2192   fpop();
 2193 }
 2194 
 2195 void MacroAssembler::empty_FPU_stack() {
 2196   if (VM_Version::supports_mmx()) {
 2197     emms();
 2198   } else {
 2199     for (int i = 8; i-- > 0; ) ffree(i);
 2200   }
 2201 }
 2202 #endif // !LP64
 2203 
 2204 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2205   assert(rscratch != noreg || always_reachable(src), "missing");
 2206   if (reachable(src)) {
 2207     Assembler::mulpd(dst, as_Address(src));
 2208   } else {
 2209     lea(rscratch, src);
 2210     Assembler::mulpd(dst, Address(rscratch, 0));
 2211   }
 2212 }
 2213 
 2214 void MacroAssembler::load_float(Address src) {
 2215 #ifdef _LP64
 2216   movflt(xmm0, src);
 2217 #else
 2218   if (UseSSE >= 1) {
 2219     movflt(xmm0, src);
 2220   } else {
 2221     fld_s(src);
 2222   }
 2223 #endif // LP64
 2224 }
 2225 
 2226 void MacroAssembler::store_float(Address dst) {
 2227 #ifdef _LP64
 2228   movflt(dst, xmm0);
 2229 #else
 2230   if (UseSSE >= 1) {
 2231     movflt(dst, xmm0);
 2232   } else {
 2233     fstp_s(dst);
 2234   }
 2235 #endif // LP64
 2236 }
 2237 
 2238 void MacroAssembler::load_double(Address src) {
 2239 #ifdef _LP64
 2240   movdbl(xmm0, src);
 2241 #else
 2242   if (UseSSE >= 2) {
 2243     movdbl(xmm0, src);
 2244   } else {
 2245     fld_d(src);
 2246   }
 2247 #endif // LP64
 2248 }
 2249 
 2250 void MacroAssembler::store_double(Address dst) {
 2251 #ifdef _LP64
 2252   movdbl(dst, xmm0);
 2253 #else
 2254   if (UseSSE >= 2) {
 2255     movdbl(dst, xmm0);
 2256   } else {
 2257     fstp_d(dst);
 2258   }
 2259 #endif // LP64
 2260 }
 2261 
 2262 // dst = c = a * b + c
 2263 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2264   Assembler::vfmadd231sd(c, a, b);
 2265   if (dst != c) {
 2266     movdbl(dst, c);
 2267   }
 2268 }
 2269 
 2270 // dst = c = a * b + c
 2271 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
 2272   Assembler::vfmadd231ss(c, a, b);
 2273   if (dst != c) {
 2274     movflt(dst, c);
 2275   }
 2276 }
 2277 
 2278 // dst = c = a * b + c
 2279 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2280   Assembler::vfmadd231pd(c, a, b, vector_len);
 2281   if (dst != c) {
 2282     vmovdqu(dst, c);
 2283   }
 2284 }
 2285 
 2286 // dst = c = a * b + c
 2287 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
 2288   Assembler::vfmadd231ps(c, a, b, vector_len);
 2289   if (dst != c) {
 2290     vmovdqu(dst, c);
 2291   }
 2292 }
 2293 
 2294 // dst = c = a * b + c
 2295 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2296   Assembler::vfmadd231pd(c, a, b, vector_len);
 2297   if (dst != c) {
 2298     vmovdqu(dst, c);
 2299   }
 2300 }
 2301 
 2302 // dst = c = a * b + c
 2303 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
 2304   Assembler::vfmadd231ps(c, a, b, vector_len);
 2305   if (dst != c) {
 2306     vmovdqu(dst, c);
 2307   }
 2308 }
 2309 
 2310 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) {
 2311   assert(rscratch != noreg || always_reachable(dst), "missing");
 2312 
 2313   if (reachable(dst)) {
 2314     incrementl(as_Address(dst));
 2315   } else {
 2316     lea(rscratch, dst);
 2317     incrementl(Address(rscratch, 0));
 2318   }
 2319 }
 2320 
 2321 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) {
 2322   incrementl(as_Address(dst, rscratch));
 2323 }
 2324 
 2325 void MacroAssembler::incrementl(Register reg, int value) {
 2326   if (value == min_jint) {addl(reg, value) ; return; }
 2327   if (value <  0) { decrementl(reg, -value); return; }
 2328   if (value == 0) {                        ; return; }
 2329   if (value == 1 && UseIncDec) { incl(reg) ; return; }
 2330   /* else */      { addl(reg, value)       ; return; }
 2331 }
 2332 
 2333 void MacroAssembler::incrementl(Address dst, int value) {
 2334   if (value == min_jint) {addl(dst, value) ; return; }
 2335   if (value <  0) { decrementl(dst, -value); return; }
 2336   if (value == 0) {                        ; return; }
 2337   if (value == 1 && UseIncDec) { incl(dst) ; return; }
 2338   /* else */      { addl(dst, value)       ; return; }
 2339 }
 2340 
 2341 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) {
 2342   assert(rscratch != noreg || always_reachable(dst), "missing");
 2343   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump");
 2344   if (reachable(dst)) {
 2345     jmp_literal(dst.target(), dst.rspec());
 2346   } else {
 2347     lea(rscratch, dst);
 2348     jmp(rscratch);
 2349   }
 2350 }
 2351 
 2352 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) {
 2353   assert(rscratch != noreg || always_reachable(dst), "missing");
 2354   assert(!dst.rspec().reloc()->is_data(), "should not use ExternalAddress for jump_cc");
 2355   if (reachable(dst)) {
 2356     InstructionMark im(this);
 2357     relocate(dst.reloc());
 2358     const int short_size = 2;
 2359     const int long_size = 6;
 2360     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
 2361     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
 2362       // 0111 tttn #8-bit disp
 2363       emit_int8(0x70 | cc);
 2364       emit_int8((offs - short_size) & 0xFF);
 2365     } else {
 2366       // 0000 1111 1000 tttn #32-bit disp
 2367       emit_int8(0x0F);
 2368       emit_int8((unsigned char)(0x80 | cc));
 2369       emit_int32(offs - long_size);
 2370     }
 2371   } else {
 2372 #ifdef ASSERT
 2373     warning("reversing conditional branch");
 2374 #endif /* ASSERT */
 2375     Label skip;
 2376     jccb(reverse[cc], skip);
 2377     lea(rscratch, dst);
 2378     Assembler::jmp(rscratch);
 2379     bind(skip);
 2380   }
 2381 }
 2382 
 2383 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) {
 2384   assert(rscratch != noreg || always_reachable(src), "missing");
 2385 
 2386   if (reachable(src)) {
 2387     Assembler::ldmxcsr(as_Address(src));
 2388   } else {
 2389     lea(rscratch, src);
 2390     Assembler::ldmxcsr(Address(rscratch, 0));
 2391   }
 2392 }
 2393 
 2394 int MacroAssembler::load_signed_byte(Register dst, Address src) {
 2395   int off;
 2396   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2397     off = offset();
 2398     movsbl(dst, src); // movsxb
 2399   } else {
 2400     off = load_unsigned_byte(dst, src);
 2401     shll(dst, 24);
 2402     sarl(dst, 24);
 2403   }
 2404   return off;
 2405 }
 2406 
 2407 // Note: load_signed_short used to be called load_signed_word.
 2408 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
 2409 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
 2410 // The term "word" in HotSpot means a 32- or 64-bit machine word.
 2411 int MacroAssembler::load_signed_short(Register dst, Address src) {
 2412   int off;
 2413   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 2414     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
 2415     // version but this is what 64bit has always done. This seems to imply
 2416     // that users are only using 32bits worth.
 2417     off = offset();
 2418     movswl(dst, src); // movsxw
 2419   } else {
 2420     off = load_unsigned_short(dst, src);
 2421     shll(dst, 16);
 2422     sarl(dst, 16);
 2423   }
 2424   return off;
 2425 }
 2426 
 2427 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
 2428   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2429   // and "3.9 Partial Register Penalties", p. 22).
 2430   int off;
 2431   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
 2432     off = offset();
 2433     movzbl(dst, src); // movzxb
 2434   } else {
 2435     xorl(dst, dst);
 2436     off = offset();
 2437     movb(dst, src);
 2438   }
 2439   return off;
 2440 }
 2441 
 2442 // Note: load_unsigned_short used to be called load_unsigned_word.
 2443 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
 2444   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
 2445   // and "3.9 Partial Register Penalties", p. 22).
 2446   int off;
 2447   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
 2448     off = offset();
 2449     movzwl(dst, src); // movzxw
 2450   } else {
 2451     xorl(dst, dst);
 2452     off = offset();
 2453     movw(dst, src);
 2454   }
 2455   return off;
 2456 }
 2457 
 2458 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
 2459   switch (size_in_bytes) {
 2460 #ifndef _LP64
 2461   case  8:
 2462     assert(dst2 != noreg, "second dest register required");
 2463     movl(dst,  src);
 2464     movl(dst2, src.plus_disp(BytesPerInt));
 2465     break;
 2466 #else
 2467   case  8:  movq(dst, src); break;
 2468 #endif
 2469   case  4:  movl(dst, src); break;
 2470   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
 2471   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
 2472   default:  ShouldNotReachHere();
 2473   }
 2474 }
 2475 
 2476 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
 2477   switch (size_in_bytes) {
 2478 #ifndef _LP64
 2479   case  8:
 2480     assert(src2 != noreg, "second source register required");
 2481     movl(dst,                        src);
 2482     movl(dst.plus_disp(BytesPerInt), src2);
 2483     break;
 2484 #else
 2485   case  8:  movq(dst, src); break;
 2486 #endif
 2487   case  4:  movl(dst, src); break;
 2488   case  2:  movw(dst, src); break;
 2489   case  1:  movb(dst, src); break;
 2490   default:  ShouldNotReachHere();
 2491   }
 2492 }
 2493 
 2494 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) {
 2495   assert(rscratch != noreg || always_reachable(dst), "missing");
 2496 
 2497   if (reachable(dst)) {
 2498     movl(as_Address(dst), src);
 2499   } else {
 2500     lea(rscratch, dst);
 2501     movl(Address(rscratch, 0), src);
 2502   }
 2503 }
 2504 
 2505 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
 2506   if (reachable(src)) {
 2507     movl(dst, as_Address(src));
 2508   } else {
 2509     lea(dst, src);
 2510     movl(dst, Address(dst, 0));
 2511   }
 2512 }
 2513 
 2514 // C++ bool manipulation
 2515 
 2516 void MacroAssembler::movbool(Register dst, Address src) {
 2517   if(sizeof(bool) == 1)
 2518     movb(dst, src);
 2519   else if(sizeof(bool) == 2)
 2520     movw(dst, src);
 2521   else if(sizeof(bool) == 4)
 2522     movl(dst, src);
 2523   else
 2524     // unsupported
 2525     ShouldNotReachHere();
 2526 }
 2527 
 2528 void MacroAssembler::movbool(Address dst, bool boolconst) {
 2529   if(sizeof(bool) == 1)
 2530     movb(dst, (int) boolconst);
 2531   else if(sizeof(bool) == 2)
 2532     movw(dst, (int) boolconst);
 2533   else if(sizeof(bool) == 4)
 2534     movl(dst, (int) boolconst);
 2535   else
 2536     // unsupported
 2537     ShouldNotReachHere();
 2538 }
 2539 
 2540 void MacroAssembler::movbool(Address dst, Register src) {
 2541   if(sizeof(bool) == 1)
 2542     movb(dst, src);
 2543   else if(sizeof(bool) == 2)
 2544     movw(dst, src);
 2545   else if(sizeof(bool) == 4)
 2546     movl(dst, src);
 2547   else
 2548     // unsupported
 2549     ShouldNotReachHere();
 2550 }
 2551 
 2552 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2553   assert(rscratch != noreg || always_reachable(src), "missing");
 2554 
 2555   if (reachable(src)) {
 2556     movdl(dst, as_Address(src));
 2557   } else {
 2558     lea(rscratch, src);
 2559     movdl(dst, Address(rscratch, 0));
 2560   }
 2561 }
 2562 
 2563 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2564   assert(rscratch != noreg || always_reachable(src), "missing");
 2565 
 2566   if (reachable(src)) {
 2567     movq(dst, as_Address(src));
 2568   } else {
 2569     lea(rscratch, src);
 2570     movq(dst, Address(rscratch, 0));
 2571   }
 2572 }
 2573 
 2574 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2575   assert(rscratch != noreg || always_reachable(src), "missing");
 2576 
 2577   if (reachable(src)) {
 2578     if (UseXmmLoadAndClearUpper) {
 2579       movsd (dst, as_Address(src));
 2580     } else {
 2581       movlpd(dst, as_Address(src));
 2582     }
 2583   } else {
 2584     lea(rscratch, src);
 2585     if (UseXmmLoadAndClearUpper) {
 2586       movsd (dst, Address(rscratch, 0));
 2587     } else {
 2588       movlpd(dst, Address(rscratch, 0));
 2589     }
 2590   }
 2591 }
 2592 
 2593 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2594   assert(rscratch != noreg || always_reachable(src), "missing");
 2595 
 2596   if (reachable(src)) {
 2597     movss(dst, as_Address(src));
 2598   } else {
 2599     lea(rscratch, src);
 2600     movss(dst, Address(rscratch, 0));
 2601   }
 2602 }
 2603 
 2604 void MacroAssembler::movptr(Register dst, Register src) {
 2605   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2606 }
 2607 
 2608 void MacroAssembler::movptr(Register dst, Address src) {
 2609   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2610 }
 2611 
 2612 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 2613 void MacroAssembler::movptr(Register dst, intptr_t src) {
 2614 #ifdef _LP64
 2615   if (is_uimm32(src)) {
 2616     movl(dst, checked_cast<uint32_t>(src));
 2617   } else if (is_simm32(src)) {
 2618     movq(dst, checked_cast<int32_t>(src));
 2619   } else {
 2620     mov64(dst, src);
 2621   }
 2622 #else
 2623   movl(dst, src);
 2624 #endif
 2625 }
 2626 
 2627 void MacroAssembler::movptr(Address dst, Register src) {
 2628   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
 2629 }
 2630 
 2631 void MacroAssembler::movptr(Address dst, int32_t src) {
 2632   LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src));
 2633 }
 2634 
 2635 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
 2636   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2637   Assembler::movdqu(dst, src);
 2638 }
 2639 
 2640 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
 2641   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2642   Assembler::movdqu(dst, src);
 2643 }
 2644 
 2645 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
 2646   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2647   Assembler::movdqu(dst, src);
 2648 }
 2649 
 2650 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2651   assert(rscratch != noreg || always_reachable(src), "missing");
 2652 
 2653   if (reachable(src)) {
 2654     movdqu(dst, as_Address(src));
 2655   } else {
 2656     lea(rscratch, src);
 2657     movdqu(dst, Address(rscratch, 0));
 2658   }
 2659 }
 2660 
 2661 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
 2662   assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2663   Assembler::vmovdqu(dst, src);
 2664 }
 2665 
 2666 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
 2667   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2668   Assembler::vmovdqu(dst, src);
 2669 }
 2670 
 2671 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
 2672   assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 2673   Assembler::vmovdqu(dst, src);
 2674 }
 2675 
 2676 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2677   assert(rscratch != noreg || always_reachable(src), "missing");
 2678 
 2679   if (reachable(src)) {
 2680     vmovdqu(dst, as_Address(src));
 2681   }
 2682   else {
 2683     lea(rscratch, src);
 2684     vmovdqu(dst, Address(rscratch, 0));
 2685   }
 2686 }
 2687 
 2688 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2689   assert(rscratch != noreg || always_reachable(src), "missing");
 2690 
 2691   if (vector_len == AVX_512bit) {
 2692     evmovdquq(dst, src, AVX_512bit, rscratch);
 2693   } else if (vector_len == AVX_256bit) {
 2694     vmovdqu(dst, src, rscratch);
 2695   } else {
 2696     movdqu(dst, src, rscratch);
 2697   }
 2698 }
 2699 
 2700 void MacroAssembler::kmov(KRegister dst, Address src) {
 2701   if (VM_Version::supports_avx512bw()) {
 2702     kmovql(dst, src);
 2703   } else {
 2704     assert(VM_Version::supports_evex(), "");
 2705     kmovwl(dst, src);
 2706   }
 2707 }
 2708 
 2709 void MacroAssembler::kmov(Address dst, KRegister src) {
 2710   if (VM_Version::supports_avx512bw()) {
 2711     kmovql(dst, src);
 2712   } else {
 2713     assert(VM_Version::supports_evex(), "");
 2714     kmovwl(dst, src);
 2715   }
 2716 }
 2717 
 2718 void MacroAssembler::kmov(KRegister dst, KRegister src) {
 2719   if (VM_Version::supports_avx512bw()) {
 2720     kmovql(dst, src);
 2721   } else {
 2722     assert(VM_Version::supports_evex(), "");
 2723     kmovwl(dst, src);
 2724   }
 2725 }
 2726 
 2727 void MacroAssembler::kmov(Register dst, KRegister src) {
 2728   if (VM_Version::supports_avx512bw()) {
 2729     kmovql(dst, src);
 2730   } else {
 2731     assert(VM_Version::supports_evex(), "");
 2732     kmovwl(dst, src);
 2733   }
 2734 }
 2735 
 2736 void MacroAssembler::kmov(KRegister dst, Register src) {
 2737   if (VM_Version::supports_avx512bw()) {
 2738     kmovql(dst, src);
 2739   } else {
 2740     assert(VM_Version::supports_evex(), "");
 2741     kmovwl(dst, src);
 2742   }
 2743 }
 2744 
 2745 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) {
 2746   assert(rscratch != noreg || always_reachable(src), "missing");
 2747 
 2748   if (reachable(src)) {
 2749     kmovql(dst, as_Address(src));
 2750   } else {
 2751     lea(rscratch, src);
 2752     kmovql(dst, Address(rscratch, 0));
 2753   }
 2754 }
 2755 
 2756 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) {
 2757   assert(rscratch != noreg || always_reachable(src), "missing");
 2758 
 2759   if (reachable(src)) {
 2760     kmovwl(dst, as_Address(src));
 2761   } else {
 2762     lea(rscratch, src);
 2763     kmovwl(dst, Address(rscratch, 0));
 2764   }
 2765 }
 2766 
 2767 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2768                                int vector_len, Register rscratch) {
 2769   assert(rscratch != noreg || always_reachable(src), "missing");
 2770 
 2771   if (reachable(src)) {
 2772     Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len);
 2773   } else {
 2774     lea(rscratch, src);
 2775     Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len);
 2776   }
 2777 }
 2778 
 2779 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge,
 2780                                int vector_len, Register rscratch) {
 2781   assert(rscratch != noreg || always_reachable(src), "missing");
 2782 
 2783   if (reachable(src)) {
 2784     Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len);
 2785   } else {
 2786     lea(rscratch, src);
 2787     Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len);
 2788   }
 2789 }
 2790 
 2791 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2792   assert(rscratch != noreg || always_reachable(src), "missing");
 2793 
 2794   if (reachable(src)) {
 2795     Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len);
 2796   } else {
 2797     lea(rscratch, src);
 2798     Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len);
 2799   }
 2800 }
 2801 
 2802 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
 2803   assert(rscratch != noreg || always_reachable(src), "missing");
 2804 
 2805   if (reachable(src)) {
 2806     Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len);
 2807   } else {
 2808     lea(rscratch, src);
 2809     Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len);
 2810   }
 2811 }
 2812 
 2813 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2814   assert(rscratch != noreg || always_reachable(src), "missing");
 2815 
 2816   if (reachable(src)) {
 2817     Assembler::evmovdquq(dst, as_Address(src), vector_len);
 2818   } else {
 2819     lea(rscratch, src);
 2820     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
 2821   }
 2822 }
 2823 
 2824 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2825   assert(rscratch != noreg || always_reachable(src), "missing");
 2826 
 2827   if (reachable(src)) {
 2828     Assembler::movdqa(dst, as_Address(src));
 2829   } else {
 2830     lea(rscratch, src);
 2831     Assembler::movdqa(dst, Address(rscratch, 0));
 2832   }
 2833 }
 2834 
 2835 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2836   assert(rscratch != noreg || always_reachable(src), "missing");
 2837 
 2838   if (reachable(src)) {
 2839     Assembler::movsd(dst, as_Address(src));
 2840   } else {
 2841     lea(rscratch, src);
 2842     Assembler::movsd(dst, Address(rscratch, 0));
 2843   }
 2844 }
 2845 
 2846 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2847   assert(rscratch != noreg || always_reachable(src), "missing");
 2848 
 2849   if (reachable(src)) {
 2850     Assembler::movss(dst, as_Address(src));
 2851   } else {
 2852     lea(rscratch, src);
 2853     Assembler::movss(dst, Address(rscratch, 0));
 2854   }
 2855 }
 2856 
 2857 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2858   assert(rscratch != noreg || always_reachable(src), "missing");
 2859 
 2860   if (reachable(src)) {
 2861     Assembler::movddup(dst, as_Address(src));
 2862   } else {
 2863     lea(rscratch, src);
 2864     Assembler::movddup(dst, Address(rscratch, 0));
 2865   }
 2866 }
 2867 
 2868 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 2869   assert(rscratch != noreg || always_reachable(src), "missing");
 2870 
 2871   if (reachable(src)) {
 2872     Assembler::vmovddup(dst, as_Address(src), vector_len);
 2873   } else {
 2874     lea(rscratch, src);
 2875     Assembler::vmovddup(dst, Address(rscratch, 0), vector_len);
 2876   }
 2877 }
 2878 
 2879 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2880   assert(rscratch != noreg || always_reachable(src), "missing");
 2881 
 2882   if (reachable(src)) {
 2883     Assembler::mulsd(dst, as_Address(src));
 2884   } else {
 2885     lea(rscratch, src);
 2886     Assembler::mulsd(dst, Address(rscratch, 0));
 2887   }
 2888 }
 2889 
 2890 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 2891   assert(rscratch != noreg || always_reachable(src), "missing");
 2892 
 2893   if (reachable(src)) {
 2894     Assembler::mulss(dst, as_Address(src));
 2895   } else {
 2896     lea(rscratch, src);
 2897     Assembler::mulss(dst, Address(rscratch, 0));
 2898   }
 2899 }
 2900 
 2901 void MacroAssembler::null_check(Register reg, int offset) {
 2902   if (needs_explicit_null_check(offset)) {
 2903     // provoke OS null exception if reg is null by
 2904     // accessing M[reg] w/o changing any (non-CC) registers
 2905     // NOTE: cmpl is plenty here to provoke a segv
 2906     cmpptr(rax, Address(reg, 0));
 2907     // Note: should probably use testl(rax, Address(reg, 0));
 2908     //       may be shorter code (however, this version of
 2909     //       testl needs to be implemented first)
 2910   } else {
 2911     // nothing to do, (later) access of M[reg + offset]
 2912     // will provoke OS null exception if reg is null
 2913   }
 2914 }
 2915 
 2916 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) {
 2917   andptr(markword, markWord::inline_type_mask_in_place);
 2918   cmpptr(markword, markWord::inline_type_pattern);
 2919   jcc(Assembler::equal, is_inline_type);
 2920 }
 2921 
 2922 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) {
 2923   movl(temp_reg, Address(klass, Klass::access_flags_offset()));
 2924   testl(temp_reg, JVM_ACC_IDENTITY);
 2925   jcc(Assembler::zero, is_inline_type);
 2926 }
 2927 
 2928 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) {
 2929   testptr(object, object);
 2930   jcc(Assembler::zero, not_inline_type);
 2931   const int is_inline_type_mask = markWord::inline_type_pattern;
 2932   movptr(tmp, Address(object, oopDesc::mark_offset_in_bytes()));
 2933   andptr(tmp, is_inline_type_mask);
 2934   cmpptr(tmp, is_inline_type_mask);
 2935   jcc(Assembler::notEqual, not_inline_type);
 2936 }
 2937 
 2938 void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) {
 2939 #ifdef ASSERT
 2940   {
 2941     Label done_check;
 2942     test_klass_is_inline_type(klass, temp_reg, done_check);
 2943     stop("test_klass_is_empty_inline_type with non inline type klass");
 2944     bind(done_check);
 2945   }
 2946 #endif
 2947   movl(temp_reg, Address(klass, InstanceKlass::misc_flags_offset()));
 2948   testl(temp_reg, InstanceKlassFlags::is_empty_inline_type_value());
 2949   jcc(Assembler::notZero, is_empty_inline_type);
 2950 }
 2951 
 2952 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) {
 2953   movl(temp_reg, flags);
 2954   testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift);
 2955   jcc(Assembler::notEqual, is_null_free_inline_type);
 2956 }
 2957 
 2958 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) {
 2959   movl(temp_reg, flags);
 2960   testl(temp_reg, 1 << ResolvedFieldEntry::is_null_free_inline_type_shift);
 2961   jcc(Assembler::equal, not_null_free_inline_type);
 2962 }
 2963 
 2964 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) {
 2965   movl(temp_reg, flags);
 2966   testl(temp_reg, 1 << ResolvedFieldEntry::is_flat_shift);
 2967   jcc(Assembler::notEqual, is_flat);
 2968 }
 2969 
 2970 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) {
 2971   movl(temp_reg, flags);
 2972   testl(temp_reg, 1 << ResolvedFieldEntry::has_null_marker_shift);
 2973   jcc(Assembler::notEqual, has_null_marker);
 2974 }
 2975 
 2976 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) {
 2977   Label test_mark_word;
 2978   // load mark word
 2979   movptr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes()));
 2980   // check displaced
 2981   testl(temp_reg, markWord::unlocked_value);
 2982   jccb(Assembler::notZero, test_mark_word);
 2983   // slow path use klass prototype
 2984   push(rscratch1);
 2985   load_prototype_header(temp_reg, oop, rscratch1);
 2986   pop(rscratch1);
 2987 
 2988   bind(test_mark_word);
 2989   testl(temp_reg, test_bit);
 2990   jcc((jmp_set) ? Assembler::notZero : Assembler::zero, jmp_label);
 2991 }
 2992 
 2993 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg,
 2994                                          Label& is_flat_array) {
 2995 #ifdef _LP64
 2996   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array);
 2997 #else
 2998   load_klass(temp_reg, oop, noreg);
 2999   movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset()));
 3000   test_flat_array_layout(temp_reg, is_flat_array);
 3001 #endif
 3002 }
 3003 
 3004 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg,
 3005                                              Label& is_non_flat_array) {
 3006 #ifdef _LP64
 3007   test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array);
 3008 #else
 3009   load_klass(temp_reg, oop, noreg);
 3010   movl(temp_reg, Address(temp_reg, Klass::layout_helper_offset()));
 3011   test_non_flat_array_layout(temp_reg, is_non_flat_array);
 3012 #endif
 3013 }
 3014 
 3015 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array) {
 3016 #ifdef _LP64
 3017   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array);
 3018 #else
 3019   Unimplemented();
 3020 #endif
 3021 }
 3022 
 3023 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) {
 3024 #ifdef _LP64
 3025   test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array);
 3026 #else
 3027   Unimplemented();
 3028 #endif
 3029 }
 3030 
 3031 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) {
 3032   testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
 3033   jcc(Assembler::notZero, is_flat_array);
 3034 }
 3035 
 3036 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) {
 3037   testl(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
 3038   jcc(Assembler::zero, is_non_flat_array);
 3039 }
 3040 
 3041 void MacroAssembler::os_breakpoint() {
 3042   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
 3043   // (e.g., MSVC can't call ps() otherwise)
 3044   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
 3045 }
 3046 
 3047 void MacroAssembler::unimplemented(const char* what) {
 3048   const char* buf = nullptr;
 3049   {
 3050     ResourceMark rm;
 3051     stringStream ss;
 3052     ss.print("unimplemented: %s", what);
 3053     buf = code_string(ss.as_string());
 3054   }
 3055   stop(buf);
 3056 }
 3057 
 3058 #ifdef _LP64
 3059 #define XSTATE_BV 0x200
 3060 #endif
 3061 
 3062 void MacroAssembler::pop_CPU_state() {
 3063   pop_FPU_state();
 3064   pop_IU_state();
 3065 }
 3066 
 3067 void MacroAssembler::pop_FPU_state() {
 3068 #ifndef _LP64
 3069   frstor(Address(rsp, 0));
 3070 #else
 3071   fxrstor(Address(rsp, 0));
 3072 #endif
 3073   addptr(rsp, FPUStateSizeInWords * wordSize);
 3074 }
 3075 
 3076 void MacroAssembler::pop_IU_state() {
 3077   popa();
 3078   LP64_ONLY(addq(rsp, 8));
 3079   popf();
 3080 }
 3081 
 3082 // Save Integer and Float state
 3083 // Warning: Stack must be 16 byte aligned (64bit)
 3084 void MacroAssembler::push_CPU_state() {
 3085   push_IU_state();
 3086   push_FPU_state();
 3087 }
 3088 
 3089 void MacroAssembler::push_FPU_state() {
 3090   subptr(rsp, FPUStateSizeInWords * wordSize);
 3091 #ifndef _LP64
 3092   fnsave(Address(rsp, 0));
 3093   fwait();
 3094 #else
 3095   fxsave(Address(rsp, 0));
 3096 #endif // LP64
 3097 }
 3098 
 3099 void MacroAssembler::push_IU_state() {
 3100   // Push flags first because pusha kills them
 3101   pushf();
 3102   // Make sure rsp stays 16-byte aligned
 3103   LP64_ONLY(subq(rsp, 8));
 3104   pusha();
 3105 }
 3106 
 3107 void MacroAssembler::push_cont_fastpath() {
 3108   if (!Continuations::enabled()) return;
 3109 
 3110 #ifndef _LP64
 3111   Register rthread = rax;
 3112   Register rrealsp = rbx;
 3113   push(rthread);
 3114   push(rrealsp);
 3115 
 3116   get_thread(rthread);
 3117 
 3118   // The code below wants the original RSP.
 3119   // Move it back after the pushes above.
 3120   movptr(rrealsp, rsp);
 3121   addptr(rrealsp, 2*wordSize);
 3122 #else
 3123   Register rthread = r15_thread;
 3124   Register rrealsp = rsp;
 3125 #endif
 3126 
 3127   Label done;
 3128   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3129   jccb(Assembler::belowEqual, done);
 3130   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp);
 3131   bind(done);
 3132 
 3133 #ifndef _LP64
 3134   pop(rrealsp);
 3135   pop(rthread);
 3136 #endif
 3137 }
 3138 
 3139 void MacroAssembler::pop_cont_fastpath() {
 3140   if (!Continuations::enabled()) return;
 3141 
 3142 #ifndef _LP64
 3143   Register rthread = rax;
 3144   Register rrealsp = rbx;
 3145   push(rthread);
 3146   push(rrealsp);
 3147 
 3148   get_thread(rthread);
 3149 
 3150   // The code below wants the original RSP.
 3151   // Move it back after the pushes above.
 3152   movptr(rrealsp, rsp);
 3153   addptr(rrealsp, 2*wordSize);
 3154 #else
 3155   Register rthread = r15_thread;
 3156   Register rrealsp = rsp;
 3157 #endif
 3158 
 3159   Label done;
 3160   cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset()));
 3161   jccb(Assembler::below, done);
 3162   movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0);
 3163   bind(done);
 3164 
 3165 #ifndef _LP64
 3166   pop(rrealsp);
 3167   pop(rthread);
 3168 #endif
 3169 }
 3170 
 3171 void MacroAssembler::inc_held_monitor_count() {
 3172 #ifndef _LP64
 3173   Register thread = rax;
 3174   push(thread);
 3175   get_thread(thread);
 3176   incrementl(Address(thread, JavaThread::held_monitor_count_offset()));
 3177   pop(thread);
 3178 #else // LP64
 3179   incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3180 #endif
 3181 }
 3182 
 3183 void MacroAssembler::dec_held_monitor_count() {
 3184 #ifndef _LP64
 3185   Register thread = rax;
 3186   push(thread);
 3187   get_thread(thread);
 3188   decrementl(Address(thread, JavaThread::held_monitor_count_offset()));
 3189   pop(thread);
 3190 #else // LP64
 3191   decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset()));
 3192 #endif
 3193 }
 3194 
 3195 #ifdef ASSERT
 3196 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) {
 3197 #ifdef _LP64
 3198   Label no_cont;
 3199   movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset()));
 3200   testl(cont, cont);
 3201   jcc(Assembler::zero, no_cont);
 3202   stop(name);
 3203   bind(no_cont);
 3204 #else
 3205   Unimplemented();
 3206 #endif
 3207 }
 3208 #endif
 3209 
 3210 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
 3211   if (!java_thread->is_valid()) {
 3212     java_thread = rdi;
 3213     get_thread(java_thread);
 3214   }
 3215   // we must set sp to zero to clear frame
 3216   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 3217   // must clear fp, so that compiled frames are not confused; it is
 3218   // possible that we need it only for debugging
 3219   if (clear_fp) {
 3220     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 3221   }
 3222   // Always clear the pc because it could have been set by make_walkable()
 3223   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 3224   vzeroupper();
 3225 }
 3226 
 3227 void MacroAssembler::restore_rax(Register tmp) {
 3228   if (tmp == noreg) pop(rax);
 3229   else if (tmp != rax) mov(rax, tmp);
 3230 }
 3231 
 3232 void MacroAssembler::round_to(Register reg, int modulus) {
 3233   addptr(reg, modulus - 1);
 3234   andptr(reg, -modulus);
 3235 }
 3236 
 3237 void MacroAssembler::save_rax(Register tmp) {
 3238   if (tmp == noreg) push(rax);
 3239   else if (tmp != rax) mov(tmp, rax);
 3240 }
 3241 
 3242 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) {
 3243   if (at_return) {
 3244     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 3245     // we may safely use rsp instead to perform the stack watermark check.
 3246     cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset()));
 3247     jcc(Assembler::above, slow_path);
 3248     return;
 3249   }
 3250   testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
 3251   jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
 3252 }
 3253 
 3254 // Calls to C land
 3255 //
 3256 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
 3257 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 3258 // has to be reset to 0. This is required to allow proper stack traversal.
 3259 void MacroAssembler::set_last_Java_frame(Register java_thread,
 3260                                          Register last_java_sp,
 3261                                          Register last_java_fp,
 3262                                          address  last_java_pc,
 3263                                          Register rscratch) {
 3264   vzeroupper();
 3265   // determine java_thread register
 3266   if (!java_thread->is_valid()) {
 3267     java_thread = rdi;
 3268     get_thread(java_thread);
 3269   }
 3270   // determine last_java_sp register
 3271   if (!last_java_sp->is_valid()) {
 3272     last_java_sp = rsp;
 3273   }
 3274   // last_java_fp is optional
 3275   if (last_java_fp->is_valid()) {
 3276     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
 3277   }
 3278   // last_java_pc is optional
 3279   if (last_java_pc != nullptr) {
 3280     Address java_pc(java_thread,
 3281                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 3282     lea(java_pc, InternalAddress(last_java_pc), rscratch);
 3283   }
 3284   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 3285 }
 3286 
 3287 void MacroAssembler::shlptr(Register dst, int imm8) {
 3288   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
 3289 }
 3290 
 3291 void MacroAssembler::shrptr(Register dst, int imm8) {
 3292   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
 3293 }
 3294 
 3295 void MacroAssembler::sign_extend_byte(Register reg) {
 3296   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
 3297     movsbl(reg, reg); // movsxb
 3298   } else {
 3299     shll(reg, 24);
 3300     sarl(reg, 24);
 3301   }
 3302 }
 3303 
 3304 void MacroAssembler::sign_extend_short(Register reg) {
 3305   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
 3306     movswl(reg, reg); // movsxw
 3307   } else {
 3308     shll(reg, 16);
 3309     sarl(reg, 16);
 3310   }
 3311 }
 3312 
 3313 void MacroAssembler::testl(Address dst, int32_t imm32) {
 3314   if (imm32 >= 0 && is8bit(imm32)) {
 3315     testb(dst, imm32);
 3316   } else {
 3317     Assembler::testl(dst, imm32);
 3318   }
 3319 }
 3320 
 3321 void MacroAssembler::testl(Register dst, int32_t imm32) {
 3322   if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) {
 3323     testb(dst, imm32);
 3324   } else {
 3325     Assembler::testl(dst, imm32);
 3326   }
 3327 }
 3328 
 3329 void MacroAssembler::testl(Register dst, AddressLiteral src) {
 3330   assert(always_reachable(src), "Address should be reachable");
 3331   testl(dst, as_Address(src));
 3332 }
 3333 
 3334 #ifdef _LP64
 3335 
 3336 void MacroAssembler::testq(Address dst, int32_t imm32) {
 3337   if (imm32 >= 0) {
 3338     testl(dst, imm32);
 3339   } else {
 3340     Assembler::testq(dst, imm32);
 3341   }
 3342 }
 3343 
 3344 void MacroAssembler::testq(Register dst, int32_t imm32) {
 3345   if (imm32 >= 0) {
 3346     testl(dst, imm32);
 3347   } else {
 3348     Assembler::testq(dst, imm32);
 3349   }
 3350 }
 3351 
 3352 #endif
 3353 
 3354 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
 3355   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3356   Assembler::pcmpeqb(dst, src);
 3357 }
 3358 
 3359 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
 3360   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3361   Assembler::pcmpeqw(dst, src);
 3362 }
 3363 
 3364 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
 3365   assert((dst->encoding() < 16),"XMM register should be 0-15");
 3366   Assembler::pcmpestri(dst, src, imm8);
 3367 }
 3368 
 3369 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
 3370   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3371   Assembler::pcmpestri(dst, src, imm8);
 3372 }
 3373 
 3374 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
 3375   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3376   Assembler::pmovzxbw(dst, src);
 3377 }
 3378 
 3379 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
 3380   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3381   Assembler::pmovzxbw(dst, src);
 3382 }
 3383 
 3384 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
 3385   assert((src->encoding() < 16),"XMM register should be 0-15");
 3386   Assembler::pmovmskb(dst, src);
 3387 }
 3388 
 3389 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
 3390   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3391   Assembler::ptest(dst, src);
 3392 }
 3393 
 3394 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3395   assert(rscratch != noreg || always_reachable(src), "missing");
 3396 
 3397   if (reachable(src)) {
 3398     Assembler::sqrtss(dst, as_Address(src));
 3399   } else {
 3400     lea(rscratch, src);
 3401     Assembler::sqrtss(dst, Address(rscratch, 0));
 3402   }
 3403 }
 3404 
 3405 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3406   assert(rscratch != noreg || always_reachable(src), "missing");
 3407 
 3408   if (reachable(src)) {
 3409     Assembler::subsd(dst, as_Address(src));
 3410   } else {
 3411     lea(rscratch, src);
 3412     Assembler::subsd(dst, Address(rscratch, 0));
 3413   }
 3414 }
 3415 
 3416 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) {
 3417   assert(rscratch != noreg || always_reachable(src), "missing");
 3418 
 3419   if (reachable(src)) {
 3420     Assembler::roundsd(dst, as_Address(src), rmode);
 3421   } else {
 3422     lea(rscratch, src);
 3423     Assembler::roundsd(dst, Address(rscratch, 0), rmode);
 3424   }
 3425 }
 3426 
 3427 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3428   assert(rscratch != noreg || always_reachable(src), "missing");
 3429 
 3430   if (reachable(src)) {
 3431     Assembler::subss(dst, as_Address(src));
 3432   } else {
 3433     lea(rscratch, src);
 3434     Assembler::subss(dst, Address(rscratch, 0));
 3435   }
 3436 }
 3437 
 3438 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3439   assert(rscratch != noreg || always_reachable(src), "missing");
 3440 
 3441   if (reachable(src)) {
 3442     Assembler::ucomisd(dst, as_Address(src));
 3443   } else {
 3444     lea(rscratch, src);
 3445     Assembler::ucomisd(dst, Address(rscratch, 0));
 3446   }
 3447 }
 3448 
 3449 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3450   assert(rscratch != noreg || always_reachable(src), "missing");
 3451 
 3452   if (reachable(src)) {
 3453     Assembler::ucomiss(dst, as_Address(src));
 3454   } else {
 3455     lea(rscratch, src);
 3456     Assembler::ucomiss(dst, Address(rscratch, 0));
 3457   }
 3458 }
 3459 
 3460 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3461   assert(rscratch != noreg || always_reachable(src), "missing");
 3462 
 3463   // Used in sign-bit flipping with aligned address.
 3464   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3465   if (reachable(src)) {
 3466     Assembler::xorpd(dst, as_Address(src));
 3467   } else {
 3468     lea(rscratch, src);
 3469     Assembler::xorpd(dst, Address(rscratch, 0));
 3470   }
 3471 }
 3472 
 3473 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
 3474   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
 3475     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3476   }
 3477   else {
 3478     Assembler::xorpd(dst, src);
 3479   }
 3480 }
 3481 
 3482 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
 3483   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
 3484     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
 3485   } else {
 3486     Assembler::xorps(dst, src);
 3487   }
 3488 }
 3489 
 3490 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3491   assert(rscratch != noreg || always_reachable(src), "missing");
 3492 
 3493   // Used in sign-bit flipping with aligned address.
 3494   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 3495   if (reachable(src)) {
 3496     Assembler::xorps(dst, as_Address(src));
 3497   } else {
 3498     lea(rscratch, src);
 3499     Assembler::xorps(dst, Address(rscratch, 0));
 3500   }
 3501 }
 3502 
 3503 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) {
 3504   assert(rscratch != noreg || always_reachable(src), "missing");
 3505 
 3506   // Used in sign-bit flipping with aligned address.
 3507   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
 3508   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
 3509   if (reachable(src)) {
 3510     Assembler::pshufb(dst, as_Address(src));
 3511   } else {
 3512     lea(rscratch, src);
 3513     Assembler::pshufb(dst, Address(rscratch, 0));
 3514   }
 3515 }
 3516 
 3517 // AVX 3-operands instructions
 3518 
 3519 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3520   assert(rscratch != noreg || always_reachable(src), "missing");
 3521 
 3522   if (reachable(src)) {
 3523     vaddsd(dst, nds, as_Address(src));
 3524   } else {
 3525     lea(rscratch, src);
 3526     vaddsd(dst, nds, Address(rscratch, 0));
 3527   }
 3528 }
 3529 
 3530 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3531   assert(rscratch != noreg || always_reachable(src), "missing");
 3532 
 3533   if (reachable(src)) {
 3534     vaddss(dst, nds, as_Address(src));
 3535   } else {
 3536     lea(rscratch, src);
 3537     vaddss(dst, nds, Address(rscratch, 0));
 3538   }
 3539 }
 3540 
 3541 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3542   assert(UseAVX > 0, "requires some form of AVX");
 3543   assert(rscratch != noreg || always_reachable(src), "missing");
 3544 
 3545   if (reachable(src)) {
 3546     Assembler::vpaddb(dst, nds, as_Address(src), vector_len);
 3547   } else {
 3548     lea(rscratch, src);
 3549     Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len);
 3550   }
 3551 }
 3552 
 3553 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3554   assert(UseAVX > 0, "requires some form of AVX");
 3555   assert(rscratch != noreg || always_reachable(src), "missing");
 3556 
 3557   if (reachable(src)) {
 3558     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
 3559   } else {
 3560     lea(rscratch, src);
 3561     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
 3562   }
 3563 }
 3564 
 3565 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3566   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3567   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3568 
 3569   vandps(dst, nds, negate_field, vector_len, rscratch);
 3570 }
 3571 
 3572 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) {
 3573   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 3574   assert(rscratch != noreg || always_reachable(negate_field), "missing");
 3575 
 3576   vandpd(dst, nds, negate_field, vector_len, rscratch);
 3577 }
 3578 
 3579 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3580   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3581   Assembler::vpaddb(dst, nds, src, vector_len);
 3582 }
 3583 
 3584 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3585   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3586   Assembler::vpaddb(dst, nds, src, vector_len);
 3587 }
 3588 
 3589 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3590   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3591   Assembler::vpaddw(dst, nds, src, vector_len);
 3592 }
 3593 
 3594 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3595   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3596   Assembler::vpaddw(dst, nds, src, vector_len);
 3597 }
 3598 
 3599 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3600   assert(rscratch != noreg || always_reachable(src), "missing");
 3601 
 3602   if (reachable(src)) {
 3603     Assembler::vpand(dst, nds, as_Address(src), vector_len);
 3604   } else {
 3605     lea(rscratch, src);
 3606     Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len);
 3607   }
 3608 }
 3609 
 3610 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3611   assert(rscratch != noreg || always_reachable(src), "missing");
 3612 
 3613   if (reachable(src)) {
 3614     Assembler::vpbroadcastd(dst, as_Address(src), vector_len);
 3615   } else {
 3616     lea(rscratch, src);
 3617     Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len);
 3618   }
 3619 }
 3620 
 3621 void MacroAssembler::vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3622   assert(rscratch != noreg || always_reachable(src), "missing");
 3623 
 3624   if (reachable(src)) {
 3625     Assembler::vbroadcasti128(dst, as_Address(src), vector_len);
 3626   } else {
 3627     lea(rscratch, src);
 3628     Assembler::vbroadcasti128(dst, Address(rscratch, 0), vector_len);
 3629   }
 3630 }
 3631 
 3632 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3633   assert(rscratch != noreg || always_reachable(src), "missing");
 3634 
 3635   if (reachable(src)) {
 3636     Assembler::vpbroadcastq(dst, as_Address(src), vector_len);
 3637   } else {
 3638     lea(rscratch, src);
 3639     Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len);
 3640   }
 3641 }
 3642 
 3643 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3644   assert(rscratch != noreg || always_reachable(src), "missing");
 3645 
 3646   if (reachable(src)) {
 3647     Assembler::vbroadcastsd(dst, as_Address(src), vector_len);
 3648   } else {
 3649     lea(rscratch, src);
 3650     Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len);
 3651   }
 3652 }
 3653 
 3654 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
 3655   assert(rscratch != noreg || always_reachable(src), "missing");
 3656 
 3657   if (reachable(src)) {
 3658     Assembler::vbroadcastss(dst, as_Address(src), vector_len);
 3659   } else {
 3660     lea(rscratch, src);
 3661     Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len);
 3662   }
 3663 }
 3664 
 3665 // Vector float blend
 3666 // vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3667 void MacroAssembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3668   // WARN: Allow dst == (src1|src2), mask == scratch
 3669   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3670   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst;
 3671   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3672   if (blend_emulation && scratch_available && dst_available) {
 3673     if (compute_mask) {
 3674       vpsrad(scratch, mask, 32, vector_len);
 3675       mask = scratch;
 3676     }
 3677     if (dst == src1) {
 3678       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src1
 3679       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3680     } else {
 3681       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3682       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src1
 3683     }
 3684     vpor(dst, dst, scratch, vector_len);
 3685   } else {
 3686     Assembler::vblendvps(dst, src1, src2, mask, vector_len);
 3687   }
 3688 }
 3689 
 3690 // vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg)
 3691 void MacroAssembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, XMMRegister mask, int vector_len, bool compute_mask, XMMRegister scratch) {
 3692   // WARN: Allow dst == (src1|src2), mask == scratch
 3693   bool blend_emulation = EnableX86ECoreOpts && UseAVX > 1;
 3694   bool scratch_available = scratch != xnoreg && scratch != src1 && scratch != src2 && scratch != dst && (!compute_mask || scratch != mask);
 3695   bool dst_available = dst != mask && (dst != src1 || dst != src2);
 3696   if (blend_emulation && scratch_available && dst_available) {
 3697     if (compute_mask) {
 3698       vpxor(scratch, scratch, scratch, vector_len);
 3699       vpcmpgtq(scratch, scratch, mask, vector_len);
 3700       mask = scratch;
 3701     }
 3702     if (dst == src1) {
 3703       vpandn(dst,     mask, src1, vector_len); // if mask == 0, src
 3704       vpand (scratch, mask, src2, vector_len); // if mask == 1, src2
 3705     } else {
 3706       vpand (dst,     mask, src2, vector_len); // if mask == 1, src2
 3707       vpandn(scratch, mask, src1, vector_len); // if mask == 0, src
 3708     }
 3709     vpor(dst, dst, scratch, vector_len);
 3710   } else {
 3711     Assembler::vblendvpd(dst, src1, src2, mask, vector_len);
 3712   }
 3713 }
 3714 
 3715 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3716   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3717   Assembler::vpcmpeqb(dst, nds, src, vector_len);
 3718 }
 3719 
 3720 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
 3721   assert(((dst->encoding() < 16 && src1->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3722   Assembler::vpcmpeqb(dst, src1, src2, vector_len);
 3723 }
 3724 
 3725 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3726   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3727   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3728 }
 3729 
 3730 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3731   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3732   Assembler::vpcmpeqw(dst, nds, src, vector_len);
 3733 }
 3734 
 3735 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3736   assert(rscratch != noreg || always_reachable(src), "missing");
 3737 
 3738   if (reachable(src)) {
 3739     Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len);
 3740   } else {
 3741     lea(rscratch, src);
 3742     Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len);
 3743   }
 3744 }
 3745 
 3746 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3747                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3748   assert(rscratch != noreg || always_reachable(src), "missing");
 3749 
 3750   if (reachable(src)) {
 3751     Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3752   } else {
 3753     lea(rscratch, src);
 3754     Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3755   }
 3756 }
 3757 
 3758 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3759                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3760   assert(rscratch != noreg || always_reachable(src), "missing");
 3761 
 3762   if (reachable(src)) {
 3763     Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3764   } else {
 3765     lea(rscratch, src);
 3766     Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3767   }
 3768 }
 3769 
 3770 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3771                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3772   assert(rscratch != noreg || always_reachable(src), "missing");
 3773 
 3774   if (reachable(src)) {
 3775     Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3776   } else {
 3777     lea(rscratch, src);
 3778     Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3779   }
 3780 }
 3781 
 3782 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3783                              int comparison, bool is_signed, int vector_len, Register rscratch) {
 3784   assert(rscratch != noreg || always_reachable(src), "missing");
 3785 
 3786   if (reachable(src)) {
 3787     Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len);
 3788   } else {
 3789     lea(rscratch, src);
 3790     Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len);
 3791   }
 3792 }
 3793 
 3794 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) {
 3795   if (width == Assembler::Q) {
 3796     Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len);
 3797   } else {
 3798     Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len);
 3799   }
 3800 }
 3801 
 3802 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) {
 3803   int eq_cond_enc = 0x29;
 3804   int gt_cond_enc = 0x37;
 3805   if (width != Assembler::Q) {
 3806     eq_cond_enc = 0x74 + width;
 3807     gt_cond_enc = 0x64 + width;
 3808   }
 3809   switch (cond) {
 3810   case eq:
 3811     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3812     break;
 3813   case neq:
 3814     vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len);
 3815     vallones(xtmp, vector_len);
 3816     vpxor(dst, xtmp, dst, vector_len);
 3817     break;
 3818   case le:
 3819     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3820     vallones(xtmp, vector_len);
 3821     vpxor(dst, xtmp, dst, vector_len);
 3822     break;
 3823   case nlt:
 3824     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3825     vallones(xtmp, vector_len);
 3826     vpxor(dst, xtmp, dst, vector_len);
 3827     break;
 3828   case lt:
 3829     vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len);
 3830     break;
 3831   case nle:
 3832     vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len);
 3833     break;
 3834   default:
 3835     assert(false, "Should not reach here");
 3836   }
 3837 }
 3838 
 3839 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
 3840   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3841   Assembler::vpmovzxbw(dst, src, vector_len);
 3842 }
 3843 
 3844 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) {
 3845   assert((src->encoding() < 16),"XMM register should be 0-15");
 3846   Assembler::vpmovmskb(dst, src, vector_len);
 3847 }
 3848 
 3849 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3850   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3851   Assembler::vpmullw(dst, nds, src, vector_len);
 3852 }
 3853 
 3854 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3855   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3856   Assembler::vpmullw(dst, nds, src, vector_len);
 3857 }
 3858 
 3859 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3860   assert((UseAVX > 0), "AVX support is needed");
 3861   assert(rscratch != noreg || always_reachable(src), "missing");
 3862 
 3863   if (reachable(src)) {
 3864     Assembler::vpmulld(dst, nds, as_Address(src), vector_len);
 3865   } else {
 3866     lea(rscratch, src);
 3867     Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len);
 3868   }
 3869 }
 3870 
 3871 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3872   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3873   Assembler::vpsubb(dst, nds, src, vector_len);
 3874 }
 3875 
 3876 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3877   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3878   Assembler::vpsubb(dst, nds, src, vector_len);
 3879 }
 3880 
 3881 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
 3882   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3883   Assembler::vpsubw(dst, nds, src, vector_len);
 3884 }
 3885 
 3886 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
 3887   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3888   Assembler::vpsubw(dst, nds, src, vector_len);
 3889 }
 3890 
 3891 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3892   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3893   Assembler::vpsraw(dst, nds, shift, vector_len);
 3894 }
 3895 
 3896 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3897   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3898   Assembler::vpsraw(dst, nds, shift, vector_len);
 3899 }
 3900 
 3901 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3902   assert(UseAVX > 2,"");
 3903   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3904      vector_len = 2;
 3905   }
 3906   Assembler::evpsraq(dst, nds, shift, vector_len);
 3907 }
 3908 
 3909 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3910   assert(UseAVX > 2,"");
 3911   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
 3912      vector_len = 2;
 3913   }
 3914   Assembler::evpsraq(dst, nds, shift, vector_len);
 3915 }
 3916 
 3917 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3918   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3919   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3920 }
 3921 
 3922 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3923   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3924   Assembler::vpsrlw(dst, nds, shift, vector_len);
 3925 }
 3926 
 3927 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
 3928   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3929   Assembler::vpsllw(dst, nds, shift, vector_len);
 3930 }
 3931 
 3932 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
 3933   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3934   Assembler::vpsllw(dst, nds, shift, vector_len);
 3935 }
 3936 
 3937 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
 3938   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
 3939   Assembler::vptest(dst, src);
 3940 }
 3941 
 3942 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
 3943   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3944   Assembler::punpcklbw(dst, src);
 3945 }
 3946 
 3947 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
 3948   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
 3949   Assembler::pshufd(dst, src, mode);
 3950 }
 3951 
 3952 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
 3953   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
 3954   Assembler::pshuflw(dst, src, mode);
 3955 }
 3956 
 3957 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3958   assert(rscratch != noreg || always_reachable(src), "missing");
 3959 
 3960   if (reachable(src)) {
 3961     vandpd(dst, nds, as_Address(src), vector_len);
 3962   } else {
 3963     lea(rscratch, src);
 3964     vandpd(dst, nds, Address(rscratch, 0), vector_len);
 3965   }
 3966 }
 3967 
 3968 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 3969   assert(rscratch != noreg || always_reachable(src), "missing");
 3970 
 3971   if (reachable(src)) {
 3972     vandps(dst, nds, as_Address(src), vector_len);
 3973   } else {
 3974     lea(rscratch, src);
 3975     vandps(dst, nds, Address(rscratch, 0), vector_len);
 3976   }
 3977 }
 3978 
 3979 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src,
 3980                             bool merge, int vector_len, Register rscratch) {
 3981   assert(rscratch != noreg || always_reachable(src), "missing");
 3982 
 3983   if (reachable(src)) {
 3984     Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len);
 3985   } else {
 3986     lea(rscratch, src);
 3987     Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
 3988   }
 3989 }
 3990 
 3991 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 3992   assert(rscratch != noreg || always_reachable(src), "missing");
 3993 
 3994   if (reachable(src)) {
 3995     vdivsd(dst, nds, as_Address(src));
 3996   } else {
 3997     lea(rscratch, src);
 3998     vdivsd(dst, nds, Address(rscratch, 0));
 3999   }
 4000 }
 4001 
 4002 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 4003   assert(rscratch != noreg || always_reachable(src), "missing");
 4004 
 4005   if (reachable(src)) {
 4006     vdivss(dst, nds, as_Address(src));
 4007   } else {
 4008     lea(rscratch, src);
 4009     vdivss(dst, nds, Address(rscratch, 0));
 4010   }
 4011 }
 4012 
 4013 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 4014   assert(rscratch != noreg || always_reachable(src), "missing");
 4015 
 4016   if (reachable(src)) {
 4017     vmulsd(dst, nds, as_Address(src));
 4018   } else {
 4019     lea(rscratch, src);
 4020     vmulsd(dst, nds, Address(rscratch, 0));
 4021   }
 4022 }
 4023 
 4024 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 4025   assert(rscratch != noreg || always_reachable(src), "missing");
 4026 
 4027   if (reachable(src)) {
 4028     vmulss(dst, nds, as_Address(src));
 4029   } else {
 4030     lea(rscratch, src);
 4031     vmulss(dst, nds, Address(rscratch, 0));
 4032   }
 4033 }
 4034 
 4035 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 4036   assert(rscratch != noreg || always_reachable(src), "missing");
 4037 
 4038   if (reachable(src)) {
 4039     vsubsd(dst, nds, as_Address(src));
 4040   } else {
 4041     lea(rscratch, src);
 4042     vsubsd(dst, nds, Address(rscratch, 0));
 4043   }
 4044 }
 4045 
 4046 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 4047   assert(rscratch != noreg || always_reachable(src), "missing");
 4048 
 4049   if (reachable(src)) {
 4050     vsubss(dst, nds, as_Address(src));
 4051   } else {
 4052     lea(rscratch, src);
 4053     vsubss(dst, nds, Address(rscratch, 0));
 4054   }
 4055 }
 4056 
 4057 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 4058   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 4059   assert(rscratch != noreg || always_reachable(src), "missing");
 4060 
 4061   vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch);
 4062 }
 4063 
 4064 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) {
 4065   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
 4066   assert(rscratch != noreg || always_reachable(src), "missing");
 4067 
 4068   vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch);
 4069 }
 4070 
 4071 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 4072   assert(rscratch != noreg || always_reachable(src), "missing");
 4073 
 4074   if (reachable(src)) {
 4075     vxorpd(dst, nds, as_Address(src), vector_len);
 4076   } else {
 4077     lea(rscratch, src);
 4078     vxorpd(dst, nds, Address(rscratch, 0), vector_len);
 4079   }
 4080 }
 4081 
 4082 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 4083   assert(rscratch != noreg || always_reachable(src), "missing");
 4084 
 4085   if (reachable(src)) {
 4086     vxorps(dst, nds, as_Address(src), vector_len);
 4087   } else {
 4088     lea(rscratch, src);
 4089     vxorps(dst, nds, Address(rscratch, 0), vector_len);
 4090   }
 4091 }
 4092 
 4093 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 4094   assert(rscratch != noreg || always_reachable(src), "missing");
 4095 
 4096   if (UseAVX > 1 || (vector_len < 1)) {
 4097     if (reachable(src)) {
 4098       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
 4099     } else {
 4100       lea(rscratch, src);
 4101       Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len);
 4102     }
 4103   } else {
 4104     MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch);
 4105   }
 4106 }
 4107 
 4108 void MacroAssembler::vpermd(XMMRegister dst,  XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
 4109   assert(rscratch != noreg || always_reachable(src), "missing");
 4110 
 4111   if (reachable(src)) {
 4112     Assembler::vpermd(dst, nds, as_Address(src), vector_len);
 4113   } else {
 4114     lea(rscratch, src);
 4115     Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len);
 4116   }
 4117 }
 4118 
 4119 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) {
 4120   const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask);
 4121   STATIC_ASSERT(inverted_mask == -4); // otherwise check this code
 4122   // The inverted mask is sign-extended
 4123   andptr(possibly_non_local, inverted_mask);
 4124 }
 4125 
 4126 void MacroAssembler::resolve_jobject(Register value,
 4127                                      Register thread,
 4128                                      Register tmp) {
 4129   assert_different_registers(value, thread, tmp);
 4130   Label done, tagged, weak_tagged;
 4131   testptr(value, value);
 4132   jcc(Assembler::zero, done);           // Use null as-is.
 4133   testptr(value, JNIHandles::tag_mask); // Test for tag.
 4134   jcc(Assembler::notZero, tagged);
 4135 
 4136   // Resolve local handle
 4137   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread);
 4138   verify_oop(value);
 4139   jmp(done);
 4140 
 4141   bind(tagged);
 4142   testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag.
 4143   jcc(Assembler::notZero, weak_tagged);
 4144 
 4145   // Resolve global handle
 4146   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4147   verify_oop(value);
 4148   jmp(done);
 4149 
 4150   bind(weak_tagged);
 4151   // Resolve jweak.
 4152   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 4153                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread);
 4154   verify_oop(value);
 4155 
 4156   bind(done);
 4157 }
 4158 
 4159 void MacroAssembler::resolve_global_jobject(Register value,
 4160                                             Register thread,
 4161                                             Register tmp) {
 4162   assert_different_registers(value, thread, tmp);
 4163   Label done;
 4164 
 4165   testptr(value, value);
 4166   jcc(Assembler::zero, done);           // Use null as-is.
 4167 
 4168 #ifdef ASSERT
 4169   {
 4170     Label valid_global_tag;
 4171     testptr(value, JNIHandles::TypeTag::global); // Test for global tag.
 4172     jcc(Assembler::notZero, valid_global_tag);
 4173     stop("non global jobject using resolve_global_jobject");
 4174     bind(valid_global_tag);
 4175   }
 4176 #endif
 4177 
 4178   // Resolve global handle
 4179   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread);
 4180   verify_oop(value);
 4181 
 4182   bind(done);
 4183 }
 4184 
 4185 void MacroAssembler::subptr(Register dst, int32_t imm32) {
 4186   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
 4187 }
 4188 
 4189 // Force generation of a 4 byte immediate value even if it fits into 8bit
 4190 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
 4191   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
 4192 }
 4193 
 4194 void MacroAssembler::subptr(Register dst, Register src) {
 4195   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
 4196 }
 4197 
 4198 // C++ bool manipulation
 4199 void MacroAssembler::testbool(Register dst) {
 4200   if(sizeof(bool) == 1)
 4201     testb(dst, 0xff);
 4202   else if(sizeof(bool) == 2) {
 4203     // testw implementation needed for two byte bools
 4204     ShouldNotReachHere();
 4205   } else if(sizeof(bool) == 4)
 4206     testl(dst, dst);
 4207   else
 4208     // unsupported
 4209     ShouldNotReachHere();
 4210 }
 4211 
 4212 void MacroAssembler::testptr(Register dst, Register src) {
 4213   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
 4214 }
 4215 
 4216 // Object / value buffer allocation...
 4217 //
 4218 // Kills klass and rsi on LP64
 4219 void MacroAssembler::allocate_instance(Register klass, Register new_obj,
 4220                                        Register t1, Register t2,
 4221                                        bool clear_fields, Label& alloc_failed)
 4222 {
 4223   Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop;
 4224   Register layout_size = t1;
 4225   assert(new_obj == rax, "needs to be rax");
 4226   assert_different_registers(klass, new_obj, t1, t2);
 4227 
 4228   // get instance_size in InstanceKlass (scaled to a count of bytes)
 4229   movl(layout_size, Address(klass, Klass::layout_helper_offset()));
 4230   // test to see if it is malformed in some way
 4231   testl(layout_size, Klass::_lh_instance_slow_path_bit);
 4232   jcc(Assembler::notZero, slow_case_no_pop);
 4233 
 4234   // Allocate the instance:
 4235   //  If TLAB is enabled:
 4236   //    Try to allocate in the TLAB.
 4237   //    If fails, go to the slow path.
 4238   //  Else If inline contiguous allocations are enabled:
 4239   //    Try to allocate in eden.
 4240   //    If fails due to heap end, go to slow path.
 4241   //
 4242   //  If TLAB is enabled OR inline contiguous is enabled:
 4243   //    Initialize the allocation.
 4244   //    Exit.
 4245   //
 4246   //  Go to slow path.
 4247 
 4248   push(klass);
 4249   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(klass);
 4250 #ifndef _LP64
 4251   if (UseTLAB) {
 4252     get_thread(thread);
 4253   }
 4254 #endif // _LP64
 4255 
 4256   if (UseTLAB) {
 4257     tlab_allocate(thread, new_obj, layout_size, 0, klass, t2, slow_case);
 4258     if (ZeroTLAB || (!clear_fields)) {
 4259       // the fields have been already cleared
 4260       jmp(initialize_header);
 4261     } else {
 4262       // initialize both the header and fields
 4263       jmp(initialize_object);
 4264     }
 4265   } else {
 4266     jmp(slow_case);
 4267   }
 4268 
 4269   // If UseTLAB is true, the object is created above and there is an initialize need.
 4270   // Otherwise, skip and go to the slow path.
 4271   if (UseTLAB) {
 4272     if (clear_fields) {
 4273       // The object is initialized before the header.  If the object size is
 4274       // zero, go directly to the header initialization.
 4275       bind(initialize_object);
 4276       decrement(layout_size, sizeof(oopDesc));
 4277       jcc(Assembler::zero, initialize_header);
 4278 
 4279       // Initialize topmost object field, divide size by 8, check if odd and
 4280       // test if zero.
 4281       Register zero = klass;
 4282       xorl(zero, zero);    // use zero reg to clear memory (shorter code)
 4283       shrl(layout_size, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
 4284 
 4285   #ifdef ASSERT
 4286       // make sure instance_size was multiple of 8
 4287       Label L;
 4288       // Ignore partial flag stall after shrl() since it is debug VM
 4289       jcc(Assembler::carryClear, L);
 4290       stop("object size is not multiple of 2 - adjust this code");
 4291       bind(L);
 4292       // must be > 0, no extra check needed here
 4293   #endif
 4294 
 4295       // initialize remaining object fields: instance_size was a multiple of 8
 4296       {
 4297         Label loop;
 4298         bind(loop);
 4299         movptr(Address(new_obj, layout_size, Address::times_8, sizeof(oopDesc) - 1*oopSize), zero);
 4300         NOT_LP64(movptr(Address(new_obj, layout_size, Address::times_8, sizeof(oopDesc) - 2*oopSize), zero));
 4301         decrement(layout_size);
 4302         jcc(Assembler::notZero, loop);
 4303       }
 4304     } // clear_fields
 4305 
 4306     // initialize object header only.
 4307     bind(initialize_header);
 4308     pop(klass);
 4309     Register mark_word = t2;
 4310     movptr(mark_word, Address(klass, Klass::prototype_header_offset()));
 4311     movptr(Address(new_obj, oopDesc::mark_offset_in_bytes ()), mark_word);
 4312 #ifdef _LP64
 4313     xorl(rsi, rsi);                 // use zero reg to clear memory (shorter code)
 4314     store_klass_gap(new_obj, rsi);  // zero klass gap for compressed oops
 4315 #endif
 4316     movptr(t2, klass);         // preserve klass
 4317     store_klass(new_obj, t2, rscratch1);  // src klass reg is potentially compressed
 4318 
 4319     jmp(done);
 4320   }
 4321 
 4322   bind(slow_case);
 4323   pop(klass);
 4324   bind(slow_case_no_pop);
 4325   jmp(alloc_failed);
 4326 
 4327   bind(done);
 4328 }
 4329 
 4330 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
 4331 void MacroAssembler::tlab_allocate(Register thread, Register obj,
 4332                                    Register var_size_in_bytes,
 4333                                    int con_size_in_bytes,
 4334                                    Register t1,
 4335                                    Register t2,
 4336                                    Label& slow_case) {
 4337   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 4338   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 4339 }
 4340 
 4341 RegSet MacroAssembler::call_clobbered_gp_registers() {
 4342   RegSet regs;
 4343 #ifdef _LP64
 4344   regs += RegSet::of(rax, rcx, rdx);
 4345 #ifndef WINDOWS
 4346   regs += RegSet::of(rsi, rdi);
 4347 #endif
 4348   regs += RegSet::range(r8, r11);
 4349 #else
 4350   regs += RegSet::of(rax, rcx, rdx);
 4351 #endif
 4352 #ifdef _LP64
 4353   if (UseAPX) {
 4354     regs += RegSet::range(r16, as_Register(Register::number_of_registers - 1));
 4355   }
 4356 #endif
 4357   return regs;
 4358 }
 4359 
 4360 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() {
 4361   int num_xmm_registers = XMMRegister::available_xmm_registers();
 4362 #if defined(WINDOWS) && defined(_LP64)
 4363   XMMRegSet result = XMMRegSet::range(xmm0, xmm5);
 4364   if (num_xmm_registers > 16) {
 4365      result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1));
 4366   }
 4367   return result;
 4368 #else
 4369   return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1));
 4370 #endif
 4371 }
 4372 
 4373 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor
 4374 
 4375 #ifndef _LP64
 4376 static bool use_x87_registers() { return UseSSE < 2; }
 4377 #endif
 4378 static bool use_xmm_registers() { return UseSSE >= 1; }
 4379 
 4380 // C1 only ever uses the first double/float of the XMM register.
 4381 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); }
 4382 
 4383 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4384   if (UseSSE == 1) {
 4385     masm->movflt(Address(rsp, offset), reg);
 4386   } else {
 4387     masm->movdbl(Address(rsp, offset), reg);
 4388   }
 4389 }
 4390 
 4391 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) {
 4392   if (UseSSE == 1) {
 4393     masm->movflt(reg, Address(rsp, offset));
 4394   } else {
 4395     masm->movdbl(reg, Address(rsp, offset));
 4396   }
 4397 }
 4398 
 4399 static int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers,
 4400                                   bool save_fpu, int& gp_area_size,
 4401                                   int& fp_area_size, int& xmm_area_size) {
 4402 
 4403   gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size,
 4404                          StackAlignmentInBytes);
 4405 #ifdef _LP64
 4406   fp_area_size = 0;
 4407 #else
 4408   fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0;
 4409 #endif
 4410   xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0;
 4411 
 4412   return gp_area_size + fp_area_size + xmm_area_size;
 4413 }
 4414 
 4415 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) {
 4416   block_comment("push_call_clobbered_registers start");
 4417   // Regular registers
 4418   RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude;
 4419 
 4420   int gp_area_size;
 4421   int fp_area_size;
 4422   int xmm_area_size;
 4423   int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu,
 4424                                                gp_area_size, fp_area_size, xmm_area_size);
 4425   subptr(rsp, total_save_size);
 4426 
 4427   push_set(gp_registers_to_push, 0);
 4428 
 4429 #ifndef _LP64
 4430   if (save_fpu && use_x87_registers()) {
 4431     fnsave(Address(rsp, gp_area_size));
 4432     fwait();
 4433   }
 4434 #endif
 4435   if (save_fpu && use_xmm_registers()) {
 4436     push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4437   }
 4438 
 4439   block_comment("push_call_clobbered_registers end");
 4440 }
 4441 
 4442 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) {
 4443   block_comment("pop_call_clobbered_registers start");
 4444 
 4445   RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude;
 4446 
 4447   int gp_area_size;
 4448   int fp_area_size;
 4449   int xmm_area_size;
 4450   int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu,
 4451                                                gp_area_size, fp_area_size, xmm_area_size);
 4452 
 4453   if (restore_fpu && use_xmm_registers()) {
 4454     pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size);
 4455   }
 4456 #ifndef _LP64
 4457   if (restore_fpu && use_x87_registers()) {
 4458     frstor(Address(rsp, gp_area_size));
 4459   }
 4460 #endif
 4461 
 4462   pop_set(gp_registers_to_pop, 0);
 4463 
 4464   addptr(rsp, total_save_size);
 4465 
 4466   vzeroupper();
 4467 
 4468   block_comment("pop_call_clobbered_registers end");
 4469 }
 4470 
 4471 void MacroAssembler::push_set(XMMRegSet set, int offset) {
 4472   assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be");
 4473   int spill_offset = offset;
 4474 
 4475   for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) {
 4476     save_xmm_register(this, spill_offset, *it);
 4477     spill_offset += xmm_save_size();
 4478   }
 4479 }
 4480 
 4481 void MacroAssembler::pop_set(XMMRegSet set, int offset) {
 4482   int restore_size = set.size() * xmm_save_size();
 4483   assert(is_aligned(restore_size, StackAlignmentInBytes), "must be");
 4484 
 4485   int restore_offset = offset + restore_size - xmm_save_size();
 4486 
 4487   for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) {
 4488     restore_xmm_register(this, restore_offset, *it);
 4489     restore_offset -= xmm_save_size();
 4490   }
 4491 }
 4492 
 4493 void MacroAssembler::push_set(RegSet set, int offset) {
 4494   int spill_offset;
 4495   if (offset == -1) {
 4496     int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4497     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 4498     subptr(rsp, aligned_size);
 4499     spill_offset = 0;
 4500   } else {
 4501     spill_offset = offset;
 4502   }
 4503 
 4504   for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) {
 4505     movptr(Address(rsp, spill_offset), *it);
 4506     spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4507   }
 4508 }
 4509 
 4510 void MacroAssembler::pop_set(RegSet set, int offset) {
 4511 
 4512   int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 4513   int restore_size = set.size() * gp_reg_size;
 4514   int aligned_size = align_up(restore_size, StackAlignmentInBytes);
 4515 
 4516   int restore_offset;
 4517   if (offset == -1) {
 4518     restore_offset = restore_size - gp_reg_size;
 4519   } else {
 4520     restore_offset = offset + restore_size - gp_reg_size;
 4521   }
 4522   for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) {
 4523     movptr(*it, Address(rsp, restore_offset));
 4524     restore_offset -= gp_reg_size;
 4525   }
 4526 
 4527   if (offset == -1) {
 4528     addptr(rsp, aligned_size);
 4529   }
 4530 }
 4531 
 4532 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
 4533 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
 4534   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
 4535   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
 4536   Label done;
 4537 
 4538   testptr(length_in_bytes, length_in_bytes);
 4539   jcc(Assembler::zero, done);
 4540 
 4541   // initialize topmost word, divide index by 2, check if odd and test if zero
 4542   // note: for the remaining code to work, index must be a multiple of BytesPerWord
 4543 #ifdef ASSERT
 4544   {
 4545     Label L;
 4546     testptr(length_in_bytes, BytesPerWord - 1);
 4547     jcc(Assembler::zero, L);
 4548     stop("length must be a multiple of BytesPerWord");
 4549     bind(L);
 4550   }
 4551 #endif
 4552   Register index = length_in_bytes;
 4553   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
 4554   if (UseIncDec) {
 4555     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 4556   } else {
 4557     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 4558     shrptr(index, 1);
 4559   }
 4560 #ifndef _LP64
 4561   // index could have not been a multiple of 8 (i.e., bit 2 was set)
 4562   {
 4563     Label even;
 4564     // note: if index was a multiple of 8, then it cannot
 4565     //       be 0 now otherwise it must have been 0 before
 4566     //       => if it is even, we don't need to check for 0 again
 4567     jcc(Assembler::carryClear, even);
 4568     // clear topmost word (no jump would be needed if conditional assignment worked here)
 4569     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
 4570     // index could be 0 now, must check again
 4571     jcc(Assembler::zero, done);
 4572     bind(even);
 4573   }
 4574 #endif // !_LP64
 4575   // initialize remaining object fields: index is a multiple of 2 now
 4576   {
 4577     Label loop;
 4578     bind(loop);
 4579     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
 4580     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
 4581     decrement(index);
 4582     jcc(Assembler::notZero, loop);
 4583   }
 4584 
 4585   bind(done);
 4586 }
 4587 
 4588 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) {
 4589   inline_layout_info(holder_klass, index, inline_klass);
 4590   movptr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset()));
 4591 }
 4592 
 4593 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) {
 4594   movptr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset()));
 4595 #ifdef ASSERT
 4596   {
 4597     Label done;
 4598     cmpptr(layout_info, 0);
 4599     jcc(Assembler::notEqual, done);
 4600     stop("inline_layout_info_array is null");
 4601     bind(done);
 4602   }
 4603 #endif
 4604 
 4605   InlineLayoutInfo array[2];
 4606   int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements
 4607   if (is_power_of_2(size)) {
 4608     shll(index, log2i_exact(size)); // Scale index by power of 2
 4609   } else {
 4610     imull(index, index, size); // Scale the index to be the entry index * array_element_size
 4611   }
 4612   lea(layout_info, Address(layout_info, index, Address::times_1, Array<InlineLayoutInfo>::base_offset_in_bytes()));
 4613 }
 4614 
 4615 void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) {
 4616 #ifdef ASSERT
 4617   {
 4618     Label done_check;
 4619     test_klass_is_inline_type(inline_klass, temp_reg, done_check);
 4620     stop("get_default_value_oop from non inline type klass");
 4621     bind(done_check);
 4622   }
 4623 #endif
 4624   Register offset = temp_reg;
 4625   // Getting the offset of the pre-allocated default value
 4626   movptr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset())));
 4627   movl(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset())));
 4628 
 4629   // Getting the mirror
 4630   movptr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset())));
 4631   resolve_oop_handle(obj, inline_klass);
 4632 
 4633   // Getting the pre-allocated default value from the mirror
 4634   Address field(obj, offset, Address::times_1);
 4635   load_heap_oop(obj, field);
 4636 }
 4637 
 4638 void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) {
 4639 #ifdef ASSERT
 4640   {
 4641     Label done_check;
 4642     test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check);
 4643     stop("get_empty_value from non-empty inline klass");
 4644     bind(done_check);
 4645   }
 4646 #endif
 4647   get_default_value_oop(inline_klass, temp_reg, obj);
 4648 }
 4649 
 4650 
 4651 // Look up the method for a megamorphic invokeinterface call.
 4652 // The target method is determined by <intf_klass, itable_index>.
 4653 // The receiver klass is in recv_klass.
 4654 // On success, the result will be in method_result, and execution falls through.
 4655 // On failure, execution transfers to the given label.
 4656 void MacroAssembler::lookup_interface_method(Register recv_klass,
 4657                                              Register intf_klass,
 4658                                              RegisterOrConstant itable_index,
 4659                                              Register method_result,
 4660                                              Register scan_temp,
 4661                                              Label& L_no_such_interface,
 4662                                              bool return_method) {
 4663   assert_different_registers(recv_klass, intf_klass, scan_temp);
 4664   assert_different_registers(method_result, intf_klass, scan_temp);
 4665   assert(recv_klass != method_result || !return_method,
 4666          "recv_klass can be destroyed when method isn't needed");
 4667 
 4668   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 4669          "caller must use same register for non-constant itable index as for method");
 4670 
 4671   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 4672   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4673   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4674   int scan_step   = itableOffsetEntry::size() * wordSize;
 4675   int vte_size    = vtableEntry::size_in_bytes();
 4676   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4677   assert(vte_size == wordSize, "else adjust times_vte_scale");
 4678 
 4679   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4680 
 4681   // Could store the aligned, prescaled offset in the klass.
 4682   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 4683 
 4684   if (return_method) {
 4685     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 4686     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4687     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 4688   }
 4689 
 4690   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
 4691   //   if (scan->interface() == intf) {
 4692   //     result = (klass + scan->offset() + itable_index);
 4693   //   }
 4694   // }
 4695   Label search, found_method;
 4696 
 4697   for (int peel = 1; peel >= 0; peel--) {
 4698     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
 4699     cmpptr(intf_klass, method_result);
 4700 
 4701     if (peel) {
 4702       jccb(Assembler::equal, found_method);
 4703     } else {
 4704       jccb(Assembler::notEqual, search);
 4705       // (invert the test to fall through to found_method...)
 4706     }
 4707 
 4708     if (!peel)  break;
 4709 
 4710     bind(search);
 4711 
 4712     // Check that the previous entry is non-null.  A null entry means that
 4713     // the receiver class doesn't implement the interface, and wasn't the
 4714     // same as when the caller was compiled.
 4715     testptr(method_result, method_result);
 4716     jcc(Assembler::zero, L_no_such_interface);
 4717     addptr(scan_temp, scan_step);
 4718   }
 4719 
 4720   bind(found_method);
 4721 
 4722   if (return_method) {
 4723     // Got a hit.
 4724     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
 4725     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
 4726   }
 4727 }
 4728 
 4729 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
 4730 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
 4731 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
 4732 // The target method is determined by <holder_klass, itable_index>.
 4733 // The receiver klass is in recv_klass.
 4734 // On success, the result will be in method_result, and execution falls through.
 4735 // On failure, execution transfers to the given label.
 4736 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
 4737                                                   Register holder_klass,
 4738                                                   Register resolved_klass,
 4739                                                   Register method_result,
 4740                                                   Register scan_temp,
 4741                                                   Register temp_reg2,
 4742                                                   Register receiver,
 4743                                                   int itable_index,
 4744                                                   Label& L_no_such_interface) {
 4745   assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver);
 4746   Register temp_itbl_klass = method_result;
 4747   Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl
 4748 
 4749   int vtable_base = in_bytes(Klass::vtable_start_offset());
 4750   int itentry_off = in_bytes(itableMethodEntry::method_offset());
 4751   int scan_step = itableOffsetEntry::size() * wordSize;
 4752   int vte_size = vtableEntry::size_in_bytes();
 4753   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
 4754   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
 4755   Address::ScaleFactor times_vte_scale = Address::times_ptr;
 4756   assert(vte_size == wordSize, "adjust times_vte_scale");
 4757 
 4758   Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found;
 4759 
 4760   // temp_itbl_klass = recv_klass.itable[0]
 4761   // scan_temp = &recv_klass.itable[0] + step
 4762   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 4763   movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset));
 4764   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step));
 4765   xorptr(temp_reg, temp_reg);
 4766 
 4767   // Initial checks:
 4768   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
 4769   //   - if (itable[0] == 0), no such interface
 4770   //   - if (itable[0] == holder_klass), shortcut to "holder found"
 4771   cmpptr(holder_klass, resolved_klass);
 4772   jccb(Assembler::notEqual, L_loop_scan_resolved_entry);
 4773   testptr(temp_itbl_klass, temp_itbl_klass);
 4774   jccb(Assembler::zero, L_no_such_interface);
 4775   cmpptr(holder_klass, temp_itbl_klass);
 4776   jccb(Assembler::equal, L_holder_found);
 4777 
 4778   // Loop: Look for holder_klass record in itable
 4779   //   do {
 4780   //     tmp = itable[index];
 4781   //     index += step;
 4782   //     if (tmp == holder_klass) {
 4783   //       goto L_holder_found; // Found!
 4784   //     }
 4785   //   } while (tmp != 0);
 4786   //   goto L_no_such_interface // Not found.
 4787   Label L_scan_holder;
 4788   bind(L_scan_holder);
 4789     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4790     addptr(scan_temp, scan_step);
 4791     cmpptr(holder_klass, temp_itbl_klass);
 4792     jccb(Assembler::equal, L_holder_found);
 4793     testptr(temp_itbl_klass, temp_itbl_klass);
 4794     jccb(Assembler::notZero, L_scan_holder);
 4795 
 4796   jmpb(L_no_such_interface);
 4797 
 4798   // Loop: Look for resolved_class record in itable
 4799   //   do {
 4800   //     tmp = itable[index];
 4801   //     index += step;
 4802   //     if (tmp == holder_klass) {
 4803   //        // Also check if we have met a holder klass
 4804   //        holder_tmp = itable[index-step-ioffset];
 4805   //     }
 4806   //     if (tmp == resolved_klass) {
 4807   //        goto L_resolved_found;  // Found!
 4808   //     }
 4809   //   } while (tmp != 0);
 4810   //   goto L_no_such_interface // Not found.
 4811   //
 4812   Label L_loop_scan_resolved;
 4813   bind(L_loop_scan_resolved);
 4814     movptr(temp_itbl_klass, Address(scan_temp, 0));
 4815     addptr(scan_temp, scan_step);
 4816     bind(L_loop_scan_resolved_entry);
 4817     cmpptr(holder_klass, temp_itbl_klass);
 4818     cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4819     cmpptr(resolved_klass, temp_itbl_klass);
 4820     jccb(Assembler::equal, L_resolved_found);
 4821     testptr(temp_itbl_klass, temp_itbl_klass);
 4822     jccb(Assembler::notZero, L_loop_scan_resolved);
 4823 
 4824   jmpb(L_no_such_interface);
 4825 
 4826   Label L_ready;
 4827 
 4828   // See if we already have a holder klass. If not, go and scan for it.
 4829   bind(L_resolved_found);
 4830   testptr(temp_reg, temp_reg);
 4831   jccb(Assembler::zero, L_scan_holder);
 4832   jmpb(L_ready);
 4833 
 4834   bind(L_holder_found);
 4835   movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step));
 4836 
 4837   // Finally, temp_reg contains holder_klass vtable offset
 4838   bind(L_ready);
 4839   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 4840   if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl
 4841     load_klass(scan_temp, receiver, noreg);
 4842     movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4843   } else {
 4844     movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off));
 4845   }
 4846 }
 4847 
 4848 
 4849 // virtual method calling
 4850 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 4851                                            RegisterOrConstant vtable_index,
 4852                                            Register method_result) {
 4853   const ByteSize base = Klass::vtable_start_offset();
 4854   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
 4855   Address vtable_entry_addr(recv_klass,
 4856                             vtable_index, Address::times_ptr,
 4857                             base + vtableEntry::method_offset());
 4858   movptr(method_result, vtable_entry_addr);
 4859 }
 4860 
 4861 
 4862 void MacroAssembler::check_klass_subtype(Register sub_klass,
 4863                            Register super_klass,
 4864                            Register temp_reg,
 4865                            Label& L_success) {
 4866   Label L_failure;
 4867   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
 4868   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
 4869   bind(L_failure);
 4870 }
 4871 
 4872 
 4873 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
 4874                                                    Register super_klass,
 4875                                                    Register temp_reg,
 4876                                                    Label* L_success,
 4877                                                    Label* L_failure,
 4878                                                    Label* L_slow_path,
 4879                                         RegisterOrConstant super_check_offset) {
 4880   assert_different_registers(sub_klass, super_klass, temp_reg);
 4881   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
 4882   if (super_check_offset.is_register()) {
 4883     assert_different_registers(sub_klass, super_klass,
 4884                                super_check_offset.as_register());
 4885   } else if (must_load_sco) {
 4886     assert(temp_reg != noreg, "supply either a temp or a register offset");
 4887   }
 4888 
 4889   Label L_fallthrough;
 4890   int label_nulls = 0;
 4891   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4892   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4893   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
 4894   assert(label_nulls <= 1, "at most one null in the batch");
 4895 
 4896   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4897   int sco_offset = in_bytes(Klass::super_check_offset_offset());
 4898   Address super_check_offset_addr(super_klass, sco_offset);
 4899 
 4900   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
 4901   // range of a jccb.  If this routine grows larger, reconsider at
 4902   // least some of these.
 4903 #define local_jcc(assembler_cond, label)                                \
 4904   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
 4905   else                             jcc( assembler_cond, label) /*omit semi*/
 4906 
 4907   // Hacked jmp, which may only be used just before L_fallthrough.
 4908 #define final_jmp(label)                                                \
 4909   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
 4910   else                            jmp(label)                /*omit semi*/
 4911 
 4912   // If the pointers are equal, we are done (e.g., String[] elements).
 4913   // This self-check enables sharing of secondary supertype arrays among
 4914   // non-primary types such as array-of-interface.  Otherwise, each such
 4915   // type would need its own customized SSA.
 4916   // We move this check to the front of the fast path because many
 4917   // type checks are in fact trivially successful in this manner,
 4918   // so we get a nicely predicted branch right at the start of the check.
 4919   cmpptr(sub_klass, super_klass);
 4920   local_jcc(Assembler::equal, *L_success);
 4921 
 4922   // Check the supertype display:
 4923   if (must_load_sco) {
 4924     // Positive movl does right thing on LP64.
 4925     movl(temp_reg, super_check_offset_addr);
 4926     super_check_offset = RegisterOrConstant(temp_reg);
 4927   }
 4928   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
 4929   cmpptr(super_klass, super_check_addr); // load displayed supertype
 4930 
 4931   // This check has worked decisively for primary supers.
 4932   // Secondary supers are sought in the super_cache ('super_cache_addr').
 4933   // (Secondary supers are interfaces and very deeply nested subtypes.)
 4934   // This works in the same check above because of a tricky aliasing
 4935   // between the super_cache and the primary super display elements.
 4936   // (The 'super_check_addr' can address either, as the case requires.)
 4937   // Note that the cache is updated below if it does not help us find
 4938   // what we need immediately.
 4939   // So if it was a primary super, we can just fail immediately.
 4940   // Otherwise, it's the slow path for us (no success at this point).
 4941 
 4942   if (super_check_offset.is_register()) {
 4943     local_jcc(Assembler::equal, *L_success);
 4944     cmpl(super_check_offset.as_register(), sc_offset);
 4945     if (L_failure == &L_fallthrough) {
 4946       local_jcc(Assembler::equal, *L_slow_path);
 4947     } else {
 4948       local_jcc(Assembler::notEqual, *L_failure);
 4949       final_jmp(*L_slow_path);
 4950     }
 4951   } else if (super_check_offset.as_constant() == sc_offset) {
 4952     // Need a slow path; fast failure is impossible.
 4953     if (L_slow_path == &L_fallthrough) {
 4954       local_jcc(Assembler::equal, *L_success);
 4955     } else {
 4956       local_jcc(Assembler::notEqual, *L_slow_path);
 4957       final_jmp(*L_success);
 4958     }
 4959   } else {
 4960     // No slow path; it's a fast decision.
 4961     if (L_failure == &L_fallthrough) {
 4962       local_jcc(Assembler::equal, *L_success);
 4963     } else {
 4964       local_jcc(Assembler::notEqual, *L_failure);
 4965       final_jmp(*L_success);
 4966     }
 4967   }
 4968 
 4969   bind(L_fallthrough);
 4970 
 4971 #undef local_jcc
 4972 #undef final_jmp
 4973 }
 4974 
 4975 
 4976 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass,
 4977                                                           Register super_klass,
 4978                                                           Register temp_reg,
 4979                                                           Register temp2_reg,
 4980                                                           Label* L_success,
 4981                                                           Label* L_failure,
 4982                                                           bool set_cond_codes) {
 4983   assert_different_registers(sub_klass, super_klass, temp_reg);
 4984   if (temp2_reg != noreg)
 4985     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
 4986 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
 4987 
 4988   Label L_fallthrough;
 4989   int label_nulls = 0;
 4990   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 4991   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 4992   assert(label_nulls <= 1, "at most one null in the batch");
 4993 
 4994   // a couple of useful fields in sub_klass:
 4995   int ss_offset = in_bytes(Klass::secondary_supers_offset());
 4996   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 4997   Address secondary_supers_addr(sub_klass, ss_offset);
 4998   Address super_cache_addr(     sub_klass, sc_offset);
 4999 
 5000   // Do a linear scan of the secondary super-klass chain.
 5001   // This code is rarely used, so simplicity is a virtue here.
 5002   // The repne_scan instruction uses fixed registers, which we must spill.
 5003   // Don't worry too much about pre-existing connections with the input regs.
 5004 
 5005   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
 5006   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
 5007 
 5008   // Get super_klass value into rax (even if it was in rdi or rcx).
 5009   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
 5010   if (super_klass != rax) {
 5011     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
 5012     mov(rax, super_klass);
 5013   }
 5014   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
 5015   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
 5016 
 5017 #ifndef PRODUCT
 5018   uint* pst_counter = &SharedRuntime::_partial_subtype_ctr;
 5019   ExternalAddress pst_counter_addr((address) pst_counter);
 5020   NOT_LP64(  incrementl(pst_counter_addr) );
 5021   LP64_ONLY( lea(rcx, pst_counter_addr) );
 5022   LP64_ONLY( incrementl(Address(rcx, 0)) );
 5023 #endif //PRODUCT
 5024 
 5025   // We will consult the secondary-super array.
 5026   movptr(rdi, secondary_supers_addr);
 5027   // Load the array length.  (Positive movl does right thing on LP64.)
 5028   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
 5029   // Skip to start of data.
 5030   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
 5031 
 5032   // Scan RCX words at [RDI] for an occurrence of RAX.
 5033   // Set NZ/Z based on last compare.
 5034   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
 5035   // not change flags (only scas instruction which is repeated sets flags).
 5036   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
 5037 
 5038     testptr(rax,rax); // Set Z = 0
 5039     repne_scan();
 5040 
 5041   // Unspill the temp. registers:
 5042   if (pushed_rdi)  pop(rdi);
 5043   if (pushed_rcx)  pop(rcx);
 5044   if (pushed_rax)  pop(rax);
 5045 
 5046   if (set_cond_codes) {
 5047     // Special hack for the AD files:  rdi is guaranteed non-zero.
 5048     assert(!pushed_rdi, "rdi must be left non-null");
 5049     // Also, the condition codes are properly set Z/NZ on succeed/failure.
 5050   }
 5051 
 5052   if (L_failure == &L_fallthrough)
 5053         jccb(Assembler::notEqual, *L_failure);
 5054   else  jcc(Assembler::notEqual, *L_failure);
 5055 
 5056   // Success.  Cache the super we found and proceed in triumph.
 5057   movptr(super_cache_addr, super_klass);
 5058 
 5059   if (L_success != &L_fallthrough) {
 5060     jmp(*L_success);
 5061   }
 5062 
 5063 #undef IS_A_TEMP
 5064 
 5065   bind(L_fallthrough);
 5066 }
 5067 
 5068 #ifndef _LP64
 5069 
 5070 // 32-bit x86 only: always use the linear search.
 5071 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 5072                                                    Register super_klass,
 5073                                                    Register temp_reg,
 5074                                                    Register temp2_reg,
 5075                                                    Label* L_success,
 5076                                                    Label* L_failure,
 5077                                                    bool set_cond_codes) {
 5078   check_klass_subtype_slow_path_linear
 5079     (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes);
 5080 }
 5081 
 5082 #else // _LP64
 5083 
 5084 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 5085                                                    Register super_klass,
 5086                                                    Register temp_reg,
 5087                                                    Register temp2_reg,
 5088                                                    Label* L_success,
 5089                                                    Label* L_failure,
 5090                                                    bool set_cond_codes) {
 5091   assert(set_cond_codes == false, "must be false on 64-bit x86");
 5092   check_klass_subtype_slow_path
 5093     (sub_klass, super_klass, temp_reg, temp2_reg, noreg, noreg,
 5094      L_success, L_failure);
 5095 }
 5096 
 5097 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 5098                                                    Register super_klass,
 5099                                                    Register temp_reg,
 5100                                                    Register temp2_reg,
 5101                                                    Register temp3_reg,
 5102                                                    Register temp4_reg,
 5103                                                    Label* L_success,
 5104                                                    Label* L_failure) {
 5105   if (UseSecondarySupersTable) {
 5106     check_klass_subtype_slow_path_table
 5107       (sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, temp4_reg,
 5108        L_success, L_failure);
 5109   } else {
 5110     check_klass_subtype_slow_path_linear
 5111       (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, /*set_cond_codes*/false);
 5112   }
 5113 }
 5114 
 5115 Register MacroAssembler::allocate_if_noreg(Register r,
 5116                                   RegSetIterator<Register> &available_regs,
 5117                                   RegSet &regs_to_push) {
 5118   if (!r->is_valid()) {
 5119     r = *available_regs++;
 5120     regs_to_push += r;
 5121   }
 5122   return r;
 5123 }
 5124 
 5125 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass,
 5126                                                          Register super_klass,
 5127                                                          Register temp_reg,
 5128                                                          Register temp2_reg,
 5129                                                          Register temp3_reg,
 5130                                                          Register result_reg,
 5131                                                          Label* L_success,
 5132                                                          Label* L_failure) {
 5133   // NB! Callers may assume that, when temp2_reg is a valid register,
 5134   // this code sets it to a nonzero value.
 5135   bool temp2_reg_was_valid = temp2_reg->is_valid();
 5136 
 5137   RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg);
 5138 
 5139   Label L_fallthrough;
 5140   int label_nulls = 0;
 5141   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 5142   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 5143   assert(label_nulls <= 1, "at most one null in the batch");
 5144 
 5145   BLOCK_COMMENT("check_klass_subtype_slow_path_table");
 5146 
 5147   RegSetIterator<Register> available_regs
 5148     = (RegSet::of(rax, rcx, rdx, r8) + r9 + r10 + r11 + r12 - temps - sub_klass - super_klass).begin();
 5149 
 5150   RegSet pushed_regs;
 5151 
 5152   temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs);
 5153   temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs);
 5154   temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs);
 5155   result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs);
 5156   Register temp4_reg = allocate_if_noreg(noreg, available_regs, pushed_regs);
 5157 
 5158   assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg, result_reg);
 5159 
 5160   {
 5161 
 5162     int register_push_size = pushed_regs.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size;
 5163     int aligned_size = align_up(register_push_size, StackAlignmentInBytes);
 5164     subptr(rsp, aligned_size);
 5165     push_set(pushed_regs, 0);
 5166 
 5167     lookup_secondary_supers_table_var(sub_klass,
 5168                                       super_klass,
 5169                                       temp_reg, temp2_reg, temp3_reg, temp4_reg, result_reg);
 5170     cmpq(result_reg, 0);
 5171 
 5172     // Unspill the temp. registers:
 5173     pop_set(pushed_regs, 0);
 5174     // Increment SP but do not clobber flags.
 5175     lea(rsp, Address(rsp, aligned_size));
 5176   }
 5177 
 5178   if (temp2_reg_was_valid) {
 5179     movq(temp2_reg, 1);
 5180   }
 5181 
 5182   jcc(Assembler::notEqual, *L_failure);
 5183 
 5184   if (L_success != &L_fallthrough) {
 5185     jmp(*L_success);
 5186   }
 5187 
 5188   bind(L_fallthrough);
 5189 }
 5190 
 5191 // population_count variant for running without the POPCNT
 5192 // instruction, which was introduced with SSE4.2 in 2008.
 5193 void MacroAssembler::population_count(Register dst, Register src,
 5194                                       Register scratch1, Register scratch2) {
 5195   assert_different_registers(src, scratch1, scratch2);
 5196   if (UsePopCountInstruction) {
 5197     Assembler::popcntq(dst, src);
 5198   } else {
 5199     assert_different_registers(src, scratch1, scratch2);
 5200     assert_different_registers(dst, scratch1, scratch2);
 5201     Label loop, done;
 5202 
 5203     mov(scratch1, src);
 5204     // dst = 0;
 5205     // while(scratch1 != 0) {
 5206     //   dst++;
 5207     //   scratch1 &= (scratch1 - 1);
 5208     // }
 5209     xorl(dst, dst);
 5210     testq(scratch1, scratch1);
 5211     jccb(Assembler::equal, done);
 5212     {
 5213       bind(loop);
 5214       incq(dst);
 5215       movq(scratch2, scratch1);
 5216       decq(scratch2);
 5217       andq(scratch1, scratch2);
 5218       jccb(Assembler::notEqual, loop);
 5219     }
 5220     bind(done);
 5221   }
 5222 }
 5223 
 5224 // Ensure that the inline code and the stub are using the same registers.
 5225 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                      \
 5226 do {                                                                 \
 5227   assert(r_super_klass  == rax, "mismatch");                         \
 5228   assert(r_array_base   == rbx, "mismatch");                         \
 5229   assert(r_array_length == rcx, "mismatch");                         \
 5230   assert(r_array_index  == rdx, "mismatch");                         \
 5231   assert(r_sub_klass    == rsi || r_sub_klass == noreg, "mismatch"); \
 5232   assert(r_bitmap       == r11 || r_bitmap    == noreg, "mismatch"); \
 5233   assert(result         == rdi || result      == noreg, "mismatch"); \
 5234 } while(0)
 5235 
 5236 // Versions of salq and rorq that don't need count to be in rcx
 5237 
 5238 void MacroAssembler::salq(Register dest, Register count) {
 5239   if (count == rcx) {
 5240     Assembler::salq(dest);
 5241   } else {
 5242     assert_different_registers(rcx, dest);
 5243     xchgq(rcx, count);
 5244     Assembler::salq(dest);
 5245     xchgq(rcx, count);
 5246   }
 5247 }
 5248 
 5249 void MacroAssembler::rorq(Register dest, Register count) {
 5250   if (count == rcx) {
 5251     Assembler::rorq(dest);
 5252   } else {
 5253     assert_different_registers(rcx, dest);
 5254     xchgq(rcx, count);
 5255     Assembler::rorq(dest);
 5256     xchgq(rcx, count);
 5257   }
 5258 }
 5259 
 5260 // Return true: we succeeded in generating this code
 5261 //
 5262 // At runtime, return 0 in result if r_super_klass is a superclass of
 5263 // r_sub_klass, otherwise return nonzero. Use this if you know the
 5264 // super_klass_slot of the class you're looking for. This is always
 5265 // the case for instanceof and checkcast.
 5266 void MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass,
 5267                                                          Register r_super_klass,
 5268                                                          Register temp1,
 5269                                                          Register temp2,
 5270                                                          Register temp3,
 5271                                                          Register temp4,
 5272                                                          Register result,
 5273                                                          u1 super_klass_slot) {
 5274   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 5275 
 5276   Label L_fallthrough, L_success, L_failure;
 5277 
 5278   BLOCK_COMMENT("lookup_secondary_supers_table {");
 5279 
 5280   const Register
 5281     r_array_index  = temp1,
 5282     r_array_length = temp2,
 5283     r_array_base   = temp3,
 5284     r_bitmap       = temp4;
 5285 
 5286   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
 5287 
 5288   xorq(result, result); // = 0
 5289 
 5290   movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
 5291   movq(r_array_index, r_bitmap);
 5292 
 5293   // First check the bitmap to see if super_klass might be present. If
 5294   // the bit is zero, we are certain that super_klass is not one of
 5295   // the secondary supers.
 5296   u1 bit = super_klass_slot;
 5297   {
 5298     // NB: If the count in a x86 shift instruction is 0, the flags are
 5299     // not affected, so we do a testq instead.
 5300     int shift_count = Klass::SECONDARY_SUPERS_TABLE_MASK - bit;
 5301     if (shift_count != 0) {
 5302       salq(r_array_index, shift_count);
 5303     } else {
 5304       testq(r_array_index, r_array_index);
 5305     }
 5306   }
 5307   // We test the MSB of r_array_index, i.e. its sign bit
 5308   jcc(Assembler::positive, L_failure);
 5309 
 5310   // Get the first array index that can contain super_klass into r_array_index.
 5311   if (bit != 0) {
 5312     population_count(r_array_index, r_array_index, temp2, temp3);
 5313   } else {
 5314     movl(r_array_index, 1);
 5315   }
 5316   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 5317 
 5318   // We will consult the secondary-super array.
 5319   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5320 
 5321   // We're asserting that the first word in an Array<Klass*> is the
 5322   // length, and the second word is the first word of the data. If
 5323   // that ever changes, r_array_base will have to be adjusted here.
 5324   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 5325   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 5326 
 5327   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5328   jccb(Assembler::equal, L_success);
 5329 
 5330   // Is there another entry to check? Consult the bitmap.
 5331   btq(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK);
 5332   jccb(Assembler::carryClear, L_failure);
 5333 
 5334   // Linear probe. Rotate the bitmap so that the next bit to test is
 5335   // in Bit 1.
 5336   if (bit != 0) {
 5337     rorq(r_bitmap, bit);
 5338   }
 5339 
 5340   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 5341   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 5342   // Kills: r_array_length.
 5343   // Returns: result.
 5344   call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()));
 5345   // Result (0/1) is in rdi
 5346   jmpb(L_fallthrough);
 5347 
 5348   bind(L_failure);
 5349   incq(result); // 0 => 1
 5350 
 5351   bind(L_success);
 5352   // result = 0;
 5353 
 5354   bind(L_fallthrough);
 5355   BLOCK_COMMENT("} lookup_secondary_supers_table");
 5356 
 5357   if (VerifySecondarySupers) {
 5358     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 5359                                   temp1, temp2, temp3);
 5360   }
 5361 }
 5362 
 5363 // At runtime, return 0 in result if r_super_klass is a superclass of
 5364 // r_sub_klass, otherwise return nonzero. Use this version of
 5365 // lookup_secondary_supers_table() if you don't know ahead of time
 5366 // which superclass will be searched for. Used by interpreter and
 5367 // runtime stubs. It is larger and has somewhat greater latency than
 5368 // the version above, which takes a constant super_klass_slot.
 5369 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass,
 5370                                                        Register r_super_klass,
 5371                                                        Register temp1,
 5372                                                        Register temp2,
 5373                                                        Register temp3,
 5374                                                        Register temp4,
 5375                                                        Register result) {
 5376   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, temp3, temp4, result);
 5377   assert_different_registers(r_sub_klass, r_super_klass, rcx);
 5378   RegSet temps = RegSet::of(temp1, temp2, temp3, temp4);
 5379 
 5380   Label L_fallthrough, L_success, L_failure;
 5381 
 5382   BLOCK_COMMENT("lookup_secondary_supers_table {");
 5383 
 5384   RegSetIterator<Register> available_regs = (temps - rcx).begin();
 5385 
 5386   // FIXME. Once we are sure that all paths reaching this point really
 5387   // do pass rcx as one of our temps we can get rid of the following
 5388   // workaround.
 5389   assert(temps.contains(rcx), "fix this code");
 5390 
 5391   // We prefer to have our shift count in rcx. If rcx is one of our
 5392   // temps, use it for slot. If not, pick any of our temps.
 5393   Register slot;
 5394   if (!temps.contains(rcx)) {
 5395     slot = *available_regs++;
 5396   } else {
 5397     slot = rcx;
 5398   }
 5399 
 5400   const Register r_array_index = *available_regs++;
 5401   const Register r_bitmap      = *available_regs++;
 5402 
 5403   // The logic above guarantees this property, but we state it here.
 5404   assert_different_registers(r_array_index, r_bitmap, rcx);
 5405 
 5406   movq(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
 5407   movq(r_array_index, r_bitmap);
 5408 
 5409   // First check the bitmap to see if super_klass might be present. If
 5410   // the bit is zero, we are certain that super_klass is not one of
 5411   // the secondary supers.
 5412   movb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
 5413   xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64)
 5414   salq(r_array_index, slot);
 5415 
 5416   testq(r_array_index, r_array_index);
 5417   // We test the MSB of r_array_index, i.e. its sign bit
 5418   jcc(Assembler::positive, L_failure);
 5419 
 5420   const Register r_array_base = *available_regs++;
 5421 
 5422   // Get the first array index that can contain super_klass into r_array_index.
 5423   population_count(r_array_index, r_array_index, /*temp2*/r_array_base, /*temp3*/slot);
 5424 
 5425   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
 5426 
 5427   // We will consult the secondary-super array.
 5428   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5429 
 5430   // We're asserting that the first word in an Array<Klass*> is the
 5431   // length, and the second word is the first word of the data. If
 5432   // that ever changes, r_array_base will have to be adjusted here.
 5433   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
 5434   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
 5435 
 5436   cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5437   jccb(Assembler::equal, L_success);
 5438 
 5439   // Restore slot to its true value
 5440   xorl(slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); // slot ^ 63 === 63 - slot (mod 64)
 5441 
 5442   // Linear probe. Rotate the bitmap so that the next bit to test is
 5443   // in Bit 1.
 5444   rorq(r_bitmap, slot);
 5445 
 5446   // Is there another entry to check? Consult the bitmap.
 5447   btq(r_bitmap, 1);
 5448   jccb(Assembler::carryClear, L_failure);
 5449 
 5450   // Calls into the stub generated by lookup_secondary_supers_table_slow_path.
 5451   // Arguments: r_super_klass, r_array_base, r_array_index, r_bitmap.
 5452   // Kills: r_array_length.
 5453   // Returns: result.
 5454   lookup_secondary_supers_table_slow_path(r_super_klass,
 5455                                           r_array_base,
 5456                                           r_array_index,
 5457                                           r_bitmap,
 5458                                           /*temp1*/result,
 5459                                           /*temp2*/slot,
 5460                                           &L_success,
 5461                                           nullptr);
 5462 
 5463   bind(L_failure);
 5464   movq(result, 1);
 5465   jmpb(L_fallthrough);
 5466 
 5467   bind(L_success);
 5468   xorq(result, result); // = 0
 5469 
 5470   bind(L_fallthrough);
 5471   BLOCK_COMMENT("} lookup_secondary_supers_table");
 5472 
 5473   if (VerifySecondarySupers) {
 5474     verify_secondary_supers_table(r_sub_klass, r_super_klass, result,
 5475                                   temp1, temp2, temp3);
 5476   }
 5477 }
 5478 
 5479 void MacroAssembler::repne_scanq(Register addr, Register value, Register count, Register limit,
 5480                                  Label* L_success, Label* L_failure) {
 5481   Label L_loop, L_fallthrough;
 5482   {
 5483     int label_nulls = 0;
 5484     if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
 5485     if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
 5486     assert(label_nulls <= 1, "at most one null in the batch");
 5487   }
 5488   bind(L_loop);
 5489   cmpq(value, Address(addr, count, Address::times_8));
 5490   jcc(Assembler::equal, *L_success);
 5491   addl(count, 1);
 5492   cmpl(count, limit);
 5493   jcc(Assembler::less, L_loop);
 5494 
 5495   if (&L_fallthrough != L_failure) {
 5496     jmp(*L_failure);
 5497   }
 5498   bind(L_fallthrough);
 5499 }
 5500 
 5501 // Called by code generated by check_klass_subtype_slow_path
 5502 // above. This is called when there is a collision in the hashed
 5503 // lookup in the secondary supers array.
 5504 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
 5505                                                              Register r_array_base,
 5506                                                              Register r_array_index,
 5507                                                              Register r_bitmap,
 5508                                                              Register temp1,
 5509                                                              Register temp2,
 5510                                                              Label* L_success,
 5511                                                              Label* L_failure) {
 5512   assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, temp2);
 5513 
 5514   const Register
 5515     r_array_length = temp1,
 5516     r_sub_klass    = noreg,
 5517     result         = noreg;
 5518 
 5519   Label L_fallthrough;
 5520   int label_nulls = 0;
 5521   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
 5522   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
 5523   assert(label_nulls <= 1, "at most one null in the batch");
 5524 
 5525   // Load the array length.
 5526   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5527   // And adjust the array base to point to the data.
 5528   // NB! Effectively increments current slot index by 1.
 5529   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
 5530   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5531 
 5532   // Linear probe
 5533   Label L_huge;
 5534 
 5535   // The bitmap is full to bursting.
 5536   // Implicit invariant: BITMAP_FULL implies (length > 0)
 5537   cmpl(r_array_length, (int32_t)Klass::SECONDARY_SUPERS_TABLE_SIZE - 2);
 5538   jcc(Assembler::greater, L_huge);
 5539 
 5540   // NB! Our caller has checked bits 0 and 1 in the bitmap. The
 5541   // current slot (at secondary_supers[r_array_index]) has not yet
 5542   // been inspected, and r_array_index may be out of bounds if we
 5543   // wrapped around the end of the array.
 5544 
 5545   { // This is conventional linear probing, but instead of terminating
 5546     // when a null entry is found in the table, we maintain a bitmap
 5547     // in which a 0 indicates missing entries.
 5548     // The check above guarantees there are 0s in the bitmap, so the loop
 5549     // eventually terminates.
 5550 
 5551     xorl(temp2, temp2); // = 0;
 5552 
 5553     Label L_again;
 5554     bind(L_again);
 5555 
 5556     // Check for array wraparound.
 5557     cmpl(r_array_index, r_array_length);
 5558     cmovl(Assembler::greaterEqual, r_array_index, temp2);
 5559 
 5560     cmpq(r_super_klass, Address(r_array_base, r_array_index, Address::times_8));
 5561     jcc(Assembler::equal, *L_success);
 5562 
 5563     // If the next bit in bitmap is zero, we're done.
 5564     btq(r_bitmap, 2); // look-ahead check (Bit 2); Bits 0 and 1 are tested by now
 5565     jcc(Assembler::carryClear, *L_failure);
 5566 
 5567     rorq(r_bitmap, 1); // Bits 1/2 => 0/1
 5568     addl(r_array_index, 1);
 5569 
 5570     jmp(L_again);
 5571   }
 5572 
 5573   { // Degenerate case: more than 64 secondary supers.
 5574     // FIXME: We could do something smarter here, maybe a vectorized
 5575     // comparison or a binary search, but is that worth any added
 5576     // complexity?
 5577     bind(L_huge);
 5578     xorl(r_array_index, r_array_index); // = 0
 5579     repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length,
 5580                 L_success,
 5581                 (&L_fallthrough != L_failure ? L_failure : nullptr));
 5582 
 5583     bind(L_fallthrough);
 5584   }
 5585 }
 5586 
 5587 struct VerifyHelperArguments {
 5588   Klass* _super;
 5589   Klass* _sub;
 5590   intptr_t _linear_result;
 5591   intptr_t _table_result;
 5592 };
 5593 
 5594 static void verify_secondary_supers_table_helper(const char* msg, VerifyHelperArguments* args) {
 5595   Klass::on_secondary_supers_verification_failure(args->_super,
 5596                                                   args->_sub,
 5597                                                   args->_linear_result,
 5598                                                   args->_table_result,
 5599                                                   msg);
 5600 }
 5601 
 5602 // Make sure that the hashed lookup and a linear scan agree.
 5603 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
 5604                                                    Register r_super_klass,
 5605                                                    Register result,
 5606                                                    Register temp1,
 5607                                                    Register temp2,
 5608                                                    Register temp3) {
 5609   const Register
 5610       r_array_index  = temp1,
 5611       r_array_length = temp2,
 5612       r_array_base   = temp3,
 5613       r_bitmap       = noreg;
 5614 
 5615   BLOCK_COMMENT("verify_secondary_supers_table {");
 5616 
 5617   Label L_success, L_failure, L_check, L_done;
 5618 
 5619   movptr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
 5620   movl(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
 5621   // And adjust the array base to point to the data.
 5622   addptr(r_array_base, Array<Klass*>::base_offset_in_bytes());
 5623 
 5624   testl(r_array_length, r_array_length); // array_length == 0?
 5625   jcc(Assembler::zero, L_failure);
 5626 
 5627   movl(r_array_index, 0);
 5628   repne_scanq(r_array_base, r_super_klass, r_array_index, r_array_length, &L_success);
 5629   // fall through to L_failure
 5630 
 5631   const Register linear_result = r_array_index; // reuse temp1
 5632 
 5633   bind(L_failure); // not present
 5634   movl(linear_result, 1);
 5635   jmp(L_check);
 5636 
 5637   bind(L_success); // present
 5638   movl(linear_result, 0);
 5639 
 5640   bind(L_check);
 5641   cmpl(linear_result, result);
 5642   jcc(Assembler::equal, L_done);
 5643 
 5644   { // To avoid calling convention issues, build a record on the stack
 5645     // and pass the pointer to that instead.
 5646     push(result);
 5647     push(linear_result);
 5648     push(r_sub_klass);
 5649     push(r_super_klass);
 5650     movptr(c_rarg1, rsp);
 5651     movptr(c_rarg0, (uintptr_t) "mismatch");
 5652     call(RuntimeAddress(CAST_FROM_FN_PTR(address, verify_secondary_supers_table_helper)));
 5653     should_not_reach_here();
 5654   }
 5655   bind(L_done);
 5656 
 5657   BLOCK_COMMENT("} verify_secondary_supers_table");
 5658 }
 5659 
 5660 #undef LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS
 5661 
 5662 #endif // LP64
 5663 
 5664 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
 5665   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
 5666 
 5667   Label L_fallthrough;
 5668   if (L_fast_path == nullptr) {
 5669     L_fast_path = &L_fallthrough;
 5670   } else if (L_slow_path == nullptr) {
 5671     L_slow_path = &L_fallthrough;
 5672   }
 5673 
 5674   // Fast path check: class is fully initialized.
 5675   // init_state needs acquire, but x86 is TSO, and so we are already good.
 5676   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
 5677   jcc(Assembler::equal, *L_fast_path);
 5678 
 5679   // Fast path check: current thread is initializer thread
 5680   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
 5681   if (L_slow_path == &L_fallthrough) {
 5682     jcc(Assembler::equal, *L_fast_path);
 5683     bind(*L_slow_path);
 5684   } else if (L_fast_path == &L_fallthrough) {
 5685     jcc(Assembler::notEqual, *L_slow_path);
 5686     bind(*L_fast_path);
 5687   } else {
 5688     Unimplemented();
 5689   }
 5690 }
 5691 
 5692 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
 5693   if (VM_Version::supports_cmov()) {
 5694     cmovl(cc, dst, src);
 5695   } else {
 5696     Label L;
 5697     jccb(negate_condition(cc), L);
 5698     movl(dst, src);
 5699     bind(L);
 5700   }
 5701 }
 5702 
 5703 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
 5704   if (VM_Version::supports_cmov()) {
 5705     cmovl(cc, dst, src);
 5706   } else {
 5707     Label L;
 5708     jccb(negate_condition(cc), L);
 5709     movl(dst, src);
 5710     bind(L);
 5711   }
 5712 }
 5713 
 5714 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
 5715   if (!VerifyOops || VerifyAdapterSharing) {
 5716     // Below address of the code string confuses VerifyAdapterSharing
 5717     // because it may differ between otherwise equivalent adapters.
 5718     return;
 5719   }
 5720 
 5721   BLOCK_COMMENT("verify_oop {");
 5722 #ifdef _LP64
 5723   push(rscratch1);
 5724 #endif
 5725   push(rax);                          // save rax
 5726   push(reg);                          // pass register argument
 5727 
 5728   // Pass register number to verify_oop_subroutine
 5729   const char* b = nullptr;
 5730   {
 5731     ResourceMark rm;
 5732     stringStream ss;
 5733     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
 5734     b = code_string(ss.as_string());
 5735   }
 5736   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5737   pushptr(buffer.addr(), rscratch1);
 5738 
 5739   // call indirectly to solve generation ordering problem
 5740   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5741   call(rax);
 5742   // Caller pops the arguments (oop, message) and restores rax, r10
 5743   BLOCK_COMMENT("} verify_oop");
 5744 }
 5745 
 5746 void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
 5747   if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
 5748     // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without
 5749     // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog
 5750     vpternlogd(dst, 0xFF, dst, dst, vector_len);
 5751   } else if (VM_Version::supports_avx()) {
 5752     vpcmpeqd(dst, dst, dst, vector_len);
 5753   } else {
 5754     assert(VM_Version::supports_sse2(), "");
 5755     pcmpeqd(dst, dst);
 5756   }
 5757 }
 5758 
 5759 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
 5760                                          int extra_slot_offset) {
 5761   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
 5762   int stackElementSize = Interpreter::stackElementSize;
 5763   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
 5764 #ifdef ASSERT
 5765   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
 5766   assert(offset1 - offset == stackElementSize, "correct arithmetic");
 5767 #endif
 5768   Register             scale_reg    = noreg;
 5769   Address::ScaleFactor scale_factor = Address::no_scale;
 5770   if (arg_slot.is_constant()) {
 5771     offset += arg_slot.as_constant() * stackElementSize;
 5772   } else {
 5773     scale_reg    = arg_slot.as_register();
 5774     scale_factor = Address::times(stackElementSize);
 5775   }
 5776   offset += wordSize;           // return PC is on stack
 5777   return Address(rsp, scale_reg, scale_factor, offset);
 5778 }
 5779 
 5780 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
 5781   if (!VerifyOops || VerifyAdapterSharing) {
 5782     // Below address of the code string confuses VerifyAdapterSharing
 5783     // because it may differ between otherwise equivalent adapters.
 5784     return;
 5785   }
 5786 
 5787 #ifdef _LP64
 5788   push(rscratch1);
 5789 #endif
 5790   push(rax); // save rax,
 5791   // addr may contain rsp so we will have to adjust it based on the push
 5792   // we just did (and on 64 bit we do two pushes)
 5793   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
 5794   // stores rax into addr which is backwards of what was intended.
 5795   if (addr.uses(rsp)) {
 5796     lea(rax, addr);
 5797     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
 5798   } else {
 5799     pushptr(addr);
 5800   }
 5801 
 5802   // Pass register number to verify_oop_subroutine
 5803   const char* b = nullptr;
 5804   {
 5805     ResourceMark rm;
 5806     stringStream ss;
 5807     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
 5808     b = code_string(ss.as_string());
 5809   }
 5810   AddressLiteral buffer((address) b, external_word_Relocation::spec_for_immediate());
 5811   pushptr(buffer.addr(), rscratch1);
 5812 
 5813   // call indirectly to solve generation ordering problem
 5814   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
 5815   call(rax);
 5816   // Caller pops the arguments (addr, message) and restores rax, r10.
 5817 }
 5818 
 5819 void MacroAssembler::verify_tlab() {
 5820 #ifdef ASSERT
 5821   if (UseTLAB && VerifyOops) {
 5822     Label next, ok;
 5823     Register t1 = rsi;
 5824     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
 5825 
 5826     push(t1);
 5827     NOT_LP64(push(thread_reg));
 5828     NOT_LP64(get_thread(thread_reg));
 5829 
 5830     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5831     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
 5832     jcc(Assembler::aboveEqual, next);
 5833     STOP("assert(top >= start)");
 5834     should_not_reach_here();
 5835 
 5836     bind(next);
 5837     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
 5838     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
 5839     jcc(Assembler::aboveEqual, ok);
 5840     STOP("assert(top <= end)");
 5841     should_not_reach_here();
 5842 
 5843     bind(ok);
 5844     NOT_LP64(pop(thread_reg));
 5845     pop(t1);
 5846   }
 5847 #endif
 5848 }
 5849 
 5850 class ControlWord {
 5851  public:
 5852   int32_t _value;
 5853 
 5854   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
 5855   int  precision_control() const       { return  (_value >>  8) & 3      ; }
 5856   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5857   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5858   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5859   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5860   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5861   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5862 
 5863   void print() const {
 5864     // rounding control
 5865     const char* rc;
 5866     switch (rounding_control()) {
 5867       case 0: rc = "round near"; break;
 5868       case 1: rc = "round down"; break;
 5869       case 2: rc = "round up  "; break;
 5870       case 3: rc = "chop      "; break;
 5871       default:
 5872         rc = nullptr; // silence compiler warnings
 5873         fatal("Unknown rounding control: %d", rounding_control());
 5874     };
 5875     // precision control
 5876     const char* pc;
 5877     switch (precision_control()) {
 5878       case 0: pc = "24 bits "; break;
 5879       case 1: pc = "reserved"; break;
 5880       case 2: pc = "53 bits "; break;
 5881       case 3: pc = "64 bits "; break;
 5882       default:
 5883         pc = nullptr; // silence compiler warnings
 5884         fatal("Unknown precision control: %d", precision_control());
 5885     };
 5886     // flags
 5887     char f[9];
 5888     f[0] = ' ';
 5889     f[1] = ' ';
 5890     f[2] = (precision   ()) ? 'P' : 'p';
 5891     f[3] = (underflow   ()) ? 'U' : 'u';
 5892     f[4] = (overflow    ()) ? 'O' : 'o';
 5893     f[5] = (zero_divide ()) ? 'Z' : 'z';
 5894     f[6] = (denormalized()) ? 'D' : 'd';
 5895     f[7] = (invalid     ()) ? 'I' : 'i';
 5896     f[8] = '\x0';
 5897     // output
 5898     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
 5899   }
 5900 
 5901 };
 5902 
 5903 class StatusWord {
 5904  public:
 5905   int32_t _value;
 5906 
 5907   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
 5908   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
 5909   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
 5910   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
 5911   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
 5912   int  top() const                     { return  (_value >> 11) & 7      ; }
 5913   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
 5914   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
 5915   bool precision() const               { return ((_value >>  5) & 1) != 0; }
 5916   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
 5917   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
 5918   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
 5919   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
 5920   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
 5921 
 5922   void print() const {
 5923     // condition codes
 5924     char c[5];
 5925     c[0] = (C3()) ? '3' : '-';
 5926     c[1] = (C2()) ? '2' : '-';
 5927     c[2] = (C1()) ? '1' : '-';
 5928     c[3] = (C0()) ? '0' : '-';
 5929     c[4] = '\x0';
 5930     // flags
 5931     char f[9];
 5932     f[0] = (error_status()) ? 'E' : '-';
 5933     f[1] = (stack_fault ()) ? 'S' : '-';
 5934     f[2] = (precision   ()) ? 'P' : '-';
 5935     f[3] = (underflow   ()) ? 'U' : '-';
 5936     f[4] = (overflow    ()) ? 'O' : '-';
 5937     f[5] = (zero_divide ()) ? 'Z' : '-';
 5938     f[6] = (denormalized()) ? 'D' : '-';
 5939     f[7] = (invalid     ()) ? 'I' : '-';
 5940     f[8] = '\x0';
 5941     // output
 5942     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
 5943   }
 5944 
 5945 };
 5946 
 5947 class TagWord {
 5948  public:
 5949   int32_t _value;
 5950 
 5951   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
 5952 
 5953   void print() const {
 5954     printf("%04x", _value & 0xFFFF);
 5955   }
 5956 
 5957 };
 5958 
 5959 class FPU_Register {
 5960  public:
 5961   int32_t _m0;
 5962   int32_t _m1;
 5963   int16_t _ex;
 5964 
 5965   bool is_indefinite() const           {
 5966     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
 5967   }
 5968 
 5969   void print() const {
 5970     char  sign = (_ex < 0) ? '-' : '+';
 5971     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
 5972     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
 5973   };
 5974 
 5975 };
 5976 
 5977 class FPU_State {
 5978  public:
 5979   enum {
 5980     register_size       = 10,
 5981     number_of_registers =  8,
 5982     register_mask       =  7
 5983   };
 5984 
 5985   ControlWord  _control_word;
 5986   StatusWord   _status_word;
 5987   TagWord      _tag_word;
 5988   int32_t      _error_offset;
 5989   int32_t      _error_selector;
 5990   int32_t      _data_offset;
 5991   int32_t      _data_selector;
 5992   int8_t       _register[register_size * number_of_registers];
 5993 
 5994   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
 5995   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
 5996 
 5997   const char* tag_as_string(int tag) const {
 5998     switch (tag) {
 5999       case 0: return "valid";
 6000       case 1: return "zero";
 6001       case 2: return "special";
 6002       case 3: return "empty";
 6003     }
 6004     ShouldNotReachHere();
 6005     return nullptr;
 6006   }
 6007 
 6008   void print() const {
 6009     // print computation registers
 6010     { int t = _status_word.top();
 6011       for (int i = 0; i < number_of_registers; i++) {
 6012         int j = (i - t) & register_mask;
 6013         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
 6014         st(j)->print();
 6015         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
 6016       }
 6017     }
 6018     printf("\n");
 6019     // print control registers
 6020     printf("ctrl = "); _control_word.print(); printf("\n");
 6021     printf("stat = "); _status_word .print(); printf("\n");
 6022     printf("tags = "); _tag_word    .print(); printf("\n");
 6023   }
 6024 
 6025 };
 6026 
 6027 class Flag_Register {
 6028  public:
 6029   int32_t _value;
 6030 
 6031   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
 6032   bool direction() const               { return ((_value >> 10) & 1) != 0; }
 6033   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
 6034   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
 6035   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
 6036   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
 6037   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
 6038 
 6039   void print() const {
 6040     // flags
 6041     char f[8];
 6042     f[0] = (overflow       ()) ? 'O' : '-';
 6043     f[1] = (direction      ()) ? 'D' : '-';
 6044     f[2] = (sign           ()) ? 'S' : '-';
 6045     f[3] = (zero           ()) ? 'Z' : '-';
 6046     f[4] = (auxiliary_carry()) ? 'A' : '-';
 6047     f[5] = (parity         ()) ? 'P' : '-';
 6048     f[6] = (carry          ()) ? 'C' : '-';
 6049     f[7] = '\x0';
 6050     // output
 6051     printf("%08x  flags = %s", _value, f);
 6052   }
 6053 
 6054 };
 6055 
 6056 class IU_Register {
 6057  public:
 6058   int32_t _value;
 6059 
 6060   void print() const {
 6061     printf("%08x  %11d", _value, _value);
 6062   }
 6063 
 6064 };
 6065 
 6066 class IU_State {
 6067  public:
 6068   Flag_Register _eflags;
 6069   IU_Register   _rdi;
 6070   IU_Register   _rsi;
 6071   IU_Register   _rbp;
 6072   IU_Register   _rsp;
 6073   IU_Register   _rbx;
 6074   IU_Register   _rdx;
 6075   IU_Register   _rcx;
 6076   IU_Register   _rax;
 6077 
 6078   void print() const {
 6079     // computation registers
 6080     printf("rax,  = "); _rax.print(); printf("\n");
 6081     printf("rbx,  = "); _rbx.print(); printf("\n");
 6082     printf("rcx  = "); _rcx.print(); printf("\n");
 6083     printf("rdx  = "); _rdx.print(); printf("\n");
 6084     printf("rdi  = "); _rdi.print(); printf("\n");
 6085     printf("rsi  = "); _rsi.print(); printf("\n");
 6086     printf("rbp,  = "); _rbp.print(); printf("\n");
 6087     printf("rsp  = "); _rsp.print(); printf("\n");
 6088     printf("\n");
 6089     // control registers
 6090     printf("flgs = "); _eflags.print(); printf("\n");
 6091   }
 6092 };
 6093 
 6094 
 6095 class CPU_State {
 6096  public:
 6097   FPU_State _fpu_state;
 6098   IU_State  _iu_state;
 6099 
 6100   void print() const {
 6101     printf("--------------------------------------------------\n");
 6102     _iu_state .print();
 6103     printf("\n");
 6104     _fpu_state.print();
 6105     printf("--------------------------------------------------\n");
 6106   }
 6107 
 6108 };
 6109 
 6110 
 6111 static void _print_CPU_state(CPU_State* state) {
 6112   state->print();
 6113 };
 6114 
 6115 
 6116 void MacroAssembler::print_CPU_state() {
 6117   push_CPU_state();
 6118   push(rsp);                // pass CPU state
 6119   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
 6120   addptr(rsp, wordSize);       // discard argument
 6121   pop_CPU_state();
 6122 }
 6123 
 6124 
 6125 #ifndef _LP64
 6126 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
 6127   static int counter = 0;
 6128   FPU_State* fs = &state->_fpu_state;
 6129   counter++;
 6130   // For leaf calls, only verify that the top few elements remain empty.
 6131   // We only need 1 empty at the top for C2 code.
 6132   if( stack_depth < 0 ) {
 6133     if( fs->tag_for_st(7) != 3 ) {
 6134       printf("FPR7 not empty\n");
 6135       state->print();
 6136       assert(false, "error");
 6137       return false;
 6138     }
 6139     return true;                // All other stack states do not matter
 6140   }
 6141 
 6142   assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(),
 6143          "bad FPU control word");
 6144 
 6145   // compute stack depth
 6146   int i = 0;
 6147   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
 6148   int d = i;
 6149   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
 6150   // verify findings
 6151   if (i != FPU_State::number_of_registers) {
 6152     // stack not contiguous
 6153     printf("%s: stack not contiguous at ST%d\n", s, i);
 6154     state->print();
 6155     assert(false, "error");
 6156     return false;
 6157   }
 6158   // check if computed stack depth corresponds to expected stack depth
 6159   if (stack_depth < 0) {
 6160     // expected stack depth is -stack_depth or less
 6161     if (d > -stack_depth) {
 6162       // too many elements on the stack
 6163       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
 6164       state->print();
 6165       assert(false, "error");
 6166       return false;
 6167     }
 6168   } else {
 6169     // expected stack depth is stack_depth
 6170     if (d != stack_depth) {
 6171       // wrong stack depth
 6172       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
 6173       state->print();
 6174       assert(false, "error");
 6175       return false;
 6176     }
 6177   }
 6178   // everything is cool
 6179   return true;
 6180 }
 6181 
 6182 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
 6183   if (!VerifyFPU) return;
 6184   push_CPU_state();
 6185   push(rsp);                // pass CPU state
 6186   ExternalAddress msg((address) s);
 6187   // pass message string s
 6188   pushptr(msg.addr(), noreg);
 6189   push(stack_depth);        // pass stack depth
 6190   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
 6191   addptr(rsp, 3 * wordSize);   // discard arguments
 6192   // check for error
 6193   { Label L;
 6194     testl(rax, rax);
 6195     jcc(Assembler::notZero, L);
 6196     int3();                  // break if error condition
 6197     bind(L);
 6198   }
 6199   pop_CPU_state();
 6200 }
 6201 #endif // _LP64
 6202 
 6203 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) {
 6204   // Either restore the MXCSR register after returning from the JNI Call
 6205   // or verify that it wasn't changed (with -Xcheck:jni flag).
 6206   if (VM_Version::supports_sse()) {
 6207     if (RestoreMXCSROnJNICalls) {
 6208       ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch);
 6209     } else if (CheckJNICalls) {
 6210       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
 6211     }
 6212   }
 6213   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
 6214   vzeroupper();
 6215 
 6216 #ifndef _LP64
 6217   // Either restore the x87 floating pointer control word after returning
 6218   // from the JNI call or verify that it wasn't changed.
 6219   if (CheckJNICalls) {
 6220     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
 6221   }
 6222 #endif // _LP64
 6223 }
 6224 
 6225 // ((OopHandle)result).resolve();
 6226 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
 6227   assert_different_registers(result, tmp);
 6228 
 6229   // Only 64 bit platforms support GCs that require a tmp register
 6230   // Only IN_HEAP loads require a thread_tmp register
 6231   // OopHandle::resolve is an indirection like jobject.
 6232   access_load_at(T_OBJECT, IN_NATIVE,
 6233                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
 6234 }
 6235 
 6236 // ((WeakHandle)result).resolve();
 6237 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
 6238   assert_different_registers(rresult, rtmp);
 6239   Label resolved;
 6240 
 6241   // A null weak handle resolves to null.
 6242   cmpptr(rresult, 0);
 6243   jcc(Assembler::equal, resolved);
 6244 
 6245   // Only 64 bit platforms support GCs that require a tmp register
 6246   // Only IN_HEAP loads require a thread_tmp register
 6247   // WeakHandle::resolve is an indirection like jweak.
 6248   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
 6249                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
 6250   bind(resolved);
 6251 }
 6252 
 6253 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
 6254   // get mirror
 6255   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 6256   load_method_holder(mirror, method);
 6257   movptr(mirror, Address(mirror, mirror_offset));
 6258   resolve_oop_handle(mirror, tmp);
 6259 }
 6260 
 6261 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
 6262   load_method_holder(rresult, rmethod);
 6263   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
 6264 }
 6265 
 6266 void MacroAssembler::load_method_holder(Register holder, Register method) {
 6267   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
 6268   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
 6269   movptr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
 6270 }
 6271 
 6272 void MacroAssembler::load_metadata(Register dst, Register src) {
 6273   if (UseCompressedClassPointers) {
 6274     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 6275   } else {
 6276     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 6277   }
 6278 }
 6279 
 6280 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
 6281   assert_different_registers(src, tmp);
 6282   assert_different_registers(dst, tmp);
 6283 #ifdef _LP64
 6284   if (UseCompressedClassPointers) {
 6285     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 6286     decode_klass_not_null(dst, tmp);
 6287   } else
 6288 #endif
 6289   movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 6290 }
 6291 
 6292 void MacroAssembler::load_prototype_header(Register dst, Register src, Register tmp) {
 6293   load_klass(dst, src, tmp);
 6294   movptr(dst, Address(dst, Klass::prototype_header_offset()));
 6295 }
 6296 
 6297 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
 6298   assert_different_registers(src, tmp);
 6299   assert_different_registers(dst, tmp);
 6300 #ifdef _LP64
 6301   if (UseCompressedClassPointers) {
 6302     encode_klass_not_null(src, tmp);
 6303     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 6304   } else
 6305 #endif
 6306     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 6307 }
 6308 
 6309 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 6310                                     Register tmp1, Register thread_tmp) {
 6311   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6312   decorators = AccessInternal::decorator_fixup(decorators, type);
 6313   bool as_raw = (decorators & AS_RAW) != 0;
 6314   if (as_raw) {
 6315     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 6316   } else {
 6317     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
 6318   }
 6319 }
 6320 
 6321 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 6322                                      Register tmp1, Register tmp2, Register tmp3) {
 6323   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6324   decorators = AccessInternal::decorator_fixup(decorators, type);
 6325   bool as_raw = (decorators & AS_RAW) != 0;
 6326   if (as_raw) {
 6327     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 6328   } else {
 6329     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
 6330   }
 6331 }
 6332 
 6333 void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst,
 6334                                        Register inline_klass) {
 6335   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6336   bs->value_copy(this, decorators, src, dst, inline_klass);
 6337 }
 6338 
 6339 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst,
 6340                                      Register inline_layout_info) {
 6341   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 6342   bs->flat_field_copy(this, decorators, src, dst, inline_layout_info);
 6343 }
 6344 
 6345 void MacroAssembler::first_field_offset(Register inline_klass, Register offset) {
 6346   movptr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 6347   movl(offset, Address(offset, InlineKlass::first_field_offset_offset()));
 6348 }
 6349 
 6350 void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) {
 6351   // ((address) (void*) o) + vk->first_field_offset();
 6352   Register offset = (data == oop) ? rscratch1 : data;
 6353   first_field_offset(inline_klass, offset);
 6354   if (data == oop) {
 6355     addptr(data, offset);
 6356   } else {
 6357     lea(data, Address(oop, offset));
 6358   }
 6359 }
 6360 
 6361 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass,
 6362                                                 Register index, Register data) {
 6363   assert(index != rcx, "index needs to shift by rcx");
 6364   assert_different_registers(array, array_klass, index);
 6365   assert_different_registers(rcx, array, index);
 6366 
 6367   // array->base() + (index << Klass::layout_helper_log2_element_size(lh));
 6368   movl(rcx, Address(array_klass, Klass::layout_helper_offset()));
 6369 
 6370   // Klass::layout_helper_log2_element_size(lh)
 6371   // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
 6372   shrl(rcx, Klass::_lh_log2_element_size_shift);
 6373   andl(rcx, Klass::_lh_log2_element_size_mask);
 6374   shlptr(index); // index << rcx
 6375 
 6376   lea(data, Address(array, index, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT)));
 6377 }
 6378 
 6379 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
 6380                                    Register thread_tmp, DecoratorSet decorators) {
 6381   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
 6382 }
 6383 
 6384 // Doesn't do verification, generates fixed size code
 6385 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 6386                                             Register thread_tmp, DecoratorSet decorators) {
 6387   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
 6388 }
 6389 
 6390 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
 6391                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
 6392   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
 6393 }
 6394 
 6395 // Used for storing nulls.
 6396 void MacroAssembler::store_heap_oop_null(Address dst) {
 6397   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
 6398 }
 6399 
 6400 #ifdef _LP64
 6401 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 6402   if (UseCompressedClassPointers) {
 6403     // Store to klass gap in destination
 6404     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 6405   }
 6406 }
 6407 
 6408 #ifdef ASSERT
 6409 void MacroAssembler::verify_heapbase(const char* msg) {
 6410   assert (UseCompressedOops, "should be compressed");
 6411   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6412   if (CheckCompressedOops) {
 6413     Label ok;
 6414     ExternalAddress src2(CompressedOops::base_addr());
 6415     const bool is_src2_reachable = reachable(src2);
 6416     if (!is_src2_reachable) {
 6417       push(rscratch1);  // cmpptr trashes rscratch1
 6418     }
 6419     cmpptr(r12_heapbase, src2, rscratch1);
 6420     jcc(Assembler::equal, ok);
 6421     STOP(msg);
 6422     bind(ok);
 6423     if (!is_src2_reachable) {
 6424       pop(rscratch1);
 6425     }
 6426   }
 6427 }
 6428 #endif
 6429 
 6430 // Algorithm must match oop.inline.hpp encode_heap_oop.
 6431 void MacroAssembler::encode_heap_oop(Register r) {
 6432 #ifdef ASSERT
 6433   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 6434 #endif
 6435   verify_oop_msg(r, "broken oop in encode_heap_oop");
 6436   if (CompressedOops::base() == nullptr) {
 6437     if (CompressedOops::shift() != 0) {
 6438       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6439       shrq(r, LogMinObjAlignmentInBytes);
 6440     }
 6441     return;
 6442   }
 6443   testq(r, r);
 6444   cmovq(Assembler::equal, r, r12_heapbase);
 6445   subq(r, r12_heapbase);
 6446   shrq(r, LogMinObjAlignmentInBytes);
 6447 }
 6448 
 6449 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 6450 #ifdef ASSERT
 6451   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 6452   if (CheckCompressedOops) {
 6453     Label ok;
 6454     testq(r, r);
 6455     jcc(Assembler::notEqual, ok);
 6456     STOP("null oop passed to encode_heap_oop_not_null");
 6457     bind(ok);
 6458   }
 6459 #endif
 6460   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
 6461   if (CompressedOops::base() != nullptr) {
 6462     subq(r, r12_heapbase);
 6463   }
 6464   if (CompressedOops::shift() != 0) {
 6465     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6466     shrq(r, LogMinObjAlignmentInBytes);
 6467   }
 6468 }
 6469 
 6470 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 6471 #ifdef ASSERT
 6472   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 6473   if (CheckCompressedOops) {
 6474     Label ok;
 6475     testq(src, src);
 6476     jcc(Assembler::notEqual, ok);
 6477     STOP("null oop passed to encode_heap_oop_not_null2");
 6478     bind(ok);
 6479   }
 6480 #endif
 6481   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
 6482   if (dst != src) {
 6483     movq(dst, src);
 6484   }
 6485   if (CompressedOops::base() != nullptr) {
 6486     subq(dst, r12_heapbase);
 6487   }
 6488   if (CompressedOops::shift() != 0) {
 6489     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6490     shrq(dst, LogMinObjAlignmentInBytes);
 6491   }
 6492 }
 6493 
 6494 void  MacroAssembler::decode_heap_oop(Register r) {
 6495 #ifdef ASSERT
 6496   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 6497 #endif
 6498   if (CompressedOops::base() == nullptr) {
 6499     if (CompressedOops::shift() != 0) {
 6500       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6501       shlq(r, LogMinObjAlignmentInBytes);
 6502     }
 6503   } else {
 6504     Label done;
 6505     shlq(r, LogMinObjAlignmentInBytes);
 6506     jccb(Assembler::equal, done);
 6507     addq(r, r12_heapbase);
 6508     bind(done);
 6509   }
 6510   verify_oop_msg(r, "broken oop in decode_heap_oop");
 6511 }
 6512 
 6513 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 6514   // Note: it will change flags
 6515   assert (UseCompressedOops, "should only be used for compressed headers");
 6516   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6517   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6518   // vtableStubs also counts instructions in pd_code_size_limit.
 6519   // Also do not verify_oop as this is called by verify_oop.
 6520   if (CompressedOops::shift() != 0) {
 6521     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6522     shlq(r, LogMinObjAlignmentInBytes);
 6523     if (CompressedOops::base() != nullptr) {
 6524       addq(r, r12_heapbase);
 6525     }
 6526   } else {
 6527     assert (CompressedOops::base() == nullptr, "sanity");
 6528   }
 6529 }
 6530 
 6531 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 6532   // Note: it will change flags
 6533   assert (UseCompressedOops, "should only be used for compressed headers");
 6534   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6535   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6536   // vtableStubs also counts instructions in pd_code_size_limit.
 6537   // Also do not verify_oop as this is called by verify_oop.
 6538   if (CompressedOops::shift() != 0) {
 6539     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
 6540     if (LogMinObjAlignmentInBytes == Address::times_8) {
 6541       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 6542     } else {
 6543       if (dst != src) {
 6544         movq(dst, src);
 6545       }
 6546       shlq(dst, LogMinObjAlignmentInBytes);
 6547       if (CompressedOops::base() != nullptr) {
 6548         addq(dst, r12_heapbase);
 6549       }
 6550     }
 6551   } else {
 6552     assert (CompressedOops::base() == nullptr, "sanity");
 6553     if (dst != src) {
 6554       movq(dst, src);
 6555     }
 6556   }
 6557 }
 6558 
 6559 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
 6560   assert_different_registers(r, tmp);
 6561   if (CompressedKlassPointers::base() != nullptr) {
 6562     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 6563     subq(r, tmp);
 6564   }
 6565   if (CompressedKlassPointers::shift() != 0) {
 6566     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 6567     shrq(r, LogKlassAlignmentInBytes);
 6568   }
 6569 }
 6570 
 6571 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) {
 6572   assert_different_registers(src, dst);
 6573   if (CompressedKlassPointers::base() != nullptr) {
 6574     mov64(dst, -(int64_t)CompressedKlassPointers::base());
 6575     addq(dst, src);
 6576   } else {
 6577     movptr(dst, src);
 6578   }
 6579   if (CompressedKlassPointers::shift() != 0) {
 6580     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 6581     shrq(dst, LogKlassAlignmentInBytes);
 6582   }
 6583 }
 6584 
 6585 void  MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
 6586   assert_different_registers(r, tmp);
 6587   // Note: it will change flags
 6588   assert(UseCompressedClassPointers, "should only be used for compressed headers");
 6589   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6590   // vtableStubs also counts instructions in pd_code_size_limit.
 6591   // Also do not verify_oop as this is called by verify_oop.
 6592   if (CompressedKlassPointers::shift() != 0) {
 6593     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 6594     shlq(r, LogKlassAlignmentInBytes);
 6595   }
 6596   if (CompressedKlassPointers::base() != nullptr) {
 6597     mov64(tmp, (int64_t)CompressedKlassPointers::base());
 6598     addq(r, tmp);
 6599   }
 6600 }
 6601 
 6602 void  MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) {
 6603   assert_different_registers(src, dst);
 6604   // Note: it will change flags
 6605   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6606   // Cannot assert, unverified entry point counts instructions (see .ad file)
 6607   // vtableStubs also counts instructions in pd_code_size_limit.
 6608   // Also do not verify_oop as this is called by verify_oop.
 6609 
 6610   if (CompressedKlassPointers::base() == nullptr &&
 6611       CompressedKlassPointers::shift() == 0) {
 6612     // The best case scenario is that there is no base or shift. Then it is already
 6613     // a pointer that needs nothing but a register rename.
 6614     movl(dst, src);
 6615   } else {
 6616     if (CompressedKlassPointers::base() != nullptr) {
 6617       mov64(dst, (int64_t)CompressedKlassPointers::base());
 6618     } else {
 6619       xorq(dst, dst);
 6620     }
 6621     if (CompressedKlassPointers::shift() != 0) {
 6622       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
 6623       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
 6624       leaq(dst, Address(dst, src, Address::times_8, 0));
 6625     } else {
 6626       addq(dst, src);
 6627     }
 6628   }
 6629 }
 6630 
 6631 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 6632   assert (UseCompressedOops, "should only be used for compressed headers");
 6633   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6634   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6635   int oop_index = oop_recorder()->find_index(obj);
 6636   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6637   mov_narrow_oop(dst, oop_index, rspec);
 6638 }
 6639 
 6640 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 6641   assert (UseCompressedOops, "should only be used for compressed headers");
 6642   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6643   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6644   int oop_index = oop_recorder()->find_index(obj);
 6645   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6646   mov_narrow_oop(dst, oop_index, rspec);
 6647 }
 6648 
 6649 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
 6650   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6651   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6652   int klass_index = oop_recorder()->find_index(k);
 6653   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6654   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6655 }
 6656 
 6657 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
 6658   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6659   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6660   int klass_index = oop_recorder()->find_index(k);
 6661   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6662   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6663 }
 6664 
 6665 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 6666   assert (UseCompressedOops, "should only be used for compressed headers");
 6667   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6668   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6669   int oop_index = oop_recorder()->find_index(obj);
 6670   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6671   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6672 }
 6673 
 6674 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 6675   assert (UseCompressedOops, "should only be used for compressed headers");
 6676   assert (Universe::heap() != nullptr, "java heap should be initialized");
 6677   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6678   int oop_index = oop_recorder()->find_index(obj);
 6679   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 6680   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 6681 }
 6682 
 6683 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
 6684   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6685   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6686   int klass_index = oop_recorder()->find_index(k);
 6687   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6688   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6689 }
 6690 
 6691 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
 6692   assert (UseCompressedClassPointers, "should only be used for compressed headers");
 6693   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
 6694   int klass_index = oop_recorder()->find_index(k);
 6695   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 6696   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
 6697 }
 6698 
 6699 void MacroAssembler::reinit_heapbase() {
 6700   if (UseCompressedOops) {
 6701     if (Universe::heap() != nullptr) {
 6702       if (CompressedOops::base() == nullptr) {
 6703         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
 6704       } else {
 6705         mov64(r12_heapbase, (int64_t)CompressedOops::base());
 6706       }
 6707     } else {
 6708       movptr(r12_heapbase, ExternalAddress(CompressedOops::base_addr()));
 6709     }
 6710   }
 6711 }
 6712 
 6713 #endif // _LP64
 6714 
 6715 #if COMPILER2_OR_JVMCI
 6716 
 6717 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers
 6718 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, KRegister mask) {
 6719   // cnt - number of qwords (8-byte words).
 6720   // base - start address, qword aligned.
 6721   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
 6722   bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0);
 6723   if (use64byteVector) {
 6724     evpbroadcastq(xtmp, val, AVX_512bit);
 6725   } else if (MaxVectorSize >= 32) {
 6726     movdq(xtmp, val);
 6727     punpcklqdq(xtmp, xtmp);
 6728     vinserti128_high(xtmp, xtmp);
 6729   } else {
 6730     movdq(xtmp, val);
 6731     punpcklqdq(xtmp, xtmp);
 6732   }
 6733   jmp(L_zero_64_bytes);
 6734 
 6735   BIND(L_loop);
 6736   if (MaxVectorSize >= 32) {
 6737     fill64(base, 0, xtmp, use64byteVector);
 6738   } else {
 6739     movdqu(Address(base,  0), xtmp);
 6740     movdqu(Address(base, 16), xtmp);
 6741     movdqu(Address(base, 32), xtmp);
 6742     movdqu(Address(base, 48), xtmp);
 6743   }
 6744   addptr(base, 64);
 6745 
 6746   BIND(L_zero_64_bytes);
 6747   subptr(cnt, 8);
 6748   jccb(Assembler::greaterEqual, L_loop);
 6749 
 6750   // Copy trailing 64 bytes
 6751   if (use64byteVector) {
 6752     addptr(cnt, 8);
 6753     jccb(Assembler::equal, L_end);
 6754     fill64_masked(3, base, 0, xtmp, mask, cnt, val, true);
 6755     jmp(L_end);
 6756   } else {
 6757     addptr(cnt, 4);
 6758     jccb(Assembler::less, L_tail);
 6759     if (MaxVectorSize >= 32) {
 6760       vmovdqu(Address(base, 0), xtmp);
 6761     } else {
 6762       movdqu(Address(base,  0), xtmp);
 6763       movdqu(Address(base, 16), xtmp);
 6764     }
 6765   }
 6766   addptr(base, 32);
 6767   subptr(cnt, 4);
 6768 
 6769   BIND(L_tail);
 6770   addptr(cnt, 4);
 6771   jccb(Assembler::lessEqual, L_end);
 6772   if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) {
 6773     fill32_masked(3, base, 0, xtmp, mask, cnt, val);
 6774   } else {
 6775     decrement(cnt);
 6776 
 6777     BIND(L_sloop);
 6778     movq(Address(base, 0), xtmp);
 6779     addptr(base, 8);
 6780     decrement(cnt);
 6781     jccb(Assembler::greaterEqual, L_sloop);
 6782   }
 6783   BIND(L_end);
 6784 }
 6785 
 6786 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) {
 6787   assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields");
 6788   // An inline type might be returned. If fields are in registers we
 6789   // need to allocate an inline type instance and initialize it with
 6790   // the value of the fields.
 6791   Label skip;
 6792   // We only need a new buffered inline type if a new one is not returned
 6793   testptr(rax, 1);
 6794   jcc(Assembler::zero, skip);
 6795   int call_offset = -1;
 6796 
 6797 #ifdef _LP64
 6798   // The following code is similar to allocate_instance but has some slight differences,
 6799   // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after
 6800   // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these.
 6801   Label slow_case;
 6802   // 1. Try to allocate a new buffered inline instance either from TLAB or eden space
 6803   mov(rscratch1, rax); // save rax for slow_case since *_allocate may corrupt it when allocation failed
 6804   if (vk != nullptr) {
 6805     // Called from C1, where the return type is statically known.
 6806     movptr(rbx, (intptr_t)vk->get_InlineKlass());
 6807     jint lh = vk->layout_helper();
 6808     assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved");
 6809     if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) {
 6810       tlab_allocate(r15_thread, rax, noreg, lh, r13, r14, slow_case);
 6811     } else {
 6812       jmp(slow_case);
 6813     }
 6814   } else {
 6815     // Call from interpreter. RAX contains ((the InlineKlass* of the return type) | 0x01)
 6816     mov(rbx, rax);
 6817     andptr(rbx, -2);
 6818     if (UseTLAB) {
 6819       movl(r14, Address(rbx, Klass::layout_helper_offset()));
 6820       testl(r14, Klass::_lh_instance_slow_path_bit);
 6821       jcc(Assembler::notZero, slow_case);
 6822       tlab_allocate(r15_thread, rax, r14, 0, r13, r14, slow_case);
 6823     } else {
 6824       jmp(slow_case);
 6825     }
 6826   }
 6827   if (UseTLAB) {
 6828     // 2. Initialize buffered inline instance header
 6829     Register buffer_obj = rax;
 6830     movptr(Address(buffer_obj, oopDesc::mark_offset_in_bytes()), (intptr_t)markWord::inline_type_prototype().value());
 6831     xorl(r13, r13);
 6832     store_klass_gap(buffer_obj, r13);
 6833     if (vk == nullptr) {
 6834       // store_klass corrupts rbx(klass), so save it in r13 for later use (interpreter case only).
 6835       mov(r13, rbx);
 6836     }
 6837     store_klass(buffer_obj, rbx, rscratch1);
 6838     // 3. Initialize its fields with an inline class specific handler
 6839     if (vk != nullptr) {
 6840       call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint.
 6841     } else {
 6842       movptr(rbx, Address(r13, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 6843       movptr(rbx, Address(rbx, InlineKlass::pack_handler_offset()));
 6844       call(rbx);
 6845     }
 6846     jmp(skip);
 6847   }
 6848   bind(slow_case);
 6849   // We failed to allocate a new inline type, fall back to a runtime
 6850   // call. Some oop field may be live in some registers but we can't
 6851   // tell. That runtime call will take care of preserving them
 6852   // across a GC if there's one.
 6853   mov(rax, rscratch1);
 6854 #endif
 6855 
 6856   if (from_interpreter) {
 6857     super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf());
 6858   } else {
 6859     call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf()));
 6860     call_offset = offset();
 6861   }
 6862 
 6863   bind(skip);
 6864   return call_offset;
 6865 }
 6866 
 6867 // Move a value between registers/stack slots and update the reg_state
 6868 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) {
 6869   assert(from->is_valid() && to->is_valid(), "source and destination must be valid");
 6870   if (reg_state[to->value()] == reg_written) {
 6871     return true; // Already written
 6872   }
 6873   if (from != to && bt != T_VOID) {
 6874     if (reg_state[to->value()] == reg_readonly) {
 6875       return false; // Not yet writable
 6876     }
 6877     if (from->is_reg()) {
 6878       if (to->is_reg()) {
 6879         if (from->is_XMMRegister()) {
 6880           if (bt == T_DOUBLE) {
 6881             movdbl(to->as_XMMRegister(), from->as_XMMRegister());
 6882           } else {
 6883             assert(bt == T_FLOAT, "must be float");
 6884             movflt(to->as_XMMRegister(), from->as_XMMRegister());
 6885           }
 6886         } else {
 6887           movq(to->as_Register(), from->as_Register());
 6888         }
 6889       } else {
 6890         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6891         Address to_addr = Address(rsp, st_off);
 6892         if (from->is_XMMRegister()) {
 6893           if (bt == T_DOUBLE) {
 6894             movdbl(to_addr, from->as_XMMRegister());
 6895           } else {
 6896             assert(bt == T_FLOAT, "must be float");
 6897             movflt(to_addr, from->as_XMMRegister());
 6898           }
 6899         } else {
 6900           movq(to_addr, from->as_Register());
 6901         }
 6902       }
 6903     } else {
 6904       Address from_addr = Address(rsp, from->reg2stack() * VMRegImpl::stack_slot_size + wordSize);
 6905       if (to->is_reg()) {
 6906         if (to->is_XMMRegister()) {
 6907           if (bt == T_DOUBLE) {
 6908             movdbl(to->as_XMMRegister(), from_addr);
 6909           } else {
 6910             assert(bt == T_FLOAT, "must be float");
 6911             movflt(to->as_XMMRegister(), from_addr);
 6912           }
 6913         } else {
 6914           movq(to->as_Register(), from_addr);
 6915         }
 6916       } else {
 6917         int st_off = to->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6918         movq(r13, from_addr);
 6919         movq(Address(rsp, st_off), r13);
 6920       }
 6921     }
 6922   }
 6923   // Update register states
 6924   reg_state[from->value()] = reg_writable;
 6925   reg_state[to->value()] = reg_written;
 6926   return true;
 6927 }
 6928 
 6929 // Calculate the extra stack space required for packing or unpacking inline
 6930 // args and adjust the stack pointer
 6931 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) {
 6932   // Two additional slots to account for return address
 6933   int sp_inc = (args_on_stack + 2) * VMRegImpl::stack_slot_size;
 6934   sp_inc = align_up(sp_inc, StackAlignmentInBytes);
 6935   // Save the return address, adjust the stack (make sure it is properly
 6936   // 16-byte aligned) and copy the return address to the new top of the stack.
 6937   // The stack will be repaired on return (see MacroAssembler::remove_frame).
 6938   assert(sp_inc > 0, "sanity");
 6939   pop(r13);
 6940   subptr(rsp, sp_inc);
 6941   push(r13);
 6942   return sp_inc;
 6943 }
 6944 
 6945 // Read all fields from an inline type buffer and store the field values in registers/stack slots.
 6946 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
 6947                                           VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
 6948                                           RegState reg_state[]) {
 6949   assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter");
 6950   assert(from->is_valid(), "source must be valid");
 6951   bool progress = false;
 6952 #ifdef ASSERT
 6953   const int start_offset = offset();
 6954 #endif
 6955 
 6956   Label L_null, L_notNull;
 6957   // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for)
 6958   Register tmp1 = r10;
 6959   Register tmp2 = r13;
 6960   Register fromReg = noreg;
 6961   ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1);
 6962   bool done = true;
 6963   bool mark_done = true;
 6964   VMReg toReg;
 6965   BasicType bt;
 6966   // Check if argument requires a null check
 6967   bool null_check = false;
 6968   VMReg nullCheckReg;
 6969   while (stream.next(nullCheckReg, bt)) {
 6970     if (sig->at(stream.sig_index())._offset == -1) {
 6971       null_check = true;
 6972       break;
 6973     }
 6974   }
 6975   stream.reset(sig_index, to_index);
 6976   while (stream.next(toReg, bt)) {
 6977     assert(toReg->is_valid(), "destination must be valid");
 6978     int idx = (int)toReg->value();
 6979     if (reg_state[idx] == reg_readonly) {
 6980       if (idx != from->value()) {
 6981         mark_done = false;
 6982       }
 6983       done = false;
 6984       continue;
 6985     } else if (reg_state[idx] == reg_written) {
 6986       continue;
 6987     }
 6988     assert(reg_state[idx] == reg_writable, "must be writable");
 6989     reg_state[idx] = reg_written;
 6990     progress = true;
 6991 
 6992     if (fromReg == noreg) {
 6993       if (from->is_reg()) {
 6994         fromReg = from->as_Register();
 6995       } else {
 6996         int st_off = from->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 6997         movq(tmp1, Address(rsp, st_off));
 6998         fromReg = tmp1;
 6999       }
 7000       if (null_check) {
 7001         // Nullable inline type argument, emit null check
 7002         testptr(fromReg, fromReg);
 7003         jcc(Assembler::zero, L_null);
 7004       }
 7005     }
 7006     int off = sig->at(stream.sig_index())._offset;
 7007     if (off == -1) {
 7008       assert(null_check, "Missing null check at");
 7009       if (toReg->is_stack()) {
 7010         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 7011         movq(Address(rsp, st_off), 1);
 7012       } else {
 7013         movq(toReg->as_Register(), 1);
 7014       }
 7015       continue;
 7016     }
 7017     assert(off > 0, "offset in object should be positive");
 7018     Address fromAddr = Address(fromReg, off);
 7019     if (!toReg->is_XMMRegister()) {
 7020       Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register();
 7021       if (is_reference_type(bt)) {
 7022         load_heap_oop(dst, fromAddr);
 7023       } else {
 7024         bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
 7025         load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed);
 7026       }
 7027       if (toReg->is_stack()) {
 7028         int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 7029         movq(Address(rsp, st_off), dst);
 7030       }
 7031     } else if (bt == T_DOUBLE) {
 7032       movdbl(toReg->as_XMMRegister(), fromAddr);
 7033     } else {
 7034       assert(bt == T_FLOAT, "must be float");
 7035       movflt(toReg->as_XMMRegister(), fromAddr);
 7036     }
 7037   }
 7038   if (progress && null_check) {
 7039     if (done) {
 7040       jmp(L_notNull);
 7041       bind(L_null);
 7042       // Set IsInit field to zero to signal that the argument is null.
 7043       // Also set all oop fields to zero to make the GC happy.
 7044       stream.reset(sig_index, to_index);
 7045       while (stream.next(toReg, bt)) {
 7046         if (sig->at(stream.sig_index())._offset == -1 ||
 7047             bt == T_OBJECT || bt == T_ARRAY) {
 7048           if (toReg->is_stack()) {
 7049             int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 7050             movq(Address(rsp, st_off), 0);
 7051           } else {
 7052             xorq(toReg->as_Register(), toReg->as_Register());
 7053           }
 7054         }
 7055       }
 7056       bind(L_notNull);
 7057     } else {
 7058       bind(L_null);
 7059     }
 7060   }
 7061 
 7062   sig_index = stream.sig_index();
 7063   to_index = stream.regs_index();
 7064 
 7065   if (mark_done && reg_state[from->value()] != reg_written) {
 7066     // This is okay because no one else will write to that slot
 7067     reg_state[from->value()] = reg_writable;
 7068   }
 7069   from_index--;
 7070   assert(progress || (start_offset == offset()), "should not emit code");
 7071   return done;
 7072 }
 7073 
 7074 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
 7075                                         VMRegPair* from, int from_count, int& from_index, VMReg to,
 7076                                         RegState reg_state[], Register val_array) {
 7077   assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter");
 7078   assert(to->is_valid(), "destination must be valid");
 7079 
 7080   if (reg_state[to->value()] == reg_written) {
 7081     skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
 7082     return true; // Already written
 7083   }
 7084 
 7085   // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value?
 7086   // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for).
 7087   Register val_obj_tmp = r11;
 7088   Register from_reg_tmp = r14;
 7089   Register tmp1 = r10;
 7090   Register tmp2 = r13;
 7091   Register tmp3 = rbx;
 7092   Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register();
 7093 
 7094   assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array);
 7095 
 7096   if (reg_state[to->value()] == reg_readonly) {
 7097     if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) {
 7098       skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
 7099       return false; // Not yet writable
 7100     }
 7101     val_obj = val_obj_tmp;
 7102   }
 7103 
 7104   int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT);
 7105   load_heap_oop(val_obj, Address(val_array, index));
 7106 
 7107   ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index);
 7108   VMReg fromReg;
 7109   BasicType bt;
 7110   Label L_null;
 7111   while (stream.next(fromReg, bt)) {
 7112     assert(fromReg->is_valid(), "source must be valid");
 7113     reg_state[fromReg->value()] = reg_writable;
 7114 
 7115     int off = sig->at(stream.sig_index())._offset;
 7116     if (off == -1) {
 7117       // Nullable inline type argument, emit null check
 7118       Label L_notNull;
 7119       if (fromReg->is_stack()) {
 7120         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 7121         testb(Address(rsp, ld_off), 1);
 7122       } else {
 7123         testb(fromReg->as_Register(), 1);
 7124       }
 7125       jcc(Assembler::notZero, L_notNull);
 7126       movptr(val_obj, 0);
 7127       jmp(L_null);
 7128       bind(L_notNull);
 7129       continue;
 7130     }
 7131 
 7132     assert(off > 0, "offset in object should be positive");
 7133     size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
 7134 
 7135     Address dst(val_obj, off);
 7136     if (!fromReg->is_XMMRegister()) {
 7137       Register src;
 7138       if (fromReg->is_stack()) {
 7139         src = from_reg_tmp;
 7140         int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 7141         load_sized_value(src, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false);
 7142       } else {
 7143         src = fromReg->as_Register();
 7144       }
 7145       assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array);
 7146       if (is_reference_type(bt)) {
 7147         store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
 7148       } else {
 7149         store_sized_value(dst, src, size_in_bytes);
 7150       }
 7151     } else if (bt == T_DOUBLE) {
 7152       movdbl(dst, fromReg->as_XMMRegister());
 7153     } else {
 7154       assert(bt == T_FLOAT, "must be float");
 7155       movflt(dst, fromReg->as_XMMRegister());
 7156     }
 7157   }
 7158   bind(L_null);
 7159   sig_index = stream.sig_index();
 7160   from_index = stream.regs_index();
 7161 
 7162   assert(reg_state[to->value()] == reg_writable, "must have already been read");
 7163   bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state);
 7164   assert(success, "to register must be writeable");
 7165   return true;
 7166 }
 7167 
 7168 VMReg MacroAssembler::spill_reg_for(VMReg reg) {
 7169   return reg->is_XMMRegister() ? xmm8->as_VMReg() : r14->as_VMReg();
 7170 }
 7171 
 7172 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) {
 7173   assert((initial_framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 7174   if (needs_stack_repair) {
 7175     movq(rbp, Address(rsp, initial_framesize));
 7176     // The stack increment resides just below the saved rbp
 7177     addq(rsp, Address(rsp, initial_framesize - wordSize));
 7178   } else {
 7179     if (initial_framesize > 0) {
 7180       addq(rsp, initial_framesize);
 7181     }
 7182     pop(rbp);
 7183   }
 7184 }
 7185 
 7186 // Clearing constant sized memory using YMM/ZMM registers.
 7187 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) {
 7188   assert(UseAVX > 2 && VM_Version::supports_avx512vl(), "");
 7189   bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0);
 7190 
 7191   int vector64_count = (cnt & (~0x7)) >> 3;
 7192   cnt = cnt & 0x7;
 7193   const int fill64_per_loop = 4;
 7194   const int max_unrolled_fill64 = 8;
 7195 
 7196   // 64 byte initialization loop.
 7197   vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit);
 7198   int start64 = 0;
 7199   if (vector64_count > max_unrolled_fill64) {
 7200     Label LOOP;
 7201     Register index = rtmp;
 7202 
 7203     start64 = vector64_count - (vector64_count % fill64_per_loop);
 7204 
 7205     movl(index, 0);
 7206     BIND(LOOP);
 7207     for (int i = 0; i < fill64_per_loop; i++) {
 7208       fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector);
 7209     }
 7210     addl(index, fill64_per_loop * 64);
 7211     cmpl(index, start64 * 64);
 7212     jccb(Assembler::less, LOOP);
 7213   }
 7214   for (int i = start64; i < vector64_count; i++) {
 7215     fill64(base, i * 64, xtmp, use64byteVector);
 7216   }
 7217 
 7218   // Clear remaining 64 byte tail.
 7219   int disp = vector64_count * 64;
 7220   if (cnt) {
 7221     switch (cnt) {
 7222       case 1:
 7223         movq(Address(base, disp), xtmp);
 7224         break;
 7225       case 2:
 7226         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit);
 7227         break;
 7228       case 3:
 7229         movl(rtmp, 0x7);
 7230         kmovwl(mask, rtmp);
 7231         evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit);
 7232         break;
 7233       case 4:
 7234         evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 7235         break;
 7236       case 5:
 7237         if (use64byteVector) {
 7238           movl(rtmp, 0x1F);
 7239           kmovwl(mask, rtmp);
 7240           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 7241         } else {
 7242           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 7243           movq(Address(base, disp + 32), xtmp);
 7244         }
 7245         break;
 7246       case 6:
 7247         if (use64byteVector) {
 7248           movl(rtmp, 0x3F);
 7249           kmovwl(mask, rtmp);
 7250           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 7251         } else {
 7252           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 7253           evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit);
 7254         }
 7255         break;
 7256       case 7:
 7257         if (use64byteVector) {
 7258           movl(rtmp, 0x7F);
 7259           kmovwl(mask, rtmp);
 7260           evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit);
 7261         } else {
 7262           evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit);
 7263           movl(rtmp, 0x7);
 7264           kmovwl(mask, rtmp);
 7265           evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit);
 7266         }
 7267         break;
 7268       default:
 7269         fatal("Unexpected length : %d\n",cnt);
 7270         break;
 7271     }
 7272   }
 7273 }
 7274 
 7275 void MacroAssembler::clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp,
 7276                                bool is_large, bool word_copy_only, KRegister mask) {
 7277   // cnt      - number of qwords (8-byte words).
 7278   // base     - start address, qword aligned.
 7279   // is_large - if optimizers know cnt is larger than InitArrayShortSize
 7280   assert(base==rdi, "base register must be edi for rep stos");
 7281   assert(val==rax,   "val register must be eax for rep stos");
 7282   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
 7283   assert(InitArrayShortSize % BytesPerLong == 0,
 7284     "InitArrayShortSize should be the multiple of BytesPerLong");
 7285 
 7286   Label DONE;
 7287 
 7288   if (!is_large) {
 7289     Label LOOP, LONG;
 7290     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
 7291     jccb(Assembler::greater, LONG);
 7292 
 7293     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 7294 
 7295     decrement(cnt);
 7296     jccb(Assembler::negative, DONE); // Zero length
 7297 
 7298     // Use individual pointer-sized stores for small counts:
 7299     BIND(LOOP);
 7300     movptr(Address(base, cnt, Address::times_ptr), val);
 7301     decrement(cnt);
 7302     jccb(Assembler::greaterEqual, LOOP);
 7303     jmpb(DONE);
 7304 
 7305     BIND(LONG);
 7306   }
 7307 
 7308   // Use longer rep-prefixed ops for non-small counts:
 7309   if (UseFastStosb && !word_copy_only) {
 7310     shlptr(cnt, 3); // convert to number of bytes
 7311     rep_stosb();
 7312   } else if (UseXMMForObjInit) {
 7313     xmm_clear_mem(base, cnt, val, xtmp, mask);
 7314   } else {
 7315     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
 7316     rep_stos();
 7317   }
 7318 
 7319   BIND(DONE);
 7320 }
 7321 
 7322 #endif //COMPILER2_OR_JVMCI
 7323 
 7324 
 7325 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 7326                                    Register to, Register value, Register count,
 7327                                    Register rtmp, XMMRegister xtmp) {
 7328   ShortBranchVerifier sbv(this);
 7329   assert_different_registers(to, value, count, rtmp);
 7330   Label L_exit;
 7331   Label L_fill_2_bytes, L_fill_4_bytes;
 7332 
 7333 #if defined(COMPILER2) && defined(_LP64)
 7334   if(MaxVectorSize >=32 &&
 7335      VM_Version::supports_avx512vlbw() &&
 7336      VM_Version::supports_bmi2()) {
 7337     generate_fill_avx3(t, to, value, count, rtmp, xtmp);
 7338     return;
 7339   }
 7340 #endif
 7341 
 7342   int shift = -1;
 7343   switch (t) {
 7344     case T_BYTE:
 7345       shift = 2;
 7346       break;
 7347     case T_SHORT:
 7348       shift = 1;
 7349       break;
 7350     case T_INT:
 7351       shift = 0;
 7352       break;
 7353     default: ShouldNotReachHere();
 7354   }
 7355 
 7356   if (t == T_BYTE) {
 7357     andl(value, 0xff);
 7358     movl(rtmp, value);
 7359     shll(rtmp, 8);
 7360     orl(value, rtmp);
 7361   }
 7362   if (t == T_SHORT) {
 7363     andl(value, 0xffff);
 7364   }
 7365   if (t == T_BYTE || t == T_SHORT) {
 7366     movl(rtmp, value);
 7367     shll(rtmp, 16);
 7368     orl(value, rtmp);
 7369   }
 7370 
 7371   cmpptr(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 7372   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 7373   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 7374     Label L_skip_align2;
 7375     // align source address at 4 bytes address boundary
 7376     if (t == T_BYTE) {
 7377       Label L_skip_align1;
 7378       // One byte misalignment happens only for byte arrays
 7379       testptr(to, 1);
 7380       jccb(Assembler::zero, L_skip_align1);
 7381       movb(Address(to, 0), value);
 7382       increment(to);
 7383       decrement(count);
 7384       BIND(L_skip_align1);
 7385     }
 7386     // Two bytes misalignment happens only for byte and short (char) arrays
 7387     testptr(to, 2);
 7388     jccb(Assembler::zero, L_skip_align2);
 7389     movw(Address(to, 0), value);
 7390     addptr(to, 2);
 7391     subptr(count, 1<<(shift-1));
 7392     BIND(L_skip_align2);
 7393   }
 7394   if (UseSSE < 2) {
 7395     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 7396     // Fill 32-byte chunks
 7397     subptr(count, 8 << shift);
 7398     jcc(Assembler::less, L_check_fill_8_bytes);
 7399     align(16);
 7400 
 7401     BIND(L_fill_32_bytes_loop);
 7402 
 7403     for (int i = 0; i < 32; i += 4) {
 7404       movl(Address(to, i), value);
 7405     }
 7406 
 7407     addptr(to, 32);
 7408     subptr(count, 8 << shift);
 7409     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 7410     BIND(L_check_fill_8_bytes);
 7411     addptr(count, 8 << shift);
 7412     jccb(Assembler::zero, L_exit);
 7413     jmpb(L_fill_8_bytes);
 7414 
 7415     //
 7416     // length is too short, just fill qwords
 7417     //
 7418     BIND(L_fill_8_bytes_loop);
 7419     movl(Address(to, 0), value);
 7420     movl(Address(to, 4), value);
 7421     addptr(to, 8);
 7422     BIND(L_fill_8_bytes);
 7423     subptr(count, 1 << (shift + 1));
 7424     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 7425     // fall through to fill 4 bytes
 7426   } else {
 7427     Label L_fill_32_bytes;
 7428     if (!UseUnalignedLoadStores) {
 7429       // align to 8 bytes, we know we are 4 byte aligned to start
 7430       testptr(to, 4);
 7431       jccb(Assembler::zero, L_fill_32_bytes);
 7432       movl(Address(to, 0), value);
 7433       addptr(to, 4);
 7434       subptr(count, 1<<shift);
 7435     }
 7436     BIND(L_fill_32_bytes);
 7437     {
 7438       assert( UseSSE >= 2, "supported cpu only" );
 7439       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 7440       movdl(xtmp, value);
 7441       if (UseAVX >= 2 && UseUnalignedLoadStores) {
 7442         Label L_check_fill_32_bytes;
 7443         if (UseAVX > 2) {
 7444           // Fill 64-byte chunks
 7445           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
 7446 
 7447           // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2
 7448           cmpptr(count, VM_Version::avx3_threshold());
 7449           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
 7450 
 7451           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
 7452 
 7453           subptr(count, 16 << shift);
 7454           jccb(Assembler::less, L_check_fill_32_bytes);
 7455           align(16);
 7456 
 7457           BIND(L_fill_64_bytes_loop_avx3);
 7458           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
 7459           addptr(to, 64);
 7460           subptr(count, 16 << shift);
 7461           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
 7462           jmpb(L_check_fill_32_bytes);
 7463 
 7464           BIND(L_check_fill_64_bytes_avx2);
 7465         }
 7466         // Fill 64-byte chunks
 7467         Label L_fill_64_bytes_loop;
 7468         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
 7469 
 7470         subptr(count, 16 << shift);
 7471         jcc(Assembler::less, L_check_fill_32_bytes);
 7472         align(16);
 7473 
 7474         BIND(L_fill_64_bytes_loop);
 7475         vmovdqu(Address(to, 0), xtmp);
 7476         vmovdqu(Address(to, 32), xtmp);
 7477         addptr(to, 64);
 7478         subptr(count, 16 << shift);
 7479         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
 7480 
 7481         BIND(L_check_fill_32_bytes);
 7482         addptr(count, 8 << shift);
 7483         jccb(Assembler::less, L_check_fill_8_bytes);
 7484         vmovdqu(Address(to, 0), xtmp);
 7485         addptr(to, 32);
 7486         subptr(count, 8 << shift);
 7487 
 7488         BIND(L_check_fill_8_bytes);
 7489         // clean upper bits of YMM registers
 7490         movdl(xtmp, value);
 7491         pshufd(xtmp, xtmp, 0);
 7492       } else {
 7493         // Fill 32-byte chunks
 7494         pshufd(xtmp, xtmp, 0);
 7495 
 7496         subptr(count, 8 << shift);
 7497         jcc(Assembler::less, L_check_fill_8_bytes);
 7498         align(16);
 7499 
 7500         BIND(L_fill_32_bytes_loop);
 7501 
 7502         if (UseUnalignedLoadStores) {
 7503           movdqu(Address(to, 0), xtmp);
 7504           movdqu(Address(to, 16), xtmp);
 7505         } else {
 7506           movq(Address(to, 0), xtmp);
 7507           movq(Address(to, 8), xtmp);
 7508           movq(Address(to, 16), xtmp);
 7509           movq(Address(to, 24), xtmp);
 7510         }
 7511 
 7512         addptr(to, 32);
 7513         subptr(count, 8 << shift);
 7514         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 7515 
 7516         BIND(L_check_fill_8_bytes);
 7517       }
 7518       addptr(count, 8 << shift);
 7519       jccb(Assembler::zero, L_exit);
 7520       jmpb(L_fill_8_bytes);
 7521 
 7522       //
 7523       // length is too short, just fill qwords
 7524       //
 7525       BIND(L_fill_8_bytes_loop);
 7526       movq(Address(to, 0), xtmp);
 7527       addptr(to, 8);
 7528       BIND(L_fill_8_bytes);
 7529       subptr(count, 1 << (shift + 1));
 7530       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 7531     }
 7532   }
 7533   // fill trailing 4 bytes
 7534   BIND(L_fill_4_bytes);
 7535   testl(count, 1<<shift);
 7536   jccb(Assembler::zero, L_fill_2_bytes);
 7537   movl(Address(to, 0), value);
 7538   if (t == T_BYTE || t == T_SHORT) {
 7539     Label L_fill_byte;
 7540     addptr(to, 4);
 7541     BIND(L_fill_2_bytes);
 7542     // fill trailing 2 bytes
 7543     testl(count, 1<<(shift-1));
 7544     jccb(Assembler::zero, L_fill_byte);
 7545     movw(Address(to, 0), value);
 7546     if (t == T_BYTE) {
 7547       addptr(to, 2);
 7548       BIND(L_fill_byte);
 7549       // fill trailing byte
 7550       testl(count, 1);
 7551       jccb(Assembler::zero, L_exit);
 7552       movb(Address(to, 0), value);
 7553     } else {
 7554       BIND(L_fill_byte);
 7555     }
 7556   } else {
 7557     BIND(L_fill_2_bytes);
 7558   }
 7559   BIND(L_exit);
 7560 }
 7561 
 7562 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) {
 7563   switch(type) {
 7564     case T_BYTE:
 7565     case T_BOOLEAN:
 7566       evpbroadcastb(dst, src, vector_len);
 7567       break;
 7568     case T_SHORT:
 7569     case T_CHAR:
 7570       evpbroadcastw(dst, src, vector_len);
 7571       break;
 7572     case T_INT:
 7573     case T_FLOAT:
 7574       evpbroadcastd(dst, src, vector_len);
 7575       break;
 7576     case T_LONG:
 7577     case T_DOUBLE:
 7578       evpbroadcastq(dst, src, vector_len);
 7579       break;
 7580     default:
 7581       fatal("Unhandled type : %s", type2name(type));
 7582       break;
 7583   }
 7584 }
 7585 
 7586 // encode char[] to byte[] in ISO_8859_1 or ASCII
 7587    //@IntrinsicCandidate
 7588    //private static int implEncodeISOArray(byte[] sa, int sp,
 7589    //byte[] da, int dp, int len) {
 7590    //  int i = 0;
 7591    //  for (; i < len; i++) {
 7592    //    char c = StringUTF16.getChar(sa, sp++);
 7593    //    if (c > '\u00FF')
 7594    //      break;
 7595    //    da[dp++] = (byte)c;
 7596    //  }
 7597    //  return i;
 7598    //}
 7599    //
 7600    //@IntrinsicCandidate
 7601    //private static int implEncodeAsciiArray(char[] sa, int sp,
 7602    //    byte[] da, int dp, int len) {
 7603    //  int i = 0;
 7604    //  for (; i < len; i++) {
 7605    //    char c = sa[sp++];
 7606    //    if (c >= '\u0080')
 7607    //      break;
 7608    //    da[dp++] = (byte)c;
 7609    //  }
 7610    //  return i;
 7611    //}
 7612 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
 7613   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
 7614   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
 7615   Register tmp5, Register result, bool ascii) {
 7616 
 7617   // rsi: src
 7618   // rdi: dst
 7619   // rdx: len
 7620   // rcx: tmp5
 7621   // rax: result
 7622   ShortBranchVerifier sbv(this);
 7623   assert_different_registers(src, dst, len, tmp5, result);
 7624   Label L_done, L_copy_1_char, L_copy_1_char_exit;
 7625 
 7626   int mask = ascii ? 0xff80ff80 : 0xff00ff00;
 7627   int short_mask = ascii ? 0xff80 : 0xff00;
 7628 
 7629   // set result
 7630   xorl(result, result);
 7631   // check for zero length
 7632   testl(len, len);
 7633   jcc(Assembler::zero, L_done);
 7634 
 7635   movl(result, len);
 7636 
 7637   // Setup pointers
 7638   lea(src, Address(src, len, Address::times_2)); // char[]
 7639   lea(dst, Address(dst, len, Address::times_1)); // byte[]
 7640   negptr(len);
 7641 
 7642   if (UseSSE42Intrinsics || UseAVX >= 2) {
 7643     Label L_copy_8_chars, L_copy_8_chars_exit;
 7644     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
 7645 
 7646     if (UseAVX >= 2) {
 7647       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
 7648       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 7649       movdl(tmp1Reg, tmp5);
 7650       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
 7651       jmp(L_chars_32_check);
 7652 
 7653       bind(L_copy_32_chars);
 7654       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
 7655       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
 7656       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 7657       vptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 7658       jccb(Assembler::notZero, L_copy_32_chars_exit);
 7659       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
 7660       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
 7661       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
 7662 
 7663       bind(L_chars_32_check);
 7664       addptr(len, 32);
 7665       jcc(Assembler::lessEqual, L_copy_32_chars);
 7666 
 7667       bind(L_copy_32_chars_exit);
 7668       subptr(len, 16);
 7669       jccb(Assembler::greater, L_copy_16_chars_exit);
 7670 
 7671     } else if (UseSSE42Intrinsics) {
 7672       movl(tmp5, mask);   // create mask to test for Unicode or non-ASCII chars in vector
 7673       movdl(tmp1Reg, tmp5);
 7674       pshufd(tmp1Reg, tmp1Reg, 0);
 7675       jmpb(L_chars_16_check);
 7676     }
 7677 
 7678     bind(L_copy_16_chars);
 7679     if (UseAVX >= 2) {
 7680       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
 7681       vptest(tmp2Reg, tmp1Reg);
 7682       jcc(Assembler::notZero, L_copy_16_chars_exit);
 7683       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
 7684       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
 7685     } else {
 7686       if (UseAVX > 0) {
 7687         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 7688         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 7689         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
 7690       } else {
 7691         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
 7692         por(tmp2Reg, tmp3Reg);
 7693         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
 7694         por(tmp2Reg, tmp4Reg);
 7695       }
 7696       ptest(tmp2Reg, tmp1Reg);       // check for Unicode or non-ASCII chars in vector
 7697       jccb(Assembler::notZero, L_copy_16_chars_exit);
 7698       packuswb(tmp3Reg, tmp4Reg);
 7699     }
 7700     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
 7701 
 7702     bind(L_chars_16_check);
 7703     addptr(len, 16);
 7704     jcc(Assembler::lessEqual, L_copy_16_chars);
 7705 
 7706     bind(L_copy_16_chars_exit);
 7707     if (UseAVX >= 2) {
 7708       // clean upper bits of YMM registers
 7709       vpxor(tmp2Reg, tmp2Reg);
 7710       vpxor(tmp3Reg, tmp3Reg);
 7711       vpxor(tmp4Reg, tmp4Reg);
 7712       movdl(tmp1Reg, tmp5);
 7713       pshufd(tmp1Reg, tmp1Reg, 0);
 7714     }
 7715     subptr(len, 8);
 7716     jccb(Assembler::greater, L_copy_8_chars_exit);
 7717 
 7718     bind(L_copy_8_chars);
 7719     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
 7720     ptest(tmp3Reg, tmp1Reg);
 7721     jccb(Assembler::notZero, L_copy_8_chars_exit);
 7722     packuswb(tmp3Reg, tmp1Reg);
 7723     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
 7724     addptr(len, 8);
 7725     jccb(Assembler::lessEqual, L_copy_8_chars);
 7726 
 7727     bind(L_copy_8_chars_exit);
 7728     subptr(len, 8);
 7729     jccb(Assembler::zero, L_done);
 7730   }
 7731 
 7732   bind(L_copy_1_char);
 7733   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
 7734   testl(tmp5, short_mask);      // check if Unicode or non-ASCII char
 7735   jccb(Assembler::notZero, L_copy_1_char_exit);
 7736   movb(Address(dst, len, Address::times_1, 0), tmp5);
 7737   addptr(len, 1);
 7738   jccb(Assembler::less, L_copy_1_char);
 7739 
 7740   bind(L_copy_1_char_exit);
 7741   addptr(result, len); // len is negative count of not processed elements
 7742 
 7743   bind(L_done);
 7744 }
 7745 
 7746 #ifdef _LP64
 7747 /**
 7748  * Helper for multiply_to_len().
 7749  */
 7750 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
 7751   addq(dest_lo, src1);
 7752   adcq(dest_hi, 0);
 7753   addq(dest_lo, src2);
 7754   adcq(dest_hi, 0);
 7755 }
 7756 
 7757 /**
 7758  * Multiply 64 bit by 64 bit first loop.
 7759  */
 7760 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 7761                                            Register y, Register y_idx, Register z,
 7762                                            Register carry, Register product,
 7763                                            Register idx, Register kdx) {
 7764   //
 7765   //  jlong carry, x[], y[], z[];
 7766   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 7767   //    huge_128 product = y[idx] * x[xstart] + carry;
 7768   //    z[kdx] = (jlong)product;
 7769   //    carry  = (jlong)(product >>> 64);
 7770   //  }
 7771   //  z[xstart] = carry;
 7772   //
 7773 
 7774   Label L_first_loop, L_first_loop_exit;
 7775   Label L_one_x, L_one_y, L_multiply;
 7776 
 7777   decrementl(xstart);
 7778   jcc(Assembler::negative, L_one_x);
 7779 
 7780   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 7781   rorq(x_xstart, 32); // convert big-endian to little-endian
 7782 
 7783   bind(L_first_loop);
 7784   decrementl(idx);
 7785   jcc(Assembler::negative, L_first_loop_exit);
 7786   decrementl(idx);
 7787   jcc(Assembler::negative, L_one_y);
 7788   movq(y_idx, Address(y, idx, Address::times_4,  0));
 7789   rorq(y_idx, 32); // convert big-endian to little-endian
 7790   bind(L_multiply);
 7791   movq(product, x_xstart);
 7792   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
 7793   addq(product, carry);
 7794   adcq(rdx, 0);
 7795   subl(kdx, 2);
 7796   movl(Address(z, kdx, Address::times_4,  4), product);
 7797   shrq(product, 32);
 7798   movl(Address(z, kdx, Address::times_4,  0), product);
 7799   movq(carry, rdx);
 7800   jmp(L_first_loop);
 7801 
 7802   bind(L_one_y);
 7803   movl(y_idx, Address(y,  0));
 7804   jmp(L_multiply);
 7805 
 7806   bind(L_one_x);
 7807   movl(x_xstart, Address(x,  0));
 7808   jmp(L_first_loop);
 7809 
 7810   bind(L_first_loop_exit);
 7811 }
 7812 
 7813 /**
 7814  * Multiply 64 bit by 64 bit and add 128 bit.
 7815  */
 7816 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 7817                                             Register yz_idx, Register idx,
 7818                                             Register carry, Register product, int offset) {
 7819   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
 7820   //     z[kdx] = (jlong)product;
 7821 
 7822   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
 7823   rorq(yz_idx, 32); // convert big-endian to little-endian
 7824   movq(product, x_xstart);
 7825   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
 7826   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
 7827   rorq(yz_idx, 32); // convert big-endian to little-endian
 7828 
 7829   add2_with_carry(rdx, product, carry, yz_idx);
 7830 
 7831   movl(Address(z, idx, Address::times_4,  offset+4), product);
 7832   shrq(product, 32);
 7833   movl(Address(z, idx, Address::times_4,  offset), product);
 7834 
 7835 }
 7836 
 7837 /**
 7838  * Multiply 128 bit by 128 bit. Unrolled inner loop.
 7839  */
 7840 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
 7841                                              Register yz_idx, Register idx, Register jdx,
 7842                                              Register carry, Register product,
 7843                                              Register carry2) {
 7844   //   jlong carry, x[], y[], z[];
 7845   //   int kdx = ystart+1;
 7846   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 7847   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
 7848   //     z[kdx+idx+1] = (jlong)product;
 7849   //     jlong carry2  = (jlong)(product >>> 64);
 7850   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
 7851   //     z[kdx+idx] = (jlong)product;
 7852   //     carry  = (jlong)(product >>> 64);
 7853   //   }
 7854   //   idx += 2;
 7855   //   if (idx > 0) {
 7856   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
 7857   //     z[kdx+idx] = (jlong)product;
 7858   //     carry  = (jlong)(product >>> 64);
 7859   //   }
 7860   //
 7861 
 7862   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 7863 
 7864   movl(jdx, idx);
 7865   andl(jdx, 0xFFFFFFFC);
 7866   shrl(jdx, 2);
 7867 
 7868   bind(L_third_loop);
 7869   subl(jdx, 1);
 7870   jcc(Assembler::negative, L_third_loop_exit);
 7871   subl(idx, 4);
 7872 
 7873   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
 7874   movq(carry2, rdx);
 7875 
 7876   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
 7877   movq(carry, rdx);
 7878   jmp(L_third_loop);
 7879 
 7880   bind (L_third_loop_exit);
 7881 
 7882   andl (idx, 0x3);
 7883   jcc(Assembler::zero, L_post_third_loop_done);
 7884 
 7885   Label L_check_1;
 7886   subl(idx, 2);
 7887   jcc(Assembler::negative, L_check_1);
 7888 
 7889   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
 7890   movq(carry, rdx);
 7891 
 7892   bind (L_check_1);
 7893   addl (idx, 0x2);
 7894   andl (idx, 0x1);
 7895   subl(idx, 1);
 7896   jcc(Assembler::negative, L_post_third_loop_done);
 7897 
 7898   movl(yz_idx, Address(y, idx, Address::times_4,  0));
 7899   movq(product, x_xstart);
 7900   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
 7901   movl(yz_idx, Address(z, idx, Address::times_4,  0));
 7902 
 7903   add2_with_carry(rdx, product, yz_idx, carry);
 7904 
 7905   movl(Address(z, idx, Address::times_4,  0), product);
 7906   shrq(product, 32);
 7907 
 7908   shlq(rdx, 32);
 7909   orq(product, rdx);
 7910   movq(carry, product);
 7911 
 7912   bind(L_post_third_loop_done);
 7913 }
 7914 
 7915 /**
 7916  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
 7917  *
 7918  */
 7919 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
 7920                                                   Register carry, Register carry2,
 7921                                                   Register idx, Register jdx,
 7922                                                   Register yz_idx1, Register yz_idx2,
 7923                                                   Register tmp, Register tmp3, Register tmp4) {
 7924   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
 7925 
 7926   //   jlong carry, x[], y[], z[];
 7927   //   int kdx = ystart+1;
 7928   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
 7929   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
 7930   //     jlong carry2  = (jlong)(tmp3 >>> 64);
 7931   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
 7932   //     carry  = (jlong)(tmp4 >>> 64);
 7933   //     z[kdx+idx+1] = (jlong)tmp3;
 7934   //     z[kdx+idx] = (jlong)tmp4;
 7935   //   }
 7936   //   idx += 2;
 7937   //   if (idx > 0) {
 7938   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
 7939   //     z[kdx+idx] = (jlong)yz_idx1;
 7940   //     carry  = (jlong)(yz_idx1 >>> 64);
 7941   //   }
 7942   //
 7943 
 7944   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
 7945 
 7946   movl(jdx, idx);
 7947   andl(jdx, 0xFFFFFFFC);
 7948   shrl(jdx, 2);
 7949 
 7950   bind(L_third_loop);
 7951   subl(jdx, 1);
 7952   jcc(Assembler::negative, L_third_loop_exit);
 7953   subl(idx, 4);
 7954 
 7955   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
 7956   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
 7957   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
 7958   rorxq(yz_idx2, yz_idx2, 32);
 7959 
 7960   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
 7961   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
 7962 
 7963   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
 7964   rorxq(yz_idx1, yz_idx1, 32);
 7965   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 7966   rorxq(yz_idx2, yz_idx2, 32);
 7967 
 7968   if (VM_Version::supports_adx()) {
 7969     adcxq(tmp3, carry);
 7970     adoxq(tmp3, yz_idx1);
 7971 
 7972     adcxq(tmp4, tmp);
 7973     adoxq(tmp4, yz_idx2);
 7974 
 7975     movl(carry, 0); // does not affect flags
 7976     adcxq(carry2, carry);
 7977     adoxq(carry2, carry);
 7978   } else {
 7979     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
 7980     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
 7981   }
 7982   movq(carry, carry2);
 7983 
 7984   movl(Address(z, idx, Address::times_4, 12), tmp3);
 7985   shrq(tmp3, 32);
 7986   movl(Address(z, idx, Address::times_4,  8), tmp3);
 7987 
 7988   movl(Address(z, idx, Address::times_4,  4), tmp4);
 7989   shrq(tmp4, 32);
 7990   movl(Address(z, idx, Address::times_4,  0), tmp4);
 7991 
 7992   jmp(L_third_loop);
 7993 
 7994   bind (L_third_loop_exit);
 7995 
 7996   andl (idx, 0x3);
 7997   jcc(Assembler::zero, L_post_third_loop_done);
 7998 
 7999   Label L_check_1;
 8000   subl(idx, 2);
 8001   jcc(Assembler::negative, L_check_1);
 8002 
 8003   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
 8004   rorxq(yz_idx1, yz_idx1, 32);
 8005   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
 8006   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
 8007   rorxq(yz_idx2, yz_idx2, 32);
 8008 
 8009   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
 8010 
 8011   movl(Address(z, idx, Address::times_4,  4), tmp3);
 8012   shrq(tmp3, 32);
 8013   movl(Address(z, idx, Address::times_4,  0), tmp3);
 8014   movq(carry, tmp4);
 8015 
 8016   bind (L_check_1);
 8017   addl (idx, 0x2);
 8018   andl (idx, 0x1);
 8019   subl(idx, 1);
 8020   jcc(Assembler::negative, L_post_third_loop_done);
 8021   movl(tmp4, Address(y, idx, Address::times_4,  0));
 8022   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
 8023   movl(tmp4, Address(z, idx, Address::times_4,  0));
 8024 
 8025   add2_with_carry(carry2, tmp3, tmp4, carry);
 8026 
 8027   movl(Address(z, idx, Address::times_4,  0), tmp3);
 8028   shrq(tmp3, 32);
 8029 
 8030   shlq(carry2, 32);
 8031   orq(tmp3, carry2);
 8032   movq(carry, tmp3);
 8033 
 8034   bind(L_post_third_loop_done);
 8035 }
 8036 
 8037 /**
 8038  * Code for BigInteger::multiplyToLen() intrinsic.
 8039  *
 8040  * rdi: x
 8041  * rax: xlen
 8042  * rsi: y
 8043  * rcx: ylen
 8044  * r8:  z
 8045  * r11: tmp0
 8046  * r12: tmp1
 8047  * r13: tmp2
 8048  * r14: tmp3
 8049  * r15: tmp4
 8050  * rbx: tmp5
 8051  *
 8052  */
 8053 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
 8054                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
 8055   ShortBranchVerifier sbv(this);
 8056   assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
 8057 
 8058   push(tmp0);
 8059   push(tmp1);
 8060   push(tmp2);
 8061   push(tmp3);
 8062   push(tmp4);
 8063   push(tmp5);
 8064 
 8065   push(xlen);
 8066 
 8067   const Register idx = tmp1;
 8068   const Register kdx = tmp2;
 8069   const Register xstart = tmp3;
 8070 
 8071   const Register y_idx = tmp4;
 8072   const Register carry = tmp5;
 8073   const Register product  = xlen;
 8074   const Register x_xstart = tmp0;
 8075 
 8076   // First Loop.
 8077   //
 8078   //  final static long LONG_MASK = 0xffffffffL;
 8079   //  int xstart = xlen - 1;
 8080   //  int ystart = ylen - 1;
 8081   //  long carry = 0;
 8082   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
 8083   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
 8084   //    z[kdx] = (int)product;
 8085   //    carry = product >>> 32;
 8086   //  }
 8087   //  z[xstart] = (int)carry;
 8088   //
 8089 
 8090   movl(idx, ylen);               // idx = ylen;
 8091   lea(kdx, Address(xlen, ylen)); // kdx = xlen+ylen;
 8092   xorq(carry, carry);            // carry = 0;
 8093 
 8094   Label L_done;
 8095 
 8096   movl(xstart, xlen);
 8097   decrementl(xstart);
 8098   jcc(Assembler::negative, L_done);
 8099 
 8100   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
 8101 
 8102   Label L_second_loop;
 8103   testl(kdx, kdx);
 8104   jcc(Assembler::zero, L_second_loop);
 8105 
 8106   Label L_carry;
 8107   subl(kdx, 1);
 8108   jcc(Assembler::zero, L_carry);
 8109 
 8110   movl(Address(z, kdx, Address::times_4,  0), carry);
 8111   shrq(carry, 32);
 8112   subl(kdx, 1);
 8113 
 8114   bind(L_carry);
 8115   movl(Address(z, kdx, Address::times_4,  0), carry);
 8116 
 8117   // Second and third (nested) loops.
 8118   //
 8119   // for (int i = xstart-1; i >= 0; i--) { // Second loop
 8120   //   carry = 0;
 8121   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
 8122   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
 8123   //                    (z[k] & LONG_MASK) + carry;
 8124   //     z[k] = (int)product;
 8125   //     carry = product >>> 32;
 8126   //   }
 8127   //   z[i] = (int)carry;
 8128   // }
 8129   //
 8130   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
 8131 
 8132   const Register jdx = tmp1;
 8133 
 8134   bind(L_second_loop);
 8135   xorl(carry, carry);    // carry = 0;
 8136   movl(jdx, ylen);       // j = ystart+1
 8137 
 8138   subl(xstart, 1);       // i = xstart-1;
 8139   jcc(Assembler::negative, L_done);
 8140 
 8141   push (z);
 8142 
 8143   Label L_last_x;
 8144   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
 8145   subl(xstart, 1);       // i = xstart-1;
 8146   jcc(Assembler::negative, L_last_x);
 8147 
 8148   if (UseBMI2Instructions) {
 8149     movq(rdx,  Address(x, xstart, Address::times_4,  0));
 8150     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
 8151   } else {
 8152     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
 8153     rorq(x_xstart, 32);  // convert big-endian to little-endian
 8154   }
 8155 
 8156   Label L_third_loop_prologue;
 8157   bind(L_third_loop_prologue);
 8158 
 8159   push (x);
 8160   push (xstart);
 8161   push (ylen);
 8162 
 8163 
 8164   if (UseBMI2Instructions) {
 8165     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
 8166   } else { // !UseBMI2Instructions
 8167     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
 8168   }
 8169 
 8170   pop(ylen);
 8171   pop(xlen);
 8172   pop(x);
 8173   pop(z);
 8174 
 8175   movl(tmp3, xlen);
 8176   addl(tmp3, 1);
 8177   movl(Address(z, tmp3, Address::times_4,  0), carry);
 8178   subl(tmp3, 1);
 8179   jccb(Assembler::negative, L_done);
 8180 
 8181   shrq(carry, 32);
 8182   movl(Address(z, tmp3, Address::times_4,  0), carry);
 8183   jmp(L_second_loop);
 8184 
 8185   // Next infrequent code is moved outside loops.
 8186   bind(L_last_x);
 8187   if (UseBMI2Instructions) {
 8188     movl(rdx, Address(x,  0));
 8189   } else {
 8190     movl(x_xstart, Address(x,  0));
 8191   }
 8192   jmp(L_third_loop_prologue);
 8193 
 8194   bind(L_done);
 8195 
 8196   pop(xlen);
 8197 
 8198   pop(tmp5);
 8199   pop(tmp4);
 8200   pop(tmp3);
 8201   pop(tmp2);
 8202   pop(tmp1);
 8203   pop(tmp0);
 8204 }
 8205 
 8206 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
 8207   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
 8208   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
 8209   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
 8210   Label VECTOR8_TAIL, VECTOR4_TAIL;
 8211   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
 8212   Label SAME_TILL_END, DONE;
 8213   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
 8214 
 8215   //scale is in rcx in both Win64 and Unix
 8216   ShortBranchVerifier sbv(this);
 8217 
 8218   shlq(length);
 8219   xorq(result, result);
 8220 
 8221   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
 8222       VM_Version::supports_avx512vlbw()) {
 8223     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
 8224 
 8225     cmpq(length, 64);
 8226     jcc(Assembler::less, VECTOR32_TAIL);
 8227 
 8228     movq(tmp1, length);
 8229     andq(tmp1, 0x3F);      // tail count
 8230     andq(length, ~(0x3F)); //vector count
 8231 
 8232     bind(VECTOR64_LOOP);
 8233     // AVX512 code to compare 64 byte vectors.
 8234     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
 8235     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
 8236     kortestql(k7, k7);
 8237     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
 8238     addq(result, 64);
 8239     subq(length, 64);
 8240     jccb(Assembler::notZero, VECTOR64_LOOP);
 8241 
 8242     //bind(VECTOR64_TAIL);
 8243     testq(tmp1, tmp1);
 8244     jcc(Assembler::zero, SAME_TILL_END);
 8245 
 8246     //bind(VECTOR64_TAIL);
 8247     // AVX512 code to compare up to 63 byte vectors.
 8248     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
 8249     shlxq(tmp2, tmp2, tmp1);
 8250     notq(tmp2);
 8251     kmovql(k3, tmp2);
 8252 
 8253     evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit);
 8254     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
 8255 
 8256     ktestql(k7, k3);
 8257     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
 8258 
 8259     bind(VECTOR64_NOT_EQUAL);
 8260     kmovql(tmp1, k7);
 8261     notq(tmp1);
 8262     tzcntq(tmp1, tmp1);
 8263     addq(result, tmp1);
 8264     shrq(result);
 8265     jmp(DONE);
 8266     bind(VECTOR32_TAIL);
 8267   }
 8268 
 8269   cmpq(length, 8);
 8270   jcc(Assembler::equal, VECTOR8_LOOP);
 8271   jcc(Assembler::less, VECTOR4_TAIL);
 8272 
 8273   if (UseAVX >= 2) {
 8274     Label VECTOR16_TAIL, VECTOR32_LOOP;
 8275 
 8276     cmpq(length, 16);
 8277     jcc(Assembler::equal, VECTOR16_LOOP);
 8278     jcc(Assembler::less, VECTOR8_LOOP);
 8279 
 8280     cmpq(length, 32);
 8281     jccb(Assembler::less, VECTOR16_TAIL);
 8282 
 8283     subq(length, 32);
 8284     bind(VECTOR32_LOOP);
 8285     vmovdqu(rymm0, Address(obja, result));
 8286     vmovdqu(rymm1, Address(objb, result));
 8287     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
 8288     vptest(rymm2, rymm2);
 8289     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
 8290     addq(result, 32);
 8291     subq(length, 32);
 8292     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
 8293     addq(length, 32);
 8294     jcc(Assembler::equal, SAME_TILL_END);
 8295     //falling through if less than 32 bytes left //close the branch here.
 8296 
 8297     bind(VECTOR16_TAIL);
 8298     cmpq(length, 16);
 8299     jccb(Assembler::less, VECTOR8_TAIL);
 8300     bind(VECTOR16_LOOP);
 8301     movdqu(rymm0, Address(obja, result));
 8302     movdqu(rymm1, Address(objb, result));
 8303     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
 8304     ptest(rymm2, rymm2);
 8305     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 8306     addq(result, 16);
 8307     subq(length, 16);
 8308     jcc(Assembler::equal, SAME_TILL_END);
 8309     //falling through if less than 16 bytes left
 8310   } else {//regular intrinsics
 8311 
 8312     cmpq(length, 16);
 8313     jccb(Assembler::less, VECTOR8_TAIL);
 8314 
 8315     subq(length, 16);
 8316     bind(VECTOR16_LOOP);
 8317     movdqu(rymm0, Address(obja, result));
 8318     movdqu(rymm1, Address(objb, result));
 8319     pxor(rymm0, rymm1);
 8320     ptest(rymm0, rymm0);
 8321     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
 8322     addq(result, 16);
 8323     subq(length, 16);
 8324     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
 8325     addq(length, 16);
 8326     jcc(Assembler::equal, SAME_TILL_END);
 8327     //falling through if less than 16 bytes left
 8328   }
 8329 
 8330   bind(VECTOR8_TAIL);
 8331   cmpq(length, 8);
 8332   jccb(Assembler::less, VECTOR4_TAIL);
 8333   bind(VECTOR8_LOOP);
 8334   movq(tmp1, Address(obja, result));
 8335   movq(tmp2, Address(objb, result));
 8336   xorq(tmp1, tmp2);
 8337   testq(tmp1, tmp1);
 8338   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
 8339   addq(result, 8);
 8340   subq(length, 8);
 8341   jcc(Assembler::equal, SAME_TILL_END);
 8342   //falling through if less than 8 bytes left
 8343 
 8344   bind(VECTOR4_TAIL);
 8345   cmpq(length, 4);
 8346   jccb(Assembler::less, BYTES_TAIL);
 8347   bind(VECTOR4_LOOP);
 8348   movl(tmp1, Address(obja, result));
 8349   xorl(tmp1, Address(objb, result));
 8350   testl(tmp1, tmp1);
 8351   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
 8352   addq(result, 4);
 8353   subq(length, 4);
 8354   jcc(Assembler::equal, SAME_TILL_END);
 8355   //falling through if less than 4 bytes left
 8356 
 8357   bind(BYTES_TAIL);
 8358   bind(BYTES_LOOP);
 8359   load_unsigned_byte(tmp1, Address(obja, result));
 8360   load_unsigned_byte(tmp2, Address(objb, result));
 8361   xorl(tmp1, tmp2);
 8362   testl(tmp1, tmp1);
 8363   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 8364   decq(length);
 8365   jcc(Assembler::zero, SAME_TILL_END);
 8366   incq(result);
 8367   load_unsigned_byte(tmp1, Address(obja, result));
 8368   load_unsigned_byte(tmp2, Address(objb, result));
 8369   xorl(tmp1, tmp2);
 8370   testl(tmp1, tmp1);
 8371   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 8372   decq(length);
 8373   jcc(Assembler::zero, SAME_TILL_END);
 8374   incq(result);
 8375   load_unsigned_byte(tmp1, Address(obja, result));
 8376   load_unsigned_byte(tmp2, Address(objb, result));
 8377   xorl(tmp1, tmp2);
 8378   testl(tmp1, tmp1);
 8379   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
 8380   jmp(SAME_TILL_END);
 8381 
 8382   if (UseAVX >= 2) {
 8383     bind(VECTOR32_NOT_EQUAL);
 8384     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
 8385     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
 8386     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
 8387     vpmovmskb(tmp1, rymm0);
 8388     bsfq(tmp1, tmp1);
 8389     addq(result, tmp1);
 8390     shrq(result);
 8391     jmp(DONE);
 8392   }
 8393 
 8394   bind(VECTOR16_NOT_EQUAL);
 8395   if (UseAVX >= 2) {
 8396     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
 8397     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
 8398     pxor(rymm0, rymm2);
 8399   } else {
 8400     pcmpeqb(rymm2, rymm2);
 8401     pxor(rymm0, rymm1);
 8402     pcmpeqb(rymm0, rymm1);
 8403     pxor(rymm0, rymm2);
 8404   }
 8405   pmovmskb(tmp1, rymm0);
 8406   bsfq(tmp1, tmp1);
 8407   addq(result, tmp1);
 8408   shrq(result);
 8409   jmpb(DONE);
 8410 
 8411   bind(VECTOR8_NOT_EQUAL);
 8412   bind(VECTOR4_NOT_EQUAL);
 8413   bsfq(tmp1, tmp1);
 8414   shrq(tmp1, 3);
 8415   addq(result, tmp1);
 8416   bind(BYTES_NOT_EQUAL);
 8417   shrq(result);
 8418   jmpb(DONE);
 8419 
 8420   bind(SAME_TILL_END);
 8421   mov64(result, -1);
 8422 
 8423   bind(DONE);
 8424 }
 8425 
 8426 //Helper functions for square_to_len()
 8427 
 8428 /**
 8429  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
 8430  * Preserves x and z and modifies rest of the registers.
 8431  */
 8432 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8433   // Perform square and right shift by 1
 8434   // Handle odd xlen case first, then for even xlen do the following
 8435   // jlong carry = 0;
 8436   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
 8437   //     huge_128 product = x[j:j+1] * x[j:j+1];
 8438   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
 8439   //     z[i+2:i+3] = (jlong)(product >>> 1);
 8440   //     carry = (jlong)product;
 8441   // }
 8442 
 8443   xorq(tmp5, tmp5);     // carry
 8444   xorq(rdxReg, rdxReg);
 8445   xorl(tmp1, tmp1);     // index for x
 8446   xorl(tmp4, tmp4);     // index for z
 8447 
 8448   Label L_first_loop, L_first_loop_exit;
 8449 
 8450   testl(xlen, 1);
 8451   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
 8452 
 8453   // Square and right shift by 1 the odd element using 32 bit multiply
 8454   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
 8455   imulq(raxReg, raxReg);
 8456   shrq(raxReg, 1);
 8457   adcq(tmp5, 0);
 8458   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
 8459   incrementl(tmp1);
 8460   addl(tmp4, 2);
 8461 
 8462   // Square and  right shift by 1 the rest using 64 bit multiply
 8463   bind(L_first_loop);
 8464   cmpptr(tmp1, xlen);
 8465   jccb(Assembler::equal, L_first_loop_exit);
 8466 
 8467   // Square
 8468   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
 8469   rorq(raxReg, 32);    // convert big-endian to little-endian
 8470   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
 8471 
 8472   // Right shift by 1 and save carry
 8473   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
 8474   rcrq(rdxReg, 1);
 8475   rcrq(raxReg, 1);
 8476   adcq(tmp5, 0);
 8477 
 8478   // Store result in z
 8479   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
 8480   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
 8481 
 8482   // Update indices for x and z
 8483   addl(tmp1, 2);
 8484   addl(tmp4, 4);
 8485   jmp(L_first_loop);
 8486 
 8487   bind(L_first_loop_exit);
 8488 }
 8489 
 8490 
 8491 /**
 8492  * Perform the following multiply add operation using BMI2 instructions
 8493  * carry:sum = sum + op1*op2 + carry
 8494  * op2 should be in rdx
 8495  * op2 is preserved, all other registers are modified
 8496  */
 8497 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
 8498   // assert op2 is rdx
 8499   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
 8500   addq(sum, carry);
 8501   adcq(tmp2, 0);
 8502   addq(sum, op1);
 8503   adcq(tmp2, 0);
 8504   movq(carry, tmp2);
 8505 }
 8506 
 8507 /**
 8508  * Perform the following multiply add operation:
 8509  * carry:sum = sum + op1*op2 + carry
 8510  * Preserves op1, op2 and modifies rest of registers
 8511  */
 8512 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
 8513   // rdx:rax = op1 * op2
 8514   movq(raxReg, op2);
 8515   mulq(op1);
 8516 
 8517   //  rdx:rax = sum + carry + rdx:rax
 8518   addq(sum, carry);
 8519   adcq(rdxReg, 0);
 8520   addq(sum, raxReg);
 8521   adcq(rdxReg, 0);
 8522 
 8523   // carry:sum = rdx:sum
 8524   movq(carry, rdxReg);
 8525 }
 8526 
 8527 /**
 8528  * Add 64 bit long carry into z[] with carry propagation.
 8529  * Preserves z and carry register values and modifies rest of registers.
 8530  *
 8531  */
 8532 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
 8533   Label L_fourth_loop, L_fourth_loop_exit;
 8534 
 8535   movl(tmp1, 1);
 8536   subl(zlen, 2);
 8537   addq(Address(z, zlen, Address::times_4, 0), carry);
 8538 
 8539   bind(L_fourth_loop);
 8540   jccb(Assembler::carryClear, L_fourth_loop_exit);
 8541   subl(zlen, 2);
 8542   jccb(Assembler::negative, L_fourth_loop_exit);
 8543   addq(Address(z, zlen, Address::times_4, 0), tmp1);
 8544   jmp(L_fourth_loop);
 8545   bind(L_fourth_loop_exit);
 8546 }
 8547 
 8548 /**
 8549  * Shift z[] left by 1 bit.
 8550  * Preserves x, len, z and zlen registers and modifies rest of the registers.
 8551  *
 8552  */
 8553 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
 8554 
 8555   Label L_fifth_loop, L_fifth_loop_exit;
 8556 
 8557   // Fifth loop
 8558   // Perform primitiveLeftShift(z, zlen, 1)
 8559 
 8560   const Register prev_carry = tmp1;
 8561   const Register new_carry = tmp4;
 8562   const Register value = tmp2;
 8563   const Register zidx = tmp3;
 8564 
 8565   // int zidx, carry;
 8566   // long value;
 8567   // carry = 0;
 8568   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
 8569   //    (carry:value)  = (z[i] << 1) | carry ;
 8570   //    z[i] = value;
 8571   // }
 8572 
 8573   movl(zidx, zlen);
 8574   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
 8575 
 8576   bind(L_fifth_loop);
 8577   decl(zidx);  // Use decl to preserve carry flag
 8578   decl(zidx);
 8579   jccb(Assembler::negative, L_fifth_loop_exit);
 8580 
 8581   if (UseBMI2Instructions) {
 8582      movq(value, Address(z, zidx, Address::times_4, 0));
 8583      rclq(value, 1);
 8584      rorxq(value, value, 32);
 8585      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 8586   }
 8587   else {
 8588     // clear new_carry
 8589     xorl(new_carry, new_carry);
 8590 
 8591     // Shift z[i] by 1, or in previous carry and save new carry
 8592     movq(value, Address(z, zidx, Address::times_4, 0));
 8593     shlq(value, 1);
 8594     adcl(new_carry, 0);
 8595 
 8596     orq(value, prev_carry);
 8597     rorq(value, 0x20);
 8598     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
 8599 
 8600     // Set previous carry = new carry
 8601     movl(prev_carry, new_carry);
 8602   }
 8603   jmp(L_fifth_loop);
 8604 
 8605   bind(L_fifth_loop_exit);
 8606 }
 8607 
 8608 
 8609 /**
 8610  * Code for BigInteger::squareToLen() intrinsic
 8611  *
 8612  * rdi: x
 8613  * rsi: len
 8614  * r8:  z
 8615  * rcx: zlen
 8616  * r12: tmp1
 8617  * r13: tmp2
 8618  * r14: tmp3
 8619  * r15: tmp4
 8620  * rbx: tmp5
 8621  *
 8622  */
 8623 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8624 
 8625   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
 8626   push(tmp1);
 8627   push(tmp2);
 8628   push(tmp3);
 8629   push(tmp4);
 8630   push(tmp5);
 8631 
 8632   // First loop
 8633   // Store the squares, right shifted one bit (i.e., divided by 2).
 8634   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
 8635 
 8636   // Add in off-diagonal sums.
 8637   //
 8638   // Second, third (nested) and fourth loops.
 8639   // zlen +=2;
 8640   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
 8641   //    carry = 0;
 8642   //    long op2 = x[xidx:xidx+1];
 8643   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
 8644   //       k -= 2;
 8645   //       long op1 = x[j:j+1];
 8646   //       long sum = z[k:k+1];
 8647   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
 8648   //       z[k:k+1] = sum;
 8649   //    }
 8650   //    add_one_64(z, k, carry, tmp_regs);
 8651   // }
 8652 
 8653   const Register carry = tmp5;
 8654   const Register sum = tmp3;
 8655   const Register op1 = tmp4;
 8656   Register op2 = tmp2;
 8657 
 8658   push(zlen);
 8659   push(len);
 8660   addl(zlen,2);
 8661   bind(L_second_loop);
 8662   xorq(carry, carry);
 8663   subl(zlen, 4);
 8664   subl(len, 2);
 8665   push(zlen);
 8666   push(len);
 8667   cmpl(len, 0);
 8668   jccb(Assembler::lessEqual, L_second_loop_exit);
 8669 
 8670   // Multiply an array by one 64 bit long.
 8671   if (UseBMI2Instructions) {
 8672     op2 = rdxReg;
 8673     movq(op2, Address(x, len, Address::times_4,  0));
 8674     rorxq(op2, op2, 32);
 8675   }
 8676   else {
 8677     movq(op2, Address(x, len, Address::times_4,  0));
 8678     rorq(op2, 32);
 8679   }
 8680 
 8681   bind(L_third_loop);
 8682   decrementl(len);
 8683   jccb(Assembler::negative, L_third_loop_exit);
 8684   decrementl(len);
 8685   jccb(Assembler::negative, L_last_x);
 8686 
 8687   movq(op1, Address(x, len, Address::times_4,  0));
 8688   rorq(op1, 32);
 8689 
 8690   bind(L_multiply);
 8691   subl(zlen, 2);
 8692   movq(sum, Address(z, zlen, Address::times_4,  0));
 8693 
 8694   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
 8695   if (UseBMI2Instructions) {
 8696     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
 8697   }
 8698   else {
 8699     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8700   }
 8701 
 8702   movq(Address(z, zlen, Address::times_4, 0), sum);
 8703 
 8704   jmp(L_third_loop);
 8705   bind(L_third_loop_exit);
 8706 
 8707   // Fourth loop
 8708   // Add 64 bit long carry into z with carry propagation.
 8709   // Uses offsetted zlen.
 8710   add_one_64(z, zlen, carry, tmp1);
 8711 
 8712   pop(len);
 8713   pop(zlen);
 8714   jmp(L_second_loop);
 8715 
 8716   // Next infrequent code is moved outside loops.
 8717   bind(L_last_x);
 8718   movl(op1, Address(x, 0));
 8719   jmp(L_multiply);
 8720 
 8721   bind(L_second_loop_exit);
 8722   pop(len);
 8723   pop(zlen);
 8724   pop(len);
 8725   pop(zlen);
 8726 
 8727   // Fifth loop
 8728   // Shift z left 1 bit.
 8729   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
 8730 
 8731   // z[zlen-1] |= x[len-1] & 1;
 8732   movl(tmp3, Address(x, len, Address::times_4, -4));
 8733   andl(tmp3, 1);
 8734   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
 8735 
 8736   pop(tmp5);
 8737   pop(tmp4);
 8738   pop(tmp3);
 8739   pop(tmp2);
 8740   pop(tmp1);
 8741 }
 8742 
 8743 /**
 8744  * Helper function for mul_add()
 8745  * Multiply the in[] by int k and add to out[] starting at offset offs using
 8746  * 128 bit by 32 bit multiply and return the carry in tmp5.
 8747  * Only quad int aligned length of in[] is operated on in this function.
 8748  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
 8749  * This function preserves out, in and k registers.
 8750  * len and offset point to the appropriate index in "in" & "out" correspondingly
 8751  * tmp5 has the carry.
 8752  * other registers are temporary and are modified.
 8753  *
 8754  */
 8755 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
 8756   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
 8757   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8758 
 8759   Label L_first_loop, L_first_loop_exit;
 8760 
 8761   movl(tmp1, len);
 8762   shrl(tmp1, 2);
 8763 
 8764   bind(L_first_loop);
 8765   subl(tmp1, 1);
 8766   jccb(Assembler::negative, L_first_loop_exit);
 8767 
 8768   subl(len, 4);
 8769   subl(offset, 4);
 8770 
 8771   Register op2 = tmp2;
 8772   const Register sum = tmp3;
 8773   const Register op1 = tmp4;
 8774   const Register carry = tmp5;
 8775 
 8776   if (UseBMI2Instructions) {
 8777     op2 = rdxReg;
 8778   }
 8779 
 8780   movq(op1, Address(in, len, Address::times_4,  8));
 8781   rorq(op1, 32);
 8782   movq(sum, Address(out, offset, Address::times_4,  8));
 8783   rorq(sum, 32);
 8784   if (UseBMI2Instructions) {
 8785     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8786   }
 8787   else {
 8788     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8789   }
 8790   // Store back in big endian from little endian
 8791   rorq(sum, 0x20);
 8792   movq(Address(out, offset, Address::times_4,  8), sum);
 8793 
 8794   movq(op1, Address(in, len, Address::times_4,  0));
 8795   rorq(op1, 32);
 8796   movq(sum, Address(out, offset, Address::times_4,  0));
 8797   rorq(sum, 32);
 8798   if (UseBMI2Instructions) {
 8799     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8800   }
 8801   else {
 8802     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8803   }
 8804   // Store back in big endian from little endian
 8805   rorq(sum, 0x20);
 8806   movq(Address(out, offset, Address::times_4,  0), sum);
 8807 
 8808   jmp(L_first_loop);
 8809   bind(L_first_loop_exit);
 8810 }
 8811 
 8812 /**
 8813  * Code for BigInteger::mulAdd() intrinsic
 8814  *
 8815  * rdi: out
 8816  * rsi: in
 8817  * r11: offs (out.length - offset)
 8818  * rcx: len
 8819  * r8:  k
 8820  * r12: tmp1
 8821  * r13: tmp2
 8822  * r14: tmp3
 8823  * r15: tmp4
 8824  * rbx: tmp5
 8825  * Multiply the in[] by word k and add to out[], return the carry in rax
 8826  */
 8827 void MacroAssembler::mul_add(Register out, Register in, Register offs,
 8828    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
 8829    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
 8830 
 8831   Label L_carry, L_last_in, L_done;
 8832 
 8833 // carry = 0;
 8834 // for (int j=len-1; j >= 0; j--) {
 8835 //    long product = (in[j] & LONG_MASK) * kLong +
 8836 //                   (out[offs] & LONG_MASK) + carry;
 8837 //    out[offs--] = (int)product;
 8838 //    carry = product >>> 32;
 8839 // }
 8840 //
 8841   push(tmp1);
 8842   push(tmp2);
 8843   push(tmp3);
 8844   push(tmp4);
 8845   push(tmp5);
 8846 
 8847   Register op2 = tmp2;
 8848   const Register sum = tmp3;
 8849   const Register op1 = tmp4;
 8850   const Register carry =  tmp5;
 8851 
 8852   if (UseBMI2Instructions) {
 8853     op2 = rdxReg;
 8854     movl(op2, k);
 8855   }
 8856   else {
 8857     movl(op2, k);
 8858   }
 8859 
 8860   xorq(carry, carry);
 8861 
 8862   //First loop
 8863 
 8864   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
 8865   //The carry is in tmp5
 8866   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
 8867 
 8868   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
 8869   decrementl(len);
 8870   jccb(Assembler::negative, L_carry);
 8871   decrementl(len);
 8872   jccb(Assembler::negative, L_last_in);
 8873 
 8874   movq(op1, Address(in, len, Address::times_4,  0));
 8875   rorq(op1, 32);
 8876 
 8877   subl(offs, 2);
 8878   movq(sum, Address(out, offs, Address::times_4,  0));
 8879   rorq(sum, 32);
 8880 
 8881   if (UseBMI2Instructions) {
 8882     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
 8883   }
 8884   else {
 8885     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
 8886   }
 8887 
 8888   // Store back in big endian from little endian
 8889   rorq(sum, 0x20);
 8890   movq(Address(out, offs, Address::times_4,  0), sum);
 8891 
 8892   testl(len, len);
 8893   jccb(Assembler::zero, L_carry);
 8894 
 8895   //Multiply the last in[] entry, if any
 8896   bind(L_last_in);
 8897   movl(op1, Address(in, 0));
 8898   movl(sum, Address(out, offs, Address::times_4,  -4));
 8899 
 8900   movl(raxReg, k);
 8901   mull(op1); //tmp4 * eax -> edx:eax
 8902   addl(sum, carry);
 8903   adcl(rdxReg, 0);
 8904   addl(sum, raxReg);
 8905   adcl(rdxReg, 0);
 8906   movl(carry, rdxReg);
 8907 
 8908   movl(Address(out, offs, Address::times_4,  -4), sum);
 8909 
 8910   bind(L_carry);
 8911   //return tmp5/carry as carry in rax
 8912   movl(rax, carry);
 8913 
 8914   bind(L_done);
 8915   pop(tmp5);
 8916   pop(tmp4);
 8917   pop(tmp3);
 8918   pop(tmp2);
 8919   pop(tmp1);
 8920 }
 8921 #endif
 8922 
 8923 /**
 8924  * Emits code to update CRC-32 with a byte value according to constants in table
 8925  *
 8926  * @param [in,out]crc   Register containing the crc.
 8927  * @param [in]val       Register containing the byte to fold into the CRC.
 8928  * @param [in]table     Register containing the table of crc constants.
 8929  *
 8930  * uint32_t crc;
 8931  * val = crc_table[(val ^ crc) & 0xFF];
 8932  * crc = val ^ (crc >> 8);
 8933  *
 8934  */
 8935 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
 8936   xorl(val, crc);
 8937   andl(val, 0xFF);
 8938   shrl(crc, 8); // unsigned shift
 8939   xorl(crc, Address(table, val, Address::times_4, 0));
 8940 }
 8941 
 8942 /**
 8943  * Fold 128-bit data chunk
 8944  */
 8945 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
 8946   if (UseAVX > 0) {
 8947     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
 8948     vpclmulldq(xcrc, xK, xcrc); // [63:0]
 8949     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
 8950     pxor(xcrc, xtmp);
 8951   } else {
 8952     movdqa(xtmp, xcrc);
 8953     pclmulhdq(xtmp, xK);   // [123:64]
 8954     pclmulldq(xcrc, xK);   // [63:0]
 8955     pxor(xcrc, xtmp);
 8956     movdqu(xtmp, Address(buf, offset));
 8957     pxor(xcrc, xtmp);
 8958   }
 8959 }
 8960 
 8961 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
 8962   if (UseAVX > 0) {
 8963     vpclmulhdq(xtmp, xK, xcrc);
 8964     vpclmulldq(xcrc, xK, xcrc);
 8965     pxor(xcrc, xbuf);
 8966     pxor(xcrc, xtmp);
 8967   } else {
 8968     movdqa(xtmp, xcrc);
 8969     pclmulhdq(xtmp, xK);
 8970     pclmulldq(xcrc, xK);
 8971     pxor(xcrc, xbuf);
 8972     pxor(xcrc, xtmp);
 8973   }
 8974 }
 8975 
 8976 /**
 8977  * 8-bit folds to compute 32-bit CRC
 8978  *
 8979  * uint64_t xcrc;
 8980  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
 8981  */
 8982 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
 8983   movdl(tmp, xcrc);
 8984   andl(tmp, 0xFF);
 8985   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
 8986   psrldq(xcrc, 1); // unsigned shift one byte
 8987   pxor(xcrc, xtmp);
 8988 }
 8989 
 8990 /**
 8991  * uint32_t crc;
 8992  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
 8993  */
 8994 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
 8995   movl(tmp, crc);
 8996   andl(tmp, 0xFF);
 8997   shrl(crc, 8);
 8998   xorl(crc, Address(table, tmp, Address::times_4, 0));
 8999 }
 9000 
 9001 /**
 9002  * @param crc   register containing existing CRC (32-bit)
 9003  * @param buf   register pointing to input byte buffer (byte*)
 9004  * @param len   register containing number of bytes
 9005  * @param table register that will contain address of CRC table
 9006  * @param tmp   scratch register
 9007  */
 9008 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
 9009   assert_different_registers(crc, buf, len, table, tmp, rax);
 9010 
 9011   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 9012   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 9013 
 9014   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 9015   // context for the registers used, where all instructions below are using 128-bit mode
 9016   // On EVEX without VL and BW, these instructions will all be AVX.
 9017   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
 9018   notl(crc); // ~crc
 9019   cmpl(len, 16);
 9020   jcc(Assembler::less, L_tail);
 9021 
 9022   // Align buffer to 16 bytes
 9023   movl(tmp, buf);
 9024   andl(tmp, 0xF);
 9025   jccb(Assembler::zero, L_aligned);
 9026   subl(tmp,  16);
 9027   addl(len, tmp);
 9028 
 9029   align(4);
 9030   BIND(L_align_loop);
 9031   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 9032   update_byte_crc32(crc, rax, table);
 9033   increment(buf);
 9034   incrementl(tmp);
 9035   jccb(Assembler::less, L_align_loop);
 9036 
 9037   BIND(L_aligned);
 9038   movl(tmp, len); // save
 9039   shrl(len, 4);
 9040   jcc(Assembler::zero, L_tail_restore);
 9041 
 9042   // Fold crc into first bytes of vector
 9043   movdqa(xmm1, Address(buf, 0));
 9044   movdl(rax, xmm1);
 9045   xorl(crc, rax);
 9046   if (VM_Version::supports_sse4_1()) {
 9047     pinsrd(xmm1, crc, 0);
 9048   } else {
 9049     pinsrw(xmm1, crc, 0);
 9050     shrl(crc, 16);
 9051     pinsrw(xmm1, crc, 1);
 9052   }
 9053   addptr(buf, 16);
 9054   subl(len, 4); // len > 0
 9055   jcc(Assembler::less, L_fold_tail);
 9056 
 9057   movdqa(xmm2, Address(buf,  0));
 9058   movdqa(xmm3, Address(buf, 16));
 9059   movdqa(xmm4, Address(buf, 32));
 9060   addptr(buf, 48);
 9061   subl(len, 3);
 9062   jcc(Assembler::lessEqual, L_fold_512b);
 9063 
 9064   // Fold total 512 bits of polynomial on each iteration,
 9065   // 128 bits per each of 4 parallel streams.
 9066   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1);
 9067 
 9068   align32();
 9069   BIND(L_fold_512b_loop);
 9070   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 9071   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
 9072   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
 9073   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
 9074   addptr(buf, 64);
 9075   subl(len, 4);
 9076   jcc(Assembler::greater, L_fold_512b_loop);
 9077 
 9078   // Fold 512 bits to 128 bits.
 9079   BIND(L_fold_512b);
 9080   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 9081   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
 9082   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
 9083   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
 9084 
 9085   // Fold the rest of 128 bits data chunks
 9086   BIND(L_fold_tail);
 9087   addl(len, 3);
 9088   jccb(Assembler::lessEqual, L_fold_128b);
 9089   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1);
 9090 
 9091   BIND(L_fold_tail_loop);
 9092   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
 9093   addptr(buf, 16);
 9094   decrementl(len);
 9095   jccb(Assembler::greater, L_fold_tail_loop);
 9096 
 9097   // Fold 128 bits in xmm1 down into 32 bits in crc register.
 9098   BIND(L_fold_128b);
 9099   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1);
 9100   if (UseAVX > 0) {
 9101     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
 9102     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
 9103     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
 9104   } else {
 9105     movdqa(xmm2, xmm0);
 9106     pclmulqdq(xmm2, xmm1, 0x1);
 9107     movdqa(xmm3, xmm0);
 9108     pand(xmm3, xmm2);
 9109     pclmulqdq(xmm0, xmm3, 0x1);
 9110   }
 9111   psrldq(xmm1, 8);
 9112   psrldq(xmm2, 4);
 9113   pxor(xmm0, xmm1);
 9114   pxor(xmm0, xmm2);
 9115 
 9116   // 8 8-bit folds to compute 32-bit CRC.
 9117   for (int j = 0; j < 4; j++) {
 9118     fold_8bit_crc32(xmm0, table, xmm1, rax);
 9119   }
 9120   movdl(crc, xmm0); // mov 32 bits to general register
 9121   for (int j = 0; j < 4; j++) {
 9122     fold_8bit_crc32(crc, table, rax);
 9123   }
 9124 
 9125   BIND(L_tail_restore);
 9126   movl(len, tmp); // restore
 9127   BIND(L_tail);
 9128   andl(len, 0xf);
 9129   jccb(Assembler::zero, L_exit);
 9130 
 9131   // Fold the rest of bytes
 9132   align(4);
 9133   BIND(L_tail_loop);
 9134   movsbl(rax, Address(buf, 0)); // load byte with sign extension
 9135   update_byte_crc32(crc, rax, table);
 9136   increment(buf);
 9137   decrementl(len);
 9138   jccb(Assembler::greater, L_tail_loop);
 9139 
 9140   BIND(L_exit);
 9141   notl(crc); // ~c
 9142 }
 9143 
 9144 #ifdef _LP64
 9145 // Helper function for AVX 512 CRC32
 9146 // Fold 512-bit data chunks
 9147 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf,
 9148                                              Register pos, int offset) {
 9149   evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit);
 9150   evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64]
 9151   evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0]
 9152   evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */);
 9153   evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */);
 9154 }
 9155 
 9156 // Helper function for AVX 512 CRC32
 9157 // Compute CRC32 for < 256B buffers
 9158 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos,
 9159                                               Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
 9160                                               Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) {
 9161 
 9162   Label L_less_than_32, L_exact_16_left, L_less_than_16_left;
 9163   Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left;
 9164   Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2;
 9165 
 9166   // check if there is enough buffer to be able to fold 16B at a time
 9167   cmpl(len, 32);
 9168   jcc(Assembler::less, L_less_than_32);
 9169 
 9170   // if there is, load the constants
 9171   movdqu(xmm10, Address(table, 1 * 16));    //rk1 and rk2 in xmm10
 9172   movdl(xmm0, crc);                        // get the initial crc value
 9173   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 9174   pxor(xmm7, xmm0);
 9175 
 9176   // update the buffer pointer
 9177   addl(pos, 16);
 9178   //update the counter.subtract 32 instead of 16 to save one instruction from the loop
 9179   subl(len, 32);
 9180   jmp(L_16B_reduction_loop);
 9181 
 9182   bind(L_less_than_32);
 9183   //mov initial crc to the return value. this is necessary for zero - length buffers.
 9184   movl(rax, crc);
 9185   testl(len, len);
 9186   jcc(Assembler::equal, L_cleanup);
 9187 
 9188   movdl(xmm0, crc);                        //get the initial crc value
 9189 
 9190   cmpl(len, 16);
 9191   jcc(Assembler::equal, L_exact_16_left);
 9192   jcc(Assembler::less, L_less_than_16_left);
 9193 
 9194   movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext
 9195   pxor(xmm7, xmm0);                       //xor the initial crc value
 9196   addl(pos, 16);
 9197   subl(len, 16);
 9198   movdqu(xmm10, Address(table, 1 * 16));    // rk1 and rk2 in xmm10
 9199   jmp(L_get_last_two_xmms);
 9200 
 9201   bind(L_less_than_16_left);
 9202   //use stack space to load data less than 16 bytes, zero - out the 16B in memory first.
 9203   pxor(xmm1, xmm1);
 9204   movptr(tmp1, rsp);
 9205   movdqu(Address(tmp1, 0 * 16), xmm1);
 9206 
 9207   cmpl(len, 4);
 9208   jcc(Assembler::less, L_only_less_than_4);
 9209 
 9210   //backup the counter value
 9211   movl(tmp2, len);
 9212   cmpl(len, 8);
 9213   jcc(Assembler::less, L_less_than_8_left);
 9214 
 9215   //load 8 Bytes
 9216   movq(rax, Address(buf, pos, Address::times_1, 0 * 16));
 9217   movq(Address(tmp1, 0 * 16), rax);
 9218   addptr(tmp1, 8);
 9219   subl(len, 8);
 9220   addl(pos, 8);
 9221 
 9222   bind(L_less_than_8_left);
 9223   cmpl(len, 4);
 9224   jcc(Assembler::less, L_less_than_4_left);
 9225 
 9226   //load 4 Bytes
 9227   movl(rax, Address(buf, pos, Address::times_1, 0));
 9228   movl(Address(tmp1, 0 * 16), rax);
 9229   addptr(tmp1, 4);
 9230   subl(len, 4);
 9231   addl(pos, 4);
 9232 
 9233   bind(L_less_than_4_left);
 9234   cmpl(len, 2);
 9235   jcc(Assembler::less, L_less_than_2_left);
 9236 
 9237   // load 2 Bytes
 9238   movw(rax, Address(buf, pos, Address::times_1, 0));
 9239   movl(Address(tmp1, 0 * 16), rax);
 9240   addptr(tmp1, 2);
 9241   subl(len, 2);
 9242   addl(pos, 2);
 9243 
 9244   bind(L_less_than_2_left);
 9245   cmpl(len, 1);
 9246   jcc(Assembler::less, L_zero_left);
 9247 
 9248   // load 1 Byte
 9249   movb(rax, Address(buf, pos, Address::times_1, 0));
 9250   movb(Address(tmp1, 0 * 16), rax);
 9251 
 9252   bind(L_zero_left);
 9253   movdqu(xmm7, Address(rsp, 0));
 9254   pxor(xmm7, xmm0);                       //xor the initial crc value
 9255 
 9256   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 9257   movdqu(xmm0, Address(rax, tmp2));
 9258   pshufb(xmm7, xmm0);
 9259   jmp(L_128_done);
 9260 
 9261   bind(L_exact_16_left);
 9262   movdqu(xmm7, Address(buf, pos, Address::times_1, 0));
 9263   pxor(xmm7, xmm0);                       //xor the initial crc value
 9264   jmp(L_128_done);
 9265 
 9266   bind(L_only_less_than_4);
 9267   cmpl(len, 3);
 9268   jcc(Assembler::less, L_only_less_than_3);
 9269 
 9270   // load 3 Bytes
 9271   movb(rax, Address(buf, pos, Address::times_1, 0));
 9272   movb(Address(tmp1, 0), rax);
 9273 
 9274   movb(rax, Address(buf, pos, Address::times_1, 1));
 9275   movb(Address(tmp1, 1), rax);
 9276 
 9277   movb(rax, Address(buf, pos, Address::times_1, 2));
 9278   movb(Address(tmp1, 2), rax);
 9279 
 9280   movdqu(xmm7, Address(rsp, 0));
 9281   pxor(xmm7, xmm0);                     //xor the initial crc value
 9282 
 9283   pslldq(xmm7, 0x5);
 9284   jmp(L_barrett);
 9285   bind(L_only_less_than_3);
 9286   cmpl(len, 2);
 9287   jcc(Assembler::less, L_only_less_than_2);
 9288 
 9289   // load 2 Bytes
 9290   movb(rax, Address(buf, pos, Address::times_1, 0));
 9291   movb(Address(tmp1, 0), rax);
 9292 
 9293   movb(rax, Address(buf, pos, Address::times_1, 1));
 9294   movb(Address(tmp1, 1), rax);
 9295 
 9296   movdqu(xmm7, Address(rsp, 0));
 9297   pxor(xmm7, xmm0);                     //xor the initial crc value
 9298 
 9299   pslldq(xmm7, 0x6);
 9300   jmp(L_barrett);
 9301 
 9302   bind(L_only_less_than_2);
 9303   //load 1 Byte
 9304   movb(rax, Address(buf, pos, Address::times_1, 0));
 9305   movb(Address(tmp1, 0), rax);
 9306 
 9307   movdqu(xmm7, Address(rsp, 0));
 9308   pxor(xmm7, xmm0);                     //xor the initial crc value
 9309 
 9310   pslldq(xmm7, 0x7);
 9311 }
 9312 
 9313 /**
 9314 * Compute CRC32 using AVX512 instructions
 9315 * param crc   register containing existing CRC (32-bit)
 9316 * param buf   register pointing to input byte buffer (byte*)
 9317 * param len   register containing number of bytes
 9318 * param table address of crc or crc32c table
 9319 * param tmp1  scratch register
 9320 * param tmp2  scratch register
 9321 * return rax  result register
 9322 *
 9323 * This routine is identical for crc32c with the exception of the precomputed constant
 9324 * table which will be passed as the table argument.  The calculation steps are
 9325 * the same for both variants.
 9326 */
 9327 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) {
 9328   assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12);
 9329 
 9330   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
 9331   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 9332   Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop;
 9333   Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop;
 9334   Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup;
 9335 
 9336   const Register pos = r12;
 9337   push(r12);
 9338   subptr(rsp, 16 * 2 + 8);
 9339 
 9340   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
 9341   // context for the registers used, where all instructions below are using 128-bit mode
 9342   // On EVEX without VL and BW, these instructions will all be AVX.
 9343   movl(pos, 0);
 9344 
 9345   // check if smaller than 256B
 9346   cmpl(len, 256);
 9347   jcc(Assembler::less, L_less_than_256);
 9348 
 9349   // load the initial crc value
 9350   movdl(xmm10, crc);
 9351 
 9352   // receive the initial 64B data, xor the initial crc value
 9353   evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit);
 9354   evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit);
 9355   evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit);
 9356   evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4
 9357 
 9358   subl(len, 256);
 9359   cmpl(len, 256);
 9360   jcc(Assembler::less, L_fold_128_B_loop);
 9361 
 9362   evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit);
 9363   evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit);
 9364   evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2
 9365   subl(len, 256);
 9366 
 9367   bind(L_fold_256_B_loop);
 9368   addl(pos, 256);
 9369   fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64);
 9370   fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64);
 9371   fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64);
 9372   fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64);
 9373 
 9374   subl(len, 256);
 9375   jcc(Assembler::greaterEqual, L_fold_256_B_loop);
 9376 
 9377   // Fold 256 into 128
 9378   addl(pos, 256);
 9379   evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit);
 9380   evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit);
 9381   vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC
 9382 
 9383   evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit);
 9384   evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit);
 9385   vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC
 9386 
 9387   evmovdquq(xmm0, xmm7, Assembler::AVX_512bit);
 9388   evmovdquq(xmm4, xmm8, Assembler::AVX_512bit);
 9389 
 9390   addl(len, 128);
 9391   jmp(L_fold_128_B_register);
 9392 
 9393   // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop
 9394   // loop will fold 128B at a time until we have 128 + y Bytes of buffer
 9395 
 9396   // fold 128B at a time.This section of the code folds 8 xmm registers in parallel
 9397   bind(L_fold_128_B_loop);
 9398   addl(pos, 128);
 9399   fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64);
 9400   fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64);
 9401 
 9402   subl(len, 128);
 9403   jcc(Assembler::greaterEqual, L_fold_128_B_loop);
 9404 
 9405   addl(pos, 128);
 9406 
 9407   // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
 9408   // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
 9409   bind(L_fold_128_B_register);
 9410   evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16
 9411   evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0
 9412   evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit);
 9413   evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit);
 9414   // save last that has no multiplicand
 9415   vextracti64x2(xmm7, xmm4, 3);
 9416 
 9417   evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit);
 9418   evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit);
 9419   // Needed later in reduction loop
 9420   movdqu(xmm10, Address(table, 1 * 16));
 9421   vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC
 9422   vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC
 9423 
 9424   // Swap 1,0,3,2 - 01 00 11 10
 9425   evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit);
 9426   evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit);
 9427   vextracti128(xmm5, xmm8, 1);
 9428   evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit);
 9429 
 9430   // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop
 9431   // instead of a cmp instruction, we use the negative flag with the jl instruction
 9432   addl(len, 128 - 16);
 9433   jcc(Assembler::less, L_final_reduction_for_128);
 9434 
 9435   bind(L_16B_reduction_loop);
 9436   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 9437   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 9438   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 9439   movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16));
 9440   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 9441   addl(pos, 16);
 9442   subl(len, 16);
 9443   jcc(Assembler::greaterEqual, L_16B_reduction_loop);
 9444 
 9445   bind(L_final_reduction_for_128);
 9446   addl(len, 16);
 9447   jcc(Assembler::equal, L_128_done);
 9448 
 9449   bind(L_get_last_two_xmms);
 9450   movdqu(xmm2, xmm7);
 9451   addl(pos, len);
 9452   movdqu(xmm1, Address(buf, pos, Address::times_1, -16));
 9453   subl(pos, len);
 9454 
 9455   // get rid of the extra data that was loaded before
 9456   // load the shift constant
 9457   lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr()));
 9458   movdqu(xmm0, Address(rax, len));
 9459   addl(rax, len);
 9460 
 9461   vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 9462   //Change mask to 512
 9463   vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2);
 9464   vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit);
 9465 
 9466   blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit);
 9467   vpclmulqdq(xmm8, xmm7, xmm10, 0x01);
 9468   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 9469   vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit);
 9470   vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit);
 9471 
 9472   bind(L_128_done);
 9473   // compute crc of a 128-bit value
 9474   movdqu(xmm10, Address(table, 3 * 16));
 9475   movdqu(xmm0, xmm7);
 9476 
 9477   // 64b fold
 9478   vpclmulqdq(xmm7, xmm7, xmm10, 0x0);
 9479   vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit);
 9480   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 9481 
 9482   // 32b fold
 9483   movdqu(xmm0, xmm7);
 9484   vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit);
 9485   vpclmulqdq(xmm7, xmm7, xmm10, 0x10);
 9486   vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit);
 9487   jmp(L_barrett);
 9488 
 9489   bind(L_less_than_256);
 9490   kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup);
 9491 
 9492   //barrett reduction
 9493   bind(L_barrett);
 9494   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2);
 9495   movdqu(xmm1, xmm7);
 9496   movdqu(xmm2, xmm7);
 9497   movdqu(xmm10, Address(table, 4 * 16));
 9498 
 9499   pclmulqdq(xmm7, xmm10, 0x0);
 9500   pxor(xmm7, xmm2);
 9501   vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2);
 9502   movdqu(xmm2, xmm7);
 9503   pclmulqdq(xmm7, xmm10, 0x10);
 9504   pxor(xmm7, xmm2);
 9505   pxor(xmm7, xmm1);
 9506   pextrd(crc, xmm7, 2);
 9507 
 9508   bind(L_cleanup);
 9509   addptr(rsp, 16 * 2 + 8);
 9510   pop(r12);
 9511 }
 9512 
 9513 // S. Gueron / Information Processing Letters 112 (2012) 184
 9514 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
 9515 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
 9516 // Output: the 64-bit carry-less product of B * CONST
 9517 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
 9518                                      Register tmp1, Register tmp2, Register tmp3) {
 9519   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 9520   if (n > 0) {
 9521     addq(tmp3, n * 256 * 8);
 9522   }
 9523   //    Q1 = TABLEExt[n][B & 0xFF];
 9524   movl(tmp1, in);
 9525   andl(tmp1, 0x000000FF);
 9526   shll(tmp1, 3);
 9527   addq(tmp1, tmp3);
 9528   movq(tmp1, Address(tmp1, 0));
 9529 
 9530   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 9531   movl(tmp2, in);
 9532   shrl(tmp2, 8);
 9533   andl(tmp2, 0x000000FF);
 9534   shll(tmp2, 3);
 9535   addq(tmp2, tmp3);
 9536   movq(tmp2, Address(tmp2, 0));
 9537 
 9538   shlq(tmp2, 8);
 9539   xorq(tmp1, tmp2);
 9540 
 9541   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 9542   movl(tmp2, in);
 9543   shrl(tmp2, 16);
 9544   andl(tmp2, 0x000000FF);
 9545   shll(tmp2, 3);
 9546   addq(tmp2, tmp3);
 9547   movq(tmp2, Address(tmp2, 0));
 9548 
 9549   shlq(tmp2, 16);
 9550   xorq(tmp1, tmp2);
 9551 
 9552   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 9553   shrl(in, 24);
 9554   andl(in, 0x000000FF);
 9555   shll(in, 3);
 9556   addq(in, tmp3);
 9557   movq(in, Address(in, 0));
 9558 
 9559   shlq(in, 24);
 9560   xorq(in, tmp1);
 9561   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 9562 }
 9563 
 9564 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 9565                                       Register in_out,
 9566                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 9567                                       XMMRegister w_xtmp2,
 9568                                       Register tmp1,
 9569                                       Register n_tmp2, Register n_tmp3) {
 9570   if (is_pclmulqdq_supported) {
 9571     movdl(w_xtmp1, in_out); // modified blindly
 9572 
 9573     movl(tmp1, const_or_pre_comp_const_index);
 9574     movdl(w_xtmp2, tmp1);
 9575     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 9576 
 9577     movdq(in_out, w_xtmp1);
 9578   } else {
 9579     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
 9580   }
 9581 }
 9582 
 9583 // Recombination Alternative 2: No bit-reflections
 9584 // T1 = (CRC_A * U1) << 1
 9585 // T2 = (CRC_B * U2) << 1
 9586 // C1 = T1 >> 32
 9587 // C2 = T2 >> 32
 9588 // T1 = T1 & 0xFFFFFFFF
 9589 // T2 = T2 & 0xFFFFFFFF
 9590 // T1 = CRC32(0, T1)
 9591 // T2 = CRC32(0, T2)
 9592 // C1 = C1 ^ T1
 9593 // C2 = C2 ^ T2
 9594 // CRC = C1 ^ C2 ^ CRC_C
 9595 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 9596                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9597                                      Register tmp1, Register tmp2,
 9598                                      Register n_tmp3) {
 9599   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9600   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9601   shlq(in_out, 1);
 9602   movl(tmp1, in_out);
 9603   shrq(in_out, 32);
 9604   xorl(tmp2, tmp2);
 9605   crc32(tmp2, tmp1, 4);
 9606   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
 9607   shlq(in1, 1);
 9608   movl(tmp1, in1);
 9609   shrq(in1, 32);
 9610   xorl(tmp2, tmp2);
 9611   crc32(tmp2, tmp1, 4);
 9612   xorl(in1, tmp2);
 9613   xorl(in_out, in1);
 9614   xorl(in_out, in2);
 9615 }
 9616 
 9617 // Set N to predefined value
 9618 // Subtract from a length of a buffer
 9619 // execute in a loop:
 9620 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
 9621 // for i = 1 to N do
 9622 //  CRC_A = CRC32(CRC_A, A[i])
 9623 //  CRC_B = CRC32(CRC_B, B[i])
 9624 //  CRC_C = CRC32(CRC_C, C[i])
 9625 // end for
 9626 // Recombine
 9627 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 9628                                        Register in_out1, Register in_out2, Register in_out3,
 9629                                        Register tmp1, Register tmp2, Register tmp3,
 9630                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9631                                        Register tmp4, Register tmp5,
 9632                                        Register n_tmp6) {
 9633   Label L_processPartitions;
 9634   Label L_processPartition;
 9635   Label L_exit;
 9636 
 9637   bind(L_processPartitions);
 9638   cmpl(in_out1, 3 * size);
 9639   jcc(Assembler::less, L_exit);
 9640     xorl(tmp1, tmp1);
 9641     xorl(tmp2, tmp2);
 9642     movq(tmp3, in_out2);
 9643     addq(tmp3, size);
 9644 
 9645     bind(L_processPartition);
 9646       crc32(in_out3, Address(in_out2, 0), 8);
 9647       crc32(tmp1, Address(in_out2, size), 8);
 9648       crc32(tmp2, Address(in_out2, size * 2), 8);
 9649       addq(in_out2, 8);
 9650       cmpq(in_out2, tmp3);
 9651       jcc(Assembler::less, L_processPartition);
 9652     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 9653             w_xtmp1, w_xtmp2, w_xtmp3,
 9654             tmp4, tmp5,
 9655             n_tmp6);
 9656     addq(in_out2, 2 * size);
 9657     subl(in_out1, 3 * size);
 9658     jmp(L_processPartitions);
 9659 
 9660   bind(L_exit);
 9661 }
 9662 #else
 9663 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
 9664                                      Register tmp1, Register tmp2, Register tmp3,
 9665                                      XMMRegister xtmp1, XMMRegister xtmp2) {
 9666   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
 9667   if (n > 0) {
 9668     addl(tmp3, n * 256 * 8);
 9669   }
 9670   //    Q1 = TABLEExt[n][B & 0xFF];
 9671   movl(tmp1, in_out);
 9672   andl(tmp1, 0x000000FF);
 9673   shll(tmp1, 3);
 9674   addl(tmp1, tmp3);
 9675   movq(xtmp1, Address(tmp1, 0));
 9676 
 9677   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
 9678   movl(tmp2, in_out);
 9679   shrl(tmp2, 8);
 9680   andl(tmp2, 0x000000FF);
 9681   shll(tmp2, 3);
 9682   addl(tmp2, tmp3);
 9683   movq(xtmp2, Address(tmp2, 0));
 9684 
 9685   psllq(xtmp2, 8);
 9686   pxor(xtmp1, xtmp2);
 9687 
 9688   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
 9689   movl(tmp2, in_out);
 9690   shrl(tmp2, 16);
 9691   andl(tmp2, 0x000000FF);
 9692   shll(tmp2, 3);
 9693   addl(tmp2, tmp3);
 9694   movq(xtmp2, Address(tmp2, 0));
 9695 
 9696   psllq(xtmp2, 16);
 9697   pxor(xtmp1, xtmp2);
 9698 
 9699   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
 9700   shrl(in_out, 24);
 9701   andl(in_out, 0x000000FF);
 9702   shll(in_out, 3);
 9703   addl(in_out, tmp3);
 9704   movq(xtmp2, Address(in_out, 0));
 9705 
 9706   psllq(xtmp2, 24);
 9707   pxor(xtmp1, xtmp2); // Result in CXMM
 9708   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
 9709 }
 9710 
 9711 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
 9712                                       Register in_out,
 9713                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
 9714                                       XMMRegister w_xtmp2,
 9715                                       Register tmp1,
 9716                                       Register n_tmp2, Register n_tmp3) {
 9717   if (is_pclmulqdq_supported) {
 9718     movdl(w_xtmp1, in_out);
 9719 
 9720     movl(tmp1, const_or_pre_comp_const_index);
 9721     movdl(w_xtmp2, tmp1);
 9722     pclmulqdq(w_xtmp1, w_xtmp2, 0);
 9723     // Keep result in XMM since GPR is 32 bit in length
 9724   } else {
 9725     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
 9726   }
 9727 }
 9728 
 9729 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
 9730                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9731                                      Register tmp1, Register tmp2,
 9732                                      Register n_tmp3) {
 9733   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9734   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
 9735 
 9736   psllq(w_xtmp1, 1);
 9737   movdl(tmp1, w_xtmp1);
 9738   psrlq(w_xtmp1, 32);
 9739   movdl(in_out, w_xtmp1);
 9740 
 9741   xorl(tmp2, tmp2);
 9742   crc32(tmp2, tmp1, 4);
 9743   xorl(in_out, tmp2);
 9744 
 9745   psllq(w_xtmp2, 1);
 9746   movdl(tmp1, w_xtmp2);
 9747   psrlq(w_xtmp2, 32);
 9748   movdl(in1, w_xtmp2);
 9749 
 9750   xorl(tmp2, tmp2);
 9751   crc32(tmp2, tmp1, 4);
 9752   xorl(in1, tmp2);
 9753   xorl(in_out, in1);
 9754   xorl(in_out, in2);
 9755 }
 9756 
 9757 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
 9758                                        Register in_out1, Register in_out2, Register in_out3,
 9759                                        Register tmp1, Register tmp2, Register tmp3,
 9760                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9761                                        Register tmp4, Register tmp5,
 9762                                        Register n_tmp6) {
 9763   Label L_processPartitions;
 9764   Label L_processPartition;
 9765   Label L_exit;
 9766 
 9767   bind(L_processPartitions);
 9768   cmpl(in_out1, 3 * size);
 9769   jcc(Assembler::less, L_exit);
 9770     xorl(tmp1, tmp1);
 9771     xorl(tmp2, tmp2);
 9772     movl(tmp3, in_out2);
 9773     addl(tmp3, size);
 9774 
 9775     bind(L_processPartition);
 9776       crc32(in_out3, Address(in_out2, 0), 4);
 9777       crc32(tmp1, Address(in_out2, size), 4);
 9778       crc32(tmp2, Address(in_out2, size*2), 4);
 9779       crc32(in_out3, Address(in_out2, 0+4), 4);
 9780       crc32(tmp1, Address(in_out2, size+4), 4);
 9781       crc32(tmp2, Address(in_out2, size*2+4), 4);
 9782       addl(in_out2, 8);
 9783       cmpl(in_out2, tmp3);
 9784       jcc(Assembler::less, L_processPartition);
 9785 
 9786         push(tmp3);
 9787         push(in_out1);
 9788         push(in_out2);
 9789         tmp4 = tmp3;
 9790         tmp5 = in_out1;
 9791         n_tmp6 = in_out2;
 9792 
 9793       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
 9794             w_xtmp1, w_xtmp2, w_xtmp3,
 9795             tmp4, tmp5,
 9796             n_tmp6);
 9797 
 9798         pop(in_out2);
 9799         pop(in_out1);
 9800         pop(tmp3);
 9801 
 9802     addl(in_out2, 2 * size);
 9803     subl(in_out1, 3 * size);
 9804     jmp(L_processPartitions);
 9805 
 9806   bind(L_exit);
 9807 }
 9808 #endif //LP64
 9809 
 9810 #ifdef _LP64
 9811 // Algorithm 2: Pipelined usage of the CRC32 instruction.
 9812 // Input: A buffer I of L bytes.
 9813 // Output: the CRC32C value of the buffer.
 9814 // Notations:
 9815 // Write L = 24N + r, with N = floor (L/24).
 9816 // r = L mod 24 (0 <= r < 24).
 9817 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
 9818 // N quadwords, and R consists of r bytes.
 9819 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
 9820 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
 9821 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
 9822 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
 9823 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 9824                                           Register tmp1, Register tmp2, Register tmp3,
 9825                                           Register tmp4, Register tmp5, Register tmp6,
 9826                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9827                                           bool is_pclmulqdq_supported) {
 9828   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 9829   Label L_wordByWord;
 9830   Label L_byteByByteProlog;
 9831   Label L_byteByByte;
 9832   Label L_exit;
 9833 
 9834   if (is_pclmulqdq_supported ) {
 9835     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 9836     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
 9837 
 9838     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 9839     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 9840 
 9841     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 9842     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 9843     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
 9844   } else {
 9845     const_or_pre_comp_const_index[0] = 1;
 9846     const_or_pre_comp_const_index[1] = 0;
 9847 
 9848     const_or_pre_comp_const_index[2] = 3;
 9849     const_or_pre_comp_const_index[3] = 2;
 9850 
 9851     const_or_pre_comp_const_index[4] = 5;
 9852     const_or_pre_comp_const_index[5] = 4;
 9853    }
 9854   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 9855                     in2, in1, in_out,
 9856                     tmp1, tmp2, tmp3,
 9857                     w_xtmp1, w_xtmp2, w_xtmp3,
 9858                     tmp4, tmp5,
 9859                     tmp6);
 9860   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 9861                     in2, in1, in_out,
 9862                     tmp1, tmp2, tmp3,
 9863                     w_xtmp1, w_xtmp2, w_xtmp3,
 9864                     tmp4, tmp5,
 9865                     tmp6);
 9866   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 9867                     in2, in1, in_out,
 9868                     tmp1, tmp2, tmp3,
 9869                     w_xtmp1, w_xtmp2, w_xtmp3,
 9870                     tmp4, tmp5,
 9871                     tmp6);
 9872   movl(tmp1, in2);
 9873   andl(tmp1, 0x00000007);
 9874   negl(tmp1);
 9875   addl(tmp1, in2);
 9876   addq(tmp1, in1);
 9877 
 9878   cmpq(in1, tmp1);
 9879   jccb(Assembler::greaterEqual, L_byteByByteProlog);
 9880   align(16);
 9881   BIND(L_wordByWord);
 9882     crc32(in_out, Address(in1, 0), 8);
 9883     addq(in1, 8);
 9884     cmpq(in1, tmp1);
 9885     jcc(Assembler::less, L_wordByWord);
 9886 
 9887   BIND(L_byteByByteProlog);
 9888   andl(in2, 0x00000007);
 9889   movl(tmp2, 1);
 9890 
 9891   cmpl(tmp2, in2);
 9892   jccb(Assembler::greater, L_exit);
 9893   BIND(L_byteByByte);
 9894     crc32(in_out, Address(in1, 0), 1);
 9895     incq(in1);
 9896     incl(tmp2);
 9897     cmpl(tmp2, in2);
 9898     jcc(Assembler::lessEqual, L_byteByByte);
 9899 
 9900   BIND(L_exit);
 9901 }
 9902 #else
 9903 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
 9904                                           Register tmp1, Register  tmp2, Register tmp3,
 9905                                           Register tmp4, Register  tmp5, Register tmp6,
 9906                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
 9907                                           bool is_pclmulqdq_supported) {
 9908   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
 9909   Label L_wordByWord;
 9910   Label L_byteByByteProlog;
 9911   Label L_byteByByte;
 9912   Label L_exit;
 9913 
 9914   if (is_pclmulqdq_supported) {
 9915     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
 9916     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
 9917 
 9918     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
 9919     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
 9920 
 9921     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
 9922     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
 9923   } else {
 9924     const_or_pre_comp_const_index[0] = 1;
 9925     const_or_pre_comp_const_index[1] = 0;
 9926 
 9927     const_or_pre_comp_const_index[2] = 3;
 9928     const_or_pre_comp_const_index[3] = 2;
 9929 
 9930     const_or_pre_comp_const_index[4] = 5;
 9931     const_or_pre_comp_const_index[5] = 4;
 9932   }
 9933   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
 9934                     in2, in1, in_out,
 9935                     tmp1, tmp2, tmp3,
 9936                     w_xtmp1, w_xtmp2, w_xtmp3,
 9937                     tmp4, tmp5,
 9938                     tmp6);
 9939   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
 9940                     in2, in1, in_out,
 9941                     tmp1, tmp2, tmp3,
 9942                     w_xtmp1, w_xtmp2, w_xtmp3,
 9943                     tmp4, tmp5,
 9944                     tmp6);
 9945   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
 9946                     in2, in1, in_out,
 9947                     tmp1, tmp2, tmp3,
 9948                     w_xtmp1, w_xtmp2, w_xtmp3,
 9949                     tmp4, tmp5,
 9950                     tmp6);
 9951   movl(tmp1, in2);
 9952   andl(tmp1, 0x00000007);
 9953   negl(tmp1);
 9954   addl(tmp1, in2);
 9955   addl(tmp1, in1);
 9956 
 9957   BIND(L_wordByWord);
 9958   cmpl(in1, tmp1);
 9959   jcc(Assembler::greaterEqual, L_byteByByteProlog);
 9960     crc32(in_out, Address(in1,0), 4);
 9961     addl(in1, 4);
 9962     jmp(L_wordByWord);
 9963 
 9964   BIND(L_byteByByteProlog);
 9965   andl(in2, 0x00000007);
 9966   movl(tmp2, 1);
 9967 
 9968   BIND(L_byteByByte);
 9969   cmpl(tmp2, in2);
 9970   jccb(Assembler::greater, L_exit);
 9971     movb(tmp1, Address(in1, 0));
 9972     crc32(in_out, tmp1, 1);
 9973     incl(in1);
 9974     incl(tmp2);
 9975     jmp(L_byteByByte);
 9976 
 9977   BIND(L_exit);
 9978 }
 9979 #endif // LP64
 9980 #undef BIND
 9981 #undef BLOCK_COMMENT
 9982 
 9983 // Compress char[] array to byte[].
 9984 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
 9985 // Return the array length if every element in array can be encoded,
 9986 // otherwise, the index of first non-latin1 (> 0xff) character.
 9987 //   @IntrinsicCandidate
 9988 //   public static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
 9989 //     for (int i = 0; i < len; i++) {
 9990 //       char c = src[srcOff];
 9991 //       if (c > 0xff) {
 9992 //           return i;  // return index of non-latin1 char
 9993 //       }
 9994 //       dst[dstOff] = (byte)c;
 9995 //       srcOff++;
 9996 //       dstOff++;
 9997 //     }
 9998 //     return len;
 9999 //   }
10000 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10001   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10002   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10003   Register tmp5, Register result, KRegister mask1, KRegister mask2) {
10004   Label copy_chars_loop, done, reset_sp, copy_tail;
10005 
10006   // rsi: src
10007   // rdi: dst
10008   // rdx: len
10009   // rcx: tmp5
10010   // rax: result
10011 
10012   // rsi holds start addr of source char[] to be compressed
10013   // rdi holds start addr of destination byte[]
10014   // rdx holds length
10015 
10016   assert(len != result, "");
10017 
10018   // save length for return
10019   movl(result, len);
10020 
10021   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
10022     VM_Version::supports_avx512vlbw() &&
10023     VM_Version::supports_bmi2()) {
10024 
10025     Label copy_32_loop, copy_loop_tail, below_threshold, reset_for_copy_tail;
10026 
10027     // alignment
10028     Label post_alignment;
10029 
10030     // if length of the string is less than 32, handle it the old fashioned way
10031     testl(len, -32);
10032     jcc(Assembler::zero, below_threshold);
10033 
10034     // First check whether a character is compressible ( <= 0xFF).
10035     // Create mask to test for Unicode chars inside zmm vector
10036     movl(tmp5, 0x00FF);
10037     evpbroadcastw(tmp2Reg, tmp5, Assembler::AVX_512bit);
10038 
10039     testl(len, -64);
10040     jccb(Assembler::zero, post_alignment);
10041 
10042     movl(tmp5, dst);
10043     andl(tmp5, (32 - 1));
10044     negl(tmp5);
10045     andl(tmp5, (32 - 1));
10046 
10047     // bail out when there is nothing to be done
10048     testl(tmp5, 0xFFFFFFFF);
10049     jccb(Assembler::zero, post_alignment);
10050 
10051     // ~(~0 << len), where len is the # of remaining elements to process
10052     movl(len, 0xFFFFFFFF);
10053     shlxl(len, len, tmp5);
10054     notl(len);
10055     kmovdl(mask2, len);
10056     movl(len, result);
10057 
10058     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
10059     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
10060     ktestd(mask1, mask2);
10061     jcc(Assembler::carryClear, copy_tail);
10062 
10063     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
10064 
10065     addptr(src, tmp5);
10066     addptr(src, tmp5);
10067     addptr(dst, tmp5);
10068     subl(len, tmp5);
10069 
10070     bind(post_alignment);
10071     // end of alignment
10072 
10073     movl(tmp5, len);
10074     andl(tmp5, (32 - 1));    // tail count (in chars)
10075     andl(len, ~(32 - 1));    // vector count (in chars)
10076     jccb(Assembler::zero, copy_loop_tail);
10077 
10078     lea(src, Address(src, len, Address::times_2));
10079     lea(dst, Address(dst, len, Address::times_1));
10080     negptr(len);
10081 
10082     bind(copy_32_loop);
10083     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10084     evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10085     kortestdl(mask1, mask1);
10086     jccb(Assembler::carryClear, reset_for_copy_tail);
10087 
10088     // All elements in current processed chunk are valid candidates for
10089     // compression. Write a truncated byte elements to the memory.
10090     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10091     addptr(len, 32);
10092     jccb(Assembler::notZero, copy_32_loop);
10093 
10094     bind(copy_loop_tail);
10095     // bail out when there is nothing to be done
10096     testl(tmp5, 0xFFFFFFFF);
10097     jcc(Assembler::zero, done);
10098 
10099     movl(len, tmp5);
10100 
10101     // ~(~0 << len), where len is the # of remaining elements to process
10102     movl(tmp5, 0xFFFFFFFF);
10103     shlxl(tmp5, tmp5, len);
10104     notl(tmp5);
10105 
10106     kmovdl(mask2, tmp5);
10107 
10108     evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit);
10109     evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit);
10110     ktestd(mask1, mask2);
10111     jcc(Assembler::carryClear, copy_tail);
10112 
10113     evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit);
10114     jmp(done);
10115 
10116     bind(reset_for_copy_tail);
10117     lea(src, Address(src, tmp5, Address::times_2));
10118     lea(dst, Address(dst, tmp5, Address::times_1));
10119     subptr(len, tmp5);
10120     jmp(copy_chars_loop);
10121 
10122     bind(below_threshold);
10123   }
10124 
10125   if (UseSSE42Intrinsics) {
10126     Label copy_32_loop, copy_16, copy_tail_sse, reset_for_copy_tail;
10127 
10128     // vectored compression
10129     testl(len, 0xfffffff8);
10130     jcc(Assembler::zero, copy_tail);
10131 
10132     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10133     movdl(tmp1Reg, tmp5);
10134     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10135 
10136     andl(len, 0xfffffff0);
10137     jccb(Assembler::zero, copy_16);
10138 
10139     // compress 16 chars per iter
10140     pxor(tmp4Reg, tmp4Reg);
10141 
10142     lea(src, Address(src, len, Address::times_2));
10143     lea(dst, Address(dst, len, Address::times_1));
10144     negptr(len);
10145 
10146     bind(copy_32_loop);
10147     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10148     por(tmp4Reg, tmp2Reg);
10149     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10150     por(tmp4Reg, tmp3Reg);
10151     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10152     jccb(Assembler::notZero, reset_for_copy_tail);
10153     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10154     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10155     addptr(len, 16);
10156     jccb(Assembler::notZero, copy_32_loop);
10157 
10158     // compress next vector of 8 chars (if any)
10159     bind(copy_16);
10160     // len = 0
10161     testl(result, 0x00000008);     // check if there's a block of 8 chars to compress
10162     jccb(Assembler::zero, copy_tail_sse);
10163 
10164     pxor(tmp3Reg, tmp3Reg);
10165 
10166     movdqu(tmp2Reg, Address(src, 0));
10167     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10168     jccb(Assembler::notZero, reset_for_copy_tail);
10169     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10170     movq(Address(dst, 0), tmp2Reg);
10171     addptr(src, 16);
10172     addptr(dst, 8);
10173     jmpb(copy_tail_sse);
10174 
10175     bind(reset_for_copy_tail);
10176     movl(tmp5, result);
10177     andl(tmp5, 0x0000000f);
10178     lea(src, Address(src, tmp5, Address::times_2));
10179     lea(dst, Address(dst, tmp5, Address::times_1));
10180     subptr(len, tmp5);
10181     jmpb(copy_chars_loop);
10182 
10183     bind(copy_tail_sse);
10184     movl(len, result);
10185     andl(len, 0x00000007);    // tail count (in chars)
10186   }
10187   // compress 1 char per iter
10188   bind(copy_tail);
10189   testl(len, len);
10190   jccb(Assembler::zero, done);
10191   lea(src, Address(src, len, Address::times_2));
10192   lea(dst, Address(dst, len, Address::times_1));
10193   negptr(len);
10194 
10195   bind(copy_chars_loop);
10196   load_unsigned_short(tmp5, Address(src, len, Address::times_2));
10197   testl(tmp5, 0xff00);      // check if Unicode char
10198   jccb(Assembler::notZero, reset_sp);
10199   movb(Address(dst, len, Address::times_1), tmp5);  // ASCII char; compress to 1 byte
10200   increment(len);
10201   jccb(Assembler::notZero, copy_chars_loop);
10202 
10203   // add len then return (len will be zero if compress succeeded, otherwise negative)
10204   bind(reset_sp);
10205   addl(result, len);
10206 
10207   bind(done);
10208 }
10209 
10210 // Inflate byte[] array to char[].
10211 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
10212 //   @IntrinsicCandidate
10213 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
10214 //     for (int i = 0; i < len; i++) {
10215 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
10216 //     }
10217 //   }
10218 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10219   XMMRegister tmp1, Register tmp2, KRegister mask) {
10220   Label copy_chars_loop, done, below_threshold, avx3_threshold;
10221   // rsi: src
10222   // rdi: dst
10223   // rdx: len
10224   // rcx: tmp2
10225 
10226   // rsi holds start addr of source byte[] to be inflated
10227   // rdi holds start addr of destination char[]
10228   // rdx holds length
10229   assert_different_registers(src, dst, len, tmp2);
10230   movl(tmp2, len);
10231   if ((UseAVX > 2) && // AVX512
10232     VM_Version::supports_avx512vlbw() &&
10233     VM_Version::supports_bmi2()) {
10234 
10235     Label copy_32_loop, copy_tail;
10236     Register tmp3_aliased = len;
10237 
10238     // if length of the string is less than 16, handle it in an old fashioned way
10239     testl(len, -16);
10240     jcc(Assembler::zero, below_threshold);
10241 
10242     testl(len, -1 * AVX3Threshold);
10243     jcc(Assembler::zero, avx3_threshold);
10244 
10245     // In order to use only one arithmetic operation for the main loop we use
10246     // this pre-calculation
10247     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
10248     andl(len, -32);     // vector count
10249     jccb(Assembler::zero, copy_tail);
10250 
10251     lea(src, Address(src, len, Address::times_1));
10252     lea(dst, Address(dst, len, Address::times_2));
10253     negptr(len);
10254 
10255 
10256     // inflate 32 chars per iter
10257     bind(copy_32_loop);
10258     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
10259     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
10260     addptr(len, 32);
10261     jcc(Assembler::notZero, copy_32_loop);
10262 
10263     bind(copy_tail);
10264     // bail out when there is nothing to be done
10265     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
10266     jcc(Assembler::zero, done);
10267 
10268     // ~(~0 << length), where length is the # of remaining elements to process
10269     movl(tmp3_aliased, -1);
10270     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
10271     notl(tmp3_aliased);
10272     kmovdl(mask, tmp3_aliased);
10273     evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit);
10274     evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit);
10275 
10276     jmp(done);
10277     bind(avx3_threshold);
10278   }
10279   if (UseSSE42Intrinsics) {
10280     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
10281 
10282     if (UseAVX > 1) {
10283       andl(tmp2, (16 - 1));
10284       andl(len, -16);
10285       jccb(Assembler::zero, copy_new_tail);
10286     } else {
10287       andl(tmp2, 0x00000007);   // tail count (in chars)
10288       andl(len, 0xfffffff8);    // vector count (in chars)
10289       jccb(Assembler::zero, copy_tail);
10290     }
10291 
10292     // vectored inflation
10293     lea(src, Address(src, len, Address::times_1));
10294     lea(dst, Address(dst, len, Address::times_2));
10295     negptr(len);
10296 
10297     if (UseAVX > 1) {
10298       bind(copy_16_loop);
10299       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
10300       vmovdqu(Address(dst, len, Address::times_2), tmp1);
10301       addptr(len, 16);
10302       jcc(Assembler::notZero, copy_16_loop);
10303 
10304       bind(below_threshold);
10305       bind(copy_new_tail);
10306       movl(len, tmp2);
10307       andl(tmp2, 0x00000007);
10308       andl(len, 0xFFFFFFF8);
10309       jccb(Assembler::zero, copy_tail);
10310 
10311       pmovzxbw(tmp1, Address(src, 0));
10312       movdqu(Address(dst, 0), tmp1);
10313       addptr(src, 8);
10314       addptr(dst, 2 * 8);
10315 
10316       jmp(copy_tail, true);
10317     }
10318 
10319     // inflate 8 chars per iter
10320     bind(copy_8_loop);
10321     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10322     movdqu(Address(dst, len, Address::times_2), tmp1);
10323     addptr(len, 8);
10324     jcc(Assembler::notZero, copy_8_loop);
10325 
10326     bind(copy_tail);
10327     movl(len, tmp2);
10328 
10329     cmpl(len, 4);
10330     jccb(Assembler::less, copy_bytes);
10331 
10332     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10333     pmovzxbw(tmp1, tmp1);
10334     movq(Address(dst, 0), tmp1);
10335     subptr(len, 4);
10336     addptr(src, 4);
10337     addptr(dst, 8);
10338 
10339     bind(copy_bytes);
10340   } else {
10341     bind(below_threshold);
10342   }
10343 
10344   testl(len, len);
10345   jccb(Assembler::zero, done);
10346   lea(src, Address(src, len, Address::times_1));
10347   lea(dst, Address(dst, len, Address::times_2));
10348   negptr(len);
10349 
10350   // inflate 1 char per iter
10351   bind(copy_chars_loop);
10352   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10353   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10354   increment(len);
10355   jcc(Assembler::notZero, copy_chars_loop);
10356 
10357   bind(done);
10358 }
10359 
10360 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len) {
10361   switch(type) {
10362     case T_BYTE:
10363     case T_BOOLEAN:
10364       evmovdqub(dst, kmask, src, merge, vector_len);
10365       break;
10366     case T_CHAR:
10367     case T_SHORT:
10368       evmovdquw(dst, kmask, src, merge, vector_len);
10369       break;
10370     case T_INT:
10371     case T_FLOAT:
10372       evmovdqul(dst, kmask, src, merge, vector_len);
10373       break;
10374     case T_LONG:
10375     case T_DOUBLE:
10376       evmovdquq(dst, kmask, src, merge, vector_len);
10377       break;
10378     default:
10379       fatal("Unexpected type argument %s", type2name(type));
10380       break;
10381   }
10382 }
10383 
10384 
10385 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) {
10386   switch(type) {
10387     case T_BYTE:
10388     case T_BOOLEAN:
10389       evmovdqub(dst, kmask, src, merge, vector_len);
10390       break;
10391     case T_CHAR:
10392     case T_SHORT:
10393       evmovdquw(dst, kmask, src, merge, vector_len);
10394       break;
10395     case T_INT:
10396     case T_FLOAT:
10397       evmovdqul(dst, kmask, src, merge, vector_len);
10398       break;
10399     case T_LONG:
10400     case T_DOUBLE:
10401       evmovdquq(dst, kmask, src, merge, vector_len);
10402       break;
10403     default:
10404       fatal("Unexpected type argument %s", type2name(type));
10405       break;
10406   }
10407 }
10408 
10409 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) {
10410   switch(type) {
10411     case T_BYTE:
10412     case T_BOOLEAN:
10413       evmovdqub(dst, kmask, src, merge, vector_len);
10414       break;
10415     case T_CHAR:
10416     case T_SHORT:
10417       evmovdquw(dst, kmask, src, merge, vector_len);
10418       break;
10419     case T_INT:
10420     case T_FLOAT:
10421       evmovdqul(dst, kmask, src, merge, vector_len);
10422       break;
10423     case T_LONG:
10424     case T_DOUBLE:
10425       evmovdquq(dst, kmask, src, merge, vector_len);
10426       break;
10427     default:
10428       fatal("Unexpected type argument %s", type2name(type));
10429       break;
10430   }
10431 }
10432 
10433 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) {
10434   switch(masklen) {
10435     case 2:
10436        knotbl(dst, src);
10437        movl(rtmp, 3);
10438        kmovbl(ktmp, rtmp);
10439        kandbl(dst, ktmp, dst);
10440        break;
10441     case 4:
10442        knotbl(dst, src);
10443        movl(rtmp, 15);
10444        kmovbl(ktmp, rtmp);
10445        kandbl(dst, ktmp, dst);
10446        break;
10447     case 8:
10448        knotbl(dst, src);
10449        break;
10450     case 16:
10451        knotwl(dst, src);
10452        break;
10453     case 32:
10454        knotdl(dst, src);
10455        break;
10456     case 64:
10457        knotql(dst, src);
10458        break;
10459     default:
10460       fatal("Unexpected vector length %d", masklen);
10461       break;
10462   }
10463 }
10464 
10465 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
10466   switch(type) {
10467     case T_BOOLEAN:
10468     case T_BYTE:
10469        kandbl(dst, src1, src2);
10470        break;
10471     case T_CHAR:
10472     case T_SHORT:
10473        kandwl(dst, src1, src2);
10474        break;
10475     case T_INT:
10476     case T_FLOAT:
10477        kanddl(dst, src1, src2);
10478        break;
10479     case T_LONG:
10480     case T_DOUBLE:
10481        kandql(dst, src1, src2);
10482        break;
10483     default:
10484       fatal("Unexpected type argument %s", type2name(type));
10485       break;
10486   }
10487 }
10488 
10489 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
10490   switch(type) {
10491     case T_BOOLEAN:
10492     case T_BYTE:
10493        korbl(dst, src1, src2);
10494        break;
10495     case T_CHAR:
10496     case T_SHORT:
10497        korwl(dst, src1, src2);
10498        break;
10499     case T_INT:
10500     case T_FLOAT:
10501        kordl(dst, src1, src2);
10502        break;
10503     case T_LONG:
10504     case T_DOUBLE:
10505        korql(dst, src1, src2);
10506        break;
10507     default:
10508       fatal("Unexpected type argument %s", type2name(type));
10509       break;
10510   }
10511 }
10512 
10513 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) {
10514   switch(type) {
10515     case T_BOOLEAN:
10516     case T_BYTE:
10517        kxorbl(dst, src1, src2);
10518        break;
10519     case T_CHAR:
10520     case T_SHORT:
10521        kxorwl(dst, src1, src2);
10522        break;
10523     case T_INT:
10524     case T_FLOAT:
10525        kxordl(dst, src1, src2);
10526        break;
10527     case T_LONG:
10528     case T_DOUBLE:
10529        kxorql(dst, src1, src2);
10530        break;
10531     default:
10532       fatal("Unexpected type argument %s", type2name(type));
10533       break;
10534   }
10535 }
10536 
10537 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10538   switch(type) {
10539     case T_BOOLEAN:
10540     case T_BYTE:
10541       evpermb(dst, mask, nds, src, merge, vector_len); break;
10542     case T_CHAR:
10543     case T_SHORT:
10544       evpermw(dst, mask, nds, src, merge, vector_len); break;
10545     case T_INT:
10546     case T_FLOAT:
10547       evpermd(dst, mask, nds, src, merge, vector_len); break;
10548     case T_LONG:
10549     case T_DOUBLE:
10550       evpermq(dst, mask, nds, src, merge, vector_len); break;
10551     default:
10552       fatal("Unexpected type argument %s", type2name(type)); break;
10553   }
10554 }
10555 
10556 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10557   switch(type) {
10558     case T_BOOLEAN:
10559     case T_BYTE:
10560       evpermb(dst, mask, nds, src, merge, vector_len); break;
10561     case T_CHAR:
10562     case T_SHORT:
10563       evpermw(dst, mask, nds, src, merge, vector_len); break;
10564     case T_INT:
10565     case T_FLOAT:
10566       evpermd(dst, mask, nds, src, merge, vector_len); break;
10567     case T_LONG:
10568     case T_DOUBLE:
10569       evpermq(dst, mask, nds, src, merge, vector_len); break;
10570     default:
10571       fatal("Unexpected type argument %s", type2name(type)); break;
10572   }
10573 }
10574 
10575 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10576   switch(type) {
10577     case T_BYTE:
10578       evpminub(dst, mask, nds, src, merge, vector_len); break;
10579     case T_SHORT:
10580       evpminuw(dst, mask, nds, src, merge, vector_len); break;
10581     case T_INT:
10582       evpminud(dst, mask, nds, src, merge, vector_len); break;
10583     case T_LONG:
10584       evpminuq(dst, mask, nds, src, merge, vector_len); break;
10585     default:
10586       fatal("Unexpected type argument %s", type2name(type)); break;
10587   }
10588 }
10589 
10590 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10591   switch(type) {
10592     case T_BYTE:
10593       evpmaxub(dst, mask, nds, src, merge, vector_len); break;
10594     case T_SHORT:
10595       evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
10596     case T_INT:
10597       evpmaxud(dst, mask, nds, src, merge, vector_len); break;
10598     case T_LONG:
10599       evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
10600     default:
10601       fatal("Unexpected type argument %s", type2name(type)); break;
10602   }
10603 }
10604 
10605 void MacroAssembler::evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10606   switch(type) {
10607     case T_BYTE:
10608       evpminub(dst, mask, nds, src, merge, vector_len); break;
10609     case T_SHORT:
10610       evpminuw(dst, mask, nds, src, merge, vector_len); break;
10611     case T_INT:
10612       evpminud(dst, mask, nds, src, merge, vector_len); break;
10613     case T_LONG:
10614       evpminuq(dst, mask, nds, src, merge, vector_len); break;
10615     default:
10616       fatal("Unexpected type argument %s", type2name(type)); break;
10617   }
10618 }
10619 
10620 void MacroAssembler::evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10621   switch(type) {
10622     case T_BYTE:
10623       evpmaxub(dst, mask, nds, src, merge, vector_len); break;
10624     case T_SHORT:
10625       evpmaxuw(dst, mask, nds, src, merge, vector_len); break;
10626     case T_INT:
10627       evpmaxud(dst, mask, nds, src, merge, vector_len); break;
10628     case T_LONG:
10629       evpmaxuq(dst, mask, nds, src, merge, vector_len); break;
10630     default:
10631       fatal("Unexpected type argument %s", type2name(type)); break;
10632   }
10633 }
10634 
10635 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10636   switch(type) {
10637     case T_BYTE:
10638       evpminsb(dst, mask, nds, src, merge, vector_len); break;
10639     case T_SHORT:
10640       evpminsw(dst, mask, nds, src, merge, vector_len); break;
10641     case T_INT:
10642       evpminsd(dst, mask, nds, src, merge, vector_len); break;
10643     case T_LONG:
10644       evpminsq(dst, mask, nds, src, merge, vector_len); break;
10645     default:
10646       fatal("Unexpected type argument %s", type2name(type)); break;
10647   }
10648 }
10649 
10650 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10651   switch(type) {
10652     case T_BYTE:
10653       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
10654     case T_SHORT:
10655       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
10656     case T_INT:
10657       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
10658     case T_LONG:
10659       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
10660     default:
10661       fatal("Unexpected type argument %s", type2name(type)); break;
10662   }
10663 }
10664 
10665 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10666   switch(type) {
10667     case T_BYTE:
10668       evpminsb(dst, mask, nds, src, merge, vector_len); break;
10669     case T_SHORT:
10670       evpminsw(dst, mask, nds, src, merge, vector_len); break;
10671     case T_INT:
10672       evpminsd(dst, mask, nds, src, merge, vector_len); break;
10673     case T_LONG:
10674       evpminsq(dst, mask, nds, src, merge, vector_len); break;
10675     default:
10676       fatal("Unexpected type argument %s", type2name(type)); break;
10677   }
10678 }
10679 
10680 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10681   switch(type) {
10682     case T_BYTE:
10683       evpmaxsb(dst, mask, nds, src, merge, vector_len); break;
10684     case T_SHORT:
10685       evpmaxsw(dst, mask, nds, src, merge, vector_len); break;
10686     case T_INT:
10687       evpmaxsd(dst, mask, nds, src, merge, vector_len); break;
10688     case T_LONG:
10689       evpmaxsq(dst, mask, nds, src, merge, vector_len); break;
10690     default:
10691       fatal("Unexpected type argument %s", type2name(type)); break;
10692   }
10693 }
10694 
10695 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10696   switch(type) {
10697     case T_INT:
10698       evpxord(dst, mask, nds, src, merge, vector_len); break;
10699     case T_LONG:
10700       evpxorq(dst, mask, nds, src, merge, vector_len); break;
10701     default:
10702       fatal("Unexpected type argument %s", type2name(type)); break;
10703   }
10704 }
10705 
10706 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10707   switch(type) {
10708     case T_INT:
10709       evpxord(dst, mask, nds, src, merge, vector_len); break;
10710     case T_LONG:
10711       evpxorq(dst, mask, nds, src, merge, vector_len); break;
10712     default:
10713       fatal("Unexpected type argument %s", type2name(type)); break;
10714   }
10715 }
10716 
10717 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10718   switch(type) {
10719     case T_INT:
10720       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
10721     case T_LONG:
10722       evporq(dst, mask, nds, src, merge, vector_len); break;
10723     default:
10724       fatal("Unexpected type argument %s", type2name(type)); break;
10725   }
10726 }
10727 
10728 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10729   switch(type) {
10730     case T_INT:
10731       Assembler::evpord(dst, mask, nds, src, merge, vector_len); break;
10732     case T_LONG:
10733       evporq(dst, mask, nds, src, merge, vector_len); break;
10734     default:
10735       fatal("Unexpected type argument %s", type2name(type)); break;
10736   }
10737 }
10738 
10739 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) {
10740   switch(type) {
10741     case T_INT:
10742       evpandd(dst, mask, nds, src, merge, vector_len); break;
10743     case T_LONG:
10744       evpandq(dst, mask, nds, src, merge, vector_len); break;
10745     default:
10746       fatal("Unexpected type argument %s", type2name(type)); break;
10747   }
10748 }
10749 
10750 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) {
10751   switch(type) {
10752     case T_INT:
10753       evpandd(dst, mask, nds, src, merge, vector_len); break;
10754     case T_LONG:
10755       evpandq(dst, mask, nds, src, merge, vector_len); break;
10756     default:
10757       fatal("Unexpected type argument %s", type2name(type)); break;
10758   }
10759 }
10760 
10761 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) {
10762   switch(masklen) {
10763     case 8:
10764        kortestbl(src1, src2);
10765        break;
10766     case 16:
10767        kortestwl(src1, src2);
10768        break;
10769     case 32:
10770        kortestdl(src1, src2);
10771        break;
10772     case 64:
10773        kortestql(src1, src2);
10774        break;
10775     default:
10776       fatal("Unexpected mask length %d", masklen);
10777       break;
10778   }
10779 }
10780 
10781 
10782 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) {
10783   switch(masklen)  {
10784     case 8:
10785        ktestbl(src1, src2);
10786        break;
10787     case 16:
10788        ktestwl(src1, src2);
10789        break;
10790     case 32:
10791        ktestdl(src1, src2);
10792        break;
10793     case 64:
10794        ktestql(src1, src2);
10795        break;
10796     default:
10797       fatal("Unexpected mask length %d", masklen);
10798       break;
10799   }
10800 }
10801 
10802 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
10803   switch(type) {
10804     case T_INT:
10805       evprold(dst, mask, src, shift, merge, vlen_enc); break;
10806     case T_LONG:
10807       evprolq(dst, mask, src, shift, merge, vlen_enc); break;
10808     default:
10809       fatal("Unexpected type argument %s", type2name(type)); break;
10810       break;
10811   }
10812 }
10813 
10814 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) {
10815   switch(type) {
10816     case T_INT:
10817       evprord(dst, mask, src, shift, merge, vlen_enc); break;
10818     case T_LONG:
10819       evprorq(dst, mask, src, shift, merge, vlen_enc); break;
10820     default:
10821       fatal("Unexpected type argument %s", type2name(type)); break;
10822   }
10823 }
10824 
10825 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
10826   switch(type) {
10827     case T_INT:
10828       evprolvd(dst, mask, src1, src2, merge, vlen_enc); break;
10829     case T_LONG:
10830       evprolvq(dst, mask, src1, src2, merge, vlen_enc); break;
10831     default:
10832       fatal("Unexpected type argument %s", type2name(type)); break;
10833   }
10834 }
10835 
10836 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) {
10837   switch(type) {
10838     case T_INT:
10839       evprorvd(dst, mask, src1, src2, merge, vlen_enc); break;
10840     case T_LONG:
10841       evprorvq(dst, mask, src1, src2, merge, vlen_enc); break;
10842     default:
10843       fatal("Unexpected type argument %s", type2name(type)); break;
10844   }
10845 }
10846 
10847 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10848   assert(rscratch != noreg || always_reachable(src), "missing");
10849 
10850   if (reachable(src)) {
10851     evpandq(dst, nds, as_Address(src), vector_len);
10852   } else {
10853     lea(rscratch, src);
10854     evpandq(dst, nds, Address(rscratch, 0), vector_len);
10855   }
10856 }
10857 
10858 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) {
10859   assert(rscratch != noreg || always_reachable(src), "missing");
10860 
10861   if (reachable(src)) {
10862     Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len);
10863   } else {
10864     lea(rscratch, src);
10865     Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len);
10866   }
10867 }
10868 
10869 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10870   assert(rscratch != noreg || always_reachable(src), "missing");
10871 
10872   if (reachable(src)) {
10873     evporq(dst, nds, as_Address(src), vector_len);
10874   } else {
10875     lea(rscratch, src);
10876     evporq(dst, nds, Address(rscratch, 0), vector_len);
10877   }
10878 }
10879 
10880 void MacroAssembler::vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10881   assert(rscratch != noreg || always_reachable(src), "missing");
10882 
10883   if (reachable(src)) {
10884     vpshufb(dst, nds, as_Address(src), vector_len);
10885   } else {
10886     lea(rscratch, src);
10887     vpshufb(dst, nds, Address(rscratch, 0), vector_len);
10888   }
10889 }
10890 
10891 void MacroAssembler::vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
10892   assert(rscratch != noreg || always_reachable(src), "missing");
10893 
10894   if (reachable(src)) {
10895     Assembler::vpor(dst, nds, as_Address(src), vector_len);
10896   } else {
10897     lea(rscratch, src);
10898     Assembler::vpor(dst, nds, Address(rscratch, 0), vector_len);
10899   }
10900 }
10901 
10902 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) {
10903   assert(rscratch != noreg || always_reachable(src3), "missing");
10904 
10905   if (reachable(src3)) {
10906     vpternlogq(dst, imm8, src2, as_Address(src3), vector_len);
10907   } else {
10908     lea(rscratch, src3);
10909     vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len);
10910   }
10911 }
10912 
10913 #if COMPILER2_OR_JVMCI
10914 
10915 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
10916                                  Register length, Register temp, int vec_enc) {
10917   // Computing mask for predicated vector store.
10918   movptr(temp, -1);
10919   bzhiq(temp, temp, length);
10920   kmov(mask, temp);
10921   evmovdqu(bt, mask, dst, xmm, true, vec_enc);
10922 }
10923 
10924 // Set memory operation for length "less than" 64 bytes.
10925 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp,
10926                                        XMMRegister xmm, KRegister mask, Register length,
10927                                        Register temp, bool use64byteVector) {
10928   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10929   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
10930   if (!use64byteVector) {
10931     fill32(dst, disp, xmm);
10932     subptr(length, 32 >> shift);
10933     fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp);
10934   } else {
10935     assert(MaxVectorSize == 64, "vector length != 64");
10936     fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit);
10937   }
10938 }
10939 
10940 
10941 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp,
10942                                        XMMRegister xmm, KRegister mask, Register length,
10943                                        Register temp) {
10944   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10945   const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG};
10946   fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit);
10947 }
10948 
10949 
10950 void MacroAssembler::fill32(Address dst, XMMRegister xmm) {
10951   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10952   vmovdqu(dst, xmm);
10953 }
10954 
10955 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) {
10956   fill32(Address(dst, disp), xmm);
10957 }
10958 
10959 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) {
10960   assert(MaxVectorSize >= 32, "vector length should be >= 32");
10961   if (!use64byteVector) {
10962     fill32(dst, xmm);
10963     fill32(dst.plus_disp(32), xmm);
10964   } else {
10965     evmovdquq(dst, xmm, Assembler::AVX_512bit);
10966   }
10967 }
10968 
10969 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) {
10970   fill64(Address(dst, disp), xmm, use64byteVector);
10971 }
10972 
10973 #ifdef _LP64
10974 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value,
10975                                         Register count, Register rtmp, XMMRegister xtmp) {
10976   Label L_exit;
10977   Label L_fill_start;
10978   Label L_fill_64_bytes;
10979   Label L_fill_96_bytes;
10980   Label L_fill_128_bytes;
10981   Label L_fill_128_bytes_loop;
10982   Label L_fill_128_loop_header;
10983   Label L_fill_128_bytes_loop_header;
10984   Label L_fill_128_bytes_loop_pre_header;
10985   Label L_fill_zmm_sequence;
10986 
10987   int shift = -1;
10988   int avx3threshold = VM_Version::avx3_threshold();
10989   switch(type) {
10990     case T_BYTE:  shift = 0;
10991       break;
10992     case T_SHORT: shift = 1;
10993       break;
10994     case T_INT:   shift = 2;
10995       break;
10996     /* Uncomment when LONG fill stubs are supported.
10997     case T_LONG:  shift = 3;
10998       break;
10999     */
11000     default:
11001       fatal("Unhandled type: %s\n", type2name(type));
11002   }
11003 
11004   if ((avx3threshold != 0)  || (MaxVectorSize == 32)) {
11005 
11006     if (MaxVectorSize == 64) {
11007       cmpq(count, avx3threshold >> shift);
11008       jcc(Assembler::greater, L_fill_zmm_sequence);
11009     }
11010 
11011     evpbroadcast(type, xtmp, value, Assembler::AVX_256bit);
11012 
11013     bind(L_fill_start);
11014 
11015     cmpq(count, 32 >> shift);
11016     jccb(Assembler::greater, L_fill_64_bytes);
11017     fill32_masked(shift, to, 0, xtmp, k2, count, rtmp);
11018     jmp(L_exit);
11019 
11020     bind(L_fill_64_bytes);
11021     cmpq(count, 64 >> shift);
11022     jccb(Assembler::greater, L_fill_96_bytes);
11023     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp);
11024     jmp(L_exit);
11025 
11026     bind(L_fill_96_bytes);
11027     cmpq(count, 96 >> shift);
11028     jccb(Assembler::greater, L_fill_128_bytes);
11029     fill64(to, 0, xtmp);
11030     subq(count, 64 >> shift);
11031     fill32_masked(shift, to, 64, xtmp, k2, count, rtmp);
11032     jmp(L_exit);
11033 
11034     bind(L_fill_128_bytes);
11035     cmpq(count, 128 >> shift);
11036     jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header);
11037     fill64(to, 0, xtmp);
11038     fill32(to, 64, xtmp);
11039     subq(count, 96 >> shift);
11040     fill32_masked(shift, to, 96, xtmp, k2, count, rtmp);
11041     jmp(L_exit);
11042 
11043     bind(L_fill_128_bytes_loop_pre_header);
11044     {
11045       mov(rtmp, to);
11046       andq(rtmp, 31);
11047       jccb(Assembler::zero, L_fill_128_bytes_loop_header);
11048       negq(rtmp);
11049       addq(rtmp, 32);
11050       mov64(r8, -1L);
11051       bzhiq(r8, r8, rtmp);
11052       kmovql(k2, r8);
11053       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit);
11054       addq(to, rtmp);
11055       shrq(rtmp, shift);
11056       subq(count, rtmp);
11057     }
11058 
11059     cmpq(count, 128 >> shift);
11060     jcc(Assembler::less, L_fill_start);
11061 
11062     bind(L_fill_128_bytes_loop_header);
11063     subq(count, 128 >> shift);
11064 
11065     align32();
11066     bind(L_fill_128_bytes_loop);
11067       fill64(to, 0, xtmp);
11068       fill64(to, 64, xtmp);
11069       addq(to, 128);
11070       subq(count, 128 >> shift);
11071       jccb(Assembler::greaterEqual, L_fill_128_bytes_loop);
11072 
11073     addq(count, 128 >> shift);
11074     jcc(Assembler::zero, L_exit);
11075     jmp(L_fill_start);
11076   }
11077 
11078   if (MaxVectorSize == 64) {
11079     // Sequence using 64 byte ZMM register.
11080     Label L_fill_128_bytes_zmm;
11081     Label L_fill_192_bytes_zmm;
11082     Label L_fill_192_bytes_loop_zmm;
11083     Label L_fill_192_bytes_loop_header_zmm;
11084     Label L_fill_192_bytes_loop_pre_header_zmm;
11085     Label L_fill_start_zmm_sequence;
11086 
11087     bind(L_fill_zmm_sequence);
11088     evpbroadcast(type, xtmp, value, Assembler::AVX_512bit);
11089 
11090     bind(L_fill_start_zmm_sequence);
11091     cmpq(count, 64 >> shift);
11092     jccb(Assembler::greater, L_fill_128_bytes_zmm);
11093     fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true);
11094     jmp(L_exit);
11095 
11096     bind(L_fill_128_bytes_zmm);
11097     cmpq(count, 128 >> shift);
11098     jccb(Assembler::greater, L_fill_192_bytes_zmm);
11099     fill64(to, 0, xtmp, true);
11100     subq(count, 64 >> shift);
11101     fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true);
11102     jmp(L_exit);
11103 
11104     bind(L_fill_192_bytes_zmm);
11105     cmpq(count, 192 >> shift);
11106     jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm);
11107     fill64(to, 0, xtmp, true);
11108     fill64(to, 64, xtmp, true);
11109     subq(count, 128 >> shift);
11110     fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true);
11111     jmp(L_exit);
11112 
11113     bind(L_fill_192_bytes_loop_pre_header_zmm);
11114     {
11115       movq(rtmp, to);
11116       andq(rtmp, 63);
11117       jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm);
11118       negq(rtmp);
11119       addq(rtmp, 64);
11120       mov64(r8, -1L);
11121       bzhiq(r8, r8, rtmp);
11122       kmovql(k2, r8);
11123       evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit);
11124       addq(to, rtmp);
11125       shrq(rtmp, shift);
11126       subq(count, rtmp);
11127     }
11128 
11129     cmpq(count, 192 >> shift);
11130     jcc(Assembler::less, L_fill_start_zmm_sequence);
11131 
11132     bind(L_fill_192_bytes_loop_header_zmm);
11133     subq(count, 192 >> shift);
11134 
11135     align32();
11136     bind(L_fill_192_bytes_loop_zmm);
11137       fill64(to, 0, xtmp, true);
11138       fill64(to, 64, xtmp, true);
11139       fill64(to, 128, xtmp, true);
11140       addq(to, 192);
11141       subq(count, 192 >> shift);
11142       jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm);
11143 
11144     addq(count, 192 >> shift);
11145     jcc(Assembler::zero, L_exit);
11146     jmp(L_fill_start_zmm_sequence);
11147   }
11148   bind(L_exit);
11149 }
11150 #endif
11151 #endif //COMPILER2_OR_JVMCI
11152 
11153 
11154 #ifdef _LP64
11155 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) {
11156   Label done;
11157   cvttss2sil(dst, src);
11158   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
11159   cmpl(dst, 0x80000000); // float_sign_flip
11160   jccb(Assembler::notEqual, done);
11161   subptr(rsp, 8);
11162   movflt(Address(rsp, 0), src);
11163   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
11164   pop(dst);
11165   bind(done);
11166 }
11167 
11168 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) {
11169   Label done;
11170   cvttsd2sil(dst, src);
11171   // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
11172   cmpl(dst, 0x80000000); // float_sign_flip
11173   jccb(Assembler::notEqual, done);
11174   subptr(rsp, 8);
11175   movdbl(Address(rsp, 0), src);
11176   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
11177   pop(dst);
11178   bind(done);
11179 }
11180 
11181 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) {
11182   Label done;
11183   cvttss2siq(dst, src);
11184   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
11185   jccb(Assembler::notEqual, done);
11186   subptr(rsp, 8);
11187   movflt(Address(rsp, 0), src);
11188   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
11189   pop(dst);
11190   bind(done);
11191 }
11192 
11193 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) {
11194   // Following code is line by line assembly translation rounding algorithm.
11195   // Please refer to java.lang.Math.round(float) algorithm for details.
11196   const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000;
11197   const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24;
11198   const int32_t FloatConsts_EXP_BIAS = 127;
11199   const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF;
11200   const int32_t MINUS_32 = 0xFFFFFFE0;
11201   Label L_special_case, L_block1, L_exit;
11202   movl(rtmp, FloatConsts_EXP_BIT_MASK);
11203   movdl(dst, src);
11204   andl(dst, rtmp);
11205   sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1);
11206   movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS);
11207   subl(rtmp, dst);
11208   movl(rcx, rtmp);
11209   movl(dst, MINUS_32);
11210   testl(rtmp, dst);
11211   jccb(Assembler::notEqual, L_special_case);
11212   movdl(dst, src);
11213   andl(dst, FloatConsts_SIGNIF_BIT_MASK);
11214   orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1);
11215   movdl(rtmp, src);
11216   testl(rtmp, rtmp);
11217   jccb(Assembler::greaterEqual, L_block1);
11218   negl(dst);
11219   bind(L_block1);
11220   sarl(dst);
11221   addl(dst, 0x1);
11222   sarl(dst, 0x1);
11223   jmp(L_exit);
11224   bind(L_special_case);
11225   convert_f2i(dst, src);
11226   bind(L_exit);
11227 }
11228 
11229 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) {
11230   // Following code is line by line assembly translation rounding algorithm.
11231   // Please refer to java.lang.Math.round(double) algorithm for details.
11232   const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L;
11233   const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53;
11234   const int64_t DoubleConsts_EXP_BIAS = 1023;
11235   const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL;
11236   const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L;
11237   Label L_special_case, L_block1, L_exit;
11238   mov64(rtmp, DoubleConsts_EXP_BIT_MASK);
11239   movq(dst, src);
11240   andq(dst, rtmp);
11241   sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1);
11242   mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS);
11243   subq(rtmp, dst);
11244   movq(rcx, rtmp);
11245   mov64(dst, MINUS_64);
11246   testq(rtmp, dst);
11247   jccb(Assembler::notEqual, L_special_case);
11248   movq(dst, src);
11249   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK);
11250   andq(dst, rtmp);
11251   mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1);
11252   orq(dst, rtmp);
11253   movq(rtmp, src);
11254   testq(rtmp, rtmp);
11255   jccb(Assembler::greaterEqual, L_block1);
11256   negq(dst);
11257   bind(L_block1);
11258   sarq(dst);
11259   addq(dst, 0x1);
11260   sarq(dst, 0x1);
11261   jmp(L_exit);
11262   bind(L_special_case);
11263   convert_d2l(dst, src);
11264   bind(L_exit);
11265 }
11266 
11267 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) {
11268   Label done;
11269   cvttsd2siq(dst, src);
11270   cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
11271   jccb(Assembler::notEqual, done);
11272   subptr(rsp, 8);
11273   movdbl(Address(rsp, 0), src);
11274   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
11275   pop(dst);
11276   bind(done);
11277 }
11278 
11279 void MacroAssembler::cache_wb(Address line)
11280 {
11281   // 64 bit cpus always support clflush
11282   assert(VM_Version::supports_clflush(), "clflush should be available");
11283   bool optimized = VM_Version::supports_clflushopt();
11284   bool no_evict = VM_Version::supports_clwb();
11285 
11286   // prefer clwb (writeback without evict) otherwise
11287   // prefer clflushopt (potentially parallel writeback with evict)
11288   // otherwise fallback on clflush (serial writeback with evict)
11289 
11290   if (optimized) {
11291     if (no_evict) {
11292       clwb(line);
11293     } else {
11294       clflushopt(line);
11295     }
11296   } else {
11297     // no need for fence when using CLFLUSH
11298     clflush(line);
11299   }
11300 }
11301 
11302 void MacroAssembler::cache_wbsync(bool is_pre)
11303 {
11304   assert(VM_Version::supports_clflush(), "clflush should be available");
11305   bool optimized = VM_Version::supports_clflushopt();
11306   bool no_evict = VM_Version::supports_clwb();
11307 
11308   // pick the correct implementation
11309 
11310   if (!is_pre && (optimized || no_evict)) {
11311     // need an sfence for post flush when using clflushopt or clwb
11312     // otherwise no no need for any synchroniaztion
11313 
11314     sfence();
11315   }
11316 }
11317 
11318 #endif // _LP64
11319 
11320 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11321   switch (cond) {
11322     // Note some conditions are synonyms for others
11323     case Assembler::zero:         return Assembler::notZero;
11324     case Assembler::notZero:      return Assembler::zero;
11325     case Assembler::less:         return Assembler::greaterEqual;
11326     case Assembler::lessEqual:    return Assembler::greater;
11327     case Assembler::greater:      return Assembler::lessEqual;
11328     case Assembler::greaterEqual: return Assembler::less;
11329     case Assembler::below:        return Assembler::aboveEqual;
11330     case Assembler::belowEqual:   return Assembler::above;
11331     case Assembler::above:        return Assembler::belowEqual;
11332     case Assembler::aboveEqual:   return Assembler::below;
11333     case Assembler::overflow:     return Assembler::noOverflow;
11334     case Assembler::noOverflow:   return Assembler::overflow;
11335     case Assembler::negative:     return Assembler::positive;
11336     case Assembler::positive:     return Assembler::negative;
11337     case Assembler::parity:       return Assembler::noParity;
11338     case Assembler::noParity:     return Assembler::parity;
11339   }
11340   ShouldNotReachHere(); return Assembler::overflow;
11341 }
11342 
11343 // 32-bit Windows has its own fast-path implementation
11344 // of get_thread
11345 #if !defined(WIN32) || defined(_LP64)
11346 
11347 // This is simply a call to Thread::current()
11348 void MacroAssembler::get_thread(Register thread) {
11349   if (thread != rax) {
11350     push(rax);
11351   }
11352   LP64_ONLY(push(rdi);)
11353   LP64_ONLY(push(rsi);)
11354   push(rdx);
11355   push(rcx);
11356 #ifdef _LP64
11357   push(r8);
11358   push(r9);
11359   push(r10);
11360   push(r11);
11361 #endif
11362 
11363   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11364 
11365 #ifdef _LP64
11366   pop(r11);
11367   pop(r10);
11368   pop(r9);
11369   pop(r8);
11370 #endif
11371   pop(rcx);
11372   pop(rdx);
11373   LP64_ONLY(pop(rsi);)
11374   LP64_ONLY(pop(rdi);)
11375   if (thread != rax) {
11376     mov(thread, rax);
11377     pop(rax);
11378   }
11379 }
11380 
11381 
11382 #endif // !WIN32 || _LP64
11383 
11384 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) {
11385   Label L_stack_ok;
11386   if (bias == 0) {
11387     testptr(sp, 2 * wordSize - 1);
11388   } else {
11389     // lea(tmp, Address(rsp, bias);
11390     mov(tmp, sp);
11391     addptr(tmp, bias);
11392     testptr(tmp, 2 * wordSize - 1);
11393   }
11394   jcc(Assembler::equal, L_stack_ok);
11395   block_comment(msg);
11396   stop(msg);
11397   bind(L_stack_ok);
11398 }
11399 
11400 // Implements lightweight-locking.
11401 //
11402 // obj: the object to be locked
11403 // reg_rax: rax
11404 // thread: the thread which attempts to lock obj
11405 // tmp: a temporary register
11406 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
11407   assert(reg_rax == rax, "");
11408   assert_different_registers(basic_lock, obj, reg_rax, thread, tmp);
11409 
11410   Label push;
11411   const Register top = tmp;
11412 
11413   // Preload the markWord. It is important that this is the first
11414   // instruction emitted as it is part of C1's null check semantics.
11415   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
11416 
11417   if (UseObjectMonitorTable) {
11418     // Clear cache in case fast locking succeeds.
11419     movptr(Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))), 0);
11420   }
11421 
11422   // Load top.
11423   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
11424 
11425   // Check if the lock-stack is full.
11426   cmpl(top, LockStack::end_offset());
11427   jcc(Assembler::greaterEqual, slow);
11428 
11429   // Check for recursion.
11430   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
11431   jcc(Assembler::equal, push);
11432 
11433   // Check header for monitor (0b10).
11434   testptr(reg_rax, markWord::monitor_value);
11435   jcc(Assembler::notZero, slow);
11436 
11437   // Try to lock. Transition lock bits 0b01 => 0b00
11438   movptr(tmp, reg_rax);
11439   andptr(tmp, ~(int32_t)markWord::unlocked_value);
11440   orptr(reg_rax, markWord::unlocked_value);
11441   if (EnableValhalla) {
11442     // Mask inline_type bit such that we go to the slow path if object is an inline type
11443     andptr(reg_rax, ~((int) markWord::inline_type_bit_in_place));
11444   }
11445   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
11446   jcc(Assembler::notEqual, slow);
11447 
11448   // Restore top, CAS clobbers register.
11449   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
11450 
11451   bind(push);
11452   // After successful lock, push object on lock-stack.
11453   movptr(Address(thread, top), obj);
11454   incrementl(top, oopSize);
11455   movl(Address(thread, JavaThread::lock_stack_top_offset()), top);
11456 }
11457 
11458 // Implements lightweight-unlocking.
11459 //
11460 // obj: the object to be unlocked
11461 // reg_rax: rax
11462 // thread: the thread
11463 // tmp: a temporary register
11464 void MacroAssembler::lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow) {
11465   assert(reg_rax == rax, "");
11466   assert_different_registers(obj, reg_rax, thread, tmp);
11467 
11468   Label unlocked, push_and_slow;
11469   const Register top = tmp;
11470 
11471   // Check if obj is top of lock-stack.
11472   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
11473   cmpptr(obj, Address(thread, top, Address::times_1, -oopSize));
11474   jcc(Assembler::notEqual, slow);
11475 
11476   // Pop lock-stack.
11477   DEBUG_ONLY(movptr(Address(thread, top, Address::times_1, -oopSize), 0);)
11478   subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
11479 
11480   // Check if recursive.
11481   cmpptr(obj, Address(thread, top, Address::times_1, -2 * oopSize));
11482   jcc(Assembler::equal, unlocked);
11483 
11484   // Not recursive. Check header for monitor (0b10).
11485   movptr(reg_rax, Address(obj, oopDesc::mark_offset_in_bytes()));
11486   testptr(reg_rax, markWord::monitor_value);
11487   jcc(Assembler::notZero, push_and_slow);
11488 
11489 #ifdef ASSERT
11490   // Check header not unlocked (0b01).
11491   Label not_unlocked;
11492   testptr(reg_rax, markWord::unlocked_value);
11493   jcc(Assembler::zero, not_unlocked);
11494   stop("lightweight_unlock already unlocked");
11495   bind(not_unlocked);
11496 #endif
11497 
11498   // Try to unlock. Transition lock bits 0b00 => 0b01
11499   movptr(tmp, reg_rax);
11500   orptr(tmp, markWord::unlocked_value);
11501   lock(); cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
11502   jcc(Assembler::equal, unlocked);
11503 
11504   bind(push_and_slow);
11505   // Restore lock-stack and handle the unlock in runtime.
11506 #ifdef ASSERT
11507   movl(top, Address(thread, JavaThread::lock_stack_top_offset()));
11508   movptr(Address(thread, top), obj);
11509 #endif
11510   addl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize);
11511   jmp(slow);
11512 
11513   bind(unlocked);
11514 }
11515 
11516 #ifdef _LP64
11517 // Saves legacy GPRs state on stack.
11518 void MacroAssembler::save_legacy_gprs() {
11519   subq(rsp, 16 * wordSize);
11520   movq(Address(rsp, 15 * wordSize), rax);
11521   movq(Address(rsp, 14 * wordSize), rcx);
11522   movq(Address(rsp, 13 * wordSize), rdx);
11523   movq(Address(rsp, 12 * wordSize), rbx);
11524   movq(Address(rsp, 10 * wordSize), rbp);
11525   movq(Address(rsp, 9 * wordSize), rsi);
11526   movq(Address(rsp, 8 * wordSize), rdi);
11527   movq(Address(rsp, 7 * wordSize), r8);
11528   movq(Address(rsp, 6 * wordSize), r9);
11529   movq(Address(rsp, 5 * wordSize), r10);
11530   movq(Address(rsp, 4 * wordSize), r11);
11531   movq(Address(rsp, 3 * wordSize), r12);
11532   movq(Address(rsp, 2 * wordSize), r13);
11533   movq(Address(rsp, wordSize), r14);
11534   movq(Address(rsp, 0), r15);
11535 }
11536 
11537 // Resotres back legacy GPRs state from stack.
11538 void MacroAssembler::restore_legacy_gprs() {
11539   movq(r15, Address(rsp, 0));
11540   movq(r14, Address(rsp, wordSize));
11541   movq(r13, Address(rsp, 2 * wordSize));
11542   movq(r12, Address(rsp, 3 * wordSize));
11543   movq(r11, Address(rsp, 4 * wordSize));
11544   movq(r10, Address(rsp, 5 * wordSize));
11545   movq(r9,  Address(rsp, 6 * wordSize));
11546   movq(r8,  Address(rsp, 7 * wordSize));
11547   movq(rdi, Address(rsp, 8 * wordSize));
11548   movq(rsi, Address(rsp, 9 * wordSize));
11549   movq(rbp, Address(rsp, 10 * wordSize));
11550   movq(rbx, Address(rsp, 12 * wordSize));
11551   movq(rdx, Address(rsp, 13 * wordSize));
11552   movq(rcx, Address(rsp, 14 * wordSize));
11553   movq(rax, Address(rsp, 15 * wordSize));
11554   addq(rsp, 16 * wordSize);
11555 }
11556 
11557 void MacroAssembler::setcc(Assembler::Condition comparison, Register dst) {
11558   if (VM_Version::supports_apx_f()) {
11559     esetzucc(comparison, dst);
11560   } else {
11561     setb(comparison, dst);
11562     movzbl(dst, dst);
11563   }
11564 }
11565 #endif