1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_Compilation.hpp" 26 #include "c1/c1_Defs.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciFlatArrayKlass.hpp" 34 #include "ci/ciInlineKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "ci/ciObjArray.hpp" 37 #include "ci/ciUtilities.hpp" 38 #include "compiler/compilerDefinitions.inline.hpp" 39 #include "compiler/compilerOracle.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/c1/barrierSetC1.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/methodCounters.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/vm_version.hpp" 47 #include "utilities/bitMap.inline.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 #ifdef ASSERT 52 #define __ gen()->lir(__FILE__, __LINE__)-> 53 #else 54 #define __ gen()->lir()-> 55 #endif 56 57 #ifndef PATCHED_ADDR 58 #define PATCHED_ADDR (max_jint) 59 #endif 60 61 void PhiResolverState::reset() { 62 _virtual_operands.clear(); 63 _other_operands.clear(); 64 _vreg_table.clear(); 65 } 66 67 68 //-------------------------------------------------------------- 69 // PhiResolver 70 71 // Resolves cycles: 72 // 73 // r1 := r2 becomes temp := r1 74 // r2 := r1 r1 := r2 75 // r2 := temp 76 // and orders moves: 77 // 78 // r2 := r3 becomes r1 := r2 79 // r1 := r2 r2 := r3 80 81 PhiResolver::PhiResolver(LIRGenerator* gen) 82 : _gen(gen) 83 , _state(gen->resolver_state()) 84 , _loop(nullptr) 85 , _temp(LIR_OprFact::illegalOpr) 86 { 87 // reinitialize the shared state arrays 88 _state.reset(); 89 } 90 91 92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 93 assert(src->is_valid(), ""); 94 assert(dest->is_valid(), ""); 95 __ move(src, dest); 96 } 97 98 99 void PhiResolver::move_temp_to(LIR_Opr dest) { 100 assert(_temp->is_valid(), ""); 101 emit_move(_temp, dest); 102 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 103 } 104 105 106 void PhiResolver::move_to_temp(LIR_Opr src) { 107 assert(_temp->is_illegal(), ""); 108 _temp = _gen->new_register(src->type()); 109 emit_move(src, _temp); 110 } 111 112 113 // Traverse assignment graph in depth first order and generate moves in post order 114 // ie. two assignments: b := c, a := b start with node c: 115 // Call graph: move(null, c) -> move(c, b) -> move(b, a) 116 // Generates moves in this order: move b to a and move c to b 117 // ie. cycle a := b, b := a start with node a 118 // Call graph: move(null, a) -> move(a, b) -> move(b, a) 119 // Generates moves in this order: move b to temp, move a to b, move temp to a 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 121 if (!dest->visited()) { 122 dest->set_visited(); 123 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 124 move(dest, dest->destination_at(i)); 125 } 126 } else if (!dest->start_node()) { 127 // cylce in graph detected 128 assert(_loop == nullptr, "only one loop valid!"); 129 _loop = dest; 130 move_to_temp(src->operand()); 131 return; 132 } // else dest is a start node 133 134 if (!dest->assigned()) { 135 if (_loop == dest) { 136 move_temp_to(dest->operand()); 137 dest->set_assigned(); 138 } else if (src != nullptr) { 139 emit_move(src->operand(), dest->operand()); 140 dest->set_assigned(); 141 } 142 } 143 } 144 145 146 PhiResolver::~PhiResolver() { 147 int i; 148 // resolve any cycles in moves from and to virtual registers 149 for (i = virtual_operands().length() - 1; i >= 0; i --) { 150 ResolveNode* node = virtual_operands().at(i); 151 if (!node->visited()) { 152 _loop = nullptr; 153 move(nullptr, node); 154 node->set_start_node(); 155 assert(_temp->is_illegal(), "move_temp_to() call missing"); 156 } 157 } 158 159 // generate move for move from non virtual register to abitrary destination 160 for (i = other_operands().length() - 1; i >= 0; i --) { 161 ResolveNode* node = other_operands().at(i); 162 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 163 emit_move(node->operand(), node->destination_at(j)->operand()); 164 } 165 } 166 } 167 168 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 170 ResolveNode* node; 171 if (opr->is_virtual()) { 172 int vreg_num = opr->vreg_number(); 173 node = vreg_table().at_grow(vreg_num, nullptr); 174 assert(node == nullptr || node->operand() == opr, ""); 175 if (node == nullptr) { 176 node = new ResolveNode(opr); 177 vreg_table().at_put(vreg_num, node); 178 } 179 // Make sure that all virtual operands show up in the list when 180 // they are used as the source of a move. 181 if (source && !virtual_operands().contains(node)) { 182 virtual_operands().append(node); 183 } 184 } else { 185 assert(source, ""); 186 node = new ResolveNode(opr); 187 other_operands().append(node); 188 } 189 return node; 190 } 191 192 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 194 assert(dest->is_virtual(), ""); 195 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 196 assert(src->is_valid(), ""); 197 assert(dest->is_valid(), ""); 198 ResolveNode* source = source_node(src); 199 source->append(destination_node(dest)); 200 } 201 202 203 //-------------------------------------------------------------- 204 // LIRItem 205 206 void LIRItem::set_result(LIR_Opr opr) { 207 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 208 value()->set_operand(opr); 209 210 #ifdef ASSERT 211 if (opr->is_virtual()) { 212 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), nullptr); 213 } 214 #endif 215 216 _result = opr; 217 } 218 219 void LIRItem::load_item() { 220 assert(!_gen->in_conditional_code(), "LIRItem cannot be loaded in conditional code"); 221 222 if (result()->is_illegal()) { 223 // update the items result 224 _result = value()->operand(); 225 } 226 if (!result()->is_register()) { 227 LIR_Opr reg = _gen->new_register(value()->type()); 228 __ move(result(), reg); 229 if (result()->is_constant()) { 230 _result = reg; 231 } else { 232 set_result(reg); 233 } 234 } 235 } 236 237 238 void LIRItem::load_for_store(BasicType type) { 239 if (_gen->can_store_as_constant(value(), type)) { 240 _result = value()->operand(); 241 if (!_result->is_constant()) { 242 _result = LIR_OprFact::value_type(value()->type()); 243 } 244 } else if (type == T_BYTE || type == T_BOOLEAN) { 245 load_byte_item(); 246 } else { 247 load_item(); 248 } 249 } 250 251 void LIRItem::load_item_force(LIR_Opr reg) { 252 LIR_Opr r = result(); 253 if (r != reg) { 254 #if !defined(ARM) && !defined(E500V2) 255 if (r->type() != reg->type()) { 256 // moves between different types need an intervening spill slot 257 r = _gen->force_to_spill(r, reg->type()); 258 } 259 #endif 260 __ move(r, reg); 261 _result = reg; 262 } 263 } 264 265 ciObject* LIRItem::get_jobject_constant() const { 266 ObjectType* oc = type()->as_ObjectType(); 267 if (oc) { 268 return oc->constant_value(); 269 } 270 return nullptr; 271 } 272 273 274 jint LIRItem::get_jint_constant() const { 275 assert(is_constant() && value() != nullptr, ""); 276 assert(type()->as_IntConstant() != nullptr, "type check"); 277 return type()->as_IntConstant()->value(); 278 } 279 280 281 jint LIRItem::get_address_constant() const { 282 assert(is_constant() && value() != nullptr, ""); 283 assert(type()->as_AddressConstant() != nullptr, "type check"); 284 return type()->as_AddressConstant()->value(); 285 } 286 287 288 jfloat LIRItem::get_jfloat_constant() const { 289 assert(is_constant() && value() != nullptr, ""); 290 assert(type()->as_FloatConstant() != nullptr, "type check"); 291 return type()->as_FloatConstant()->value(); 292 } 293 294 295 jdouble LIRItem::get_jdouble_constant() const { 296 assert(is_constant() && value() != nullptr, ""); 297 assert(type()->as_DoubleConstant() != nullptr, "type check"); 298 return type()->as_DoubleConstant()->value(); 299 } 300 301 302 jlong LIRItem::get_jlong_constant() const { 303 assert(is_constant() && value() != nullptr, ""); 304 assert(type()->as_LongConstant() != nullptr, "type check"); 305 return type()->as_LongConstant()->value(); 306 } 307 308 309 310 //-------------------------------------------------------------- 311 312 313 void LIRGenerator::block_do_prolog(BlockBegin* block) { 314 #ifndef PRODUCT 315 if (PrintIRWithLIR) { 316 block->print(); 317 } 318 #endif 319 320 // set up the list of LIR instructions 321 assert(block->lir() == nullptr, "LIR list already computed for this block"); 322 _lir = new LIR_List(compilation(), block); 323 block->set_lir(_lir); 324 325 __ branch_destination(block->label()); 326 327 if (LIRTraceExecution && 328 Compilation::current()->hir()->start()->block_id() != block->block_id() && 329 !block->is_set(BlockBegin::exception_entry_flag)) { 330 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 331 trace_block_entry(block); 332 } 333 } 334 335 336 void LIRGenerator::block_do_epilog(BlockBegin* block) { 337 #ifndef PRODUCT 338 if (PrintIRWithLIR) { 339 tty->cr(); 340 } 341 #endif 342 343 // LIR_Opr for unpinned constants shouldn't be referenced by other 344 // blocks so clear them out after processing the block. 345 for (int i = 0; i < _unpinned_constants.length(); i++) { 346 _unpinned_constants.at(i)->clear_operand(); 347 } 348 _unpinned_constants.trunc_to(0); 349 350 // clear our any registers for other local constants 351 _constants.trunc_to(0); 352 _reg_for_constants.trunc_to(0); 353 } 354 355 356 void LIRGenerator::block_do(BlockBegin* block) { 357 CHECK_BAILOUT(); 358 359 block_do_prolog(block); 360 set_block(block); 361 362 for (Instruction* instr = block; instr != nullptr; instr = instr->next()) { 363 if (instr->is_pinned()) do_root(instr); 364 } 365 366 set_block(nullptr); 367 block_do_epilog(block); 368 } 369 370 371 //-------------------------LIRGenerator----------------------------- 372 373 // This is where the tree-walk starts; instr must be root; 374 void LIRGenerator::do_root(Value instr) { 375 CHECK_BAILOUT(); 376 377 InstructionMark im(compilation(), instr); 378 379 assert(instr->is_pinned(), "use only with roots"); 380 assert(instr->subst() == instr, "shouldn't have missed substitution"); 381 382 instr->visit(this); 383 384 assert(!instr->has_uses() || instr->operand()->is_valid() || 385 instr->as_Constant() != nullptr || bailed_out(), "invalid item set"); 386 } 387 388 389 // This is called for each node in tree; the walk stops if a root is reached 390 void LIRGenerator::walk(Value instr) { 391 InstructionMark im(compilation(), instr); 392 //stop walk when encounter a root 393 if ((instr->is_pinned() && instr->as_Phi() == nullptr) || instr->operand()->is_valid()) { 394 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != nullptr, "this root has not yet been visited"); 395 } else { 396 assert(instr->subst() == instr, "shouldn't have missed substitution"); 397 instr->visit(this); 398 // assert(instr->use_count() > 0 || instr->as_Phi() != nullptr, "leaf instruction must have a use"); 399 } 400 } 401 402 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 404 assert(state != nullptr, "state must be defined"); 405 406 #ifndef PRODUCT 407 state->verify(); 408 #endif 409 410 ValueStack* s = state; 411 for_each_state(s) { 412 if (s->kind() == ValueStack::EmptyExceptionState || 413 s->kind() == ValueStack::CallerEmptyExceptionState) 414 { 415 #ifdef ASSERT 416 int index; 417 Value value; 418 for_each_stack_value(s, index, value) { 419 fatal("state must be empty"); 420 } 421 for_each_local_value(s, index, value) { 422 fatal("state must be empty"); 423 } 424 #endif 425 assert(s->locks_size() == 0 || s->locks_size() == 1, "state must be empty"); 426 continue; 427 } 428 429 int index; 430 Value value; 431 for_each_stack_value(s, index, value) { 432 assert(value->subst() == value, "missed substitution"); 433 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 434 walk(value); 435 assert(value->operand()->is_valid(), "must be evaluated now"); 436 } 437 } 438 439 int bci = s->bci(); 440 IRScope* scope = s->scope(); 441 ciMethod* method = scope->method(); 442 443 MethodLivenessResult liveness = method->liveness_at_bci(bci); 444 if (bci == SynchronizationEntryBCI) { 445 if (x->as_ExceptionObject() || x->as_Throw()) { 446 // all locals are dead on exit from the synthetic unlocker 447 liveness.clear(); 448 } else { 449 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 450 } 451 } 452 if (!liveness.is_valid()) { 453 // Degenerate or breakpointed method. 454 bailout("Degenerate or breakpointed method"); 455 } else { 456 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 457 for_each_local_value(s, index, value) { 458 assert(value->subst() == value, "missed substitution"); 459 if (liveness.at(index) && !value->type()->is_illegal()) { 460 if (!value->is_pinned() && value->as_Constant() == nullptr && value->as_Local() == nullptr) { 461 walk(value); 462 assert(value->operand()->is_valid(), "must be evaluated now"); 463 } 464 } else { 465 // null out this local so that linear scan can assume that all non-null values are live. 466 s->invalidate_local(index); 467 } 468 } 469 } 470 } 471 472 return new CodeEmitInfo(state, ignore_xhandler ? nullptr : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 473 } 474 475 476 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 477 return state_for(x, x->exception_state()); 478 } 479 480 481 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 482 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 483 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 484 * the class. */ 485 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 486 assert(info != nullptr, "info must be set if class is not loaded"); 487 __ klass2reg_patch(nullptr, r, info); 488 } else { 489 // no patching needed 490 __ metadata2reg(obj->constant_encoding(), r); 491 } 492 } 493 494 495 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 496 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 497 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 498 if (index->is_constant()) { 499 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 500 index->as_jint(), null_check_info); 501 __ branch(lir_cond_belowEqual, stub); // forward branch 502 } else { 503 cmp_reg_mem(lir_cond_aboveEqual, index, array, 504 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 505 __ branch(lir_cond_aboveEqual, stub); // forward branch 506 } 507 } 508 509 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 510 LIR_Opr result_op = result; 511 LIR_Opr left_op = left; 512 LIR_Opr right_op = right; 513 514 if (two_operand_lir_form && left_op != result_op) { 515 assert(right_op != result_op, "malformed"); 516 __ move(left_op, result_op); 517 left_op = result_op; 518 } 519 520 switch(code) { 521 case Bytecodes::_dadd: 522 case Bytecodes::_fadd: 523 case Bytecodes::_ladd: 524 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 525 case Bytecodes::_fmul: 526 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 527 528 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 529 530 case Bytecodes::_imul: 531 { 532 bool did_strength_reduce = false; 533 534 if (right->is_constant()) { 535 jint c = right->as_jint(); 536 if (c > 0 && is_power_of_2(c)) { 537 // do not need tmp here 538 __ shift_left(left_op, exact_log2(c), result_op); 539 did_strength_reduce = true; 540 } else { 541 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 542 } 543 } 544 // we couldn't strength reduce so just emit the multiply 545 if (!did_strength_reduce) { 546 __ mul(left_op, right_op, result_op); 547 } 548 } 549 break; 550 551 case Bytecodes::_dsub: 552 case Bytecodes::_fsub: 553 case Bytecodes::_lsub: 554 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 555 556 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 557 // ldiv and lrem are implemented with a direct runtime call 558 559 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 560 561 case Bytecodes::_drem: 562 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 563 564 default: ShouldNotReachHere(); 565 } 566 } 567 568 569 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 570 arithmetic_op(code, result, left, right, tmp); 571 } 572 573 574 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 575 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 576 } 577 578 579 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 580 arithmetic_op(code, result, left, right, tmp); 581 } 582 583 584 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 585 586 if (two_operand_lir_form && value != result_op 587 // Only 32bit right shifts require two operand form on S390. 588 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 589 assert(count != result_op, "malformed"); 590 __ move(value, result_op); 591 value = result_op; 592 } 593 594 assert(count->is_constant() || count->is_register(), "must be"); 595 switch(code) { 596 case Bytecodes::_ishl: 597 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 598 case Bytecodes::_ishr: 599 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 600 case Bytecodes::_iushr: 601 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 602 default: ShouldNotReachHere(); 603 } 604 } 605 606 607 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 608 if (two_operand_lir_form && left_op != result_op) { 609 assert(right_op != result_op, "malformed"); 610 __ move(left_op, result_op); 611 left_op = result_op; 612 } 613 614 switch(code) { 615 case Bytecodes::_iand: 616 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 617 618 case Bytecodes::_ior: 619 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 620 621 case Bytecodes::_ixor: 622 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 623 624 default: ShouldNotReachHere(); 625 } 626 } 627 628 629 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, 630 CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_ie_stub) { 631 if (!GenerateSynchronizationCode) return; 632 // for slow path, use debug info for state after successful locking 633 CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_ie_stub, scratch); 634 __ load_stack_address_monitor(monitor_no, lock); 635 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 636 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_ie_stub); 637 } 638 639 640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 641 if (!GenerateSynchronizationCode) return; 642 // setup registers 643 LIR_Opr hdr = lock; 644 lock = new_hdr; 645 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 646 __ load_stack_address_monitor(monitor_no, lock); 647 __ unlock_object(hdr, object, lock, scratch, slow_path); 648 } 649 650 #ifndef PRODUCT 651 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 652 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 653 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 654 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 655 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 656 } 657 } 658 #endif 659 660 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, bool allow_inline, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 661 if (allow_inline) { 662 assert(!is_unresolved && klass->is_loaded(), "inline type klass should be resolved"); 663 __ metadata2reg(klass->constant_encoding(), klass_reg); 664 } else { 665 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 666 } 667 // If klass is not loaded we do not know if the klass has finalizers or is an unexpected inline klass 668 if (UseFastNewInstance && klass->is_loaded() && (allow_inline || !klass->is_inlinetype()) 669 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 670 671 C1StubId stub_id = klass->is_initialized() ? C1StubId::fast_new_instance_id : C1StubId::fast_new_instance_init_check_id; 672 673 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 674 675 assert(klass->is_loaded(), "must be loaded"); 676 // allocate space for instance 677 assert(klass->size_helper() > 0, "illegal instance size"); 678 const int instance_size = align_object_size(klass->size_helper()); 679 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 680 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 681 } else { 682 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, C1StubId::new_instance_id); 683 __ jump(slow_path); 684 __ branch_destination(slow_path->continuation()); 685 } 686 } 687 688 689 static bool is_constant_zero(Instruction* inst) { 690 IntConstant* c = inst->type()->as_IntConstant(); 691 if (c) { 692 return (c->value() == 0); 693 } 694 return false; 695 } 696 697 698 static bool positive_constant(Instruction* inst) { 699 IntConstant* c = inst->type()->as_IntConstant(); 700 if (c) { 701 return (c->value() >= 0); 702 } 703 return false; 704 } 705 706 707 static ciArrayKlass* as_array_klass(ciType* type) { 708 if (type != nullptr && type->is_array_klass() && type->is_loaded()) { 709 return (ciArrayKlass*)type; 710 } else { 711 return nullptr; 712 } 713 } 714 715 static ciType* phi_declared_type(Phi* phi) { 716 ciType* t = phi->operand_at(0)->declared_type(); 717 if (t == nullptr) { 718 return nullptr; 719 } 720 for(int i = 1; i < phi->operand_count(); i++) { 721 if (t != phi->operand_at(i)->declared_type()) { 722 return nullptr; 723 } 724 } 725 return t; 726 } 727 728 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 729 Instruction* src = x->argument_at(0); 730 Instruction* src_pos = x->argument_at(1); 731 Instruction* dst = x->argument_at(2); 732 Instruction* dst_pos = x->argument_at(3); 733 Instruction* length = x->argument_at(4); 734 735 // first try to identify the likely type of the arrays involved 736 ciArrayKlass* expected_type = nullptr; 737 bool is_exact = false, src_objarray = false, dst_objarray = false; 738 { 739 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 740 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 741 Phi* phi; 742 if (src_declared_type == nullptr && (phi = src->as_Phi()) != nullptr) { 743 src_declared_type = as_array_klass(phi_declared_type(phi)); 744 } 745 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 746 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 747 if (dst_declared_type == nullptr && (phi = dst->as_Phi()) != nullptr) { 748 dst_declared_type = as_array_klass(phi_declared_type(phi)); 749 } 750 751 if (src_exact_type != nullptr && src_exact_type == dst_exact_type) { 752 // the types exactly match so the type is fully known 753 is_exact = true; 754 expected_type = src_exact_type; 755 } else if (dst_exact_type != nullptr && dst_exact_type->is_obj_array_klass()) { 756 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 757 ciArrayKlass* src_type = nullptr; 758 if (src_exact_type != nullptr && src_exact_type->is_obj_array_klass()) { 759 src_type = (ciArrayKlass*) src_exact_type; 760 } else if (src_declared_type != nullptr && src_declared_type->is_obj_array_klass()) { 761 src_type = (ciArrayKlass*) src_declared_type; 762 } 763 if (src_type != nullptr) { 764 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 765 is_exact = true; 766 expected_type = dst_type; 767 } 768 } 769 } 770 // at least pass along a good guess 771 if (expected_type == nullptr) expected_type = dst_exact_type; 772 if (expected_type == nullptr) expected_type = src_declared_type; 773 if (expected_type == nullptr) expected_type = dst_declared_type; 774 775 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 776 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 777 } 778 779 // if a probable array type has been identified, figure out if any 780 // of the required checks for a fast case can be elided. 781 int flags = LIR_OpArrayCopy::all_flags; 782 783 if (!src->is_loaded_flat_array() && !dst->is_loaded_flat_array()) { 784 flags &= ~LIR_OpArrayCopy::always_slow_path; 785 } 786 if (!src->maybe_flat_array()) { 787 flags &= ~LIR_OpArrayCopy::src_inlinetype_check; 788 } 789 if (!dst->maybe_flat_array() && !dst->maybe_null_free_array()) { 790 flags &= ~LIR_OpArrayCopy::dst_inlinetype_check; 791 } 792 793 if (!src_objarray) 794 flags &= ~LIR_OpArrayCopy::src_objarray; 795 if (!dst_objarray) 796 flags &= ~LIR_OpArrayCopy::dst_objarray; 797 798 if (!x->arg_needs_null_check(0)) 799 flags &= ~LIR_OpArrayCopy::src_null_check; 800 if (!x->arg_needs_null_check(2)) 801 flags &= ~LIR_OpArrayCopy::dst_null_check; 802 803 804 if (expected_type != nullptr) { 805 Value length_limit = nullptr; 806 807 IfOp* ifop = length->as_IfOp(); 808 if (ifop != nullptr) { 809 // look for expressions like min(v, a.length) which ends up as 810 // x > y ? y : x or x >= y ? y : x 811 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 812 ifop->x() == ifop->fval() && 813 ifop->y() == ifop->tval()) { 814 length_limit = ifop->y(); 815 } 816 } 817 818 // try to skip null checks and range checks 819 NewArray* src_array = src->as_NewArray(); 820 if (src_array != nullptr) { 821 flags &= ~LIR_OpArrayCopy::src_null_check; 822 if (length_limit != nullptr && 823 src_array->length() == length_limit && 824 is_constant_zero(src_pos)) { 825 flags &= ~LIR_OpArrayCopy::src_range_check; 826 } 827 } 828 829 NewArray* dst_array = dst->as_NewArray(); 830 if (dst_array != nullptr) { 831 flags &= ~LIR_OpArrayCopy::dst_null_check; 832 if (length_limit != nullptr && 833 dst_array->length() == length_limit && 834 is_constant_zero(dst_pos)) { 835 flags &= ~LIR_OpArrayCopy::dst_range_check; 836 } 837 } 838 839 // check from incoming constant values 840 if (positive_constant(src_pos)) 841 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 842 if (positive_constant(dst_pos)) 843 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 844 if (positive_constant(length)) 845 flags &= ~LIR_OpArrayCopy::length_positive_check; 846 847 // see if the range check can be elided, which might also imply 848 // that src or dst is non-null. 849 ArrayLength* al = length->as_ArrayLength(); 850 if (al != nullptr) { 851 if (al->array() == src) { 852 // it's the length of the source array 853 flags &= ~LIR_OpArrayCopy::length_positive_check; 854 flags &= ~LIR_OpArrayCopy::src_null_check; 855 if (is_constant_zero(src_pos)) 856 flags &= ~LIR_OpArrayCopy::src_range_check; 857 } 858 if (al->array() == dst) { 859 // it's the length of the destination array 860 flags &= ~LIR_OpArrayCopy::length_positive_check; 861 flags &= ~LIR_OpArrayCopy::dst_null_check; 862 if (is_constant_zero(dst_pos)) 863 flags &= ~LIR_OpArrayCopy::dst_range_check; 864 } 865 } 866 if (is_exact) { 867 flags &= ~LIR_OpArrayCopy::type_check; 868 } 869 } 870 871 IntConstant* src_int = src_pos->type()->as_IntConstant(); 872 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 873 if (src_int && dst_int) { 874 int s_offs = src_int->value(); 875 int d_offs = dst_int->value(); 876 if (src_int->value() >= dst_int->value()) { 877 flags &= ~LIR_OpArrayCopy::overlapping; 878 } 879 if (expected_type != nullptr) { 880 BasicType t = expected_type->element_type()->basic_type(); 881 int element_size = type2aelembytes(t); 882 if (((arrayOopDesc::base_offset_in_bytes(t) + (uint)s_offs * element_size) % HeapWordSize == 0) && 883 ((arrayOopDesc::base_offset_in_bytes(t) + (uint)d_offs * element_size) % HeapWordSize == 0)) { 884 flags &= ~LIR_OpArrayCopy::unaligned; 885 } 886 } 887 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 888 // src and dest positions are the same, or dst is zero so assume 889 // nonoverlapping copy. 890 flags &= ~LIR_OpArrayCopy::overlapping; 891 } 892 893 if (src == dst) { 894 // moving within a single array so no type checks are needed 895 if (flags & LIR_OpArrayCopy::type_check) { 896 flags &= ~LIR_OpArrayCopy::type_check; 897 } 898 } 899 *flagsp = flags; 900 *expected_typep = (ciArrayKlass*)expected_type; 901 } 902 903 904 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 905 assert(type2size[t] == type2size[value->type()], 906 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 907 if (!value->is_register()) { 908 // force into a register 909 LIR_Opr r = new_register(value->type()); 910 __ move(value, r); 911 value = r; 912 } 913 914 // create a spill location 915 LIR_Opr tmp = new_register(t); 916 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 917 918 // move from register to spill 919 __ move(value, tmp); 920 return tmp; 921 } 922 923 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 924 if (if_instr->should_profile()) { 925 ciMethod* method = if_instr->profiled_method(); 926 assert(method != nullptr, "method should be set if branch is profiled"); 927 ciMethodData* md = method->method_data_or_null(); 928 assert(md != nullptr, "Sanity"); 929 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 930 assert(data != nullptr, "must have profiling data"); 931 assert(data->is_BranchData(), "need BranchData for two-way branches"); 932 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 933 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 934 if (if_instr->is_swapped()) { 935 int t = taken_count_offset; 936 taken_count_offset = not_taken_count_offset; 937 not_taken_count_offset = t; 938 } 939 940 LIR_Opr md_reg = new_register(T_METADATA); 941 __ metadata2reg(md->constant_encoding(), md_reg); 942 943 LIR_Opr data_offset_reg = new_pointer_register(); 944 __ cmove(lir_cond(cond), 945 LIR_OprFact::intptrConst(taken_count_offset), 946 LIR_OprFact::intptrConst(not_taken_count_offset), 947 data_offset_reg, as_BasicType(if_instr->x()->type())); 948 949 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 950 LIR_Opr data_reg = new_pointer_register(); 951 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 952 __ move(data_addr, data_reg); 953 // Use leal instead of add to avoid destroying condition codes on x86 954 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 955 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 956 __ move(data_reg, data_addr); 957 } 958 } 959 960 // Phi technique: 961 // This is about passing live values from one basic block to the other. 962 // In code generated with Java it is rather rare that more than one 963 // value is on the stack from one basic block to the other. 964 // We optimize our technique for efficient passing of one value 965 // (of type long, int, double..) but it can be extended. 966 // When entering or leaving a basic block, all registers and all spill 967 // slots are release and empty. We use the released registers 968 // and spill slots to pass the live values from one block 969 // to the other. The topmost value, i.e., the value on TOS of expression 970 // stack is passed in registers. All other values are stored in spilling 971 // area. Every Phi has an index which designates its spill slot 972 // At exit of a basic block, we fill the register(s) and spill slots. 973 // At entry of a basic block, the block_prolog sets up the content of phi nodes 974 // and locks necessary registers and spilling slots. 975 976 977 // move current value to referenced phi function 978 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 979 Phi* phi = sux_val->as_Phi(); 980 // cur_val can be null without phi being null in conjunction with inlining 981 if (phi != nullptr && cur_val != nullptr && cur_val != phi && !phi->is_illegal()) { 982 if (phi->is_local()) { 983 for (int i = 0; i < phi->operand_count(); i++) { 984 Value op = phi->operand_at(i); 985 if (op != nullptr && op->type()->is_illegal()) { 986 bailout("illegal phi operand"); 987 } 988 } 989 } 990 Phi* cur_phi = cur_val->as_Phi(); 991 if (cur_phi != nullptr && cur_phi->is_illegal()) { 992 // Phi and local would need to get invalidated 993 // (which is unexpected for Linear Scan). 994 // But this case is very rare so we simply bail out. 995 bailout("propagation of illegal phi"); 996 return; 997 } 998 LIR_Opr operand = cur_val->operand(); 999 if (operand->is_illegal()) { 1000 assert(cur_val->as_Constant() != nullptr || cur_val->as_Local() != nullptr, 1001 "these can be produced lazily"); 1002 operand = operand_for_instruction(cur_val); 1003 } 1004 resolver->move(operand, operand_for_instruction(phi)); 1005 } 1006 } 1007 1008 1009 // Moves all stack values into their PHI position 1010 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1011 BlockBegin* bb = block(); 1012 if (bb->number_of_sux() == 1) { 1013 BlockBegin* sux = bb->sux_at(0); 1014 assert(sux->number_of_preds() > 0, "invalid CFG"); 1015 1016 // a block with only one predecessor never has phi functions 1017 if (sux->number_of_preds() > 1) { 1018 PhiResolver resolver(this); 1019 1020 ValueStack* sux_state = sux->state(); 1021 Value sux_value; 1022 int index; 1023 1024 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1025 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1026 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1027 1028 for_each_stack_value(sux_state, index, sux_value) { 1029 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1030 } 1031 1032 for_each_local_value(sux_state, index, sux_value) { 1033 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1034 } 1035 1036 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1037 } 1038 } 1039 } 1040 1041 1042 LIR_Opr LIRGenerator::new_register(BasicType type) { 1043 int vreg_num = _virtual_register_number; 1044 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1045 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1046 if (vreg_num + 20 >= LIR_Opr::vreg_max) { 1047 bailout("out of virtual registers in LIR generator"); 1048 if (vreg_num + 2 >= LIR_Opr::vreg_max) { 1049 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1050 _virtual_register_number = LIR_Opr::vreg_base; 1051 vreg_num = LIR_Opr::vreg_base; 1052 } 1053 } 1054 _virtual_register_number += 1; 1055 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1056 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1057 return vreg; 1058 } 1059 1060 1061 // Try to lock using register in hint 1062 LIR_Opr LIRGenerator::rlock(Value instr) { 1063 return new_register(instr->type()); 1064 } 1065 1066 1067 // does an rlock and sets result 1068 LIR_Opr LIRGenerator::rlock_result(Value x) { 1069 LIR_Opr reg = rlock(x); 1070 set_result(x, reg); 1071 return reg; 1072 } 1073 1074 1075 // does an rlock and sets result 1076 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1077 LIR_Opr reg; 1078 switch (type) { 1079 case T_BYTE: 1080 case T_BOOLEAN: 1081 reg = rlock_byte(type); 1082 break; 1083 default: 1084 reg = rlock(x); 1085 break; 1086 } 1087 1088 set_result(x, reg); 1089 return reg; 1090 } 1091 1092 1093 //--------------------------------------------------------------------- 1094 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1095 ObjectType* oc = value->type()->as_ObjectType(); 1096 if (oc) { 1097 return oc->constant_value(); 1098 } 1099 return nullptr; 1100 } 1101 1102 1103 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1104 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1105 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1106 1107 // no moves are created for phi functions at the begin of exception 1108 // handlers, so assign operands manually here 1109 for_each_phi_fun(block(), phi, 1110 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1111 1112 LIR_Opr thread_reg = getThreadPointer(); 1113 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1114 exceptionOopOpr()); 1115 __ move_wide(LIR_OprFact::oopConst(nullptr), 1116 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1117 __ move_wide(LIR_OprFact::oopConst(nullptr), 1118 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1119 1120 LIR_Opr result = new_register(T_OBJECT); 1121 __ move(exceptionOopOpr(), result); 1122 set_result(x, result); 1123 } 1124 1125 1126 //---------------------------------------------------------------------- 1127 //---------------------------------------------------------------------- 1128 //---------------------------------------------------------------------- 1129 //---------------------------------------------------------------------- 1130 // visitor functions 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 1136 void LIRGenerator::do_Phi(Phi* x) { 1137 // phi functions are never visited directly 1138 ShouldNotReachHere(); 1139 } 1140 1141 1142 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1143 void LIRGenerator::do_Constant(Constant* x) { 1144 if (x->state_before() != nullptr) { 1145 // Any constant with a ValueStack requires patching so emit the patch here 1146 LIR_Opr reg = rlock_result(x); 1147 CodeEmitInfo* info = state_for(x, x->state_before()); 1148 __ oop2reg_patch(nullptr, reg, info); 1149 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1150 if (!x->is_pinned()) { 1151 // unpinned constants are handled specially so that they can be 1152 // put into registers when they are used multiple times within a 1153 // block. After the block completes their operand will be 1154 // cleared so that other blocks can't refer to that register. 1155 set_result(x, load_constant(x)); 1156 } else { 1157 LIR_Opr res = x->operand(); 1158 if (!res->is_valid()) { 1159 res = LIR_OprFact::value_type(x->type()); 1160 } 1161 if (res->is_constant()) { 1162 LIR_Opr reg = rlock_result(x); 1163 __ move(res, reg); 1164 } else { 1165 set_result(x, res); 1166 } 1167 } 1168 } else { 1169 set_result(x, LIR_OprFact::value_type(x->type())); 1170 } 1171 } 1172 1173 1174 void LIRGenerator::do_Local(Local* x) { 1175 // operand_for_instruction has the side effect of setting the result 1176 // so there's no need to do it here. 1177 operand_for_instruction(x); 1178 } 1179 1180 1181 void LIRGenerator::do_Return(Return* x) { 1182 if (compilation()->env()->dtrace_method_probes()) { 1183 BasicTypeList signature; 1184 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1185 signature.append(T_METADATA); // Method* 1186 LIR_OprList* args = new LIR_OprList(); 1187 args->append(getThreadPointer()); 1188 LIR_Opr meth = new_register(T_METADATA); 1189 __ metadata2reg(method()->constant_encoding(), meth); 1190 args->append(meth); 1191 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, nullptr); 1192 } 1193 1194 if (x->type()->is_void()) { 1195 __ return_op(LIR_OprFact::illegalOpr); 1196 } else { 1197 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1198 LIRItem result(x->result(), this); 1199 1200 result.load_item_force(reg); 1201 __ return_op(result.result()); 1202 } 1203 set_no_result(x); 1204 } 1205 1206 // Example: ref.get() 1207 // Combination of LoadField and g1 pre-write barrier 1208 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1209 1210 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1211 1212 assert(x->number_of_arguments() == 1, "wrong type"); 1213 1214 LIRItem reference(x->argument_at(0), this); 1215 reference.load_item(); 1216 1217 // need to perform the null check on the reference object 1218 CodeEmitInfo* info = nullptr; 1219 if (x->needs_null_check()) { 1220 info = state_for(x); 1221 } 1222 1223 LIR_Opr result = rlock_result(x, T_OBJECT); 1224 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1225 reference, LIR_OprFact::intConst(referent_offset), result, 1226 nullptr, info); 1227 } 1228 1229 // Example: clazz.isInstance(object) 1230 void LIRGenerator::do_isInstance(Intrinsic* x) { 1231 assert(x->number_of_arguments() == 2, "wrong type"); 1232 1233 LIRItem clazz(x->argument_at(0), this); 1234 LIRItem object(x->argument_at(1), this); 1235 clazz.load_item(); 1236 object.load_item(); 1237 LIR_Opr result = rlock_result(x); 1238 1239 // need to perform null check on clazz 1240 if (x->needs_null_check()) { 1241 CodeEmitInfo* info = state_for(x); 1242 __ null_check(clazz.result(), info); 1243 } 1244 1245 address pd_instanceof_fn = isInstance_entry(); 1246 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1247 pd_instanceof_fn, 1248 x->type(), 1249 nullptr); // null CodeEmitInfo results in a leaf call 1250 __ move(call_result, result); 1251 } 1252 1253 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1254 __ load_klass(obj, klass, null_check_info); 1255 } 1256 1257 // Example: object.getClass () 1258 void LIRGenerator::do_getClass(Intrinsic* x) { 1259 assert(x->number_of_arguments() == 1, "wrong type"); 1260 1261 LIRItem rcvr(x->argument_at(0), this); 1262 rcvr.load_item(); 1263 LIR_Opr temp = new_register(T_ADDRESS); 1264 LIR_Opr result = rlock_result(x); 1265 1266 // need to perform the null check on the rcvr 1267 CodeEmitInfo* info = nullptr; 1268 if (x->needs_null_check()) { 1269 info = state_for(x); 1270 } 1271 1272 LIR_Opr klass = new_register(T_METADATA); 1273 load_klass(rcvr.result(), klass, info); 1274 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1275 // mirror = ((OopHandle)mirror)->resolve(); 1276 access_load(IN_NATIVE, T_OBJECT, 1277 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1278 } 1279 1280 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1281 assert(x->number_of_arguments() == 3, "wrong type"); 1282 LIR_Opr result_reg = rlock_result(x); 1283 1284 LIRItem value(x->argument_at(2), this); 1285 value.load_item(); 1286 1287 LIR_Opr klass = new_register(T_METADATA); 1288 load_klass(value.result(), klass, nullptr); 1289 LIR_Opr layout = new_register(T_INT); 1290 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1291 1292 LabelObj* L_done = new LabelObj(); 1293 LabelObj* L_array = new LabelObj(); 1294 1295 __ cmp(lir_cond_lessEqual, layout, 0); 1296 __ branch(lir_cond_lessEqual, L_array->label()); 1297 1298 // Instance case: the layout helper gives us instance size almost directly, 1299 // but we need to mask out the _lh_instance_slow_path_bit. 1300 1301 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1302 1303 LIR_Opr mask = load_immediate(~(jint) right_n_bits(LogBytesPerLong), T_INT); 1304 __ logical_and(layout, mask, layout); 1305 __ convert(Bytecodes::_i2l, layout, result_reg); 1306 1307 __ branch(lir_cond_always, L_done->label()); 1308 1309 // Array case: size is round(header + element_size*arraylength). 1310 // Since arraylength is different for every array instance, we have to 1311 // compute the whole thing at runtime. 1312 1313 __ branch_destination(L_array->label()); 1314 1315 int round_mask = MinObjAlignmentInBytes - 1; 1316 1317 // Figure out header sizes first. 1318 LIR_Opr hss = load_immediate(Klass::_lh_header_size_shift, T_INT); 1319 LIR_Opr hsm = load_immediate(Klass::_lh_header_size_mask, T_INT); 1320 1321 LIR_Opr header_size = new_register(T_INT); 1322 __ move(layout, header_size); 1323 LIR_Opr tmp = new_register(T_INT); 1324 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1325 __ logical_and(header_size, hsm, header_size); 1326 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1327 1328 // Figure out the array length in bytes 1329 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1330 LIR_Opr l2esm = load_immediate(Klass::_lh_log2_element_size_mask, T_INT); 1331 __ logical_and(layout, l2esm, layout); 1332 1333 LIR_Opr length_int = new_register(T_INT); 1334 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1335 1336 #ifdef _LP64 1337 LIR_Opr length = new_register(T_LONG); 1338 __ convert(Bytecodes::_i2l, length_int, length); 1339 #endif 1340 1341 // Shift-left awkwardness. Normally it is just: 1342 // __ shift_left(length, layout, length); 1343 // But C1 cannot perform shift_left with non-constant count, so we end up 1344 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1345 // longs, so we have to act on ints. 1346 LabelObj* L_shift_loop = new LabelObj(); 1347 LabelObj* L_shift_exit = new LabelObj(); 1348 1349 __ branch_destination(L_shift_loop->label()); 1350 __ cmp(lir_cond_equal, layout, 0); 1351 __ branch(lir_cond_equal, L_shift_exit->label()); 1352 1353 #ifdef _LP64 1354 __ shift_left(length, 1, length); 1355 #else 1356 __ shift_left(length_int, 1, length_int); 1357 #endif 1358 1359 __ sub(layout, LIR_OprFact::intConst(1), layout); 1360 1361 __ branch(lir_cond_always, L_shift_loop->label()); 1362 __ branch_destination(L_shift_exit->label()); 1363 1364 // Mix all up, round, and push to the result. 1365 #ifdef _LP64 1366 LIR_Opr header_size_long = new_register(T_LONG); 1367 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1368 __ add(length, header_size_long, length); 1369 if (round_mask != 0) { 1370 LIR_Opr round_mask_opr = load_immediate(~(jlong)round_mask, T_LONG); 1371 __ logical_and(length, round_mask_opr, length); 1372 } 1373 __ move(length, result_reg); 1374 #else 1375 __ add(length_int, header_size, length_int); 1376 if (round_mask != 0) { 1377 LIR_Opr round_mask_opr = load_immediate(~round_mask, T_INT); 1378 __ logical_and(length_int, round_mask_opr, length_int); 1379 } 1380 __ convert(Bytecodes::_i2l, length_int, result_reg); 1381 #endif 1382 1383 __ branch_destination(L_done->label()); 1384 } 1385 1386 void LIRGenerator::do_scopedValueCache(Intrinsic* x) { 1387 do_JavaThreadField(x, JavaThread::scopedValueCache_offset()); 1388 } 1389 1390 // Example: Thread.currentCarrierThread() 1391 void LIRGenerator::do_currentCarrierThread(Intrinsic* x) { 1392 do_JavaThreadField(x, JavaThread::threadObj_offset()); 1393 } 1394 1395 void LIRGenerator::do_vthread(Intrinsic* x) { 1396 do_JavaThreadField(x, JavaThread::vthread_offset()); 1397 } 1398 1399 void LIRGenerator::do_JavaThreadField(Intrinsic* x, ByteSize offset) { 1400 assert(x->number_of_arguments() == 0, "wrong type"); 1401 LIR_Opr temp = new_register(T_ADDRESS); 1402 LIR_Opr reg = rlock_result(x); 1403 __ move(new LIR_Address(getThreadPointer(), in_bytes(offset), T_ADDRESS), temp); 1404 access_load(IN_NATIVE, T_OBJECT, 1405 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1406 } 1407 1408 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1409 assert(x->number_of_arguments() == 1, "wrong type"); 1410 LIRItem receiver(x->argument_at(0), this); 1411 1412 receiver.load_item(); 1413 BasicTypeList signature; 1414 signature.append(T_OBJECT); // receiver 1415 LIR_OprList* args = new LIR_OprList(); 1416 args->append(receiver.result()); 1417 CodeEmitInfo* info = state_for(x, x->state()); 1418 call_runtime(&signature, args, 1419 CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::register_finalizer_id)), 1420 voidType, info); 1421 1422 set_no_result(x); 1423 } 1424 1425 1426 //------------------------local access-------------------------------------- 1427 1428 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1429 if (x->operand()->is_illegal()) { 1430 Constant* c = x->as_Constant(); 1431 if (c != nullptr) { 1432 x->set_operand(LIR_OprFact::value_type(c->type())); 1433 } else { 1434 assert(x->as_Phi() || x->as_Local() != nullptr, "only for Phi and Local"); 1435 // allocate a virtual register for this local or phi 1436 x->set_operand(rlock(x)); 1437 #ifdef ASSERT 1438 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, nullptr); 1439 #endif 1440 } 1441 } 1442 return x->operand(); 1443 } 1444 1445 #ifdef ASSERT 1446 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1447 if (reg_num < _instruction_for_operand.length()) { 1448 return _instruction_for_operand.at(reg_num); 1449 } 1450 return nullptr; 1451 } 1452 #endif 1453 1454 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1455 if (_vreg_flags.size_in_bits() == 0) { 1456 BitMap2D temp(100, num_vreg_flags); 1457 _vreg_flags = temp; 1458 } 1459 _vreg_flags.at_put_grow(vreg_num, f, true); 1460 } 1461 1462 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1463 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1464 return false; 1465 } 1466 return _vreg_flags.at(vreg_num, f); 1467 } 1468 1469 1470 // Block local constant handling. This code is useful for keeping 1471 // unpinned constants and constants which aren't exposed in the IR in 1472 // registers. Unpinned Constant instructions have their operands 1473 // cleared when the block is finished so that other blocks can't end 1474 // up referring to their registers. 1475 1476 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1477 assert(!x->is_pinned(), "only for unpinned constants"); 1478 _unpinned_constants.append(x); 1479 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1480 } 1481 1482 1483 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1484 BasicType t = c->type(); 1485 for (int i = 0; i < _constants.length() && !in_conditional_code(); i++) { 1486 LIR_Const* other = _constants.at(i); 1487 if (t == other->type()) { 1488 switch (t) { 1489 case T_INT: 1490 case T_FLOAT: 1491 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1492 break; 1493 case T_LONG: 1494 case T_DOUBLE: 1495 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1496 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1497 break; 1498 case T_OBJECT: 1499 if (c->as_jobject() != other->as_jobject()) continue; 1500 break; 1501 default: 1502 break; 1503 } 1504 return _reg_for_constants.at(i); 1505 } 1506 } 1507 1508 LIR_Opr result = new_register(t); 1509 __ move((LIR_Opr)c, result); 1510 if (!in_conditional_code()) { 1511 _constants.append(c); 1512 _reg_for_constants.append(result); 1513 } 1514 return result; 1515 } 1516 1517 void LIRGenerator::set_in_conditional_code(bool v) { 1518 assert(v != _in_conditional_code, "must change state"); 1519 _in_conditional_code = v; 1520 } 1521 1522 1523 //------------------------field access-------------------------------------- 1524 1525 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1526 assert(x->number_of_arguments() == 4, "wrong type"); 1527 LIRItem obj (x->argument_at(0), this); // object 1528 LIRItem offset(x->argument_at(1), this); // offset of field 1529 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1530 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1531 assert(obj.type()->tag() == objectTag, "invalid type"); 1532 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1533 assert(val.type()->tag() == type->tag(), "invalid type"); 1534 1535 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1536 obj, offset, cmp, val); 1537 set_result(x, result); 1538 } 1539 1540 // Returns a int/long value with the null marker bit set 1541 static LIR_Opr null_marker_mask(BasicType bt, ciField* field) { 1542 assert(field->null_marker_offset() != -1, "field does not have null marker"); 1543 int nm_offset = field->null_marker_offset() - field->offset_in_bytes(); 1544 jlong null_marker = 1ULL << (nm_offset << LogBitsPerByte); 1545 return (bt == T_LONG) ? LIR_OprFact::longConst(null_marker) : LIR_OprFact::intConst(null_marker); 1546 } 1547 1548 // Comment copied form templateTable_i486.cpp 1549 // ---------------------------------------------------------------------------- 1550 // Volatile variables demand their effects be made known to all CPU's in 1551 // order. Store buffers on most chips allow reads & writes to reorder; the 1552 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1553 // memory barrier (i.e., it's not sufficient that the interpreter does not 1554 // reorder volatile references, the hardware also must not reorder them). 1555 // 1556 // According to the new Java Memory Model (JMM): 1557 // (1) All volatiles are serialized wrt to each other. 1558 // ALSO reads & writes act as acquire & release, so: 1559 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1560 // the read float up to before the read. It's OK for non-volatile memory refs 1561 // that happen before the volatile read to float down below it. 1562 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1563 // that happen BEFORE the write float down to after the write. It's OK for 1564 // non-volatile memory refs that happen after the volatile write to float up 1565 // before it. 1566 // 1567 // We only put in barriers around volatile refs (they are expensive), not 1568 // _between_ memory refs (that would require us to track the flavor of the 1569 // previous memory refs). Requirements (2) and (3) require some barriers 1570 // before volatile stores and after volatile loads. These nearly cover 1571 // requirement (1) but miss the volatile-store-volatile-load case. This final 1572 // case is placed after volatile-stores although it could just as well go 1573 // before volatile-loads. 1574 1575 1576 void LIRGenerator::do_StoreField(StoreField* x) { 1577 ciField* field = x->field(); 1578 bool needs_patching = x->needs_patching(); 1579 bool is_volatile = field->is_volatile(); 1580 BasicType field_type = x->field_type(); 1581 1582 CodeEmitInfo* info = nullptr; 1583 if (needs_patching) { 1584 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 1585 info = state_for(x, x->state_before()); 1586 } else if (x->needs_null_check()) { 1587 NullCheck* nc = x->explicit_null_check(); 1588 if (nc == nullptr) { 1589 info = state_for(x); 1590 } else { 1591 info = state_for(nc); 1592 } 1593 } 1594 1595 LIRItem object(x->obj(), this); 1596 LIRItem value(x->value(), this); 1597 1598 object.load_item(); 1599 1600 if (field->is_flat()) { 1601 value.load_item(); 1602 } else { 1603 if (is_volatile || needs_patching) { 1604 // load item if field is volatile (fewer special cases for volatiles) 1605 // load item if field not initialized 1606 // load item if field not constant 1607 // because of code patching we cannot inline constants 1608 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1609 value.load_byte_item(); 1610 } else { 1611 value.load_item(); 1612 } 1613 } else { 1614 value.load_for_store(field_type); 1615 } 1616 } 1617 1618 set_no_result(x); 1619 1620 #ifndef PRODUCT 1621 if (PrintNotLoaded && needs_patching) { 1622 tty->print_cr(" ###class not loaded at store_%s bci %d", 1623 x->is_static() ? "static" : "field", x->printable_bci()); 1624 } 1625 #endif 1626 1627 if (x->needs_null_check() && 1628 (needs_patching || 1629 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1630 // Emit an explicit null check because the offset is too large. 1631 // If the class is not loaded and the object is null, we need to deoptimize to throw a 1632 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1633 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1634 } 1635 1636 DecoratorSet decorators = IN_HEAP; 1637 if (is_volatile) { 1638 decorators |= MO_SEQ_CST; 1639 } 1640 if (needs_patching) { 1641 decorators |= C1_NEEDS_PATCHING; 1642 } 1643 1644 if (field->is_flat()) { 1645 ciInlineKlass* vk = field->type()->as_inline_klass(); 1646 1647 #ifdef ASSERT 1648 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1; 1649 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic); 1650 assert(needs_atomic_access, "No atomic access required"); 1651 // ZGC does not support compressed oops, so only one oop can be in the payload which is written by a "normal" oop store. 1652 assert(!vk->contains_oops() || !UseZGC, "ZGC does not support embedded oops in flat fields"); 1653 #endif 1654 1655 // Zero the payload 1656 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free()); 1657 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT); 1658 LIR_Opr zero = (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0); 1659 __ move(zero, payload); 1660 1661 bool is_constant_null = value.is_constant() && value.value()->is_null_obj(); 1662 if (!is_constant_null) { 1663 LabelObj* L_isNull = new LabelObj(); 1664 bool needs_null_check = !value.is_constant() || value.value()->is_null_obj(); 1665 if (needs_null_check) { 1666 __ cmp(lir_cond_equal, value.result(), LIR_OprFact::oopConst(nullptr)); 1667 __ branch(lir_cond_equal, L_isNull->label()); 1668 } 1669 // Load payload (if not empty) and set null marker (if not null-free) 1670 if (!vk->is_empty()) { 1671 access_load_at(decorators, bt, value, LIR_OprFact::intConst(vk->payload_offset()), payload); 1672 } 1673 if (!field->is_null_free()) { 1674 __ logical_or(payload, null_marker_mask(bt, field), payload); 1675 } 1676 if (needs_null_check) { 1677 __ branch_destination(L_isNull->label()); 1678 } 1679 } 1680 access_store_at(decorators, bt, object, LIR_OprFact::intConst(x->offset()), payload, 1681 // Make sure to emit an implicit null check and pass the information 1682 // that this is a flat store that might require gc barriers for oop fields. 1683 info != nullptr ? new CodeEmitInfo(info) : nullptr, info, vk); 1684 return; 1685 } 1686 1687 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1688 value.result(), info != nullptr ? new CodeEmitInfo(info) : nullptr, info); 1689 } 1690 1691 // FIXME -- I can't find any other way to pass an address to access_load_at(). 1692 class TempResolvedAddress: public Instruction { 1693 public: 1694 TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) { 1695 set_operand(addr); 1696 } 1697 virtual void input_values_do(ValueVisitor*) {} 1698 virtual void visit(InstructionVisitor* v) {} 1699 virtual const char* name() const { return "TempResolvedAddress"; } 1700 }; 1701 1702 LIR_Opr LIRGenerator::get_and_load_element_address(LIRItem& array, LIRItem& index) { 1703 ciType* array_type = array.value()->declared_type(); 1704 ciFlatArrayKlass* flat_array_klass = array_type->as_flat_array_klass(); 1705 assert(flat_array_klass->is_loaded(), "must be"); 1706 1707 int array_header_size = flat_array_klass->array_header_in_bytes(); 1708 int shift = flat_array_klass->log2_element_size(); 1709 1710 #ifndef _LP64 1711 LIR_Opr index_op = new_register(T_INT); 1712 // FIXME -- on 32-bit, the shift below can overflow, so we need to check that 1713 // the top (shift+1) bits of index_op must be zero, or 1714 // else throw ArrayIndexOutOfBoundsException 1715 if (index.result()->is_constant()) { 1716 jint const_index = index.result()->as_jint(); 1717 __ move(LIR_OprFact::intConst(const_index << shift), index_op); 1718 } else { 1719 __ shift_left(index_op, shift, index.result()); 1720 } 1721 #else 1722 LIR_Opr index_op = new_register(T_LONG); 1723 if (index.result()->is_constant()) { 1724 jint const_index = index.result()->as_jint(); 1725 __ move(LIR_OprFact::longConst(const_index << shift), index_op); 1726 } else { 1727 __ convert(Bytecodes::_i2l, index.result(), index_op); 1728 // Need to shift manually, as LIR_Address can scale only up to 3. 1729 __ shift_left(index_op, shift, index_op); 1730 } 1731 #endif 1732 1733 LIR_Opr elm_op = new_pointer_register(); 1734 LIR_Address* elm_address = generate_address(array.result(), index_op, 0, array_header_size, T_ADDRESS); 1735 __ leal(LIR_OprFact::address(elm_address), elm_op); 1736 return elm_op; 1737 } 1738 1739 void LIRGenerator::access_sub_element(LIRItem& array, LIRItem& index, LIR_Opr& result, ciField* field, int sub_offset) { 1740 assert(field != nullptr, "Need a subelement type specified"); 1741 1742 // Find the starting address of the source (inside the array) 1743 LIR_Opr elm_op = get_and_load_element_address(array, index); 1744 1745 BasicType subelt_type = field->type()->basic_type(); 1746 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(subelt_type), elm_op); 1747 LIRItem elm_item(elm_resolved_addr, this); 1748 1749 DecoratorSet decorators = IN_HEAP; 1750 access_load_at(decorators, subelt_type, 1751 elm_item, LIR_OprFact::intConst(sub_offset), result, 1752 nullptr, nullptr); 1753 } 1754 1755 void LIRGenerator::access_flat_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item, 1756 ciField* field, int sub_offset) { 1757 assert(sub_offset == 0 || field != nullptr, "Sanity check"); 1758 1759 // Find the starting address of the source (inside the array) 1760 LIR_Opr elm_op = get_and_load_element_address(array, index); 1761 1762 ciInlineKlass* elem_klass = nullptr; 1763 if (field != nullptr) { 1764 elem_klass = field->type()->as_inline_klass(); 1765 } else { 1766 elem_klass = array.value()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass(); 1767 } 1768 for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) { 1769 ciField* inner_field = elem_klass->nonstatic_field_at(i); 1770 assert(!inner_field->is_flat(), "flat fields must have been expanded"); 1771 int obj_offset = inner_field->offset_in_bytes(); 1772 int elm_offset = obj_offset - elem_klass->payload_offset() + sub_offset; // object header is not stored in array. 1773 BasicType field_type = inner_field->type()->basic_type(); 1774 1775 // Types which are smaller than int are still passed in an int register. 1776 BasicType reg_type = field_type; 1777 switch (reg_type) { 1778 case T_BYTE: 1779 case T_BOOLEAN: 1780 case T_SHORT: 1781 case T_CHAR: 1782 reg_type = T_INT; 1783 break; 1784 default: 1785 break; 1786 } 1787 1788 LIR_Opr temp = new_register(reg_type); 1789 TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op); 1790 LIRItem elm_item(elm_resolved_addr, this); 1791 1792 DecoratorSet decorators = IN_HEAP; 1793 if (is_load) { 1794 access_load_at(decorators, field_type, 1795 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1796 nullptr, nullptr); 1797 access_store_at(decorators, field_type, 1798 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1799 nullptr, nullptr); 1800 } else { 1801 access_load_at(decorators, field_type, 1802 obj_item, LIR_OprFact::intConst(obj_offset), temp, 1803 nullptr, nullptr); 1804 access_store_at(decorators, field_type, 1805 elm_item, LIR_OprFact::intConst(elm_offset), temp, 1806 nullptr, nullptr); 1807 } 1808 } 1809 } 1810 1811 void LIRGenerator::check_flat_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) { 1812 LIR_Opr tmp = new_register(T_METADATA); 1813 __ check_flat_array(array, value, tmp, slow_path); 1814 } 1815 1816 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) { 1817 LabelObj* L_end = new LabelObj(); 1818 LIR_Opr tmp = new_register(T_METADATA); 1819 __ check_null_free_array(array.result(), tmp); 1820 __ branch(lir_cond_equal, L_end->label()); 1821 __ null_check(value.result(), info); 1822 __ branch_destination(L_end->label()); 1823 } 1824 1825 bool LIRGenerator::needs_flat_array_store_check(StoreIndexed* x) { 1826 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) { 1827 ciType* type = x->value()->declared_type(); 1828 if (type != nullptr && type->is_klass()) { 1829 ciKlass* klass = type->as_klass(); 1830 if (!klass->can_be_inline_klass() || (klass->is_inlinetype() && !klass->as_inline_klass()->flat_in_array())) { 1831 // This is known to be a non-flat object. If the array is a flat array, 1832 // it will be caught by the code generated by array_store_check(). 1833 return false; 1834 } 1835 } 1836 // We're not 100% sure, so let's do the flat_array_store_check. 1837 return true; 1838 } 1839 return false; 1840 } 1841 1842 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) { 1843 return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array(); 1844 } 1845 1846 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1847 assert(x->is_pinned(),""); 1848 assert(x->elt_type() != T_ARRAY, "never used"); 1849 bool is_loaded_flat_array = x->array()->is_loaded_flat_array(); 1850 bool needs_range_check = x->compute_needs_range_check(); 1851 bool use_length = x->length() != nullptr; 1852 bool obj_store = is_reference_type(x->elt_type()); 1853 bool needs_store_check = obj_store && !(is_loaded_flat_array && x->is_exact_flat_array_store()) && 1854 (x->value()->as_Constant() == nullptr || 1855 !get_jobject_constant(x->value())->is_null_object()); 1856 1857 LIRItem array(x->array(), this); 1858 LIRItem index(x->index(), this); 1859 LIRItem value(x->value(), this); 1860 LIRItem length(this); 1861 1862 array.load_item(); 1863 index.load_nonconstant(); 1864 1865 if (use_length && needs_range_check) { 1866 length.set_instruction(x->length()); 1867 length.load_item(); 1868 } 1869 1870 if (needs_store_check || x->check_boolean() 1871 || is_loaded_flat_array || needs_flat_array_store_check(x) || needs_null_free_array_store_check(x)) { 1872 value.load_item(); 1873 } else { 1874 value.load_for_store(x->elt_type()); 1875 } 1876 1877 set_no_result(x); 1878 1879 // the CodeEmitInfo must be duplicated for each different 1880 // LIR-instruction because spilling can occur anywhere between two 1881 // instructions and so the debug information must be different 1882 CodeEmitInfo* range_check_info = state_for(x); 1883 CodeEmitInfo* null_check_info = nullptr; 1884 if (x->needs_null_check()) { 1885 null_check_info = new CodeEmitInfo(range_check_info); 1886 } 1887 1888 if (needs_range_check) { 1889 if (use_length) { 1890 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1891 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1892 } else { 1893 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1894 // range_check also does the null check 1895 null_check_info = nullptr; 1896 } 1897 } 1898 1899 if (x->should_profile()) { 1900 if (is_loaded_flat_array) { 1901 // No need to profile a store to a flat array of known type. This can happen if 1902 // the type only became known after optimizations (for example, after the PhiSimplifier). 1903 x->set_should_profile(false); 1904 } else { 1905 int bci = x->profiled_bci(); 1906 ciMethodData* md = x->profiled_method()->method_data(); 1907 assert(md != nullptr, "Sanity"); 1908 ciProfileData* data = md->bci_to_data(bci); 1909 assert(data != nullptr && data->is_ArrayStoreData(), "incorrect profiling entry"); 1910 ciArrayStoreData* store_data = (ciArrayStoreData*)data; 1911 profile_array_type(x, md, store_data); 1912 assert(store_data->is_ArrayStoreData(), "incorrect profiling entry"); 1913 if (x->array()->maybe_null_free_array()) { 1914 profile_null_free_array(array, md, store_data); 1915 } 1916 } 1917 } 1918 1919 if (GenerateArrayStoreCheck && needs_store_check) { 1920 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1921 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1922 } 1923 1924 if (is_loaded_flat_array) { 1925 // TODO 8350865 This is currently dead code 1926 if (!x->value()->is_null_free()) { 1927 __ null_check(value.result(), new CodeEmitInfo(range_check_info)); 1928 } 1929 // If array element is an empty inline type, no need to copy anything 1930 if (!x->array()->declared_type()->as_flat_array_klass()->element_klass()->as_inline_klass()->is_empty()) { 1931 access_flat_array(false, array, index, value); 1932 } 1933 } else { 1934 StoreFlattenedArrayStub* slow_path = nullptr; 1935 1936 if (needs_flat_array_store_check(x)) { 1937 // Check if we indeed have a flat array 1938 index.load_item(); 1939 slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x, x->state_before())); 1940 check_flat_array(array.result(), value.result(), slow_path); 1941 set_in_conditional_code(true); 1942 } else if (needs_null_free_array_store_check(x)) { 1943 CodeEmitInfo* info = new CodeEmitInfo(range_check_info); 1944 check_null_free_array(array, value, info); 1945 } 1946 1947 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1948 if (x->check_boolean()) { 1949 decorators |= C1_MASK_BOOLEAN; 1950 } 1951 1952 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), nullptr, null_check_info); 1953 if (slow_path != nullptr) { 1954 __ branch_destination(slow_path->continuation()); 1955 set_in_conditional_code(false); 1956 } 1957 } 1958 } 1959 1960 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1961 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1962 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1963 decorators |= ACCESS_READ; 1964 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1965 if (access.is_raw()) { 1966 _barrier_set->BarrierSetC1::load_at(access, result); 1967 } else { 1968 _barrier_set->load_at(access, result); 1969 } 1970 } 1971 1972 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1973 LIR_Opr addr, LIR_Opr result) { 1974 decorators |= ACCESS_READ; 1975 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1976 access.set_resolved_addr(addr); 1977 if (access.is_raw()) { 1978 _barrier_set->BarrierSetC1::load(access, result); 1979 } else { 1980 _barrier_set->load(access, result); 1981 } 1982 } 1983 1984 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1985 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1986 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info, 1987 ciInlineKlass* vk) { 1988 decorators |= ACCESS_WRITE; 1989 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info, vk); 1990 if (access.is_raw()) { 1991 _barrier_set->BarrierSetC1::store_at(access, value); 1992 } else { 1993 _barrier_set->store_at(access, value); 1994 } 1995 } 1996 1997 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1998 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1999 decorators |= ACCESS_READ; 2000 decorators |= ACCESS_WRITE; 2001 // Atomic operations are SEQ_CST by default 2002 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2003 LIRAccess access(this, decorators, base, offset, type); 2004 if (access.is_raw()) { 2005 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 2006 } else { 2007 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 2008 } 2009 } 2010 2011 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 2012 LIRItem& base, LIRItem& offset, LIRItem& value) { 2013 decorators |= ACCESS_READ; 2014 decorators |= ACCESS_WRITE; 2015 // Atomic operations are SEQ_CST by default 2016 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2017 LIRAccess access(this, decorators, base, offset, type); 2018 if (access.is_raw()) { 2019 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 2020 } else { 2021 return _barrier_set->atomic_xchg_at(access, value); 2022 } 2023 } 2024 2025 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 2026 LIRItem& base, LIRItem& offset, LIRItem& value) { 2027 decorators |= ACCESS_READ; 2028 decorators |= ACCESS_WRITE; 2029 // Atomic operations are SEQ_CST by default 2030 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 2031 LIRAccess access(this, decorators, base, offset, type); 2032 if (access.is_raw()) { 2033 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 2034 } else { 2035 return _barrier_set->atomic_add_at(access, value); 2036 } 2037 } 2038 2039 void LIRGenerator::do_LoadField(LoadField* x) { 2040 ciField* field = x->field(); 2041 bool needs_patching = x->needs_patching(); 2042 bool is_volatile = field->is_volatile(); 2043 BasicType field_type = x->field_type(); 2044 2045 CodeEmitInfo* info = nullptr; 2046 if (needs_patching) { 2047 assert(x->explicit_null_check() == nullptr, "can't fold null check into patching field access"); 2048 info = state_for(x, x->state_before()); 2049 } else if (x->needs_null_check()) { 2050 NullCheck* nc = x->explicit_null_check(); 2051 if (nc == nullptr) { 2052 info = state_for(x); 2053 } else { 2054 info = state_for(nc); 2055 } 2056 } 2057 2058 LIRItem object(x->obj(), this); 2059 2060 object.load_item(); 2061 2062 #ifndef PRODUCT 2063 if (PrintNotLoaded && needs_patching) { 2064 tty->print_cr(" ###class not loaded at load_%s bci %d", 2065 x->is_static() ? "static" : "field", x->printable_bci()); 2066 } 2067 #endif 2068 2069 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 2070 if (x->needs_null_check() && 2071 (needs_patching || 2072 MacroAssembler::needs_explicit_null_check(x->offset()) || 2073 stress_deopt)) { 2074 LIR_Opr obj = object.result(); 2075 if (stress_deopt) { 2076 obj = new_register(T_OBJECT); 2077 __ move(LIR_OprFact::oopConst(nullptr), obj); 2078 } 2079 // Emit an explicit null check because the offset is too large. 2080 // If the class is not loaded and the object is null, we need to deoptimize to throw a 2081 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 2082 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 2083 } 2084 2085 DecoratorSet decorators = IN_HEAP; 2086 if (is_volatile) { 2087 decorators |= MO_SEQ_CST; 2088 } 2089 if (needs_patching) { 2090 decorators |= C1_NEEDS_PATCHING; 2091 } 2092 2093 if (field->is_flat()) { 2094 ciInlineKlass* vk = field->type()->as_inline_klass(); 2095 #ifdef ASSERT 2096 bool is_naturally_atomic = vk->nof_declared_nonstatic_fields() <= 1; 2097 bool needs_atomic_access = !field->is_null_free() || (field->is_volatile() && !is_naturally_atomic); 2098 assert(needs_atomic_access, "No atomic access required"); 2099 assert(x->state_before() != nullptr, "Needs state before"); 2100 #endif 2101 2102 // Allocate buffer (we can't easily do this conditionally on the null check below 2103 // because branches added in the LIR are opaque to the register allocator). 2104 NewInstance* buffer = new NewInstance(vk, x->state_before(), false, true); 2105 do_NewInstance(buffer); 2106 LIRItem dest(buffer, this); 2107 2108 // Copy the payload to the buffer 2109 BasicType bt = vk->atomic_size_to_basic_type(field->is_null_free()); 2110 LIR_Opr payload = new_register((bt == T_LONG) ? bt : T_INT); 2111 access_load_at(decorators, bt, object, LIR_OprFact::intConst(field->offset_in_bytes()), payload, 2112 // Make sure to emit an implicit null check 2113 info ? new CodeEmitInfo(info) : nullptr, info); 2114 access_store_at(decorators, bt, dest, LIR_OprFact::intConst(vk->payload_offset()), payload); 2115 2116 if (field->is_null_free()) { 2117 set_result(x, buffer->operand()); 2118 } else { 2119 // Check the null marker and set result to null if it's not set 2120 __ logical_and(payload, null_marker_mask(bt, field), payload); 2121 __ cmp(lir_cond_equal, payload, (bt == T_LONG) ? LIR_OprFact::longConst(0) : LIR_OprFact::intConst(0)); 2122 __ cmove(lir_cond_equal, LIR_OprFact::oopConst(nullptr), buffer->operand(), rlock_result(x), T_OBJECT); 2123 } 2124 2125 // Ensure the copy is visible before any subsequent store that publishes the buffer. 2126 __ membar_storestore(); 2127 return; 2128 } 2129 2130 LIR_Opr result = rlock_result(x, field_type); 2131 access_load_at(decorators, field_type, 2132 object, LIR_OprFact::intConst(x->offset()), result, 2133 info ? new CodeEmitInfo(info) : nullptr, info); 2134 } 2135 2136 // int/long jdk.internal.util.Preconditions.checkIndex 2137 void LIRGenerator::do_PreconditionsCheckIndex(Intrinsic* x, BasicType type) { 2138 assert(x->number_of_arguments() == 3, "wrong type"); 2139 LIRItem index(x->argument_at(0), this); 2140 LIRItem length(x->argument_at(1), this); 2141 LIRItem oobef(x->argument_at(2), this); 2142 2143 index.load_item(); 2144 length.load_item(); 2145 oobef.load_item(); 2146 2147 LIR_Opr result = rlock_result(x); 2148 // x->state() is created from copy_state_for_exception, it does not contains arguments 2149 // we should prepare them before entering into interpreter mode due to deoptimization. 2150 ValueStack* state = x->state(); 2151 for (int i = 0; i < x->number_of_arguments(); i++) { 2152 Value arg = x->argument_at(i); 2153 state->push(arg->type(), arg); 2154 } 2155 CodeEmitInfo* info = state_for(x, state); 2156 2157 LIR_Opr len = length.result(); 2158 LIR_Opr zero; 2159 if (type == T_INT) { 2160 zero = LIR_OprFact::intConst(0); 2161 if (length.result()->is_constant()){ 2162 len = LIR_OprFact::intConst(length.result()->as_jint()); 2163 } 2164 } else { 2165 assert(type == T_LONG, "sanity check"); 2166 zero = LIR_OprFact::longConst(0); 2167 if (length.result()->is_constant()){ 2168 len = LIR_OprFact::longConst(length.result()->as_jlong()); 2169 } 2170 } 2171 // C1 can not handle the case that comparing index with constant value while condition 2172 // is neither lir_cond_equal nor lir_cond_notEqual, see LIR_Assembler::comp_op. 2173 LIR_Opr zero_reg = new_register(type); 2174 __ move(zero, zero_reg); 2175 #if defined(X86) && !defined(_LP64) 2176 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 2177 LIR_Opr index_copy = new_register(index.type()); 2178 // index >= 0 2179 __ move(index.result(), index_copy); 2180 __ cmp(lir_cond_less, index_copy, zero_reg); 2181 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2182 Deoptimization::Action_make_not_entrant)); 2183 // index < length 2184 __ move(index.result(), index_copy); 2185 __ cmp(lir_cond_greaterEqual, index_copy, len); 2186 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2187 Deoptimization::Action_make_not_entrant)); 2188 #else 2189 // index >= 0 2190 __ cmp(lir_cond_less, index.result(), zero_reg); 2191 __ branch(lir_cond_less, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2192 Deoptimization::Action_make_not_entrant)); 2193 // index < length 2194 __ cmp(lir_cond_greaterEqual, index.result(), len); 2195 __ branch(lir_cond_greaterEqual, new DeoptimizeStub(info, Deoptimization::Reason_range_check, 2196 Deoptimization::Action_make_not_entrant)); 2197 #endif 2198 __ move(index.result(), result); 2199 } 2200 2201 //------------------------array access-------------------------------------- 2202 2203 2204 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 2205 LIRItem array(x->array(), this); 2206 array.load_item(); 2207 LIR_Opr reg = rlock_result(x); 2208 2209 CodeEmitInfo* info = nullptr; 2210 if (x->needs_null_check()) { 2211 NullCheck* nc = x->explicit_null_check(); 2212 if (nc == nullptr) { 2213 info = state_for(x); 2214 } else { 2215 info = state_for(nc); 2216 } 2217 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 2218 LIR_Opr obj = new_register(T_OBJECT); 2219 __ move(LIR_OprFact::oopConst(nullptr), obj); 2220 __ null_check(obj, new CodeEmitInfo(info)); 2221 } 2222 } 2223 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 2224 } 2225 2226 2227 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 2228 bool use_length = x->length() != nullptr; 2229 LIRItem array(x->array(), this); 2230 LIRItem index(x->index(), this); 2231 LIRItem length(this); 2232 bool needs_range_check = x->compute_needs_range_check(); 2233 2234 if (use_length && needs_range_check) { 2235 length.set_instruction(x->length()); 2236 length.load_item(); 2237 } 2238 2239 array.load_item(); 2240 if (index.is_constant() && can_inline_as_constant(x->index())) { 2241 // let it be a constant 2242 index.dont_load_item(); 2243 } else { 2244 index.load_item(); 2245 } 2246 2247 CodeEmitInfo* range_check_info = state_for(x); 2248 CodeEmitInfo* null_check_info = nullptr; 2249 if (x->needs_null_check()) { 2250 NullCheck* nc = x->explicit_null_check(); 2251 if (nc != nullptr) { 2252 null_check_info = state_for(nc); 2253 } else { 2254 null_check_info = range_check_info; 2255 } 2256 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2257 LIR_Opr obj = new_register(T_OBJECT); 2258 __ move(LIR_OprFact::oopConst(nullptr), obj); 2259 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2260 } 2261 } 2262 2263 if (needs_range_check) { 2264 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2265 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2266 } else if (use_length) { 2267 // TODO: use a (modified) version of array_range_check that does not require a 2268 // constant length to be loaded to a register 2269 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2270 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2271 } else { 2272 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2273 // The range check performs the null check, so clear it out for the load 2274 null_check_info = nullptr; 2275 } 2276 } 2277 2278 ciMethodData* md = nullptr; 2279 ciArrayLoadData* load_data = nullptr; 2280 if (x->should_profile()) { 2281 if (x->array()->is_loaded_flat_array()) { 2282 // No need to profile a load from a flat array of known type. This can happen if 2283 // the type only became known after optimizations (for example, after the PhiSimplifier). 2284 x->set_should_profile(false); 2285 } else { 2286 int bci = x->profiled_bci(); 2287 md = x->profiled_method()->method_data(); 2288 assert(md != nullptr, "Sanity"); 2289 ciProfileData* data = md->bci_to_data(bci); 2290 assert(data != nullptr && data->is_ArrayLoadData(), "incorrect profiling entry"); 2291 load_data = (ciArrayLoadData*)data; 2292 profile_array_type(x, md, load_data); 2293 } 2294 } 2295 2296 Value element; 2297 if (x->vt() != nullptr) { 2298 assert(x->array()->is_loaded_flat_array(), "must be"); 2299 // Find the destination address (of the NewInlineTypeInstance). 2300 LIRItem obj_item(x->vt(), this); 2301 2302 access_flat_array(true, array, index, obj_item, 2303 x->delayed() == nullptr ? 0 : x->delayed()->field(), 2304 x->delayed() == nullptr ? 0 : x->delayed()->offset()); 2305 set_no_result(x); 2306 } else if (x->delayed() != nullptr) { 2307 assert(x->array()->is_loaded_flat_array(), "must be"); 2308 LIR_Opr result = rlock_result(x, x->delayed()->field()->type()->basic_type()); 2309 access_sub_element(array, index, result, x->delayed()->field(), x->delayed()->offset()); 2310 } else { 2311 LIR_Opr result = rlock_result(x, x->elt_type()); 2312 LoadFlattenedArrayStub* slow_path = nullptr; 2313 2314 if (x->should_profile() && x->array()->maybe_null_free_array()) { 2315 profile_null_free_array(array, md, load_data); 2316 } 2317 2318 if (x->elt_type() == T_OBJECT && x->array()->maybe_flat_array()) { 2319 assert(x->delayed() == nullptr, "Delayed LoadIndexed only apply to loaded_flat_arrays"); 2320 index.load_item(); 2321 // if we are loading from a flat array, load it using a runtime call 2322 slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x, x->state_before())); 2323 check_flat_array(array.result(), LIR_OprFact::illegalOpr, slow_path); 2324 set_in_conditional_code(true); 2325 } 2326 2327 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2328 access_load_at(decorators, x->elt_type(), 2329 array, index.result(), result, 2330 nullptr, null_check_info); 2331 2332 if (slow_path != nullptr) { 2333 __ branch_destination(slow_path->continuation()); 2334 set_in_conditional_code(false); 2335 } 2336 2337 element = x; 2338 } 2339 2340 if (x->should_profile()) { 2341 profile_element_type(element, md, load_data); 2342 } 2343 } 2344 2345 2346 void LIRGenerator::do_NullCheck(NullCheck* x) { 2347 if (x->can_trap()) { 2348 LIRItem value(x->obj(), this); 2349 value.load_item(); 2350 CodeEmitInfo* info = state_for(x); 2351 __ null_check(value.result(), info); 2352 } 2353 } 2354 2355 2356 void LIRGenerator::do_TypeCast(TypeCast* x) { 2357 LIRItem value(x->obj(), this); 2358 value.load_item(); 2359 // the result is the same as from the node we are casting 2360 set_result(x, value.result()); 2361 } 2362 2363 2364 void LIRGenerator::do_Throw(Throw* x) { 2365 LIRItem exception(x->exception(), this); 2366 exception.load_item(); 2367 set_no_result(x); 2368 LIR_Opr exception_opr = exception.result(); 2369 CodeEmitInfo* info = state_for(x, x->state()); 2370 2371 #ifndef PRODUCT 2372 if (PrintC1Statistics) { 2373 increment_counter(Runtime1::throw_count_address(), T_INT); 2374 } 2375 #endif 2376 2377 // check if the instruction has an xhandler in any of the nested scopes 2378 bool unwind = false; 2379 if (info->exception_handlers()->length() == 0) { 2380 // this throw is not inside an xhandler 2381 unwind = true; 2382 } else { 2383 // get some idea of the throw type 2384 bool type_is_exact = true; 2385 ciType* throw_type = x->exception()->exact_type(); 2386 if (throw_type == nullptr) { 2387 type_is_exact = false; 2388 throw_type = x->exception()->declared_type(); 2389 } 2390 if (throw_type != nullptr && throw_type->is_instance_klass()) { 2391 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2392 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2393 } 2394 } 2395 2396 // do null check before moving exception oop into fixed register 2397 // to avoid a fixed interval with an oop during the null check. 2398 // Use a copy of the CodeEmitInfo because debug information is 2399 // different for null_check and throw. 2400 if (x->exception()->as_NewInstance() == nullptr && x->exception()->as_ExceptionObject() == nullptr) { 2401 // if the exception object wasn't created using new then it might be null. 2402 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2403 } 2404 2405 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2406 // we need to go through the exception lookup path to get JVMTI 2407 // notification done 2408 unwind = false; 2409 } 2410 2411 // move exception oop into fixed register 2412 __ move(exception_opr, exceptionOopOpr()); 2413 2414 if (unwind) { 2415 __ unwind_exception(exceptionOopOpr()); 2416 } else { 2417 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2418 } 2419 } 2420 2421 2422 void LIRGenerator::do_UnsafeGet(UnsafeGet* x) { 2423 BasicType type = x->basic_type(); 2424 LIRItem src(x->object(), this); 2425 LIRItem off(x->offset(), this); 2426 2427 off.load_item(); 2428 src.load_item(); 2429 2430 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2431 2432 if (x->is_volatile()) { 2433 decorators |= MO_SEQ_CST; 2434 } 2435 if (type == T_BOOLEAN) { 2436 decorators |= C1_MASK_BOOLEAN; 2437 } 2438 if (is_reference_type(type)) { 2439 decorators |= ON_UNKNOWN_OOP_REF; 2440 } 2441 2442 LIR_Opr result = rlock_result(x, type); 2443 if (!x->is_raw()) { 2444 access_load_at(decorators, type, src, off.result(), result); 2445 } else { 2446 // Currently it is only used in GraphBuilder::setup_osr_entry_block. 2447 // It reads the value from [src + offset] directly. 2448 #ifdef _LP64 2449 LIR_Opr offset = new_register(T_LONG); 2450 __ convert(Bytecodes::_i2l, off.result(), offset); 2451 #else 2452 LIR_Opr offset = off.result(); 2453 #endif 2454 LIR_Address* addr = new LIR_Address(src.result(), offset, type); 2455 if (is_reference_type(type)) { 2456 __ move_wide(addr, result); 2457 } else { 2458 __ move(addr, result); 2459 } 2460 } 2461 } 2462 2463 2464 void LIRGenerator::do_UnsafePut(UnsafePut* x) { 2465 BasicType type = x->basic_type(); 2466 LIRItem src(x->object(), this); 2467 LIRItem off(x->offset(), this); 2468 LIRItem data(x->value(), this); 2469 2470 src.load_item(); 2471 if (type == T_BOOLEAN || type == T_BYTE) { 2472 data.load_byte_item(); 2473 } else { 2474 data.load_item(); 2475 } 2476 off.load_item(); 2477 2478 set_no_result(x); 2479 2480 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2481 if (is_reference_type(type)) { 2482 decorators |= ON_UNKNOWN_OOP_REF; 2483 } 2484 if (x->is_volatile()) { 2485 decorators |= MO_SEQ_CST; 2486 } 2487 access_store_at(decorators, type, src, off.result(), data.result()); 2488 } 2489 2490 void LIRGenerator::do_UnsafeGetAndSet(UnsafeGetAndSet* x) { 2491 BasicType type = x->basic_type(); 2492 LIRItem src(x->object(), this); 2493 LIRItem off(x->offset(), this); 2494 LIRItem value(x->value(), this); 2495 2496 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2497 2498 if (is_reference_type(type)) { 2499 decorators |= ON_UNKNOWN_OOP_REF; 2500 } 2501 2502 LIR_Opr result; 2503 if (x->is_add()) { 2504 result = access_atomic_add_at(decorators, type, src, off, value); 2505 } else { 2506 result = access_atomic_xchg_at(decorators, type, src, off, value); 2507 } 2508 set_result(x, result); 2509 } 2510 2511 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2512 int lng = x->length(); 2513 2514 for (int i = 0; i < lng; i++) { 2515 C1SwitchRange* one_range = x->at(i); 2516 int low_key = one_range->low_key(); 2517 int high_key = one_range->high_key(); 2518 BlockBegin* dest = one_range->sux(); 2519 if (low_key == high_key) { 2520 __ cmp(lir_cond_equal, value, low_key); 2521 __ branch(lir_cond_equal, dest); 2522 } else if (high_key - low_key == 1) { 2523 __ cmp(lir_cond_equal, value, low_key); 2524 __ branch(lir_cond_equal, dest); 2525 __ cmp(lir_cond_equal, value, high_key); 2526 __ branch(lir_cond_equal, dest); 2527 } else { 2528 LabelObj* L = new LabelObj(); 2529 __ cmp(lir_cond_less, value, low_key); 2530 __ branch(lir_cond_less, L->label()); 2531 __ cmp(lir_cond_lessEqual, value, high_key); 2532 __ branch(lir_cond_lessEqual, dest); 2533 __ branch_destination(L->label()); 2534 } 2535 } 2536 __ jump(default_sux); 2537 } 2538 2539 2540 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2541 SwitchRangeList* res = new SwitchRangeList(); 2542 int len = x->length(); 2543 if (len > 0) { 2544 BlockBegin* sux = x->sux_at(0); 2545 int low = x->lo_key(); 2546 BlockBegin* default_sux = x->default_sux(); 2547 C1SwitchRange* range = new C1SwitchRange(low, sux); 2548 for (int i = 0; i < len; i++) { 2549 int key = low + i; 2550 BlockBegin* new_sux = x->sux_at(i); 2551 if (sux == new_sux) { 2552 // still in same range 2553 range->set_high_key(key); 2554 } else { 2555 // skip tests which explicitly dispatch to the default 2556 if (sux != default_sux) { 2557 res->append(range); 2558 } 2559 range = new C1SwitchRange(key, new_sux); 2560 } 2561 sux = new_sux; 2562 } 2563 if (res->length() == 0 || res->last() != range) res->append(range); 2564 } 2565 return res; 2566 } 2567 2568 2569 // we expect the keys to be sorted by increasing value 2570 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2571 SwitchRangeList* res = new SwitchRangeList(); 2572 int len = x->length(); 2573 if (len > 0) { 2574 BlockBegin* default_sux = x->default_sux(); 2575 int key = x->key_at(0); 2576 BlockBegin* sux = x->sux_at(0); 2577 C1SwitchRange* range = new C1SwitchRange(key, sux); 2578 for (int i = 1; i < len; i++) { 2579 int new_key = x->key_at(i); 2580 BlockBegin* new_sux = x->sux_at(i); 2581 if (key+1 == new_key && sux == new_sux) { 2582 // still in same range 2583 range->set_high_key(new_key); 2584 } else { 2585 // skip tests which explicitly dispatch to the default 2586 if (range->sux() != default_sux) { 2587 res->append(range); 2588 } 2589 range = new C1SwitchRange(new_key, new_sux); 2590 } 2591 key = new_key; 2592 sux = new_sux; 2593 } 2594 if (res->length() == 0 || res->last() != range) res->append(range); 2595 } 2596 return res; 2597 } 2598 2599 2600 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2601 LIRItem tag(x->tag(), this); 2602 tag.load_item(); 2603 set_no_result(x); 2604 2605 if (x->is_safepoint()) { 2606 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2607 } 2608 2609 // move values into phi locations 2610 move_to_phi(x->state()); 2611 2612 int lo_key = x->lo_key(); 2613 int len = x->length(); 2614 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2615 LIR_Opr value = tag.result(); 2616 2617 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2618 ciMethod* method = x->state()->scope()->method(); 2619 ciMethodData* md = method->method_data_or_null(); 2620 assert(md != nullptr, "Sanity"); 2621 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2622 assert(data != nullptr, "must have profiling data"); 2623 assert(data->is_MultiBranchData(), "bad profile data?"); 2624 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2625 LIR_Opr md_reg = new_register(T_METADATA); 2626 __ metadata2reg(md->constant_encoding(), md_reg); 2627 LIR_Opr data_offset_reg = new_pointer_register(); 2628 LIR_Opr tmp_reg = new_pointer_register(); 2629 2630 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2631 for (int i = 0; i < len; i++) { 2632 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2633 __ cmp(lir_cond_equal, value, i + lo_key); 2634 __ move(data_offset_reg, tmp_reg); 2635 __ cmove(lir_cond_equal, 2636 LIR_OprFact::intptrConst(count_offset), 2637 tmp_reg, 2638 data_offset_reg, T_INT); 2639 } 2640 2641 LIR_Opr data_reg = new_pointer_register(); 2642 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2643 __ move(data_addr, data_reg); 2644 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2645 __ move(data_reg, data_addr); 2646 } 2647 2648 if (UseTableRanges) { 2649 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2650 } else { 2651 for (int i = 0; i < len; i++) { 2652 __ cmp(lir_cond_equal, value, i + lo_key); 2653 __ branch(lir_cond_equal, x->sux_at(i)); 2654 } 2655 __ jump(x->default_sux()); 2656 } 2657 } 2658 2659 2660 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2661 LIRItem tag(x->tag(), this); 2662 tag.load_item(); 2663 set_no_result(x); 2664 2665 if (x->is_safepoint()) { 2666 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2667 } 2668 2669 // move values into phi locations 2670 move_to_phi(x->state()); 2671 2672 LIR_Opr value = tag.result(); 2673 int len = x->length(); 2674 2675 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2676 ciMethod* method = x->state()->scope()->method(); 2677 ciMethodData* md = method->method_data_or_null(); 2678 assert(md != nullptr, "Sanity"); 2679 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2680 assert(data != nullptr, "must have profiling data"); 2681 assert(data->is_MultiBranchData(), "bad profile data?"); 2682 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2683 LIR_Opr md_reg = new_register(T_METADATA); 2684 __ metadata2reg(md->constant_encoding(), md_reg); 2685 LIR_Opr data_offset_reg = new_pointer_register(); 2686 LIR_Opr tmp_reg = new_pointer_register(); 2687 2688 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2689 for (int i = 0; i < len; i++) { 2690 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2691 __ cmp(lir_cond_equal, value, x->key_at(i)); 2692 __ move(data_offset_reg, tmp_reg); 2693 __ cmove(lir_cond_equal, 2694 LIR_OprFact::intptrConst(count_offset), 2695 tmp_reg, 2696 data_offset_reg, T_INT); 2697 } 2698 2699 LIR_Opr data_reg = new_pointer_register(); 2700 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2701 __ move(data_addr, data_reg); 2702 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2703 __ move(data_reg, data_addr); 2704 } 2705 2706 if (UseTableRanges) { 2707 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2708 } else { 2709 int len = x->length(); 2710 for (int i = 0; i < len; i++) { 2711 __ cmp(lir_cond_equal, value, x->key_at(i)); 2712 __ branch(lir_cond_equal, x->sux_at(i)); 2713 } 2714 __ jump(x->default_sux()); 2715 } 2716 } 2717 2718 2719 void LIRGenerator::do_Goto(Goto* x) { 2720 set_no_result(x); 2721 2722 if (block()->next()->as_OsrEntry()) { 2723 // need to free up storage used for OSR entry point 2724 LIR_Opr osrBuffer = block()->next()->operand(); 2725 BasicTypeList signature; 2726 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2727 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2728 __ move(osrBuffer, cc->args()->at(0)); 2729 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2730 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2731 } 2732 2733 if (x->is_safepoint()) { 2734 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2735 2736 // increment backedge counter if needed 2737 CodeEmitInfo* info = state_for(x, state); 2738 increment_backedge_counter(info, x->profiled_bci()); 2739 CodeEmitInfo* safepoint_info = state_for(x, state); 2740 __ safepoint(safepoint_poll_register(), safepoint_info); 2741 } 2742 2743 // Gotos can be folded Ifs, handle this case. 2744 if (x->should_profile()) { 2745 ciMethod* method = x->profiled_method(); 2746 assert(method != nullptr, "method should be set if branch is profiled"); 2747 ciMethodData* md = method->method_data_or_null(); 2748 assert(md != nullptr, "Sanity"); 2749 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2750 assert(data != nullptr, "must have profiling data"); 2751 int offset; 2752 if (x->direction() == Goto::taken) { 2753 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2754 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2755 } else if (x->direction() == Goto::not_taken) { 2756 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2757 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2758 } else { 2759 assert(data->is_JumpData(), "need JumpData for branches"); 2760 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2761 } 2762 LIR_Opr md_reg = new_register(T_METADATA); 2763 __ metadata2reg(md->constant_encoding(), md_reg); 2764 2765 increment_counter(new LIR_Address(md_reg, offset, 2766 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2767 } 2768 2769 // emit phi-instruction move after safepoint since this simplifies 2770 // describing the state as the safepoint. 2771 move_to_phi(x->state()); 2772 2773 __ jump(x->default_sux()); 2774 } 2775 2776 /** 2777 * Emit profiling code if needed for arguments, parameters, return value types 2778 * 2779 * @param md MDO the code will update at runtime 2780 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2781 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2782 * @param profiled_k current profile 2783 * @param obj IR node for the object to be profiled 2784 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2785 * Set once we find an update to make and use for next ones. 2786 * @param not_null true if we know obj cannot be null 2787 * @param signature_at_call_k signature at call for obj 2788 * @param callee_signature_k signature of callee for obj 2789 * at call and callee signatures differ at method handle call 2790 * @return the only klass we know will ever be seen at this profile point 2791 */ 2792 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2793 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2794 ciKlass* callee_signature_k) { 2795 ciKlass* result = nullptr; 2796 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2797 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2798 // known not to be null or null bit already set and already set to 2799 // unknown: nothing we can do to improve profiling 2800 if (!do_null && !do_update) { 2801 return result; 2802 } 2803 2804 ciKlass* exact_klass = nullptr; 2805 Compilation* comp = Compilation::current(); 2806 if (do_update) { 2807 // try to find exact type, using CHA if possible, so that loading 2808 // the klass from the object can be avoided 2809 ciType* type = obj->exact_type(); 2810 if (type == nullptr) { 2811 type = obj->declared_type(); 2812 type = comp->cha_exact_type(type); 2813 } 2814 assert(type == nullptr || type->is_klass(), "type should be class"); 2815 exact_klass = (type != nullptr && type->is_loaded()) ? (ciKlass*)type : nullptr; 2816 2817 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2818 } 2819 2820 if (!do_null && !do_update) { 2821 return result; 2822 } 2823 2824 ciKlass* exact_signature_k = nullptr; 2825 if (do_update && signature_at_call_k != nullptr) { 2826 // Is the type from the signature exact (the only one possible)? 2827 exact_signature_k = signature_at_call_k->exact_klass(); 2828 if (exact_signature_k == nullptr) { 2829 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2830 } else { 2831 result = exact_signature_k; 2832 // Known statically. No need to emit any code: prevent 2833 // LIR_Assembler::emit_profile_type() from emitting useless code 2834 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2835 } 2836 // exact_klass and exact_signature_k can be both non null but 2837 // different if exact_klass is loaded after the ciObject for 2838 // exact_signature_k is created. 2839 if (exact_klass == nullptr && exact_signature_k != nullptr && exact_klass != exact_signature_k) { 2840 // sometimes the type of the signature is better than the best type 2841 // the compiler has 2842 exact_klass = exact_signature_k; 2843 } 2844 if (callee_signature_k != nullptr && 2845 callee_signature_k != signature_at_call_k) { 2846 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2847 if (improved_klass == nullptr) { 2848 improved_klass = comp->cha_exact_type(callee_signature_k); 2849 } 2850 if (exact_klass == nullptr && improved_klass != nullptr && exact_klass != improved_klass) { 2851 exact_klass = exact_signature_k; 2852 } 2853 } 2854 do_update = exact_klass == nullptr || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2855 } 2856 2857 if (!do_null && !do_update) { 2858 return result; 2859 } 2860 2861 if (mdp == LIR_OprFact::illegalOpr) { 2862 mdp = new_register(T_METADATA); 2863 __ metadata2reg(md->constant_encoding(), mdp); 2864 if (md_base_offset != 0) { 2865 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2866 mdp = new_pointer_register(); 2867 __ leal(LIR_OprFact::address(base_type_address), mdp); 2868 } 2869 } 2870 LIRItem value(obj, this); 2871 value.load_item(); 2872 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2873 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != nullptr); 2874 return result; 2875 } 2876 2877 // profile parameters on entry to the root of the compilation 2878 void LIRGenerator::profile_parameters(Base* x) { 2879 if (compilation()->profile_parameters()) { 2880 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2881 ciMethodData* md = scope()->method()->method_data_or_null(); 2882 assert(md != nullptr, "Sanity"); 2883 2884 if (md->parameters_type_data() != nullptr) { 2885 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2886 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2887 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2888 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2889 LIR_Opr src = args->at(i); 2890 assert(!src->is_illegal(), "check"); 2891 BasicType t = src->type(); 2892 if (is_reference_type(t)) { 2893 intptr_t profiled_k = parameters->type(j); 2894 Local* local = x->state()->local_at(java_index)->as_Local(); 2895 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2896 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2897 profiled_k, local, mdp, false, local->declared_type()->as_klass(), nullptr); 2898 // If the profile is known statically set it once for all and do not emit any code 2899 if (exact != nullptr) { 2900 md->set_parameter_type(j, exact); 2901 } 2902 j++; 2903 } 2904 java_index += type2size[t]; 2905 } 2906 } 2907 } 2908 } 2909 2910 void LIRGenerator::profile_flags(ciMethodData* md, ciProfileData* data, int flag, LIR_Condition condition) { 2911 assert(md != nullptr && data != nullptr, "should have been initialized"); 2912 LIR_Opr mdp = new_register(T_METADATA); 2913 __ metadata2reg(md->constant_encoding(), mdp); 2914 LIR_Address* addr = new LIR_Address(mdp, md->byte_offset_of_slot(data, DataLayout::flags_offset()), T_BYTE); 2915 LIR_Opr flags = new_register(T_INT); 2916 __ move(addr, flags); 2917 if (condition != lir_cond_always) { 2918 LIR_Opr update = new_register(T_INT); 2919 __ cmove(condition, LIR_OprFact::intConst(0), LIR_OprFact::intConst(flag), update, T_INT); 2920 } else { 2921 __ logical_or(flags, LIR_OprFact::intConst(flag), flags); 2922 } 2923 __ store(flags, addr); 2924 } 2925 2926 template <class ArrayData> void LIRGenerator::profile_null_free_array(LIRItem array, ciMethodData* md, ArrayData* load_store) { 2927 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2928 LabelObj* L_end = new LabelObj(); 2929 LIR_Opr tmp = new_register(T_METADATA); 2930 __ check_null_free_array(array.result(), tmp); 2931 2932 profile_flags(md, load_store, ArrayStoreData::null_free_array_byte_constant(), lir_cond_equal); 2933 } 2934 2935 template <class ArrayData> void LIRGenerator::profile_array_type(AccessIndexed* x, ciMethodData*& md, ArrayData*& load_store) { 2936 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2937 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2938 profile_type(md, md->byte_offset_of_slot(load_store, ArrayData::array_offset()), 0, 2939 load_store->array()->type(), x->array(), mdp, true, nullptr, nullptr); 2940 } 2941 2942 void LIRGenerator::profile_element_type(Value element, ciMethodData* md, ciArrayLoadData* load_data) { 2943 assert(compilation()->profile_array_accesses(), "array access profiling is disabled"); 2944 assert(md != nullptr && load_data != nullptr, "should have been initialized"); 2945 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2946 profile_type(md, md->byte_offset_of_slot(load_data, ArrayLoadData::element_offset()), 0, 2947 load_data->element()->type(), element, mdp, false, nullptr, nullptr); 2948 } 2949 2950 void LIRGenerator::do_Base(Base* x) { 2951 __ std_entry(LIR_OprFact::illegalOpr); 2952 // Emit moves from physical registers / stack slots to virtual registers 2953 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2954 IRScope* irScope = compilation()->hir()->top_scope(); 2955 int java_index = 0; 2956 for (int i = 0; i < args->length(); i++) { 2957 LIR_Opr src = args->at(i); 2958 assert(!src->is_illegal(), "check"); 2959 BasicType t = src->type(); 2960 2961 // Types which are smaller than int are passed as int, so 2962 // correct the type which passed. 2963 switch (t) { 2964 case T_BYTE: 2965 case T_BOOLEAN: 2966 case T_SHORT: 2967 case T_CHAR: 2968 t = T_INT; 2969 break; 2970 default: 2971 break; 2972 } 2973 2974 LIR_Opr dest = new_register(t); 2975 __ move(src, dest); 2976 2977 // Assign new location to Local instruction for this local 2978 Local* local = x->state()->local_at(java_index)->as_Local(); 2979 assert(local != nullptr, "Locals for incoming arguments must have been created"); 2980 #ifndef __SOFTFP__ 2981 // The java calling convention passes double as long and float as int. 2982 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2983 #endif // __SOFTFP__ 2984 local->set_operand(dest); 2985 #ifdef ASSERT 2986 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, nullptr); 2987 #endif 2988 java_index += type2size[t]; 2989 } 2990 2991 if (compilation()->env()->dtrace_method_probes()) { 2992 BasicTypeList signature; 2993 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2994 signature.append(T_METADATA); // Method* 2995 LIR_OprList* args = new LIR_OprList(); 2996 args->append(getThreadPointer()); 2997 LIR_Opr meth = new_register(T_METADATA); 2998 __ metadata2reg(method()->constant_encoding(), meth); 2999 args->append(meth); 3000 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, nullptr); 3001 } 3002 3003 if (method()->is_synchronized()) { 3004 LIR_Opr obj; 3005 if (method()->is_static()) { 3006 obj = new_register(T_OBJECT); 3007 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 3008 } else { 3009 Local* receiver = x->state()->local_at(0)->as_Local(); 3010 assert(receiver != nullptr, "must already exist"); 3011 obj = receiver->operand(); 3012 } 3013 assert(obj->is_valid(), "must be valid"); 3014 3015 if (method()->is_synchronized() && GenerateSynchronizationCode) { 3016 LIR_Opr lock = syncLockOpr(); 3017 __ load_stack_address_monitor(0, lock); 3018 3019 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, x->check_flag(Instruction::DeoptimizeOnException)); 3020 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 3021 3022 // receiver is guaranteed non-null so don't need CodeEmitInfo 3023 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, nullptr); 3024 } 3025 } 3026 // increment invocation counters if needed 3027 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 3028 profile_parameters(x); 3029 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), nullptr, false); 3030 increment_invocation_counter(info); 3031 } 3032 if (method()->has_scalarized_args()) { 3033 // Check if deoptimization was triggered (i.e. orig_pc was set) while buffering scalarized inline type arguments 3034 // in the entry point (see comments in frame::deoptimize). If so, deoptimize only now that we have the right state. 3035 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), nullptr, false); 3036 CodeStub* deopt_stub = new DeoptimizeStub(info, Deoptimization::Reason_none, Deoptimization::Action_none); 3037 __ append(new LIR_Op0(lir_check_orig_pc)); 3038 __ branch(lir_cond_notEqual, deopt_stub); 3039 } 3040 3041 // all blocks with a successor must end with an unconditional jump 3042 // to the successor even if they are consecutive 3043 __ jump(x->default_sux()); 3044 } 3045 3046 3047 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 3048 // construct our frame and model the production of incoming pointer 3049 // to the OSR buffer. 3050 __ osr_entry(LIR_Assembler::osrBufferPointer()); 3051 LIR_Opr result = rlock_result(x); 3052 __ move(LIR_Assembler::osrBufferPointer(), result); 3053 } 3054 3055 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) { 3056 if (loc->is_register()) { 3057 param->load_item_force(loc); 3058 } else { 3059 LIR_Address* addr = loc->as_address_ptr(); 3060 param->load_for_store(addr->type()); 3061 if (addr->type() == T_OBJECT) { 3062 __ move_wide(param->result(), addr); 3063 } else { 3064 __ move(param->result(), addr); 3065 } 3066 } 3067 } 3068 3069 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 3070 assert(args->length() == arg_list->length(), 3071 "args=%d, arg_list=%d", args->length(), arg_list->length()); 3072 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 3073 LIRItem* param = args->at(i); 3074 LIR_Opr loc = arg_list->at(i); 3075 invoke_load_one_argument(param, loc); 3076 } 3077 3078 if (x->has_receiver()) { 3079 LIRItem* receiver = args->at(0); 3080 LIR_Opr loc = arg_list->at(0); 3081 if (loc->is_register()) { 3082 receiver->load_item_force(loc); 3083 } else { 3084 assert(loc->is_address(), "just checking"); 3085 receiver->load_for_store(T_OBJECT); 3086 __ move_wide(receiver->result(), loc->as_address_ptr()); 3087 } 3088 } 3089 } 3090 3091 3092 // Visits all arguments, returns appropriate items without loading them 3093 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 3094 LIRItemList* argument_items = new LIRItemList(); 3095 if (x->has_receiver()) { 3096 LIRItem* receiver = new LIRItem(x->receiver(), this); 3097 argument_items->append(receiver); 3098 } 3099 for (int i = 0; i < x->number_of_arguments(); i++) { 3100 LIRItem* param = new LIRItem(x->argument_at(i), this); 3101 argument_items->append(param); 3102 } 3103 return argument_items; 3104 } 3105 3106 3107 // The invoke with receiver has following phases: 3108 // a) traverse and load/lock receiver; 3109 // b) traverse all arguments -> item-array (invoke_visit_argument) 3110 // c) push receiver on stack 3111 // d) load each of the items and push on stack 3112 // e) unlock receiver 3113 // f) move receiver into receiver-register %o0 3114 // g) lock result registers and emit call operation 3115 // 3116 // Before issuing a call, we must spill-save all values on stack 3117 // that are in caller-save register. "spill-save" moves those registers 3118 // either in a free callee-save register or spills them if no free 3119 // callee save register is available. 3120 // 3121 // The problem is where to invoke spill-save. 3122 // - if invoked between e) and f), we may lock callee save 3123 // register in "spill-save" that destroys the receiver register 3124 // before f) is executed 3125 // - if we rearrange f) to be earlier (by loading %o0) it 3126 // may destroy a value on the stack that is currently in %o0 3127 // and is waiting to be spilled 3128 // - if we keep the receiver locked while doing spill-save, 3129 // we cannot spill it as it is spill-locked 3130 // 3131 void LIRGenerator::do_Invoke(Invoke* x) { 3132 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 3133 3134 LIR_OprList* arg_list = cc->args(); 3135 LIRItemList* args = invoke_visit_arguments(x); 3136 LIR_Opr receiver = LIR_OprFact::illegalOpr; 3137 3138 // setup result register 3139 LIR_Opr result_register = LIR_OprFact::illegalOpr; 3140 if (x->type() != voidType) { 3141 result_register = result_register_for(x->type()); 3142 } 3143 3144 CodeEmitInfo* info = state_for(x, x->state()); 3145 3146 invoke_load_arguments(x, args, arg_list); 3147 3148 if (x->has_receiver()) { 3149 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 3150 receiver = args->at(0)->result(); 3151 } 3152 3153 // emit invoke code 3154 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 3155 3156 // JSR 292 3157 // Preserve the SP over MethodHandle call sites, if needed. 3158 ciMethod* target = x->target(); 3159 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 3160 target->is_method_handle_intrinsic() || 3161 target->is_compiled_lambda_form()); 3162 if (is_method_handle_invoke) { 3163 info->set_is_method_handle_invoke(true); 3164 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3165 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 3166 } 3167 } 3168 3169 switch (x->code()) { 3170 case Bytecodes::_invokestatic: 3171 __ call_static(target, result_register, 3172 SharedRuntime::get_resolve_static_call_stub(), 3173 arg_list, info); 3174 break; 3175 case Bytecodes::_invokespecial: 3176 case Bytecodes::_invokevirtual: 3177 case Bytecodes::_invokeinterface: 3178 // for loaded and final (method or class) target we still produce an inline cache, 3179 // in order to be able to call mixed mode 3180 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 3181 __ call_opt_virtual(target, receiver, result_register, 3182 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3183 arg_list, info); 3184 } else { 3185 __ call_icvirtual(target, receiver, result_register, 3186 SharedRuntime::get_resolve_virtual_call_stub(), 3187 arg_list, info); 3188 } 3189 break; 3190 case Bytecodes::_invokedynamic: { 3191 __ call_dynamic(target, receiver, result_register, 3192 SharedRuntime::get_resolve_static_call_stub(), 3193 arg_list, info); 3194 break; 3195 } 3196 default: 3197 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 3198 break; 3199 } 3200 3201 // JSR 292 3202 // Restore the SP after MethodHandle call sites, if needed. 3203 if (is_method_handle_invoke 3204 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3205 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 3206 } 3207 3208 if (result_register->is_valid()) { 3209 LIR_Opr result = rlock_result(x); 3210 __ move(result_register, result); 3211 } 3212 } 3213 3214 3215 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3216 assert(x->number_of_arguments() == 1, "wrong type"); 3217 LIRItem value (x->argument_at(0), this); 3218 LIR_Opr reg = rlock_result(x); 3219 value.load_item(); 3220 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3221 __ move(tmp, reg); 3222 } 3223 3224 3225 3226 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3227 void LIRGenerator::do_IfOp(IfOp* x) { 3228 #ifdef ASSERT 3229 { 3230 ValueTag xtag = x->x()->type()->tag(); 3231 ValueTag ttag = x->tval()->type()->tag(); 3232 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3233 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3234 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3235 } 3236 #endif 3237 3238 LIRItem left(x->x(), this); 3239 LIRItem right(x->y(), this); 3240 left.load_item(); 3241 if (can_inline_as_constant(right.value()) && !x->substitutability_check()) { 3242 right.dont_load_item(); 3243 } else { 3244 // substitutability_check() needs to use right as a base register. 3245 right.load_item(); 3246 } 3247 3248 LIRItem t_val(x->tval(), this); 3249 LIRItem f_val(x->fval(), this); 3250 t_val.dont_load_item(); 3251 f_val.dont_load_item(); 3252 3253 if (x->substitutability_check()) { 3254 substitutability_check(x, left, right, t_val, f_val); 3255 } else { 3256 LIR_Opr reg = rlock_result(x); 3257 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3258 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3259 } 3260 } 3261 3262 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) { 3263 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3264 bool is_acmpeq = (x->cond() == If::eql); 3265 LIR_Opr equal_result = is_acmpeq ? t_val.result() : f_val.result(); 3266 LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result(); 3267 LIR_Opr result = rlock_result(x); 3268 CodeEmitInfo* info = state_for(x, x->state_before()); 3269 3270 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3271 } 3272 3273 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) { 3274 LIR_Opr equal_result = LIR_OprFact::intConst(1); 3275 LIR_Opr not_equal_result = LIR_OprFact::intConst(0); 3276 LIR_Opr result = new_register(T_INT); 3277 CodeEmitInfo* info = state_for(x, x->state_before()); 3278 3279 substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info); 3280 3281 assert(x->cond() == If::eql || x->cond() == If::neq, "must be"); 3282 __ cmp(lir_cond(x->cond()), result, equal_result); 3283 } 3284 3285 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right, 3286 LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result, 3287 CodeEmitInfo* info) { 3288 LIR_Opr tmp1 = LIR_OprFact::illegalOpr; 3289 LIR_Opr tmp2 = LIR_OprFact::illegalOpr; 3290 LIR_Opr left_klass_op = LIR_OprFact::illegalOpr; 3291 LIR_Opr right_klass_op = LIR_OprFact::illegalOpr; 3292 3293 ciKlass* left_klass = left_val ->as_loaded_klass_or_null(); 3294 ciKlass* right_klass = right_val->as_loaded_klass_or_null(); 3295 3296 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 3297 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 3298 init_temps_for_substitutability_check(tmp1, tmp2); 3299 } 3300 3301 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 3302 // No need to load klass -- the operands are statically known to be the same inline klass. 3303 } else { 3304 BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA; 3305 left_klass_op = new_register(t_klass); 3306 right_klass_op = new_register(t_klass); 3307 } 3308 3309 CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), info); 3310 __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result, 3311 tmp1, tmp2, 3312 left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path); 3313 } 3314 3315 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3316 assert(x->number_of_arguments() == 0, "wrong type"); 3317 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3318 BasicTypeList signature; 3319 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3320 LIR_Opr reg = result_register_for(x->type()); 3321 __ call_runtime_leaf(routine, getThreadTemp(), 3322 reg, new LIR_OprList()); 3323 LIR_Opr result = rlock_result(x); 3324 __ move(reg, result); 3325 } 3326 3327 3328 3329 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3330 switch (x->id()) { 3331 case vmIntrinsics::_intBitsToFloat : 3332 case vmIntrinsics::_doubleToRawLongBits : 3333 case vmIntrinsics::_longBitsToDouble : 3334 case vmIntrinsics::_floatToRawIntBits : { 3335 do_FPIntrinsics(x); 3336 break; 3337 } 3338 3339 #ifdef JFR_HAVE_INTRINSICS 3340 case vmIntrinsics::_counterTime: 3341 do_RuntimeCall(CAST_FROM_FN_PTR(address, JfrTime::time_function()), x); 3342 break; 3343 #endif 3344 3345 case vmIntrinsics::_currentTimeMillis: 3346 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3347 break; 3348 3349 case vmIntrinsics::_nanoTime: 3350 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3351 break; 3352 3353 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3354 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3355 case vmIntrinsics::_getClass: do_getClass(x); break; 3356 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3357 case vmIntrinsics::_currentCarrierThread: do_currentCarrierThread(x); break; 3358 case vmIntrinsics::_currentThread: do_vthread(x); break; 3359 case vmIntrinsics::_scopedValueCache: do_scopedValueCache(x); break; 3360 3361 case vmIntrinsics::_dlog: // fall through 3362 case vmIntrinsics::_dlog10: // fall through 3363 case vmIntrinsics::_dabs: // fall through 3364 case vmIntrinsics::_dsqrt: // fall through 3365 case vmIntrinsics::_dsqrt_strict: // fall through 3366 case vmIntrinsics::_dtan: // fall through 3367 case vmIntrinsics::_dtanh: // fall through 3368 case vmIntrinsics::_dsin : // fall through 3369 case vmIntrinsics::_dcos : // fall through 3370 case vmIntrinsics::_dexp : // fall through 3371 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3372 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3373 3374 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3375 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3376 3377 // Use java.lang.Math intrinsics code since it works for these intrinsics too. 3378 case vmIntrinsics::_floatToFloat16: // fall through 3379 case vmIntrinsics::_float16ToFloat: do_MathIntrinsic(x); break; 3380 3381 case vmIntrinsics::_Preconditions_checkIndex: 3382 do_PreconditionsCheckIndex(x, T_INT); 3383 break; 3384 case vmIntrinsics::_Preconditions_checkLongIndex: 3385 do_PreconditionsCheckIndex(x, T_LONG); 3386 break; 3387 3388 case vmIntrinsics::_compareAndSetReference: 3389 do_CompareAndSwap(x, objectType); 3390 break; 3391 case vmIntrinsics::_compareAndSetInt: 3392 do_CompareAndSwap(x, intType); 3393 break; 3394 case vmIntrinsics::_compareAndSetLong: 3395 do_CompareAndSwap(x, longType); 3396 break; 3397 3398 case vmIntrinsics::_loadFence : 3399 __ membar_acquire(); 3400 break; 3401 case vmIntrinsics::_storeFence: 3402 __ membar_release(); 3403 break; 3404 case vmIntrinsics::_storeStoreFence: 3405 __ membar_storestore(); 3406 break; 3407 case vmIntrinsics::_fullFence : 3408 __ membar(); 3409 break; 3410 case vmIntrinsics::_onSpinWait: 3411 __ on_spin_wait(); 3412 break; 3413 case vmIntrinsics::_Reference_get: 3414 do_Reference_get(x); 3415 break; 3416 3417 case vmIntrinsics::_updateCRC32: 3418 case vmIntrinsics::_updateBytesCRC32: 3419 case vmIntrinsics::_updateByteBufferCRC32: 3420 do_update_CRC32(x); 3421 break; 3422 3423 case vmIntrinsics::_updateBytesCRC32C: 3424 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3425 do_update_CRC32C(x); 3426 break; 3427 3428 case vmIntrinsics::_vectorizedMismatch: 3429 do_vectorizedMismatch(x); 3430 break; 3431 3432 case vmIntrinsics::_blackhole: 3433 do_blackhole(x); 3434 break; 3435 3436 default: ShouldNotReachHere(); break; 3437 } 3438 } 3439 3440 void LIRGenerator::profile_arguments(ProfileCall* x) { 3441 if (compilation()->profile_arguments()) { 3442 int bci = x->bci_of_invoke(); 3443 ciMethodData* md = x->method()->method_data_or_null(); 3444 assert(md != nullptr, "Sanity"); 3445 ciProfileData* data = md->bci_to_data(bci); 3446 if (data != nullptr) { 3447 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3448 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3449 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3450 int base_offset = md->byte_offset_of_slot(data, extra); 3451 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3452 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3453 3454 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3455 int start = 0; 3456 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3457 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3458 // first argument is not profiled at call (method handle invoke) 3459 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3460 start = 1; 3461 } 3462 ciSignature* callee_signature = x->callee()->signature(); 3463 // method handle call to virtual method 3464 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3465 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : nullptr); 3466 3467 bool ignored_will_link; 3468 ciSignature* signature_at_call = nullptr; 3469 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3470 ciSignatureStream signature_at_call_stream(signature_at_call); 3471 3472 // if called through method handle invoke, some arguments may have been popped 3473 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3474 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3475 ciKlass* exact = profile_type(md, base_offset, off, 3476 args->type(i), x->profiled_arg_at(i+start), mdp, 3477 !x->arg_needs_null_check(i+start), 3478 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3479 if (exact != nullptr) { 3480 md->set_argument_type(bci, i, exact); 3481 } 3482 } 3483 } else { 3484 #ifdef ASSERT 3485 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3486 int n = x->nb_profiled_args(); 3487 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3488 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3489 "only at JSR292 bytecodes"); 3490 #endif 3491 } 3492 } 3493 } 3494 } 3495 3496 // profile parameters on entry to an inlined method 3497 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3498 if (compilation()->profile_parameters() && x->inlined()) { 3499 ciMethodData* md = x->callee()->method_data_or_null(); 3500 if (md != nullptr) { 3501 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3502 if (parameters_type_data != nullptr) { 3503 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3504 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3505 bool has_receiver = !x->callee()->is_static(); 3506 ciSignature* sig = x->callee()->signature(); 3507 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : nullptr); 3508 int i = 0; // to iterate on the Instructions 3509 Value arg = x->recv(); 3510 bool not_null = false; 3511 int bci = x->bci_of_invoke(); 3512 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3513 // The first parameter is the receiver so that's what we start 3514 // with if it exists. One exception is method handle call to 3515 // virtual method: the receiver is in the args list 3516 if (arg == nullptr || !Bytecodes::has_receiver(bc)) { 3517 i = 1; 3518 arg = x->profiled_arg_at(0); 3519 not_null = !x->arg_needs_null_check(0); 3520 } 3521 int k = 0; // to iterate on the profile data 3522 for (;;) { 3523 intptr_t profiled_k = parameters->type(k); 3524 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3525 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3526 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), nullptr); 3527 // If the profile is known statically set it once for all and do not emit any code 3528 if (exact != nullptr) { 3529 md->set_parameter_type(k, exact); 3530 } 3531 k++; 3532 if (k >= parameters_type_data->number_of_parameters()) { 3533 #ifdef ASSERT 3534 int extra = 0; 3535 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3536 x->nb_profiled_args() >= TypeProfileParmsLimit && 3537 x->recv() != nullptr && Bytecodes::has_receiver(bc)) { 3538 extra += 1; 3539 } 3540 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3541 #endif 3542 break; 3543 } 3544 arg = x->profiled_arg_at(i); 3545 not_null = !x->arg_needs_null_check(i); 3546 i++; 3547 } 3548 } 3549 } 3550 } 3551 } 3552 3553 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3554 // Need recv in a temporary register so it interferes with the other temporaries 3555 LIR_Opr recv = LIR_OprFact::illegalOpr; 3556 LIR_Opr mdo = new_register(T_METADATA); 3557 // tmp is used to hold the counters on SPARC 3558 LIR_Opr tmp = new_pointer_register(); 3559 3560 if (x->nb_profiled_args() > 0) { 3561 profile_arguments(x); 3562 } 3563 3564 // profile parameters on inlined method entry including receiver 3565 if (x->recv() != nullptr || x->nb_profiled_args() > 0) { 3566 profile_parameters_at_call(x); 3567 } 3568 3569 if (x->recv() != nullptr) { 3570 LIRItem value(x->recv(), this); 3571 value.load_item(); 3572 recv = new_register(T_OBJECT); 3573 __ move(value.result(), recv); 3574 } 3575 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3576 } 3577 3578 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3579 int bci = x->bci_of_invoke(); 3580 ciMethodData* md = x->method()->method_data_or_null(); 3581 assert(md != nullptr, "Sanity"); 3582 ciProfileData* data = md->bci_to_data(bci); 3583 if (data != nullptr) { 3584 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3585 ciSingleTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3586 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3587 3588 bool ignored_will_link; 3589 ciSignature* signature_at_call = nullptr; 3590 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3591 3592 // The offset within the MDO of the entry to update may be too large 3593 // to be used in load/store instructions on some platforms. So have 3594 // profile_type() compute the address of the profile in a register. 3595 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3596 ret->type(), x->ret(), mdp, 3597 !x->needs_null_check(), 3598 signature_at_call->return_type()->as_klass(), 3599 x->callee()->signature()->return_type()->as_klass()); 3600 if (exact != nullptr) { 3601 md->set_return_type(bci, exact); 3602 } 3603 } 3604 } 3605 3606 bool LIRGenerator::profile_inline_klass(ciMethodData* md, ciProfileData* data, Value value, int flag) { 3607 ciKlass* klass = value->as_loaded_klass_or_null(); 3608 if (klass != nullptr) { 3609 if (klass->is_inlinetype()) { 3610 profile_flags(md, data, flag, lir_cond_always); 3611 } else if (klass->can_be_inline_klass()) { 3612 return false; 3613 } 3614 } else { 3615 return false; 3616 } 3617 return true; 3618 } 3619 3620 3621 void LIRGenerator::do_ProfileACmpTypes(ProfileACmpTypes* x) { 3622 ciMethod* method = x->method(); 3623 assert(method != nullptr, "method should be set if branch is profiled"); 3624 ciMethodData* md = method->method_data_or_null(); 3625 assert(md != nullptr, "Sanity"); 3626 ciProfileData* data = md->bci_to_data(x->bci()); 3627 assert(data != nullptr, "must have profiling data"); 3628 assert(data->is_ACmpData(), "need BranchData for two-way branches"); 3629 ciACmpData* acmp = (ciACmpData*)data; 3630 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3631 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 0, 3632 acmp->left()->type(), x->left(), mdp, !x->left_maybe_null(), nullptr, nullptr); 3633 int flags_offset = md->byte_offset_of_slot(data, DataLayout::flags_offset()); 3634 if (!profile_inline_klass(md, acmp, x->left(), ACmpData::left_inline_type_byte_constant())) { 3635 LIR_Opr mdp = new_register(T_METADATA); 3636 __ metadata2reg(md->constant_encoding(), mdp); 3637 LIRItem value(x->left(), this); 3638 value.load_item(); 3639 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::left_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3640 } 3641 profile_type(md, md->byte_offset_of_slot(acmp, ACmpData::left_offset()), 3642 in_bytes(ACmpData::right_offset()) - in_bytes(ACmpData::left_offset()), 3643 acmp->right()->type(), x->right(), mdp, !x->right_maybe_null(), nullptr, nullptr); 3644 if (!profile_inline_klass(md, acmp, x->right(), ACmpData::right_inline_type_byte_constant())) { 3645 LIR_Opr mdp = new_register(T_METADATA); 3646 __ metadata2reg(md->constant_encoding(), mdp); 3647 LIRItem value(x->right(), this); 3648 value.load_item(); 3649 __ profile_inline_type(new LIR_Address(mdp, flags_offset, T_INT), value.result(), ACmpData::right_inline_type_byte_constant(), new_register(T_INT), !x->left_maybe_null()); 3650 } 3651 } 3652 3653 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3654 // We can safely ignore accessors here, since c2 will inline them anyway, 3655 // accessors are also always mature. 3656 if (!x->inlinee()->is_accessor()) { 3657 CodeEmitInfo* info = state_for(x, x->state(), true); 3658 // Notify the runtime very infrequently only to take care of counter overflows 3659 int freq_log = Tier23InlineeNotifyFreqLog; 3660 double scale; 3661 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3662 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3663 } 3664 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3665 } 3666 } 3667 3668 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3669 if (compilation()->is_profiling()) { 3670 #if defined(X86) && !defined(_LP64) 3671 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3672 LIR_Opr left_copy = new_register(left->type()); 3673 __ move(left, left_copy); 3674 __ cmp(cond, left_copy, right); 3675 #else 3676 __ cmp(cond, left, right); 3677 #endif 3678 LIR_Opr step = new_register(T_INT); 3679 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3680 LIR_Opr zero = LIR_OprFact::intConst(0); 3681 __ cmove(cond, 3682 (left_bci < bci) ? plus_one : zero, 3683 (right_bci < bci) ? plus_one : zero, 3684 step, left->type()); 3685 increment_backedge_counter(info, step, bci); 3686 } 3687 } 3688 3689 3690 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3691 int freq_log = 0; 3692 int level = compilation()->env()->comp_level(); 3693 if (level == CompLevel_limited_profile) { 3694 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3695 } else if (level == CompLevel_full_profile) { 3696 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3697 } else { 3698 ShouldNotReachHere(); 3699 } 3700 // Increment the appropriate invocation/backedge counter and notify the runtime. 3701 double scale; 3702 if (_method->has_option_value(CompileCommandEnum::CompileThresholdScaling, scale)) { 3703 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3704 } 3705 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3706 } 3707 3708 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3709 ciMethod *method, LIR_Opr step, int frequency, 3710 int bci, bool backedge, bool notify) { 3711 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3712 int level = _compilation->env()->comp_level(); 3713 assert(level > CompLevel_simple, "Shouldn't be here"); 3714 3715 int offset = -1; 3716 LIR_Opr counter_holder; 3717 if (level == CompLevel_limited_profile) { 3718 MethodCounters* counters_adr = method->ensure_method_counters(); 3719 if (counters_adr == nullptr) { 3720 bailout("method counters allocation failed"); 3721 return; 3722 } 3723 counter_holder = new_pointer_register(); 3724 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3725 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3726 MethodCounters::invocation_counter_offset()); 3727 } else if (level == CompLevel_full_profile) { 3728 counter_holder = new_register(T_METADATA); 3729 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3730 MethodData::invocation_counter_offset()); 3731 ciMethodData* md = method->method_data_or_null(); 3732 assert(md != nullptr, "Sanity"); 3733 __ metadata2reg(md->constant_encoding(), counter_holder); 3734 } else { 3735 ShouldNotReachHere(); 3736 } 3737 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3738 LIR_Opr result = new_register(T_INT); 3739 __ load(counter, result); 3740 __ add(result, step, result); 3741 __ store(result, counter); 3742 if (notify && (!backedge || UseOnStackReplacement)) { 3743 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3744 // The bci for info can point to cmp for if's we want the if bci 3745 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3746 int freq = frequency << InvocationCounter::count_shift; 3747 if (freq == 0) { 3748 if (!step->is_constant()) { 3749 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3750 __ branch(lir_cond_notEqual, overflow); 3751 } else { 3752 __ branch(lir_cond_always, overflow); 3753 } 3754 } else { 3755 LIR_Opr mask = load_immediate(freq, T_INT); 3756 if (!step->is_constant()) { 3757 // If step is 0, make sure the overflow check below always fails 3758 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3759 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3760 } 3761 __ logical_and(result, mask, result); 3762 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3763 __ branch(lir_cond_equal, overflow); 3764 } 3765 __ branch_destination(overflow->continuation()); 3766 } 3767 } 3768 3769 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3770 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3771 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3772 3773 if (x->pass_thread()) { 3774 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3775 args->append(getThreadPointer()); 3776 } 3777 3778 for (int i = 0; i < x->number_of_arguments(); i++) { 3779 Value a = x->argument_at(i); 3780 LIRItem* item = new LIRItem(a, this); 3781 item->load_item(); 3782 args->append(item->result()); 3783 signature->append(as_BasicType(a->type())); 3784 } 3785 3786 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), nullptr); 3787 if (x->type() == voidType) { 3788 set_no_result(x); 3789 } else { 3790 __ move(result, rlock_result(x)); 3791 } 3792 } 3793 3794 #ifdef ASSERT 3795 void LIRGenerator::do_Assert(Assert *x) { 3796 ValueTag tag = x->x()->type()->tag(); 3797 If::Condition cond = x->cond(); 3798 3799 LIRItem xitem(x->x(), this); 3800 LIRItem yitem(x->y(), this); 3801 LIRItem* xin = &xitem; 3802 LIRItem* yin = &yitem; 3803 3804 assert(tag == intTag, "Only integer assertions are valid!"); 3805 3806 xin->load_item(); 3807 yin->dont_load_item(); 3808 3809 set_no_result(x); 3810 3811 LIR_Opr left = xin->result(); 3812 LIR_Opr right = yin->result(); 3813 3814 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3815 } 3816 #endif 3817 3818 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3819 3820 3821 Instruction *a = x->x(); 3822 Instruction *b = x->y(); 3823 if (!a || StressRangeCheckElimination) { 3824 assert(!b || StressRangeCheckElimination, "B must also be null"); 3825 3826 CodeEmitInfo *info = state_for(x, x->state()); 3827 CodeStub* stub = new PredicateFailedStub(info); 3828 3829 __ jump(stub); 3830 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3831 int a_int = a->type()->as_IntConstant()->value(); 3832 int b_int = b->type()->as_IntConstant()->value(); 3833 3834 bool ok = false; 3835 3836 switch(x->cond()) { 3837 case Instruction::eql: ok = (a_int == b_int); break; 3838 case Instruction::neq: ok = (a_int != b_int); break; 3839 case Instruction::lss: ok = (a_int < b_int); break; 3840 case Instruction::leq: ok = (a_int <= b_int); break; 3841 case Instruction::gtr: ok = (a_int > b_int); break; 3842 case Instruction::geq: ok = (a_int >= b_int); break; 3843 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3844 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3845 default: ShouldNotReachHere(); 3846 } 3847 3848 if (ok) { 3849 3850 CodeEmitInfo *info = state_for(x, x->state()); 3851 CodeStub* stub = new PredicateFailedStub(info); 3852 3853 __ jump(stub); 3854 } 3855 } else { 3856 3857 ValueTag tag = x->x()->type()->tag(); 3858 If::Condition cond = x->cond(); 3859 LIRItem xitem(x->x(), this); 3860 LIRItem yitem(x->y(), this); 3861 LIRItem* xin = &xitem; 3862 LIRItem* yin = &yitem; 3863 3864 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3865 3866 xin->load_item(); 3867 yin->dont_load_item(); 3868 set_no_result(x); 3869 3870 LIR_Opr left = xin->result(); 3871 LIR_Opr right = yin->result(); 3872 3873 CodeEmitInfo *info = state_for(x, x->state()); 3874 CodeStub* stub = new PredicateFailedStub(info); 3875 3876 __ cmp(lir_cond(cond), left, right); 3877 __ branch(lir_cond(cond), stub); 3878 } 3879 } 3880 3881 void LIRGenerator::do_blackhole(Intrinsic *x) { 3882 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3883 for (int c = 0; c < x->number_of_arguments(); c++) { 3884 // Load the argument 3885 LIRItem vitem(x->argument_at(c), this); 3886 vitem.load_item(); 3887 // ...and leave it unused. 3888 } 3889 } 3890 3891 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3892 LIRItemList args(1); 3893 LIRItem value(arg1, this); 3894 args.append(&value); 3895 BasicTypeList signature; 3896 signature.append(as_BasicType(arg1->type())); 3897 3898 return call_runtime(&signature, &args, entry, result_type, info); 3899 } 3900 3901 3902 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3903 LIRItemList args(2); 3904 LIRItem value1(arg1, this); 3905 LIRItem value2(arg2, this); 3906 args.append(&value1); 3907 args.append(&value2); 3908 BasicTypeList signature; 3909 signature.append(as_BasicType(arg1->type())); 3910 signature.append(as_BasicType(arg2->type())); 3911 3912 return call_runtime(&signature, &args, entry, result_type, info); 3913 } 3914 3915 3916 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3917 address entry, ValueType* result_type, CodeEmitInfo* info) { 3918 // get a result register 3919 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3920 LIR_Opr result = LIR_OprFact::illegalOpr; 3921 if (result_type->tag() != voidTag) { 3922 result = new_register(result_type); 3923 phys_reg = result_register_for(result_type); 3924 } 3925 3926 // move the arguments into the correct location 3927 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3928 assert(cc->length() == args->length(), "argument mismatch"); 3929 for (int i = 0; i < args->length(); i++) { 3930 LIR_Opr arg = args->at(i); 3931 LIR_Opr loc = cc->at(i); 3932 if (loc->is_register()) { 3933 __ move(arg, loc); 3934 } else { 3935 LIR_Address* addr = loc->as_address_ptr(); 3936 // if (!can_store_as_constant(arg)) { 3937 // LIR_Opr tmp = new_register(arg->type()); 3938 // __ move(arg, tmp); 3939 // arg = tmp; 3940 // } 3941 __ move(arg, addr); 3942 } 3943 } 3944 3945 if (info) { 3946 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3947 } else { 3948 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3949 } 3950 if (result->is_valid()) { 3951 __ move(phys_reg, result); 3952 } 3953 return result; 3954 } 3955 3956 3957 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3958 address entry, ValueType* result_type, CodeEmitInfo* info) { 3959 // get a result register 3960 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3961 LIR_Opr result = LIR_OprFact::illegalOpr; 3962 if (result_type->tag() != voidTag) { 3963 result = new_register(result_type); 3964 phys_reg = result_register_for(result_type); 3965 } 3966 3967 // move the arguments into the correct location 3968 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3969 3970 assert(cc->length() == args->length(), "argument mismatch"); 3971 for (int i = 0; i < args->length(); i++) { 3972 LIRItem* arg = args->at(i); 3973 LIR_Opr loc = cc->at(i); 3974 if (loc->is_register()) { 3975 arg->load_item_force(loc); 3976 } else { 3977 LIR_Address* addr = loc->as_address_ptr(); 3978 arg->load_for_store(addr->type()); 3979 __ move(arg->result(), addr); 3980 } 3981 } 3982 3983 if (info) { 3984 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3985 } else { 3986 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3987 } 3988 if (result->is_valid()) { 3989 __ move(phys_reg, result); 3990 } 3991 return result; 3992 } 3993 3994 void LIRGenerator::do_MemBar(MemBar* x) { 3995 LIR_Code code = x->code(); 3996 switch(code) { 3997 case lir_membar_acquire : __ membar_acquire(); break; 3998 case lir_membar_release : __ membar_release(); break; 3999 case lir_membar : __ membar(); break; 4000 case lir_membar_loadload : __ membar_loadload(); break; 4001 case lir_membar_storestore: __ membar_storestore(); break; 4002 case lir_membar_loadstore : __ membar_loadstore(); break; 4003 case lir_membar_storeload : __ membar_storeload(); break; 4004 default : ShouldNotReachHere(); break; 4005 } 4006 } 4007 4008 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 4009 LIR_Opr value_fixed = rlock_byte(T_BYTE); 4010 if (two_operand_lir_form) { 4011 __ move(value, value_fixed); 4012 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 4013 } else { 4014 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 4015 } 4016 LIR_Opr klass = new_register(T_METADATA); 4017 load_klass(array, klass, null_check_info); 4018 null_check_info = nullptr; 4019 LIR_Opr layout = new_register(T_INT); 4020 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 4021 int diffbit = Klass::layout_helper_boolean_diffbit(); 4022 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 4023 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 4024 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 4025 value = value_fixed; 4026 return value; 4027 }