1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/vmreg.inline.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "utilities/macros.hpp"
  33 #include "runtime/vm_version.hpp"
  34 #include "utilities/checkedCast.hpp"
  35 
  36 // MacroAssembler extends Assembler by frequently used macros.
  37 //
  38 // Instructions for which a 'better' code sequence exists depending
  39 // on arguments should also go in here.
  40 
  41 class MacroAssembler: public Assembler {
  42   friend class LIR_Assembler;
  43   friend class Runtime1;      // as_Address()
  44 
  45  public:
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57  protected:
  58   // This is the base routine called by the different versions of call_VM. The interpreter
  59   // may customize this version by overriding it for its purposes (e.g., to save/restore
  60   // additional registers when doing a VM call).
  61   //
  62   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  63   // returns the register which contains the thread upon return. If a thread register has been
  64   // specified, the return value will correspond to that register. If no last_java_sp is specified
  65   // (noreg) than rsp will be used instead.
  66   virtual void call_VM_base(           // returns the register containing the thread upon return
  67     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  68     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  69     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  70     address  entry_point,              // the entry point
  71     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  72     bool     check_exceptions          // whether to check for pending exceptions after return
  73   );
  74 
  75   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  76 
  77   // helpers for FPU flag access
  78   // tmp is a temporary register, if none is available use noreg
  79   void save_rax   (Register tmp);
  80   void restore_rax(Register tmp);
  81 
  82  public:
  83   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  84 
  85  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  86  // The implementation is only non-empty for the InterpreterMacroAssembler,
  87  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  88  virtual void check_and_handle_popframe(Register java_thread);
  89  virtual void check_and_handle_earlyret(Register java_thread);
  90 
  91   Address as_Address(AddressLiteral adr);
  92   Address as_Address(ArrayAddress adr, Register rscratch);
  93 
  94   // Support for null-checks
  95   //
  96   // Generates code that causes a null OS exception if the content of reg is null.
  97   // If the accessed location is M[reg + offset] and the offset is known, provide the
  98   // offset. No explicit code generation is needed if the offset is within a certain
  99   // range (0 <= offset <= page_size).
 100 
 101   void null_check(Register reg, int offset = -1);
 102   static bool needs_explicit_null_check(intptr_t offset);
 103   static bool uses_implicit_null_check(void* address);
 104 
 105   // Required platform-specific helpers for Label::patch_instructions.
 106   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 107   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 108     unsigned char op = branch[0];
 109     assert(op == 0xE8 /* call */ ||
 110         op == 0xE9 /* jmp */ ||
 111         op == 0xEB /* short jmp */ ||
 112         (op & 0xF0) == 0x70 /* short jcc */ ||
 113         (op == 0x0F && (branch[1] & 0xF0) == 0x80) /* jcc */ ||
 114         (op == 0xC7 && branch[1] == 0xF8) /* xbegin */,
 115         "Invalid opcode at patch point");
 116 
 117     if (op == 0xEB || (op & 0xF0) == 0x70) {
 118       // short offset operators (jmp and jcc)
 119       char* disp = (char*) &branch[1];
 120       int imm8 = checked_cast<int>(target - (address) &disp[1]);
 121       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 122                 file == nullptr ? "<null>" : file, line);
 123       *disp = (char)imm8;
 124     } else {
 125       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 126       int imm32 = checked_cast<int>(target - (address) &disp[1]);
 127       *disp = imm32;
 128     }
 129   }
 130 
 131   // The following 4 methods return the offset of the appropriate move instruction
 132 
 133   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 134   int load_unsigned_byte(Register dst, Address src);
 135   int load_unsigned_short(Register dst, Address src);
 136 
 137   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 138   int load_signed_byte(Register dst, Address src);
 139   int load_signed_short(Register dst, Address src);
 140 
 141   // Support for sign-extension (hi:lo = extend_sign(lo))
 142   void extend_sign(Register hi, Register lo);
 143 
 144   // Load and store values by size and signed-ness
 145   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 146   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 147 
 148   // Support for inc/dec with optimal instruction selection depending on value
 149 
 150   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 151   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 152   void increment(Address dst, int value = 1)  { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; }
 153   void decrement(Address dst, int value = 1)  { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; }
 154 
 155   void decrementl(Address dst, int value = 1);
 156   void decrementl(Register reg, int value = 1);
 157 
 158   void decrementq(Register reg, int value = 1);
 159   void decrementq(Address dst, int value = 1);
 160 
 161   void incrementl(Address dst, int value = 1);
 162   void incrementl(Register reg, int value = 1);
 163 
 164   void incrementq(Register reg, int value = 1);
 165   void incrementq(Address dst, int value = 1);
 166 
 167   void incrementl(AddressLiteral dst, Register rscratch = noreg);
 168   void incrementl(ArrayAddress   dst, Register rscratch);
 169 
 170   void incrementq(AddressLiteral dst, Register rscratch = noreg);
 171 
 172   // Support optimal SSE move instructions.
 173   void movflt(XMMRegister dst, XMMRegister src) {
 174     if (dst-> encoding() == src->encoding()) return;
 175     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 176     else                       { movss (dst, src); return; }
 177   }
 178   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 179   void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 180   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 181 
 182   // Move with zero extension
 183   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 184 
 185   void movdbl(XMMRegister dst, XMMRegister src) {
 186     if (dst-> encoding() == src->encoding()) return;
 187     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 188     else                       { movsd (dst, src); return; }
 189   }
 190 
 191   void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
 192 
 193   void movdbl(XMMRegister dst, Address src) {
 194     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 195     else                         { movlpd(dst, src); return; }
 196   }
 197   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 198 
 199   void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
 200     // Use separate tmp XMM register because caller may
 201     // requires src XMM register to be unchanged (as in x86.ad).
 202     vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
 203     movdl(dst, tmp);
 204     movswl(dst, dst);
 205   }
 206 
 207   void flt16_to_flt(XMMRegister dst, Register src) {
 208     movdl(dst, src);
 209     vcvtph2ps(dst, dst, Assembler::AVX_128bit);
 210   }
 211 
 212   // Alignment
 213   void align32();
 214   void align64();
 215   void align(uint modulus);
 216   void align(uint modulus, uint target);
 217 
 218   void post_call_nop();
 219   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 220   void fat_nop();
 221 
 222   // Stack frame creation/removal
 223   void enter();
 224   void leave();
 225 
 226   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 227   // The pointer will be loaded into the thread register.
 228   void get_thread(Register thread);
 229 
 230 #ifdef _LP64
 231   // Support for argument shuffling
 232 
 233   // bias in bytes
 234   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 235   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 236   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 237   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
 238   void move_ptr(VMRegPair src, VMRegPair dst);
 239   void object_move(OopMap* map,
 240                    int oop_handle_offset,
 241                    int framesize_in_slots,
 242                    VMRegPair src,
 243                    VMRegPair dst,
 244                    bool is_receiver,
 245                    int* receiver_offset);
 246 #endif // _LP64
 247 
 248   // Support for VM calls
 249   //
 250   // It is imperative that all calls into the VM are handled via the call_VM macros.
 251   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 252   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 253 
 254 
 255   void call_VM(Register oop_result,
 256                address entry_point,
 257                bool check_exceptions = true);
 258   void call_VM(Register oop_result,
 259                address entry_point,
 260                Register arg_1,
 261                bool check_exceptions = true);
 262   void call_VM(Register oop_result,
 263                address entry_point,
 264                Register arg_1, Register arg_2,
 265                bool check_exceptions = true);
 266   void call_VM(Register oop_result,
 267                address entry_point,
 268                Register arg_1, Register arg_2, Register arg_3,
 269                bool check_exceptions = true);
 270 
 271   // Overloadings with last_Java_sp
 272   void call_VM(Register oop_result,
 273                Register last_java_sp,
 274                address entry_point,
 275                int number_of_arguments = 0,
 276                bool check_exceptions = true);
 277   void call_VM(Register oop_result,
 278                Register last_java_sp,
 279                address entry_point,
 280                Register arg_1, bool
 281                check_exceptions = true);
 282   void call_VM(Register oop_result,
 283                Register last_java_sp,
 284                address entry_point,
 285                Register arg_1, Register arg_2,
 286                bool check_exceptions = true);
 287   void call_VM(Register oop_result,
 288                Register last_java_sp,
 289                address entry_point,
 290                Register arg_1, Register arg_2, Register arg_3,
 291                bool check_exceptions = true);
 292 
 293   void get_vm_result  (Register oop_result, Register thread);
 294   void get_vm_result_2(Register metadata_result, Register thread);
 295 
 296   // These always tightly bind to MacroAssembler::call_VM_base
 297   // bypassing the virtual implementation
 298   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 299   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 300   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 301   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 302   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 303 
 304   void call_VM_leaf0(address entry_point);
 305   void call_VM_leaf(address entry_point,
 306                     int number_of_arguments = 0);
 307   void call_VM_leaf(address entry_point,
 308                     Register arg_1);
 309   void call_VM_leaf(address entry_point,
 310                     Register arg_1, Register arg_2);
 311   void call_VM_leaf(address entry_point,
 312                     Register arg_1, Register arg_2, Register arg_3);
 313 
 314   void call_VM_leaf(address entry_point,
 315                     Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 316 
 317   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 318   // bypassing the virtual implementation
 319   void super_call_VM_leaf(address entry_point);
 320   void super_call_VM_leaf(address entry_point, Register arg_1);
 321   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 322   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 323   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 324 
 325   // last Java Frame (fills frame anchor)
 326   void set_last_Java_frame(Register thread,
 327                            Register last_java_sp,
 328                            Register last_java_fp,
 329                            address  last_java_pc,
 330                            Register rscratch);
 331 
 332   // thread in the default location (r15_thread on 64bit)
 333   void set_last_Java_frame(Register last_java_sp,
 334                            Register last_java_fp,
 335                            address  last_java_pc,
 336                            Register rscratch);
 337 
 338   void reset_last_Java_frame(Register thread, bool clear_fp);
 339 
 340   // thread in the default location (r15_thread on 64bit)
 341   void reset_last_Java_frame(bool clear_fp);
 342 
 343   // jobjects
 344   void clear_jobject_tag(Register possibly_non_local);
 345   void resolve_jobject(Register value, Register thread, Register tmp);
 346   void resolve_global_jobject(Register value, Register thread, Register tmp);
 347 
 348   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 349   void c2bool(Register x);
 350 
 351   // C++ bool manipulation
 352 
 353   void movbool(Register dst, Address src);
 354   void movbool(Address dst, bool boolconst);
 355   void movbool(Address dst, Register src);
 356   void testbool(Register dst);
 357 
 358   void resolve_oop_handle(Register result, Register tmp);
 359   void resolve_weak_handle(Register result, Register tmp);
 360   void load_mirror(Register mirror, Register method, Register tmp);
 361   void load_method_holder_cld(Register rresult, Register rmethod);
 362 
 363   void load_method_holder(Register holder, Register method);
 364 
 365   // oop manipulations
 366   void load_klass(Register dst, Register src, Register tmp);
 367   void store_klass(Register dst, Register src, Register tmp);
 368 
 369   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 370                       Register tmp1, Register thread_tmp);
 371   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 372                        Register tmp1, Register tmp2, Register tmp3);
 373 
 374   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 375                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 376   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 377                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 378   void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
 379                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 380 
 381   // Used for storing null. All other oop constants should be
 382   // stored using routines that take a jobject.
 383   void store_heap_oop_null(Address dst);
 384 
 385 #ifdef _LP64
 386   void store_klass_gap(Register dst, Register src);
 387 
 388   // This dummy is to prevent a call to store_heap_oop from
 389   // converting a zero (like null) into a Register by giving
 390   // the compiler two choices it can't resolve
 391 
 392   void store_heap_oop(Address dst, void* dummy);
 393 
 394   void encode_heap_oop(Register r);
 395   void decode_heap_oop(Register r);
 396   void encode_heap_oop_not_null(Register r);
 397   void decode_heap_oop_not_null(Register r);
 398   void encode_heap_oop_not_null(Register dst, Register src);
 399   void decode_heap_oop_not_null(Register dst, Register src);
 400 
 401   void set_narrow_oop(Register dst, jobject obj);
 402   void set_narrow_oop(Address dst, jobject obj);
 403   void cmp_narrow_oop(Register dst, jobject obj);
 404   void cmp_narrow_oop(Address dst, jobject obj);
 405 
 406   void encode_klass_not_null(Register r, Register tmp);
 407   void decode_klass_not_null(Register r, Register tmp);
 408   void encode_and_move_klass_not_null(Register dst, Register src);
 409   void decode_and_move_klass_not_null(Register dst, Register src);
 410   void set_narrow_klass(Register dst, Klass* k);
 411   void set_narrow_klass(Address dst, Klass* k);
 412   void cmp_narrow_klass(Register dst, Klass* k);
 413   void cmp_narrow_klass(Address dst, Klass* k);
 414 
 415   // if heap base register is used - reinit it with the correct value
 416   void reinit_heapbase();
 417 
 418   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 419 
 420 #endif // _LP64
 421 
 422   // Int division/remainder for Java
 423   // (as idivl, but checks for special case as described in JVM spec.)
 424   // returns idivl instruction offset for implicit exception handling
 425   int corrected_idivl(Register reg);
 426 
 427   // Long division/remainder for Java
 428   // (as idivq, but checks for special case as described in JVM spec.)
 429   // returns idivq instruction offset for implicit exception handling
 430   int corrected_idivq(Register reg);
 431 
 432   void int3();
 433 
 434   // Long operation macros for a 32bit cpu
 435   // Long negation for Java
 436   void lneg(Register hi, Register lo);
 437 
 438   // Long multiplication for Java
 439   // (destroys contents of eax, ebx, ecx and edx)
 440   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 441 
 442   // Long shifts for Java
 443   // (semantics as described in JVM spec.)
 444   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 445   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 446 
 447   // Long compare for Java
 448   // (semantics as described in JVM spec.)
 449   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 450 
 451 
 452   // misc
 453 
 454   // Sign extension
 455   void sign_extend_short(Register reg);
 456   void sign_extend_byte(Register reg);
 457 
 458   // Division by power of 2, rounding towards 0
 459   void division_with_shift(Register reg, int shift_value);
 460 
 461 #ifndef _LP64
 462   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 463   //
 464   // CF (corresponds to C0) if x < y
 465   // PF (corresponds to C2) if unordered
 466   // ZF (corresponds to C3) if x = y
 467   //
 468   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 469   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 470   void fcmp(Register tmp);
 471   // Variant of the above which allows y to be further down the stack
 472   // and which only pops x and y if specified. If pop_right is
 473   // specified then pop_left must also be specified.
 474   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 475 
 476   // Floating-point comparison for Java
 477   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 478   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 479   // (semantics as described in JVM spec.)
 480   void fcmp2int(Register dst, bool unordered_is_less);
 481   // Variant of the above which allows y to be further down the stack
 482   // and which only pops x and y if specified. If pop_right is
 483   // specified then pop_left must also be specified.
 484   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 485 
 486   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 487   // tmp is a temporary register, if none is available use noreg
 488   void fremr(Register tmp);
 489 
 490   // only if +VerifyFPU
 491   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 492 #endif // !LP64
 493 
 494   // dst = c = a * b + c
 495   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 496   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 497 
 498   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 499   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 500   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 501   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 502 
 503 
 504   // same as fcmp2int, but using SSE2
 505   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 506   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 507 
 508   // branch to L if FPU flag C2 is set/not set
 509   // tmp is a temporary register, if none is available use noreg
 510   void jC2 (Register tmp, Label& L);
 511   void jnC2(Register tmp, Label& L);
 512 
 513   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 514   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 515   void load_float(Address src);
 516 
 517   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 518   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 519   void store_float(Address dst);
 520 
 521   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 522   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 523   void load_double(Address src);
 524 
 525   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 526   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 527   void store_double(Address dst);
 528 
 529 #ifndef _LP64
 530   // Pop ST (ffree & fincstp combined)
 531   void fpop();
 532 
 533   void empty_FPU_stack();
 534 #endif // !_LP64
 535 
 536   void push_IU_state();
 537   void pop_IU_state();
 538 
 539   void push_FPU_state();
 540   void pop_FPU_state();
 541 
 542   void push_CPU_state();
 543   void pop_CPU_state();
 544 
 545   void push_cont_fastpath();
 546   void pop_cont_fastpath();
 547 
 548   void inc_held_monitor_count();
 549   void dec_held_monitor_count();
 550 
 551   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 552 
 553   // Round up to a power of two
 554   void round_to(Register reg, int modulus);
 555 
 556 private:
 557   // General purpose and XMM registers potentially clobbered by native code; there
 558   // is no need for FPU or AVX opmask related methods because C1/interpreter
 559   // - we save/restore FPU state as a whole always
 560   // - do not care about AVX-512 opmask
 561   static RegSet call_clobbered_gp_registers();
 562   static XMMRegSet call_clobbered_xmm_registers();
 563 
 564   void push_set(XMMRegSet set, int offset);
 565   void pop_set(XMMRegSet set, int offset);
 566 
 567 public:
 568   void push_set(RegSet set, int offset = -1);
 569   void pop_set(RegSet set, int offset = -1);
 570 
 571   // Push and pop everything that might be clobbered by a native
 572   // runtime call.
 573   // Only save the lower 64 bits of each vector register.
 574   // Additional registers can be excluded in a passed RegSet.
 575   void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
 576   void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
 577 
 578   void push_call_clobbered_registers(bool save_fpu = true) {
 579     push_call_clobbered_registers_except(RegSet(), save_fpu);
 580   }
 581   void pop_call_clobbered_registers(bool restore_fpu = true) {
 582     pop_call_clobbered_registers_except(RegSet(), restore_fpu);
 583   }
 584 
 585   // allocation
 586   void tlab_allocate(
 587     Register thread,                   // Current thread
 588     Register obj,                      // result: pointer to object after successful allocation
 589     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 590     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 591     Register t1,                       // temp register
 592     Register t2,                       // temp register
 593     Label&   slow_case                 // continuation point if fast allocation fails
 594   );
 595   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 596 
 597   void population_count(Register dst, Register src, Register scratch1, Register scratch2);
 598 
 599   // interface method calling
 600   void lookup_interface_method(Register recv_klass,
 601                                Register intf_klass,
 602                                RegisterOrConstant itable_index,
 603                                Register method_result,
 604                                Register scan_temp,
 605                                Label& no_such_interface,
 606                                bool return_method = true);
 607 
 608   void lookup_interface_method_stub(Register recv_klass,
 609                                     Register holder_klass,
 610                                     Register resolved_klass,
 611                                     Register method_result,
 612                                     Register scan_temp,
 613                                     Register temp_reg2,
 614                                     Register receiver,
 615                                     int itable_index,
 616                                     Label& L_no_such_interface);
 617 
 618   // virtual method calling
 619   void lookup_virtual_method(Register recv_klass,
 620                              RegisterOrConstant vtable_index,
 621                              Register method_result);
 622 
 623   // Test sub_klass against super_klass, with fast and slow paths.
 624 
 625   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 626   // One of the three labels can be null, meaning take the fall-through.
 627   // If super_check_offset is -1, the value is loaded up from super_klass.
 628   // No registers are killed, except temp_reg.
 629   void check_klass_subtype_fast_path(Register sub_klass,
 630                                      Register super_klass,
 631                                      Register temp_reg,
 632                                      Label* L_success,
 633                                      Label* L_failure,
 634                                      Label* L_slow_path,
 635                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 636 
 637   // The rest of the type check; must be wired to a corresponding fast path.
 638   // It does not repeat the fast path logic, so don't use it standalone.
 639   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 640   // Updates the sub's secondary super cache as necessary.
 641   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 642   void check_klass_subtype_slow_path(Register sub_klass,
 643                                      Register super_klass,
 644                                      Register temp_reg,
 645                                      Register temp2_reg,
 646                                      Label* L_success,
 647                                      Label* L_failure,
 648                                      bool set_cond_codes = false);
 649 
 650 #ifdef _LP64
 651   // The 64-bit version, which may do a hashed subclass lookup.
 652   void check_klass_subtype_slow_path(Register sub_klass,
 653                                      Register super_klass,
 654                                      Register temp_reg,
 655                                      Register temp2_reg,
 656                                      Register temp3_reg,
 657                                      Register temp4_reg,
 658                                      Label* L_success,
 659                                      Label* L_failure);
 660 #endif
 661 
 662   // Three parts of a hashed subclass lookup: a simple linear search,
 663   // a table lookup, and a fallback that does linear probing in the
 664   // event of a hash collision.
 665   void check_klass_subtype_slow_path_linear(Register sub_klass,
 666                                             Register super_klass,
 667                                             Register temp_reg,
 668                                             Register temp2_reg,
 669                                             Label* L_success,
 670                                             Label* L_failure,
 671                                             bool set_cond_codes = false);
 672   void check_klass_subtype_slow_path_table(Register sub_klass,
 673                                            Register super_klass,
 674                                            Register temp_reg,
 675                                            Register temp2_reg,
 676                                            Register temp3_reg,
 677                                            Register result_reg,
 678                                            Label* L_success,
 679                                            Label* L_failure);
 680   void hashed_check_klass_subtype_slow_path(Register sub_klass,
 681                                             Register super_klass,
 682                                             Register temp_reg,
 683                                             Label* L_success,
 684                                             Label* L_failure);
 685 
 686   // As above, but with a constant super_klass.
 687   // The result is in Register result, not the condition codes.
 688   void lookup_secondary_supers_table_const(Register sub_klass,
 689                                            Register super_klass,
 690                                            Register temp1,
 691                                            Register temp2,
 692                                            Register temp3,
 693                                            Register temp4,
 694                                            Register result,
 695                                            u1 super_klass_slot);
 696 
 697 #ifdef _LP64
 698   using Assembler::salq;
 699   void salq(Register dest, Register count);
 700   using Assembler::rorq;
 701   void rorq(Register dest, Register count);
 702   void lookup_secondary_supers_table_var(Register sub_klass,
 703                                          Register super_klass,
 704                                          Register temp1,
 705                                          Register temp2,
 706                                          Register temp3,
 707                                          Register temp4,
 708                                          Register result);
 709 
 710   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
 711                                                Register r_array_base,
 712                                                Register r_array_index,
 713                                                Register r_bitmap,
 714                                                Register temp1,
 715                                                Register temp2,
 716                                                Label* L_success,
 717                                                Label* L_failure = nullptr);
 718 
 719   void verify_secondary_supers_table(Register r_sub_klass,
 720                                      Register r_super_klass,
 721                                      Register expected,
 722                                      Register temp1,
 723                                      Register temp2,
 724                                      Register temp3);
 725 #endif
 726 
 727   void repne_scanq(Register addr, Register value, Register count, Register limit,
 728                    Label* L_success,
 729                    Label* L_failure = nullptr);
 730 
 731   // If r is valid, return r.
 732   // If r is invalid, remove a register r2 from available_regs, add r2
 733   // to regs_to_push, then return r2.
 734   Register allocate_if_noreg(const Register r,
 735                              RegSetIterator<Register> &available_regs,
 736                              RegSet &regs_to_push);
 737 
 738   // Simplified, combined version, good for typical uses.
 739   // Falls through on failure.
 740   void check_klass_subtype(Register sub_klass,
 741                            Register super_klass,
 742                            Register temp_reg,
 743                            Label& L_success);
 744 
 745   void clinit_barrier(Register klass,
 746                       Register thread,
 747                       Label* L_fast_path = nullptr,
 748                       Label* L_slow_path = nullptr);
 749 
 750   // method handles (JSR 292)
 751   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 752 
 753   // Debugging
 754 
 755   // only if +VerifyOops
 756   void _verify_oop(Register reg, const char* s, const char* file, int line);
 757   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 758 
 759   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 760     if (VerifyOops) {
 761       _verify_oop(reg, s, file, line);
 762     }
 763   }
 764   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 765     if (VerifyOops) {
 766       _verify_oop_addr(reg, s, file, line);
 767     }
 768   }
 769 
 770   // TODO: verify method and klass metadata (compare against vptr?)
 771   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 772   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 773 
 774 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 775 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 776 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 777 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 778 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 779 
 780   // Verify or restore cpu control state after JNI call
 781   void restore_cpu_control_state_after_jni(Register rscratch);
 782 
 783   // prints msg, dumps registers and stops execution
 784   void stop(const char* msg);
 785 
 786   // prints msg and continues
 787   void warn(const char* msg);
 788 
 789   // dumps registers and other state
 790   void print_state();
 791 
 792   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 793   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 794   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 795   static void print_state64(int64_t pc, int64_t regs[]);
 796 
 797   void os_breakpoint();
 798 
 799   void untested()                                { stop("untested"); }
 800 
 801   void unimplemented(const char* what = "");
 802 
 803   void should_not_reach_here()                   { stop("should not reach here"); }
 804 
 805   void print_CPU_state();
 806 
 807   // Stack overflow checking
 808   void bang_stack_with_offset(int offset) {
 809     // stack grows down, caller passes positive offset
 810     assert(offset > 0, "must bang with negative offset");
 811     movl(Address(rsp, (-offset)), rax);
 812   }
 813 
 814   // Writes to stack successive pages until offset reached to check for
 815   // stack overflow + shadow pages.  Also, clobbers tmp
 816   void bang_stack_size(Register size, Register tmp);
 817 
 818   // Check for reserved stack access in method being exited (for JIT)
 819   void reserved_stack_check();
 820 
 821   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 822 
 823   void verify_tlab();
 824 
 825   static Condition negate_condition(Condition cond);
 826 
 827   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 828   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 829   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 830   // here in MacroAssembler. The major exception to this rule is call
 831 
 832   // Arithmetics
 833 
 834 
 835   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 836   void addptr(Address dst, Register src);
 837 
 838   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 839   void addptr(Register dst, int32_t src);
 840   void addptr(Register dst, Register src);
 841   void addptr(Register dst, RegisterOrConstant src) {
 842     if (src.is_constant()) addptr(dst, checked_cast<int>(src.as_constant()));
 843     else                   addptr(dst, src.as_register());
 844   }
 845 
 846   void andptr(Register dst, int32_t src);
 847   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 848 
 849 #ifdef _LP64
 850   using Assembler::andq;
 851   void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
 852 #endif
 853 
 854   void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
 855 
 856   // renamed to drag out the casting of address to int32_t/intptr_t
 857   void cmp32(Register src1, int32_t imm);
 858 
 859   void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
 860   // compare reg - mem, or reg - &mem
 861   void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
 862 
 863   void cmp32(Register src1, Address src2);
 864 
 865 #ifndef _LP64
 866   void cmpklass(Address dst, Metadata* obj);
 867   void cmpklass(Register dst, Metadata* obj);
 868   void cmpoop(Address dst, jobject obj);
 869 #endif // _LP64
 870 
 871   void cmpoop(Register src1, Register src2);
 872   void cmpoop(Register src1, Address src2);
 873   void cmpoop(Register dst, jobject obj, Register rscratch);
 874 
 875   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 876   void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
 877 
 878   void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
 879 
 880   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 881   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 882   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 883 
 884   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 885   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 886 
 887   // cmp64 to avoild hiding cmpq
 888   void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
 889 
 890   void cmpxchgptr(Register reg, Address adr);
 891 
 892   void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
 893 
 894   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 895   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 896 
 897 
 898   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 899 
 900   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 901 
 902   void shlptr(Register dst, int32_t shift);
 903   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 904 
 905   void shrptr(Register dst, int32_t shift);
 906   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 907 
 908   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 909   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 910 
 911   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 912 
 913   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 914   void subptr(Register dst, int32_t src);
 915   // Force generation of a 4 byte immediate value even if it fits into 8bit
 916   void subptr_imm32(Register dst, int32_t src);
 917   void subptr(Register dst, Register src);
 918   void subptr(Register dst, RegisterOrConstant src) {
 919     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 920     else                   subptr(dst,       src.as_register());
 921   }
 922 
 923   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 924   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 925 
 926   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 927   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 928 
 929   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 930 
 931 
 932 
 933   // Helper functions for statistics gathering.
 934   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 935   void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
 936   // Unconditional atomic increment.
 937   void atomic_incl(Address counter_addr);
 938   void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
 939 #ifdef _LP64
 940   void atomic_incq(Address counter_addr);
 941   void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
 942 #endif
 943   void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; }
 944   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 945 
 946   void lea(Register dst, Address        adr) { Assembler::lea(dst, adr); }
 947   void lea(Register dst, AddressLiteral adr);
 948   void lea(Address  dst, AddressLiteral adr, Register rscratch);
 949 
 950   void leal32(Register dst, Address src) { leal(dst, src); }
 951 
 952   // Import other testl() methods from the parent class or else
 953   // they will be hidden by the following overriding declaration.
 954   using Assembler::testl;
 955   void testl(Address dst, int32_t imm32);
 956   void testl(Register dst, int32_t imm32);
 957   void testl(Register dst, AddressLiteral src); // requires reachable address
 958   using Assembler::testq;
 959   void testq(Address dst, int32_t imm32);
 960   void testq(Register dst, int32_t imm32);
 961 
 962   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 963   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 964   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 965   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 966 
 967   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 968   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 969   void testptr(Address src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 970   void testptr(Register src1, Register src2);
 971 
 972   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 973   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 974 
 975   // Calls
 976 
 977   void call(Label& L, relocInfo::relocType rtype);
 978   void call(Register entry);
 979   void call(Address addr) { Assembler::call(addr); }
 980 
 981   // NOTE: this call transfers to the effective address of entry NOT
 982   // the address contained by entry. This is because this is more natural
 983   // for jumps/calls.
 984   void call(AddressLiteral entry, Register rscratch = rax);
 985 
 986   // Emit the CompiledIC call idiom
 987   void ic_call(address entry, jint method_index = 0);
 988   static int ic_check_size();
 989   int ic_check(int end_alignment);
 990 
 991   void emit_static_call_stub();
 992 
 993   // Jumps
 994 
 995   // NOTE: these jumps transfer to the effective address of dst NOT
 996   // the address contained by dst. This is because this is more natural
 997   // for jumps/calls.
 998   void jump(AddressLiteral dst, Register rscratch = noreg);
 999 
1000   void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
1001 
1002   // 32bit can do a case table jump in one instruction but we no longer allow the base
1003   // to be installed in the Address class. This jump will transfer to the address
1004   // contained in the location described by entry (not the address of entry)
1005   void jump(ArrayAddress entry, Register rscratch);
1006 
1007   // Adding more natural conditional jump instructions
1008   void ALWAYSINLINE jo(Label& L, bool maybe_short = true) { jcc(Assembler::overflow, L, maybe_short); }
1009   void ALWAYSINLINE jno(Label& L, bool maybe_short = true) { jcc(Assembler::noOverflow, L, maybe_short); }
1010   void ALWAYSINLINE js(Label& L, bool maybe_short = true) { jcc(Assembler::negative, L, maybe_short); }
1011   void ALWAYSINLINE jns(Label& L, bool maybe_short = true) { jcc(Assembler::positive, L, maybe_short); }
1012   void ALWAYSINLINE je(Label& L, bool maybe_short = true) { jcc(Assembler::equal, L, maybe_short); }
1013   void ALWAYSINLINE jz(Label& L, bool maybe_short = true) { jcc(Assembler::zero, L, maybe_short); }
1014   void ALWAYSINLINE jne(Label& L, bool maybe_short = true) { jcc(Assembler::notEqual, L, maybe_short); }
1015   void ALWAYSINLINE jnz(Label& L, bool maybe_short = true) { jcc(Assembler::notZero, L, maybe_short); }
1016   void ALWAYSINLINE jb(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1017   void ALWAYSINLINE jnae(Label& L, bool maybe_short = true) { jcc(Assembler::below, L, maybe_short); }
1018   void ALWAYSINLINE jc(Label& L, bool maybe_short = true) { jcc(Assembler::carrySet, L, maybe_short); }
1019   void ALWAYSINLINE jnb(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1020   void ALWAYSINLINE jae(Label& L, bool maybe_short = true) { jcc(Assembler::aboveEqual, L, maybe_short); }
1021   void ALWAYSINLINE jnc(Label& L, bool maybe_short = true) { jcc(Assembler::carryClear, L, maybe_short); }
1022   void ALWAYSINLINE jbe(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1023   void ALWAYSINLINE jna(Label& L, bool maybe_short = true) { jcc(Assembler::belowEqual, L, maybe_short); }
1024   void ALWAYSINLINE ja(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1025   void ALWAYSINLINE jnbe(Label& L, bool maybe_short = true) { jcc(Assembler::above, L, maybe_short); }
1026   void ALWAYSINLINE jl(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1027   void ALWAYSINLINE jnge(Label& L, bool maybe_short = true) { jcc(Assembler::less, L, maybe_short); }
1028   void ALWAYSINLINE jge(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1029   void ALWAYSINLINE jnl(Label& L, bool maybe_short = true) { jcc(Assembler::greaterEqual, L, maybe_short); }
1030   void ALWAYSINLINE jle(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1031   void ALWAYSINLINE jng(Label& L, bool maybe_short = true) { jcc(Assembler::lessEqual, L, maybe_short); }
1032   void ALWAYSINLINE jg(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1033   void ALWAYSINLINE jnle(Label& L, bool maybe_short = true) { jcc(Assembler::greater, L, maybe_short); }
1034   void ALWAYSINLINE jp(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1035   void ALWAYSINLINE jpe(Label& L, bool maybe_short = true) { jcc(Assembler::parity, L, maybe_short); }
1036   void ALWAYSINLINE jnp(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1037   void ALWAYSINLINE jpo(Label& L, bool maybe_short = true) { jcc(Assembler::noParity, L, maybe_short); }
1038   // * No condition for this *  void ALWAYSINLINE jcxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1039   // * No condition for this *  void ALWAYSINLINE jecxz(Label& L, bool maybe_short = true) { jcc(Assembler::cxz, L, maybe_short); }
1040 
1041   // Short versions of the above
1042   void ALWAYSINLINE jo_b(Label& L) { jccb(Assembler::overflow, L); }
1043   void ALWAYSINLINE jno_b(Label& L) { jccb(Assembler::noOverflow, L); }
1044   void ALWAYSINLINE js_b(Label& L) { jccb(Assembler::negative, L); }
1045   void ALWAYSINLINE jns_b(Label& L) { jccb(Assembler::positive, L); }
1046   void ALWAYSINLINE je_b(Label& L) { jccb(Assembler::equal, L); }
1047   void ALWAYSINLINE jz_b(Label& L) { jccb(Assembler::zero, L); }
1048   void ALWAYSINLINE jne_b(Label& L) { jccb(Assembler::notEqual, L); }
1049   void ALWAYSINLINE jnz_b(Label& L) { jccb(Assembler::notZero, L); }
1050   void ALWAYSINLINE jb_b(Label& L) { jccb(Assembler::below, L); }
1051   void ALWAYSINLINE jnae_b(Label& L) { jccb(Assembler::below, L); }
1052   void ALWAYSINLINE jc_b(Label& L) { jccb(Assembler::carrySet, L); }
1053   void ALWAYSINLINE jnb_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1054   void ALWAYSINLINE jae_b(Label& L) { jccb(Assembler::aboveEqual, L); }
1055   void ALWAYSINLINE jnc_b(Label& L) { jccb(Assembler::carryClear, L); }
1056   void ALWAYSINLINE jbe_b(Label& L) { jccb(Assembler::belowEqual, L); }
1057   void ALWAYSINLINE jna_b(Label& L) { jccb(Assembler::belowEqual, L); }
1058   void ALWAYSINLINE ja_b(Label& L) { jccb(Assembler::above, L); }
1059   void ALWAYSINLINE jnbe_b(Label& L) { jccb(Assembler::above, L); }
1060   void ALWAYSINLINE jl_b(Label& L) { jccb(Assembler::less, L); }
1061   void ALWAYSINLINE jnge_b(Label& L) { jccb(Assembler::less, L); }
1062   void ALWAYSINLINE jge_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1063   void ALWAYSINLINE jnl_b(Label& L) { jccb(Assembler::greaterEqual, L); }
1064   void ALWAYSINLINE jle_b(Label& L) { jccb(Assembler::lessEqual, L); }
1065   void ALWAYSINLINE jng_b(Label& L) { jccb(Assembler::lessEqual, L); }
1066   void ALWAYSINLINE jg_b(Label& L) { jccb(Assembler::greater, L); }
1067   void ALWAYSINLINE jnle_b(Label& L) { jccb(Assembler::greater, L); }
1068   void ALWAYSINLINE jp_b(Label& L) { jccb(Assembler::parity, L); }
1069   void ALWAYSINLINE jpe_b(Label& L) { jccb(Assembler::parity, L); }
1070   void ALWAYSINLINE jnp_b(Label& L) { jccb(Assembler::noParity, L); }
1071   void ALWAYSINLINE jpo_b(Label& L) { jccb(Assembler::noParity, L); }
1072   // * No condition for this *  void ALWAYSINLINE jcxz_b(Label& L) { jccb(Assembler::cxz, L); }
1073   // * No condition for this *  void ALWAYSINLINE jecxz_b(Label& L) { jccb(Assembler::cxz, L); }
1074 
1075   // Floating
1076 
1077   void push_f(XMMRegister r);
1078   void pop_f(XMMRegister r);
1079   void push_d(XMMRegister r);
1080   void pop_d(XMMRegister r);
1081 
1082   void andpd(XMMRegister dst, XMMRegister    src) { Assembler::andpd(dst, src); }
1083   void andpd(XMMRegister dst, Address        src) { Assembler::andpd(dst, src); }
1084   void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1085 
1086   void andps(XMMRegister dst, XMMRegister    src) { Assembler::andps(dst, src); }
1087   void andps(XMMRegister dst, Address        src) { Assembler::andps(dst, src); }
1088   void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1089 
1090   void comiss(XMMRegister dst, XMMRegister    src) { Assembler::comiss(dst, src); }
1091   void comiss(XMMRegister dst, Address        src) { Assembler::comiss(dst, src); }
1092   void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1093 
1094   void comisd(XMMRegister dst, XMMRegister    src) { Assembler::comisd(dst, src); }
1095   void comisd(XMMRegister dst, Address        src) { Assembler::comisd(dst, src); }
1096   void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1097 
1098 #ifndef _LP64
1099   void fadd_s(Address        src) { Assembler::fadd_s(src); }
1100   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
1101 
1102   void fldcw(Address        src) { Assembler::fldcw(src); }
1103   void fldcw(AddressLiteral src);
1104 
1105   void fld_s(int index)          { Assembler::fld_s(index); }
1106   void fld_s(Address        src) { Assembler::fld_s(src); }
1107   void fld_s(AddressLiteral src);
1108 
1109   void fld_d(Address        src) { Assembler::fld_d(src); }
1110   void fld_d(AddressLiteral src);
1111 
1112   void fld_x(Address        src) { Assembler::fld_x(src); }
1113   void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); }
1114 
1115   void fmul_s(Address        src) { Assembler::fmul_s(src); }
1116   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
1117 #endif // !_LP64
1118 
1119   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
1120   void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
1121 
1122 #ifdef _LP64
1123  private:
1124   void sha256_AVX2_one_round_compute(
1125     Register  reg_old_h,
1126     Register  reg_a,
1127     Register  reg_b,
1128     Register  reg_c,
1129     Register  reg_d,
1130     Register  reg_e,
1131     Register  reg_f,
1132     Register  reg_g,
1133     Register  reg_h,
1134     int iter);
1135   void sha256_AVX2_four_rounds_compute_first(int start);
1136   void sha256_AVX2_four_rounds_compute_last(int start);
1137   void sha256_AVX2_one_round_and_sched(
1138         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
1139         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
1140         XMMRegister xmm_2,     /* ymm6 */
1141         XMMRegister xmm_3,     /* ymm7 */
1142         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
1143         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
1144         Register    reg_c,      /* edi */
1145         Register    reg_d,      /* esi */
1146         Register    reg_e,      /* r8d */
1147         Register    reg_f,      /* r9d */
1148         Register    reg_g,      /* r10d */
1149         Register    reg_h,      /* r11d */
1150         int iter);
1151 
1152   void addm(int disp, Register r1, Register r2);
1153 
1154   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1155                                      Register e, Register f, Register g, Register h, int iteration);
1156 
1157   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1158                                           Register a, Register b, Register c, Register d, Register e, Register f,
1159                                           Register g, Register h, int iteration);
1160 
1161   void addmq(int disp, Register r1, Register r2);
1162  public:
1163   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1164                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1165                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1166                    bool multi_block, XMMRegister shuf_mask);
1167   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1168                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1169                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1170                    XMMRegister shuf_mask);
1171   void sha512_update_ni_x1(Register arg_hash, Register arg_msg, Register ofs, Register limit, bool multi_block);
1172 #endif // _LP64
1173 
1174   void fast_md5(Register buf, Address state, Address ofs, Address limit,
1175                 bool multi_block);
1176 
1177   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1178                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1179                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1180                  bool multi_block);
1181 
1182 #ifdef _LP64
1183   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1184                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1185                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1186                    bool multi_block, XMMRegister shuf_mask);
1187 #else
1188   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1189                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1190                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1191                    bool multi_block);
1192 #endif
1193 
1194   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1195                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1196                 Register rax, Register rcx, Register rdx, Register tmp);
1197 
1198 #ifndef _LP64
1199  private:
1200   // Initialized in macroAssembler_x86_constants.cpp
1201   static address ONES;
1202   static address L_2IL0FLOATPACKET_0;
1203   static address PI4_INV;
1204   static address PI4X3;
1205   static address PI4X4;
1206 
1207  public:
1208   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1209                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1210                 Register rax, Register rcx, Register rdx, Register tmp1);
1211 
1212   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1213                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1214                 Register rax, Register rcx, Register rdx, Register tmp);
1215 
1216   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1217                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1218                 Register rdx, Register tmp);
1219 
1220   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1221                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1222                 Register rax, Register rbx, Register rdx);
1223 
1224   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1225                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1226                 Register rax, Register rcx, Register rdx, Register tmp);
1227 
1228   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1229                         Register edx, Register ebx, Register esi, Register edi,
1230                         Register ebp, Register esp);
1231 
1232   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1233                          Register esi, Register edi, Register ebp, Register esp);
1234 
1235   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1236                         Register edx, Register ebx, Register esi, Register edi,
1237                         Register ebp, Register esp);
1238 
1239   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1240                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1241                 Register rax, Register rcx, Register rdx, Register tmp);
1242 #endif // !_LP64
1243 
1244 private:
1245 
1246   // these are private because users should be doing movflt/movdbl
1247 
1248   void movss(Address     dst, XMMRegister    src) { Assembler::movss(dst, src); }
1249   void movss(XMMRegister dst, XMMRegister    src) { Assembler::movss(dst, src); }
1250   void movss(XMMRegister dst, Address        src) { Assembler::movss(dst, src); }
1251   void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1252 
1253   void movlpd(XMMRegister dst, Address        src) {Assembler::movlpd(dst, src); }
1254   void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1255 
1256 public:
1257 
1258   void addsd(XMMRegister dst, XMMRegister    src) { Assembler::addsd(dst, src); }
1259   void addsd(XMMRegister dst, Address        src) { Assembler::addsd(dst, src); }
1260   void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1261 
1262   void addss(XMMRegister dst, XMMRegister    src) { Assembler::addss(dst, src); }
1263   void addss(XMMRegister dst, Address        src) { Assembler::addss(dst, src); }
1264   void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1265 
1266   void addpd(XMMRegister dst, XMMRegister    src) { Assembler::addpd(dst, src); }
1267   void addpd(XMMRegister dst, Address        src) { Assembler::addpd(dst, src); }
1268   void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1269 
1270   using Assembler::vbroadcasti128;
1271   void vbroadcasti128(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1272 
1273   using Assembler::vbroadcastsd;
1274   void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1275 
1276   using Assembler::vbroadcastss;
1277   void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1278 
1279   // Vector float blend
1280   void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1281   void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len, bool compute_mask = true, XMMRegister scratch = xnoreg);
1282 
1283   void divsd(XMMRegister dst, XMMRegister    src) { Assembler::divsd(dst, src); }
1284   void divsd(XMMRegister dst, Address        src) { Assembler::divsd(dst, src); }
1285   void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1286 
1287   void divss(XMMRegister dst, XMMRegister    src) { Assembler::divss(dst, src); }
1288   void divss(XMMRegister dst, Address        src) { Assembler::divss(dst, src); }
1289   void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1290 
1291   // Move Unaligned Double Quadword
1292   void movdqu(Address     dst, XMMRegister    src);
1293   void movdqu(XMMRegister dst, XMMRegister    src);
1294   void movdqu(XMMRegister dst, Address        src);
1295   void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1296 
1297   void kmovwl(Register  dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1298   void kmovwl(Address   dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1299   void kmovwl(KRegister dst, KRegister      src) { Assembler::kmovwl(dst, src); }
1300   void kmovwl(KRegister dst, Register       src) { Assembler::kmovwl(dst, src); }
1301   void kmovwl(KRegister dst, Address        src) { Assembler::kmovwl(dst, src); }
1302   void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1303 
1304   void kmovql(KRegister dst, KRegister      src) { Assembler::kmovql(dst, src); }
1305   void kmovql(KRegister dst, Register       src) { Assembler::kmovql(dst, src); }
1306   void kmovql(Register  dst, KRegister      src) { Assembler::kmovql(dst, src); }
1307   void kmovql(KRegister dst, Address        src) { Assembler::kmovql(dst, src); }
1308   void kmovql(Address   dst, KRegister      src) { Assembler::kmovql(dst, src); }
1309   void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
1310 
1311   // Safe move operation, lowers down to 16bit moves for targets supporting
1312   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1313   void kmov(Address  dst, KRegister src);
1314   void kmov(KRegister dst, Address src);
1315   void kmov(KRegister dst, KRegister src);
1316   void kmov(Register dst, KRegister src);
1317   void kmov(KRegister dst, Register src);
1318 
1319   using Assembler::movddup;
1320   void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1321 
1322   using Assembler::vmovddup;
1323   void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1324 
1325   // AVX Unaligned forms
1326   void vmovdqu(Address     dst, XMMRegister    src);
1327   void vmovdqu(XMMRegister dst, Address        src);
1328   void vmovdqu(XMMRegister dst, XMMRegister    src);
1329   void vmovdqu(XMMRegister dst, AddressLiteral src,                 Register rscratch = noreg);
1330   void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1331 
1332   // AVX512 Unaligned
1333   void evmovdqu(BasicType type, KRegister kmask, Address     dst, XMMRegister src, bool merge, int vector_len);
1334   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address     src, bool merge, int vector_len);
1335   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, XMMRegister src, bool merge, int vector_len);
1336 
1337   void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1338   void evmovdqub(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
1339 
1340   void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1341     if (dst->encoding() != src->encoding() || mask != k0)  {
1342       Assembler::evmovdqub(dst, mask, src, merge, vector_len);
1343     }
1344   }
1345   void evmovdqub(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1346   void evmovdqub(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1347   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1348 
1349   void evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1350   void evmovdquw(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1351   void evmovdquw(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
1352 
1353   void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1354     if (dst->encoding() != src->encoding() || mask != k0) {
1355       Assembler::evmovdquw(dst, mask, src, merge, vector_len);
1356     }
1357   }
1358   void evmovdquw(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1359   void evmovdquw(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1360   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1361 
1362   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1363      if (dst->encoding() != src->encoding()) {
1364        Assembler::evmovdqul(dst, src, vector_len);
1365      }
1366   }
1367   void evmovdqul(Address     dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1368   void evmovdqul(XMMRegister dst, Address     src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1369 
1370   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1371     if (dst->encoding() != src->encoding() || mask != k0)  {
1372       Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1373     }
1374   }
1375   void evmovdqul(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1376   void evmovdqul(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1377   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1378 
1379   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1380     if (dst->encoding() != src->encoding()) {
1381       Assembler::evmovdquq(dst, src, vector_len);
1382     }
1383   }
1384   void evmovdquq(XMMRegister dst, Address        src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1385   void evmovdquq(Address     dst, XMMRegister    src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1386   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1387 
1388   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1389     if (dst->encoding() != src->encoding() || mask != k0) {
1390       Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1391     }
1392   }
1393   void evmovdquq(Address     dst, KRegister mask, XMMRegister    src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1394   void evmovdquq(XMMRegister dst, KRegister mask, Address        src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1395   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1396 
1397   // Move Aligned Double Quadword
1398   void movdqa(XMMRegister dst, XMMRegister    src) { Assembler::movdqa(dst, src); }
1399   void movdqa(XMMRegister dst, Address        src) { Assembler::movdqa(dst, src); }
1400   void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1401 
1402   void movsd(Address     dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1403   void movsd(XMMRegister dst, XMMRegister    src) { Assembler::movsd(dst, src); }
1404   void movsd(XMMRegister dst, Address        src) { Assembler::movsd(dst, src); }
1405   void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1406 
1407   void mulpd(XMMRegister dst, XMMRegister    src) { Assembler::mulpd(dst, src); }
1408   void mulpd(XMMRegister dst, Address        src) { Assembler::mulpd(dst, src); }
1409   void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1410 
1411   void mulsd(XMMRegister dst, XMMRegister    src) { Assembler::mulsd(dst, src); }
1412   void mulsd(XMMRegister dst, Address        src) { Assembler::mulsd(dst, src); }
1413   void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1414 
1415   void mulss(XMMRegister dst, XMMRegister    src) { Assembler::mulss(dst, src); }
1416   void mulss(XMMRegister dst, Address        src) { Assembler::mulss(dst, src); }
1417   void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1418 
1419   // Carry-Less Multiplication Quadword
1420   void pclmulldq(XMMRegister dst, XMMRegister src) {
1421     // 0x00 - multiply lower 64 bits [0:63]
1422     Assembler::pclmulqdq(dst, src, 0x00);
1423   }
1424   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1425     // 0x11 - multiply upper 64 bits [64:127]
1426     Assembler::pclmulqdq(dst, src, 0x11);
1427   }
1428 
1429   void pcmpeqb(XMMRegister dst, XMMRegister src);
1430   void pcmpeqw(XMMRegister dst, XMMRegister src);
1431 
1432   void pcmpestri(XMMRegister dst, Address src, int imm8);
1433   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1434 
1435   void pmovzxbw(XMMRegister dst, XMMRegister src);
1436   void pmovzxbw(XMMRegister dst, Address src);
1437 
1438   void pmovmskb(Register dst, XMMRegister src);
1439 
1440   void ptest(XMMRegister dst, XMMRegister src);
1441 
1442   void roundsd(XMMRegister dst, XMMRegister    src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1443   void roundsd(XMMRegister dst, Address        src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
1444   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
1445 
1446   void sqrtss(XMMRegister dst, XMMRegister     src) { Assembler::sqrtss(dst, src); }
1447   void sqrtss(XMMRegister dst, Address         src) { Assembler::sqrtss(dst, src); }
1448   void sqrtss(XMMRegister dst, AddressLiteral  src, Register rscratch = noreg);
1449 
1450   void subsd(XMMRegister dst, XMMRegister    src) { Assembler::subsd(dst, src); }
1451   void subsd(XMMRegister dst, Address        src) { Assembler::subsd(dst, src); }
1452   void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1453 
1454   void subss(XMMRegister dst, XMMRegister    src) { Assembler::subss(dst, src); }
1455   void subss(XMMRegister dst, Address        src) { Assembler::subss(dst, src); }
1456   void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1457 
1458   void ucomiss(XMMRegister dst, XMMRegister    src) { Assembler::ucomiss(dst, src); }
1459   void ucomiss(XMMRegister dst, Address        src) { Assembler::ucomiss(dst, src); }
1460   void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1461 
1462   void ucomisd(XMMRegister dst, XMMRegister    src) { Assembler::ucomisd(dst, src); }
1463   void ucomisd(XMMRegister dst, Address        src) { Assembler::ucomisd(dst, src); }
1464   void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1465 
1466   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1467   void xorpd(XMMRegister dst, XMMRegister    src);
1468   void xorpd(XMMRegister dst, Address        src) { Assembler::xorpd(dst, src); }
1469   void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1470 
1471   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1472   void xorps(XMMRegister dst, XMMRegister    src);
1473   void xorps(XMMRegister dst, Address        src) { Assembler::xorps(dst, src); }
1474   void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1475 
1476   // Shuffle Bytes
1477   void pshufb(XMMRegister dst, XMMRegister    src) { Assembler::pshufb(dst, src); }
1478   void pshufb(XMMRegister dst, Address        src) { Assembler::pshufb(dst, src); }
1479   void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
1480   // AVX 3-operands instructions
1481 
1482   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddsd(dst, nds, src); }
1483   void vaddsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddsd(dst, nds, src); }
1484   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1485 
1486   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vaddss(dst, nds, src); }
1487   void vaddss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vaddss(dst, nds, src); }
1488   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1489 
1490   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1491   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
1492 
1493   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len);
1494   void vpaddb(XMMRegister dst, XMMRegister nds, Address        src, int vector_len);
1495   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1496 
1497   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1498   void vpaddw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1499 
1500   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1501   void vpaddd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1502   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1503 
1504   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1505   void vpand(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1506   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1507 
1508   using Assembler::vpbroadcastd;
1509   void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1510 
1511   using Assembler::vpbroadcastq;
1512   void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
1513 
1514   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1515   void vpcmpeqb(XMMRegister dst, XMMRegister src1, Address src2, int vector_len);
1516 
1517   void vpcmpeqw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1518   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1519   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1520 
1521   // Vector compares
1522   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1523     Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
1524   }
1525   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1526 
1527   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1528     Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
1529   }
1530   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1531 
1532   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1533     Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
1534   }
1535   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1536 
1537   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister    src, int comparison, bool is_signed, int vector_len) {
1538     Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
1539   }
1540   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
1541 
1542   void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
1543 
1544   // Emit comparison instruction for the specified comparison predicate.
1545   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
1546   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1547 
1548   void vpmovzxbw(XMMRegister dst, Address     src, int vector_len);
1549   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1550 
1551   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1552 
1553   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1554   void vpmullw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1555 
1556   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1557   void vpmulld(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
1558   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1559 
1560   void vpmuldq(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpmuldq(dst, nds, src, vector_len); }
1561 
1562   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1563   void vpsubb(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1564 
1565   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1566   void vpsubw(XMMRegister dst, XMMRegister nds, Address     src, int vector_len);
1567 
1568   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1569   void vpsraw(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1570 
1571   void evpsrad(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1572   void evpsrad(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1573 
1574   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1575   void evpsraq(XMMRegister dst, XMMRegister nds, int         shift, int vector_len);
1576 
1577   using Assembler::evpsllw;
1578   void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1579     if (!is_varshift) {
1580       Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
1581     } else {
1582       Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
1583     }
1584   }
1585   void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1586     if (!is_varshift) {
1587       Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
1588     } else {
1589       Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
1590     }
1591   }
1592   void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1593     if (!is_varshift) {
1594       Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
1595     } else {
1596       Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
1597     }
1598   }
1599   void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1600     if (!is_varshift) {
1601       Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
1602     } else {
1603       Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
1604     }
1605   }
1606   void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1607     if (!is_varshift) {
1608       Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
1609     } else {
1610       Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
1611     }
1612   }
1613 
1614   using Assembler::evpsrlq;
1615   void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1616     if (!is_varshift) {
1617       Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
1618     } else {
1619       Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
1620     }
1621   }
1622   using Assembler::evpsraw;
1623   void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1624     if (!is_varshift) {
1625       Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
1626     } else {
1627       Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
1628     }
1629   }
1630   using Assembler::evpsrad;
1631   void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1632     if (!is_varshift) {
1633       Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
1634     } else {
1635       Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
1636     }
1637   }
1638   using Assembler::evpsraq;
1639   void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
1640     if (!is_varshift) {
1641       Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
1642     } else {
1643       Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
1644     }
1645   }
1646 
1647   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1648   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1649   void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1650   void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1651 
1652   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1653   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1654   void evpminu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1655   void evpmaxu(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1656 
1657   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1658   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1659 
1660   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1661   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1662 
1663   void vptest(XMMRegister dst, XMMRegister src);
1664   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1665 
1666   void punpcklbw(XMMRegister dst, XMMRegister src);
1667   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1668 
1669   void pshufd(XMMRegister dst, Address src, int mode);
1670   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1671 
1672   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1673   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1674 
1675   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1676   void vandpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1677   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1678 
1679   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1680   void vandps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1681   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1682 
1683   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1684 
1685   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivsd(dst, nds, src); }
1686   void vdivsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivsd(dst, nds, src); }
1687   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1688 
1689   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vdivss(dst, nds, src); }
1690   void vdivss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vdivss(dst, nds, src); }
1691   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1692 
1693   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulsd(dst, nds, src); }
1694   void vmulsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulsd(dst, nds, src); }
1695   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1696 
1697   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vmulss(dst, nds, src); }
1698   void vmulss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vmulss(dst, nds, src); }
1699   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1700 
1701   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubsd(dst, nds, src); }
1702   void vsubsd(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubsd(dst, nds, src); }
1703   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1704 
1705   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister    src) { Assembler::vsubss(dst, nds, src); }
1706   void vsubss(XMMRegister dst, XMMRegister nds, Address        src) { Assembler::vsubss(dst, nds, src); }
1707   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1708 
1709   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1710   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
1711 
1712   // AVX Vector instructions
1713 
1714   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1715   void vxorpd(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1716   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1717 
1718   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1719   void vxorps(XMMRegister dst, XMMRegister nds, Address        src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1720   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1721 
1722   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1723     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1724       Assembler::vpxor(dst, nds, src, vector_len);
1725     else
1726       Assembler::vxorpd(dst, nds, src, vector_len);
1727   }
1728   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1729     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1730       Assembler::vpxor(dst, nds, src, vector_len);
1731     else
1732       Assembler::vxorpd(dst, nds, src, vector_len);
1733   }
1734   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1735 
1736   // Simple version for AVX2 256bit vectors
1737   void vpxor(XMMRegister dst, XMMRegister src) {
1738     assert(UseAVX >= 2, "Should be at least AVX2");
1739     Assembler::vpxor(dst, dst, src, AVX_256bit);
1740   }
1741   void vpxor(XMMRegister dst, Address src) {
1742     assert(UseAVX >= 2, "Should be at least AVX2");
1743     Assembler::vpxor(dst, dst, src, AVX_256bit);
1744   }
1745 
1746   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister    src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1747   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1748 
1749   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1750     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1751       Assembler::vinserti32x4(dst, nds, src, imm8);
1752     } else if (UseAVX > 1) {
1753       // vinserti128 is available only in AVX2
1754       Assembler::vinserti128(dst, nds, src, imm8);
1755     } else {
1756       Assembler::vinsertf128(dst, nds, src, imm8);
1757     }
1758   }
1759 
1760   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1761     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1762       Assembler::vinserti32x4(dst, nds, src, imm8);
1763     } else if (UseAVX > 1) {
1764       // vinserti128 is available only in AVX2
1765       Assembler::vinserti128(dst, nds, src, imm8);
1766     } else {
1767       Assembler::vinsertf128(dst, nds, src, imm8);
1768     }
1769   }
1770 
1771   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1772     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1773       Assembler::vextracti32x4(dst, src, imm8);
1774     } else if (UseAVX > 1) {
1775       // vextracti128 is available only in AVX2
1776       Assembler::vextracti128(dst, src, imm8);
1777     } else {
1778       Assembler::vextractf128(dst, src, imm8);
1779     }
1780   }
1781 
1782   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1783     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1784       Assembler::vextracti32x4(dst, src, imm8);
1785     } else if (UseAVX > 1) {
1786       // vextracti128 is available only in AVX2
1787       Assembler::vextracti128(dst, src, imm8);
1788     } else {
1789       Assembler::vextractf128(dst, src, imm8);
1790     }
1791   }
1792 
1793   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1794   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1795     vinserti128(dst, dst, src, 1);
1796   }
1797   void vinserti128_high(XMMRegister dst, Address src) {
1798     vinserti128(dst, dst, src, 1);
1799   }
1800   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1801     vextracti128(dst, src, 1);
1802   }
1803   void vextracti128_high(Address dst, XMMRegister src) {
1804     vextracti128(dst, src, 1);
1805   }
1806 
1807   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1808     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1809       Assembler::vinsertf32x4(dst, dst, src, 1);
1810     } else {
1811       Assembler::vinsertf128(dst, dst, src, 1);
1812     }
1813   }
1814 
1815   void vinsertf128_high(XMMRegister dst, Address src) {
1816     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1817       Assembler::vinsertf32x4(dst, dst, src, 1);
1818     } else {
1819       Assembler::vinsertf128(dst, dst, src, 1);
1820     }
1821   }
1822 
1823   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1824     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1825       Assembler::vextractf32x4(dst, src, 1);
1826     } else {
1827       Assembler::vextractf128(dst, src, 1);
1828     }
1829   }
1830 
1831   void vextractf128_high(Address dst, XMMRegister src) {
1832     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1833       Assembler::vextractf32x4(dst, src, 1);
1834     } else {
1835       Assembler::vextractf128(dst, src, 1);
1836     }
1837   }
1838 
1839   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1840   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1841     Assembler::vinserti64x4(dst, dst, src, 1);
1842   }
1843   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1844     Assembler::vinsertf64x4(dst, dst, src, 1);
1845   }
1846   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1847     Assembler::vextracti64x4(dst, src, 1);
1848   }
1849   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1850     Assembler::vextractf64x4(dst, src, 1);
1851   }
1852   void vextractf64x4_high(Address dst, XMMRegister src) {
1853     Assembler::vextractf64x4(dst, src, 1);
1854   }
1855   void vinsertf64x4_high(XMMRegister dst, Address src) {
1856     Assembler::vinsertf64x4(dst, dst, src, 1);
1857   }
1858 
1859   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1860   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1861     vinserti128(dst, dst, src, 0);
1862   }
1863   void vinserti128_low(XMMRegister dst, Address src) {
1864     vinserti128(dst, dst, src, 0);
1865   }
1866   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1867     vextracti128(dst, src, 0);
1868   }
1869   void vextracti128_low(Address dst, XMMRegister src) {
1870     vextracti128(dst, src, 0);
1871   }
1872 
1873   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1874     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1875       Assembler::vinsertf32x4(dst, dst, src, 0);
1876     } else {
1877       Assembler::vinsertf128(dst, dst, src, 0);
1878     }
1879   }
1880 
1881   void vinsertf128_low(XMMRegister dst, Address src) {
1882     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1883       Assembler::vinsertf32x4(dst, dst, src, 0);
1884     } else {
1885       Assembler::vinsertf128(dst, dst, src, 0);
1886     }
1887   }
1888 
1889   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1890     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1891       Assembler::vextractf32x4(dst, src, 0);
1892     } else {
1893       Assembler::vextractf128(dst, src, 0);
1894     }
1895   }
1896 
1897   void vextractf128_low(Address dst, XMMRegister src) {
1898     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1899       Assembler::vextractf32x4(dst, src, 0);
1900     } else {
1901       Assembler::vextractf128(dst, src, 0);
1902     }
1903   }
1904 
1905   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1906   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1907     Assembler::vinserti64x4(dst, dst, src, 0);
1908   }
1909   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1910     Assembler::vinsertf64x4(dst, dst, src, 0);
1911   }
1912   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1913     Assembler::vextracti64x4(dst, src, 0);
1914   }
1915   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1916     Assembler::vextractf64x4(dst, src, 0);
1917   }
1918   void vextractf64x4_low(Address dst, XMMRegister src) {
1919     Assembler::vextractf64x4(dst, src, 0);
1920   }
1921   void vinsertf64x4_low(XMMRegister dst, Address src) {
1922     Assembler::vinsertf64x4(dst, dst, src, 0);
1923   }
1924 
1925   // Carry-Less Multiplication Quadword
1926   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1927     // 0x00 - multiply lower 64 bits [0:63]
1928     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1929   }
1930   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1931     // 0x11 - multiply upper 64 bits [64:127]
1932     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1933   }
1934   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1935     // 0x10 - multiply nds[0:63] and src[64:127]
1936     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1937   }
1938   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1939     //0x01 - multiply nds[64:127] and src[0:63]
1940     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1941   }
1942 
1943   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1944     // 0x00 - multiply lower 64 bits [0:63]
1945     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1946   }
1947   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1948     // 0x11 - multiply upper 64 bits [64:127]
1949     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1950   }
1951 
1952   // AVX-512 mask operations.
1953   void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
1954   void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1955   void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
1956   void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
1957   void kortest(uint masklen, KRegister src1, KRegister src2);
1958   void ktest(uint masklen, KRegister src1, KRegister src2);
1959 
1960   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1961   void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1962 
1963   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1964   void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1965 
1966   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1967   void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1968 
1969   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
1970   void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
1971 
1972   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1973   void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1974   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
1975   void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
1976 
1977   using Assembler::evpandq;
1978   void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1979 
1980   using Assembler::evpaddq;
1981   void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
1982 
1983   using Assembler::evporq;
1984   void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1985 
1986   using Assembler::vpshufb;
1987   void vpshufb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1988 
1989   using Assembler::vpor;
1990   void vpor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
1991 
1992   using Assembler::vpternlogq;
1993   void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
1994 
1995   void cmov32( Condition cc, Register dst, Address  src);
1996   void cmov32( Condition cc, Register dst, Register src);
1997 
1998   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1999 
2000   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2001   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2002 
2003   void movoop(Register dst, jobject obj);
2004   void movoop(Address  dst, jobject obj, Register rscratch);
2005 
2006   void mov_metadata(Register dst, Metadata* obj);
2007   void mov_metadata(Address  dst, Metadata* obj, Register rscratch);
2008 
2009   void movptr(Register     dst, Register       src);
2010   void movptr(Register     dst, Address        src);
2011   void movptr(Register     dst, AddressLiteral src);
2012   void movptr(Register     dst, ArrayAddress   src);
2013   void movptr(Register     dst, intptr_t       src);
2014   void movptr(Address      dst, Register       src);
2015   void movptr(Address      dst, int32_t        imm);
2016   void movptr(Address      dst, intptr_t       src, Register rscratch);
2017   void movptr(ArrayAddress dst, Register       src, Register rscratch);
2018 
2019   void movptr(Register dst, RegisterOrConstant src) {
2020     if (src.is_constant()) movptr(dst, src.as_constant());
2021     else                   movptr(dst, src.as_register());
2022   }
2023 
2024 
2025   // to avoid hiding movl
2026   void mov32(Register       dst, AddressLiteral src);
2027   void mov32(AddressLiteral dst, Register        src, Register rscratch = noreg);
2028 
2029   // Import other mov() methods from the parent class or else
2030   // they will be hidden by the following overriding declaration.
2031   using Assembler::movdl;
2032   void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2033 
2034   using Assembler::movq;
2035   void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
2036 
2037   // Can push value or effective address
2038   void pushptr(AddressLiteral src, Register rscratch);
2039 
2040   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2041   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2042 
2043   void pushoop(jobject obj, Register rscratch);
2044   void pushklass(Metadata* obj, Register rscratch);
2045 
2046   // sign extend as need a l to ptr sized element
2047   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2048   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2049 
2050 
2051  public:
2052   // clear memory of size 'cnt' qwords, starting at 'base';
2053   // if 'is_large' is set, do not try to produce short loop
2054   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
2055 
2056   // clear memory initialization sequence for constant size;
2057   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2058 
2059   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
2060   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
2061 
2062   // Fill primitive arrays
2063   void generate_fill(BasicType t, bool aligned,
2064                      Register to, Register value, Register count,
2065                      Register rtmp, XMMRegister xtmp);
2066 
2067   void encode_iso_array(Register src, Register dst, Register len,
2068                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2069                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
2070 
2071 #ifdef _LP64
2072   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
2073   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2074                              Register y, Register y_idx, Register z,
2075                              Register carry, Register product,
2076                              Register idx, Register kdx);
2077   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
2078                               Register yz_idx, Register idx,
2079                               Register carry, Register product, int offset);
2080   void multiply_128_x_128_bmi2_loop(Register y, Register z,
2081                                     Register carry, Register carry2,
2082                                     Register idx, Register jdx,
2083                                     Register yz_idx1, Register yz_idx2,
2084                                     Register tmp, Register tmp3, Register tmp4);
2085   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
2086                                Register yz_idx, Register idx, Register jdx,
2087                                Register carry, Register product,
2088                                Register carry2);
2089   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register tmp0,
2090                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
2091   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
2092                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2093   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
2094                             Register tmp2);
2095   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
2096                        Register rdxReg, Register raxReg);
2097   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
2098   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2099                        Register tmp3, Register tmp4);
2100   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
2101                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
2102 
2103   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
2104                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2105                Register raxReg);
2106   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
2107                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
2108                Register raxReg);
2109   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
2110                            Register result, Register tmp1, Register tmp2,
2111                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
2112 #endif
2113 
2114   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
2115   void update_byte_crc32(Register crc, Register val, Register table);
2116   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
2117 
2118 
2119 #ifdef _LP64
2120   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
2121   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
2122                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
2123                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
2124 #endif // _LP64
2125 
2126   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
2127   // Note on a naming convention:
2128   // Prefix w = register only used on a Westmere+ architecture
2129   // Prefix n = register only used on a Nehalem architecture
2130 #ifdef _LP64
2131   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2132                        Register tmp1, Register tmp2, Register tmp3);
2133 #else
2134   void crc32c_ipl_alg4(Register in_out, uint32_t n,
2135                        Register tmp1, Register tmp2, Register tmp3,
2136                        XMMRegister xtmp1, XMMRegister xtmp2);
2137 #endif
2138   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
2139                         Register in_out,
2140                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
2141                         XMMRegister w_xtmp2,
2142                         Register tmp1,
2143                         Register n_tmp2, Register n_tmp3);
2144   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
2145                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2146                        Register tmp1, Register tmp2,
2147                        Register n_tmp3);
2148   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
2149                          Register in_out1, Register in_out2, Register in_out3,
2150                          Register tmp1, Register tmp2, Register tmp3,
2151                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2152                          Register tmp4, Register tmp5,
2153                          Register n_tmp6);
2154   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
2155                             Register tmp1, Register tmp2, Register tmp3,
2156                             Register tmp4, Register tmp5, Register tmp6,
2157                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
2158                             bool is_pclmulqdq_supported);
2159   // Fold 128-bit data chunk
2160   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
2161   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
2162 #ifdef _LP64
2163   // Fold 512-bit data chunk
2164   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
2165 #endif // _LP64
2166   // Fold 8-bit data
2167   void fold_8bit_crc32(Register crc, Register table, Register tmp);
2168   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
2169 
2170   // Compress char[] array to byte[].
2171   void char_array_compress(Register src, Register dst, Register len,
2172                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
2173                            XMMRegister tmp4, Register tmp5, Register result,
2174                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
2175 
2176   // Inflate byte[] array to char[].
2177   void byte_array_inflate(Register src, Register dst, Register len,
2178                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
2179 
2180   void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
2181                    Register length, Register temp, int vec_enc);
2182 
2183   void fill64_masked(uint shift, Register dst, int disp,
2184                          XMMRegister xmm, KRegister mask, Register length,
2185                          Register temp, bool use64byteVector = false);
2186 
2187   void fill32_masked(uint shift, Register dst, int disp,
2188                          XMMRegister xmm, KRegister mask, Register length,
2189                          Register temp);
2190 
2191   void fill32(Address dst, XMMRegister xmm);
2192 
2193   void fill32(Register dst, int disp, XMMRegister xmm);
2194 
2195   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
2196 
2197   void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
2198 
2199 #ifdef _LP64
2200   void convert_f2i(Register dst, XMMRegister src);
2201   void convert_d2i(Register dst, XMMRegister src);
2202   void convert_f2l(Register dst, XMMRegister src);
2203   void convert_d2l(Register dst, XMMRegister src);
2204   void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
2205   void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
2206 
2207   void cache_wb(Address line);
2208   void cache_wbsync(bool is_pre);
2209 
2210 #ifdef COMPILER2_OR_JVMCI
2211   void generate_fill_avx3(BasicType type, Register to, Register value,
2212                           Register count, Register rtmp, XMMRegister xtmp);
2213 #endif // COMPILER2_OR_JVMCI
2214 #endif // _LP64
2215 
2216   void vallones(XMMRegister dst, int vector_len);
2217 
2218   void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
2219 
2220   void lightweight_lock(Register basic_lock, Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2221   void lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
2222 
2223 #ifdef _LP64
2224   void save_legacy_gprs();
2225   void restore_legacy_gprs();
2226   void setcc(Assembler::Condition comparison, Register dst);
2227 #endif
2228 };
2229 
2230 #endif // CPU_X86_MACROASSEMBLER_X86_HPP