1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Canonicalizer.hpp" 26 #include "c1/c1_CFGPrinter.hpp" 27 #include "c1/c1_Compilation.hpp" 28 #include "c1/c1_GraphBuilder.hpp" 29 #include "c1/c1_InstructionPrinter.hpp" 30 #include "ci/ciCallSite.hpp" 31 #include "ci/ciField.hpp" 32 #include "ci/ciFlatArrayKlass.hpp" 33 #include "ci/ciInlineKlass.hpp" 34 #include "ci/ciKlass.hpp" 35 #include "ci/ciMemberName.hpp" 36 #include "ci/ciSymbols.hpp" 37 #include "ci/ciUtilities.inline.hpp" 38 #include "classfile/javaClasses.hpp" 39 #include "compiler/compilationPolicy.hpp" 40 #include "compiler/compileBroker.hpp" 41 #include "compiler/compilerEvent.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "jfr/jfrEvents.hpp" 44 #include "memory/resourceArea.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/checkedCast.hpp" 47 #include "utilities/macros.hpp" 48 #if INCLUDE_JFR 49 #include "jfr/jfr.hpp" 50 #endif 51 52 class BlockListBuilder { 53 private: 54 Compilation* _compilation; 55 IRScope* _scope; 56 57 BlockList _blocks; // internal list of all blocks 58 BlockList* _bci2block; // mapping from bci to blocks for GraphBuilder 59 GrowableArray<BlockList> _bci2block_successors; // Mapping bcis to their blocks successors while we dont have a blockend 60 61 // fields used by mark_loops 62 ResourceBitMap _active; // for iteration of control flow graph 63 ResourceBitMap _visited; // for iteration of control flow graph 64 GrowableArray<ResourceBitMap> _loop_map; // caches the information if a block is contained in a loop 65 int _next_loop_index; // next free loop number 66 int _next_block_number; // for reverse postorder numbering of blocks 67 int _block_id_start; 68 69 int bit_number(int block_id) const { return block_id - _block_id_start; } 70 // accessors 71 Compilation* compilation() const { return _compilation; } 72 IRScope* scope() const { return _scope; } 73 ciMethod* method() const { return scope()->method(); } 74 XHandlers* xhandlers() const { return scope()->xhandlers(); } 75 76 // unified bailout support 77 void bailout(const char* msg) const { compilation()->bailout(msg); } 78 bool bailed_out() const { return compilation()->bailed_out(); } 79 80 // helper functions 81 BlockBegin* make_block_at(int bci, BlockBegin* predecessor); 82 void handle_exceptions(BlockBegin* current, int cur_bci); 83 void handle_jsr(BlockBegin* current, int sr_bci, int next_bci); 84 void store_one(BlockBegin* current, int local); 85 void store_two(BlockBegin* current, int local); 86 void set_entries(int osr_bci); 87 void set_leaders(); 88 89 void make_loop_header(BlockBegin* block); 90 void mark_loops(); 91 BitMap& mark_loops(BlockBegin* b, bool in_subroutine); 92 93 // debugging 94 #ifndef PRODUCT 95 void print(); 96 #endif 97 98 int number_of_successors(BlockBegin* block); 99 BlockBegin* successor_at(BlockBegin* block, int i); 100 void add_successor(BlockBegin* block, BlockBegin* sux); 101 bool is_successor(BlockBegin* block, BlockBegin* sux); 102 103 public: 104 // creation 105 BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci); 106 107 // accessors for GraphBuilder 108 BlockList* bci2block() const { return _bci2block; } 109 }; 110 111 112 // Implementation of BlockListBuilder 113 114 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci) 115 : _compilation(compilation) 116 , _scope(scope) 117 , _blocks(16) 118 , _bci2block(new BlockList(scope->method()->code_size(), nullptr)) 119 , _bci2block_successors(scope->method()->code_size()) 120 , _active() // size not known yet 121 , _visited() // size not known yet 122 , _loop_map() // size not known yet 123 , _next_loop_index(0) 124 , _next_block_number(0) 125 , _block_id_start(0) 126 { 127 set_entries(osr_bci); 128 set_leaders(); 129 CHECK_BAILOUT(); 130 131 mark_loops(); 132 NOT_PRODUCT(if (PrintInitialBlockList) print()); 133 134 // _bci2block still contains blocks with _end == null and > 0 sux in _bci2block_successors. 135 136 #ifndef PRODUCT 137 if (PrintCFGToFile) { 138 stringStream title; 139 title.print("BlockListBuilder "); 140 scope->method()->print_name(&title); 141 CFGPrinter::print_cfg(_bci2block, title.freeze(), false, false); 142 } 143 #endif 144 } 145 146 147 void BlockListBuilder::set_entries(int osr_bci) { 148 // generate start blocks 149 BlockBegin* std_entry = make_block_at(0, nullptr); 150 if (scope()->caller() == nullptr) { 151 std_entry->set(BlockBegin::std_entry_flag); 152 } 153 if (osr_bci != -1) { 154 BlockBegin* osr_entry = make_block_at(osr_bci, nullptr); 155 osr_entry->set(BlockBegin::osr_entry_flag); 156 } 157 158 // generate exception entry blocks 159 XHandlers* list = xhandlers(); 160 const int n = list->length(); 161 for (int i = 0; i < n; i++) { 162 XHandler* h = list->handler_at(i); 163 BlockBegin* entry = make_block_at(h->handler_bci(), nullptr); 164 entry->set(BlockBegin::exception_entry_flag); 165 h->set_entry_block(entry); 166 } 167 } 168 169 170 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) { 171 assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer"); 172 173 BlockBegin* block = _bci2block->at(cur_bci); 174 if (block == nullptr) { 175 block = new BlockBegin(cur_bci); 176 block->init_stores_to_locals(method()->max_locals()); 177 _bci2block->at_put(cur_bci, block); 178 _bci2block_successors.at_put_grow(cur_bci, BlockList()); 179 _blocks.append(block); 180 181 assert(predecessor == nullptr || predecessor->bci() < cur_bci, "targets for backward branches must already exist"); 182 } 183 184 if (predecessor != nullptr) { 185 if (block->is_set(BlockBegin::exception_entry_flag)) { 186 BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block); 187 } 188 189 add_successor(predecessor, block); 190 block->increment_total_preds(); 191 } 192 193 return block; 194 } 195 196 197 inline void BlockListBuilder::store_one(BlockBegin* current, int local) { 198 current->stores_to_locals().set_bit(local); 199 } 200 inline void BlockListBuilder::store_two(BlockBegin* current, int local) { 201 store_one(current, local); 202 store_one(current, local + 1); 203 } 204 205 206 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) { 207 // Draws edges from a block to its exception handlers 208 XHandlers* list = xhandlers(); 209 const int n = list->length(); 210 211 for (int i = 0; i < n; i++) { 212 XHandler* h = list->handler_at(i); 213 214 if (h->covers(cur_bci)) { 215 BlockBegin* entry = h->entry_block(); 216 assert(entry != nullptr && entry == _bci2block->at(h->handler_bci()), "entry must be set"); 217 assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set"); 218 219 // add each exception handler only once 220 if(!is_successor(current, entry)) { 221 add_successor(current, entry); 222 entry->increment_total_preds(); 223 } 224 225 // stop when reaching catchall 226 if (h->catch_type() == 0) break; 227 } 228 } 229 } 230 231 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) { 232 if (next_bci < method()->code_size()) { 233 // start a new block after jsr-bytecode and link this block into cfg 234 make_block_at(next_bci, current); 235 } 236 237 // start a new block at the subroutine entry at mark it with special flag 238 BlockBegin* sr_block = make_block_at(sr_bci, current); 239 if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) { 240 sr_block->set(BlockBegin::subroutine_entry_flag); 241 } 242 } 243 244 245 void BlockListBuilder::set_leaders() { 246 bool has_xhandlers = xhandlers()->has_handlers(); 247 BlockBegin* current = nullptr; 248 249 // The information which bci starts a new block simplifies the analysis 250 // Without it, backward branches could jump to a bci where no block was created 251 // during bytecode iteration. This would require the creation of a new block at the 252 // branch target and a modification of the successor lists. 253 const BitMap& bci_block_start = method()->bci_block_start(); 254 255 int end_bci = method()->code_size(); 256 257 ciBytecodeStream s(method()); 258 while (s.next() != ciBytecodeStream::EOBC()) { 259 int cur_bci = s.cur_bci(); 260 261 if (bci_block_start.at(cur_bci)) { 262 current = make_block_at(cur_bci, current); 263 } 264 assert(current != nullptr, "must have current block"); 265 266 if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) { 267 handle_exceptions(current, cur_bci); 268 } 269 270 switch (s.cur_bc()) { 271 // track stores to local variables for selective creation of phi functions 272 case Bytecodes::_iinc: store_one(current, s.get_index()); break; 273 case Bytecodes::_istore: store_one(current, s.get_index()); break; 274 case Bytecodes::_lstore: store_two(current, s.get_index()); break; 275 case Bytecodes::_fstore: store_one(current, s.get_index()); break; 276 case Bytecodes::_dstore: store_two(current, s.get_index()); break; 277 case Bytecodes::_astore: store_one(current, s.get_index()); break; 278 case Bytecodes::_istore_0: store_one(current, 0); break; 279 case Bytecodes::_istore_1: store_one(current, 1); break; 280 case Bytecodes::_istore_2: store_one(current, 2); break; 281 case Bytecodes::_istore_3: store_one(current, 3); break; 282 case Bytecodes::_lstore_0: store_two(current, 0); break; 283 case Bytecodes::_lstore_1: store_two(current, 1); break; 284 case Bytecodes::_lstore_2: store_two(current, 2); break; 285 case Bytecodes::_lstore_3: store_two(current, 3); break; 286 case Bytecodes::_fstore_0: store_one(current, 0); break; 287 case Bytecodes::_fstore_1: store_one(current, 1); break; 288 case Bytecodes::_fstore_2: store_one(current, 2); break; 289 case Bytecodes::_fstore_3: store_one(current, 3); break; 290 case Bytecodes::_dstore_0: store_two(current, 0); break; 291 case Bytecodes::_dstore_1: store_two(current, 1); break; 292 case Bytecodes::_dstore_2: store_two(current, 2); break; 293 case Bytecodes::_dstore_3: store_two(current, 3); break; 294 case Bytecodes::_astore_0: store_one(current, 0); break; 295 case Bytecodes::_astore_1: store_one(current, 1); break; 296 case Bytecodes::_astore_2: store_one(current, 2); break; 297 case Bytecodes::_astore_3: store_one(current, 3); break; 298 299 // track bytecodes that affect the control flow 300 case Bytecodes::_athrow: // fall through 301 case Bytecodes::_ret: // fall through 302 case Bytecodes::_ireturn: // fall through 303 case Bytecodes::_lreturn: // fall through 304 case Bytecodes::_freturn: // fall through 305 case Bytecodes::_dreturn: // fall through 306 case Bytecodes::_areturn: // fall through 307 case Bytecodes::_return: 308 current = nullptr; 309 break; 310 311 case Bytecodes::_ifeq: // fall through 312 case Bytecodes::_ifne: // fall through 313 case Bytecodes::_iflt: // fall through 314 case Bytecodes::_ifge: // fall through 315 case Bytecodes::_ifgt: // fall through 316 case Bytecodes::_ifle: // fall through 317 case Bytecodes::_if_icmpeq: // fall through 318 case Bytecodes::_if_icmpne: // fall through 319 case Bytecodes::_if_icmplt: // fall through 320 case Bytecodes::_if_icmpge: // fall through 321 case Bytecodes::_if_icmpgt: // fall through 322 case Bytecodes::_if_icmple: // fall through 323 case Bytecodes::_if_acmpeq: // fall through 324 case Bytecodes::_if_acmpne: // fall through 325 case Bytecodes::_ifnull: // fall through 326 case Bytecodes::_ifnonnull: 327 if (s.next_bci() < end_bci) { 328 make_block_at(s.next_bci(), current); 329 } 330 make_block_at(s.get_dest(), current); 331 current = nullptr; 332 break; 333 334 case Bytecodes::_goto: 335 make_block_at(s.get_dest(), current); 336 current = nullptr; 337 break; 338 339 case Bytecodes::_goto_w: 340 make_block_at(s.get_far_dest(), current); 341 current = nullptr; 342 break; 343 344 case Bytecodes::_jsr: 345 handle_jsr(current, s.get_dest(), s.next_bci()); 346 current = nullptr; 347 break; 348 349 case Bytecodes::_jsr_w: 350 handle_jsr(current, s.get_far_dest(), s.next_bci()); 351 current = nullptr; 352 break; 353 354 case Bytecodes::_tableswitch: { 355 // set block for each case 356 Bytecode_tableswitch sw(&s); 357 int l = sw.length(); 358 for (int i = 0; i < l; i++) { 359 make_block_at(cur_bci + sw.dest_offset_at(i), current); 360 } 361 make_block_at(cur_bci + sw.default_offset(), current); 362 current = nullptr; 363 break; 364 } 365 366 case Bytecodes::_lookupswitch: { 367 // set block for each case 368 Bytecode_lookupswitch sw(&s); 369 int l = sw.number_of_pairs(); 370 for (int i = 0; i < l; i++) { 371 make_block_at(cur_bci + sw.pair_at(i).offset(), current); 372 } 373 make_block_at(cur_bci + sw.default_offset(), current); 374 current = nullptr; 375 break; 376 } 377 378 default: 379 break; 380 } 381 } 382 } 383 384 385 void BlockListBuilder::mark_loops() { 386 ResourceMark rm; 387 388 const int number_of_blocks = _blocks.length(); 389 _active.initialize(number_of_blocks); 390 _visited.initialize(number_of_blocks); 391 _loop_map = GrowableArray<ResourceBitMap>(number_of_blocks, number_of_blocks, ResourceBitMap()); 392 for (int i = 0; i < number_of_blocks; i++) { 393 _loop_map.at(i).initialize(number_of_blocks); 394 } 395 _next_loop_index = 0; 396 _next_block_number = _blocks.length(); 397 398 // The loop detection algorithm works as follows: 399 // - We maintain the _loop_map, where for each block we have a bitmap indicating which loops contain this block. 400 // - The CFG is recursively traversed (depth-first) and if we detect a loop, we assign the loop a unique number that is stored 401 // in the bitmap associated with the loop header block. Until we return back through that loop header the bitmap contains 402 // only a single bit corresponding to the loop number. 403 // - The bit is then propagated for all the blocks in the loop after we exit them (post-order). There could be multiple bits 404 // of course in case of nested loops. 405 // - When we exit the loop header we remove that single bit and assign the real loop state for it. 406 // - Now, the tricky part here is how we detect irreducible loops. In the algorithm above the loop state bits 407 // are propagated to the predecessors. If we encounter an irreducible loop (a loop with multiple heads) we would see 408 // a node with some loop bit set that would then propagate back and be never cleared because we would 409 // never go back through the original loop header. Therefore if there are any irreducible loops the bits in the states 410 // for these loops are going to propagate back to the root. 411 BlockBegin* start = _bci2block->at(0); 412 _block_id_start = start->block_id(); 413 BitMap& loop_state = mark_loops(start, false); 414 if (!loop_state.is_empty()) { 415 compilation()->set_has_irreducible_loops(true); 416 } 417 assert(_next_block_number >= 0, "invalid block numbers"); 418 419 // Remove dangling Resource pointers before the ResourceMark goes out-of-scope. 420 _active.resize(0); 421 _visited.resize(0); 422 _loop_map.clear(); 423 } 424 425 void BlockListBuilder::make_loop_header(BlockBegin* block) { 426 int block_id = block->block_id(); 427 int block_bit = bit_number(block_id); 428 if (block->is_set(BlockBegin::exception_entry_flag)) { 429 // exception edges may look like loops but don't mark them as such 430 // since it screws up block ordering. 431 return; 432 } 433 if (!block->is_set(BlockBegin::parser_loop_header_flag)) { 434 block->set(BlockBegin::parser_loop_header_flag); 435 436 assert(_loop_map.at(block_bit).is_empty(), "must not be set yet"); 437 assert(0 <= _next_loop_index && _next_loop_index < _loop_map.length(), "_next_loop_index is too large"); 438 _loop_map.at(block_bit).set_bit(_next_loop_index++); 439 } else { 440 // block already marked as loop header 441 assert(_loop_map.at(block_bit).count_one_bits() == 1, "exactly one bit must be set"); 442 } 443 } 444 445 BitMap& BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) { 446 int block_id = block->block_id(); 447 int block_bit = bit_number(block_id); 448 if (_visited.at(block_bit)) { 449 if (_active.at(block_bit)) { 450 // reached block via backward branch 451 make_loop_header(block); 452 } 453 // return cached loop information for this block 454 return _loop_map.at(block_bit); 455 } 456 457 if (block->is_set(BlockBegin::subroutine_entry_flag)) { 458 in_subroutine = true; 459 } 460 461 // set active and visited bits before successors are processed 462 _visited.set_bit(block_bit); 463 _active.set_bit(block_bit); 464 465 ResourceMark rm; 466 ResourceBitMap loop_state(_loop_map.length()); 467 for (int i = number_of_successors(block) - 1; i >= 0; i--) { 468 BlockBegin* sux = successor_at(block, i); 469 // recursively process all successors 470 loop_state.set_union(mark_loops(sux, in_subroutine)); 471 } 472 473 // clear active-bit after all successors are processed 474 _active.clear_bit(block_bit); 475 476 // reverse-post-order numbering of all blocks 477 block->set_depth_first_number(_next_block_number); 478 _next_block_number--; 479 480 if (!loop_state.is_empty() || in_subroutine ) { 481 // block is contained at least in one loop, so phi functions are necessary 482 // phi functions are also necessary for all locals stored in a subroutine 483 scope()->requires_phi_function().set_union(block->stores_to_locals()); 484 } 485 486 if (block->is_set(BlockBegin::parser_loop_header_flag)) { 487 BitMap& header_loop_state = _loop_map.at(block_bit); 488 assert(header_loop_state.count_one_bits() == 1, "exactly one bit must be set"); 489 // remove the bit with the loop number for the state (header is outside of the loop) 490 loop_state.set_difference(header_loop_state); 491 } 492 493 // cache and return loop information for this block 494 _loop_map.at(block_bit).set_from(loop_state); 495 return _loop_map.at(block_bit); 496 } 497 498 inline int BlockListBuilder::number_of_successors(BlockBegin* block) 499 { 500 assert(_bci2block_successors.length() > block->bci(), "sux must exist"); 501 return _bci2block_successors.at(block->bci()).length(); 502 } 503 504 inline BlockBegin* BlockListBuilder::successor_at(BlockBegin* block, int i) 505 { 506 assert(_bci2block_successors.length() > block->bci(), "sux must exist"); 507 return _bci2block_successors.at(block->bci()).at(i); 508 } 509 510 inline void BlockListBuilder::add_successor(BlockBegin* block, BlockBegin* sux) 511 { 512 assert(_bci2block_successors.length() > block->bci(), "sux must exist"); 513 _bci2block_successors.at(block->bci()).append(sux); 514 } 515 516 inline bool BlockListBuilder::is_successor(BlockBegin* block, BlockBegin* sux) { 517 assert(_bci2block_successors.length() > block->bci(), "sux must exist"); 518 return _bci2block_successors.at(block->bci()).contains(sux); 519 } 520 521 #ifndef PRODUCT 522 523 static int compare_depth_first(BlockBegin** a, BlockBegin** b) { 524 return (*a)->depth_first_number() - (*b)->depth_first_number(); 525 } 526 527 void BlockListBuilder::print() { 528 tty->print("----- initial block list of BlockListBuilder for method "); 529 method()->print_short_name(); 530 tty->cr(); 531 532 // better readability if blocks are sorted in processing order 533 _blocks.sort(compare_depth_first); 534 535 for (int i = 0; i < _blocks.length(); i++) { 536 BlockBegin* cur = _blocks.at(i); 537 tty->print("%4d: B%-4d bci: %-4d preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds()); 538 539 tty->print(cur->is_set(BlockBegin::std_entry_flag) ? " std" : " "); 540 tty->print(cur->is_set(BlockBegin::osr_entry_flag) ? " osr" : " "); 541 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " "); 542 tty->print(cur->is_set(BlockBegin::subroutine_entry_flag) ? " sr" : " "); 543 tty->print(cur->is_set(BlockBegin::parser_loop_header_flag) ? " lh" : " "); 544 545 if (number_of_successors(cur) > 0) { 546 tty->print(" sux: "); 547 for (int j = 0; j < number_of_successors(cur); j++) { 548 BlockBegin* sux = successor_at(cur, j); 549 tty->print("B%d ", sux->block_id()); 550 } 551 } 552 tty->cr(); 553 } 554 } 555 556 #endif 557 558 559 // A simple growable array of Values indexed by ciFields 560 class FieldBuffer: public CompilationResourceObj { 561 private: 562 GrowableArray<Value> _values; 563 564 public: 565 FieldBuffer() {} 566 567 void kill() { 568 _values.trunc_to(0); 569 } 570 571 Value at(ciField* field) { 572 assert(field->holder()->is_loaded(), "must be a loaded field"); 573 int offset = field->offset_in_bytes(); 574 if (offset < _values.length()) { 575 return _values.at(offset); 576 } else { 577 return nullptr; 578 } 579 } 580 581 void at_put(ciField* field, Value value) { 582 assert(field->holder()->is_loaded(), "must be a loaded field"); 583 int offset = field->offset_in_bytes(); 584 _values.at_put_grow(offset, value, nullptr); 585 } 586 587 }; 588 589 590 // MemoryBuffer is fairly simple model of the current state of memory. 591 // It partitions memory into several pieces. The first piece is 592 // generic memory where little is known about the owner of the memory. 593 // This is conceptually represented by the tuple <O, F, V> which says 594 // that the field F of object O has value V. This is flattened so 595 // that F is represented by the offset of the field and the parallel 596 // arrays _objects and _values are used for O and V. Loads of O.F can 597 // simply use V. Newly allocated objects are kept in a separate list 598 // along with a parallel array for each object which represents the 599 // current value of its fields. Stores of the default value to fields 600 // which have never been stored to before are eliminated since they 601 // are redundant. Once newly allocated objects are stored into 602 // another object or they are passed out of the current compile they 603 // are treated like generic memory. 604 605 class MemoryBuffer: public CompilationResourceObj { 606 private: 607 FieldBuffer _values; 608 GrowableArray<Value> _objects; 609 GrowableArray<Value> _newobjects; 610 GrowableArray<FieldBuffer*> _fields; 611 612 public: 613 MemoryBuffer() {} 614 615 StoreField* store(StoreField* st) { 616 if (!EliminateFieldAccess) { 617 return st; 618 } 619 620 Value object = st->obj(); 621 Value value = st->value(); 622 ciField* field = st->field(); 623 if (field->holder()->is_loaded()) { 624 int offset = field->offset_in_bytes(); 625 int index = _newobjects.find(object); 626 if (index != -1) { 627 // newly allocated object with no other stores performed on this field 628 FieldBuffer* buf = _fields.at(index); 629 if (buf->at(field) == nullptr && is_default_value(value)) { 630 #ifndef PRODUCT 631 if (PrintIRDuringConstruction && Verbose) { 632 tty->print_cr("Eliminated store for object %d:", index); 633 st->print_line(); 634 } 635 #endif 636 return nullptr; 637 } else { 638 buf->at_put(field, value); 639 } 640 } else { 641 _objects.at_put_grow(offset, object, nullptr); 642 _values.at_put(field, value); 643 } 644 645 store_value(value); 646 } else { 647 // if we held onto field names we could alias based on names but 648 // we don't know what's being stored to so kill it all. 649 kill(); 650 } 651 return st; 652 } 653 654 655 // return true if this value correspond to the default value of a field. 656 bool is_default_value(Value value) { 657 Constant* con = value->as_Constant(); 658 if (con) { 659 switch (con->type()->tag()) { 660 case intTag: return con->type()->as_IntConstant()->value() == 0; 661 case longTag: return con->type()->as_LongConstant()->value() == 0; 662 case floatTag: return jint_cast(con->type()->as_FloatConstant()->value()) == 0; 663 case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0); 664 case objectTag: return con->type() == objectNull; 665 default: ShouldNotReachHere(); 666 } 667 } 668 return false; 669 } 670 671 672 // return either the actual value of a load or the load itself 673 Value load(LoadField* load) { 674 if (!EliminateFieldAccess) { 675 return load; 676 } 677 678 ciField* field = load->field(); 679 Value object = load->obj(); 680 if (field->holder()->is_loaded() && !field->is_volatile()) { 681 int offset = field->offset_in_bytes(); 682 Value result = nullptr; 683 int index = _newobjects.find(object); 684 if (index != -1) { 685 result = _fields.at(index)->at(field); 686 } else if (_objects.at_grow(offset, nullptr) == object) { 687 result = _values.at(field); 688 } 689 if (result != nullptr) { 690 #ifndef PRODUCT 691 if (PrintIRDuringConstruction && Verbose) { 692 tty->print_cr("Eliminated load: "); 693 load->print_line(); 694 } 695 #endif 696 assert(result->type()->tag() == load->type()->tag(), "wrong types"); 697 return result; 698 } 699 } 700 return load; 701 } 702 703 // Record this newly allocated object 704 void new_instance(NewInstance* object) { 705 int index = _newobjects.length(); 706 _newobjects.append(object); 707 if (_fields.at_grow(index, nullptr) == nullptr) { 708 _fields.at_put(index, new FieldBuffer()); 709 } else { 710 _fields.at(index)->kill(); 711 } 712 } 713 714 void store_value(Value value) { 715 int index = _newobjects.find(value); 716 if (index != -1) { 717 // stored a newly allocated object into another object. 718 // Assume we've lost track of it as separate slice of memory. 719 // We could do better by keeping track of whether individual 720 // fields could alias each other. 721 _newobjects.remove_at(index); 722 // pull out the field info and store it at the end up the list 723 // of field info list to be reused later. 724 _fields.append(_fields.at(index)); 725 _fields.remove_at(index); 726 } 727 } 728 729 void kill() { 730 _newobjects.trunc_to(0); 731 _objects.trunc_to(0); 732 _values.kill(); 733 } 734 }; 735 736 737 // Implementation of GraphBuilder's ScopeData 738 739 GraphBuilder::ScopeData::ScopeData(ScopeData* parent) 740 : _parent(parent) 741 , _bci2block(nullptr) 742 , _scope(nullptr) 743 , _has_handler(false) 744 , _stream(nullptr) 745 , _work_list(nullptr) 746 , _caller_stack_size(-1) 747 , _continuation(nullptr) 748 , _parsing_jsr(false) 749 , _jsr_xhandlers(nullptr) 750 , _num_returns(0) 751 , _cleanup_block(nullptr) 752 , _cleanup_return_prev(nullptr) 753 , _cleanup_state(nullptr) 754 , _ignore_return(false) 755 { 756 if (parent != nullptr) { 757 _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f); 758 } else { 759 _max_inline_size = C1MaxInlineSize; 760 } 761 if (_max_inline_size < C1MaxTrivialSize) { 762 _max_inline_size = C1MaxTrivialSize; 763 } 764 } 765 766 767 void GraphBuilder::kill_all() { 768 if (UseLocalValueNumbering) { 769 vmap()->kill_all(); 770 } 771 _memory->kill(); 772 } 773 774 775 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) { 776 if (parsing_jsr()) { 777 // It is necessary to clone all blocks associated with a 778 // subroutine, including those for exception handlers in the scope 779 // of the method containing the jsr (because those exception 780 // handlers may contain ret instructions in some cases). 781 BlockBegin* block = bci2block()->at(bci); 782 if (block != nullptr && block == parent()->bci2block()->at(bci)) { 783 BlockBegin* new_block = new BlockBegin(block->bci()); 784 if (PrintInitialBlockList) { 785 tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr", 786 block->block_id(), block->bci(), new_block->block_id()); 787 } 788 // copy data from cloned blocked 789 new_block->set_depth_first_number(block->depth_first_number()); 790 if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag); 791 // Preserve certain flags for assertion checking 792 if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag); 793 if (block->is_set(BlockBegin::exception_entry_flag)) new_block->set(BlockBegin::exception_entry_flag); 794 795 // copy was_visited_flag to allow early detection of bailouts 796 // if a block that is used in a jsr has already been visited before, 797 // it is shared between the normal control flow and a subroutine 798 // BlockBegin::try_merge returns false when the flag is set, this leads 799 // to a compilation bailout 800 if (block->is_set(BlockBegin::was_visited_flag)) new_block->set(BlockBegin::was_visited_flag); 801 802 bci2block()->at_put(bci, new_block); 803 block = new_block; 804 } 805 return block; 806 } else { 807 return bci2block()->at(bci); 808 } 809 } 810 811 812 XHandlers* GraphBuilder::ScopeData::xhandlers() const { 813 if (_jsr_xhandlers == nullptr) { 814 assert(!parsing_jsr(), ""); 815 return scope()->xhandlers(); 816 } 817 assert(parsing_jsr(), ""); 818 return _jsr_xhandlers; 819 } 820 821 822 void GraphBuilder::ScopeData::set_scope(IRScope* scope) { 823 _scope = scope; 824 bool parent_has_handler = false; 825 if (parent() != nullptr) { 826 parent_has_handler = parent()->has_handler(); 827 } 828 _has_handler = parent_has_handler || scope->xhandlers()->has_handlers(); 829 } 830 831 832 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block, 833 Instruction* return_prev, 834 ValueStack* return_state) { 835 _cleanup_block = block; 836 _cleanup_return_prev = return_prev; 837 _cleanup_state = return_state; 838 } 839 840 841 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) { 842 if (_work_list == nullptr) { 843 _work_list = new BlockList(); 844 } 845 846 if (!block->is_set(BlockBegin::is_on_work_list_flag)) { 847 // Do not start parsing the continuation block while in a 848 // sub-scope 849 if (parsing_jsr()) { 850 if (block == jsr_continuation()) { 851 return; 852 } 853 } else { 854 if (block == continuation()) { 855 return; 856 } 857 } 858 block->set(BlockBegin::is_on_work_list_flag); 859 _work_list->push(block); 860 861 sort_top_into_worklist(_work_list, block); 862 } 863 } 864 865 866 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) { 867 assert(worklist->top() == top, ""); 868 // sort block descending into work list 869 const int dfn = top->depth_first_number(); 870 assert(dfn != -1, "unknown depth first number"); 871 int i = worklist->length()-2; 872 while (i >= 0) { 873 BlockBegin* b = worklist->at(i); 874 if (b->depth_first_number() < dfn) { 875 worklist->at_put(i+1, b); 876 } else { 877 break; 878 } 879 i --; 880 } 881 if (i >= -1) worklist->at_put(i + 1, top); 882 } 883 884 885 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() { 886 if (is_work_list_empty()) { 887 return nullptr; 888 } 889 return _work_list->pop(); 890 } 891 892 893 bool GraphBuilder::ScopeData::is_work_list_empty() const { 894 return (_work_list == nullptr || _work_list->length() == 0); 895 } 896 897 898 void GraphBuilder::ScopeData::setup_jsr_xhandlers() { 899 assert(parsing_jsr(), ""); 900 // clone all the exception handlers from the scope 901 XHandlers* handlers = new XHandlers(scope()->xhandlers()); 902 const int n = handlers->length(); 903 for (int i = 0; i < n; i++) { 904 // The XHandlers need to be adjusted to dispatch to the cloned 905 // handler block instead of the default one but the synthetic 906 // unlocker needs to be handled specially. The synthetic unlocker 907 // should be left alone since there can be only one and all code 908 // should dispatch to the same one. 909 XHandler* h = handlers->handler_at(i); 910 assert(h->handler_bci() != SynchronizationEntryBCI, "must be real"); 911 h->set_entry_block(block_at(h->handler_bci())); 912 } 913 _jsr_xhandlers = handlers; 914 } 915 916 917 int GraphBuilder::ScopeData::num_returns() { 918 if (parsing_jsr()) { 919 return parent()->num_returns(); 920 } 921 return _num_returns; 922 } 923 924 925 void GraphBuilder::ScopeData::incr_num_returns() { 926 if (parsing_jsr()) { 927 parent()->incr_num_returns(); 928 } else { 929 ++_num_returns; 930 } 931 } 932 933 934 // Implementation of GraphBuilder 935 936 #define INLINE_BAILOUT(msg) { inline_bailout(msg); return false; } 937 938 939 void GraphBuilder::load_constant() { 940 ciConstant con = stream()->get_constant(); 941 if (con.is_valid()) { 942 ValueType* t = illegalType; 943 ValueStack* patch_state = nullptr; 944 switch (con.basic_type()) { 945 case T_BOOLEAN: t = new IntConstant (con.as_boolean()); break; 946 case T_BYTE : t = new IntConstant (con.as_byte ()); break; 947 case T_CHAR : t = new IntConstant (con.as_char ()); break; 948 case T_SHORT : t = new IntConstant (con.as_short ()); break; 949 case T_INT : t = new IntConstant (con.as_int ()); break; 950 case T_LONG : t = new LongConstant (con.as_long ()); break; 951 case T_FLOAT : t = new FloatConstant (con.as_float ()); break; 952 case T_DOUBLE : t = new DoubleConstant(con.as_double ()); break; 953 case T_ARRAY : // fall-through 954 case T_OBJECT : { 955 ciObject* obj = con.as_object(); 956 if (!obj->is_loaded() || (PatchALot && !stream()->is_string_constant())) { 957 // A Class, MethodType, MethodHandle, Dynamic, or String. 958 patch_state = copy_state_before(); 959 t = new ObjectConstant(obj); 960 } else { 961 // Might be a Class, MethodType, MethodHandle, or Dynamic constant 962 // result, which might turn out to be an array. 963 if (obj->is_null_object()) { 964 t = objectNull; 965 } else if (obj->is_array()) { 966 t = new ArrayConstant(obj->as_array()); 967 } else { 968 t = new InstanceConstant(obj->as_instance()); 969 } 970 } 971 break; 972 } 973 default: ShouldNotReachHere(); 974 } 975 Value x; 976 if (patch_state != nullptr) { 977 // Arbitrary memory effects from running BSM or class loading (using custom loader) during linkage. 978 bool kills_memory = stream()->is_dynamic_constant() || 979 (!stream()->is_string_constant() && !method()->holder()->has_trusted_loader()); 980 x = new Constant(t, patch_state, kills_memory); 981 } else { 982 x = new Constant(t); 983 } 984 985 // Unbox the value at runtime, if needed. 986 // ConstantDynamic entry can be of a primitive type, but it is cached in boxed form. 987 if (patch_state != nullptr) { 988 int cp_index = stream()->get_constant_pool_index(); 989 BasicType type = stream()->get_basic_type_for_constant_at(cp_index); 990 if (is_java_primitive(type)) { 991 ciInstanceKlass* box_klass = ciEnv::current()->get_box_klass_for_primitive_type(type); 992 assert(box_klass->is_loaded(), "sanity"); 993 int offset = java_lang_boxing_object::value_offset(type); 994 ciField* value_field = box_klass->get_field_by_offset(offset, false /*is_static*/); 995 x = new LoadField(append(x), offset, value_field, false /*is_static*/, patch_state, false /*needs_patching*/); 996 t = as_ValueType(type); 997 } else { 998 assert(is_reference_type(type), "not a reference: %s", type2name(type)); 999 } 1000 } 1001 1002 push(t, append(x)); 1003 } else { 1004 BAILOUT("could not resolve a constant"); 1005 } 1006 } 1007 1008 1009 void GraphBuilder::load_local(ValueType* type, int index) { 1010 Value x = state()->local_at(index); 1011 assert(x != nullptr && !x->type()->is_illegal(), "access of illegal local variable"); 1012 push(type, x); 1013 } 1014 1015 1016 void GraphBuilder::store_local(ValueType* type, int index) { 1017 Value x = pop(type); 1018 store_local(state(), x, index); 1019 } 1020 1021 1022 void GraphBuilder::store_local(ValueStack* state, Value x, int index) { 1023 if (parsing_jsr()) { 1024 // We need to do additional tracking of the location of the return 1025 // address for jsrs since we don't handle arbitrary jsr/ret 1026 // constructs. Here we are figuring out in which circumstances we 1027 // need to bail out. 1028 if (x->type()->is_address()) { 1029 scope_data()->set_jsr_return_address_local(index); 1030 1031 // Also check parent jsrs (if any) at this time to see whether 1032 // they are using this local. We don't handle skipping over a 1033 // ret. 1034 for (ScopeData* cur_scope_data = scope_data()->parent(); 1035 cur_scope_data != nullptr && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope(); 1036 cur_scope_data = cur_scope_data->parent()) { 1037 if (cur_scope_data->jsr_return_address_local() == index) { 1038 BAILOUT("subroutine overwrites return address from previous subroutine"); 1039 } 1040 } 1041 } else if (index == scope_data()->jsr_return_address_local()) { 1042 scope_data()->set_jsr_return_address_local(-1); 1043 } 1044 } 1045 1046 state->store_local(index, x); 1047 } 1048 1049 1050 void GraphBuilder::load_indexed(BasicType type) { 1051 // In case of in block code motion in range check elimination 1052 ValueStack* state_before = nullptr; 1053 int array_idx = state()->stack_size() - 2; 1054 if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flat_array()) { 1055 // Save the entire state and re-execute on deopt when accessing flat arrays 1056 state_before = copy_state_before(); 1057 state_before->set_should_reexecute(true); 1058 } else { 1059 state_before = copy_state_indexed_access(); 1060 } 1061 compilation()->set_has_access_indexed(true); 1062 Value index = ipop(); 1063 Value array = apop(); 1064 Value length = nullptr; 1065 if (CSEArrayLength || 1066 (array->as_Constant() != nullptr) || 1067 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) || 1068 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) || 1069 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) { 1070 length = append(new ArrayLength(array, state_before)); 1071 } 1072 1073 bool need_membar = false; 1074 LoadIndexed* load_indexed = nullptr; 1075 Instruction* result = nullptr; 1076 if (array->is_loaded_flat_array()) { 1077 // TODO 8350865 This is currently dead code 1078 ciType* array_type = array->declared_type(); 1079 ciInlineKlass* elem_klass = array_type->as_flat_array_klass()->element_klass()->as_inline_klass(); 1080 1081 bool can_delay_access = false; 1082 ciBytecodeStream s(method()); 1083 s.force_bci(bci()); 1084 s.next(); 1085 if (s.cur_bc() == Bytecodes::_getfield) { 1086 bool will_link; 1087 ciField* next_field = s.get_field(will_link); 1088 bool next_needs_patching = !next_field->holder()->is_initialized() || 1089 !next_field->will_link(method(), Bytecodes::_getfield) || 1090 PatchALot; 1091 can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching; 1092 } 1093 if (can_delay_access) { 1094 // potentially optimizable array access, storing information for delayed decision 1095 LoadIndexed* li = new LoadIndexed(array, index, length, type, state_before); 1096 DelayedLoadIndexed* dli = new DelayedLoadIndexed(li, state_before); 1097 li->set_delayed(dli); 1098 set_pending_load_indexed(dli); 1099 return; // Nothing else to do for now 1100 } else { 1101 NewInstance* new_instance = new NewInstance(elem_klass, state_before, false, true); 1102 _memory->new_instance(new_instance); 1103 apush(append_split(new_instance)); 1104 load_indexed = new LoadIndexed(array, index, length, type, state_before); 1105 load_indexed->set_vt(new_instance); 1106 // The LoadIndexed node will initialise this instance by copying from 1107 // the flat field. Ensure these stores are visible before any 1108 // subsequent store that publishes this reference. 1109 need_membar = true; 1110 } 1111 } else { 1112 load_indexed = new LoadIndexed(array, index, length, type, state_before); 1113 if (profile_array_accesses() && is_reference_type(type)) { 1114 compilation()->set_would_profile(true); 1115 load_indexed->set_should_profile(true); 1116 load_indexed->set_profiled_method(method()); 1117 load_indexed->set_profiled_bci(bci()); 1118 } 1119 } 1120 result = append(load_indexed); 1121 if (need_membar) { 1122 append(new MemBar(lir_membar_storestore)); 1123 } 1124 assert(!load_indexed->should_profile() || load_indexed == result, "should not be optimized out"); 1125 if (!array->is_loaded_flat_array()) { 1126 push(as_ValueType(type), result); 1127 } 1128 } 1129 1130 1131 void GraphBuilder::store_indexed(BasicType type) { 1132 // In case of in block code motion in range check elimination 1133 ValueStack* state_before = nullptr; 1134 int array_idx = state()->stack_size() - 3; 1135 if (type == T_OBJECT && state()->stack_at(array_idx)->maybe_flat_array()) { 1136 // Save the entire state and re-execute on deopt when accessing flat arrays 1137 state_before = copy_state_before(); 1138 state_before->set_should_reexecute(true); 1139 } else { 1140 state_before = copy_state_indexed_access(); 1141 } 1142 compilation()->set_has_access_indexed(true); 1143 Value value = pop(as_ValueType(type)); 1144 Value index = ipop(); 1145 Value array = apop(); 1146 Value length = nullptr; 1147 if (CSEArrayLength || 1148 (array->as_Constant() != nullptr) || 1149 (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) || 1150 (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant()) || 1151 (array->as_NewMultiArray() && array->as_NewMultiArray()->dims()->at(0)->type()->is_constant())) { 1152 length = append(new ArrayLength(array, state_before)); 1153 } 1154 ciType* array_type = array->declared_type(); 1155 bool check_boolean = false; 1156 if (array_type != nullptr) { 1157 if (array_type->is_loaded() && 1158 array_type->as_array_klass()->element_type()->basic_type() == T_BOOLEAN) { 1159 assert(type == T_BYTE, "boolean store uses bastore"); 1160 Value mask = append(new Constant(new IntConstant(1))); 1161 value = append(new LogicOp(Bytecodes::_iand, value, mask)); 1162 } 1163 } else if (type == T_BYTE) { 1164 check_boolean = true; 1165 } 1166 1167 StoreIndexed* store_indexed = new StoreIndexed(array, index, length, type, value, state_before, check_boolean); 1168 if (profile_array_accesses() && is_reference_type(type) && !array->is_loaded_flat_array()) { 1169 compilation()->set_would_profile(true); 1170 store_indexed->set_should_profile(true); 1171 store_indexed->set_profiled_method(method()); 1172 store_indexed->set_profiled_bci(bci()); 1173 } 1174 Instruction* result = append(store_indexed); 1175 assert(!store_indexed->should_profile() || store_indexed == result, "should not be optimized out"); 1176 _memory->store_value(value); 1177 } 1178 1179 void GraphBuilder::stack_op(Bytecodes::Code code) { 1180 switch (code) { 1181 case Bytecodes::_pop: 1182 { Value w = state()->raw_pop(); 1183 } 1184 break; 1185 case Bytecodes::_pop2: 1186 { Value w1 = state()->raw_pop(); 1187 Value w2 = state()->raw_pop(); 1188 } 1189 break; 1190 case Bytecodes::_dup: 1191 { Value w = state()->raw_pop(); 1192 state()->raw_push(w); 1193 state()->raw_push(w); 1194 } 1195 break; 1196 case Bytecodes::_dup_x1: 1197 { Value w1 = state()->raw_pop(); 1198 Value w2 = state()->raw_pop(); 1199 state()->raw_push(w1); 1200 state()->raw_push(w2); 1201 state()->raw_push(w1); 1202 } 1203 break; 1204 case Bytecodes::_dup_x2: 1205 { Value w1 = state()->raw_pop(); 1206 Value w2 = state()->raw_pop(); 1207 Value w3 = state()->raw_pop(); 1208 state()->raw_push(w1); 1209 state()->raw_push(w3); 1210 state()->raw_push(w2); 1211 state()->raw_push(w1); 1212 } 1213 break; 1214 case Bytecodes::_dup2: 1215 { Value w1 = state()->raw_pop(); 1216 Value w2 = state()->raw_pop(); 1217 state()->raw_push(w2); 1218 state()->raw_push(w1); 1219 state()->raw_push(w2); 1220 state()->raw_push(w1); 1221 } 1222 break; 1223 case Bytecodes::_dup2_x1: 1224 { Value w1 = state()->raw_pop(); 1225 Value w2 = state()->raw_pop(); 1226 Value w3 = state()->raw_pop(); 1227 state()->raw_push(w2); 1228 state()->raw_push(w1); 1229 state()->raw_push(w3); 1230 state()->raw_push(w2); 1231 state()->raw_push(w1); 1232 } 1233 break; 1234 case Bytecodes::_dup2_x2: 1235 { Value w1 = state()->raw_pop(); 1236 Value w2 = state()->raw_pop(); 1237 Value w3 = state()->raw_pop(); 1238 Value w4 = state()->raw_pop(); 1239 state()->raw_push(w2); 1240 state()->raw_push(w1); 1241 state()->raw_push(w4); 1242 state()->raw_push(w3); 1243 state()->raw_push(w2); 1244 state()->raw_push(w1); 1245 } 1246 break; 1247 case Bytecodes::_swap: 1248 { Value w1 = state()->raw_pop(); 1249 Value w2 = state()->raw_pop(); 1250 state()->raw_push(w1); 1251 state()->raw_push(w2); 1252 } 1253 break; 1254 default: 1255 ShouldNotReachHere(); 1256 break; 1257 } 1258 } 1259 1260 1261 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) { 1262 Value y = pop(type); 1263 Value x = pop(type); 1264 Value res = new ArithmeticOp(code, x, y, state_before); 1265 push(type, append(res)); 1266 } 1267 1268 1269 void GraphBuilder::negate_op(ValueType* type) { 1270 push(type, append(new NegateOp(pop(type)))); 1271 } 1272 1273 1274 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) { 1275 Value s = ipop(); 1276 Value x = pop(type); 1277 // try to simplify 1278 // Note: This code should go into the canonicalizer as soon as it can 1279 // can handle canonicalized forms that contain more than one node. 1280 if (CanonicalizeNodes && code == Bytecodes::_iushr) { 1281 // pattern: x >>> s 1282 IntConstant* s1 = s->type()->as_IntConstant(); 1283 if (s1 != nullptr) { 1284 // pattern: x >>> s1, with s1 constant 1285 ShiftOp* l = x->as_ShiftOp(); 1286 if (l != nullptr && l->op() == Bytecodes::_ishl) { 1287 // pattern: (a << b) >>> s1 1288 IntConstant* s0 = l->y()->type()->as_IntConstant(); 1289 if (s0 != nullptr) { 1290 // pattern: (a << s0) >>> s1 1291 const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts 1292 const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts 1293 if (s0c == s1c) { 1294 if (s0c == 0) { 1295 // pattern: (a << 0) >>> 0 => simplify to: a 1296 ipush(l->x()); 1297 } else { 1298 // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant 1299 assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases"); 1300 const int m = checked_cast<int>(right_n_bits(BitsPerInt - s0c)); 1301 Value s = append(new Constant(new IntConstant(m))); 1302 ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s))); 1303 } 1304 return; 1305 } 1306 } 1307 } 1308 } 1309 } 1310 // could not simplify 1311 push(type, append(new ShiftOp(code, x, s))); 1312 } 1313 1314 1315 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) { 1316 Value y = pop(type); 1317 Value x = pop(type); 1318 push(type, append(new LogicOp(code, x, y))); 1319 } 1320 1321 1322 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) { 1323 ValueStack* state_before = copy_state_before(); 1324 Value y = pop(type); 1325 Value x = pop(type); 1326 ipush(append(new CompareOp(code, x, y, state_before))); 1327 } 1328 1329 1330 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) { 1331 push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to)))); 1332 } 1333 1334 1335 void GraphBuilder::increment() { 1336 int index = stream()->get_index(); 1337 int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]); 1338 load_local(intType, index); 1339 ipush(append(new Constant(new IntConstant(delta)))); 1340 arithmetic_op(intType, Bytecodes::_iadd); 1341 store_local(intType, index); 1342 } 1343 1344 1345 void GraphBuilder::_goto(int from_bci, int to_bci) { 1346 Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci); 1347 if (is_profiling()) { 1348 compilation()->set_would_profile(true); 1349 x->set_profiled_bci(bci()); 1350 if (profile_branches()) { 1351 x->set_profiled_method(method()); 1352 x->set_should_profile(true); 1353 } 1354 } 1355 append(x); 1356 } 1357 1358 1359 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) { 1360 BlockBegin* tsux = block_at(stream()->get_dest()); 1361 BlockBegin* fsux = block_at(stream()->next_bci()); 1362 bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci(); 1363 1364 bool subst_check = false; 1365 if (EnableValhalla && (stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne)) { 1366 ValueType* left_vt = x->type(); 1367 ValueType* right_vt = y->type(); 1368 if (left_vt->is_object()) { 1369 assert(right_vt->is_object(), "must be"); 1370 ciKlass* left_klass = x->as_loaded_klass_or_null(); 1371 ciKlass* right_klass = y->as_loaded_klass_or_null(); 1372 1373 if (left_klass == nullptr || right_klass == nullptr) { 1374 // The klass is still unloaded, or came from a Phi node. Go slow case; 1375 subst_check = true; 1376 } else if (left_klass->can_be_inline_klass() || right_klass->can_be_inline_klass()) { 1377 // Either operand may be a value object, but we're not sure. Go slow case; 1378 subst_check = true; 1379 } else { 1380 // No need to do substitutability check 1381 } 1382 } 1383 } 1384 if ((stream()->cur_bc() == Bytecodes::_if_acmpeq || stream()->cur_bc() == Bytecodes::_if_acmpne) && 1385 is_profiling() && profile_branches()) { 1386 compilation()->set_would_profile(true); 1387 append(new ProfileACmpTypes(method(), bci(), x, y)); 1388 } 1389 1390 // In case of loop invariant code motion or predicate insertion 1391 // before the body of a loop the state is needed 1392 Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic() || subst_check) ? state_before : nullptr, is_bb, subst_check)); 1393 1394 assert(i->as_Goto() == nullptr || 1395 (i->as_Goto()->sux_at(0) == tsux && i->as_Goto()->is_safepoint() == (tsux->bci() < stream()->cur_bci())) || 1396 (i->as_Goto()->sux_at(0) == fsux && i->as_Goto()->is_safepoint() == (fsux->bci() < stream()->cur_bci())), 1397 "safepoint state of Goto returned by canonicalizer incorrect"); 1398 1399 if (is_profiling()) { 1400 If* if_node = i->as_If(); 1401 if (if_node != nullptr) { 1402 // Note that we'd collect profile data in this method if we wanted it. 1403 compilation()->set_would_profile(true); 1404 // At level 2 we need the proper bci to count backedges 1405 if_node->set_profiled_bci(bci()); 1406 if (profile_branches()) { 1407 // Successors can be rotated by the canonicalizer, check for this case. 1408 if_node->set_profiled_method(method()); 1409 if_node->set_should_profile(true); 1410 if (if_node->tsux() == fsux) { 1411 if_node->set_swapped(true); 1412 } 1413 } 1414 return; 1415 } 1416 1417 // Check if this If was reduced to Goto. 1418 Goto *goto_node = i->as_Goto(); 1419 if (goto_node != nullptr) { 1420 compilation()->set_would_profile(true); 1421 goto_node->set_profiled_bci(bci()); 1422 if (profile_branches()) { 1423 goto_node->set_profiled_method(method()); 1424 goto_node->set_should_profile(true); 1425 // Find out which successor is used. 1426 if (goto_node->default_sux() == tsux) { 1427 goto_node->set_direction(Goto::taken); 1428 } else if (goto_node->default_sux() == fsux) { 1429 goto_node->set_direction(Goto::not_taken); 1430 } else { 1431 ShouldNotReachHere(); 1432 } 1433 } 1434 return; 1435 } 1436 } 1437 } 1438 1439 1440 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) { 1441 Value y = append(new Constant(intZero)); 1442 ValueStack* state_before = copy_state_before(); 1443 Value x = ipop(); 1444 if_node(x, cond, y, state_before); 1445 } 1446 1447 1448 void GraphBuilder::if_null(ValueType* type, If::Condition cond) { 1449 Value y = append(new Constant(objectNull)); 1450 ValueStack* state_before = copy_state_before(); 1451 Value x = apop(); 1452 if_node(x, cond, y, state_before); 1453 } 1454 1455 1456 void GraphBuilder::if_same(ValueType* type, If::Condition cond) { 1457 ValueStack* state_before = copy_state_before(); 1458 Value y = pop(type); 1459 Value x = pop(type); 1460 if_node(x, cond, y, state_before); 1461 } 1462 1463 1464 void GraphBuilder::jsr(int dest) { 1465 // We only handle well-formed jsrs (those which are "block-structured"). 1466 // If the bytecodes are strange (jumping out of a jsr block) then we 1467 // might end up trying to re-parse a block containing a jsr which 1468 // has already been activated. Watch for this case and bail out. 1469 if (next_bci() >= method()->code_size()) { 1470 // This can happen if the subroutine does not terminate with a ret, 1471 // effectively turning the jsr into a goto. 1472 BAILOUT("too-complicated jsr/ret structure"); 1473 } 1474 for (ScopeData* cur_scope_data = scope_data(); 1475 cur_scope_data != nullptr && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope(); 1476 cur_scope_data = cur_scope_data->parent()) { 1477 if (cur_scope_data->jsr_entry_bci() == dest) { 1478 BAILOUT("too-complicated jsr/ret structure"); 1479 } 1480 } 1481 1482 push(addressType, append(new Constant(new AddressConstant(next_bci())))); 1483 if (!try_inline_jsr(dest)) { 1484 return; // bailed out while parsing and inlining subroutine 1485 } 1486 } 1487 1488 1489 void GraphBuilder::ret(int local_index) { 1490 if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine"); 1491 1492 if (local_index != scope_data()->jsr_return_address_local()) { 1493 BAILOUT("can not handle complicated jsr/ret constructs"); 1494 } 1495 1496 // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation 1497 append(new Goto(scope_data()->jsr_continuation(), false)); 1498 } 1499 1500 1501 void GraphBuilder::table_switch() { 1502 Bytecode_tableswitch sw(stream()); 1503 const int l = sw.length(); 1504 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) { 1505 // total of 2 successors => use If instead of switch 1506 // Note: This code should go into the canonicalizer as soon as it can 1507 // can handle canonicalized forms that contain more than one node. 1508 Value key = append(new Constant(new IntConstant(sw.low_key()))); 1509 BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0)); 1510 BlockBegin* fsux = block_at(bci() + sw.default_offset()); 1511 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci(); 1512 // In case of loop invariant code motion or predicate insertion 1513 // before the body of a loop the state is needed 1514 ValueStack* state_before = copy_state_if_bb(is_bb); 1515 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb)); 1516 } else { 1517 // collect successors 1518 BlockList* sux = new BlockList(l + 1, nullptr); 1519 int i; 1520 bool has_bb = false; 1521 for (i = 0; i < l; i++) { 1522 sux->at_put(i, block_at(bci() + sw.dest_offset_at(i))); 1523 if (sw.dest_offset_at(i) < 0) has_bb = true; 1524 } 1525 // add default successor 1526 if (sw.default_offset() < 0) has_bb = true; 1527 sux->at_put(i, block_at(bci() + sw.default_offset())); 1528 // In case of loop invariant code motion or predicate insertion 1529 // before the body of a loop the state is needed 1530 ValueStack* state_before = copy_state_if_bb(has_bb); 1531 Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb)); 1532 #ifdef ASSERT 1533 if (res->as_Goto()) { 1534 for (i = 0; i < l; i++) { 1535 if (sux->at(i) == res->as_Goto()->sux_at(0)) { 1536 assert(res->as_Goto()->is_safepoint() == (sw.dest_offset_at(i) < 0), "safepoint state of Goto returned by canonicalizer incorrect"); 1537 } 1538 } 1539 } 1540 #endif 1541 } 1542 } 1543 1544 1545 void GraphBuilder::lookup_switch() { 1546 Bytecode_lookupswitch sw(stream()); 1547 const int l = sw.number_of_pairs(); 1548 if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) { 1549 // total of 2 successors => use If instead of switch 1550 // Note: This code should go into the canonicalizer as soon as it can 1551 // can handle canonicalized forms that contain more than one node. 1552 // simplify to If 1553 LookupswitchPair pair = sw.pair_at(0); 1554 Value key = append(new Constant(new IntConstant(pair.match()))); 1555 BlockBegin* tsux = block_at(bci() + pair.offset()); 1556 BlockBegin* fsux = block_at(bci() + sw.default_offset()); 1557 bool is_bb = tsux->bci() < bci() || fsux->bci() < bci(); 1558 // In case of loop invariant code motion or predicate insertion 1559 // before the body of a loop the state is needed 1560 ValueStack* state_before = copy_state_if_bb(is_bb);; 1561 append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb)); 1562 } else { 1563 // collect successors & keys 1564 BlockList* sux = new BlockList(l + 1, nullptr); 1565 intArray* keys = new intArray(l, l, 0); 1566 int i; 1567 bool has_bb = false; 1568 for (i = 0; i < l; i++) { 1569 LookupswitchPair pair = sw.pair_at(i); 1570 if (pair.offset() < 0) has_bb = true; 1571 sux->at_put(i, block_at(bci() + pair.offset())); 1572 keys->at_put(i, pair.match()); 1573 } 1574 // add default successor 1575 if (sw.default_offset() < 0) has_bb = true; 1576 sux->at_put(i, block_at(bci() + sw.default_offset())); 1577 // In case of loop invariant code motion or predicate insertion 1578 // before the body of a loop the state is needed 1579 ValueStack* state_before = copy_state_if_bb(has_bb); 1580 Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb)); 1581 #ifdef ASSERT 1582 if (res->as_Goto()) { 1583 for (i = 0; i < l; i++) { 1584 if (sux->at(i) == res->as_Goto()->sux_at(0)) { 1585 assert(res->as_Goto()->is_safepoint() == (sw.pair_at(i).offset() < 0), "safepoint state of Goto returned by canonicalizer incorrect"); 1586 } 1587 } 1588 } 1589 #endif 1590 } 1591 } 1592 1593 void GraphBuilder::call_register_finalizer() { 1594 // If the receiver requires finalization then emit code to perform 1595 // the registration on return. 1596 1597 // Gather some type information about the receiver 1598 Value receiver = state()->local_at(0); 1599 assert(receiver != nullptr, "must have a receiver"); 1600 ciType* declared_type = receiver->declared_type(); 1601 ciType* exact_type = receiver->exact_type(); 1602 if (exact_type == nullptr && 1603 receiver->as_Local() && 1604 receiver->as_Local()->java_index() == 0) { 1605 ciInstanceKlass* ik = compilation()->method()->holder(); 1606 if (ik->is_final()) { 1607 exact_type = ik; 1608 } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) { 1609 // test class is leaf class 1610 compilation()->dependency_recorder()->assert_leaf_type(ik); 1611 exact_type = ik; 1612 } else { 1613 declared_type = ik; 1614 } 1615 } 1616 1617 // see if we know statically that registration isn't required 1618 bool needs_check = true; 1619 if (exact_type != nullptr) { 1620 needs_check = exact_type->as_instance_klass()->has_finalizer(); 1621 } else if (declared_type != nullptr) { 1622 ciInstanceKlass* ik = declared_type->as_instance_klass(); 1623 if (!Dependencies::has_finalizable_subclass(ik)) { 1624 compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik); 1625 needs_check = false; 1626 } 1627 } 1628 1629 if (needs_check) { 1630 // Perform the registration of finalizable objects. 1631 ValueStack* state_before = copy_state_for_exception(); 1632 load_local(objectType, 0); 1633 append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init, 1634 state()->pop_arguments(1), 1635 true, state_before, true)); 1636 } 1637 } 1638 1639 1640 void GraphBuilder::method_return(Value x, bool ignore_return) { 1641 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) { 1642 call_register_finalizer(); 1643 } 1644 1645 // The conditions for a memory barrier are described in Parse::do_exits(). 1646 bool need_mem_bar = false; 1647 if (method()->is_object_constructor() && 1648 (scope()->wrote_final() || scope()->wrote_stable() || 1649 (AlwaysSafeConstructors && scope()->wrote_fields()) || 1650 (support_IRIW_for_not_multiple_copy_atomic_cpu && scope()->wrote_volatile()))) { 1651 need_mem_bar = true; 1652 } 1653 1654 BasicType bt = method()->return_type()->basic_type(); 1655 switch (bt) { 1656 case T_BYTE: 1657 { 1658 Value shift = append(new Constant(new IntConstant(24))); 1659 x = append(new ShiftOp(Bytecodes::_ishl, x, shift)); 1660 x = append(new ShiftOp(Bytecodes::_ishr, x, shift)); 1661 break; 1662 } 1663 case T_SHORT: 1664 { 1665 Value shift = append(new Constant(new IntConstant(16))); 1666 x = append(new ShiftOp(Bytecodes::_ishl, x, shift)); 1667 x = append(new ShiftOp(Bytecodes::_ishr, x, shift)); 1668 break; 1669 } 1670 case T_CHAR: 1671 { 1672 Value mask = append(new Constant(new IntConstant(0xFFFF))); 1673 x = append(new LogicOp(Bytecodes::_iand, x, mask)); 1674 break; 1675 } 1676 case T_BOOLEAN: 1677 { 1678 Value mask = append(new Constant(new IntConstant(1))); 1679 x = append(new LogicOp(Bytecodes::_iand, x, mask)); 1680 break; 1681 } 1682 default: 1683 break; 1684 } 1685 1686 // Check to see whether we are inlining. If so, Return 1687 // instructions become Gotos to the continuation point. 1688 if (continuation() != nullptr) { 1689 1690 int invoke_bci = state()->caller_state()->bci(); 1691 1692 if (x != nullptr && !ignore_return) { 1693 ciMethod* caller = state()->scope()->caller()->method(); 1694 Bytecodes::Code invoke_raw_bc = caller->raw_code_at_bci(invoke_bci); 1695 if (invoke_raw_bc == Bytecodes::_invokehandle || invoke_raw_bc == Bytecodes::_invokedynamic) { 1696 ciType* declared_ret_type = caller->get_declared_signature_at_bci(invoke_bci)->return_type(); 1697 if (declared_ret_type->is_klass() && x->exact_type() == nullptr && 1698 x->declared_type() != declared_ret_type && declared_ret_type != compilation()->env()->Object_klass()) { 1699 x = append(new TypeCast(declared_ret_type->as_klass(), x, copy_state_before())); 1700 } 1701 } 1702 } 1703 1704 assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet"); 1705 1706 if (compilation()->env()->dtrace_method_probes()) { 1707 // Report exit from inline methods 1708 Values* args = new Values(1); 1709 args->push(append(new Constant(new MethodConstant(method())))); 1710 append(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args)); 1711 } 1712 1713 // If the inlined method is synchronized, the monitor must be 1714 // released before we jump to the continuation block. 1715 if (method()->is_synchronized()) { 1716 assert(state()->locks_size() == 1, "receiver must be locked here"); 1717 monitorexit(state()->lock_at(0), SynchronizationEntryBCI); 1718 } 1719 1720 if (need_mem_bar) { 1721 append(new MemBar(lir_membar_storestore)); 1722 } 1723 1724 // State at end of inlined method is the state of the caller 1725 // without the method parameters on stack, including the 1726 // return value, if any, of the inlined method on operand stack. 1727 set_state(state()->caller_state()->copy_for_parsing()); 1728 if (x != nullptr) { 1729 if (!ignore_return) { 1730 state()->push(x->type(), x); 1731 } 1732 if (profile_return() && x->type()->is_object_kind()) { 1733 ciMethod* caller = state()->scope()->method(); 1734 profile_return_type(x, method(), caller, invoke_bci); 1735 } 1736 } 1737 Goto* goto_callee = new Goto(continuation(), false); 1738 1739 // See whether this is the first return; if so, store off some 1740 // of the state for later examination 1741 if (num_returns() == 0) { 1742 set_inline_cleanup_info(); 1743 } 1744 1745 // The current bci() is in the wrong scope, so use the bci() of 1746 // the continuation point. 1747 append_with_bci(goto_callee, scope_data()->continuation()->bci()); 1748 incr_num_returns(); 1749 return; 1750 } 1751 1752 state()->truncate_stack(0); 1753 if (method()->is_synchronized()) { 1754 // perform the unlocking before exiting the method 1755 Value receiver; 1756 if (!method()->is_static()) { 1757 receiver = _initial_state->local_at(0); 1758 } else { 1759 receiver = append(new Constant(new ClassConstant(method()->holder()))); 1760 } 1761 append_split(new MonitorExit(receiver, state()->unlock())); 1762 } 1763 1764 if (need_mem_bar) { 1765 append(new MemBar(lir_membar_storestore)); 1766 } 1767 1768 assert(!ignore_return, "Ignoring return value works only for inlining"); 1769 append(new Return(x)); 1770 } 1771 1772 Value GraphBuilder::make_constant(ciConstant field_value, ciField* field) { 1773 if (!field_value.is_valid()) return nullptr; 1774 1775 BasicType field_type = field_value.basic_type(); 1776 ValueType* value = as_ValueType(field_value); 1777 1778 // Attach dimension info to stable arrays. 1779 if (FoldStableValues && 1780 field->is_stable() && field_type == T_ARRAY && !field_value.is_null_or_zero()) { 1781 ciArray* array = field_value.as_object()->as_array(); 1782 jint dimension = field->type()->as_array_klass()->dimension(); 1783 value = new StableArrayConstant(array, dimension); 1784 } 1785 1786 switch (field_type) { 1787 case T_ARRAY: 1788 case T_OBJECT: 1789 if (field_value.as_object()->should_be_constant()) { 1790 return new Constant(value); 1791 } 1792 return nullptr; // Not a constant. 1793 default: 1794 return new Constant(value); 1795 } 1796 } 1797 1798 void GraphBuilder::copy_inline_content(ciInlineKlass* vk, Value src, int src_off, Value dest, int dest_off, ValueStack* state_before, ciField* enclosing_field) { 1799 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) { 1800 ciField* field = vk->declared_nonstatic_field_at(i); 1801 int offset = field->offset_in_bytes() - vk->payload_offset(); 1802 if (field->is_flat()) { 1803 copy_inline_content(field->type()->as_inline_klass(), src, src_off + offset, dest, dest_off + offset, state_before, enclosing_field); 1804 if (!field->is_null_free()) { 1805 // Nullable, copy the null marker using Unsafe because null markers are no real fields 1806 int null_marker_offset = field->null_marker_offset() - vk->payload_offset(); 1807 Value offset = append(new Constant(new LongConstant(src_off + null_marker_offset))); 1808 Value nm = append(new UnsafeGet(T_BOOLEAN, src, offset, false)); 1809 offset = append(new Constant(new LongConstant(dest_off + null_marker_offset))); 1810 append(new UnsafePut(T_BOOLEAN, dest, offset, nm, false)); 1811 } 1812 } else { 1813 Value value = append(new LoadField(src, src_off + offset, field, false, state_before, false)); 1814 StoreField* store = new StoreField(dest, dest_off + offset, field, value, false, state_before, false); 1815 store->set_enclosing_field(enclosing_field); 1816 append(store); 1817 } 1818 } 1819 } 1820 1821 void GraphBuilder::access_field(Bytecodes::Code code) { 1822 bool will_link; 1823 ciField* field = stream()->get_field(will_link); 1824 ciInstanceKlass* holder = field->holder(); 1825 BasicType field_type = field->type()->basic_type(); 1826 ValueType* type = as_ValueType(field_type); 1827 1828 // call will_link again to determine if the field is valid. 1829 const bool needs_patching = !holder->is_loaded() || 1830 !field->will_link(method(), code) || 1831 (!field->is_flat() && PatchALot); 1832 1833 ValueStack* state_before = nullptr; 1834 if (!holder->is_initialized() || needs_patching) { 1835 // save state before instruction for debug info when 1836 // deoptimization happens during patching 1837 state_before = copy_state_before(); 1838 } 1839 1840 Value obj = nullptr; 1841 if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) { 1842 if (state_before != nullptr) { 1843 // build a patching constant 1844 obj = new Constant(new InstanceConstant(holder->java_mirror()), state_before); 1845 } else { 1846 obj = new Constant(new InstanceConstant(holder->java_mirror())); 1847 } 1848 } 1849 1850 if (code == Bytecodes::_putfield) { 1851 scope()->set_wrote_fields(); 1852 if (field->is_volatile()) { 1853 scope()->set_wrote_volatile(); 1854 } 1855 if (field->is_final()) { 1856 scope()->set_wrote_final(); 1857 } 1858 if (field->is_stable()) { 1859 scope()->set_wrote_stable(); 1860 } 1861 } 1862 1863 int offset = !needs_patching ? field->offset_in_bytes() : -1; 1864 switch (code) { 1865 case Bytecodes::_getstatic: { 1866 // check for compile-time constants, i.e., initialized static final fields 1867 Value constant = nullptr; 1868 if (field->is_static_constant() && !PatchALot) { 1869 ciConstant field_value = field->constant_value(); 1870 assert(!field->is_stable() || !field_value.is_null_or_zero(), 1871 "stable static w/ default value shouldn't be a constant"); 1872 constant = make_constant(field_value, field); 1873 } 1874 if (constant != nullptr) { 1875 push(type, append(constant)); 1876 } else { 1877 if (state_before == nullptr) { 1878 state_before = copy_state_for_exception(); 1879 } 1880 LoadField* load_field = new LoadField(append(obj), offset, field, true, 1881 state_before, needs_patching); 1882 push(type, append(load_field)); 1883 } 1884 break; 1885 } 1886 case Bytecodes::_putstatic: { 1887 Value val = pop(type); 1888 if (state_before == nullptr) { 1889 state_before = copy_state_for_exception(); 1890 } 1891 if (field_type == T_BOOLEAN) { 1892 Value mask = append(new Constant(new IntConstant(1))); 1893 val = append(new LogicOp(Bytecodes::_iand, val, mask)); 1894 } 1895 if (field->is_null_free()) { 1896 null_check(val); 1897 } 1898 if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty() && (!method()->is_class_initializer() || field->is_flat())) { 1899 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore. 1900 break; 1901 } 1902 append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching)); 1903 break; 1904 } 1905 case Bytecodes::_getfield: { 1906 // Check for compile-time constants, i.e., trusted final non-static fields. 1907 Value constant = nullptr; 1908 if (state_before == nullptr && field->is_flat()) { 1909 // Save the entire state and re-execute on deopt when accessing flat fields 1910 assert(Interpreter::bytecode_should_reexecute(code), "should reexecute"); 1911 state_before = copy_state_before(); 1912 } 1913 if (!has_pending_field_access() && !has_pending_load_indexed()) { 1914 obj = apop(); 1915 ObjectType* obj_type = obj->type()->as_ObjectType(); 1916 if (field->is_constant() && !field->is_flat() && obj_type->is_constant() && !PatchALot) { 1917 ciObject* const_oop = obj_type->constant_value(); 1918 if (!const_oop->is_null_object() && const_oop->is_loaded()) { 1919 ciConstant field_value = field->constant_value_of(const_oop); 1920 if (field_value.is_valid()) { 1921 constant = make_constant(field_value, field); 1922 // For CallSite objects add a dependency for invalidation of the optimization. 1923 if (field->is_call_site_target()) { 1924 ciCallSite* call_site = const_oop->as_call_site(); 1925 if (!call_site->is_fully_initialized_constant_call_site()) { 1926 ciMethodHandle* target = field_value.as_object()->as_method_handle(); 1927 dependency_recorder()->assert_call_site_target_value(call_site, target); 1928 } 1929 } 1930 } 1931 } 1932 } 1933 } 1934 if (constant != nullptr) { 1935 push(type, append(constant)); 1936 } else { 1937 if (state_before == nullptr) { 1938 state_before = copy_state_for_exception(); 1939 } 1940 if (!field->is_flat()) { 1941 if (has_pending_field_access()) { 1942 assert(!needs_patching, "Can't patch delayed field access"); 1943 obj = pending_field_access()->obj(); 1944 offset += pending_field_access()->offset() - field->holder()->as_inline_klass()->payload_offset(); 1945 field = pending_field_access()->holder()->get_field_by_offset(offset, false); 1946 assert(field != nullptr, "field not found"); 1947 set_pending_field_access(nullptr); 1948 } else if (has_pending_load_indexed()) { 1949 assert(!needs_patching, "Can't patch delayed field access"); 1950 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset()); 1951 LoadIndexed* li = pending_load_indexed()->load_instr(); 1952 li->set_type(type); 1953 push(type, append(li)); 1954 set_pending_load_indexed(nullptr); 1955 break; 1956 } 1957 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching); 1958 Value replacement = !needs_patching ? _memory->load(load) : load; 1959 if (replacement != load) { 1960 assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked"); 1961 // Writing an (integer) value to a boolean, byte, char or short field includes an implicit narrowing 1962 // conversion. Emit an explicit conversion here to get the correct field value after the write. 1963 switch (field_type) { 1964 case T_BOOLEAN: 1965 case T_BYTE: 1966 replacement = append(new Convert(Bytecodes::_i2b, replacement, type)); 1967 break; 1968 case T_CHAR: 1969 replacement = append(new Convert(Bytecodes::_i2c, replacement, type)); 1970 break; 1971 case T_SHORT: 1972 replacement = append(new Convert(Bytecodes::_i2s, replacement, type)); 1973 break; 1974 default: 1975 break; 1976 } 1977 push(type, replacement); 1978 } else { 1979 push(type, append(load)); 1980 } 1981 } else { 1982 // Flat field 1983 assert(!needs_patching, "Can't patch flat inline type field access"); 1984 ciInlineKlass* inline_klass = field->type()->as_inline_klass(); 1985 bool is_naturally_atomic = inline_klass->nof_declared_nonstatic_fields() <= 1; 1986 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic); 1987 if (needs_atomic_access) { 1988 assert(!has_pending_field_access(), "Pending field accesses are not supported"); 1989 LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching); 1990 push(type, append(load)); 1991 } else { 1992 assert(field->is_null_free(), "must be null-free"); 1993 // Look at the next bytecode to check if we can delay the field access 1994 bool can_delay_access = false; 1995 ciBytecodeStream s(method()); 1996 s.force_bci(bci()); 1997 s.next(); 1998 if (s.cur_bc() == Bytecodes::_getfield && !needs_patching) { 1999 ciField* next_field = s.get_field(will_link); 2000 bool next_needs_patching = !next_field->holder()->is_loaded() || 2001 !next_field->will_link(method(), Bytecodes::_getfield) || 2002 PatchALot; 2003 // We can't update the offset for atomic accesses 2004 bool next_needs_atomic_access = !next_field->is_null_free() || next_field->is_volatile(); 2005 can_delay_access = C1UseDelayedFlattenedFieldReads && !next_needs_patching && !next_needs_atomic_access; 2006 } 2007 if (can_delay_access) { 2008 if (has_pending_load_indexed()) { 2009 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset()); 2010 } else if (has_pending_field_access()) { 2011 pending_field_access()->inc_offset(offset - field->holder()->as_inline_klass()->payload_offset()); 2012 } else { 2013 null_check(obj); 2014 DelayedFieldAccess* dfa = new DelayedFieldAccess(obj, field->holder(), field->offset_in_bytes(), state_before); 2015 set_pending_field_access(dfa); 2016 } 2017 } else { 2018 scope()->set_wrote_final(); 2019 scope()->set_wrote_fields(); 2020 bool need_membar = false; 2021 if (has_pending_load_indexed()) { 2022 assert(!needs_patching, "Can't patch delayed field access"); 2023 pending_load_indexed()->update(field, offset - field->holder()->as_inline_klass()->payload_offset()); 2024 NewInstance* vt = new NewInstance(inline_klass, pending_load_indexed()->state_before(), false, true); 2025 _memory->new_instance(vt); 2026 pending_load_indexed()->load_instr()->set_vt(vt); 2027 apush(append_split(vt)); 2028 append(pending_load_indexed()->load_instr()); 2029 set_pending_load_indexed(nullptr); 2030 need_membar = true; 2031 } else { 2032 if (has_pending_field_access()) { 2033 state_before = pending_field_access()->state_before(); 2034 } 2035 NewInstance* new_instance = new NewInstance(inline_klass, state_before, false, true); 2036 _memory->new_instance(new_instance); 2037 apush(append_split(new_instance)); 2038 if (has_pending_field_access()) { 2039 copy_inline_content(inline_klass, pending_field_access()->obj(), 2040 pending_field_access()->offset() + field->offset_in_bytes() - field->holder()->as_inline_klass()->payload_offset(), 2041 new_instance, inline_klass->payload_offset(), state_before); 2042 set_pending_field_access(nullptr); 2043 } else { 2044 if (field->type()->as_instance_klass()->is_initialized() && field->type()->as_inline_klass()->is_empty()) { 2045 // Needs an explicit null check because below code does not perform any actual load if there are no fields 2046 null_check(obj); 2047 } 2048 copy_inline_content(inline_klass, obj, field->offset_in_bytes(), new_instance, inline_klass->payload_offset(), state_before); 2049 } 2050 need_membar = true; 2051 } 2052 if (need_membar) { 2053 // If we allocated a new instance ensure the stores to copy the 2054 // field contents are visible before any subsequent store that 2055 // publishes this reference. 2056 append(new MemBar(lir_membar_storestore)); 2057 } 2058 } 2059 } 2060 } 2061 } 2062 break; 2063 } 2064 case Bytecodes::_putfield: { 2065 Value val = pop(type); 2066 obj = apop(); 2067 if (state_before == nullptr) { 2068 state_before = copy_state_for_exception(); 2069 } 2070 if (field_type == T_BOOLEAN) { 2071 Value mask = append(new Constant(new IntConstant(1))); 2072 val = append(new LogicOp(Bytecodes::_iand, val, mask)); 2073 } 2074 2075 if (field->is_null_free() && field->type()->is_loaded() && field->type()->as_inline_klass()->is_empty() && (!method()->is_object_constructor() || field->is_flat())) { 2076 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore. 2077 null_check(obj); 2078 null_check(val); 2079 } else if (!field->is_flat()) { 2080 if (field->is_null_free()) { 2081 null_check(val); 2082 } 2083 StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching); 2084 if (!needs_patching) store = _memory->store(store); 2085 if (store != nullptr) { 2086 append(store); 2087 } 2088 } else { 2089 // Flat field 2090 assert(!needs_patching, "Can't patch flat inline type field access"); 2091 ciInlineKlass* inline_klass = field->type()->as_inline_klass(); 2092 bool is_naturally_atomic = inline_klass->nof_declared_nonstatic_fields() <= 1; 2093 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic); 2094 if (needs_atomic_access) { 2095 if (field->is_null_free()) { 2096 null_check(val); 2097 } 2098 append(new StoreField(obj, offset, field, val, false, state_before, needs_patching)); 2099 } else { 2100 assert(field->is_null_free(), "must be null-free"); 2101 copy_inline_content(inline_klass, val, inline_klass->payload_offset(), obj, offset, state_before, field); 2102 } 2103 } 2104 break; 2105 } 2106 default: 2107 ShouldNotReachHere(); 2108 break; 2109 } 2110 } 2111 2112 Dependencies* GraphBuilder::dependency_recorder() const { 2113 assert(DeoptC1, "need debug information"); 2114 return compilation()->dependency_recorder(); 2115 } 2116 2117 // How many arguments do we want to profile? 2118 Values* GraphBuilder::args_list_for_profiling(ciMethod* target, int& start, bool may_have_receiver) { 2119 int n = 0; 2120 bool has_receiver = may_have_receiver && Bytecodes::has_receiver(method()->java_code_at_bci(bci())); 2121 start = has_receiver ? 1 : 0; 2122 if (profile_arguments()) { 2123 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2124 if (data != nullptr && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) { 2125 n = data->is_CallTypeData() ? data->as_CallTypeData()->number_of_arguments() : data->as_VirtualCallTypeData()->number_of_arguments(); 2126 } 2127 } 2128 // If we are inlining then we need to collect arguments to profile parameters for the target 2129 if (profile_parameters() && target != nullptr) { 2130 if (target->method_data() != nullptr && target->method_data()->parameters_type_data() != nullptr) { 2131 // The receiver is profiled on method entry so it's included in 2132 // the number of parameters but here we're only interested in 2133 // actual arguments. 2134 n = MAX2(n, target->method_data()->parameters_type_data()->number_of_parameters() - start); 2135 } 2136 } 2137 if (n > 0) { 2138 return new Values(n); 2139 } 2140 return nullptr; 2141 } 2142 2143 void GraphBuilder::check_args_for_profiling(Values* obj_args, int expected) { 2144 #ifdef ASSERT 2145 bool ignored_will_link; 2146 ciSignature* declared_signature = nullptr; 2147 ciMethod* real_target = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 2148 assert(expected == obj_args->capacity() || real_target->is_method_handle_intrinsic(), "missed on arg?"); 2149 #endif 2150 } 2151 2152 // Collect arguments that we want to profile in a list 2153 Values* GraphBuilder::collect_args_for_profiling(Values* args, ciMethod* target, bool may_have_receiver) { 2154 int start = 0; 2155 Values* obj_args = args_list_for_profiling(target, start, may_have_receiver); 2156 if (obj_args == nullptr) { 2157 return nullptr; 2158 } 2159 int s = obj_args->capacity(); 2160 // if called through method handle invoke, some arguments may have been popped 2161 for (int i = start, j = 0; j < s && i < args->length(); i++) { 2162 if (args->at(i)->type()->is_object_kind()) { 2163 obj_args->push(args->at(i)); 2164 j++; 2165 } 2166 } 2167 check_args_for_profiling(obj_args, s); 2168 return obj_args; 2169 } 2170 2171 void GraphBuilder::invoke(Bytecodes::Code code) { 2172 bool will_link; 2173 ciSignature* declared_signature = nullptr; 2174 ciMethod* target = stream()->get_method(will_link, &declared_signature); 2175 ciKlass* holder = stream()->get_declared_method_holder(); 2176 const Bytecodes::Code bc_raw = stream()->cur_bc_raw(); 2177 assert(declared_signature != nullptr, "cannot be null"); 2178 assert(will_link == target->is_loaded(), ""); 2179 JFR_ONLY(Jfr::on_resolution(this, holder, target); CHECK_BAILOUT();) 2180 2181 ciInstanceKlass* klass = target->holder(); 2182 assert(!target->is_loaded() || klass->is_loaded(), "loaded target must imply loaded klass"); 2183 2184 // check if CHA possible: if so, change the code to invoke_special 2185 ciInstanceKlass* calling_klass = method()->holder(); 2186 ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder); 2187 ciInstanceKlass* actual_recv = callee_holder; 2188 2189 CompileLog* log = compilation()->log(); 2190 if (log != nullptr) 2191 log->elem("call method='%d' instr='%s'", 2192 log->identify(target), 2193 Bytecodes::name(code)); 2194 2195 // Some methods are obviously bindable without any type checks so 2196 // convert them directly to an invokespecial or invokestatic. 2197 if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) { 2198 switch (bc_raw) { 2199 case Bytecodes::_invokeinterface: 2200 // convert to invokespecial if the target is the private interface method. 2201 if (target->is_private()) { 2202 assert(holder->is_interface(), "How did we get a non-interface method here!"); 2203 code = Bytecodes::_invokespecial; 2204 } 2205 break; 2206 case Bytecodes::_invokevirtual: 2207 code = Bytecodes::_invokespecial; 2208 break; 2209 case Bytecodes::_invokehandle: 2210 code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial; 2211 break; 2212 default: 2213 break; 2214 } 2215 } else { 2216 if (bc_raw == Bytecodes::_invokehandle) { 2217 assert(!will_link, "should come here only for unlinked call"); 2218 code = Bytecodes::_invokespecial; 2219 } 2220 } 2221 2222 if (code == Bytecodes::_invokespecial) { 2223 // Additional receiver subtype checks for interface calls via invokespecial or invokeinterface. 2224 ciKlass* receiver_constraint = nullptr; 2225 2226 if (bc_raw == Bytecodes::_invokeinterface) { 2227 receiver_constraint = holder; 2228 } else if (bc_raw == Bytecodes::_invokespecial && !target->is_object_constructor() && calling_klass->is_interface()) { 2229 receiver_constraint = calling_klass; 2230 } 2231 2232 if (receiver_constraint != nullptr) { 2233 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1); 2234 Value receiver = state()->stack_at(index); 2235 CheckCast* c = new CheckCast(receiver_constraint, receiver, copy_state_before()); 2236 // go to uncommon_trap when checkcast fails 2237 c->set_invokespecial_receiver_check(); 2238 state()->stack_at_put(index, append_split(c)); 2239 } 2240 } 2241 2242 // Push appendix argument (MethodType, CallSite, etc.), if one. 2243 bool patch_for_appendix = false; 2244 int patching_appendix_arg = 0; 2245 if (Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot)) { 2246 Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before())); 2247 apush(arg); 2248 patch_for_appendix = true; 2249 patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1; 2250 } else if (stream()->has_appendix()) { 2251 ciObject* appendix = stream()->get_appendix(); 2252 Value arg = append(new Constant(new ObjectConstant(appendix))); 2253 apush(arg); 2254 } 2255 2256 ciMethod* cha_monomorphic_target = nullptr; 2257 ciMethod* exact_target = nullptr; 2258 Value better_receiver = nullptr; 2259 if (UseCHA && DeoptC1 && target->is_loaded() && 2260 !(// %%% FIXME: Are both of these relevant? 2261 target->is_method_handle_intrinsic() || 2262 target->is_compiled_lambda_form()) && 2263 !patch_for_appendix) { 2264 Value receiver = nullptr; 2265 ciInstanceKlass* receiver_klass = nullptr; 2266 bool type_is_exact = false; 2267 // try to find a precise receiver type 2268 if (will_link && !target->is_static()) { 2269 int index = state()->stack_size() - (target->arg_size_no_receiver() + 1); 2270 receiver = state()->stack_at(index); 2271 ciType* type = receiver->exact_type(); 2272 if (type != nullptr && type->is_loaded()) { 2273 assert(!type->is_instance_klass() || !type->as_instance_klass()->is_interface(), "Must not be an interface"); 2274 // Detects non-interface instances, primitive arrays, and some object arrays. 2275 // Array receivers can only call Object methods, so we should be able to allow 2276 // all object arrays here too, even those with unloaded types. 2277 receiver_klass = (ciInstanceKlass*) type; 2278 type_is_exact = true; 2279 } 2280 if (type == nullptr) { 2281 type = receiver->declared_type(); 2282 if (type != nullptr && type->is_loaded() && 2283 type->is_instance_klass() && !type->as_instance_klass()->is_interface()) { 2284 receiver_klass = (ciInstanceKlass*) type; 2285 if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) { 2286 // Insert a dependency on this type since 2287 // find_monomorphic_target may assume it's already done. 2288 dependency_recorder()->assert_leaf_type(receiver_klass); 2289 type_is_exact = true; 2290 } 2291 } 2292 } 2293 } 2294 if (receiver_klass != nullptr && type_is_exact && 2295 receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) { 2296 // If we have the exact receiver type we can bind directly to 2297 // the method to call. 2298 exact_target = target->resolve_invoke(calling_klass, receiver_klass); 2299 if (exact_target != nullptr) { 2300 target = exact_target; 2301 code = Bytecodes::_invokespecial; 2302 } 2303 } 2304 if (receiver_klass != nullptr && 2305 receiver_klass->is_subtype_of(actual_recv) && 2306 actual_recv->is_initialized()) { 2307 actual_recv = receiver_klass; 2308 } 2309 2310 if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) || 2311 (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) { 2312 // Use CHA on the receiver to select a more precise method. 2313 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv); 2314 } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != nullptr) { 2315 assert(callee_holder->is_interface(), "invokeinterface to non interface?"); 2316 // If there is only one implementor of this interface then we 2317 // may be able bind this invoke directly to the implementing 2318 // klass but we need both a dependence on the single interface 2319 // and on the method we bind to. Additionally since all we know 2320 // about the receiver type is the it's supposed to implement the 2321 // interface we have to insert a check that it's the class we 2322 // expect. Interface types are not checked by the verifier so 2323 // they are roughly equivalent to Object. 2324 // The number of implementors for declared_interface is less or 2325 // equal to the number of implementors for target->holder() so 2326 // if number of implementors of target->holder() == 1 then 2327 // number of implementors for decl_interface is 0 or 1. If 2328 // it's 0 then no class implements decl_interface and there's 2329 // no point in inlining. 2330 ciInstanceKlass* declared_interface = callee_holder; 2331 ciInstanceKlass* singleton = declared_interface->unique_implementor(); 2332 if (singleton != nullptr) { 2333 assert(singleton != declared_interface, "not a unique implementor"); 2334 cha_monomorphic_target = target->find_monomorphic_target(calling_klass, declared_interface, singleton); 2335 if (cha_monomorphic_target != nullptr) { 2336 ciInstanceKlass* holder = cha_monomorphic_target->holder(); 2337 ciInstanceKlass* constraint = (holder->is_subtype_of(singleton) ? holder : singleton); // avoid upcasts 2338 if (holder != compilation()->env()->Object_klass() && 2339 (!type_is_exact || receiver_klass->is_subtype_of(constraint))) { 2340 actual_recv = declared_interface; 2341 2342 // insert a check it's really the expected class. 2343 CheckCast* c = new CheckCast(constraint, receiver, copy_state_for_exception()); 2344 c->set_incompatible_class_change_check(); 2345 c->set_direct_compare(constraint->is_final()); 2346 // pass the result of the checkcast so that the compiler has 2347 // more accurate type info in the inlinee 2348 better_receiver = append_split(c); 2349 2350 dependency_recorder()->assert_unique_implementor(declared_interface, singleton); 2351 } else { 2352 cha_monomorphic_target = nullptr; 2353 } 2354 } 2355 } 2356 } 2357 } 2358 2359 if (cha_monomorphic_target != nullptr) { 2360 assert(!target->can_be_statically_bound() || target == cha_monomorphic_target, ""); 2361 assert(!cha_monomorphic_target->is_abstract(), ""); 2362 if (!cha_monomorphic_target->can_be_statically_bound(actual_recv)) { 2363 // If we inlined because CHA revealed only a single target method, 2364 // then we are dependent on that target method not getting overridden 2365 // by dynamic class loading. Be sure to test the "static" receiver 2366 // dest_method here, as opposed to the actual receiver, which may 2367 // falsely lead us to believe that the receiver is final or private. 2368 dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target, callee_holder, target); 2369 } 2370 code = Bytecodes::_invokespecial; 2371 } 2372 2373 // check if we could do inlining 2374 if (!PatchALot && Inline && target->is_loaded() && !patch_for_appendix && 2375 callee_holder->is_loaded()) { // the effect of symbolic reference resolution 2376 2377 // callee is known => check if we have static binding 2378 if ((code == Bytecodes::_invokestatic && klass->is_initialized()) || // invokestatic involves an initialization barrier on declaring class 2379 code == Bytecodes::_invokespecial || 2380 (code == Bytecodes::_invokevirtual && target->is_final_method()) || 2381 code == Bytecodes::_invokedynamic) { 2382 // static binding => check if callee is ok 2383 ciMethod* inline_target = (cha_monomorphic_target != nullptr) ? cha_monomorphic_target : target; 2384 bool holder_known = (cha_monomorphic_target != nullptr) || (exact_target != nullptr); 2385 bool success = try_inline(inline_target, holder_known, false /* ignore_return */, code, better_receiver); 2386 2387 CHECK_BAILOUT(); 2388 clear_inline_bailout(); 2389 2390 if (success) { 2391 // Register dependence if JVMTI has either breakpoint 2392 // setting or hotswapping of methods capabilities since they may 2393 // cause deoptimization. 2394 if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) { 2395 dependency_recorder()->assert_evol_method(inline_target); 2396 } 2397 return; 2398 } 2399 } else { 2400 print_inlining(target, "no static binding", /*success*/ false); 2401 } 2402 } else { 2403 print_inlining(target, "not inlineable", /*success*/ false); 2404 } 2405 2406 // If we attempted an inline which did not succeed because of a 2407 // bailout during construction of the callee graph, the entire 2408 // compilation has to be aborted. This is fairly rare and currently 2409 // seems to only occur for jasm-generated classes which contain 2410 // jsr/ret pairs which are not associated with finally clauses and 2411 // do not have exception handlers in the containing method, and are 2412 // therefore not caught early enough to abort the inlining without 2413 // corrupting the graph. (We currently bail out with a non-empty 2414 // stack at a ret in these situations.) 2415 CHECK_BAILOUT(); 2416 2417 // inlining not successful => standard invoke 2418 ValueType* result_type = as_ValueType(declared_signature->return_type()); 2419 ValueStack* state_before = copy_state_exhandling(); 2420 2421 // The bytecode (code) might change in this method so we are checking this very late. 2422 const bool has_receiver = 2423 code == Bytecodes::_invokespecial || 2424 code == Bytecodes::_invokevirtual || 2425 code == Bytecodes::_invokeinterface; 2426 Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg); 2427 Value recv = has_receiver ? apop() : nullptr; 2428 2429 // A null check is required here (when there is a receiver) for any of the following cases 2430 // - invokespecial, always need a null check. 2431 // - invokevirtual, when the target is final and loaded. Calls to final targets will become optimized 2432 // and require null checking. If the target is loaded a null check is emitted here. 2433 // If the target isn't loaded the null check must happen after the call resolution. We achieve that 2434 // by using the target methods unverified entry point (see CompiledIC::compute_monomorphic_entry). 2435 // (The JVM specification requires that LinkageError must be thrown before a NPE. An unloaded target may 2436 // potentially fail, and can't have the null check before the resolution.) 2437 // - A call that will be profiled. (But we can't add a null check when the target is unloaded, by the same 2438 // reason as above, so calls with a receiver to unloaded targets can't be profiled.) 2439 // 2440 // Normal invokevirtual will perform the null check during lookup 2441 2442 bool need_null_check = (code == Bytecodes::_invokespecial) || 2443 (target->is_loaded() && (target->is_final_method() || (is_profiling() && profile_calls()))); 2444 2445 if (need_null_check) { 2446 if (recv != nullptr) { 2447 null_check(recv); 2448 } 2449 2450 if (is_profiling()) { 2451 // Note that we'd collect profile data in this method if we wanted it. 2452 compilation()->set_would_profile(true); 2453 2454 if (profile_calls()) { 2455 assert(cha_monomorphic_target == nullptr || exact_target == nullptr, "both can not be set"); 2456 ciKlass* target_klass = nullptr; 2457 if (cha_monomorphic_target != nullptr) { 2458 target_klass = cha_monomorphic_target->holder(); 2459 } else if (exact_target != nullptr) { 2460 target_klass = exact_target->holder(); 2461 } 2462 profile_call(target, recv, target_klass, collect_args_for_profiling(args, nullptr, false), false); 2463 } 2464 } 2465 } 2466 2467 Invoke* result = new Invoke(code, result_type, recv, args, target, state_before); 2468 // push result 2469 append_split(result); 2470 2471 if (result_type != voidType) { 2472 push(result_type, result); 2473 } 2474 if (profile_return() && result_type->is_object_kind()) { 2475 profile_return_type(result, target); 2476 } 2477 } 2478 2479 2480 void GraphBuilder::new_instance(int klass_index) { 2481 ValueStack* state_before = copy_state_exhandling(); 2482 ciKlass* klass = stream()->get_klass(); 2483 assert(klass->is_instance_klass(), "must be an instance klass"); 2484 NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before, stream()->is_unresolved_klass(), false); 2485 _memory->new_instance(new_instance); 2486 apush(append_split(new_instance)); 2487 } 2488 2489 void GraphBuilder::new_type_array() { 2490 ValueStack* state_before = copy_state_exhandling(); 2491 apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before, true))); 2492 } 2493 2494 2495 void GraphBuilder::new_object_array() { 2496 ciKlass* klass = stream()->get_klass(); 2497 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling(); 2498 NewArray* n = new NewObjectArray(klass, ipop(), state_before); 2499 apush(append_split(n)); 2500 } 2501 2502 2503 bool GraphBuilder::direct_compare(ciKlass* k) { 2504 if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) { 2505 ciInstanceKlass* ik = k->as_instance_klass(); 2506 if (ik->is_final()) { 2507 return true; 2508 } else { 2509 if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) { 2510 // test class is leaf class 2511 dependency_recorder()->assert_leaf_type(ik); 2512 return true; 2513 } 2514 } 2515 } 2516 return false; 2517 } 2518 2519 2520 void GraphBuilder::check_cast(int klass_index) { 2521 ciKlass* klass = stream()->get_klass(); 2522 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception(); 2523 CheckCast* c = new CheckCast(klass, apop(), state_before); 2524 apush(append_split(c)); 2525 c->set_direct_compare(direct_compare(klass)); 2526 2527 if (is_profiling()) { 2528 // Note that we'd collect profile data in this method if we wanted it. 2529 compilation()->set_would_profile(true); 2530 2531 if (profile_checkcasts()) { 2532 c->set_profiled_method(method()); 2533 c->set_profiled_bci(bci()); 2534 c->set_should_profile(true); 2535 } 2536 } 2537 } 2538 2539 2540 void GraphBuilder::instance_of(int klass_index) { 2541 ciKlass* klass = stream()->get_klass(); 2542 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling(); 2543 InstanceOf* i = new InstanceOf(klass, apop(), state_before); 2544 ipush(append_split(i)); 2545 i->set_direct_compare(direct_compare(klass)); 2546 2547 if (is_profiling()) { 2548 // Note that we'd collect profile data in this method if we wanted it. 2549 compilation()->set_would_profile(true); 2550 2551 if (profile_checkcasts()) { 2552 i->set_profiled_method(method()); 2553 i->set_profiled_bci(bci()); 2554 i->set_should_profile(true); 2555 } 2556 } 2557 } 2558 2559 2560 void GraphBuilder::monitorenter(Value x, int bci) { 2561 bool maybe_inlinetype = false; 2562 if (bci == InvocationEntryBci) { 2563 // Called by GraphBuilder::inline_sync_entry. 2564 #ifdef ASSERT 2565 ciType* obj_type = x->declared_type(); 2566 assert(obj_type == nullptr || !obj_type->is_inlinetype(), "inline types cannot have synchronized methods"); 2567 #endif 2568 } else { 2569 // We are compiling a monitorenter bytecode 2570 if (EnableValhalla) { 2571 ciType* obj_type = x->declared_type(); 2572 if (obj_type == nullptr || obj_type->as_klass()->can_be_inline_klass()) { 2573 // If we're (possibly) locking on an inline type, check for markWord::always_locked_pattern 2574 // and throw IMSE. (obj_type is null for Phi nodes, so let's just be conservative). 2575 maybe_inlinetype = true; 2576 } 2577 } 2578 } 2579 2580 // save state before locking in case of deoptimization after a NullPointerException 2581 ValueStack* state_before = copy_state_for_exception_with_bci(bci); 2582 append_with_bci(new MonitorEnter(x, state()->lock(x), state_before, maybe_inlinetype), bci); 2583 kill_all(); 2584 } 2585 2586 2587 void GraphBuilder::monitorexit(Value x, int bci) { 2588 append_with_bci(new MonitorExit(x, state()->unlock()), bci); 2589 kill_all(); 2590 } 2591 2592 2593 void GraphBuilder::new_multi_array(int dimensions) { 2594 ciKlass* klass = stream()->get_klass(); 2595 ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling(); 2596 2597 Values* dims = new Values(dimensions, dimensions, nullptr); 2598 // fill in all dimensions 2599 int i = dimensions; 2600 while (i-- > 0) dims->at_put(i, ipop()); 2601 // create array 2602 NewArray* n = new NewMultiArray(klass, dims, state_before); 2603 apush(append_split(n)); 2604 } 2605 2606 2607 void GraphBuilder::throw_op(int bci) { 2608 // We require that the debug info for a Throw be the "state before" 2609 // the Throw (i.e., exception oop is still on TOS) 2610 ValueStack* state_before = copy_state_before_with_bci(bci); 2611 Throw* t = new Throw(apop(), state_before); 2612 // operand stack not needed after a throw 2613 state()->truncate_stack(0); 2614 append_with_bci(t, bci); 2615 } 2616 2617 2618 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) { 2619 Canonicalizer canon(compilation(), instr, bci); 2620 Instruction* i1 = canon.canonical(); 2621 if (i1->is_linked() || !i1->can_be_linked()) { 2622 // Canonicalizer returned an instruction which was already 2623 // appended so simply return it. 2624 return i1; 2625 } 2626 2627 if (UseLocalValueNumbering) { 2628 // Lookup the instruction in the ValueMap and add it to the map if 2629 // it's not found. 2630 Instruction* i2 = vmap()->find_insert(i1); 2631 if (i2 != i1) { 2632 // found an entry in the value map, so just return it. 2633 assert(i2->is_linked(), "should already be linked"); 2634 return i2; 2635 } 2636 ValueNumberingEffects vne(vmap()); 2637 i1->visit(&vne); 2638 } 2639 2640 // i1 was not eliminated => append it 2641 assert(i1->next() == nullptr, "shouldn't already be linked"); 2642 _last = _last->set_next(i1, canon.bci()); 2643 2644 if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) { 2645 // set the bailout state but complete normal processing. We 2646 // might do a little more work before noticing the bailout so we 2647 // want processing to continue normally until it's noticed. 2648 bailout("Method and/or inlining is too large"); 2649 } 2650 2651 #ifndef PRODUCT 2652 if (PrintIRDuringConstruction) { 2653 InstructionPrinter ip; 2654 ip.print_line(i1); 2655 if (Verbose) { 2656 state()->print(); 2657 } 2658 } 2659 #endif 2660 2661 // save state after modification of operand stack for StateSplit instructions 2662 StateSplit* s = i1->as_StateSplit(); 2663 if (s != nullptr) { 2664 if (EliminateFieldAccess) { 2665 Intrinsic* intrinsic = s->as_Intrinsic(); 2666 if (s->as_Invoke() != nullptr || (intrinsic && !intrinsic->preserves_state())) { 2667 _memory->kill(); 2668 } 2669 } 2670 s->set_state(state()->copy(ValueStack::StateAfter, canon.bci())); 2671 } 2672 2673 // set up exception handlers for this instruction if necessary 2674 if (i1->can_trap()) { 2675 i1->set_exception_handlers(handle_exception(i1)); 2676 assert(i1->exception_state() != nullptr || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state"); 2677 } 2678 return i1; 2679 } 2680 2681 2682 Instruction* GraphBuilder::append(Instruction* instr) { 2683 assert(instr->as_StateSplit() == nullptr || instr->as_BlockEnd() != nullptr, "wrong append used"); 2684 return append_with_bci(instr, bci()); 2685 } 2686 2687 2688 Instruction* GraphBuilder::append_split(StateSplit* instr) { 2689 return append_with_bci(instr, bci()); 2690 } 2691 2692 2693 void GraphBuilder::null_check(Value value) { 2694 if (value->as_NewArray() != nullptr || value->as_NewInstance() != nullptr) { 2695 return; 2696 } else { 2697 Constant* con = value->as_Constant(); 2698 if (con) { 2699 ObjectType* c = con->type()->as_ObjectType(); 2700 if (c && c->is_loaded()) { 2701 ObjectConstant* oc = c->as_ObjectConstant(); 2702 if (!oc || !oc->value()->is_null_object()) { 2703 return; 2704 } 2705 } 2706 } 2707 if (value->is_null_free()) return; 2708 } 2709 append(new NullCheck(value, copy_state_for_exception())); 2710 } 2711 2712 2713 2714 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) { 2715 if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != nullptr)) { 2716 assert(instruction->exception_state() == nullptr 2717 || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState 2718 || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->should_retain_local_variables()), 2719 "exception_state should be of exception kind"); 2720 return new XHandlers(); 2721 } 2722 2723 XHandlers* exception_handlers = new XHandlers(); 2724 ScopeData* cur_scope_data = scope_data(); 2725 ValueStack* cur_state = instruction->state_before(); 2726 ValueStack* prev_state = nullptr; 2727 int scope_count = 0; 2728 2729 assert(cur_state != nullptr, "state_before must be set"); 2730 do { 2731 int cur_bci = cur_state->bci(); 2732 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match"); 2733 assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci() 2734 || has_pending_field_access() || has_pending_load_indexed(), "invalid bci"); 2735 2736 2737 // join with all potential exception handlers 2738 XHandlers* list = cur_scope_data->xhandlers(); 2739 const int n = list->length(); 2740 for (int i = 0; i < n; i++) { 2741 XHandler* h = list->handler_at(i); 2742 if (h->covers(cur_bci)) { 2743 // h is a potential exception handler => join it 2744 compilation()->set_has_exception_handlers(true); 2745 2746 BlockBegin* entry = h->entry_block(); 2747 if (entry == block()) { 2748 // It's acceptable for an exception handler to cover itself 2749 // but we don't handle that in the parser currently. It's 2750 // very rare so we bailout instead of trying to handle it. 2751 BAILOUT_("exception handler covers itself", exception_handlers); 2752 } 2753 assert(entry->bci() == h->handler_bci(), "must match"); 2754 assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond"); 2755 2756 // previously this was a BAILOUT, but this is not necessary 2757 // now because asynchronous exceptions are not handled this way. 2758 assert(entry->state() == nullptr || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match"); 2759 2760 // xhandler start with an empty expression stack 2761 if (cur_state->stack_size() != 0) { 2762 // locals are preserved 2763 // stack will be truncated 2764 cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci()); 2765 } 2766 if (instruction->exception_state() == nullptr) { 2767 instruction->set_exception_state(cur_state); 2768 } 2769 2770 // Note: Usually this join must work. However, very 2771 // complicated jsr-ret structures where we don't ret from 2772 // the subroutine can cause the objects on the monitor 2773 // stacks to not match because blocks can be parsed twice. 2774 // The only test case we've seen so far which exhibits this 2775 // problem is caught by the infinite recursion test in 2776 // GraphBuilder::jsr() if the join doesn't work. 2777 if (!entry->try_merge(cur_state, compilation()->has_irreducible_loops())) { 2778 BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers); 2779 } 2780 2781 // add current state for correct handling of phi functions at begin of xhandler 2782 int phi_operand = entry->add_exception_state(cur_state); 2783 2784 // add entry to the list of xhandlers of this block 2785 _block->add_exception_handler(entry); 2786 2787 // add back-edge from xhandler entry to this block 2788 if (!entry->is_predecessor(_block)) { 2789 entry->add_predecessor(_block); 2790 } 2791 2792 // clone XHandler because phi_operand and scope_count can not be shared 2793 XHandler* new_xhandler = new XHandler(h); 2794 new_xhandler->set_phi_operand(phi_operand); 2795 new_xhandler->set_scope_count(scope_count); 2796 exception_handlers->append(new_xhandler); 2797 2798 // fill in exception handler subgraph lazily 2799 assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet"); 2800 cur_scope_data->add_to_work_list(entry); 2801 2802 // stop when reaching catchall 2803 if (h->catch_type() == 0) { 2804 return exception_handlers; 2805 } 2806 } 2807 } 2808 2809 if (exception_handlers->length() == 0) { 2810 // This scope and all callees do not handle exceptions, so the local 2811 // variables of this scope are not needed. However, the scope itself is 2812 // required for a correct exception stack trace -> clear out the locals. 2813 // Stack and locals are invalidated but not truncated in caller state. 2814 if (prev_state != nullptr) { 2815 assert(instruction->exception_state() != nullptr, "missed set?"); 2816 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind(true /* caller */); 2817 cur_state = cur_state->copy(exc_kind, cur_state->bci()); 2818 // reset caller exception state 2819 prev_state->set_caller_state(cur_state); 2820 } else { 2821 assert(instruction->exception_state() == nullptr, "already set"); 2822 // set instruction exception state 2823 // truncate stack 2824 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind(); 2825 cur_state = cur_state->copy(exc_kind, cur_state->bci()); 2826 instruction->set_exception_state(cur_state); 2827 } 2828 } 2829 2830 // Set up iteration for next time. 2831 // If parsing a jsr, do not grab exception handlers from the 2832 // parent scopes for this method (already got them, and they 2833 // needed to be cloned) 2834 2835 while (cur_scope_data->parsing_jsr()) { 2836 cur_scope_data = cur_scope_data->parent(); 2837 } 2838 2839 assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match"); 2840 assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler"); 2841 2842 prev_state = cur_state; 2843 cur_state = cur_state->caller_state(); 2844 cur_scope_data = cur_scope_data->parent(); 2845 scope_count++; 2846 } while (cur_scope_data != nullptr); 2847 2848 return exception_handlers; 2849 } 2850 2851 2852 // Helper class for simplifying Phis. 2853 class PhiSimplifier : public BlockClosure { 2854 private: 2855 bool _has_substitutions; 2856 Value simplify(Value v); 2857 2858 public: 2859 PhiSimplifier(BlockBegin* start) : _has_substitutions(false) { 2860 start->iterate_preorder(this); 2861 if (_has_substitutions) { 2862 SubstitutionResolver sr(start); 2863 } 2864 } 2865 void block_do(BlockBegin* b); 2866 bool has_substitutions() const { return _has_substitutions; } 2867 }; 2868 2869 2870 Value PhiSimplifier::simplify(Value v) { 2871 Phi* phi = v->as_Phi(); 2872 2873 if (phi == nullptr) { 2874 // no phi function 2875 return v; 2876 } else if (v->has_subst()) { 2877 // already substituted; subst can be phi itself -> simplify 2878 return simplify(v->subst()); 2879 } else if (phi->is_set(Phi::cannot_simplify)) { 2880 // already tried to simplify phi before 2881 return phi; 2882 } else if (phi->is_set(Phi::visited)) { 2883 // break cycles in phi functions 2884 return phi; 2885 } else if (phi->type()->is_illegal()) { 2886 // illegal phi functions are ignored anyway 2887 return phi; 2888 2889 } else { 2890 // mark phi function as processed to break cycles in phi functions 2891 phi->set(Phi::visited); 2892 2893 // simplify x = [y, x] and x = [y, y] to y 2894 Value subst = nullptr; 2895 int opd_count = phi->operand_count(); 2896 for (int i = 0; i < opd_count; i++) { 2897 Value opd = phi->operand_at(i); 2898 assert(opd != nullptr, "Operand must exist!"); 2899 2900 if (opd->type()->is_illegal()) { 2901 // if one operand is illegal, the entire phi function is illegal 2902 phi->make_illegal(); 2903 phi->clear(Phi::visited); 2904 return phi; 2905 } 2906 2907 Value new_opd = simplify(opd); 2908 assert(new_opd != nullptr, "Simplified operand must exist!"); 2909 2910 if (new_opd != phi && new_opd != subst) { 2911 if (subst == nullptr) { 2912 subst = new_opd; 2913 } else { 2914 // no simplification possible 2915 phi->set(Phi::cannot_simplify); 2916 phi->clear(Phi::visited); 2917 return phi; 2918 } 2919 } 2920 } 2921 2922 // successfully simplified phi function 2923 assert(subst != nullptr, "illegal phi function"); 2924 _has_substitutions = true; 2925 phi->clear(Phi::visited); 2926 phi->set_subst(subst); 2927 2928 #ifndef PRODUCT 2929 if (PrintPhiFunctions) { 2930 tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id()); 2931 } 2932 #endif 2933 2934 return subst; 2935 } 2936 } 2937 2938 2939 void PhiSimplifier::block_do(BlockBegin* b) { 2940 for_each_phi_fun(b, phi, 2941 simplify(phi); 2942 ); 2943 2944 #ifdef ASSERT 2945 for_each_phi_fun(b, phi, 2946 assert(phi->operand_count() != 1 || phi->subst() != phi || phi->is_illegal(), "missed trivial simplification"); 2947 ); 2948 2949 ValueStack* state = b->state()->caller_state(); 2950 for_each_state_value(state, value, 2951 Phi* phi = value->as_Phi(); 2952 assert(phi == nullptr || phi->block() != b, "must not have phi function to simplify in caller state"); 2953 ); 2954 #endif 2955 } 2956 2957 // This method is called after all blocks are filled with HIR instructions 2958 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x] 2959 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) { 2960 PhiSimplifier simplifier(start); 2961 } 2962 2963 2964 void GraphBuilder::connect_to_end(BlockBegin* beg) { 2965 // setup iteration 2966 kill_all(); 2967 _block = beg; 2968 _state = beg->state()->copy_for_parsing(); 2969 _last = beg; 2970 iterate_bytecodes_for_block(beg->bci()); 2971 } 2972 2973 2974 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) { 2975 #ifndef PRODUCT 2976 if (PrintIRDuringConstruction) { 2977 tty->cr(); 2978 InstructionPrinter ip; 2979 ip.print_instr(_block); tty->cr(); 2980 ip.print_stack(_block->state()); tty->cr(); 2981 ip.print_inline_level(_block); 2982 ip.print_head(); 2983 tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size()); 2984 } 2985 #endif 2986 _skip_block = false; 2987 assert(state() != nullptr, "ValueStack missing!"); 2988 CompileLog* log = compilation()->log(); 2989 ciBytecodeStream s(method()); 2990 s.reset_to_bci(bci); 2991 int prev_bci = bci; 2992 scope_data()->set_stream(&s); 2993 // iterate 2994 Bytecodes::Code code = Bytecodes::_illegal; 2995 bool push_exception = false; 2996 2997 if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == nullptr) { 2998 // first thing in the exception entry block should be the exception object. 2999 push_exception = true; 3000 } 3001 3002 bool ignore_return = scope_data()->ignore_return(); 3003 3004 while (!bailed_out() && last()->as_BlockEnd() == nullptr && 3005 (code = stream()->next()) != ciBytecodeStream::EOBC() && 3006 (block_at(s.cur_bci()) == nullptr || block_at(s.cur_bci()) == block())) { 3007 assert(state()->kind() == ValueStack::Parsing, "invalid state kind"); 3008 3009 if (log != nullptr) 3010 log->set_context("bc code='%d' bci='%d'", (int)code, s.cur_bci()); 3011 3012 // Check for active jsr during OSR compilation 3013 if (compilation()->is_osr_compile() 3014 && scope()->is_top_scope() 3015 && parsing_jsr() 3016 && s.cur_bci() == compilation()->osr_bci()) { 3017 bailout("OSR not supported while a jsr is active"); 3018 } 3019 3020 if (push_exception) { 3021 apush(append(new ExceptionObject())); 3022 push_exception = false; 3023 } 3024 3025 // handle bytecode 3026 switch (code) { 3027 case Bytecodes::_nop : /* nothing to do */ break; 3028 case Bytecodes::_aconst_null : apush(append(new Constant(objectNull ))); break; 3029 case Bytecodes::_iconst_m1 : ipush(append(new Constant(new IntConstant (-1)))); break; 3030 case Bytecodes::_iconst_0 : ipush(append(new Constant(intZero ))); break; 3031 case Bytecodes::_iconst_1 : ipush(append(new Constant(intOne ))); break; 3032 case Bytecodes::_iconst_2 : ipush(append(new Constant(new IntConstant ( 2)))); break; 3033 case Bytecodes::_iconst_3 : ipush(append(new Constant(new IntConstant ( 3)))); break; 3034 case Bytecodes::_iconst_4 : ipush(append(new Constant(new IntConstant ( 4)))); break; 3035 case Bytecodes::_iconst_5 : ipush(append(new Constant(new IntConstant ( 5)))); break; 3036 case Bytecodes::_lconst_0 : lpush(append(new Constant(new LongConstant ( 0)))); break; 3037 case Bytecodes::_lconst_1 : lpush(append(new Constant(new LongConstant ( 1)))); break; 3038 case Bytecodes::_fconst_0 : fpush(append(new Constant(new FloatConstant ( 0)))); break; 3039 case Bytecodes::_fconst_1 : fpush(append(new Constant(new FloatConstant ( 1)))); break; 3040 case Bytecodes::_fconst_2 : fpush(append(new Constant(new FloatConstant ( 2)))); break; 3041 case Bytecodes::_dconst_0 : dpush(append(new Constant(new DoubleConstant( 0)))); break; 3042 case Bytecodes::_dconst_1 : dpush(append(new Constant(new DoubleConstant( 1)))); break; 3043 case Bytecodes::_bipush : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break; 3044 case Bytecodes::_sipush : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break; 3045 case Bytecodes::_ldc : // fall through 3046 case Bytecodes::_ldc_w : // fall through 3047 case Bytecodes::_ldc2_w : load_constant(); break; 3048 case Bytecodes::_iload : load_local(intType , s.get_index()); break; 3049 case Bytecodes::_lload : load_local(longType , s.get_index()); break; 3050 case Bytecodes::_fload : load_local(floatType , s.get_index()); break; 3051 case Bytecodes::_dload : load_local(doubleType , s.get_index()); break; 3052 case Bytecodes::_aload : load_local(instanceType, s.get_index()); break; 3053 case Bytecodes::_iload_0 : load_local(intType , 0); break; 3054 case Bytecodes::_iload_1 : load_local(intType , 1); break; 3055 case Bytecodes::_iload_2 : load_local(intType , 2); break; 3056 case Bytecodes::_iload_3 : load_local(intType , 3); break; 3057 case Bytecodes::_lload_0 : load_local(longType , 0); break; 3058 case Bytecodes::_lload_1 : load_local(longType , 1); break; 3059 case Bytecodes::_lload_2 : load_local(longType , 2); break; 3060 case Bytecodes::_lload_3 : load_local(longType , 3); break; 3061 case Bytecodes::_fload_0 : load_local(floatType , 0); break; 3062 case Bytecodes::_fload_1 : load_local(floatType , 1); break; 3063 case Bytecodes::_fload_2 : load_local(floatType , 2); break; 3064 case Bytecodes::_fload_3 : load_local(floatType , 3); break; 3065 case Bytecodes::_dload_0 : load_local(doubleType, 0); break; 3066 case Bytecodes::_dload_1 : load_local(doubleType, 1); break; 3067 case Bytecodes::_dload_2 : load_local(doubleType, 2); break; 3068 case Bytecodes::_dload_3 : load_local(doubleType, 3); break; 3069 case Bytecodes::_aload_0 : load_local(objectType, 0); break; 3070 case Bytecodes::_aload_1 : load_local(objectType, 1); break; 3071 case Bytecodes::_aload_2 : load_local(objectType, 2); break; 3072 case Bytecodes::_aload_3 : load_local(objectType, 3); break; 3073 case Bytecodes::_iaload : load_indexed(T_INT ); break; 3074 case Bytecodes::_laload : load_indexed(T_LONG ); break; 3075 case Bytecodes::_faload : load_indexed(T_FLOAT ); break; 3076 case Bytecodes::_daload : load_indexed(T_DOUBLE); break; 3077 case Bytecodes::_aaload : load_indexed(T_OBJECT); break; 3078 case Bytecodes::_baload : load_indexed(T_BYTE ); break; 3079 case Bytecodes::_caload : load_indexed(T_CHAR ); break; 3080 case Bytecodes::_saload : load_indexed(T_SHORT ); break; 3081 case Bytecodes::_istore : store_local(intType , s.get_index()); break; 3082 case Bytecodes::_lstore : store_local(longType , s.get_index()); break; 3083 case Bytecodes::_fstore : store_local(floatType , s.get_index()); break; 3084 case Bytecodes::_dstore : store_local(doubleType, s.get_index()); break; 3085 case Bytecodes::_astore : store_local(objectType, s.get_index()); break; 3086 case Bytecodes::_istore_0 : store_local(intType , 0); break; 3087 case Bytecodes::_istore_1 : store_local(intType , 1); break; 3088 case Bytecodes::_istore_2 : store_local(intType , 2); break; 3089 case Bytecodes::_istore_3 : store_local(intType , 3); break; 3090 case Bytecodes::_lstore_0 : store_local(longType , 0); break; 3091 case Bytecodes::_lstore_1 : store_local(longType , 1); break; 3092 case Bytecodes::_lstore_2 : store_local(longType , 2); break; 3093 case Bytecodes::_lstore_3 : store_local(longType , 3); break; 3094 case Bytecodes::_fstore_0 : store_local(floatType , 0); break; 3095 case Bytecodes::_fstore_1 : store_local(floatType , 1); break; 3096 case Bytecodes::_fstore_2 : store_local(floatType , 2); break; 3097 case Bytecodes::_fstore_3 : store_local(floatType , 3); break; 3098 case Bytecodes::_dstore_0 : store_local(doubleType, 0); break; 3099 case Bytecodes::_dstore_1 : store_local(doubleType, 1); break; 3100 case Bytecodes::_dstore_2 : store_local(doubleType, 2); break; 3101 case Bytecodes::_dstore_3 : store_local(doubleType, 3); break; 3102 case Bytecodes::_astore_0 : store_local(objectType, 0); break; 3103 case Bytecodes::_astore_1 : store_local(objectType, 1); break; 3104 case Bytecodes::_astore_2 : store_local(objectType, 2); break; 3105 case Bytecodes::_astore_3 : store_local(objectType, 3); break; 3106 case Bytecodes::_iastore : store_indexed(T_INT ); break; 3107 case Bytecodes::_lastore : store_indexed(T_LONG ); break; 3108 case Bytecodes::_fastore : store_indexed(T_FLOAT ); break; 3109 case Bytecodes::_dastore : store_indexed(T_DOUBLE); break; 3110 case Bytecodes::_aastore : store_indexed(T_OBJECT); break; 3111 case Bytecodes::_bastore : store_indexed(T_BYTE ); break; 3112 case Bytecodes::_castore : store_indexed(T_CHAR ); break; 3113 case Bytecodes::_sastore : store_indexed(T_SHORT ); break; 3114 case Bytecodes::_pop : // fall through 3115 case Bytecodes::_pop2 : // fall through 3116 case Bytecodes::_dup : // fall through 3117 case Bytecodes::_dup_x1 : // fall through 3118 case Bytecodes::_dup_x2 : // fall through 3119 case Bytecodes::_dup2 : // fall through 3120 case Bytecodes::_dup2_x1 : // fall through 3121 case Bytecodes::_dup2_x2 : // fall through 3122 case Bytecodes::_swap : stack_op(code); break; 3123 case Bytecodes::_iadd : arithmetic_op(intType , code); break; 3124 case Bytecodes::_ladd : arithmetic_op(longType , code); break; 3125 case Bytecodes::_fadd : arithmetic_op(floatType , code); break; 3126 case Bytecodes::_dadd : arithmetic_op(doubleType, code); break; 3127 case Bytecodes::_isub : arithmetic_op(intType , code); break; 3128 case Bytecodes::_lsub : arithmetic_op(longType , code); break; 3129 case Bytecodes::_fsub : arithmetic_op(floatType , code); break; 3130 case Bytecodes::_dsub : arithmetic_op(doubleType, code); break; 3131 case Bytecodes::_imul : arithmetic_op(intType , code); break; 3132 case Bytecodes::_lmul : arithmetic_op(longType , code); break; 3133 case Bytecodes::_fmul : arithmetic_op(floatType , code); break; 3134 case Bytecodes::_dmul : arithmetic_op(doubleType, code); break; 3135 case Bytecodes::_idiv : arithmetic_op(intType , code, copy_state_for_exception()); break; 3136 case Bytecodes::_ldiv : arithmetic_op(longType , code, copy_state_for_exception()); break; 3137 case Bytecodes::_fdiv : arithmetic_op(floatType , code); break; 3138 case Bytecodes::_ddiv : arithmetic_op(doubleType, code); break; 3139 case Bytecodes::_irem : arithmetic_op(intType , code, copy_state_for_exception()); break; 3140 case Bytecodes::_lrem : arithmetic_op(longType , code, copy_state_for_exception()); break; 3141 case Bytecodes::_frem : arithmetic_op(floatType , code); break; 3142 case Bytecodes::_drem : arithmetic_op(doubleType, code); break; 3143 case Bytecodes::_ineg : negate_op(intType ); break; 3144 case Bytecodes::_lneg : negate_op(longType ); break; 3145 case Bytecodes::_fneg : negate_op(floatType ); break; 3146 case Bytecodes::_dneg : negate_op(doubleType); break; 3147 case Bytecodes::_ishl : shift_op(intType , code); break; 3148 case Bytecodes::_lshl : shift_op(longType, code); break; 3149 case Bytecodes::_ishr : shift_op(intType , code); break; 3150 case Bytecodes::_lshr : shift_op(longType, code); break; 3151 case Bytecodes::_iushr : shift_op(intType , code); break; 3152 case Bytecodes::_lushr : shift_op(longType, code); break; 3153 case Bytecodes::_iand : logic_op(intType , code); break; 3154 case Bytecodes::_land : logic_op(longType, code); break; 3155 case Bytecodes::_ior : logic_op(intType , code); break; 3156 case Bytecodes::_lor : logic_op(longType, code); break; 3157 case Bytecodes::_ixor : logic_op(intType , code); break; 3158 case Bytecodes::_lxor : logic_op(longType, code); break; 3159 case Bytecodes::_iinc : increment(); break; 3160 case Bytecodes::_i2l : convert(code, T_INT , T_LONG ); break; 3161 case Bytecodes::_i2f : convert(code, T_INT , T_FLOAT ); break; 3162 case Bytecodes::_i2d : convert(code, T_INT , T_DOUBLE); break; 3163 case Bytecodes::_l2i : convert(code, T_LONG , T_INT ); break; 3164 case Bytecodes::_l2f : convert(code, T_LONG , T_FLOAT ); break; 3165 case Bytecodes::_l2d : convert(code, T_LONG , T_DOUBLE); break; 3166 case Bytecodes::_f2i : convert(code, T_FLOAT , T_INT ); break; 3167 case Bytecodes::_f2l : convert(code, T_FLOAT , T_LONG ); break; 3168 case Bytecodes::_f2d : convert(code, T_FLOAT , T_DOUBLE); break; 3169 case Bytecodes::_d2i : convert(code, T_DOUBLE, T_INT ); break; 3170 case Bytecodes::_d2l : convert(code, T_DOUBLE, T_LONG ); break; 3171 case Bytecodes::_d2f : convert(code, T_DOUBLE, T_FLOAT ); break; 3172 case Bytecodes::_i2b : convert(code, T_INT , T_BYTE ); break; 3173 case Bytecodes::_i2c : convert(code, T_INT , T_CHAR ); break; 3174 case Bytecodes::_i2s : convert(code, T_INT , T_SHORT ); break; 3175 case Bytecodes::_lcmp : compare_op(longType , code); break; 3176 case Bytecodes::_fcmpl : compare_op(floatType , code); break; 3177 case Bytecodes::_fcmpg : compare_op(floatType , code); break; 3178 case Bytecodes::_dcmpl : compare_op(doubleType, code); break; 3179 case Bytecodes::_dcmpg : compare_op(doubleType, code); break; 3180 case Bytecodes::_ifeq : if_zero(intType , If::eql); break; 3181 case Bytecodes::_ifne : if_zero(intType , If::neq); break; 3182 case Bytecodes::_iflt : if_zero(intType , If::lss); break; 3183 case Bytecodes::_ifge : if_zero(intType , If::geq); break; 3184 case Bytecodes::_ifgt : if_zero(intType , If::gtr); break; 3185 case Bytecodes::_ifle : if_zero(intType , If::leq); break; 3186 case Bytecodes::_if_icmpeq : if_same(intType , If::eql); break; 3187 case Bytecodes::_if_icmpne : if_same(intType , If::neq); break; 3188 case Bytecodes::_if_icmplt : if_same(intType , If::lss); break; 3189 case Bytecodes::_if_icmpge : if_same(intType , If::geq); break; 3190 case Bytecodes::_if_icmpgt : if_same(intType , If::gtr); break; 3191 case Bytecodes::_if_icmple : if_same(intType , If::leq); break; 3192 case Bytecodes::_if_acmpeq : if_same(objectType, If::eql); break; 3193 case Bytecodes::_if_acmpne : if_same(objectType, If::neq); break; 3194 case Bytecodes::_goto : _goto(s.cur_bci(), s.get_dest()); break; 3195 case Bytecodes::_jsr : jsr(s.get_dest()); break; 3196 case Bytecodes::_ret : ret(s.get_index()); break; 3197 case Bytecodes::_tableswitch : table_switch(); break; 3198 case Bytecodes::_lookupswitch : lookup_switch(); break; 3199 case Bytecodes::_ireturn : method_return(ipop(), ignore_return); break; 3200 case Bytecodes::_lreturn : method_return(lpop(), ignore_return); break; 3201 case Bytecodes::_freturn : method_return(fpop(), ignore_return); break; 3202 case Bytecodes::_dreturn : method_return(dpop(), ignore_return); break; 3203 case Bytecodes::_areturn : method_return(apop(), ignore_return); break; 3204 case Bytecodes::_return : method_return(nullptr, ignore_return); break; 3205 case Bytecodes::_getstatic : // fall through 3206 case Bytecodes::_putstatic : // fall through 3207 case Bytecodes::_getfield : // fall through 3208 case Bytecodes::_putfield : access_field(code); break; 3209 case Bytecodes::_invokevirtual : // fall through 3210 case Bytecodes::_invokespecial : // fall through 3211 case Bytecodes::_invokestatic : // fall through 3212 case Bytecodes::_invokedynamic : // fall through 3213 case Bytecodes::_invokeinterface: invoke(code); break; 3214 case Bytecodes::_new : new_instance(s.get_index_u2()); break; 3215 case Bytecodes::_newarray : new_type_array(); break; 3216 case Bytecodes::_anewarray : new_object_array(); break; 3217 case Bytecodes::_arraylength : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; } 3218 case Bytecodes::_athrow : throw_op(s.cur_bci()); break; 3219 case Bytecodes::_checkcast : check_cast(s.get_index_u2()); break; 3220 case Bytecodes::_instanceof : instance_of(s.get_index_u2()); break; 3221 case Bytecodes::_monitorenter : monitorenter(apop(), s.cur_bci()); break; 3222 case Bytecodes::_monitorexit : monitorexit (apop(), s.cur_bci()); break; 3223 case Bytecodes::_wide : ShouldNotReachHere(); break; 3224 case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break; 3225 case Bytecodes::_ifnull : if_null(objectType, If::eql); break; 3226 case Bytecodes::_ifnonnull : if_null(objectType, If::neq); break; 3227 case Bytecodes::_goto_w : _goto(s.cur_bci(), s.get_far_dest()); break; 3228 case Bytecodes::_jsr_w : jsr(s.get_far_dest()); break; 3229 case Bytecodes::_breakpoint : BAILOUT_("concurrent setting of breakpoint", nullptr); 3230 default : ShouldNotReachHere(); break; 3231 } 3232 3233 if (log != nullptr) 3234 log->clear_context(); // skip marker if nothing was printed 3235 3236 // save current bci to setup Goto at the end 3237 prev_bci = s.cur_bci(); 3238 3239 } 3240 CHECK_BAILOUT_(nullptr); 3241 // stop processing of this block (see try_inline_full) 3242 if (_skip_block) { 3243 _skip_block = false; 3244 assert(_last && _last->as_BlockEnd(), ""); 3245 return _last->as_BlockEnd(); 3246 } 3247 // if there are any, check if last instruction is a BlockEnd instruction 3248 BlockEnd* end = last()->as_BlockEnd(); 3249 if (end == nullptr) { 3250 // all blocks must end with a BlockEnd instruction => add a Goto 3251 end = new Goto(block_at(s.cur_bci()), false); 3252 append(end); 3253 } 3254 assert(end == last()->as_BlockEnd(), "inconsistency"); 3255 3256 assert(end->state() != nullptr, "state must already be present"); 3257 assert(end->as_Return() == nullptr || end->as_Throw() == nullptr || end->state()->stack_size() == 0, "stack not needed for return and throw"); 3258 3259 // connect to begin & set state 3260 // NOTE that inlining may have changed the block we are parsing 3261 block()->set_end(end); 3262 // propagate state 3263 for (int i = end->number_of_sux() - 1; i >= 0; i--) { 3264 BlockBegin* sux = end->sux_at(i); 3265 assert(sux->is_predecessor(block()), "predecessor missing"); 3266 // be careful, bailout if bytecodes are strange 3267 if (!sux->try_merge(end->state(), compilation()->has_irreducible_loops())) BAILOUT_("block join failed", nullptr); 3268 scope_data()->add_to_work_list(end->sux_at(i)); 3269 } 3270 3271 scope_data()->set_stream(nullptr); 3272 3273 // done 3274 return end; 3275 } 3276 3277 3278 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) { 3279 do { 3280 if (start_in_current_block_for_inlining && !bailed_out()) { 3281 iterate_bytecodes_for_block(0); 3282 start_in_current_block_for_inlining = false; 3283 } else { 3284 BlockBegin* b; 3285 while ((b = scope_data()->remove_from_work_list()) != nullptr) { 3286 if (!b->is_set(BlockBegin::was_visited_flag)) { 3287 if (b->is_set(BlockBegin::osr_entry_flag)) { 3288 // we're about to parse the osr entry block, so make sure 3289 // we setup the OSR edge leading into this block so that 3290 // Phis get setup correctly. 3291 setup_osr_entry_block(); 3292 // this is no longer the osr entry block, so clear it. 3293 b->clear(BlockBegin::osr_entry_flag); 3294 } 3295 b->set(BlockBegin::was_visited_flag); 3296 connect_to_end(b); 3297 } 3298 } 3299 } 3300 } while (!bailed_out() && !scope_data()->is_work_list_empty()); 3301 } 3302 3303 3304 bool GraphBuilder::_can_trap [Bytecodes::number_of_java_codes]; 3305 3306 void GraphBuilder::initialize() { 3307 // the following bytecodes are assumed to potentially 3308 // throw exceptions in compiled code - note that e.g. 3309 // monitorexit & the return bytecodes do not throw 3310 // exceptions since monitor pairing proved that they 3311 // succeed (if monitor pairing succeeded) 3312 Bytecodes::Code can_trap_list[] = 3313 { Bytecodes::_ldc 3314 , Bytecodes::_ldc_w 3315 , Bytecodes::_ldc2_w 3316 , Bytecodes::_iaload 3317 , Bytecodes::_laload 3318 , Bytecodes::_faload 3319 , Bytecodes::_daload 3320 , Bytecodes::_aaload 3321 , Bytecodes::_baload 3322 , Bytecodes::_caload 3323 , Bytecodes::_saload 3324 , Bytecodes::_iastore 3325 , Bytecodes::_lastore 3326 , Bytecodes::_fastore 3327 , Bytecodes::_dastore 3328 , Bytecodes::_aastore 3329 , Bytecodes::_bastore 3330 , Bytecodes::_castore 3331 , Bytecodes::_sastore 3332 , Bytecodes::_idiv 3333 , Bytecodes::_ldiv 3334 , Bytecodes::_irem 3335 , Bytecodes::_lrem 3336 , Bytecodes::_getstatic 3337 , Bytecodes::_putstatic 3338 , Bytecodes::_getfield 3339 , Bytecodes::_putfield 3340 , Bytecodes::_invokevirtual 3341 , Bytecodes::_invokespecial 3342 , Bytecodes::_invokestatic 3343 , Bytecodes::_invokedynamic 3344 , Bytecodes::_invokeinterface 3345 , Bytecodes::_new 3346 , Bytecodes::_newarray 3347 , Bytecodes::_anewarray 3348 , Bytecodes::_arraylength 3349 , Bytecodes::_athrow 3350 , Bytecodes::_checkcast 3351 , Bytecodes::_instanceof 3352 , Bytecodes::_monitorenter 3353 , Bytecodes::_multianewarray 3354 }; 3355 3356 // inititialize trap tables 3357 for (int i = 0; i < Bytecodes::number_of_java_codes; i++) { 3358 _can_trap[i] = false; 3359 } 3360 // set standard trap info 3361 for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) { 3362 _can_trap[can_trap_list[j]] = true; 3363 } 3364 } 3365 3366 3367 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) { 3368 assert(entry->is_set(f), "entry/flag mismatch"); 3369 // create header block 3370 BlockBegin* h = new BlockBegin(entry->bci()); 3371 h->set_depth_first_number(0); 3372 3373 Value l = h; 3374 BlockEnd* g = new Goto(entry, false); 3375 l->set_next(g, entry->bci()); 3376 h->set_end(g); 3377 h->set(f); 3378 // setup header block end state 3379 ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis) 3380 assert(s->stack_is_empty(), "must have empty stack at entry point"); 3381 g->set_state(s); 3382 return h; 3383 } 3384 3385 3386 3387 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) { 3388 BlockBegin* start = new BlockBegin(0); 3389 3390 // This code eliminates the empty start block at the beginning of 3391 // each method. Previously, each method started with the 3392 // start-block created below, and this block was followed by the 3393 // header block that was always empty. This header block is only 3394 // necessary if std_entry is also a backward branch target because 3395 // then phi functions may be necessary in the header block. It's 3396 // also necessary when profiling so that there's a single block that 3397 // can increment the counters. 3398 // In addition, with range check elimination, we may need a valid block 3399 // that dominates all the rest to insert range predicates. 3400 BlockBegin* new_header_block; 3401 if (std_entry->number_of_preds() > 0 || is_profiling() || RangeCheckElimination) { 3402 new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state); 3403 } else { 3404 new_header_block = std_entry; 3405 } 3406 3407 // setup start block (root for the IR graph) 3408 Base* base = 3409 new Base( 3410 new_header_block, 3411 osr_entry 3412 ); 3413 start->set_next(base, 0); 3414 start->set_end(base); 3415 // create & setup state for start block 3416 start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci())); 3417 base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci())); 3418 3419 if (base->std_entry()->state() == nullptr) { 3420 // setup states for header blocks 3421 base->std_entry()->merge(state, compilation()->has_irreducible_loops()); 3422 } 3423 3424 assert(base->std_entry()->state() != nullptr, ""); 3425 return start; 3426 } 3427 3428 3429 void GraphBuilder::setup_osr_entry_block() { 3430 assert(compilation()->is_osr_compile(), "only for osrs"); 3431 3432 int osr_bci = compilation()->osr_bci(); 3433 ciBytecodeStream s(method()); 3434 s.reset_to_bci(osr_bci); 3435 s.next(); 3436 scope_data()->set_stream(&s); 3437 3438 // create a new block to be the osr setup code 3439 _osr_entry = new BlockBegin(osr_bci); 3440 _osr_entry->set(BlockBegin::osr_entry_flag); 3441 _osr_entry->set_depth_first_number(0); 3442 BlockBegin* target = bci2block()->at(osr_bci); 3443 assert(target != nullptr && target->is_set(BlockBegin::osr_entry_flag), "must be there"); 3444 // the osr entry has no values for locals 3445 ValueStack* state = target->state()->copy(); 3446 _osr_entry->set_state(state); 3447 3448 kill_all(); 3449 _block = _osr_entry; 3450 _state = _osr_entry->state()->copy(); 3451 assert(_state->bci() == osr_bci, "mismatch"); 3452 _last = _osr_entry; 3453 Value e = append(new OsrEntry()); 3454 e->set_needs_null_check(false); 3455 3456 // OSR buffer is 3457 // 3458 // locals[nlocals-1..0] 3459 // monitors[number_of_locks-1..0] 3460 // 3461 // locals is a direct copy of the interpreter frame so in the osr buffer 3462 // so first slot in the local array is the last local from the interpreter 3463 // and last slot is local[0] (receiver) from the interpreter 3464 // 3465 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 3466 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 3467 // in the interpreter frame (the method lock if a sync method) 3468 3469 // Initialize monitors in the compiled activation. 3470 3471 int index; 3472 Value local; 3473 3474 // find all the locals that the interpreter thinks contain live oops 3475 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci); 3476 3477 // compute the offset into the locals so that we can treat the buffer 3478 // as if the locals were still in the interpreter frame 3479 int locals_offset = BytesPerWord * (method()->max_locals() - 1); 3480 for_each_local_value(state, index, local) { 3481 int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord; 3482 Value get; 3483 if (local->type()->is_object_kind() && !live_oops.at(index)) { 3484 // The interpreter thinks this local is dead but the compiler 3485 // doesn't so pretend that the interpreter passed in null. 3486 get = append(new Constant(objectNull)); 3487 } else { 3488 Value off_val = append(new Constant(new IntConstant(offset))); 3489 get = append(new UnsafeGet(as_BasicType(local->type()), e, 3490 off_val, 3491 false/*is_volatile*/, 3492 true/*is_raw*/)); 3493 } 3494 _state->store_local(index, get); 3495 } 3496 3497 // the storage for the OSR buffer is freed manually in the LIRGenerator. 3498 3499 assert(state->caller_state() == nullptr, "should be top scope"); 3500 state->clear_locals(); 3501 Goto* g = new Goto(target, false); 3502 append(g); 3503 _osr_entry->set_end(g); 3504 target->merge(_osr_entry->end()->state(), compilation()->has_irreducible_loops()); 3505 3506 scope_data()->set_stream(nullptr); 3507 } 3508 3509 3510 ValueStack* GraphBuilder::state_at_entry() { 3511 ValueStack* state = new ValueStack(scope(), nullptr); 3512 3513 // Set up locals for receiver 3514 int idx = 0; 3515 if (!method()->is_static()) { 3516 // we should always see the receiver 3517 state->store_local(idx, new Local(method()->holder(), objectType, idx, 3518 /*receiver*/ true, /*null_free*/ method()->holder()->is_flat_array_klass())); 3519 idx = 1; 3520 } 3521 3522 // Set up locals for incoming arguments 3523 ciSignature* sig = method()->signature(); 3524 for (int i = 0; i < sig->count(); i++) { 3525 ciType* type = sig->type_at(i); 3526 BasicType basic_type = type->basic_type(); 3527 // don't allow T_ARRAY to propagate into locals types 3528 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 3529 ValueType* vt = as_ValueType(basic_type); 3530 state->store_local(idx, new Local(type, vt, idx, false, false)); 3531 idx += type->size(); 3532 } 3533 3534 // lock synchronized method 3535 if (method()->is_synchronized()) { 3536 state->lock(nullptr); 3537 } 3538 3539 return state; 3540 } 3541 3542 3543 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope) 3544 : _scope_data(nullptr) 3545 , _compilation(compilation) 3546 , _memory(new MemoryBuffer()) 3547 , _inline_bailout_msg(nullptr) 3548 , _instruction_count(0) 3549 , _osr_entry(nullptr) 3550 , _pending_field_access(nullptr) 3551 , _pending_load_indexed(nullptr) 3552 { 3553 int osr_bci = compilation->osr_bci(); 3554 3555 // determine entry points and bci2block mapping 3556 BlockListBuilder blm(compilation, scope, osr_bci); 3557 CHECK_BAILOUT(); 3558 3559 BlockList* bci2block = blm.bci2block(); 3560 BlockBegin* start_block = bci2block->at(0); 3561 3562 push_root_scope(scope, bci2block, start_block); 3563 3564 // setup state for std entry 3565 _initial_state = state_at_entry(); 3566 start_block->merge(_initial_state, compilation->has_irreducible_loops()); 3567 3568 // End nulls still exist here 3569 3570 // complete graph 3571 _vmap = new ValueMap(); 3572 switch (scope->method()->intrinsic_id()) { 3573 case vmIntrinsics::_dabs : // fall through 3574 case vmIntrinsics::_dsqrt : // fall through 3575 case vmIntrinsics::_dsqrt_strict : // fall through 3576 case vmIntrinsics::_dsin : // fall through 3577 case vmIntrinsics::_dcos : // fall through 3578 case vmIntrinsics::_dtan : // fall through 3579 case vmIntrinsics::_dtanh : // fall through 3580 case vmIntrinsics::_dlog : // fall through 3581 case vmIntrinsics::_dlog10 : // fall through 3582 case vmIntrinsics::_dexp : // fall through 3583 case vmIntrinsics::_dpow : // fall through 3584 { 3585 // Compiles where the root method is an intrinsic need a special 3586 // compilation environment because the bytecodes for the method 3587 // shouldn't be parsed during the compilation, only the special 3588 // Intrinsic node should be emitted. If this isn't done the 3589 // code for the inlined version will be different than the root 3590 // compiled version which could lead to monotonicity problems on 3591 // intel. 3592 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) { 3593 BAILOUT("failed to inline intrinsic, method not annotated"); 3594 } 3595 3596 // Set up a stream so that appending instructions works properly. 3597 ciBytecodeStream s(scope->method()); 3598 s.reset_to_bci(0); 3599 scope_data()->set_stream(&s); 3600 s.next(); 3601 3602 // setup the initial block state 3603 _block = start_block; 3604 _state = start_block->state()->copy_for_parsing(); 3605 _last = start_block; 3606 load_local(doubleType, 0); 3607 if (scope->method()->intrinsic_id() == vmIntrinsics::_dpow) { 3608 load_local(doubleType, 2); 3609 } 3610 3611 // Emit the intrinsic node. 3612 bool result = try_inline_intrinsics(scope->method()); 3613 if (!result) BAILOUT("failed to inline intrinsic"); 3614 method_return(dpop()); 3615 3616 // connect the begin and end blocks and we're all done. 3617 BlockEnd* end = last()->as_BlockEnd(); 3618 block()->set_end(end); 3619 break; 3620 } 3621 3622 case vmIntrinsics::_Reference_get: 3623 { 3624 { 3625 // With java.lang.ref.reference.get() we must go through the 3626 // intrinsic - when G1 is enabled - even when get() is the root 3627 // method of the compile so that, if necessary, the value in 3628 // the referent field of the reference object gets recorded by 3629 // the pre-barrier code. 3630 // Specifically, if G1 is enabled, the value in the referent 3631 // field is recorded by the G1 SATB pre barrier. This will 3632 // result in the referent being marked live and the reference 3633 // object removed from the list of discovered references during 3634 // reference processing. 3635 if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) { 3636 BAILOUT("failed to inline intrinsic, method not annotated"); 3637 } 3638 3639 // Also we need intrinsic to prevent commoning reads from this field 3640 // across safepoint since GC can change its value. 3641 3642 // Set up a stream so that appending instructions works properly. 3643 ciBytecodeStream s(scope->method()); 3644 s.reset_to_bci(0); 3645 scope_data()->set_stream(&s); 3646 s.next(); 3647 3648 // setup the initial block state 3649 _block = start_block; 3650 _state = start_block->state()->copy_for_parsing(); 3651 _last = start_block; 3652 load_local(objectType, 0); 3653 3654 // Emit the intrinsic node. 3655 bool result = try_inline_intrinsics(scope->method()); 3656 if (!result) BAILOUT("failed to inline intrinsic"); 3657 method_return(apop()); 3658 3659 // connect the begin and end blocks and we're all done. 3660 BlockEnd* end = last()->as_BlockEnd(); 3661 block()->set_end(end); 3662 break; 3663 } 3664 // Otherwise, fall thru 3665 } 3666 3667 default: 3668 scope_data()->add_to_work_list(start_block); 3669 iterate_all_blocks(); 3670 break; 3671 } 3672 CHECK_BAILOUT(); 3673 3674 # ifdef ASSERT 3675 // For all blocks reachable from start_block: _end must be non-null 3676 { 3677 BlockList processed; 3678 BlockList to_go; 3679 to_go.append(start_block); 3680 while(to_go.length() > 0) { 3681 BlockBegin* current = to_go.pop(); 3682 assert(current != nullptr, "Should not happen."); 3683 assert(current->end() != nullptr, "All blocks reachable from start_block should have end() != nullptr."); 3684 processed.append(current); 3685 for(int i = 0; i < current->number_of_sux(); i++) { 3686 BlockBegin* s = current->sux_at(i); 3687 if (!processed.contains(s)) { 3688 to_go.append(s); 3689 } 3690 } 3691 } 3692 } 3693 #endif // ASSERT 3694 3695 _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state); 3696 3697 eliminate_redundant_phis(_start); 3698 3699 NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats()); 3700 // for osr compile, bailout if some requirements are not fulfilled 3701 if (osr_bci != -1) { 3702 BlockBegin* osr_block = blm.bci2block()->at(osr_bci); 3703 if (!osr_block->is_set(BlockBegin::was_visited_flag)) { 3704 BAILOUT("osr entry must have been visited for osr compile"); 3705 } 3706 3707 // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points 3708 if (!osr_block->state()->stack_is_empty()) { 3709 BAILOUT("stack not empty at OSR entry point"); 3710 } 3711 } 3712 #ifndef PRODUCT 3713 if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count); 3714 #endif 3715 } 3716 3717 3718 ValueStack* GraphBuilder::copy_state_before() { 3719 return copy_state_before_with_bci(bci()); 3720 } 3721 3722 ValueStack* GraphBuilder::copy_state_exhandling() { 3723 return copy_state_exhandling_with_bci(bci()); 3724 } 3725 3726 ValueStack* GraphBuilder::copy_state_for_exception() { 3727 return copy_state_for_exception_with_bci(bci()); 3728 } 3729 3730 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) { 3731 return state()->copy(ValueStack::StateBefore, bci); 3732 } 3733 3734 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) { 3735 if (!has_handler()) return nullptr; 3736 return state()->copy(ValueStack::StateBefore, bci); 3737 } 3738 3739 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) { 3740 ValueStack* s = copy_state_exhandling_with_bci(bci); 3741 if (s == nullptr) { 3742 // no handler, no need to retain locals 3743 ValueStack::Kind exc_kind = ValueStack::empty_exception_kind(); 3744 s = state()->copy(exc_kind, bci); 3745 } 3746 return s; 3747 } 3748 3749 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const { 3750 int recur_level = 0; 3751 for (IRScope* s = scope(); s != nullptr; s = s->caller()) { 3752 if (s->method() == cur_callee) { 3753 ++recur_level; 3754 } 3755 } 3756 return recur_level; 3757 } 3758 3759 static void set_flags_for_inlined_callee(Compilation* compilation, ciMethod* callee) { 3760 if (callee->has_reserved_stack_access()) { 3761 compilation->set_has_reserved_stack_access(true); 3762 } 3763 if (callee->is_synchronized() || callee->has_monitor_bytecodes()) { 3764 compilation->set_has_monitors(true); 3765 } 3766 if (callee->is_scoped()) { 3767 compilation->set_has_scoped_access(true); 3768 } 3769 } 3770 3771 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) { 3772 const char* msg = nullptr; 3773 3774 // clear out any existing inline bailout condition 3775 clear_inline_bailout(); 3776 3777 // exclude methods we don't want to inline 3778 msg = should_not_inline(callee); 3779 if (msg != nullptr) { 3780 print_inlining(callee, msg, /*success*/ false); 3781 return false; 3782 } 3783 3784 // method handle invokes 3785 if (callee->is_method_handle_intrinsic()) { 3786 if (try_method_handle_inline(callee, ignore_return)) { 3787 set_flags_for_inlined_callee(compilation(), callee); 3788 return true; 3789 } 3790 return false; 3791 } 3792 3793 // handle intrinsics 3794 if (callee->intrinsic_id() != vmIntrinsics::_none && 3795 callee->check_intrinsic_candidate()) { 3796 if (try_inline_intrinsics(callee, ignore_return)) { 3797 print_inlining(callee, "intrinsic"); 3798 set_flags_for_inlined_callee(compilation(), callee); 3799 return true; 3800 } 3801 // try normal inlining 3802 } 3803 3804 // certain methods cannot be parsed at all 3805 msg = check_can_parse(callee); 3806 if (msg != nullptr) { 3807 print_inlining(callee, msg, /*success*/ false); 3808 return false; 3809 } 3810 3811 // If bytecode not set use the current one. 3812 if (bc == Bytecodes::_illegal) { 3813 bc = code(); 3814 } 3815 if (try_inline_full(callee, holder_known, ignore_return, bc, receiver)) { 3816 set_flags_for_inlined_callee(compilation(), callee); 3817 return true; 3818 } 3819 3820 // Entire compilation could fail during try_inline_full call. 3821 // In that case printing inlining decision info is useless. 3822 if (!bailed_out()) 3823 print_inlining(callee, _inline_bailout_msg, /*success*/ false); 3824 3825 return false; 3826 } 3827 3828 3829 const char* GraphBuilder::check_can_parse(ciMethod* callee) const { 3830 // Certain methods cannot be parsed at all: 3831 if ( callee->is_native()) return "native method"; 3832 if ( callee->is_abstract()) return "abstract method"; 3833 if (!callee->can_be_parsed()) return "cannot be parsed"; 3834 return nullptr; 3835 } 3836 3837 // negative filter: should callee NOT be inlined? returns null, ok to inline, or rejection msg 3838 const char* GraphBuilder::should_not_inline(ciMethod* callee) const { 3839 if ( compilation()->directive()->should_not_inline(callee)) return "disallowed by CompileCommand"; 3840 if ( callee->dont_inline()) return "don't inline by annotation"; 3841 return nullptr; 3842 } 3843 3844 void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee, bool ignore_return) { 3845 vmIntrinsics::ID id = callee->intrinsic_id(); 3846 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 3847 3848 // Some intrinsics need special IR nodes. 3849 switch(id) { 3850 case vmIntrinsics::_getReference : append_unsafe_get(callee, T_OBJECT, false); return; 3851 case vmIntrinsics::_getBoolean : append_unsafe_get(callee, T_BOOLEAN, false); return; 3852 case vmIntrinsics::_getByte : append_unsafe_get(callee, T_BYTE, false); return; 3853 case vmIntrinsics::_getShort : append_unsafe_get(callee, T_SHORT, false); return; 3854 case vmIntrinsics::_getChar : append_unsafe_get(callee, T_CHAR, false); return; 3855 case vmIntrinsics::_getInt : append_unsafe_get(callee, T_INT, false); return; 3856 case vmIntrinsics::_getLong : append_unsafe_get(callee, T_LONG, false); return; 3857 case vmIntrinsics::_getFloat : append_unsafe_get(callee, T_FLOAT, false); return; 3858 case vmIntrinsics::_getDouble : append_unsafe_get(callee, T_DOUBLE, false); return; 3859 case vmIntrinsics::_putReference : append_unsafe_put(callee, T_OBJECT, false); return; 3860 case vmIntrinsics::_putBoolean : append_unsafe_put(callee, T_BOOLEAN, false); return; 3861 case vmIntrinsics::_putByte : append_unsafe_put(callee, T_BYTE, false); return; 3862 case vmIntrinsics::_putShort : append_unsafe_put(callee, T_SHORT, false); return; 3863 case vmIntrinsics::_putChar : append_unsafe_put(callee, T_CHAR, false); return; 3864 case vmIntrinsics::_putInt : append_unsafe_put(callee, T_INT, false); return; 3865 case vmIntrinsics::_putLong : append_unsafe_put(callee, T_LONG, false); return; 3866 case vmIntrinsics::_putFloat : append_unsafe_put(callee, T_FLOAT, false); return; 3867 case vmIntrinsics::_putDouble : append_unsafe_put(callee, T_DOUBLE, false); return; 3868 case vmIntrinsics::_getShortUnaligned : append_unsafe_get(callee, T_SHORT, false); return; 3869 case vmIntrinsics::_getCharUnaligned : append_unsafe_get(callee, T_CHAR, false); return; 3870 case vmIntrinsics::_getIntUnaligned : append_unsafe_get(callee, T_INT, false); return; 3871 case vmIntrinsics::_getLongUnaligned : append_unsafe_get(callee, T_LONG, false); return; 3872 case vmIntrinsics::_putShortUnaligned : append_unsafe_put(callee, T_SHORT, false); return; 3873 case vmIntrinsics::_putCharUnaligned : append_unsafe_put(callee, T_CHAR, false); return; 3874 case vmIntrinsics::_putIntUnaligned : append_unsafe_put(callee, T_INT, false); return; 3875 case vmIntrinsics::_putLongUnaligned : append_unsafe_put(callee, T_LONG, false); return; 3876 case vmIntrinsics::_getReferenceVolatile : append_unsafe_get(callee, T_OBJECT, true); return; 3877 case vmIntrinsics::_getBooleanVolatile : append_unsafe_get(callee, T_BOOLEAN, true); return; 3878 case vmIntrinsics::_getByteVolatile : append_unsafe_get(callee, T_BYTE, true); return; 3879 case vmIntrinsics::_getShortVolatile : append_unsafe_get(callee, T_SHORT, true); return; 3880 case vmIntrinsics::_getCharVolatile : append_unsafe_get(callee, T_CHAR, true); return; 3881 case vmIntrinsics::_getIntVolatile : append_unsafe_get(callee, T_INT, true); return; 3882 case vmIntrinsics::_getLongVolatile : append_unsafe_get(callee, T_LONG, true); return; 3883 case vmIntrinsics::_getFloatVolatile : append_unsafe_get(callee, T_FLOAT, true); return; 3884 case vmIntrinsics::_getDoubleVolatile : append_unsafe_get(callee, T_DOUBLE, true); return; 3885 case vmIntrinsics::_putReferenceVolatile : append_unsafe_put(callee, T_OBJECT, true); return; 3886 case vmIntrinsics::_putBooleanVolatile : append_unsafe_put(callee, T_BOOLEAN, true); return; 3887 case vmIntrinsics::_putByteVolatile : append_unsafe_put(callee, T_BYTE, true); return; 3888 case vmIntrinsics::_putShortVolatile : append_unsafe_put(callee, T_SHORT, true); return; 3889 case vmIntrinsics::_putCharVolatile : append_unsafe_put(callee, T_CHAR, true); return; 3890 case vmIntrinsics::_putIntVolatile : append_unsafe_put(callee, T_INT, true); return; 3891 case vmIntrinsics::_putLongVolatile : append_unsafe_put(callee, T_LONG, true); return; 3892 case vmIntrinsics::_putFloatVolatile : append_unsafe_put(callee, T_FLOAT, true); return; 3893 case vmIntrinsics::_putDoubleVolatile : append_unsafe_put(callee, T_DOUBLE, true); return; 3894 case vmIntrinsics::_compareAndSetLong: 3895 case vmIntrinsics::_compareAndSetInt: 3896 case vmIntrinsics::_compareAndSetReference : append_unsafe_CAS(callee); return; 3897 case vmIntrinsics::_getAndAddInt: 3898 case vmIntrinsics::_getAndAddLong : append_unsafe_get_and_set(callee, true); return; 3899 case vmIntrinsics::_getAndSetInt : 3900 case vmIntrinsics::_getAndSetLong : 3901 case vmIntrinsics::_getAndSetReference : append_unsafe_get_and_set(callee, false); return; 3902 case vmIntrinsics::_getCharStringU : append_char_access(callee, false); return; 3903 case vmIntrinsics::_putCharStringU : append_char_access(callee, true); return; 3904 case vmIntrinsics::_clone : append_alloc_array_copy(callee); return; 3905 default: 3906 break; 3907 } 3908 if (_inline_bailout_msg != nullptr) { 3909 return; 3910 } 3911 3912 // create intrinsic node 3913 const bool has_receiver = !callee->is_static(); 3914 ValueType* result_type = as_ValueType(callee->return_type()); 3915 ValueStack* state_before = copy_state_for_exception(); 3916 3917 Values* args = state()->pop_arguments(callee->arg_size()); 3918 3919 if (is_profiling()) { 3920 // Don't profile in the special case where the root method 3921 // is the intrinsic 3922 if (callee != method()) { 3923 // Note that we'd collect profile data in this method if we wanted it. 3924 compilation()->set_would_profile(true); 3925 if (profile_calls()) { 3926 Value recv = nullptr; 3927 if (has_receiver) { 3928 recv = args->at(0); 3929 null_check(recv); 3930 } 3931 profile_call(callee, recv, nullptr, collect_args_for_profiling(args, callee, true), true); 3932 } 3933 } 3934 } 3935 3936 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), 3937 args, has_receiver, state_before, 3938 vmIntrinsics::preserves_state(id), 3939 vmIntrinsics::can_trap(id)); 3940 // append instruction & push result 3941 Value value = append_split(result); 3942 if (result_type != voidType && !ignore_return) { 3943 push(result_type, value); 3944 } 3945 3946 if (callee != method() && profile_return() && result_type->is_object_kind()) { 3947 profile_return_type(result, callee); 3948 } 3949 } 3950 3951 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee, bool ignore_return) { 3952 // For calling is_intrinsic_available we need to transition to 3953 // the '_thread_in_vm' state because is_intrinsic_available() 3954 // accesses critical VM-internal data. 3955 bool is_available = false; 3956 { 3957 VM_ENTRY_MARK; 3958 methodHandle mh(THREAD, callee->get_Method()); 3959 is_available = _compilation->compiler()->is_intrinsic_available(mh, _compilation->directive()); 3960 } 3961 3962 if (!is_available) { 3963 if (!InlineNatives) { 3964 // Return false and also set message that the inlining of 3965 // intrinsics has been disabled in general. 3966 INLINE_BAILOUT("intrinsic method inlining disabled"); 3967 } else { 3968 return false; 3969 } 3970 } 3971 build_graph_for_intrinsic(callee, ignore_return); 3972 if (_inline_bailout_msg != nullptr) { 3973 return false; 3974 } 3975 return true; 3976 } 3977 3978 3979 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) { 3980 // Introduce a new callee continuation point - all Ret instructions 3981 // will be replaced with Gotos to this point. 3982 if (next_bci() >= method()->code_size()) { 3983 return false; 3984 } 3985 BlockBegin* cont = block_at(next_bci()); 3986 assert(cont != nullptr, "continuation must exist (BlockListBuilder starts a new block after a jsr"); 3987 3988 // Note: can not assign state to continuation yet, as we have to 3989 // pick up the state from the Ret instructions. 3990 3991 // Push callee scope 3992 push_scope_for_jsr(cont, jsr_dest_bci); 3993 3994 // Temporarily set up bytecode stream so we can append instructions 3995 // (only using the bci of this stream) 3996 scope_data()->set_stream(scope_data()->parent()->stream()); 3997 3998 BlockBegin* jsr_start_block = block_at(jsr_dest_bci); 3999 assert(jsr_start_block != nullptr, "jsr start block must exist"); 4000 assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet"); 4001 Goto* goto_sub = new Goto(jsr_start_block, false); 4002 // Must copy state to avoid wrong sharing when parsing bytecodes 4003 assert(jsr_start_block->state() == nullptr, "should have fresh jsr starting block"); 4004 jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci)); 4005 append(goto_sub); 4006 _block->set_end(goto_sub); 4007 _last = _block = jsr_start_block; 4008 4009 // Clear out bytecode stream 4010 scope_data()->set_stream(nullptr); 4011 4012 scope_data()->add_to_work_list(jsr_start_block); 4013 4014 // Ready to resume parsing in subroutine 4015 iterate_all_blocks(); 4016 4017 // If we bailed out during parsing, return immediately (this is bad news) 4018 CHECK_BAILOUT_(false); 4019 4020 // Detect whether the continuation can actually be reached. If not, 4021 // it has not had state set by the join() operations in 4022 // iterate_bytecodes_for_block()/ret() and we should not touch the 4023 // iteration state. The calling activation of 4024 // iterate_bytecodes_for_block will then complete normally. 4025 if (cont->state() != nullptr) { 4026 if (!cont->is_set(BlockBegin::was_visited_flag)) { 4027 // add continuation to work list instead of parsing it immediately 4028 scope_data()->parent()->add_to_work_list(cont); 4029 } 4030 } 4031 4032 assert(jsr_continuation() == cont, "continuation must not have changed"); 4033 assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) || 4034 jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag), 4035 "continuation can only be visited in case of backward branches"); 4036 assert(_last && _last->as_BlockEnd(), "block must have end"); 4037 4038 // continuation is in work list, so end iteration of current block 4039 _skip_block = true; 4040 pop_scope_for_jsr(); 4041 4042 return true; 4043 } 4044 4045 4046 // Inline the entry of a synchronized method as a monitor enter and 4047 // register the exception handler which releases the monitor if an 4048 // exception is thrown within the callee. Note that the monitor enter 4049 // cannot throw an exception itself, because the receiver is 4050 // guaranteed to be non-null by the explicit null check at the 4051 // beginning of inlining. 4052 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) { 4053 assert(lock != nullptr && sync_handler != nullptr, "lock or handler missing"); 4054 4055 monitorenter(lock, SynchronizationEntryBCI); 4056 assert(_last->as_MonitorEnter() != nullptr, "monitor enter expected"); 4057 _last->set_needs_null_check(false); 4058 4059 sync_handler->set(BlockBegin::exception_entry_flag); 4060 sync_handler->set(BlockBegin::is_on_work_list_flag); 4061 4062 ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0); 4063 XHandler* h = new XHandler(desc); 4064 h->set_entry_block(sync_handler); 4065 scope_data()->xhandlers()->append(h); 4066 scope_data()->set_has_handler(); 4067 } 4068 4069 4070 // If an exception is thrown and not handled within an inlined 4071 // synchronized method, the monitor must be released before the 4072 // exception is rethrown in the outer scope. Generate the appropriate 4073 // instructions here. 4074 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) { 4075 BlockBegin* orig_block = _block; 4076 ValueStack* orig_state = _state; 4077 Instruction* orig_last = _last; 4078 _last = _block = sync_handler; 4079 _state = sync_handler->state()->copy(); 4080 4081 assert(sync_handler != nullptr, "handler missing"); 4082 assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here"); 4083 4084 assert(lock != nullptr || default_handler, "lock or handler missing"); 4085 4086 XHandler* h = scope_data()->xhandlers()->remove_last(); 4087 assert(h->entry_block() == sync_handler, "corrupt list of handlers"); 4088 4089 block()->set(BlockBegin::was_visited_flag); 4090 Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI); 4091 assert(exception->is_pinned(), "must be"); 4092 4093 int bci = SynchronizationEntryBCI; 4094 if (compilation()->env()->dtrace_method_probes()) { 4095 // Report exit from inline methods. We don't have a stream here 4096 // so pass an explicit bci of SynchronizationEntryBCI. 4097 Values* args = new Values(1); 4098 args->push(append_with_bci(new Constant(new MethodConstant(method())), bci)); 4099 append_with_bci(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args), bci); 4100 } 4101 4102 if (lock) { 4103 assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing"); 4104 if (!lock->is_linked()) { 4105 lock = append_with_bci(lock, bci); 4106 } 4107 4108 // exit the monitor in the context of the synchronized method 4109 monitorexit(lock, bci); 4110 4111 // exit the context of the synchronized method 4112 if (!default_handler) { 4113 pop_scope(); 4114 bci = _state->caller_state()->bci(); 4115 _state = _state->caller_state()->copy_for_parsing(); 4116 } 4117 } 4118 4119 // perform the throw as if at the call site 4120 apush(exception); 4121 throw_op(bci); 4122 4123 BlockEnd* end = last()->as_BlockEnd(); 4124 block()->set_end(end); 4125 4126 _block = orig_block; 4127 _state = orig_state; 4128 _last = orig_last; 4129 } 4130 4131 4132 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) { 4133 assert(!callee->is_native(), "callee must not be native"); 4134 if (CompilationPolicy::should_not_inline(compilation()->env(), callee)) { 4135 INLINE_BAILOUT("inlining prohibited by policy"); 4136 } 4137 // first perform tests of things it's not possible to inline 4138 if (callee->has_exception_handlers() && 4139 !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers"); 4140 if (callee->is_synchronized() && 4141 !InlineSynchronizedMethods ) INLINE_BAILOUT("callee is synchronized"); 4142 if (!callee->holder()->is_linked()) INLINE_BAILOUT("callee's klass not linked yet"); 4143 if (bc == Bytecodes::_invokestatic && 4144 !callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet"); 4145 if (!callee->has_balanced_monitors()) INLINE_BAILOUT("callee's monitors do not match"); 4146 4147 // Proper inlining of methods with jsrs requires a little more work. 4148 if (callee->has_jsrs() ) INLINE_BAILOUT("jsrs not handled properly by inliner yet"); 4149 4150 if (is_profiling() && !callee->ensure_method_data()) { 4151 INLINE_BAILOUT("mdo allocation failed"); 4152 } 4153 4154 const bool is_invokedynamic = (bc == Bytecodes::_invokedynamic); 4155 const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic); 4156 4157 const int args_base = state()->stack_size() - callee->arg_size(); 4158 assert(args_base >= 0, "stack underflow during inlining"); 4159 4160 Value recv = nullptr; 4161 if (has_receiver) { 4162 assert(!callee->is_static(), "callee must not be static"); 4163 assert(callee->arg_size() > 0, "must have at least a receiver"); 4164 4165 recv = state()->stack_at(args_base); 4166 if (recv->is_null_obj()) { 4167 INLINE_BAILOUT("receiver is always null"); 4168 } 4169 } 4170 4171 // now perform tests that are based on flag settings 4172 bool inlinee_by_directive = compilation()->directive()->should_inline(callee); 4173 if (callee->force_inline() || inlinee_by_directive) { 4174 if (inline_level() > MaxForceInlineLevel ) INLINE_BAILOUT("MaxForceInlineLevel"); 4175 if (recursive_inline_level(callee) > C1MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep"); 4176 4177 const char* msg = ""; 4178 if (callee->force_inline()) msg = "force inline by annotation"; 4179 if (inlinee_by_directive) msg = "force inline by CompileCommand"; 4180 print_inlining(callee, msg); 4181 } else { 4182 // use heuristic controls on inlining 4183 if (inline_level() > C1MaxInlineLevel ) INLINE_BAILOUT("inlining too deep"); 4184 int callee_recursive_level = recursive_inline_level(callee); 4185 if (callee_recursive_level > C1MaxRecursiveInlineLevel ) INLINE_BAILOUT("recursive inlining too deep"); 4186 if (callee->code_size_for_inlining() > max_inline_size() ) INLINE_BAILOUT("callee is too large"); 4187 // Additional condition to limit stack usage for non-recursive calls. 4188 if ((callee_recursive_level == 0) && 4189 (callee->max_stack() + callee->max_locals() - callee->size_of_parameters() > C1InlineStackLimit)) { 4190 INLINE_BAILOUT("callee uses too much stack"); 4191 } 4192 4193 // don't inline throwable methods unless the inlining tree is rooted in a throwable class 4194 if (callee->name() == ciSymbols::object_initializer_name() && 4195 callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) { 4196 // Throwable constructor call 4197 IRScope* top = scope(); 4198 while (top->caller() != nullptr) { 4199 top = top->caller(); 4200 } 4201 if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) { 4202 INLINE_BAILOUT("don't inline Throwable constructors"); 4203 } 4204 } 4205 4206 if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) { 4207 INLINE_BAILOUT("total inlining greater than DesiredMethodLimit"); 4208 } 4209 // printing 4210 print_inlining(callee, "inline", /*success*/ true); 4211 } 4212 4213 assert(bc != Bytecodes::_invokestatic || callee->holder()->is_initialized(), "required"); 4214 4215 // NOTE: Bailouts from this point on, which occur at the 4216 // GraphBuilder level, do not cause bailout just of the inlining but 4217 // in fact of the entire compilation. 4218 4219 BlockBegin* orig_block = block(); 4220 4221 // Insert null check if necessary 4222 if (has_receiver) { 4223 // note: null check must happen even if first instruction of callee does 4224 // an implicit null check since the callee is in a different scope 4225 // and we must make sure exception handling does the right thing 4226 null_check(recv); 4227 } 4228 4229 if (is_profiling()) { 4230 // Note that we'd collect profile data in this method if we wanted it. 4231 // this may be redundant here... 4232 compilation()->set_would_profile(true); 4233 4234 if (profile_calls()) { 4235 int start = 0; 4236 Values* obj_args = args_list_for_profiling(callee, start, has_receiver); 4237 if (obj_args != nullptr) { 4238 int s = obj_args->capacity(); 4239 // if called through method handle invoke, some arguments may have been popped 4240 for (int i = args_base+start, j = 0; j < obj_args->capacity() && i < state()->stack_size(); ) { 4241 Value v = state()->stack_at_inc(i); 4242 if (v->type()->is_object_kind()) { 4243 obj_args->push(v); 4244 j++; 4245 } 4246 } 4247 check_args_for_profiling(obj_args, s); 4248 } 4249 profile_call(callee, recv, holder_known ? callee->holder() : nullptr, obj_args, true); 4250 } 4251 } 4252 4253 // Introduce a new callee continuation point - if the callee has 4254 // more than one return instruction or the return does not allow 4255 // fall-through of control flow, all return instructions of the 4256 // callee will need to be replaced by Goto's pointing to this 4257 // continuation point. 4258 BlockBegin* cont = block_at(next_bci()); 4259 bool continuation_existed = true; 4260 if (cont == nullptr) { 4261 cont = new BlockBegin(next_bci()); 4262 // low number so that continuation gets parsed as early as possible 4263 cont->set_depth_first_number(0); 4264 if (PrintInitialBlockList) { 4265 tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d", 4266 cont->block_id(), cont->bci(), bci()); 4267 } 4268 continuation_existed = false; 4269 } 4270 // Record number of predecessors of continuation block before 4271 // inlining, to detect if inlined method has edges to its 4272 // continuation after inlining. 4273 int continuation_preds = cont->number_of_preds(); 4274 4275 // Push callee scope 4276 push_scope(callee, cont); 4277 4278 // the BlockListBuilder for the callee could have bailed out 4279 if (bailed_out()) 4280 return false; 4281 4282 // Temporarily set up bytecode stream so we can append instructions 4283 // (only using the bci of this stream) 4284 scope_data()->set_stream(scope_data()->parent()->stream()); 4285 4286 // Pass parameters into callee state: add assignments 4287 // note: this will also ensure that all arguments are computed before being passed 4288 ValueStack* callee_state = state(); 4289 ValueStack* caller_state = state()->caller_state(); 4290 for (int i = args_base; i < caller_state->stack_size(); ) { 4291 const int arg_no = i - args_base; 4292 Value arg = caller_state->stack_at_inc(i); 4293 store_local(callee_state, arg, arg_no); 4294 } 4295 4296 // Remove args from stack. 4297 // Note that we preserve locals state in case we can use it later 4298 // (see use of pop_scope() below) 4299 caller_state->truncate_stack(args_base); 4300 assert(callee_state->stack_size() == 0, "callee stack must be empty"); 4301 4302 Value lock = nullptr; 4303 BlockBegin* sync_handler = nullptr; 4304 4305 // Inline the locking of the receiver if the callee is synchronized 4306 if (callee->is_synchronized()) { 4307 lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror()))) 4308 : state()->local_at(0); 4309 sync_handler = new BlockBegin(SynchronizationEntryBCI); 4310 inline_sync_entry(lock, sync_handler); 4311 } 4312 4313 if (compilation()->env()->dtrace_method_probes()) { 4314 Values* args = new Values(1); 4315 args->push(append(new Constant(new MethodConstant(method())))); 4316 append(new RuntimeCall(voidType, "dtrace_method_entry", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), args)); 4317 } 4318 4319 if (profile_inlined_calls()) { 4320 profile_invocation(callee, copy_state_before_with_bci(SynchronizationEntryBCI)); 4321 } 4322 4323 BlockBegin* callee_start_block = block_at(0); 4324 if (callee_start_block != nullptr) { 4325 assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header"); 4326 Goto* goto_callee = new Goto(callee_start_block, false); 4327 // The state for this goto is in the scope of the callee, so use 4328 // the entry bci for the callee instead of the call site bci. 4329 append_with_bci(goto_callee, 0); 4330 _block->set_end(goto_callee); 4331 callee_start_block->merge(callee_state, compilation()->has_irreducible_loops()); 4332 4333 _last = _block = callee_start_block; 4334 4335 scope_data()->add_to_work_list(callee_start_block); 4336 } 4337 4338 // Clear out bytecode stream 4339 scope_data()->set_stream(nullptr); 4340 scope_data()->set_ignore_return(ignore_return); 4341 4342 CompileLog* log = compilation()->log(); 4343 if (log != nullptr) log->head("parse method='%d'", log->identify(callee)); 4344 4345 // Ready to resume parsing in callee (either in the same block we 4346 // were in before or in the callee's start block) 4347 iterate_all_blocks(callee_start_block == nullptr); 4348 4349 if (log != nullptr) log->done("parse"); 4350 4351 // If we bailed out during parsing, return immediately (this is bad news) 4352 if (bailed_out()) 4353 return false; 4354 4355 // iterate_all_blocks theoretically traverses in random order; in 4356 // practice, we have only traversed the continuation if we are 4357 // inlining into a subroutine 4358 assert(continuation_existed || 4359 !continuation()->is_set(BlockBegin::was_visited_flag), 4360 "continuation should not have been parsed yet if we created it"); 4361 4362 // At this point we are almost ready to return and resume parsing of 4363 // the caller back in the GraphBuilder. The only thing we want to do 4364 // first is an optimization: during parsing of the callee we 4365 // generated at least one Goto to the continuation block. If we 4366 // generated exactly one, and if the inlined method spanned exactly 4367 // one block (and we didn't have to Goto its entry), then we snip 4368 // off the Goto to the continuation, allowing control to fall 4369 // through back into the caller block and effectively performing 4370 // block merging. This allows load elimination and CSE to take place 4371 // across multiple callee scopes if they are relatively simple, and 4372 // is currently essential to making inlining profitable. 4373 if (num_returns() == 1 4374 && block() == orig_block 4375 && block() == inline_cleanup_block()) { 4376 _last = inline_cleanup_return_prev(); 4377 _state = inline_cleanup_state(); 4378 } else if (continuation_preds == cont->number_of_preds()) { 4379 // Inlining caused that the instructions after the invoke in the 4380 // caller are not reachable any more. So skip filling this block 4381 // with instructions! 4382 assert(cont == continuation(), ""); 4383 assert(_last && _last->as_BlockEnd(), ""); 4384 _skip_block = true; 4385 } else { 4386 // Resume parsing in continuation block unless it was already parsed. 4387 // Note that if we don't change _last here, iteration in 4388 // iterate_bytecodes_for_block will stop when we return. 4389 if (!continuation()->is_set(BlockBegin::was_visited_flag)) { 4390 // add continuation to work list instead of parsing it immediately 4391 assert(_last && _last->as_BlockEnd(), ""); 4392 scope_data()->parent()->add_to_work_list(continuation()); 4393 _skip_block = true; 4394 } 4395 } 4396 4397 // Fill the exception handler for synchronized methods with instructions 4398 if (callee->is_synchronized() && sync_handler->state() != nullptr) { 4399 fill_sync_handler(lock, sync_handler); 4400 } else { 4401 pop_scope(); 4402 } 4403 4404 compilation()->notice_inlined_method(callee); 4405 4406 return true; 4407 } 4408 4409 4410 bool GraphBuilder::try_method_handle_inline(ciMethod* callee, bool ignore_return) { 4411 ValueStack* state_before = copy_state_before(); 4412 vmIntrinsics::ID iid = callee->intrinsic_id(); 4413 switch (iid) { 4414 case vmIntrinsics::_invokeBasic: 4415 { 4416 // get MethodHandle receiver 4417 const int args_base = state()->stack_size() - callee->arg_size(); 4418 ValueType* type = state()->stack_at(args_base)->type(); 4419 if (type->is_constant()) { 4420 ciObject* mh = type->as_ObjectType()->constant_value(); 4421 if (mh->is_method_handle()) { 4422 ciMethod* target = mh->as_method_handle()->get_vmtarget(); 4423 4424 // We don't do CHA here so only inline static and statically bindable methods. 4425 if (target->is_static() || target->can_be_statically_bound()) { 4426 if (ciMethod::is_consistent_info(callee, target)) { 4427 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual; 4428 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void()); 4429 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) { 4430 return true; 4431 } 4432 } else { 4433 print_inlining(target, "signatures mismatch", /*success*/ false); 4434 } 4435 } else { 4436 assert(false, "no inlining through MH::invokeBasic"); // missing optimization opportunity due to suboptimal LF shape 4437 print_inlining(target, "not static or statically bindable", /*success*/ false); 4438 } 4439 } else { 4440 assert(mh->is_null_object(), "not a null"); 4441 print_inlining(callee, "receiver is always null", /*success*/ false); 4442 } 4443 } else { 4444 print_inlining(callee, "receiver not constant", /*success*/ false); 4445 } 4446 } 4447 break; 4448 4449 case vmIntrinsics::_linkToVirtual: 4450 case vmIntrinsics::_linkToStatic: 4451 case vmIntrinsics::_linkToSpecial: 4452 case vmIntrinsics::_linkToInterface: 4453 { 4454 // pop MemberName argument 4455 const int args_base = state()->stack_size() - callee->arg_size(); 4456 ValueType* type = apop()->type(); 4457 if (type->is_constant()) { 4458 ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget(); 4459 ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void()); 4460 // If the target is another method handle invoke, try to recursively get 4461 // a better target. 4462 if (target->is_method_handle_intrinsic()) { 4463 if (try_method_handle_inline(target, ignore_return)) { 4464 return true; 4465 } 4466 } else if (!ciMethod::is_consistent_info(callee, target)) { 4467 print_inlining(target, "signatures mismatch", /*success*/ false); 4468 } else { 4469 ciSignature* signature = target->signature(); 4470 const int receiver_skip = target->is_static() ? 0 : 1; 4471 // Cast receiver to its type. 4472 if (!target->is_static()) { 4473 ciKlass* tk = signature->accessing_klass(); 4474 Value obj = state()->stack_at(args_base); 4475 if (obj->exact_type() == nullptr && 4476 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) { 4477 TypeCast* c = new TypeCast(tk, obj, state_before); 4478 append(c); 4479 state()->stack_at_put(args_base, c); 4480 } 4481 } 4482 // Cast reference arguments to its type. 4483 for (int i = 0, j = 0; i < signature->count(); i++) { 4484 ciType* t = signature->type_at(i); 4485 if (t->is_klass()) { 4486 ciKlass* tk = t->as_klass(); 4487 Value obj = state()->stack_at(args_base + receiver_skip + j); 4488 if (obj->exact_type() == nullptr && 4489 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) { 4490 TypeCast* c = new TypeCast(t, obj, state_before); 4491 append(c); 4492 state()->stack_at_put(args_base + receiver_skip + j, c); 4493 } 4494 } 4495 j += t->size(); // long and double take two slots 4496 } 4497 // We don't do CHA here so only inline static and statically bindable methods. 4498 if (target->is_static() || target->can_be_statically_bound()) { 4499 Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual; 4500 if (try_inline(target, /*holder_known*/ !callee->is_static(), ignore_return, bc)) { 4501 return true; 4502 } 4503 } else { 4504 print_inlining(target, "not static or statically bindable", /*success*/ false); 4505 } 4506 } 4507 } else { 4508 print_inlining(callee, "MemberName not constant", /*success*/ false); 4509 } 4510 } 4511 break; 4512 4513 case vmIntrinsics::_linkToNative: 4514 print_inlining(callee, "native call", /*success*/ false); 4515 break; 4516 4517 default: 4518 fatal("unexpected intrinsic %d: %s", vmIntrinsics::as_int(iid), vmIntrinsics::name_at(iid)); 4519 break; 4520 } 4521 set_state(state_before->copy_for_parsing()); 4522 return false; 4523 } 4524 4525 4526 void GraphBuilder::inline_bailout(const char* msg) { 4527 assert(msg != nullptr, "inline bailout msg must exist"); 4528 _inline_bailout_msg = msg; 4529 } 4530 4531 4532 void GraphBuilder::clear_inline_bailout() { 4533 _inline_bailout_msg = nullptr; 4534 } 4535 4536 4537 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) { 4538 ScopeData* data = new ScopeData(nullptr); 4539 data->set_scope(scope); 4540 data->set_bci2block(bci2block); 4541 _scope_data = data; 4542 _block = start; 4543 } 4544 4545 4546 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) { 4547 IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false); 4548 scope()->add_callee(callee_scope); 4549 4550 BlockListBuilder blb(compilation(), callee_scope, -1); 4551 CHECK_BAILOUT(); 4552 4553 if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) { 4554 // this scope can be inlined directly into the caller so remove 4555 // the block at bci 0. 4556 blb.bci2block()->at_put(0, nullptr); 4557 } 4558 4559 set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci()))); 4560 4561 ScopeData* data = new ScopeData(scope_data()); 4562 data->set_scope(callee_scope); 4563 data->set_bci2block(blb.bci2block()); 4564 data->set_continuation(continuation); 4565 _scope_data = data; 4566 } 4567 4568 4569 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) { 4570 ScopeData* data = new ScopeData(scope_data()); 4571 data->set_parsing_jsr(); 4572 data->set_jsr_entry_bci(jsr_dest_bci); 4573 data->set_jsr_return_address_local(-1); 4574 // Must clone bci2block list as we will be mutating it in order to 4575 // properly clone all blocks in jsr region as well as exception 4576 // handlers containing rets 4577 BlockList* new_bci2block = new BlockList(bci2block()->length()); 4578 new_bci2block->appendAll(bci2block()); 4579 data->set_bci2block(new_bci2block); 4580 data->set_scope(scope()); 4581 data->setup_jsr_xhandlers(); 4582 data->set_continuation(continuation()); 4583 data->set_jsr_continuation(jsr_continuation); 4584 _scope_data = data; 4585 } 4586 4587 4588 void GraphBuilder::pop_scope() { 4589 int number_of_locks = scope()->number_of_locks(); 4590 _scope_data = scope_data()->parent(); 4591 // accumulate minimum number of monitor slots to be reserved 4592 scope()->set_min_number_of_locks(number_of_locks); 4593 } 4594 4595 4596 void GraphBuilder::pop_scope_for_jsr() { 4597 _scope_data = scope_data()->parent(); 4598 } 4599 4600 void GraphBuilder::append_unsafe_get(ciMethod* callee, BasicType t, bool is_volatile) { 4601 Values* args = state()->pop_arguments(callee->arg_size()); 4602 null_check(args->at(0)); 4603 Instruction* offset = args->at(2); 4604 #ifndef _LP64 4605 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT))); 4606 #endif 4607 Instruction* op = append(new UnsafeGet(t, args->at(1), offset, is_volatile)); 4608 push(op->type(), op); 4609 compilation()->set_has_unsafe_access(true); 4610 } 4611 4612 4613 void GraphBuilder::append_unsafe_put(ciMethod* callee, BasicType t, bool is_volatile) { 4614 Values* args = state()->pop_arguments(callee->arg_size()); 4615 null_check(args->at(0)); 4616 Instruction* offset = args->at(2); 4617 #ifndef _LP64 4618 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT))); 4619 #endif 4620 Value val = args->at(3); 4621 if (t == T_BOOLEAN) { 4622 Value mask = append(new Constant(new IntConstant(1))); 4623 val = append(new LogicOp(Bytecodes::_iand, val, mask)); 4624 } 4625 Instruction* op = append(new UnsafePut(t, args->at(1), offset, val, is_volatile)); 4626 compilation()->set_has_unsafe_access(true); 4627 kill_all(); 4628 } 4629 4630 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) { 4631 ValueStack* state_before = copy_state_for_exception(); 4632 ValueType* result_type = as_ValueType(callee->return_type()); 4633 assert(result_type->is_int(), "int result"); 4634 Values* args = state()->pop_arguments(callee->arg_size()); 4635 4636 // Pop off some args to specially handle, then push back 4637 Value newval = args->pop(); 4638 Value cmpval = args->pop(); 4639 Value offset = args->pop(); 4640 Value src = args->pop(); 4641 Value unsafe_obj = args->pop(); 4642 4643 // Separately handle the unsafe arg. It is not needed for code 4644 // generation, but must be null checked 4645 null_check(unsafe_obj); 4646 4647 #ifndef _LP64 4648 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT))); 4649 #endif 4650 4651 args->push(src); 4652 args->push(offset); 4653 args->push(cmpval); 4654 args->push(newval); 4655 4656 // An unsafe CAS can alias with other field accesses, but we don't 4657 // know which ones so mark the state as no preserved. This will 4658 // cause CSE to invalidate memory across it. 4659 bool preserves_state = false; 4660 Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state); 4661 append_split(result); 4662 push(result_type, result); 4663 compilation()->set_has_unsafe_access(true); 4664 } 4665 4666 void GraphBuilder::append_char_access(ciMethod* callee, bool is_store) { 4667 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 4668 // correctly requires matched array shapes. 4669 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 4670 "sanity: byte[] and char[] bases agree"); 4671 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 4672 "sanity: byte[] and char[] scales agree"); 4673 4674 ValueStack* state_before = copy_state_indexed_access(); 4675 compilation()->set_has_access_indexed(true); 4676 Values* args = state()->pop_arguments(callee->arg_size()); 4677 Value array = args->at(0); 4678 Value index = args->at(1); 4679 if (is_store) { 4680 Value value = args->at(2); 4681 Instruction* store = append(new StoreIndexed(array, index, nullptr, T_CHAR, value, state_before, false, true)); 4682 store->set_flag(Instruction::NeedsRangeCheckFlag, false); 4683 _memory->store_value(value); 4684 } else { 4685 Instruction* load = append(new LoadIndexed(array, index, nullptr, T_CHAR, state_before, true)); 4686 load->set_flag(Instruction::NeedsRangeCheckFlag, false); 4687 push(load->type(), load); 4688 } 4689 } 4690 4691 void GraphBuilder::append_alloc_array_copy(ciMethod* callee) { 4692 const int args_base = state()->stack_size() - callee->arg_size(); 4693 ciType* receiver_type = state()->stack_at(args_base)->exact_type(); 4694 if (receiver_type == nullptr) { 4695 inline_bailout("must have a receiver"); 4696 return; 4697 } 4698 if (!receiver_type->is_type_array_klass()) { 4699 inline_bailout("clone array not primitive"); 4700 return; 4701 } 4702 4703 ValueStack* state_before = copy_state_before(); 4704 state_before->set_force_reexecute(); 4705 Value src = apop(); 4706 BasicType basic_type = src->exact_type()->as_array_klass()->element_type()->basic_type(); 4707 Value length = append(new ArrayLength(src, state_before)); 4708 Value new_array = append_split(new NewTypeArray(length, basic_type, state_before, false)); 4709 4710 ValueType* result_type = as_ValueType(callee->return_type()); 4711 vmIntrinsics::ID id = vmIntrinsics::_arraycopy; 4712 Values* args = new Values(5); 4713 args->push(src); 4714 args->push(append(new Constant(new IntConstant(0)))); 4715 args->push(new_array); 4716 args->push(append(new Constant(new IntConstant(0)))); 4717 args->push(length); 4718 const bool has_receiver = true; 4719 Intrinsic* array_copy = new Intrinsic(result_type, id, 4720 args, has_receiver, state_before, 4721 vmIntrinsics::preserves_state(id), 4722 vmIntrinsics::can_trap(id)); 4723 array_copy->set_flag(Instruction::OmitChecksFlag, true); 4724 append_split(array_copy); 4725 apush(new_array); 4726 append(new MemBar(lir_membar_storestore)); 4727 } 4728 4729 void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) { 4730 CompileLog* log = compilation()->log(); 4731 if (log != nullptr) { 4732 assert(msg != nullptr, "inlining msg should not be null!"); 4733 if (success) { 4734 log->inline_success(msg); 4735 } else { 4736 log->inline_fail(msg); 4737 } 4738 } 4739 EventCompilerInlining event; 4740 if (event.should_commit()) { 4741 CompilerEvent::InlineEvent::post(event, compilation()->env()->task()->compile_id(), method()->get_Method(), callee, success, msg, bci()); 4742 } 4743 4744 CompileTask::print_inlining_ul(callee, scope()->level(), bci(), inlining_result_of(success), msg); 4745 4746 if (!compilation()->directive()->PrintInliningOption) { 4747 return; 4748 } 4749 CompileTask::print_inlining_tty(callee, scope()->level(), bci(), inlining_result_of(success), msg); 4750 if (success && CIPrintMethodCodes) { 4751 callee->print_codes(); 4752 } 4753 } 4754 4755 void GraphBuilder::append_unsafe_get_and_set(ciMethod* callee, bool is_add) { 4756 Values* args = state()->pop_arguments(callee->arg_size()); 4757 BasicType t = callee->return_type()->basic_type(); 4758 null_check(args->at(0)); 4759 Instruction* offset = args->at(2); 4760 #ifndef _LP64 4761 offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT))); 4762 #endif 4763 Instruction* op = append(new UnsafeGetAndSet(t, args->at(1), offset, args->at(3), is_add)); 4764 compilation()->set_has_unsafe_access(true); 4765 kill_all(); 4766 push(op->type(), op); 4767 } 4768 4769 #ifndef PRODUCT 4770 void GraphBuilder::print_stats() { 4771 if (UseLocalValueNumbering) { 4772 vmap()->print(); 4773 } 4774 } 4775 #endif // PRODUCT 4776 4777 void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined) { 4778 assert(known_holder == nullptr || (known_holder->is_instance_klass() && 4779 (!known_holder->is_interface() || 4780 ((ciInstanceKlass*)known_holder)->has_nonstatic_concrete_methods())), "should be non-static concrete method"); 4781 if (known_holder != nullptr) { 4782 if (known_holder->exact_klass() == nullptr) { 4783 known_holder = compilation()->cha_exact_type(known_holder); 4784 } 4785 } 4786 4787 append(new ProfileCall(method(), bci(), callee, recv, known_holder, obj_args, inlined)); 4788 } 4789 4790 void GraphBuilder::profile_return_type(Value ret, ciMethod* callee, ciMethod* m, int invoke_bci) { 4791 assert((m == nullptr) == (invoke_bci < 0), "invalid method and invalid bci together"); 4792 if (m == nullptr) { 4793 m = method(); 4794 } 4795 if (invoke_bci < 0) { 4796 invoke_bci = bci(); 4797 } 4798 ciMethodData* md = m->method_data_or_null(); 4799 ciProfileData* data = md->bci_to_data(invoke_bci); 4800 if (data != nullptr && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) { 4801 bool has_return = data->is_CallTypeData() ? ((ciCallTypeData*)data)->has_return() : ((ciVirtualCallTypeData*)data)->has_return(); 4802 if (has_return) { 4803 append(new ProfileReturnType(m , invoke_bci, callee, ret)); 4804 } 4805 } 4806 } 4807 4808 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) { 4809 append(new ProfileInvoke(callee, state)); 4810 }