1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "c1/c1_CFGPrinter.hpp" 26 #include "c1/c1_CodeStubs.hpp" 27 #include "c1/c1_Compilation.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_IR.hpp" 30 #include "c1/c1_LinearScan.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "code/vmreg.inline.hpp" 34 #include "runtime/timerTrace.hpp" 35 #include "utilities/bitMap.inline.hpp" 36 37 #ifndef PRODUCT 38 39 static LinearScanStatistic _stat_before_alloc; 40 static LinearScanStatistic _stat_after_asign; 41 static LinearScanStatistic _stat_final; 42 43 static LinearScanTimers _total_timer; 44 45 // helper macro for short definition of timer 46 #define TIME_LINEAR_SCAN(timer_name) TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose); 47 48 #else 49 #define TIME_LINEAR_SCAN(timer_name) 50 #endif 51 52 #ifdef ASSERT 53 54 // helper macro for short definition of trace-output inside code 55 #define TRACE_LINEAR_SCAN(level, code) \ 56 if (TraceLinearScanLevel >= level) { \ 57 code; \ 58 } 59 #else 60 #define TRACE_LINEAR_SCAN(level, code) 61 #endif 62 63 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words 64 #ifdef _LP64 65 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 0, 2, 1, 2, 1, -1}; 66 #else 67 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, -1, 1, 1, -1}; 68 #endif 69 70 71 // Implementation of LinearScan 72 73 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map) 74 : _compilation(ir->compilation()) 75 , _ir(ir) 76 , _gen(gen) 77 , _frame_map(frame_map) 78 , _cached_blocks(*ir->linear_scan_order()) 79 , _num_virtual_regs(gen->max_virtual_register_number()) 80 , _has_fpu_registers(false) 81 , _num_calls(-1) 82 , _max_spills(0) 83 , _unused_spill_slot(-1) 84 , _intervals(0) // initialized later with correct length 85 , _new_intervals_from_allocation(nullptr) 86 , _sorted_intervals(nullptr) 87 , _needs_full_resort(false) 88 , _lir_ops(0) // initialized later with correct length 89 , _block_of_op(0) // initialized later with correct length 90 , _has_info(0) 91 , _has_call(0) 92 , _interval_in_loop(0) // initialized later with correct length 93 , _scope_value_cache(0) // initialized later with correct length 94 { 95 assert(this->ir() != nullptr, "check if valid"); 96 assert(this->compilation() != nullptr, "check if valid"); 97 assert(this->gen() != nullptr, "check if valid"); 98 assert(this->frame_map() != nullptr, "check if valid"); 99 } 100 101 102 // ********** functions for converting LIR-Operands to register numbers 103 // 104 // Emulate a flat register file comprising physical integer registers, 105 // physical floating-point registers and virtual registers, in that order. 106 // Virtual registers already have appropriate numbers, since V0 is 107 // the number of physical registers. 108 // Returns -1 for hi word if opr is a single word operand. 109 // 110 // Note: the inverse operation (calculating an operand for register numbers) 111 // is done in calc_operand_for_interval() 112 113 int LinearScan::reg_num(LIR_Opr opr) { 114 assert(opr->is_register(), "should not call this otherwise"); 115 116 if (opr->is_virtual_register()) { 117 assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number"); 118 return opr->vreg_number(); 119 } else if (opr->is_single_cpu()) { 120 return opr->cpu_regnr(); 121 } else if (opr->is_double_cpu()) { 122 return opr->cpu_regnrLo(); 123 #ifdef X86 124 } else if (opr->is_single_xmm()) { 125 return opr->fpu_regnr() + pd_first_xmm_reg; 126 } else if (opr->is_double_xmm()) { 127 return opr->fpu_regnrLo() + pd_first_xmm_reg; 128 #endif 129 } else if (opr->is_single_fpu()) { 130 return opr->fpu_regnr() + pd_first_fpu_reg; 131 } else if (opr->is_double_fpu()) { 132 return opr->fpu_regnrLo() + pd_first_fpu_reg; 133 } else { 134 ShouldNotReachHere(); 135 return -1; 136 } 137 } 138 139 int LinearScan::reg_numHi(LIR_Opr opr) { 140 assert(opr->is_register(), "should not call this otherwise"); 141 142 if (opr->is_virtual_register()) { 143 return -1; 144 } else if (opr->is_single_cpu()) { 145 return -1; 146 } else if (opr->is_double_cpu()) { 147 return opr->cpu_regnrHi(); 148 #ifdef X86 149 } else if (opr->is_single_xmm()) { 150 return -1; 151 } else if (opr->is_double_xmm()) { 152 return -1; 153 #endif 154 } else if (opr->is_single_fpu()) { 155 return -1; 156 } else if (opr->is_double_fpu()) { 157 return opr->fpu_regnrHi() + pd_first_fpu_reg; 158 } else { 159 ShouldNotReachHere(); 160 return -1; 161 } 162 } 163 164 165 // ********** functions for classification of intervals 166 167 bool LinearScan::is_precolored_interval(const Interval* i) { 168 return i->reg_num() < LinearScan::nof_regs; 169 } 170 171 bool LinearScan::is_virtual_interval(const Interval* i) { 172 return i->reg_num() >= LIR_Opr::vreg_base; 173 } 174 175 bool LinearScan::is_precolored_cpu_interval(const Interval* i) { 176 return i->reg_num() < LinearScan::nof_cpu_regs; 177 } 178 179 bool LinearScan::is_virtual_cpu_interval(const Interval* i) { 180 #if defined(__SOFTFP__) || defined(E500V2) 181 return i->reg_num() >= LIR_Opr::vreg_base; 182 #else 183 return i->reg_num() >= LIR_Opr::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE); 184 #endif // __SOFTFP__ or E500V2 185 } 186 187 bool LinearScan::is_precolored_fpu_interval(const Interval* i) { 188 return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs; 189 } 190 191 bool LinearScan::is_virtual_fpu_interval(const Interval* i) { 192 #if defined(__SOFTFP__) || defined(E500V2) 193 return false; 194 #else 195 return i->reg_num() >= LIR_Opr::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE); 196 #endif // __SOFTFP__ or E500V2 197 } 198 199 bool LinearScan::is_in_fpu_register(const Interval* i) { 200 // fixed intervals not needed for FPU stack allocation 201 return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg; 202 } 203 204 bool LinearScan::is_oop_interval(const Interval* i) { 205 // fixed intervals never contain oops 206 return i->reg_num() >= nof_regs && i->type() == T_OBJECT; 207 } 208 209 210 // ********** General helper functions 211 212 // compute next unused stack index that can be used for spilling 213 int LinearScan::allocate_spill_slot(bool double_word) { 214 int spill_slot; 215 if (double_word) { 216 if ((_max_spills & 1) == 1) { 217 // alignment of double-word values 218 // the hole because of the alignment is filled with the next single-word value 219 assert(_unused_spill_slot == -1, "wasting a spill slot"); 220 _unused_spill_slot = _max_spills; 221 _max_spills++; 222 } 223 spill_slot = _max_spills; 224 _max_spills += 2; 225 226 } else if (_unused_spill_slot != -1) { 227 // re-use hole that was the result of a previous double-word alignment 228 spill_slot = _unused_spill_slot; 229 _unused_spill_slot = -1; 230 231 } else { 232 spill_slot = _max_spills; 233 _max_spills++; 234 } 235 236 int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount(); 237 238 // if too many slots used, bailout compilation. 239 if (result > 2000) { 240 bailout("too many stack slots used"); 241 } 242 243 return result; 244 } 245 246 void LinearScan::assign_spill_slot(Interval* it) { 247 // assign the canonical spill slot of the parent (if a part of the interval 248 // is already spilled) or allocate a new spill slot 249 if (it->canonical_spill_slot() >= 0) { 250 it->assign_reg(it->canonical_spill_slot()); 251 } else { 252 int spill = allocate_spill_slot(type2spill_size[it->type()] == 2); 253 it->set_canonical_spill_slot(spill); 254 it->assign_reg(spill); 255 } 256 } 257 258 void LinearScan::propagate_spill_slots() { 259 if (!frame_map()->finalize_frame(max_spills(), compilation()->needs_stack_repair())) { 260 bailout("frame too large"); 261 } 262 } 263 264 // create a new interval with a predefined reg_num 265 // (only used for parent intervals that are created during the building phase) 266 Interval* LinearScan::create_interval(int reg_num) { 267 assert(_intervals.at(reg_num) == nullptr, "overwriting existing interval"); 268 269 Interval* interval = new Interval(reg_num); 270 _intervals.at_put(reg_num, interval); 271 272 // assign register number for precolored intervals 273 if (reg_num < LIR_Opr::vreg_base) { 274 interval->assign_reg(reg_num); 275 } 276 return interval; 277 } 278 279 // assign a new reg_num to the interval and append it to the list of intervals 280 // (only used for child intervals that are created during register allocation) 281 void LinearScan::append_interval(Interval* it) { 282 it->set_reg_num(_intervals.length()); 283 _intervals.append(it); 284 IntervalList* new_intervals = _new_intervals_from_allocation; 285 if (new_intervals == nullptr) { 286 new_intervals = _new_intervals_from_allocation = new IntervalList(); 287 } 288 new_intervals->append(it); 289 } 290 291 // copy the vreg-flags if an interval is split 292 void LinearScan::copy_register_flags(Interval* from, Interval* to) { 293 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) { 294 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg); 295 } 296 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) { 297 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved); 298 } 299 300 // Note: do not copy the must_start_in_memory flag because it is not necessary for child 301 // intervals (only the very beginning of the interval must be in memory) 302 } 303 304 305 // ********** spill move optimization 306 // eliminate moves from register to stack if stack slot is known to be correct 307 308 // called during building of intervals 309 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) { 310 assert(interval->is_split_parent(), "can only be called for split parents"); 311 312 switch (interval->spill_state()) { 313 case noDefinitionFound: 314 assert(interval->spill_definition_pos() == -1, "must no be set before"); 315 interval->set_spill_definition_pos(def_pos); 316 interval->set_spill_state(oneDefinitionFound); 317 break; 318 319 case oneDefinitionFound: 320 assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created"); 321 if (def_pos < interval->spill_definition_pos() - 2) { 322 // second definition found, so no spill optimization possible for this interval 323 interval->set_spill_state(noOptimization); 324 } else { 325 // two consecutive definitions (because of two-operand LIR form) 326 assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal"); 327 } 328 break; 329 330 case noOptimization: 331 // nothing to do 332 break; 333 334 default: 335 assert(false, "other states not allowed at this time"); 336 } 337 } 338 339 // called during register allocation 340 void LinearScan::change_spill_state(Interval* interval, int spill_pos) { 341 switch (interval->spill_state()) { 342 case oneDefinitionFound: { 343 int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth(); 344 int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth(); 345 346 if (def_loop_depth < spill_loop_depth) { 347 // the loop depth of the spilling position is higher then the loop depth 348 // at the definition of the interval -> move write to memory out of loop 349 // by storing at definitin of the interval 350 interval->set_spill_state(storeAtDefinition); 351 } else { 352 // the interval is currently spilled only once, so for now there is no 353 // reason to store the interval at the definition 354 interval->set_spill_state(oneMoveInserted); 355 } 356 break; 357 } 358 359 case oneMoveInserted: { 360 // the interval is spilled more then once, so it is better to store it to 361 // memory at the definition 362 interval->set_spill_state(storeAtDefinition); 363 break; 364 } 365 366 case storeAtDefinition: 367 case startInMemory: 368 case noOptimization: 369 case noDefinitionFound: 370 // nothing to do 371 break; 372 373 default: 374 assert(false, "other states not allowed at this time"); 375 } 376 } 377 378 379 bool LinearScan::must_store_at_definition(const Interval* i) { 380 return i->is_split_parent() && i->spill_state() == storeAtDefinition; 381 } 382 383 // called once before assignment of register numbers 384 void LinearScan::eliminate_spill_moves() { 385 TIME_LINEAR_SCAN(timer_eliminate_spill_moves); 386 TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves")); 387 388 // collect all intervals that must be stored after their definion. 389 // the list is sorted by Interval::spill_definition_pos 390 Interval* interval; 391 Interval* temp_list; 392 create_unhandled_lists(&interval, &temp_list, must_store_at_definition, nullptr); 393 394 #ifdef ASSERT 395 Interval* prev = nullptr; 396 Interval* temp = interval; 397 while (temp != Interval::end()) { 398 assert(temp->spill_definition_pos() > 0, "invalid spill definition pos"); 399 if (prev != nullptr) { 400 assert(temp->from() >= prev->from(), "intervals not sorted"); 401 assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos"); 402 } 403 404 assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned"); 405 assert(temp->spill_definition_pos() >= temp->from(), "invalid order"); 406 assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized"); 407 408 TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos())); 409 410 temp = temp->next(); 411 } 412 #endif 413 414 LIR_InsertionBuffer insertion_buffer; 415 int num_blocks = block_count(); 416 for (int i = 0; i < num_blocks; i++) { 417 BlockBegin* block = block_at(i); 418 LIR_OpList* instructions = block->lir()->instructions_list(); 419 int num_inst = instructions->length(); 420 bool has_new = false; 421 422 // iterate all instructions of the block. skip the first because it is always a label 423 for (int j = 1; j < num_inst; j++) { 424 LIR_Op* op = instructions->at(j); 425 int op_id = op->id(); 426 427 if (op_id == -1) { 428 // remove move from register to stack if the stack slot is guaranteed to be correct. 429 // only moves that have been inserted by LinearScan can be removed. 430 assert(op->code() == lir_move, "only moves can have a op_id of -1"); 431 assert(op->as_Op1() != nullptr, "move must be LIR_Op1"); 432 assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers"); 433 434 LIR_Op1* op1 = (LIR_Op1*)op; 435 Interval* interval = interval_at(op1->result_opr()->vreg_number()); 436 437 if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) { 438 // move target is a stack slot that is always correct, so eliminate instruction 439 TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number())); 440 instructions->at_put(j, nullptr); // null-instructions are deleted by assign_reg_num 441 } 442 443 } else { 444 // insert move from register to stack just after the beginning of the interval 445 assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order"); 446 assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval"); 447 448 while (interval != Interval::end() && interval->spill_definition_pos() == op_id) { 449 if (!has_new) { 450 // prepare insertion buffer (appended when all instructions of the block are processed) 451 insertion_buffer.init(block->lir()); 452 has_new = true; 453 } 454 455 LIR_Opr from_opr = operand_for_interval(interval); 456 LIR_Opr to_opr = canonical_spill_opr(interval); 457 assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register"); 458 assert(to_opr->is_stack(), "to operand must be a stack slot"); 459 460 insertion_buffer.move(j, from_opr, to_opr); 461 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id)); 462 463 interval = interval->next(); 464 } 465 } 466 } // end of instruction iteration 467 468 if (has_new) { 469 block->lir()->append(&insertion_buffer); 470 } 471 } // end of block iteration 472 473 assert(interval == Interval::end(), "missed an interval"); 474 } 475 476 477 // ********** Phase 1: number all instructions in all blocks 478 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan. 479 480 void LinearScan::number_instructions() { 481 { 482 // dummy-timer to measure the cost of the timer itself 483 // (this time is then subtracted from all other timers to get the real value) 484 TIME_LINEAR_SCAN(timer_do_nothing); 485 } 486 TIME_LINEAR_SCAN(timer_number_instructions); 487 488 // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node. 489 int num_blocks = block_count(); 490 int num_instructions = 0; 491 int i; 492 for (i = 0; i < num_blocks; i++) { 493 num_instructions += block_at(i)->lir()->instructions_list()->length(); 494 } 495 496 // initialize with correct length 497 _lir_ops = LIR_OpArray(num_instructions, num_instructions, nullptr); 498 _block_of_op = BlockBeginArray(num_instructions, num_instructions, nullptr); 499 500 int op_id = 0; 501 int idx = 0; 502 503 for (i = 0; i < num_blocks; i++) { 504 BlockBegin* block = block_at(i); 505 block->set_first_lir_instruction_id(op_id); 506 LIR_OpList* instructions = block->lir()->instructions_list(); 507 508 int num_inst = instructions->length(); 509 for (int j = 0; j < num_inst; j++) { 510 LIR_Op* op = instructions->at(j); 511 op->set_id(op_id); 512 513 _lir_ops.at_put(idx, op); 514 _block_of_op.at_put(idx, block); 515 assert(lir_op_with_id(op_id) == op, "must match"); 516 517 idx++; 518 op_id += 2; // numbering of lir_ops by two 519 } 520 block->set_last_lir_instruction_id(op_id - 2); 521 } 522 assert(idx == num_instructions, "must match"); 523 assert(idx * 2 == op_id, "must match"); 524 525 _has_call.initialize(num_instructions); 526 _has_info.initialize(num_instructions); 527 } 528 529 530 // ********** Phase 2: compute local live sets separately for each block 531 // (sets live_gen and live_kill for each block) 532 533 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) { 534 LIR_Opr opr = value->operand(); 535 Constant* con = value->as_Constant(); 536 537 // check some asumptions about debug information 538 assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type"); 539 assert(con == nullptr || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "assumption: Constant instructions have only constant operands"); 540 assert(con != nullptr || opr->is_virtual(), "assumption: non-Constant instructions have only virtual operands"); 541 542 if ((con == nullptr || con->is_pinned()) && opr->is_register()) { 543 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 544 int reg = opr->vreg_number(); 545 if (!live_kill.at(reg)) { 546 live_gen.set_bit(reg); 547 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg)); 548 } 549 } 550 } 551 552 553 void LinearScan::compute_local_live_sets() { 554 TIME_LINEAR_SCAN(timer_compute_local_live_sets); 555 556 int num_blocks = block_count(); 557 int live_size = live_set_size(); 558 bool local_has_fpu_registers = false; 559 int local_num_calls = 0; 560 LIR_OpVisitState visitor; 561 562 BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops()); 563 564 // iterate all blocks 565 for (int i = 0; i < num_blocks; i++) { 566 BlockBegin* block = block_at(i); 567 568 ResourceBitMap live_gen(live_size); 569 ResourceBitMap live_kill(live_size); 570 571 if (block->is_set(BlockBegin::exception_entry_flag)) { 572 // Phi functions at the begin of an exception handler are 573 // implicitly defined (= killed) at the beginning of the block. 574 for_each_phi_fun(block, phi, 575 if (!phi->is_illegal()) { live_kill.set_bit(phi->operand()->vreg_number()); } 576 ); 577 } 578 579 LIR_OpList* instructions = block->lir()->instructions_list(); 580 int num_inst = instructions->length(); 581 582 // iterate all instructions of the block. skip the first because it is always a label 583 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label"); 584 for (int j = 1; j < num_inst; j++) { 585 LIR_Op* op = instructions->at(j); 586 587 // visit operation to collect all operands 588 visitor.visit(op); 589 590 if (visitor.has_call()) { 591 _has_call.set_bit(op->id() >> 1); 592 local_num_calls++; 593 } 594 if (visitor.info_count() > 0) { 595 _has_info.set_bit(op->id() >> 1); 596 } 597 598 // iterate input operands of instruction 599 int k, n, reg; 600 n = visitor.opr_count(LIR_OpVisitState::inputMode); 601 for (k = 0; k < n; k++) { 602 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k); 603 assert(opr->is_register(), "visitor should only return register operands"); 604 605 if (opr->is_virtual_register()) { 606 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 607 reg = opr->vreg_number(); 608 if (!live_kill.at(reg)) { 609 live_gen.set_bit(reg); 610 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for register %d at instruction %d", reg, op->id())); 611 } 612 if (block->loop_index() >= 0) { 613 local_interval_in_loop.set_bit(reg, block->loop_index()); 614 } 615 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 616 } 617 618 #ifdef ASSERT 619 // fixed intervals are never live at block boundaries, so 620 // they need not be processed in live sets. 621 // this is checked by these assertions to be sure about it. 622 // the entry block may have incoming values in registers, which is ok. 623 if (!opr->is_virtual_register() && block != ir()->start()) { 624 reg = reg_num(opr); 625 if (is_processed_reg_num(reg)) { 626 assert(live_kill.at(reg), "using fixed register that is not defined in this block"); 627 } 628 reg = reg_numHi(opr); 629 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 630 assert(live_kill.at(reg), "using fixed register that is not defined in this block"); 631 } 632 } 633 #endif 634 } 635 636 // Add uses of live locals from interpreter's point of view for proper debug information generation 637 n = visitor.info_count(); 638 for (k = 0; k < n; k++) { 639 CodeEmitInfo* info = visitor.info_at(k); 640 ValueStack* stack = info->stack(); 641 for_each_state_value(stack, value, 642 set_live_gen_kill(value, op, live_gen, live_kill); 643 local_has_fpu_registers = local_has_fpu_registers || value->type()->is_float_kind(); 644 ); 645 } 646 647 // iterate temp operands of instruction 648 n = visitor.opr_count(LIR_OpVisitState::tempMode); 649 for (k = 0; k < n; k++) { 650 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k); 651 assert(opr->is_register(), "visitor should only return register operands"); 652 653 if (opr->is_virtual_register()) { 654 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 655 reg = opr->vreg_number(); 656 live_kill.set_bit(reg); 657 if (block->loop_index() >= 0) { 658 local_interval_in_loop.set_bit(reg, block->loop_index()); 659 } 660 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 661 } 662 663 #ifdef ASSERT 664 // fixed intervals are never live at block boundaries, so 665 // they need not be processed in live sets 666 // process them only in debug mode so that this can be checked 667 if (!opr->is_virtual_register()) { 668 reg = reg_num(opr); 669 if (is_processed_reg_num(reg)) { 670 live_kill.set_bit(reg_num(opr)); 671 } 672 reg = reg_numHi(opr); 673 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 674 live_kill.set_bit(reg); 675 } 676 } 677 #endif 678 } 679 680 // iterate output operands of instruction 681 n = visitor.opr_count(LIR_OpVisitState::outputMode); 682 for (k = 0; k < n; k++) { 683 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k); 684 assert(opr->is_register(), "visitor should only return register operands"); 685 686 if (opr->is_virtual_register()) { 687 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 688 reg = opr->vreg_number(); 689 live_kill.set_bit(reg); 690 if (block->loop_index() >= 0) { 691 local_interval_in_loop.set_bit(reg, block->loop_index()); 692 } 693 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 694 } 695 696 #ifdef ASSERT 697 // fixed intervals are never live at block boundaries, so 698 // they need not be processed in live sets 699 // process them only in debug mode so that this can be checked 700 if (!opr->is_virtual_register()) { 701 reg = reg_num(opr); 702 if (is_processed_reg_num(reg)) { 703 live_kill.set_bit(reg_num(opr)); 704 } 705 reg = reg_numHi(opr); 706 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 707 live_kill.set_bit(reg); 708 } 709 } 710 #endif 711 } 712 } // end of instruction iteration 713 714 block->set_live_gen (live_gen); 715 block->set_live_kill(live_kill); 716 block->set_live_in (ResourceBitMap(live_size)); 717 block->set_live_out (ResourceBitMap(live_size)); 718 719 TRACE_LINEAR_SCAN(4, tty->print("live_gen B%d ", block->block_id()); print_bitmap(block->live_gen())); 720 TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill())); 721 } // end of block iteration 722 723 // propagate local calculated information into LinearScan object 724 _has_fpu_registers = local_has_fpu_registers; 725 compilation()->set_has_fpu_code(local_has_fpu_registers); 726 727 _num_calls = local_num_calls; 728 _interval_in_loop = local_interval_in_loop; 729 } 730 731 732 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets 733 // (sets live_in and live_out for each block) 734 735 void LinearScan::compute_global_live_sets() { 736 TIME_LINEAR_SCAN(timer_compute_global_live_sets); 737 738 int num_blocks = block_count(); 739 bool change_occurred; 740 bool change_occurred_in_block; 741 int iteration_count = 0; 742 ResourceBitMap live_out(live_set_size()); // scratch set for calculations 743 744 // Perform a backward dataflow analysis to compute live_out and live_in for each block. 745 // The loop is executed until a fixpoint is reached (no changes in an iteration) 746 // Exception handlers must be processed because not all live values are 747 // present in the state array, e.g. because of global value numbering 748 do { 749 change_occurred = false; 750 751 // iterate all blocks in reverse order 752 for (int i = num_blocks - 1; i >= 0; i--) { 753 BlockBegin* block = block_at(i); 754 755 change_occurred_in_block = false; 756 757 // live_out(block) is the union of live_in(sux), for successors sux of block 758 int n = block->number_of_sux(); 759 int e = block->number_of_exception_handlers(); 760 if (n + e > 0) { 761 // block has successors 762 if (n > 0) { 763 live_out.set_from(block->sux_at(0)->live_in()); 764 for (int j = 1; j < n; j++) { 765 live_out.set_union(block->sux_at(j)->live_in()); 766 } 767 } else { 768 live_out.clear(); 769 } 770 for (int j = 0; j < e; j++) { 771 live_out.set_union(block->exception_handler_at(j)->live_in()); 772 } 773 774 if (!block->live_out().is_same(live_out)) { 775 // A change occurred. Swap the old and new live out sets to avoid copying. 776 ResourceBitMap temp = block->live_out(); 777 block->set_live_out(live_out); 778 live_out = temp; 779 780 change_occurred = true; 781 change_occurred_in_block = true; 782 } 783 } 784 785 if (iteration_count == 0 || change_occurred_in_block) { 786 // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block)) 787 // note: live_in has to be computed only in first iteration or if live_out has changed! 788 ResourceBitMap live_in = block->live_in(); 789 live_in.set_from(block->live_out()); 790 live_in.set_difference(block->live_kill()); 791 live_in.set_union(block->live_gen()); 792 } 793 794 #ifdef ASSERT 795 if (TraceLinearScanLevel >= 4) { 796 char c = ' '; 797 if (iteration_count == 0 || change_occurred_in_block) { 798 c = '*'; 799 } 800 tty->print("(%d) live_in%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in()); 801 tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out()); 802 } 803 #endif 804 } 805 iteration_count++; 806 807 if (change_occurred && iteration_count > 50) { 808 BAILOUT("too many iterations in compute_global_live_sets"); 809 } 810 } while (change_occurred); 811 812 813 #ifdef ASSERT 814 // check that fixed intervals are not live at block boundaries 815 // (live set must be empty at fixed intervals) 816 for (int i = 0; i < num_blocks; i++) { 817 BlockBegin* block = block_at(i); 818 for (int j = 0; j < LIR_Opr::vreg_base; j++) { 819 assert(block->live_in().at(j) == false, "live_in set of fixed register must be empty"); 820 assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty"); 821 assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty"); 822 } 823 } 824 #endif 825 826 // check that the live_in set of the first block is empty 827 ResourceBitMap live_in_args(ir()->start()->live_in().size()); 828 if (!ir()->start()->live_in().is_same(live_in_args)) { 829 #ifdef ASSERT 830 tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)"); 831 tty->print_cr("affected registers:"); 832 print_bitmap(ir()->start()->live_in()); 833 834 // print some additional information to simplify debugging 835 for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) { 836 if (ir()->start()->live_in().at(i)) { 837 Instruction* instr = gen()->instruction_for_vreg(i); 838 tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == nullptr ? ' ' : instr->type()->tchar(), instr == nullptr ? 0 : instr->id()); 839 840 for (int j = 0; j < num_blocks; j++) { 841 BlockBegin* block = block_at(j); 842 if (block->live_gen().at(i)) { 843 tty->print_cr(" used in block B%d", block->block_id()); 844 } 845 if (block->live_kill().at(i)) { 846 tty->print_cr(" defined in block B%d", block->block_id()); 847 } 848 } 849 } 850 } 851 852 #endif 853 // when this fails, virtual registers are used before they are defined. 854 assert(false, "live_in set of first block must be empty"); 855 // bailout of if this occurs in product mode. 856 bailout("live_in set of first block not empty"); 857 } 858 } 859 860 861 // ********** Phase 4: build intervals 862 // (fills the list _intervals) 863 864 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) { 865 assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type"); 866 LIR_Opr opr = value->operand(); 867 Constant* con = value->as_Constant(); 868 869 if ((con == nullptr || con->is_pinned()) && opr->is_register()) { 870 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 871 add_use(opr, from, to, use_kind); 872 } 873 } 874 875 876 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) { 877 TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind)); 878 assert(opr->is_register(), "should not be called otherwise"); 879 880 if (opr->is_virtual_register()) { 881 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 882 add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register()); 883 884 } else { 885 int reg = reg_num(opr); 886 if (is_processed_reg_num(reg)) { 887 add_def(reg, def_pos, use_kind, opr->type_register()); 888 } 889 reg = reg_numHi(opr); 890 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 891 add_def(reg, def_pos, use_kind, opr->type_register()); 892 } 893 } 894 } 895 896 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) { 897 TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind)); 898 assert(opr->is_register(), "should not be called otherwise"); 899 900 if (opr->is_virtual_register()) { 901 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 902 add_use(opr->vreg_number(), from, to, use_kind, opr->type_register()); 903 904 } else { 905 int reg = reg_num(opr); 906 if (is_processed_reg_num(reg)) { 907 add_use(reg, from, to, use_kind, opr->type_register()); 908 } 909 reg = reg_numHi(opr); 910 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 911 add_use(reg, from, to, use_kind, opr->type_register()); 912 } 913 } 914 } 915 916 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) { 917 TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind)); 918 assert(opr->is_register(), "should not be called otherwise"); 919 920 if (opr->is_virtual_register()) { 921 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 922 add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register()); 923 924 } else { 925 int reg = reg_num(opr); 926 if (is_processed_reg_num(reg)) { 927 add_temp(reg, temp_pos, use_kind, opr->type_register()); 928 } 929 reg = reg_numHi(opr); 930 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 931 add_temp(reg, temp_pos, use_kind, opr->type_register()); 932 } 933 } 934 } 935 936 937 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) { 938 Interval* interval = interval_at(reg_num); 939 if (interval != nullptr) { 940 assert(interval->reg_num() == reg_num, "wrong interval"); 941 942 if (type != T_ILLEGAL) { 943 interval->set_type(type); 944 } 945 946 Range* r = interval->first(); 947 if (r->from() <= def_pos) { 948 // Update the starting point (when a range is first created for a use, its 949 // start is the beginning of the current block until a def is encountered.) 950 r->set_from(def_pos); 951 interval->add_use_pos(def_pos, use_kind); 952 953 } else { 954 // Dead value - make vacuous interval 955 // also add use_kind for dead intervals 956 interval->add_range(def_pos, def_pos + 1); 957 interval->add_use_pos(def_pos, use_kind); 958 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos)); 959 } 960 961 } else { 962 // Dead value - make vacuous interval 963 // also add use_kind for dead intervals 964 interval = create_interval(reg_num); 965 if (type != T_ILLEGAL) { 966 interval->set_type(type); 967 } 968 969 interval->add_range(def_pos, def_pos + 1); 970 interval->add_use_pos(def_pos, use_kind); 971 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos)); 972 } 973 974 change_spill_definition_pos(interval, def_pos); 975 if (use_kind == noUse && interval->spill_state() <= startInMemory) { 976 // detection of method-parameters and roundfp-results 977 // TODO: move this directly to position where use-kind is computed 978 interval->set_spill_state(startInMemory); 979 } 980 } 981 982 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) { 983 Interval* interval = interval_at(reg_num); 984 if (interval == nullptr) { 985 interval = create_interval(reg_num); 986 } 987 assert(interval->reg_num() == reg_num, "wrong interval"); 988 989 if (type != T_ILLEGAL) { 990 interval->set_type(type); 991 } 992 993 interval->add_range(from, to); 994 interval->add_use_pos(to, use_kind); 995 } 996 997 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) { 998 Interval* interval = interval_at(reg_num); 999 if (interval == nullptr) { 1000 interval = create_interval(reg_num); 1001 } 1002 assert(interval->reg_num() == reg_num, "wrong interval"); 1003 1004 if (type != T_ILLEGAL) { 1005 interval->set_type(type); 1006 } 1007 1008 interval->add_range(temp_pos, temp_pos + 1); 1009 interval->add_use_pos(temp_pos, use_kind); 1010 } 1011 1012 1013 // the results of this functions are used for optimizing spilling and reloading 1014 // if the functions return shouldHaveRegister and the interval is spilled, 1015 // it is not reloaded to a register. 1016 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) { 1017 if (op->code() == lir_move) { 1018 assert(op->as_Op1() != nullptr, "lir_move must be LIR_Op1"); 1019 LIR_Op1* move = (LIR_Op1*)op; 1020 LIR_Opr res = move->result_opr(); 1021 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory); 1022 1023 if (result_in_memory) { 1024 // Begin of an interval with must_start_in_memory set. 1025 // This interval will always get a stack slot first, so return noUse. 1026 return noUse; 1027 1028 } else if (move->in_opr()->is_stack()) { 1029 // method argument (condition must be equal to handle_method_arguments) 1030 return noUse; 1031 1032 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) { 1033 // Move from register to register 1034 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) { 1035 // special handling of phi-function moves inside osr-entry blocks 1036 // input operand must have a register instead of output operand (leads to better register allocation) 1037 return shouldHaveRegister; 1038 } 1039 } 1040 } 1041 1042 if (opr->is_virtual() && 1043 gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) { 1044 // result is a stack-slot, so prevent immediate reloading 1045 return noUse; 1046 } 1047 1048 // all other operands require a register 1049 return mustHaveRegister; 1050 } 1051 1052 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) { 1053 if (op->code() == lir_move) { 1054 assert(op->as_Op1() != nullptr, "lir_move must be LIR_Op1"); 1055 LIR_Op1* move = (LIR_Op1*)op; 1056 LIR_Opr res = move->result_opr(); 1057 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory); 1058 1059 if (result_in_memory) { 1060 // Move to an interval with must_start_in_memory set. 1061 // To avoid moves from stack to stack (not allowed) force the input operand to a register 1062 return mustHaveRegister; 1063 1064 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) { 1065 // Move from register to register 1066 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) { 1067 // special handling of phi-function moves inside osr-entry blocks 1068 // input operand must have a register instead of output operand (leads to better register allocation) 1069 return mustHaveRegister; 1070 } 1071 1072 // The input operand is not forced to a register (moves from stack to register are allowed), 1073 // but it is faster if the input operand is in a register 1074 return shouldHaveRegister; 1075 } 1076 } 1077 1078 1079 #if defined(X86) || defined(S390) 1080 if (op->code() == lir_cmove) { 1081 // conditional moves can handle stack operands 1082 assert(op->result_opr()->is_register(), "result must always be in a register"); 1083 return shouldHaveRegister; 1084 } 1085 1086 // optimizations for second input operand of arithmehtic operations on Intel 1087 // this operand is allowed to be on the stack in some cases 1088 BasicType opr_type = opr->type_register(); 1089 if (opr_type == T_FLOAT || opr_type == T_DOUBLE) { 1090 if (IA32_ONLY( (UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2 ) NOT_IA32( true )) { 1091 // SSE float instruction (T_DOUBLE only supported with SSE2) 1092 switch (op->code()) { 1093 case lir_cmp: 1094 case lir_add: 1095 case lir_sub: 1096 case lir_mul: 1097 case lir_div: 1098 { 1099 assert(op->as_Op2() != nullptr, "must be LIR_Op2"); 1100 LIR_Op2* op2 = (LIR_Op2*)op; 1101 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1102 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1103 return shouldHaveRegister; 1104 } 1105 } 1106 default: 1107 break; 1108 } 1109 } else { 1110 // FPU stack float instruction 1111 switch (op->code()) { 1112 case lir_add: 1113 case lir_sub: 1114 case lir_mul: 1115 case lir_div: 1116 { 1117 assert(op->as_Op2() != nullptr, "must be LIR_Op2"); 1118 LIR_Op2* op2 = (LIR_Op2*)op; 1119 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1120 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1121 return shouldHaveRegister; 1122 } 1123 } 1124 default: 1125 break; 1126 } 1127 } 1128 // We want to sometimes use logical operations on pointers, in particular in GC barriers. 1129 // Since 64bit logical operations do not current support operands on stack, we have to make sure 1130 // T_OBJECT doesn't get spilled along with T_LONG. 1131 } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) { 1132 // integer instruction (note: long operands must always be in register) 1133 switch (op->code()) { 1134 case lir_cmp: 1135 case lir_add: 1136 case lir_sub: 1137 case lir_logic_and: 1138 case lir_logic_or: 1139 case lir_logic_xor: 1140 { 1141 assert(op->as_Op2() != nullptr, "must be LIR_Op2"); 1142 LIR_Op2* op2 = (LIR_Op2*)op; 1143 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1144 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1145 return shouldHaveRegister; 1146 } 1147 } 1148 default: 1149 break; 1150 } 1151 } 1152 #endif // X86 || S390 1153 1154 // all other operands require a register 1155 return mustHaveRegister; 1156 } 1157 1158 1159 void LinearScan::handle_method_arguments(LIR_Op* op) { 1160 // special handling for method arguments (moves from stack to virtual register): 1161 // the interval gets no register assigned, but the stack slot. 1162 // it is split before the first use by the register allocator. 1163 1164 if (op->code() == lir_move) { 1165 assert(op->as_Op1() != nullptr, "must be LIR_Op1"); 1166 LIR_Op1* move = (LIR_Op1*)op; 1167 1168 if (move->in_opr()->is_stack()) { 1169 #ifdef ASSERT 1170 int arg_size = compilation()->method()->arg_size(); 1171 LIR_Opr o = move->in_opr(); 1172 if (o->is_single_stack()) { 1173 assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range"); 1174 } else if (o->is_double_stack()) { 1175 assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range"); 1176 } else { 1177 ShouldNotReachHere(); 1178 } 1179 1180 assert(move->id() > 0, "invalid id"); 1181 assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block"); 1182 assert(move->result_opr()->is_virtual(), "result of move must be a virtual register"); 1183 1184 TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr()))); 1185 #endif 1186 1187 Interval* interval = interval_at(reg_num(move->result_opr())); 1188 1189 int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix()); 1190 interval->set_canonical_spill_slot(stack_slot); 1191 interval->assign_reg(stack_slot); 1192 } 1193 } 1194 } 1195 1196 void LinearScan::handle_doubleword_moves(LIR_Op* op) { 1197 // special handling for doubleword move from memory to register: 1198 // in this case the registers of the input address and the result 1199 // registers must not overlap -> add a temp range for the input registers 1200 if (op->code() == lir_move) { 1201 assert(op->as_Op1() != nullptr, "must be LIR_Op1"); 1202 LIR_Op1* move = (LIR_Op1*)op; 1203 1204 if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) { 1205 LIR_Address* address = move->in_opr()->as_address_ptr(); 1206 if (address != nullptr) { 1207 if (address->base()->is_valid()) { 1208 add_temp(address->base(), op->id(), noUse); 1209 } 1210 if (address->index()->is_valid()) { 1211 add_temp(address->index(), op->id(), noUse); 1212 } 1213 } 1214 } 1215 } 1216 } 1217 1218 void LinearScan::add_register_hints(LIR_Op* op) { 1219 switch (op->code()) { 1220 case lir_move: // fall through 1221 case lir_convert: { 1222 assert(op->as_Op1() != nullptr, "lir_move, lir_convert must be LIR_Op1"); 1223 LIR_Op1* move = (LIR_Op1*)op; 1224 1225 LIR_Opr move_from = move->in_opr(); 1226 LIR_Opr move_to = move->result_opr(); 1227 1228 if (move_to->is_register() && move_from->is_register()) { 1229 Interval* from = interval_at(reg_num(move_from)); 1230 Interval* to = interval_at(reg_num(move_to)); 1231 if (from != nullptr && to != nullptr) { 1232 to->set_register_hint(from); 1233 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num())); 1234 } 1235 } 1236 break; 1237 } 1238 case lir_cmove: { 1239 assert(op->as_Op4() != nullptr, "lir_cmove must be LIR_Op4"); 1240 LIR_Op4* cmove = (LIR_Op4*)op; 1241 1242 LIR_Opr move_from = cmove->in_opr1(); 1243 LIR_Opr move_to = cmove->result_opr(); 1244 1245 if (move_to->is_register() && move_from->is_register()) { 1246 Interval* from = interval_at(reg_num(move_from)); 1247 Interval* to = interval_at(reg_num(move_to)); 1248 if (from != nullptr && to != nullptr) { 1249 to->set_register_hint(from); 1250 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num())); 1251 } 1252 } 1253 break; 1254 } 1255 default: 1256 break; 1257 } 1258 } 1259 1260 1261 void LinearScan::build_intervals() { 1262 TIME_LINEAR_SCAN(timer_build_intervals); 1263 1264 // initialize interval list with expected number of intervals 1265 // (32 is added to have some space for split children without having to resize the list) 1266 _intervals = IntervalList(num_virtual_regs() + 32); 1267 // initialize all slots that are used by build_intervals 1268 _intervals.at_put_grow(num_virtual_regs() - 1, nullptr, nullptr); 1269 1270 // create a list with all caller-save registers (cpu, fpu, xmm) 1271 // when an instruction is a call, a temp range is created for all these registers 1272 int num_caller_save_registers = 0; 1273 int caller_save_registers[LinearScan::nof_regs]; 1274 1275 int i; 1276 for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) { 1277 LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i); 1278 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1279 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1280 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1281 } 1282 1283 // temp ranges for fpu registers are only created when the method has 1284 // virtual fpu operands. Otherwise no allocation for fpu registers is 1285 // performed and so the temp ranges would be useless 1286 if (has_fpu_registers()) { 1287 #ifdef X86 1288 if (UseSSE < 2) { 1289 #endif // X86 1290 for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) { 1291 LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i); 1292 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1293 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1294 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1295 } 1296 #ifdef X86 1297 } 1298 #endif // X86 1299 1300 #ifdef X86 1301 if (UseSSE > 0) { 1302 int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms(); 1303 for (i = 0; i < num_caller_save_xmm_regs; i ++) { 1304 LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i); 1305 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1306 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1307 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1308 } 1309 } 1310 #endif // X86 1311 } 1312 assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds"); 1313 1314 1315 LIR_OpVisitState visitor; 1316 1317 // iterate all blocks in reverse order 1318 for (i = block_count() - 1; i >= 0; i--) { 1319 BlockBegin* block = block_at(i); 1320 LIR_OpList* instructions = block->lir()->instructions_list(); 1321 int block_from = block->first_lir_instruction_id(); 1322 int block_to = block->last_lir_instruction_id(); 1323 1324 assert(block_from == instructions->at(0)->id(), "must be"); 1325 assert(block_to == instructions->at(instructions->length() - 1)->id(), "must be"); 1326 1327 // Update intervals for registers live at the end of this block; 1328 ResourceBitMap& live = block->live_out(); 1329 auto updater = [&](BitMap::idx_t index) { 1330 int number = static_cast<int>(index); 1331 assert(number >= LIR_Opr::vreg_base, "fixed intervals must not be live on block bounds"); 1332 TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2)); 1333 1334 add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL); 1335 1336 // add special use positions for loop-end blocks when the 1337 // interval is used anywhere inside this loop. It's possible 1338 // that the block was part of a non-natural loop, so it might 1339 // have an invalid loop index. 1340 if (block->is_set(BlockBegin::linear_scan_loop_end_flag) && 1341 block->loop_index() != -1 && 1342 is_interval_in_loop(number, block->loop_index())) { 1343 interval_at(number)->add_use_pos(block_to + 1, loopEndMarker); 1344 } 1345 }; 1346 live.iterate(updater); 1347 1348 // iterate all instructions of the block in reverse order. 1349 // skip the first instruction because it is always a label 1350 // definitions of intervals are processed before uses 1351 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label"); 1352 for (int j = instructions->length() - 1; j >= 1; j--) { 1353 LIR_Op* op = instructions->at(j); 1354 int op_id = op->id(); 1355 1356 // visit operation to collect all operands 1357 visitor.visit(op); 1358 1359 // add a temp range for each register if operation destroys caller-save registers 1360 if (visitor.has_call()) { 1361 for (int k = 0; k < num_caller_save_registers; k++) { 1362 add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL); 1363 } 1364 TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers")); 1365 } 1366 1367 // Add any platform dependent temps 1368 pd_add_temps(op); 1369 1370 // visit definitions (output and temp operands) 1371 int k, n; 1372 n = visitor.opr_count(LIR_OpVisitState::outputMode); 1373 for (k = 0; k < n; k++) { 1374 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k); 1375 assert(opr->is_register(), "visitor should only return register operands"); 1376 add_def(opr, op_id, use_kind_of_output_operand(op, opr)); 1377 } 1378 1379 n = visitor.opr_count(LIR_OpVisitState::tempMode); 1380 for (k = 0; k < n; k++) { 1381 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k); 1382 assert(opr->is_register(), "visitor should only return register operands"); 1383 add_temp(opr, op_id, mustHaveRegister); 1384 } 1385 1386 // visit uses (input operands) 1387 n = visitor.opr_count(LIR_OpVisitState::inputMode); 1388 for (k = 0; k < n; k++) { 1389 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k); 1390 assert(opr->is_register(), "visitor should only return register operands"); 1391 add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr)); 1392 } 1393 1394 // Add uses of live locals from interpreter's point of view for proper 1395 // debug information generation 1396 // Treat these operands as temp values (if the life range is extended 1397 // to a call site, the value would be in a register at the call otherwise) 1398 n = visitor.info_count(); 1399 for (k = 0; k < n; k++) { 1400 CodeEmitInfo* info = visitor.info_at(k); 1401 ValueStack* stack = info->stack(); 1402 for_each_state_value(stack, value, 1403 add_use(value, block_from, op_id + 1, noUse); 1404 ); 1405 } 1406 1407 // special steps for some instructions (especially moves) 1408 handle_method_arguments(op); 1409 handle_doubleword_moves(op); 1410 add_register_hints(op); 1411 1412 } // end of instruction iteration 1413 } // end of block iteration 1414 1415 1416 // add the range [0, 1[ to all fixed intervals 1417 // -> the register allocator need not handle unhandled fixed intervals 1418 for (int n = 0; n < LinearScan::nof_regs; n++) { 1419 Interval* interval = interval_at(n); 1420 if (interval != nullptr) { 1421 interval->add_range(0, 1); 1422 } 1423 } 1424 } 1425 1426 1427 // ********** Phase 5: actual register allocation 1428 1429 int LinearScan::interval_cmp(Interval** a, Interval** b) { 1430 if (*a != nullptr) { 1431 if (*b != nullptr) { 1432 return (*a)->from() - (*b)->from(); 1433 } else { 1434 return -1; 1435 } 1436 } else { 1437 if (*b != nullptr) { 1438 return 1; 1439 } else { 1440 return 0; 1441 } 1442 } 1443 } 1444 1445 #ifdef ASSERT 1446 static int interval_cmp(Interval* const& l, Interval* const& r) { 1447 return l->from() - r->from(); 1448 } 1449 1450 static bool find_interval(Interval* interval, IntervalArray* intervals) { 1451 bool found; 1452 int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found); 1453 1454 if (!found) { 1455 return false; 1456 } 1457 1458 int from = interval->from(); 1459 1460 // The index we've found using binary search is pointing to an interval 1461 // that is defined in the same place as the interval we were looking for. 1462 // So now we have to look around that index and find exact interval. 1463 for (int i = idx; i >= 0; i--) { 1464 if (intervals->at(i) == interval) { 1465 return true; 1466 } 1467 if (intervals->at(i)->from() != from) { 1468 break; 1469 } 1470 } 1471 1472 for (int i = idx + 1; i < intervals->length(); i++) { 1473 if (intervals->at(i) == interval) { 1474 return true; 1475 } 1476 if (intervals->at(i)->from() != from) { 1477 break; 1478 } 1479 } 1480 1481 return false; 1482 } 1483 1484 bool LinearScan::is_sorted(IntervalArray* intervals) { 1485 int from = -1; 1486 int null_count = 0; 1487 1488 for (int i = 0; i < intervals->length(); i++) { 1489 Interval* it = intervals->at(i); 1490 if (it != nullptr) { 1491 assert(from <= it->from(), "Intervals are unordered"); 1492 from = it->from(); 1493 } else { 1494 null_count++; 1495 } 1496 } 1497 1498 assert(null_count == 0, "Sorted intervals should not contain nulls"); 1499 1500 null_count = 0; 1501 1502 for (int i = 0; i < interval_count(); i++) { 1503 Interval* interval = interval_at(i); 1504 if (interval != nullptr) { 1505 assert(find_interval(interval, intervals), "Lists do not contain same intervals"); 1506 } else { 1507 null_count++; 1508 } 1509 } 1510 1511 assert(interval_count() - null_count == intervals->length(), 1512 "Sorted list should contain the same amount of non-null intervals as unsorted list"); 1513 1514 return true; 1515 } 1516 #endif 1517 1518 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) { 1519 if (*prev != nullptr) { 1520 (*prev)->set_next(interval); 1521 } else { 1522 *first = interval; 1523 } 1524 *prev = interval; 1525 } 1526 1527 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) { 1528 assert(is_sorted(_sorted_intervals), "interval list is not sorted"); 1529 1530 *list1 = *list2 = Interval::end(); 1531 1532 Interval* list1_prev = nullptr; 1533 Interval* list2_prev = nullptr; 1534 Interval* v; 1535 1536 const int n = _sorted_intervals->length(); 1537 for (int i = 0; i < n; i++) { 1538 v = _sorted_intervals->at(i); 1539 if (v == nullptr) continue; 1540 1541 if (is_list1(v)) { 1542 add_to_list(list1, &list1_prev, v); 1543 } else if (is_list2 == nullptr || is_list2(v)) { 1544 add_to_list(list2, &list2_prev, v); 1545 } 1546 } 1547 1548 if (list1_prev != nullptr) list1_prev->set_next(Interval::end()); 1549 if (list2_prev != nullptr) list2_prev->set_next(Interval::end()); 1550 1551 assert(list1_prev == nullptr || list1_prev->next() == Interval::end(), "linear list ends not with sentinel"); 1552 assert(list2_prev == nullptr || list2_prev->next() == Interval::end(), "linear list ends not with sentinel"); 1553 } 1554 1555 1556 void LinearScan::sort_intervals_before_allocation() { 1557 TIME_LINEAR_SCAN(timer_sort_intervals_before); 1558 1559 if (_needs_full_resort) { 1560 // There is no known reason why this should occur but just in case... 1561 assert(false, "should never occur"); 1562 // Re-sort existing interval list because an Interval::from() has changed 1563 _sorted_intervals->sort(interval_cmp); 1564 _needs_full_resort = false; 1565 } 1566 1567 IntervalList* unsorted_list = &_intervals; 1568 int unsorted_len = unsorted_list->length(); 1569 int sorted_len = 0; 1570 int unsorted_idx; 1571 int sorted_idx = 0; 1572 int sorted_from_max = -1; 1573 1574 // calc number of items for sorted list (sorted list must not contain null values) 1575 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) { 1576 if (unsorted_list->at(unsorted_idx) != nullptr) { 1577 sorted_len++; 1578 } 1579 } 1580 IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, nullptr); 1581 1582 // special sorting algorithm: the original interval-list is almost sorted, 1583 // only some intervals are swapped. So this is much faster than a complete QuickSort 1584 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) { 1585 Interval* cur_interval = unsorted_list->at(unsorted_idx); 1586 1587 if (cur_interval != nullptr) { 1588 int cur_from = cur_interval->from(); 1589 1590 if (sorted_from_max <= cur_from) { 1591 sorted_list->at_put(sorted_idx++, cur_interval); 1592 sorted_from_max = cur_interval->from(); 1593 } else { 1594 // the assumption that the intervals are already sorted failed, 1595 // so this interval must be sorted in manually 1596 int j; 1597 for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) { 1598 sorted_list->at_put(j + 1, sorted_list->at(j)); 1599 } 1600 sorted_list->at_put(j + 1, cur_interval); 1601 sorted_idx++; 1602 } 1603 } 1604 } 1605 _sorted_intervals = sorted_list; 1606 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1607 } 1608 1609 void LinearScan::sort_intervals_after_allocation() { 1610 TIME_LINEAR_SCAN(timer_sort_intervals_after); 1611 1612 if (_needs_full_resort) { 1613 // Re-sort existing interval list because an Interval::from() has changed 1614 _sorted_intervals->sort(interval_cmp); 1615 _needs_full_resort = false; 1616 } 1617 1618 IntervalArray* old_list = _sorted_intervals; 1619 IntervalList* new_list = _new_intervals_from_allocation; 1620 int old_len = old_list->length(); 1621 int new_len = new_list == nullptr ? 0 : new_list->length(); 1622 1623 if (new_len == 0) { 1624 // no intervals have been added during allocation, so sorted list is already up to date 1625 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1626 return; 1627 } 1628 1629 // conventional sort-algorithm for new intervals 1630 new_list->sort(interval_cmp); 1631 1632 // merge old and new list (both already sorted) into one combined list 1633 int combined_list_len = old_len + new_len; 1634 IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, nullptr); 1635 int old_idx = 0; 1636 int new_idx = 0; 1637 1638 while (old_idx + new_idx < old_len + new_len) { 1639 if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) { 1640 combined_list->at_put(old_idx + new_idx, old_list->at(old_idx)); 1641 old_idx++; 1642 } else { 1643 combined_list->at_put(old_idx + new_idx, new_list->at(new_idx)); 1644 new_idx++; 1645 } 1646 } 1647 1648 _sorted_intervals = combined_list; 1649 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1650 } 1651 1652 1653 void LinearScan::allocate_registers() { 1654 TIME_LINEAR_SCAN(timer_allocate_registers); 1655 1656 Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals; 1657 Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals; 1658 1659 // collect cpu intervals 1660 create_unhandled_lists(&precolored_cpu_intervals, ¬_precolored_cpu_intervals, 1661 is_precolored_cpu_interval, is_virtual_cpu_interval); 1662 1663 // collect fpu intervals 1664 create_unhandled_lists(&precolored_fpu_intervals, ¬_precolored_fpu_intervals, 1665 is_precolored_fpu_interval, is_virtual_fpu_interval); 1666 // this fpu interval collection cannot be moved down below with the allocation section as 1667 // the cpu_lsw.walk() changes interval positions. 1668 1669 if (!has_fpu_registers()) { 1670 #ifdef ASSERT 1671 assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval"); 1672 #else 1673 if (not_precolored_fpu_intervals != Interval::end()) { 1674 BAILOUT("missed an uncolored fpu interval"); 1675 } 1676 #endif 1677 } 1678 1679 // allocate cpu registers 1680 LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals); 1681 cpu_lsw.walk(); 1682 cpu_lsw.finish_allocation(); 1683 1684 if (has_fpu_registers()) { 1685 // allocate fpu registers 1686 LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals); 1687 fpu_lsw.walk(); 1688 fpu_lsw.finish_allocation(); 1689 } 1690 } 1691 1692 1693 // ********** Phase 6: resolve data flow 1694 // (insert moves at edges between blocks if intervals have been split) 1695 1696 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode 1697 // instead of returning null 1698 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) { 1699 Interval* result = interval->split_child_at_op_id(op_id, mode); 1700 if (result != nullptr) { 1701 return result; 1702 } 1703 1704 assert(false, "must find an interval, but do a clean bailout in product mode"); 1705 result = new Interval(LIR_Opr::vreg_base); 1706 result->assign_reg(0); 1707 result->set_type(T_INT); 1708 BAILOUT_("LinearScan: interval is null", result); 1709 } 1710 1711 1712 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) { 1713 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1714 assert(interval_at(reg_num) != nullptr, "no interval found"); 1715 1716 return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode); 1717 } 1718 1719 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) { 1720 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1721 assert(interval_at(reg_num) != nullptr, "no interval found"); 1722 1723 return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode); 1724 } 1725 1726 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) { 1727 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1728 assert(interval_at(reg_num) != nullptr, "no interval found"); 1729 1730 return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode); 1731 } 1732 1733 1734 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) { 1735 DEBUG_ONLY(move_resolver.check_empty()); 1736 1737 // visit all registers where the live_at_edge bit is set 1738 const ResourceBitMap& live_at_edge = to_block->live_in(); 1739 auto visitor = [&](BitMap::idx_t index) { 1740 int r = static_cast<int>(index); 1741 assert(r < num_virtual_regs(), "live information set for not existing interval"); 1742 assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge"); 1743 1744 Interval* from_interval = interval_at_block_end(from_block, r); 1745 Interval* to_interval = interval_at_block_begin(to_block, r); 1746 1747 if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) { 1748 // need to insert move instruction 1749 move_resolver.add_mapping(from_interval, to_interval); 1750 } 1751 }; 1752 live_at_edge.iterate(visitor, 0, live_set_size()); 1753 } 1754 1755 1756 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) { 1757 if (from_block->number_of_sux() <= 1) { 1758 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id())); 1759 1760 LIR_OpList* instructions = from_block->lir()->instructions_list(); 1761 LIR_OpBranch* branch = instructions->last()->as_OpBranch(); 1762 if (branch != nullptr) { 1763 // insert moves before branch 1764 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump"); 1765 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2); 1766 } else { 1767 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1); 1768 } 1769 1770 } else { 1771 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id())); 1772 #ifdef ASSERT 1773 assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != nullptr, "block does not start with a label"); 1774 1775 // because the number of predecessor edges matches the number of 1776 // successor edges, blocks which are reached by switch statements 1777 // may have be more than one predecessor but it will be guaranteed 1778 // that all predecessors will be the same. 1779 for (int i = 0; i < to_block->number_of_preds(); i++) { 1780 assert(from_block == to_block->pred_at(i), "all critical edges must be broken"); 1781 } 1782 #endif 1783 1784 move_resolver.set_insert_position(to_block->lir(), 0); 1785 } 1786 } 1787 1788 1789 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split 1790 void LinearScan::resolve_data_flow() { 1791 TIME_LINEAR_SCAN(timer_resolve_data_flow); 1792 1793 int num_blocks = block_count(); 1794 MoveResolver move_resolver(this); 1795 ResourceBitMap block_completed(num_blocks); 1796 ResourceBitMap already_resolved(num_blocks); 1797 1798 int i; 1799 for (i = 0; i < num_blocks; i++) { 1800 BlockBegin* block = block_at(i); 1801 1802 // check if block has only one predecessor and only one successor 1803 if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) { 1804 LIR_OpList* instructions = block->lir()->instructions_list(); 1805 assert(instructions->at(0)->code() == lir_label, "block must start with label"); 1806 assert(instructions->last()->code() == lir_branch, "block with successors must end with branch"); 1807 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch"); 1808 1809 // check if block is empty (only label and branch) 1810 if (instructions->length() == 2) { 1811 BlockBegin* pred = block->pred_at(0); 1812 BlockBegin* sux = block->sux_at(0); 1813 1814 // prevent optimization of two consecutive blocks 1815 if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) { 1816 TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id())); 1817 block_completed.set_bit(block->linear_scan_number()); 1818 1819 // directly resolve between pred and sux (without looking at the empty block between) 1820 resolve_collect_mappings(pred, sux, move_resolver); 1821 if (move_resolver.has_mappings()) { 1822 move_resolver.set_insert_position(block->lir(), 0); 1823 move_resolver.resolve_and_append_moves(); 1824 } 1825 } 1826 } 1827 } 1828 } 1829 1830 1831 for (i = 0; i < num_blocks; i++) { 1832 if (!block_completed.at(i)) { 1833 BlockBegin* from_block = block_at(i); 1834 already_resolved.set_from(block_completed); 1835 1836 int num_sux = from_block->number_of_sux(); 1837 for (int s = 0; s < num_sux; s++) { 1838 BlockBegin* to_block = from_block->sux_at(s); 1839 1840 // check for duplicate edges between the same blocks (can happen with switch blocks) 1841 if (!already_resolved.at(to_block->linear_scan_number())) { 1842 TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id())); 1843 already_resolved.set_bit(to_block->linear_scan_number()); 1844 1845 // collect all intervals that have been split between from_block and to_block 1846 resolve_collect_mappings(from_block, to_block, move_resolver); 1847 if (move_resolver.has_mappings()) { 1848 resolve_find_insert_pos(from_block, to_block, move_resolver); 1849 move_resolver.resolve_and_append_moves(); 1850 } 1851 } 1852 } 1853 } 1854 } 1855 } 1856 1857 1858 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) { 1859 if (interval_at(reg_num) == nullptr) { 1860 // if a phi function is never used, no interval is created -> ignore this 1861 return; 1862 } 1863 1864 Interval* interval = interval_at_block_begin(block, reg_num); 1865 int reg = interval->assigned_reg(); 1866 int regHi = interval->assigned_regHi(); 1867 1868 if ((reg < nof_regs && interval->always_in_memory())) { 1869 // the interval is split to get a short range that is located on the stack 1870 // in the following case: 1871 // * the interval started in memory (e.g. method parameter), but is currently in a register 1872 // this is an optimization for exception handling that reduces the number of moves that 1873 // are necessary for resolving the states when an exception uses this exception handler 1874 1875 // range that will be spilled to memory 1876 int from_op_id = block->first_lir_instruction_id(); 1877 int to_op_id = from_op_id + 1; // short live range of length 1 1878 assert(interval->from() <= from_op_id && interval->to() >= to_op_id, 1879 "no split allowed between exception entry and first instruction"); 1880 1881 if (interval->from() != from_op_id) { 1882 // the part before from_op_id is unchanged 1883 interval = interval->split(from_op_id); 1884 interval->assign_reg(reg, regHi); 1885 append_interval(interval); 1886 } else { 1887 _needs_full_resort = true; 1888 } 1889 assert(interval->from() == from_op_id, "must be true now"); 1890 1891 Interval* spilled_part = interval; 1892 if (interval->to() != to_op_id) { 1893 // the part after to_op_id is unchanged 1894 spilled_part = interval->split_from_start(to_op_id); 1895 append_interval(spilled_part); 1896 move_resolver.add_mapping(spilled_part, interval); 1897 } 1898 assign_spill_slot(spilled_part); 1899 1900 assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking"); 1901 } 1902 } 1903 1904 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) { 1905 assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise"); 1906 DEBUG_ONLY(move_resolver.check_empty()); 1907 1908 // visit all registers where the live_in bit is set 1909 auto resolver = [&](BitMap::idx_t index) { 1910 int r = static_cast<int>(index); 1911 resolve_exception_entry(block, r, move_resolver); 1912 }; 1913 block->live_in().iterate(resolver, 0, live_set_size()); 1914 1915 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately 1916 for_each_phi_fun(block, phi, 1917 if (!phi->is_illegal()) { resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver); } 1918 ); 1919 1920 if (move_resolver.has_mappings()) { 1921 // insert moves after first instruction 1922 move_resolver.set_insert_position(block->lir(), 0); 1923 move_resolver.resolve_and_append_moves(); 1924 } 1925 } 1926 1927 1928 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) { 1929 if (interval_at(reg_num) == nullptr) { 1930 // if a phi function is never used, no interval is created -> ignore this 1931 return; 1932 } 1933 1934 // the computation of to_interval is equal to resolve_collect_mappings, 1935 // but from_interval is more complicated because of phi functions 1936 BlockBegin* to_block = handler->entry_block(); 1937 Interval* to_interval = interval_at_block_begin(to_block, reg_num); 1938 1939 if (phi != nullptr) { 1940 // phi function of the exception entry block 1941 // no moves are created for this phi function in the LIR_Generator, so the 1942 // interval at the throwing instruction must be searched using the operands 1943 // of the phi function 1944 Value from_value = phi->operand_at(handler->phi_operand()); 1945 if (from_value == nullptr) { 1946 // We have reached here in a kotlin application running with JVMTI 1947 // capability "can_access_local_variables". 1948 // The illegal state is not yet propagated to this phi. Do it here. 1949 phi->make_illegal(); 1950 // We can skip the illegal phi edge. 1951 return; 1952 } 1953 1954 // with phi functions it can happen that the same from_value is used in 1955 // multiple mappings, so notify move-resolver that this is allowed 1956 move_resolver.set_multiple_reads_allowed(); 1957 1958 Constant* con = from_value->as_Constant(); 1959 if (con != nullptr && (!con->is_pinned() || con->operand()->is_constant())) { 1960 // Need a mapping from constant to interval if unpinned (may have no register) or if the operand is a constant (no register). 1961 move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval); 1962 } else { 1963 // search split child at the throwing op_id 1964 Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id); 1965 move_resolver.add_mapping(from_interval, to_interval); 1966 } 1967 } else { 1968 // no phi function, so use reg_num also for from_interval 1969 // search split child at the throwing op_id 1970 Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id); 1971 if (from_interval != to_interval) { 1972 // optimization to reduce number of moves: when to_interval is on stack and 1973 // the stack slot is known to be always correct, then no move is necessary 1974 if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) { 1975 move_resolver.add_mapping(from_interval, to_interval); 1976 } 1977 } 1978 } 1979 } 1980 1981 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) { 1982 TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id)); 1983 1984 DEBUG_ONLY(move_resolver.check_empty()); 1985 assert(handler->lir_op_id() == -1, "already processed this xhandler"); 1986 DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id)); 1987 assert(handler->entry_code() == nullptr, "code already present"); 1988 1989 // visit all registers where the live_in bit is set 1990 BlockBegin* block = handler->entry_block(); 1991 auto resolver = [&](BitMap::idx_t index) { 1992 int r = static_cast<int>(index); 1993 resolve_exception_edge(handler, throwing_op_id, r, nullptr, move_resolver); 1994 }; 1995 block->live_in().iterate(resolver, 0, live_set_size()); 1996 1997 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately 1998 for_each_phi_fun(block, phi, 1999 if (!phi->is_illegal()) { resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver); } 2000 ); 2001 2002 if (move_resolver.has_mappings()) { 2003 LIR_List* entry_code = new LIR_List(compilation()); 2004 move_resolver.set_insert_position(entry_code, 0); 2005 move_resolver.resolve_and_append_moves(); 2006 2007 entry_code->jump(handler->entry_block()); 2008 handler->set_entry_code(entry_code); 2009 } 2010 } 2011 2012 2013 void LinearScan::resolve_exception_handlers() { 2014 MoveResolver move_resolver(this); 2015 LIR_OpVisitState visitor; 2016 int num_blocks = block_count(); 2017 2018 int i; 2019 for (i = 0; i < num_blocks; i++) { 2020 BlockBegin* block = block_at(i); 2021 if (block->is_set(BlockBegin::exception_entry_flag)) { 2022 resolve_exception_entry(block, move_resolver); 2023 } 2024 } 2025 2026 for (i = 0; i < num_blocks; i++) { 2027 BlockBegin* block = block_at(i); 2028 LIR_List* ops = block->lir(); 2029 int num_ops = ops->length(); 2030 2031 // iterate all instructions of the block. skip the first because it is always a label 2032 assert(visitor.no_operands(ops->at(0)), "first operation must always be a label"); 2033 for (int j = 1; j < num_ops; j++) { 2034 LIR_Op* op = ops->at(j); 2035 int op_id = op->id(); 2036 2037 if (op_id != -1 && has_info(op_id)) { 2038 // visit operation to collect all operands 2039 visitor.visit(op); 2040 assert(visitor.info_count() > 0, "should not visit otherwise"); 2041 2042 XHandlers* xhandlers = visitor.all_xhandler(); 2043 int n = xhandlers->length(); 2044 for (int k = 0; k < n; k++) { 2045 resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver); 2046 } 2047 2048 #ifdef ASSERT 2049 } else { 2050 visitor.visit(op); 2051 assert(visitor.all_xhandler()->length() == 0, "missed exception handler"); 2052 #endif 2053 } 2054 } 2055 } 2056 } 2057 2058 2059 // ********** Phase 7: assign register numbers back to LIR 2060 // (includes computation of debug information and oop maps) 2061 2062 VMReg LinearScan::vm_reg_for_interval(Interval* interval) { 2063 VMReg reg = interval->cached_vm_reg(); 2064 if (!reg->is_valid() ) { 2065 reg = vm_reg_for_operand(operand_for_interval(interval)); 2066 interval->set_cached_vm_reg(reg); 2067 } 2068 assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value"); 2069 return reg; 2070 } 2071 2072 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) { 2073 assert(opr->is_oop(), "currently only implemented for oop operands"); 2074 return frame_map()->regname(opr); 2075 } 2076 2077 2078 LIR_Opr LinearScan::operand_for_interval(Interval* interval) { 2079 LIR_Opr opr = interval->cached_opr(); 2080 if (opr->is_illegal()) { 2081 opr = calc_operand_for_interval(interval); 2082 interval->set_cached_opr(opr); 2083 } 2084 2085 assert(opr == calc_operand_for_interval(interval), "wrong cached value"); 2086 return opr; 2087 } 2088 2089 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) { 2090 int assigned_reg = interval->assigned_reg(); 2091 BasicType type = interval->type(); 2092 2093 if (assigned_reg >= nof_regs) { 2094 // stack slot 2095 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2096 return LIR_OprFact::stack(assigned_reg - nof_regs, type); 2097 2098 } else { 2099 // register 2100 switch (type) { 2101 case T_OBJECT: { 2102 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2103 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2104 return LIR_OprFact::single_cpu_oop(assigned_reg); 2105 } 2106 2107 case T_ADDRESS: { 2108 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2109 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2110 return LIR_OprFact::single_cpu_address(assigned_reg); 2111 } 2112 2113 case T_METADATA: { 2114 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2115 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2116 return LIR_OprFact::single_cpu_metadata(assigned_reg); 2117 } 2118 2119 #ifdef __SOFTFP__ 2120 case T_FLOAT: // fall through 2121 #endif // __SOFTFP__ 2122 case T_INT: { 2123 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2124 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2125 return LIR_OprFact::single_cpu(assigned_reg); 2126 } 2127 2128 #ifdef __SOFTFP__ 2129 case T_DOUBLE: // fall through 2130 #endif // __SOFTFP__ 2131 case T_LONG: { 2132 int assigned_regHi = interval->assigned_regHi(); 2133 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2134 assert(num_physical_regs(T_LONG) == 1 || 2135 (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register"); 2136 2137 assert(assigned_reg != assigned_regHi, "invalid allocation"); 2138 assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi, 2139 "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)"); 2140 assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match"); 2141 if (requires_adjacent_regs(T_LONG)) { 2142 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even"); 2143 } 2144 2145 #ifdef _LP64 2146 return LIR_OprFact::double_cpu(assigned_reg, assigned_reg); 2147 #else 2148 return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi); 2149 #endif // LP64 2150 } 2151 2152 #ifndef __SOFTFP__ 2153 case T_FLOAT: { 2154 #ifdef X86 2155 if (UseSSE >= 1) { 2156 int last_xmm_reg = pd_last_xmm_reg; 2157 #ifdef _LP64 2158 if (UseAVX < 3) { 2159 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 2160 } 2161 #endif // LP64 2162 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register"); 2163 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2164 return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg); 2165 } 2166 #endif // X86 2167 2168 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2169 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2170 return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg); 2171 } 2172 2173 case T_DOUBLE: { 2174 #ifdef X86 2175 if (UseSSE >= 2) { 2176 int last_xmm_reg = pd_last_xmm_reg; 2177 #ifdef _LP64 2178 if (UseAVX < 3) { 2179 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 2180 } 2181 #endif // LP64 2182 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register"); 2183 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)"); 2184 return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg); 2185 } 2186 #endif // X86 2187 2188 #if defined(ARM32) 2189 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2190 assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register"); 2191 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even"); 2192 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg); 2193 #else 2194 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2195 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)"); 2196 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg); 2197 #endif 2198 return result; 2199 } 2200 #endif // __SOFTFP__ 2201 2202 default: { 2203 ShouldNotReachHere(); 2204 return LIR_OprFact::illegalOpr; 2205 } 2206 } 2207 } 2208 } 2209 2210 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) { 2211 assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set"); 2212 return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type()); 2213 } 2214 2215 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) { 2216 assert(opr->is_virtual(), "should not call this otherwise"); 2217 2218 Interval* interval = interval_at(opr->vreg_number()); 2219 assert(interval != nullptr, "interval must exist"); 2220 2221 if (op_id != -1) { 2222 #ifdef ASSERT 2223 BlockBegin* block = block_of_op_with_id(op_id); 2224 if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) { 2225 // check if spill moves could have been appended at the end of this block, but 2226 // before the branch instruction. So the split child information for this branch would 2227 // be incorrect. 2228 LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch(); 2229 if (branch != nullptr) { 2230 if (block->live_out().at(opr->vreg_number())) { 2231 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump"); 2232 assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)"); 2233 } 2234 } 2235 } 2236 #endif 2237 2238 // operands are not changed when an interval is split during allocation, 2239 // so search the right interval here 2240 interval = split_child_at_op_id(interval, op_id, mode); 2241 } 2242 2243 LIR_Opr res = operand_for_interval(interval); 2244 2245 #ifdef X86 2246 // new semantic for is_last_use: not only set on definite end of interval, 2247 // but also before hole 2248 // This may still miss some cases (e.g. for dead values), but it is not necessary that the 2249 // last use information is completely correct 2250 // information is only needed for fpu stack allocation 2251 if (res->is_fpu_register()) { 2252 if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) { 2253 assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow"); 2254 res = res->make_last_use(); 2255 } 2256 } 2257 #endif 2258 2259 assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation"); 2260 2261 return res; 2262 } 2263 2264 2265 #ifdef ASSERT 2266 // some methods used to check correctness of debug information 2267 2268 void assert_no_register_values(GrowableArray<ScopeValue*>* values) { 2269 if (values == nullptr) { 2270 return; 2271 } 2272 2273 for (int i = 0; i < values->length(); i++) { 2274 ScopeValue* value = values->at(i); 2275 2276 if (value->is_location()) { 2277 Location location = ((LocationValue*)value)->location(); 2278 assert(location.where() == Location::on_stack, "value is in register"); 2279 } 2280 } 2281 } 2282 2283 void assert_no_register_values(GrowableArray<MonitorValue*>* values) { 2284 if (values == nullptr) { 2285 return; 2286 } 2287 2288 for (int i = 0; i < values->length(); i++) { 2289 MonitorValue* value = values->at(i); 2290 2291 if (value->owner()->is_location()) { 2292 Location location = ((LocationValue*)value->owner())->location(); 2293 assert(location.where() == Location::on_stack, "owner is in register"); 2294 } 2295 assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register"); 2296 } 2297 } 2298 2299 static void assert_equal(Location l1, Location l2) { 2300 assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), ""); 2301 } 2302 2303 static void assert_equal(ScopeValue* v1, ScopeValue* v2) { 2304 if (v1->is_location()) { 2305 assert(v2->is_location(), ""); 2306 assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location()); 2307 } else if (v1->is_constant_int()) { 2308 assert(v2->is_constant_int(), ""); 2309 assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), ""); 2310 } else if (v1->is_constant_double()) { 2311 assert(v2->is_constant_double(), ""); 2312 assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), ""); 2313 } else if (v1->is_constant_long()) { 2314 assert(v2->is_constant_long(), ""); 2315 assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), ""); 2316 } else if (v1->is_constant_oop()) { 2317 assert(v2->is_constant_oop(), ""); 2318 assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), ""); 2319 } else { 2320 ShouldNotReachHere(); 2321 } 2322 } 2323 2324 static void assert_equal(MonitorValue* m1, MonitorValue* m2) { 2325 assert_equal(m1->owner(), m2->owner()); 2326 assert_equal(m1->basic_lock(), m2->basic_lock()); 2327 } 2328 2329 static void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) { 2330 assert(d1->scope() == d2->scope(), "not equal"); 2331 assert(d1->bci() == d2->bci(), "not equal"); 2332 2333 if (d1->locals() != nullptr) { 2334 assert(d1->locals() != nullptr && d2->locals() != nullptr, "not equal"); 2335 assert(d1->locals()->length() == d2->locals()->length(), "not equal"); 2336 for (int i = 0; i < d1->locals()->length(); i++) { 2337 assert_equal(d1->locals()->at(i), d2->locals()->at(i)); 2338 } 2339 } else { 2340 assert(d1->locals() == nullptr && d2->locals() == nullptr, "not equal"); 2341 } 2342 2343 if (d1->expressions() != nullptr) { 2344 assert(d1->expressions() != nullptr && d2->expressions() != nullptr, "not equal"); 2345 assert(d1->expressions()->length() == d2->expressions()->length(), "not equal"); 2346 for (int i = 0; i < d1->expressions()->length(); i++) { 2347 assert_equal(d1->expressions()->at(i), d2->expressions()->at(i)); 2348 } 2349 } else { 2350 assert(d1->expressions() == nullptr && d2->expressions() == nullptr, "not equal"); 2351 } 2352 2353 if (d1->monitors() != nullptr) { 2354 assert(d1->monitors() != nullptr && d2->monitors() != nullptr, "not equal"); 2355 assert(d1->monitors()->length() == d2->monitors()->length(), "not equal"); 2356 for (int i = 0; i < d1->monitors()->length(); i++) { 2357 assert_equal(d1->monitors()->at(i), d2->monitors()->at(i)); 2358 } 2359 } else { 2360 assert(d1->monitors() == nullptr && d2->monitors() == nullptr, "not equal"); 2361 } 2362 2363 if (d1->caller() != nullptr) { 2364 assert(d1->caller() != nullptr && d2->caller() != nullptr, "not equal"); 2365 assert_equal(d1->caller(), d2->caller()); 2366 } else { 2367 assert(d1->caller() == nullptr && d2->caller() == nullptr, "not equal"); 2368 } 2369 } 2370 2371 static void check_stack_depth(CodeEmitInfo* info, int stack_end) { 2372 if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) { 2373 Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci()); 2374 switch (code) { 2375 case Bytecodes::_ifnull : // fall through 2376 case Bytecodes::_ifnonnull : // fall through 2377 case Bytecodes::_ifeq : // fall through 2378 case Bytecodes::_ifne : // fall through 2379 case Bytecodes::_iflt : // fall through 2380 case Bytecodes::_ifge : // fall through 2381 case Bytecodes::_ifgt : // fall through 2382 case Bytecodes::_ifle : // fall through 2383 case Bytecodes::_if_icmpeq : // fall through 2384 case Bytecodes::_if_icmpne : // fall through 2385 case Bytecodes::_if_icmplt : // fall through 2386 case Bytecodes::_if_icmpge : // fall through 2387 case Bytecodes::_if_icmpgt : // fall through 2388 case Bytecodes::_if_icmple : // fall through 2389 case Bytecodes::_if_acmpeq : // fall through 2390 case Bytecodes::_if_acmpne : 2391 assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode"); 2392 break; 2393 default: 2394 break; 2395 } 2396 } 2397 } 2398 2399 #endif // ASSERT 2400 2401 2402 IntervalWalker* LinearScan::init_compute_oop_maps() { 2403 // setup lists of potential oops for walking 2404 Interval* oop_intervals; 2405 Interval* non_oop_intervals; 2406 2407 create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, nullptr); 2408 2409 // intervals that have no oops inside need not to be processed 2410 // to ensure a walking until the last instruction id, add a dummy interval 2411 // with a high operation id 2412 non_oop_intervals = new Interval(any_reg); 2413 non_oop_intervals->add_range(max_jint - 2, max_jint - 1); 2414 2415 return new IntervalWalker(this, oop_intervals, non_oop_intervals); 2416 } 2417 2418 2419 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) { 2420 TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id())); 2421 2422 // walk before the current operation -> intervals that start at 2423 // the operation (= output operands of the operation) are not 2424 // included in the oop map 2425 iw->walk_before(op->id()); 2426 2427 int frame_size = frame_map()->framesize(); 2428 int arg_count = frame_map()->oop_map_arg_count(); 2429 OopMap* map = new OopMap(frame_size, arg_count); 2430 2431 // Iterate through active intervals 2432 for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) { 2433 int assigned_reg = interval->assigned_reg(); 2434 2435 assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise"); 2436 assert(interval->assigned_regHi() == any_reg, "oop must be single word"); 2437 assert(interval->reg_num() >= LIR_Opr::vreg_base, "fixed interval found"); 2438 2439 // Check if this range covers the instruction. Intervals that 2440 // start or end at the current operation are not included in the 2441 // oop map, except in the case of patching moves. For patching 2442 // moves, any intervals which end at this instruction are included 2443 // in the oop map since we may safepoint while doing the patch 2444 // before we've consumed the inputs. 2445 if (op->is_patching() || op->id() < interval->current_to()) { 2446 2447 // caller-save registers must not be included into oop-maps at calls 2448 assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten"); 2449 2450 VMReg name = vm_reg_for_interval(interval); 2451 set_oop(map, name); 2452 2453 // Spill optimization: when the stack value is guaranteed to be always correct, 2454 // then it must be added to the oop map even if the interval is currently in a register 2455 if (interval->always_in_memory() && 2456 op->id() > interval->spill_definition_pos() && 2457 interval->assigned_reg() != interval->canonical_spill_slot()) { 2458 assert(interval->spill_definition_pos() > 0, "position not set correctly"); 2459 assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned"); 2460 assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice"); 2461 2462 set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs)); 2463 } 2464 } 2465 } 2466 2467 // add oops from lock stack 2468 assert(info->stack() != nullptr, "CodeEmitInfo must always have a stack"); 2469 int locks_count = info->stack()->total_locks_size(); 2470 for (int i = 0; i < locks_count; i++) { 2471 set_oop(map, frame_map()->monitor_object_regname(i)); 2472 } 2473 2474 return map; 2475 } 2476 2477 2478 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) { 2479 assert(visitor.info_count() > 0, "no oop map needed"); 2480 2481 // compute oop_map only for first CodeEmitInfo 2482 // because it is (in most cases) equal for all other infos of the same operation 2483 CodeEmitInfo* first_info = visitor.info_at(0); 2484 OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call()); 2485 2486 for (int i = 0; i < visitor.info_count(); i++) { 2487 CodeEmitInfo* info = visitor.info_at(i); 2488 OopMap* oop_map = first_oop_map; 2489 2490 // compute worst case interpreter size in case of a deoptimization 2491 _compilation->update_interpreter_frame_size(info->interpreter_frame_size()); 2492 2493 if (info->stack()->locks_size() != first_info->stack()->locks_size()) { 2494 // this info has a different number of locks then the precomputed oop map 2495 // (possible for lock and unlock instructions) -> compute oop map with 2496 // correct lock information 2497 oop_map = compute_oop_map(iw, op, info, visitor.has_call()); 2498 } 2499 2500 if (info->_oop_map == nullptr) { 2501 info->_oop_map = oop_map; 2502 } else { 2503 // a CodeEmitInfo can not be shared between different LIR-instructions 2504 // because interval splitting can occur anywhere between two instructions 2505 // and so the oop maps must be different 2506 // -> check if the already set oop_map is exactly the one calculated for this operation 2507 assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions"); 2508 } 2509 } 2510 } 2511 2512 2513 // frequently used constants 2514 // Allocate them with new so they are never destroyed (otherwise, a 2515 // forced exit could destroy these objects while they are still in 2516 // use). 2517 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (mtCompiler) ConstantOopWriteValue(nullptr); 2518 ConstantIntValue* LinearScan::_int_m1_scope_value = new (mtCompiler) ConstantIntValue(-1); 2519 ConstantIntValue* LinearScan::_int_0_scope_value = new (mtCompiler) ConstantIntValue((jint)0); 2520 ConstantIntValue* LinearScan::_int_1_scope_value = new (mtCompiler) ConstantIntValue(1); 2521 ConstantIntValue* LinearScan::_int_2_scope_value = new (mtCompiler) ConstantIntValue(2); 2522 LocationValue* _illegal_value = new (mtCompiler) LocationValue(Location()); 2523 2524 void LinearScan::init_compute_debug_info() { 2525 // cache for frequently used scope values 2526 // (cpu registers and stack slots) 2527 int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2; 2528 _scope_value_cache = ScopeValueArray(cache_size, cache_size, nullptr); 2529 } 2530 2531 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) { 2532 Location loc; 2533 if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) { 2534 bailout("too large frame"); 2535 } 2536 ScopeValue* object_scope_value = new LocationValue(loc); 2537 2538 if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) { 2539 bailout("too large frame"); 2540 } 2541 return new MonitorValue(object_scope_value, loc); 2542 } 2543 2544 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) { 2545 Location loc; 2546 if (!frame_map()->locations_for_slot(name, loc_type, &loc)) { 2547 bailout("too large frame"); 2548 } 2549 return new LocationValue(loc); 2550 } 2551 2552 2553 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) { 2554 assert(opr->is_constant(), "should not be called otherwise"); 2555 2556 LIR_Const* c = opr->as_constant_ptr(); 2557 BasicType t = c->type(); 2558 switch (t) { 2559 case T_OBJECT: { 2560 jobject value = c->as_jobject(); 2561 if (value == nullptr) { 2562 scope_values->append(_oop_null_scope_value); 2563 } else { 2564 scope_values->append(new ConstantOopWriteValue(c->as_jobject())); 2565 } 2566 return 1; 2567 } 2568 2569 case T_INT: // fall through 2570 case T_FLOAT: { 2571 int value = c->as_jint_bits(); 2572 switch (value) { 2573 case -1: scope_values->append(_int_m1_scope_value); break; 2574 case 0: scope_values->append(_int_0_scope_value); break; 2575 case 1: scope_values->append(_int_1_scope_value); break; 2576 case 2: scope_values->append(_int_2_scope_value); break; 2577 default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break; 2578 } 2579 return 1; 2580 } 2581 2582 case T_LONG: // fall through 2583 case T_DOUBLE: { 2584 #ifdef _LP64 2585 scope_values->append(_int_0_scope_value); 2586 scope_values->append(new ConstantLongValue(c->as_jlong_bits())); 2587 #else 2588 if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) { 2589 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits())); 2590 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits())); 2591 } else { 2592 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits())); 2593 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits())); 2594 } 2595 #endif 2596 return 2; 2597 } 2598 2599 case T_ADDRESS: { 2600 #ifdef _LP64 2601 scope_values->append(new ConstantLongValue(c->as_jint())); 2602 #else 2603 scope_values->append(new ConstantIntValue(c->as_jint())); 2604 #endif 2605 return 1; 2606 } 2607 2608 default: 2609 ShouldNotReachHere(); 2610 return -1; 2611 } 2612 } 2613 2614 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) { 2615 if (opr->is_single_stack()) { 2616 int stack_idx = opr->single_stack_ix(); 2617 bool is_oop = opr->is_oop_register(); 2618 int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0); 2619 2620 ScopeValue* sv = _scope_value_cache.at(cache_idx); 2621 if (sv == nullptr) { 2622 Location::Type loc_type = is_oop ? Location::oop : Location::normal; 2623 sv = location_for_name(stack_idx, loc_type); 2624 _scope_value_cache.at_put(cache_idx, sv); 2625 } 2626 2627 // check if cached value is correct 2628 DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal))); 2629 2630 scope_values->append(sv); 2631 return 1; 2632 2633 } else if (opr->is_single_cpu()) { 2634 bool is_oop = opr->is_oop_register(); 2635 int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0); 2636 Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long); 2637 2638 ScopeValue* sv = _scope_value_cache.at(cache_idx); 2639 if (sv == nullptr) { 2640 Location::Type loc_type = is_oop ? Location::oop : int_loc_type; 2641 VMReg rname = frame_map()->regname(opr); 2642 sv = new LocationValue(Location::new_reg_loc(loc_type, rname)); 2643 _scope_value_cache.at_put(cache_idx, sv); 2644 } 2645 2646 // check if cached value is correct 2647 DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr))))); 2648 2649 scope_values->append(sv); 2650 return 1; 2651 2652 #ifdef X86 2653 } else if (opr->is_single_xmm()) { 2654 VMReg rname = opr->as_xmm_float_reg()->as_VMReg(); 2655 LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname)); 2656 2657 scope_values->append(sv); 2658 return 1; 2659 #endif 2660 2661 } else if (opr->is_single_fpu()) { 2662 #if defined(AMD64) 2663 assert(false, "FPU not used on x86-64"); 2664 #endif 2665 Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal; 2666 VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr()); 2667 #ifndef __SOFTFP__ 2668 #ifndef VM_LITTLE_ENDIAN 2669 // On S390 a (single precision) float value occupies only the high 2670 // word of the full double register. So when the double register is 2671 // stored to memory (e.g. by the RegisterSaver), then the float value 2672 // is found at offset 0. I.e. the code below is not needed on S390. 2673 #ifndef S390 2674 if (! float_saved_as_double) { 2675 // On big endian system, we may have an issue if float registers use only 2676 // the low half of the (same) double registers. 2677 // Both the float and the double could have the same regnr but would correspond 2678 // to two different addresses once saved. 2679 2680 // get next safely (no assertion checks) 2681 VMReg next = VMRegImpl::as_VMReg(1+rname->value()); 2682 if (next->is_reg() && 2683 (next->as_FloatRegister() == rname->as_FloatRegister())) { 2684 // the back-end does use the same numbering for the double and the float 2685 rname = next; // VMReg for the low bits, e.g. the real VMReg for the float 2686 } 2687 } 2688 #endif // !S390 2689 #endif 2690 #endif 2691 LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname)); 2692 2693 scope_values->append(sv); 2694 return 1; 2695 2696 } else { 2697 // double-size operands 2698 2699 ScopeValue* first; 2700 ScopeValue* second; 2701 2702 if (opr->is_double_stack()) { 2703 #ifdef _LP64 2704 Location loc1; 2705 Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl; 2706 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, nullptr)) { 2707 bailout("too large frame"); 2708 } 2709 2710 first = new LocationValue(loc1); 2711 second = _int_0_scope_value; 2712 #else 2713 Location loc1, loc2; 2714 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) { 2715 bailout("too large frame"); 2716 } 2717 first = new LocationValue(loc1); 2718 second = new LocationValue(loc2); 2719 #endif // _LP64 2720 2721 } else if (opr->is_double_cpu()) { 2722 #ifdef _LP64 2723 VMReg rname_first = opr->as_register_lo()->as_VMReg(); 2724 first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first)); 2725 second = _int_0_scope_value; 2726 #else 2727 VMReg rname_first = opr->as_register_lo()->as_VMReg(); 2728 VMReg rname_second = opr->as_register_hi()->as_VMReg(); 2729 2730 if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) { 2731 // lo/hi and swapped relative to first and second, so swap them 2732 VMReg tmp = rname_first; 2733 rname_first = rname_second; 2734 rname_second = tmp; 2735 } 2736 2737 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2738 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2739 #endif //_LP64 2740 2741 2742 #ifdef X86 2743 } else if (opr->is_double_xmm()) { 2744 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation"); 2745 VMReg rname_first = opr->as_xmm_double_reg()->as_VMReg(); 2746 # ifdef _LP64 2747 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first)); 2748 second = _int_0_scope_value; 2749 # else 2750 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2751 // %%% This is probably a waste but we'll keep things as they were for now 2752 if (true) { 2753 VMReg rname_second = rname_first->next(); 2754 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2755 } 2756 # endif 2757 #endif 2758 2759 } else if (opr->is_double_fpu()) { 2760 // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of 2761 // the double as float registers in the native ordering. On X86, 2762 // fpu_regnrLo is a FPU stack slot whose VMReg represents 2763 // the low-order word of the double and fpu_regnrLo + 1 is the 2764 // name for the other half. *first and *second must represent the 2765 // least and most significant words, respectively. 2766 2767 #ifdef AMD64 2768 assert(false, "FPU not used on x86-64"); 2769 #endif 2770 #ifdef ARM32 2771 assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)"); 2772 #endif 2773 2774 #ifdef VM_LITTLE_ENDIAN 2775 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo()); 2776 #else 2777 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi()); 2778 #endif 2779 2780 #ifdef _LP64 2781 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first)); 2782 second = _int_0_scope_value; 2783 #else 2784 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2785 // %%% This is probably a waste but we'll keep things as they were for now 2786 if (true) { 2787 VMReg rname_second = rname_first->next(); 2788 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2789 } 2790 #endif 2791 2792 } else { 2793 ShouldNotReachHere(); 2794 first = nullptr; 2795 second = nullptr; 2796 } 2797 2798 assert(first != nullptr && second != nullptr, "must be set"); 2799 // The convention the interpreter uses is that the second local 2800 // holds the first raw word of the native double representation. 2801 // This is actually reasonable, since locals and stack arrays 2802 // grow downwards in all implementations. 2803 // (If, on some machine, the interpreter's Java locals or stack 2804 // were to grow upwards, the embedded doubles would be word-swapped.) 2805 scope_values->append(second); 2806 scope_values->append(first); 2807 return 2; 2808 } 2809 } 2810 2811 2812 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) { 2813 if (value != nullptr) { 2814 LIR_Opr opr = value->operand(); 2815 Constant* con = value->as_Constant(); 2816 2817 assert(con == nullptr || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "assumption: Constant instructions have only constant operands (or illegal if constant is optimized away)"); 2818 assert(con != nullptr || opr->is_virtual(), "assumption: non-Constant instructions have only virtual operands"); 2819 2820 if (con != nullptr && !con->is_pinned() && !opr->is_constant()) { 2821 // Unpinned constants may have a virtual operand for a part of the lifetime 2822 // or may be illegal when it was optimized away, 2823 // so always use a constant operand 2824 opr = LIR_OprFact::value_type(con->type()); 2825 } 2826 assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here"); 2827 2828 if (opr->is_virtual()) { 2829 LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode; 2830 2831 BlockBegin* block = block_of_op_with_id(op_id); 2832 if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) { 2833 // generating debug information for the last instruction of a block. 2834 // if this instruction is a branch, spill moves are inserted before this branch 2835 // and so the wrong operand would be returned (spill moves at block boundaries are not 2836 // considered in the live ranges of intervals) 2837 // Solution: use the first op_id of the branch target block instead. 2838 if (block->lir()->instructions_list()->last()->as_OpBranch() != nullptr) { 2839 if (block->live_out().at(opr->vreg_number())) { 2840 op_id = block->sux_at(0)->first_lir_instruction_id(); 2841 mode = LIR_OpVisitState::outputMode; 2842 } 2843 } 2844 } 2845 2846 // Get current location of operand 2847 // The operand must be live because debug information is considered when building the intervals 2848 // if the interval is not live, color_lir_opr will cause an assertion failure 2849 opr = color_lir_opr(opr, op_id, mode); 2850 assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls"); 2851 2852 // Append to ScopeValue array 2853 return append_scope_value_for_operand(opr, scope_values); 2854 2855 } else { 2856 assert(value->as_Constant() != nullptr, "all other instructions have only virtual operands"); 2857 assert(opr->is_constant(), "operand must be constant"); 2858 2859 return append_scope_value_for_constant(opr, scope_values); 2860 } 2861 } else { 2862 // append a dummy value because real value not needed 2863 scope_values->append(_illegal_value); 2864 return 1; 2865 } 2866 } 2867 2868 2869 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) { 2870 IRScopeDebugInfo* caller_debug_info = nullptr; 2871 2872 ValueStack* caller_state = cur_state->caller_state(); 2873 if (caller_state != nullptr) { 2874 // process recursively to compute outermost scope first 2875 caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state); 2876 } 2877 2878 // initialize these to null. 2879 // If we don't need deopt info or there are no locals, expressions or monitors, 2880 // then these get recorded as no information and avoids the allocation of 0 length arrays. 2881 GrowableArray<ScopeValue*>* locals = nullptr; 2882 GrowableArray<ScopeValue*>* expressions = nullptr; 2883 GrowableArray<MonitorValue*>* monitors = nullptr; 2884 2885 // describe local variable values 2886 int nof_locals = cur_state->locals_size(); 2887 if (nof_locals > 0) { 2888 locals = new GrowableArray<ScopeValue*>(nof_locals); 2889 2890 int pos = 0; 2891 while (pos < nof_locals) { 2892 assert(pos < cur_state->locals_size(), "why not?"); 2893 2894 Value local = cur_state->local_at(pos); 2895 pos += append_scope_value(op_id, local, locals); 2896 2897 assert(locals->length() == pos, "must match"); 2898 } 2899 assert(locals->length() == nof_locals, "wrong number of locals"); 2900 } 2901 assert(nof_locals == cur_scope->method()->max_locals(), "wrong number of locals"); 2902 assert(nof_locals == cur_state->locals_size(), "wrong number of locals"); 2903 2904 // describe expression stack 2905 int nof_stack = cur_state->stack_size(); 2906 if (nof_stack > 0) { 2907 expressions = new GrowableArray<ScopeValue*>(nof_stack); 2908 2909 int pos = 0; 2910 while (pos < nof_stack) { 2911 Value expression = cur_state->stack_at(pos); 2912 pos += append_scope_value(op_id, expression, expressions); 2913 2914 assert(expressions->length() == pos, "must match"); 2915 } 2916 assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries"); 2917 } 2918 2919 // describe monitors 2920 int nof_locks = cur_state->locks_size(); 2921 if (nof_locks > 0) { 2922 int lock_offset = cur_state->caller_state() != nullptr ? cur_state->caller_state()->total_locks_size() : 0; 2923 monitors = new GrowableArray<MonitorValue*>(nof_locks); 2924 for (int i = 0; i < nof_locks; i++) { 2925 monitors->append(location_for_monitor_index(lock_offset + i)); 2926 } 2927 } 2928 2929 return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info, cur_state->should_reexecute()); 2930 } 2931 2932 2933 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) { 2934 TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id)); 2935 2936 IRScope* innermost_scope = info->scope(); 2937 ValueStack* innermost_state = info->stack(); 2938 2939 assert(innermost_scope != nullptr && innermost_state != nullptr, "why is it missing?"); 2940 2941 DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size())); 2942 2943 if (info->_scope_debug_info == nullptr) { 2944 // compute debug information 2945 info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state); 2946 } else { 2947 // debug information already set. Check that it is correct from the current point of view 2948 DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state))); 2949 } 2950 } 2951 2952 2953 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) { 2954 LIR_OpVisitState visitor; 2955 int num_inst = instructions->length(); 2956 bool has_dead = false; 2957 2958 for (int j = 0; j < num_inst; j++) { 2959 LIR_Op* op = instructions->at(j); 2960 if (op == nullptr) { // this can happen when spill-moves are removed in eliminate_spill_moves 2961 has_dead = true; 2962 continue; 2963 } 2964 int op_id = op->id(); 2965 2966 // visit instruction to get list of operands 2967 visitor.visit(op); 2968 2969 // iterate all modes of the visitor and process all virtual operands 2970 for_each_visitor_mode(mode) { 2971 int n = visitor.opr_count(mode); 2972 for (int k = 0; k < n; k++) { 2973 LIR_Opr opr = visitor.opr_at(mode, k); 2974 if (opr->is_virtual_register()) { 2975 visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode)); 2976 } 2977 } 2978 } 2979 2980 if (visitor.info_count() > 0) { 2981 // exception handling 2982 if (compilation()->has_exception_handlers()) { 2983 XHandlers* xhandlers = visitor.all_xhandler(); 2984 int n = xhandlers->length(); 2985 for (int k = 0; k < n; k++) { 2986 XHandler* handler = xhandlers->handler_at(k); 2987 if (handler->entry_code() != nullptr) { 2988 assign_reg_num(handler->entry_code()->instructions_list(), nullptr); 2989 } 2990 } 2991 } else { 2992 assert(visitor.all_xhandler()->length() == 0, "missed exception handler"); 2993 } 2994 2995 // compute oop map 2996 assert(iw != nullptr, "needed for compute_oop_map"); 2997 compute_oop_map(iw, visitor, op); 2998 2999 // compute debug information 3000 int n = visitor.info_count(); 3001 for (int k = 0; k < n; k++) { 3002 compute_debug_info(visitor.info_at(k), op_id); 3003 } 3004 } 3005 3006 #ifdef ASSERT 3007 // make sure we haven't made the op invalid. 3008 op->verify(); 3009 #endif 3010 3011 // remove useless moves 3012 if (op->code() == lir_move) { 3013 assert(op->as_Op1() != nullptr, "move must be LIR_Op1"); 3014 LIR_Op1* move = (LIR_Op1*)op; 3015 LIR_Opr src = move->in_opr(); 3016 LIR_Opr dst = move->result_opr(); 3017 if (dst == src || 3018 (!dst->is_pointer() && !src->is_pointer() && 3019 src->is_same_register(dst))) { 3020 instructions->at_put(j, nullptr); 3021 has_dead = true; 3022 } 3023 } 3024 } 3025 3026 if (has_dead) { 3027 // iterate all instructions of the block and remove all null-values. 3028 int insert_point = 0; 3029 for (int j = 0; j < num_inst; j++) { 3030 LIR_Op* op = instructions->at(j); 3031 if (op != nullptr) { 3032 if (insert_point != j) { 3033 instructions->at_put(insert_point, op); 3034 } 3035 insert_point++; 3036 } 3037 } 3038 instructions->trunc_to(insert_point); 3039 } 3040 } 3041 3042 void LinearScan::assign_reg_num() { 3043 TIME_LINEAR_SCAN(timer_assign_reg_num); 3044 3045 init_compute_debug_info(); 3046 IntervalWalker* iw = init_compute_oop_maps(); 3047 3048 int num_blocks = block_count(); 3049 for (int i = 0; i < num_blocks; i++) { 3050 BlockBegin* block = block_at(i); 3051 assign_reg_num(block->lir()->instructions_list(), iw); 3052 } 3053 } 3054 3055 3056 void LinearScan::do_linear_scan() { 3057 NOT_PRODUCT(_total_timer.begin_method()); 3058 3059 number_instructions(); 3060 3061 NOT_PRODUCT(print_lir(1, "Before Register Allocation")); 3062 3063 compute_local_live_sets(); 3064 compute_global_live_sets(); 3065 CHECK_BAILOUT(); 3066 3067 build_intervals(); 3068 CHECK_BAILOUT(); 3069 sort_intervals_before_allocation(); 3070 3071 NOT_PRODUCT(print_intervals("Before Register Allocation")); 3072 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc)); 3073 3074 allocate_registers(); 3075 CHECK_BAILOUT(); 3076 3077 resolve_data_flow(); 3078 if (compilation()->has_exception_handlers()) { 3079 resolve_exception_handlers(); 3080 } 3081 // fill in number of spill slots into frame_map 3082 propagate_spill_slots(); 3083 CHECK_BAILOUT(); 3084 3085 NOT_PRODUCT(print_intervals("After Register Allocation")); 3086 NOT_PRODUCT(print_lir(2, "LIR after register allocation:")); 3087 3088 sort_intervals_after_allocation(); 3089 3090 DEBUG_ONLY(verify()); 3091 3092 eliminate_spill_moves(); 3093 assign_reg_num(); 3094 CHECK_BAILOUT(); 3095 3096 NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:")); 3097 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign)); 3098 3099 #ifndef RISCV 3100 // Disable these optimizations on riscv temporarily, because it does not 3101 // work when the comparison operands are bound to branches or cmoves. 3102 { TIME_LINEAR_SCAN(timer_optimize_lir); 3103 3104 EdgeMoveOptimizer::optimize(ir()->code()); 3105 ControlFlowOptimizer::optimize(ir()->code()); 3106 // check that cfg is still correct after optimizations 3107 ir()->verify(); 3108 } 3109 #endif 3110 3111 NOT_PRODUCT(print_lir(1, "Before Code Generation", false)); 3112 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final)); 3113 NOT_PRODUCT(_total_timer.end_method(this)); 3114 } 3115 3116 3117 // ********** Printing functions 3118 3119 #ifndef PRODUCT 3120 3121 void LinearScan::print_timers(double total) { 3122 _total_timer.print(total); 3123 } 3124 3125 void LinearScan::print_statistics() { 3126 _stat_before_alloc.print("before allocation"); 3127 _stat_after_asign.print("after assignment of register"); 3128 _stat_final.print("after optimization"); 3129 } 3130 3131 void LinearScan::print_bitmap(BitMap& b) { 3132 for (unsigned int i = 0; i < b.size(); i++) { 3133 if (b.at(i)) tty->print("%d ", i); 3134 } 3135 tty->cr(); 3136 } 3137 3138 void LinearScan::print_intervals(const char* label) { 3139 if (TraceLinearScanLevel >= 1) { 3140 int i; 3141 tty->cr(); 3142 tty->print_cr("%s", label); 3143 3144 for (i = 0; i < interval_count(); i++) { 3145 Interval* interval = interval_at(i); 3146 if (interval != nullptr) { 3147 interval->print(); 3148 } 3149 } 3150 3151 tty->cr(); 3152 tty->print_cr("--- Basic Blocks ---"); 3153 for (i = 0; i < block_count(); i++) { 3154 BlockBegin* block = block_at(i); 3155 tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth()); 3156 } 3157 tty->cr(); 3158 tty->cr(); 3159 } 3160 3161 if (PrintCFGToFile) { 3162 CFGPrinter::print_intervals(&_intervals, label); 3163 } 3164 } 3165 3166 void LinearScan::print_lir(int level, const char* label, bool hir_valid) { 3167 if (TraceLinearScanLevel >= level) { 3168 tty->cr(); 3169 tty->print_cr("%s", label); 3170 print_LIR(ir()->linear_scan_order()); 3171 tty->cr(); 3172 } 3173 3174 if (level == 1 && PrintCFGToFile) { 3175 CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true); 3176 } 3177 } 3178 3179 void LinearScan::print_reg_num(outputStream* out, int reg_num) { 3180 if (reg_num == -1) { 3181 out->print("[ANY]"); 3182 return; 3183 } else if (reg_num >= LIR_Opr::vreg_base) { 3184 out->print("[VREG %d]", reg_num); 3185 return; 3186 } 3187 3188 LIR_Opr opr = get_operand(reg_num); 3189 assert(opr->is_valid(), "unknown register"); 3190 opr->print(out); 3191 } 3192 3193 LIR_Opr LinearScan::get_operand(int reg_num) { 3194 LIR_Opr opr = LIR_OprFact::illegal(); 3195 3196 #ifdef X86 3197 int last_xmm_reg = pd_last_xmm_reg; 3198 #ifdef _LP64 3199 if (UseAVX < 3) { 3200 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 3201 } 3202 #endif 3203 #endif 3204 if (reg_num >= pd_first_cpu_reg && reg_num <= pd_last_cpu_reg) { 3205 opr = LIR_OprFact::single_cpu(reg_num); 3206 } else if (reg_num >= pd_first_fpu_reg && reg_num <= pd_last_fpu_reg) { 3207 opr = LIR_OprFact::single_fpu(reg_num - pd_first_fpu_reg); 3208 #ifdef X86 3209 } else if (reg_num >= pd_first_xmm_reg && reg_num <= last_xmm_reg) { 3210 opr = LIR_OprFact::single_xmm(reg_num - pd_first_xmm_reg); 3211 #endif 3212 } else { 3213 // reg_num == -1 or a virtual register, return the illegal operand 3214 } 3215 return opr; 3216 } 3217 3218 Interval* LinearScan::find_interval_at(int reg_num) const { 3219 if (reg_num < 0 || reg_num >= _intervals.length()) { 3220 return nullptr; 3221 } 3222 return interval_at(reg_num); 3223 } 3224 3225 #endif // PRODUCT 3226 3227 3228 // ********** verification functions for allocation 3229 // (check that all intervals have a correct register and that no registers are overwritten) 3230 #ifdef ASSERT 3231 3232 void LinearScan::verify() { 3233 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************")); 3234 verify_intervals(); 3235 3236 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************")); 3237 verify_no_oops_in_fixed_intervals(); 3238 3239 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries")); 3240 verify_constants(); 3241 3242 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************")); 3243 verify_registers(); 3244 3245 TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************")); 3246 } 3247 3248 void LinearScan::verify_intervals() { 3249 int len = interval_count(); 3250 bool has_error = false; 3251 3252 for (int i = 0; i < len; i++) { 3253 Interval* i1 = interval_at(i); 3254 if (i1 == nullptr) continue; 3255 3256 i1->check_split_children(); 3257 3258 if (i1->reg_num() != i) { 3259 tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr(); 3260 has_error = true; 3261 } 3262 3263 if (i1->reg_num() >= LIR_Opr::vreg_base && i1->type() == T_ILLEGAL) { 3264 tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr(); 3265 has_error = true; 3266 } 3267 3268 if (i1->assigned_reg() == any_reg) { 3269 tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr(); 3270 has_error = true; 3271 } 3272 3273 if (i1->assigned_reg() == i1->assigned_regHi()) { 3274 tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr(); 3275 has_error = true; 3276 } 3277 3278 if (!is_processed_reg_num(i1->assigned_reg())) { 3279 tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr(); 3280 has_error = true; 3281 } 3282 3283 // special intervals that are created in MoveResolver 3284 // -> ignore them because the range information has no meaning there 3285 if (i1->from() == 1 && i1->to() == 2) continue; 3286 3287 if (i1->first() == Range::end()) { 3288 tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr(); 3289 has_error = true; 3290 } 3291 3292 for (Range* r = i1->first(); r != Range::end(); r = r->next()) { 3293 if (r->from() >= r->to()) { 3294 tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr(); 3295 has_error = true; 3296 } 3297 } 3298 3299 for (int j = i + 1; j < len; j++) { 3300 Interval* i2 = interval_at(j); 3301 if (i2 == nullptr || (i2->from() == 1 && i2->to() == 2)) continue; 3302 3303 int r1 = i1->assigned_reg(); 3304 int r1Hi = i1->assigned_regHi(); 3305 int r2 = i2->assigned_reg(); 3306 int r2Hi = i2->assigned_regHi(); 3307 if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) { 3308 tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num()); 3309 i1->print(); tty->cr(); 3310 i2->print(); tty->cr(); 3311 has_error = true; 3312 } 3313 } 3314 } 3315 3316 assert(has_error == false, "register allocation invalid"); 3317 } 3318 3319 3320 void LinearScan::verify_no_oops_in_fixed_intervals() { 3321 Interval* fixed_intervals; 3322 Interval* other_intervals; 3323 create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, nullptr); 3324 3325 // to ensure a walking until the last instruction id, add a dummy interval 3326 // with a high operation id 3327 other_intervals = new Interval(any_reg); 3328 other_intervals->add_range(max_jint - 2, max_jint - 1); 3329 IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals); 3330 3331 LIR_OpVisitState visitor; 3332 for (int i = 0; i < block_count(); i++) { 3333 BlockBegin* block = block_at(i); 3334 3335 LIR_OpList* instructions = block->lir()->instructions_list(); 3336 3337 for (int j = 0; j < instructions->length(); j++) { 3338 LIR_Op* op = instructions->at(j); 3339 int op_id = op->id(); 3340 3341 visitor.visit(op); 3342 3343 if (visitor.info_count() > 0) { 3344 iw->walk_before(op->id()); 3345 bool check_live = true; 3346 if (op->code() == lir_move) { 3347 LIR_Op1* move = (LIR_Op1*)op; 3348 check_live = (move->patch_code() == lir_patch_none); 3349 } 3350 LIR_OpBranch* branch = op->as_OpBranch(); 3351 if (branch != nullptr && branch->stub() != nullptr && branch->stub()->is_exception_throw_stub()) { 3352 // Don't bother checking the stub in this case since the 3353 // exception stub will never return to normal control flow. 3354 check_live = false; 3355 } 3356 3357 // Make sure none of the fixed registers is live across an 3358 // oopmap since we can't handle that correctly. 3359 if (check_live) { 3360 for (Interval* interval = iw->active_first(fixedKind); 3361 interval != Interval::end(); 3362 interval = interval->next()) { 3363 if (interval->current_to() > op->id() + 1) { 3364 // This interval is live out of this op so make sure 3365 // that this interval represents some value that's 3366 // referenced by this op either as an input or output. 3367 bool ok = false; 3368 for_each_visitor_mode(mode) { 3369 int n = visitor.opr_count(mode); 3370 for (int k = 0; k < n; k++) { 3371 LIR_Opr opr = visitor.opr_at(mode, k); 3372 if (opr->is_fixed_cpu()) { 3373 if (interval_at(reg_num(opr)) == interval) { 3374 ok = true; 3375 break; 3376 } 3377 int hi = reg_numHi(opr); 3378 if (hi != -1 && interval_at(hi) == interval) { 3379 ok = true; 3380 break; 3381 } 3382 } 3383 } 3384 } 3385 assert(ok, "fixed intervals should never be live across an oopmap point"); 3386 } 3387 } 3388 } 3389 } 3390 3391 // oop-maps at calls do not contain registers, so check is not needed 3392 if (!visitor.has_call()) { 3393 3394 for_each_visitor_mode(mode) { 3395 int n = visitor.opr_count(mode); 3396 for (int k = 0; k < n; k++) { 3397 LIR_Opr opr = visitor.opr_at(mode, k); 3398 3399 if (opr->is_fixed_cpu() && opr->is_oop()) { 3400 // operand is a non-virtual cpu register and contains an oop 3401 TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr()); 3402 3403 Interval* interval = interval_at(reg_num(opr)); 3404 assert(interval != nullptr, "no interval"); 3405 3406 if (mode == LIR_OpVisitState::inputMode) { 3407 if (interval->to() >= op_id + 1) { 3408 assert(interval->to() < op_id + 2 || 3409 interval->has_hole_between(op_id, op_id + 2), 3410 "oop input operand live after instruction"); 3411 } 3412 } else if (mode == LIR_OpVisitState::outputMode) { 3413 if (interval->from() <= op_id - 1) { 3414 assert(interval->has_hole_between(op_id - 1, op_id), 3415 "oop input operand live after instruction"); 3416 } 3417 } 3418 } 3419 } 3420 } 3421 } 3422 } 3423 } 3424 } 3425 3426 3427 void LinearScan::verify_constants() { 3428 int num_regs = num_virtual_regs(); 3429 int size = live_set_size(); 3430 int num_blocks = block_count(); 3431 3432 for (int i = 0; i < num_blocks; i++) { 3433 BlockBegin* block = block_at(i); 3434 ResourceBitMap& live_at_edge = block->live_in(); 3435 3436 // visit all registers where the live_at_edge bit is set 3437 auto visitor = [&](BitMap::idx_t index) { 3438 int r = static_cast<int>(index); 3439 TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id())); 3440 3441 Value value = gen()->instruction_for_vreg(r); 3442 3443 assert(value != nullptr, "all intervals live across block boundaries must have Value"); 3444 assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand"); 3445 assert(value->operand()->vreg_number() == r, "register number must match"); 3446 // TKR assert(value->as_Constant() == nullptr || value->is_pinned(), "only pinned constants can be alive across block boundaries"); 3447 }; 3448 live_at_edge.iterate(visitor, 0, size); 3449 } 3450 } 3451 3452 3453 class RegisterVerifier: public StackObj { 3454 private: 3455 LinearScan* _allocator; 3456 BlockList _work_list; // all blocks that must be processed 3457 IntervalsList _saved_states; // saved information of previous check 3458 3459 // simplified access to methods of LinearScan 3460 Compilation* compilation() const { return _allocator->compilation(); } 3461 Interval* interval_at(int reg_num) const { return _allocator->interval_at(reg_num); } 3462 int reg_num(LIR_Opr opr) const { return _allocator->reg_num(opr); } 3463 3464 // currently, only registers are processed 3465 int state_size() { return LinearScan::nof_regs; } 3466 3467 // accessors 3468 IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); } 3469 void set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); } 3470 void add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); } 3471 3472 // helper functions 3473 IntervalList* copy(IntervalList* input_state); 3474 void state_put(IntervalList* input_state, int reg, Interval* interval); 3475 bool check_state(IntervalList* input_state, int reg, Interval* interval); 3476 3477 void process_block(BlockBegin* block); 3478 void process_xhandler(XHandler* xhandler, IntervalList* input_state); 3479 void process_successor(BlockBegin* block, IntervalList* input_state); 3480 void process_operations(LIR_List* ops, IntervalList* input_state); 3481 3482 public: 3483 RegisterVerifier(LinearScan* allocator) 3484 : _allocator(allocator) 3485 , _work_list(16) 3486 , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), nullptr) 3487 { } 3488 3489 void verify(BlockBegin* start); 3490 }; 3491 3492 3493 // entry function from LinearScan that starts the verification 3494 void LinearScan::verify_registers() { 3495 RegisterVerifier verifier(this); 3496 verifier.verify(block_at(0)); 3497 } 3498 3499 3500 void RegisterVerifier::verify(BlockBegin* start) { 3501 // setup input registers (method arguments) for first block 3502 int input_state_len = state_size(); 3503 IntervalList* input_state = new IntervalList(input_state_len, input_state_len, nullptr); 3504 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 3505 for (int n = 0; n < args->length(); n++) { 3506 LIR_Opr opr = args->at(n); 3507 if (opr->is_register()) { 3508 Interval* interval = interval_at(reg_num(opr)); 3509 3510 if (interval->assigned_reg() < state_size()) { 3511 input_state->at_put(interval->assigned_reg(), interval); 3512 } 3513 if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) { 3514 input_state->at_put(interval->assigned_regHi(), interval); 3515 } 3516 } 3517 } 3518 3519 set_state_for_block(start, input_state); 3520 add_to_work_list(start); 3521 3522 // main loop for verification 3523 do { 3524 BlockBegin* block = _work_list.at(0); 3525 _work_list.remove_at(0); 3526 3527 process_block(block); 3528 } while (!_work_list.is_empty()); 3529 } 3530 3531 void RegisterVerifier::process_block(BlockBegin* block) { 3532 TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id())); 3533 3534 // must copy state because it is modified 3535 IntervalList* input_state = copy(state_for_block(block)); 3536 3537 if (TraceLinearScanLevel >= 4) { 3538 tty->print_cr("Input-State of intervals:"); 3539 tty->print(" "); 3540 for (int i = 0; i < state_size(); i++) { 3541 if (input_state->at(i) != nullptr) { 3542 tty->print(" %4d", input_state->at(i)->reg_num()); 3543 } else { 3544 tty->print(" __"); 3545 } 3546 } 3547 tty->cr(); 3548 tty->cr(); 3549 } 3550 3551 // process all operations of the block 3552 process_operations(block->lir(), input_state); 3553 3554 // iterate all successors 3555 for (int i = 0; i < block->number_of_sux(); i++) { 3556 process_successor(block->sux_at(i), input_state); 3557 } 3558 } 3559 3560 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) { 3561 TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id())); 3562 3563 // must copy state because it is modified 3564 input_state = copy(input_state); 3565 3566 if (xhandler->entry_code() != nullptr) { 3567 process_operations(xhandler->entry_code(), input_state); 3568 } 3569 process_successor(xhandler->entry_block(), input_state); 3570 } 3571 3572 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) { 3573 IntervalList* saved_state = state_for_block(block); 3574 3575 if (saved_state != nullptr) { 3576 // this block was already processed before. 3577 // check if new input_state is consistent with saved_state 3578 3579 bool saved_state_correct = true; 3580 for (int i = 0; i < state_size(); i++) { 3581 if (input_state->at(i) != saved_state->at(i)) { 3582 // current input_state and previous saved_state assume a different 3583 // interval in this register -> assume that this register is invalid 3584 if (saved_state->at(i) != nullptr) { 3585 // invalidate old calculation only if it assumed that 3586 // register was valid. when the register was already invalid, 3587 // then the old calculation was correct. 3588 saved_state_correct = false; 3589 saved_state->at_put(i, nullptr); 3590 3591 TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i)); 3592 } 3593 } 3594 } 3595 3596 if (saved_state_correct) { 3597 // already processed block with correct input_state 3598 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id())); 3599 } else { 3600 // must re-visit this block 3601 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id())); 3602 add_to_work_list(block); 3603 } 3604 3605 } else { 3606 // block was not processed before, so set initial input_state 3607 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id())); 3608 3609 set_state_for_block(block, copy(input_state)); 3610 add_to_work_list(block); 3611 } 3612 } 3613 3614 3615 IntervalList* RegisterVerifier::copy(IntervalList* input_state) { 3616 IntervalList* copy_state = new IntervalList(input_state->length()); 3617 copy_state->appendAll(input_state); 3618 return copy_state; 3619 } 3620 3621 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) { 3622 if (reg != LinearScan::any_reg && reg < state_size()) { 3623 if (interval != nullptr) { 3624 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = %d", reg, interval->reg_num())); 3625 } else if (input_state->at(reg) != nullptr) { 3626 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = null", reg)); 3627 } 3628 3629 input_state->at_put(reg, interval); 3630 } 3631 } 3632 3633 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) { 3634 if (reg != LinearScan::any_reg && reg < state_size()) { 3635 if (input_state->at(reg) != interval) { 3636 tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num()); 3637 return true; 3638 } 3639 } 3640 return false; 3641 } 3642 3643 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) { 3644 // visit all instructions of the block 3645 LIR_OpVisitState visitor; 3646 bool has_error = false; 3647 3648 for (int i = 0; i < ops->length(); i++) { 3649 LIR_Op* op = ops->at(i); 3650 visitor.visit(op); 3651 3652 TRACE_LINEAR_SCAN(4, op->print_on(tty)); 3653 3654 // check if input operands are correct 3655 int j; 3656 int n = visitor.opr_count(LIR_OpVisitState::inputMode); 3657 for (j = 0; j < n; j++) { 3658 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j); 3659 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3660 Interval* interval = interval_at(reg_num(opr)); 3661 if (op->id() != -1) { 3662 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode); 3663 } 3664 3665 has_error |= check_state(input_state, interval->assigned_reg(), interval->split_parent()); 3666 has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent()); 3667 3668 // When an operand is marked with is_last_use, then the fpu stack allocator 3669 // removes the register from the fpu stack -> the register contains no value 3670 if (opr->is_last_use()) { 3671 state_put(input_state, interval->assigned_reg(), nullptr); 3672 state_put(input_state, interval->assigned_regHi(), nullptr); 3673 } 3674 } 3675 } 3676 3677 // invalidate all caller save registers at calls 3678 if (visitor.has_call()) { 3679 for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) { 3680 state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), nullptr); 3681 } 3682 for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) { 3683 state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), nullptr); 3684 } 3685 3686 #ifdef X86 3687 int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms(); 3688 for (j = 0; j < num_caller_save_xmm_regs; j++) { 3689 state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), nullptr); 3690 } 3691 #endif 3692 } 3693 3694 // process xhandler before output and temp operands 3695 XHandlers* xhandlers = visitor.all_xhandler(); 3696 n = xhandlers->length(); 3697 for (int k = 0; k < n; k++) { 3698 process_xhandler(xhandlers->handler_at(k), input_state); 3699 } 3700 3701 // set temp operands (some operations use temp operands also as output operands, so can't set them null) 3702 n = visitor.opr_count(LIR_OpVisitState::tempMode); 3703 for (j = 0; j < n; j++) { 3704 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j); 3705 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3706 Interval* interval = interval_at(reg_num(opr)); 3707 if (op->id() != -1) { 3708 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode); 3709 } 3710 3711 state_put(input_state, interval->assigned_reg(), interval->split_parent()); 3712 state_put(input_state, interval->assigned_regHi(), interval->split_parent()); 3713 } 3714 } 3715 3716 // set output operands 3717 n = visitor.opr_count(LIR_OpVisitState::outputMode); 3718 for (j = 0; j < n; j++) { 3719 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j); 3720 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3721 Interval* interval = interval_at(reg_num(opr)); 3722 if (op->id() != -1) { 3723 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode); 3724 } 3725 3726 state_put(input_state, interval->assigned_reg(), interval->split_parent()); 3727 state_put(input_state, interval->assigned_regHi(), interval->split_parent()); 3728 } 3729 } 3730 } 3731 assert(has_error == false, "Error in register allocation"); 3732 } 3733 3734 #endif // ASSERT 3735 3736 3737 3738 // **** Implementation of MoveResolver ****************************** 3739 3740 MoveResolver::MoveResolver(LinearScan* allocator) : 3741 _allocator(allocator), 3742 _insert_list(nullptr), 3743 _insert_idx(-1), 3744 _insertion_buffer(), 3745 _mapping_from(8), 3746 _mapping_from_opr(8), 3747 _mapping_to(8), 3748 _multiple_reads_allowed(false) 3749 { 3750 for (int i = 0; i < LinearScan::nof_regs; i++) { 3751 _register_blocked[i] = 0; 3752 } 3753 DEBUG_ONLY(check_empty()); 3754 } 3755 3756 3757 #ifdef ASSERT 3758 3759 void MoveResolver::check_empty() { 3760 assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing"); 3761 for (int i = 0; i < LinearScan::nof_regs; i++) { 3762 assert(register_blocked(i) == 0, "register map must be empty before and after processing"); 3763 } 3764 assert(_multiple_reads_allowed == false, "must have default value"); 3765 } 3766 3767 void MoveResolver::verify_before_resolve() { 3768 assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal"); 3769 assert(_mapping_from.length() == _mapping_to.length(), "length must be equal"); 3770 assert(_insert_list != nullptr && _insert_idx != -1, "insert position not set"); 3771 3772 int i, j; 3773 if (!_multiple_reads_allowed) { 3774 for (i = 0; i < _mapping_from.length(); i++) { 3775 for (j = i + 1; j < _mapping_from.length(); j++) { 3776 assert(_mapping_from.at(i) == nullptr || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice"); 3777 } 3778 } 3779 } 3780 3781 for (i = 0; i < _mapping_to.length(); i++) { 3782 for (j = i + 1; j < _mapping_to.length(); j++) { 3783 assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice"); 3784 } 3785 } 3786 3787 3788 ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills()); 3789 if (!_multiple_reads_allowed) { 3790 for (i = 0; i < _mapping_from.length(); i++) { 3791 Interval* it = _mapping_from.at(i); 3792 if (it != nullptr) { 3793 assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice"); 3794 used_regs.set_bit(it->assigned_reg()); 3795 3796 if (it->assigned_regHi() != LinearScan::any_reg) { 3797 assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice"); 3798 used_regs.set_bit(it->assigned_regHi()); 3799 } 3800 } 3801 } 3802 } 3803 3804 used_regs.clear(); 3805 for (i = 0; i < _mapping_to.length(); i++) { 3806 Interval* it = _mapping_to.at(i); 3807 assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice"); 3808 used_regs.set_bit(it->assigned_reg()); 3809 3810 if (it->assigned_regHi() != LinearScan::any_reg) { 3811 assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice"); 3812 used_regs.set_bit(it->assigned_regHi()); 3813 } 3814 } 3815 3816 used_regs.clear(); 3817 for (i = 0; i < _mapping_from.length(); i++) { 3818 Interval* it = _mapping_from.at(i); 3819 if (it != nullptr && it->assigned_reg() >= LinearScan::nof_regs) { 3820 used_regs.set_bit(it->assigned_reg()); 3821 } 3822 } 3823 for (i = 0; i < _mapping_to.length(); i++) { 3824 Interval* it = _mapping_to.at(i); 3825 assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to"); 3826 } 3827 } 3828 3829 #endif // ASSERT 3830 3831 3832 // mark assigned_reg and assigned_regHi of the interval as blocked 3833 void MoveResolver::block_registers(Interval* it) { 3834 int reg = it->assigned_reg(); 3835 if (reg < LinearScan::nof_regs) { 3836 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used"); 3837 set_register_blocked(reg, 1); 3838 } 3839 reg = it->assigned_regHi(); 3840 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3841 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used"); 3842 set_register_blocked(reg, 1); 3843 } 3844 } 3845 3846 // mark assigned_reg and assigned_regHi of the interval as unblocked 3847 void MoveResolver::unblock_registers(Interval* it) { 3848 int reg = it->assigned_reg(); 3849 if (reg < LinearScan::nof_regs) { 3850 assert(register_blocked(reg) > 0, "register already marked as unused"); 3851 set_register_blocked(reg, -1); 3852 } 3853 reg = it->assigned_regHi(); 3854 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3855 assert(register_blocked(reg) > 0, "register already marked as unused"); 3856 set_register_blocked(reg, -1); 3857 } 3858 } 3859 3860 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from) 3861 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) { 3862 int from_reg = -1; 3863 int from_regHi = -1; 3864 if (from != nullptr) { 3865 from_reg = from->assigned_reg(); 3866 from_regHi = from->assigned_regHi(); 3867 } 3868 3869 int reg = to->assigned_reg(); 3870 if (reg < LinearScan::nof_regs) { 3871 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) { 3872 return false; 3873 } 3874 } 3875 reg = to->assigned_regHi(); 3876 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3877 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) { 3878 return false; 3879 } 3880 } 3881 3882 return true; 3883 } 3884 3885 3886 void MoveResolver::create_insertion_buffer(LIR_List* list) { 3887 assert(!_insertion_buffer.initialized(), "overwriting existing buffer"); 3888 _insertion_buffer.init(list); 3889 } 3890 3891 void MoveResolver::append_insertion_buffer() { 3892 if (_insertion_buffer.initialized()) { 3893 _insertion_buffer.lir_list()->append(&_insertion_buffer); 3894 } 3895 assert(!_insertion_buffer.initialized(), "must be uninitialized now"); 3896 3897 _insert_list = nullptr; 3898 _insert_idx = -1; 3899 } 3900 3901 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) { 3902 assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal"); 3903 assert(from_interval->type() == to_interval->type(), "move between different types"); 3904 assert(_insert_list != nullptr && _insert_idx != -1, "must setup insert position first"); 3905 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer"); 3906 3907 LIR_Opr from_opr = get_virtual_register(from_interval); 3908 LIR_Opr to_opr = get_virtual_register(to_interval); 3909 3910 if (!_multiple_reads_allowed) { 3911 // the last_use flag is an optimization for FPU stack allocation. When the same 3912 // input interval is used in more than one move, then it is too difficult to determine 3913 // if this move is really the last use. 3914 from_opr = from_opr->make_last_use(); 3915 } 3916 _insertion_buffer.move(_insert_idx, from_opr, to_opr); 3917 3918 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 3919 } 3920 3921 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) { 3922 assert(from_opr->type() == to_interval->type(), "move between different types"); 3923 assert(_insert_list != nullptr && _insert_idx != -1, "must setup insert position first"); 3924 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer"); 3925 3926 LIR_Opr to_opr = get_virtual_register(to_interval); 3927 _insertion_buffer.move(_insert_idx, from_opr, to_opr); 3928 3929 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 3930 } 3931 3932 LIR_Opr MoveResolver::get_virtual_register(Interval* interval) { 3933 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 3934 // a few extra registers before we really run out which helps to avoid to trip over assertions. 3935 int reg_num = interval->reg_num(); 3936 if (reg_num + 20 >= LIR_Opr::vreg_max) { 3937 _allocator->bailout("out of virtual registers in linear scan"); 3938 if (reg_num + 2 >= LIR_Opr::vreg_max) { 3939 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 3940 reg_num = LIR_Opr::vreg_base; 3941 } 3942 } 3943 LIR_Opr vreg = LIR_OprFact::virtual_register(reg_num, interval->type()); 3944 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 3945 return vreg; 3946 } 3947 3948 void MoveResolver::resolve_mappings() { 3949 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != nullptr ? _insert_list->block()->block_id() : -1, _insert_idx)); 3950 DEBUG_ONLY(verify_before_resolve()); 3951 3952 // Block all registers that are used as input operands of a move. 3953 // When a register is blocked, no move to this register is emitted. 3954 // This is necessary for detecting cycles in moves. 3955 int i; 3956 for (i = _mapping_from.length() - 1; i >= 0; i--) { 3957 Interval* from_interval = _mapping_from.at(i); 3958 if (from_interval != nullptr) { 3959 block_registers(from_interval); 3960 } 3961 } 3962 3963 int spill_candidate = -1; 3964 while (_mapping_from.length() > 0) { 3965 bool processed_interval = false; 3966 3967 for (i = _mapping_from.length() - 1; i >= 0; i--) { 3968 Interval* from_interval = _mapping_from.at(i); 3969 Interval* to_interval = _mapping_to.at(i); 3970 3971 if (save_to_process_move(from_interval, to_interval)) { 3972 // this interval can be processed because target is free 3973 if (from_interval != nullptr) { 3974 insert_move(from_interval, to_interval); 3975 unblock_registers(from_interval); 3976 } else { 3977 insert_move(_mapping_from_opr.at(i), to_interval); 3978 } 3979 _mapping_from.remove_at(i); 3980 _mapping_from_opr.remove_at(i); 3981 _mapping_to.remove_at(i); 3982 3983 processed_interval = true; 3984 } else if (from_interval != nullptr && from_interval->assigned_reg() < LinearScan::nof_regs) { 3985 // this interval cannot be processed now because target is not free 3986 // it starts in a register, so it is a possible candidate for spilling 3987 spill_candidate = i; 3988 } 3989 } 3990 3991 if (!processed_interval) { 3992 // no move could be processed because there is a cycle in the move list 3993 // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory 3994 guarantee(spill_candidate != -1, "no interval in register for spilling found"); 3995 3996 // create a new spill interval and assign a stack slot to it 3997 Interval* from_interval = _mapping_from.at(spill_candidate); 3998 Interval* spill_interval = new Interval(-1); 3999 spill_interval->set_type(from_interval->type()); 4000 4001 // add a dummy range because real position is difficult to calculate 4002 // Note: this range is a special case when the integrity of the allocation is checked 4003 spill_interval->add_range(1, 2); 4004 4005 // do not allocate a new spill slot for temporary interval, but 4006 // use spill slot assigned to from_interval. Otherwise moves from 4007 // one stack slot to another can happen (not allowed by LIR_Assembler 4008 int spill_slot = from_interval->canonical_spill_slot(); 4009 if (spill_slot < 0) { 4010 spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2); 4011 from_interval->set_canonical_spill_slot(spill_slot); 4012 } 4013 spill_interval->assign_reg(spill_slot); 4014 allocator()->append_interval(spill_interval); 4015 4016 TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num())); 4017 4018 // insert a move from register to stack and update the mapping 4019 insert_move(from_interval, spill_interval); 4020 _mapping_from.at_put(spill_candidate, spill_interval); 4021 unblock_registers(from_interval); 4022 } 4023 } 4024 4025 // reset to default value 4026 _multiple_reads_allowed = false; 4027 4028 // check that all intervals have been processed 4029 DEBUG_ONLY(check_empty()); 4030 } 4031 4032 4033 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) { 4034 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != nullptr ? insert_list->block()->block_id() : -1, insert_idx)); 4035 assert(_insert_list == nullptr && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set"); 4036 4037 create_insertion_buffer(insert_list); 4038 _insert_list = insert_list; 4039 _insert_idx = insert_idx; 4040 } 4041 4042 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) { 4043 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != nullptr ? insert_list->block()->block_id() : -1, insert_idx)); 4044 4045 if (_insert_list != nullptr && (insert_list != _insert_list || insert_idx != _insert_idx)) { 4046 // insert position changed -> resolve current mappings 4047 resolve_mappings(); 4048 } 4049 4050 if (insert_list != _insert_list) { 4051 // block changed -> append insertion_buffer because it is 4052 // bound to a specific block and create a new insertion_buffer 4053 append_insertion_buffer(); 4054 create_insertion_buffer(insert_list); 4055 } 4056 4057 _insert_list = insert_list; 4058 _insert_idx = insert_idx; 4059 } 4060 4061 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) { 4062 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 4063 4064 _mapping_from.append(from_interval); 4065 _mapping_from_opr.append(LIR_OprFact::illegalOpr); 4066 _mapping_to.append(to_interval); 4067 } 4068 4069 4070 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) { 4071 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 4072 assert(from_opr->is_constant(), "only for constants"); 4073 4074 _mapping_from.append(nullptr); 4075 _mapping_from_opr.append(from_opr); 4076 _mapping_to.append(to_interval); 4077 } 4078 4079 void MoveResolver::resolve_and_append_moves() { 4080 if (has_mappings()) { 4081 resolve_mappings(); 4082 } 4083 append_insertion_buffer(); 4084 } 4085 4086 4087 4088 // **** Implementation of Range ************************************* 4089 4090 Range::Range(int from, int to, Range* next) : 4091 _from(from), 4092 _to(to), 4093 _next(next) 4094 { 4095 } 4096 4097 // initialize sentinel 4098 Range* Range::_end = nullptr; 4099 void Range::initialize() { 4100 assert(_end == nullptr, "Range initialized more than once"); 4101 alignas(Range) static uint8_t end_storage[sizeof(Range)]; 4102 _end = ::new(static_cast<void*>(end_storage)) Range(max_jint, max_jint, nullptr); 4103 } 4104 4105 int Range::intersects_at(Range* r2) const { 4106 const Range* r1 = this; 4107 4108 assert(r1 != nullptr && r2 != nullptr, "null ranges not allowed"); 4109 assert(r1 != _end && r2 != _end, "empty ranges not allowed"); 4110 4111 do { 4112 if (r1->from() < r2->from()) { 4113 if (r1->to() <= r2->from()) { 4114 r1 = r1->next(); if (r1 == _end) return -1; 4115 } else { 4116 return r2->from(); 4117 } 4118 } else if (r2->from() < r1->from()) { 4119 if (r2->to() <= r1->from()) { 4120 r2 = r2->next(); if (r2 == _end) return -1; 4121 } else { 4122 return r1->from(); 4123 } 4124 } else { // r1->from() == r2->from() 4125 if (r1->from() == r1->to()) { 4126 r1 = r1->next(); if (r1 == _end) return -1; 4127 } else if (r2->from() == r2->to()) { 4128 r2 = r2->next(); if (r2 == _end) return -1; 4129 } else { 4130 return r1->from(); 4131 } 4132 } 4133 } while (true); 4134 } 4135 4136 #ifndef PRODUCT 4137 void Range::print(outputStream* out) const { 4138 out->print("[%d, %d[ ", _from, _to); 4139 } 4140 #endif 4141 4142 4143 4144 // **** Implementation of Interval ********************************** 4145 4146 // initialize sentinel 4147 Interval* Interval::_end = nullptr; 4148 void Interval::initialize() { 4149 Range::initialize(); 4150 assert(_end == nullptr, "Interval initialized more than once"); 4151 alignas(Interval) static uint8_t end_storage[sizeof(Interval)]; 4152 _end = ::new(static_cast<void*>(end_storage)) Interval(-1); 4153 } 4154 4155 Interval::Interval(int reg_num) : 4156 _reg_num(reg_num), 4157 _type(T_ILLEGAL), 4158 _first(Range::end()), 4159 _use_pos_and_kinds(12), 4160 _current(Range::end()), 4161 _next(_end), 4162 _state(invalidState), 4163 _assigned_reg(LinearScan::any_reg), 4164 _assigned_regHi(LinearScan::any_reg), 4165 _cached_to(-1), 4166 _cached_opr(LIR_OprFact::illegalOpr), 4167 _cached_vm_reg(VMRegImpl::Bad()), 4168 _split_children(nullptr), 4169 _canonical_spill_slot(-1), 4170 _insert_move_when_activated(false), 4171 _spill_state(noDefinitionFound), 4172 _spill_definition_pos(-1), 4173 _register_hint(nullptr) 4174 { 4175 _split_parent = this; 4176 _current_split_child = this; 4177 } 4178 4179 int Interval::calc_to() { 4180 assert(_first != Range::end(), "interval has no range"); 4181 4182 Range* r = _first; 4183 while (r->next() != Range::end()) { 4184 r = r->next(); 4185 } 4186 return r->to(); 4187 } 4188 4189 4190 #ifdef ASSERT 4191 // consistency check of split-children 4192 void Interval::check_split_children() { 4193 if (_split_children != nullptr && _split_children->length() > 0) { 4194 assert(is_split_parent(), "only split parents can have children"); 4195 4196 for (int i = 0; i < _split_children->length(); i++) { 4197 Interval* i1 = _split_children->at(i); 4198 4199 assert(i1->split_parent() == this, "not a split child of this interval"); 4200 assert(i1->type() == type(), "must be equal for all split children"); 4201 assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children"); 4202 4203 for (int j = i + 1; j < _split_children->length(); j++) { 4204 Interval* i2 = _split_children->at(j); 4205 4206 assert(i1->reg_num() != i2->reg_num(), "same register number"); 4207 4208 if (i1->from() < i2->from()) { 4209 assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping"); 4210 } else { 4211 assert(i2->from() < i1->from(), "intervals start at same op_id"); 4212 assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping"); 4213 } 4214 } 4215 } 4216 } 4217 } 4218 #endif // ASSERT 4219 4220 Interval* Interval::register_hint(bool search_split_child) const { 4221 if (!search_split_child) { 4222 return _register_hint; 4223 } 4224 4225 if (_register_hint != nullptr) { 4226 assert(_register_hint->is_split_parent(), "only split parents are valid hint registers"); 4227 4228 if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) { 4229 return _register_hint; 4230 4231 } else if (_register_hint->_split_children != nullptr && _register_hint->_split_children->length() > 0) { 4232 // search the first split child that has a register assigned 4233 int len = _register_hint->_split_children->length(); 4234 for (int i = 0; i < len; i++) { 4235 Interval* cur = _register_hint->_split_children->at(i); 4236 4237 if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) { 4238 return cur; 4239 } 4240 } 4241 } 4242 } 4243 4244 // no hint interval found that has a register assigned 4245 return nullptr; 4246 } 4247 4248 4249 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) { 4250 assert(is_split_parent(), "can only be called for split parents"); 4251 assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)"); 4252 4253 Interval* result; 4254 if (_split_children == nullptr || _split_children->length() == 0) { 4255 result = this; 4256 } else { 4257 result = nullptr; 4258 int len = _split_children->length(); 4259 4260 // in outputMode, the end of the interval (op_id == cur->to()) is not valid 4261 int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1); 4262 4263 int i; 4264 for (i = 0; i < len; i++) { 4265 Interval* cur = _split_children->at(i); 4266 if (cur->from() <= op_id && op_id < cur->to() + to_offset) { 4267 if (i > 0) { 4268 // exchange current split child to start of list (faster access for next call) 4269 _split_children->at_put(i, _split_children->at(0)); 4270 _split_children->at_put(0, cur); 4271 } 4272 4273 // interval found 4274 result = cur; 4275 break; 4276 } 4277 } 4278 4279 #ifdef ASSERT 4280 for (i = 0; i < len; i++) { 4281 Interval* tmp = _split_children->at(i); 4282 if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) { 4283 tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num()); 4284 result->print(); 4285 tmp->print(); 4286 assert(false, "two valid result intervals found"); 4287 } 4288 } 4289 #endif 4290 } 4291 4292 assert(result != nullptr, "no matching interval found"); 4293 assert(result->covers(op_id, mode), "op_id not covered by interval"); 4294 4295 return result; 4296 } 4297 4298 4299 // returns the last split child that ends before the given op_id 4300 Interval* Interval::split_child_before_op_id(int op_id) { 4301 assert(op_id >= 0, "invalid op_id"); 4302 4303 Interval* parent = split_parent(); 4304 Interval* result = nullptr; 4305 4306 assert(parent->_split_children != nullptr, "no split children available"); 4307 int len = parent->_split_children->length(); 4308 assert(len > 0, "no split children available"); 4309 4310 for (int i = len - 1; i >= 0; i--) { 4311 Interval* cur = parent->_split_children->at(i); 4312 if (cur->to() <= op_id && (result == nullptr || result->to() < cur->to())) { 4313 result = cur; 4314 } 4315 } 4316 4317 assert(result != nullptr, "no split child found"); 4318 return result; 4319 } 4320 4321 4322 // Note: use positions are sorted descending -> first use has highest index 4323 int Interval::first_usage(IntervalUseKind min_use_kind) const { 4324 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4325 4326 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4327 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4328 return _use_pos_and_kinds.at(i); 4329 } 4330 } 4331 return max_jint; 4332 } 4333 4334 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const { 4335 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4336 4337 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4338 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4339 return _use_pos_and_kinds.at(i); 4340 } 4341 } 4342 return max_jint; 4343 } 4344 4345 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const { 4346 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4347 4348 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4349 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) { 4350 return _use_pos_and_kinds.at(i); 4351 } 4352 } 4353 return max_jint; 4354 } 4355 4356 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const { 4357 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4358 4359 int prev = 0; 4360 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4361 if (_use_pos_and_kinds.at(i) > from) { 4362 return prev; 4363 } 4364 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4365 prev = _use_pos_and_kinds.at(i); 4366 } 4367 } 4368 return prev; 4369 } 4370 4371 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) { 4372 assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range"); 4373 4374 // do not add use positions for precolored intervals because 4375 // they are never used 4376 if (use_kind != noUse && reg_num() >= LIR_Opr::vreg_base) { 4377 #ifdef ASSERT 4378 assert(_use_pos_and_kinds.length() % 2 == 0, "must be"); 4379 for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) { 4380 assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position"); 4381 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4382 if (i > 0) { 4383 assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending"); 4384 } 4385 } 4386 #endif 4387 4388 // Note: add_use is called in descending order, so list gets sorted 4389 // automatically by just appending new use positions 4390 int len = _use_pos_and_kinds.length(); 4391 if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) { 4392 _use_pos_and_kinds.append(pos); 4393 _use_pos_and_kinds.append(use_kind); 4394 } else if (_use_pos_and_kinds.at(len - 1) < use_kind) { 4395 assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly"); 4396 _use_pos_and_kinds.at_put(len - 1, use_kind); 4397 } 4398 } 4399 } 4400 4401 void Interval::add_range(int from, int to) { 4402 assert(from < to, "invalid range"); 4403 assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval"); 4404 assert(from <= first()->to(), "not inserting at begin of interval"); 4405 4406 if (first()->from() <= to) { 4407 // join intersecting ranges 4408 first()->set_from(MIN2(from, first()->from())); 4409 first()->set_to (MAX2(to, first()->to())); 4410 } else { 4411 // insert new range 4412 _first = new Range(from, to, first()); 4413 } 4414 } 4415 4416 Interval* Interval::new_split_child() { 4417 // allocate new interval 4418 Interval* result = new Interval(-1); 4419 result->set_type(type()); 4420 4421 Interval* parent = split_parent(); 4422 result->_split_parent = parent; 4423 result->set_register_hint(parent); 4424 4425 // insert new interval in children-list of parent 4426 if (parent->_split_children == nullptr) { 4427 assert(is_split_parent(), "list must be initialized at first split"); 4428 4429 parent->_split_children = new IntervalList(4); 4430 parent->_split_children->append(this); 4431 } 4432 parent->_split_children->append(result); 4433 4434 return result; 4435 } 4436 4437 // split this interval at the specified position and return 4438 // the remainder as a new interval. 4439 // 4440 // when an interval is split, a bi-directional link is established between the original interval 4441 // (the split parent) and the intervals that are split off this interval (the split children) 4442 // When a split child is split again, the new created interval is also a direct child 4443 // of the original parent (there is no tree of split children stored, but a flat list) 4444 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot) 4445 // 4446 // Note: The new interval has no valid reg_num 4447 Interval* Interval::split(int split_pos) { 4448 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals"); 4449 4450 // allocate new interval 4451 Interval* result = new_split_child(); 4452 4453 // split the ranges 4454 Range* prev = nullptr; 4455 Range* cur = _first; 4456 while (cur != Range::end() && cur->to() <= split_pos) { 4457 prev = cur; 4458 cur = cur->next(); 4459 } 4460 assert(cur != Range::end(), "split interval after end of last range"); 4461 4462 if (cur->from() < split_pos) { 4463 result->_first = new Range(split_pos, cur->to(), cur->next()); 4464 cur->set_to(split_pos); 4465 cur->set_next(Range::end()); 4466 4467 } else { 4468 assert(prev != nullptr, "split before start of first range"); 4469 result->_first = cur; 4470 prev->set_next(Range::end()); 4471 } 4472 result->_current = result->_first; 4473 _cached_to = -1; // clear cached value 4474 4475 // split list of use positions 4476 int total_len = _use_pos_and_kinds.length(); 4477 int start_idx = total_len - 2; 4478 while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) { 4479 start_idx -= 2; 4480 } 4481 4482 intStack new_use_pos_and_kinds(total_len - start_idx); 4483 int i; 4484 for (i = start_idx + 2; i < total_len; i++) { 4485 new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i)); 4486 } 4487 4488 _use_pos_and_kinds.trunc_to(start_idx + 2); 4489 result->_use_pos_and_kinds = _use_pos_and_kinds; 4490 _use_pos_and_kinds = new_use_pos_and_kinds; 4491 4492 #ifdef ASSERT 4493 assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos"); 4494 assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos"); 4495 assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries"); 4496 4497 for (i = 0; i < _use_pos_and_kinds.length(); i += 2) { 4498 assert(_use_pos_and_kinds.at(i) < split_pos, "must be"); 4499 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4500 } 4501 for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) { 4502 assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be"); 4503 assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4504 } 4505 #endif 4506 4507 return result; 4508 } 4509 4510 // split this interval at the specified position and return 4511 // the head as a new interval (the original interval is the tail) 4512 // 4513 // Currently, only the first range can be split, and the new interval 4514 // must not have split positions 4515 Interval* Interval::split_from_start(int split_pos) { 4516 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals"); 4517 assert(split_pos > from() && split_pos < to(), "can only split inside interval"); 4518 assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range"); 4519 assert(first_usage(noUse) > split_pos, "can not split when use positions are present"); 4520 4521 // allocate new interval 4522 Interval* result = new_split_child(); 4523 4524 // the new created interval has only one range (checked by assertion above), 4525 // so the splitting of the ranges is very simple 4526 result->add_range(_first->from(), split_pos); 4527 4528 if (split_pos == _first->to()) { 4529 assert(_first->next() != Range::end(), "must not be at end"); 4530 _first = _first->next(); 4531 } else { 4532 _first->set_from(split_pos); 4533 } 4534 4535 return result; 4536 } 4537 4538 4539 // returns true if the op_id is inside the interval 4540 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const { 4541 Range* cur = _first; 4542 4543 while (cur != Range::end() && cur->to() < op_id) { 4544 cur = cur->next(); 4545 } 4546 if (cur != Range::end()) { 4547 assert(cur->to() != cur->next()->from(), "ranges not separated"); 4548 4549 if (mode == LIR_OpVisitState::outputMode) { 4550 return cur->from() <= op_id && op_id < cur->to(); 4551 } else { 4552 return cur->from() <= op_id && op_id <= cur->to(); 4553 } 4554 } 4555 return false; 4556 } 4557 4558 // returns true if the interval has any hole between hole_from and hole_to 4559 // (even if the hole has only the length 1) 4560 bool Interval::has_hole_between(int hole_from, int hole_to) { 4561 assert(hole_from < hole_to, "check"); 4562 assert(from() <= hole_from && hole_to <= to(), "index out of interval"); 4563 4564 Range* cur = _first; 4565 while (cur != Range::end()) { 4566 assert(cur->to() < cur->next()->from(), "no space between ranges"); 4567 4568 // hole-range starts before this range -> hole 4569 if (hole_from < cur->from()) { 4570 return true; 4571 4572 // hole-range completely inside this range -> no hole 4573 } else if (hole_to <= cur->to()) { 4574 return false; 4575 4576 // overlapping of hole-range with this range -> hole 4577 } else if (hole_from <= cur->to()) { 4578 return true; 4579 } 4580 4581 cur = cur->next(); 4582 } 4583 4584 return false; 4585 } 4586 4587 // Check if there is an intersection with any of the split children of 'interval' 4588 bool Interval::intersects_any_children_of(Interval* interval) const { 4589 if (interval->_split_children != nullptr) { 4590 for (int i = 0; i < interval->_split_children->length(); i++) { 4591 if (intersects(interval->_split_children->at(i))) { 4592 return true; 4593 } 4594 } 4595 } 4596 return false; 4597 } 4598 4599 4600 #ifndef PRODUCT 4601 void Interval::print_on(outputStream* out, bool is_cfg_printer) const { 4602 const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" }; 4603 const char* UseKind2Name[] = { "N", "L", "S", "M" }; 4604 4605 const char* type_name; 4606 if (reg_num() < LIR_Opr::vreg_base) { 4607 type_name = "fixed"; 4608 } else { 4609 type_name = type2name(type()); 4610 } 4611 out->print("%d %s ", reg_num(), type_name); 4612 4613 if (is_cfg_printer) { 4614 // Special version for compatibility with C1 Visualizer. 4615 LIR_Opr opr = LinearScan::get_operand(reg_num()); 4616 if (opr->is_valid()) { 4617 out->print("\""); 4618 opr->print(out); 4619 out->print("\" "); 4620 } 4621 } else { 4622 // Improved output for normal debugging. 4623 if (reg_num() < LIR_Opr::vreg_base) { 4624 LinearScan::print_reg_num(out, assigned_reg()); 4625 } else if (assigned_reg() != -1 && (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) { 4626 LinearScan::calc_operand_for_interval(this)->print(out); 4627 } else { 4628 // Virtual register that has no assigned register yet. 4629 out->print("[ANY]"); 4630 } 4631 out->print(" "); 4632 } 4633 out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != nullptr ? register_hint(false)->reg_num() : -1)); 4634 4635 // print ranges 4636 Range* cur = _first; 4637 while (cur != Range::end()) { 4638 cur->print(out); 4639 cur = cur->next(); 4640 assert(cur != nullptr, "range list not closed with range sentinel"); 4641 } 4642 4643 // print use positions 4644 int prev = 0; 4645 assert(_use_pos_and_kinds.length() % 2 == 0, "must be"); 4646 for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4647 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4648 assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted"); 4649 4650 out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]); 4651 prev = _use_pos_and_kinds.at(i); 4652 } 4653 4654 out->print(" \"%s\"", SpillState2Name[spill_state()]); 4655 out->cr(); 4656 } 4657 4658 void Interval::print_parent() const { 4659 if (_split_parent != this) { 4660 _split_parent->print_on(tty); 4661 } else { 4662 tty->print_cr("Parent: this"); 4663 } 4664 } 4665 4666 void Interval::print_children() const { 4667 if (_split_children == nullptr) { 4668 tty->print_cr("Children: []"); 4669 } else { 4670 tty->print_cr("Children:"); 4671 for (int i = 0; i < _split_children->length(); i++) { 4672 tty->print("%d: ", i); 4673 _split_children->at(i)->print_on(tty); 4674 } 4675 } 4676 } 4677 #endif // NOT PRODUCT 4678 4679 4680 4681 4682 // **** Implementation of IntervalWalker **************************** 4683 4684 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first) 4685 : _compilation(allocator->compilation()) 4686 , _allocator(allocator) 4687 { 4688 _unhandled_first[fixedKind] = unhandled_fixed_first; 4689 _unhandled_first[anyKind] = unhandled_any_first; 4690 _active_first[fixedKind] = Interval::end(); 4691 _inactive_first[fixedKind] = Interval::end(); 4692 _active_first[anyKind] = Interval::end(); 4693 _inactive_first[anyKind] = Interval::end(); 4694 _current_position = -1; 4695 _current = nullptr; 4696 next_interval(); 4697 } 4698 4699 4700 // append interval in order of current range from() 4701 void IntervalWalker::append_sorted(Interval** list, Interval* interval) { 4702 Interval* prev = nullptr; 4703 Interval* cur = *list; 4704 while (cur->current_from() < interval->current_from()) { 4705 prev = cur; cur = cur->next(); 4706 } 4707 if (prev == nullptr) { 4708 *list = interval; 4709 } else { 4710 prev->set_next(interval); 4711 } 4712 interval->set_next(cur); 4713 } 4714 4715 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) { 4716 assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position"); 4717 4718 Interval* prev = nullptr; 4719 Interval* cur = *list; 4720 while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) { 4721 prev = cur; cur = cur->next(); 4722 } 4723 if (prev == nullptr) { 4724 *list = interval; 4725 } else { 4726 prev->set_next(interval); 4727 } 4728 interval->set_next(cur); 4729 } 4730 4731 4732 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) { 4733 while (*list != Interval::end() && *list != i) { 4734 list = (*list)->next_addr(); 4735 } 4736 if (*list != Interval::end()) { 4737 assert(*list == i, "check"); 4738 *list = (*list)->next(); 4739 return true; 4740 } else { 4741 return false; 4742 } 4743 } 4744 4745 void IntervalWalker::remove_from_list(Interval* i) { 4746 bool deleted; 4747 4748 if (i->state() == activeState) { 4749 deleted = remove_from_list(active_first_addr(anyKind), i); 4750 } else { 4751 assert(i->state() == inactiveState, "invalid state"); 4752 deleted = remove_from_list(inactive_first_addr(anyKind), i); 4753 } 4754 4755 assert(deleted, "interval has not been found in list"); 4756 } 4757 4758 4759 void IntervalWalker::walk_to(IntervalState state, int from) { 4760 assert (state == activeState || state == inactiveState, "wrong state"); 4761 for_each_interval_kind(kind) { 4762 Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind); 4763 Interval* next = *prev; 4764 while (next->current_from() <= from) { 4765 Interval* cur = next; 4766 next = cur->next(); 4767 4768 bool range_has_changed = false; 4769 while (cur->current_to() <= from) { 4770 cur->next_range(); 4771 range_has_changed = true; 4772 } 4773 4774 // also handle move from inactive list to active list 4775 range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from); 4776 4777 if (range_has_changed) { 4778 // remove cur from list 4779 *prev = next; 4780 if (cur->current_at_end()) { 4781 // move to handled state (not maintained as a list) 4782 cur->set_state(handledState); 4783 DEBUG_ONLY(interval_moved(cur, kind, state, handledState);) 4784 } else if (cur->current_from() <= from){ 4785 // sort into active list 4786 append_sorted(active_first_addr(kind), cur); 4787 cur->set_state(activeState); 4788 if (*prev == cur) { 4789 assert(state == activeState, "check"); 4790 prev = cur->next_addr(); 4791 } 4792 DEBUG_ONLY(interval_moved(cur, kind, state, activeState);) 4793 } else { 4794 // sort into inactive list 4795 append_sorted(inactive_first_addr(kind), cur); 4796 cur->set_state(inactiveState); 4797 if (*prev == cur) { 4798 assert(state == inactiveState, "check"); 4799 prev = cur->next_addr(); 4800 } 4801 DEBUG_ONLY(interval_moved(cur, kind, state, inactiveState);) 4802 } 4803 } else { 4804 prev = cur->next_addr(); 4805 continue; 4806 } 4807 } 4808 } 4809 } 4810 4811 4812 void IntervalWalker::next_interval() { 4813 IntervalKind kind; 4814 Interval* any = _unhandled_first[anyKind]; 4815 Interval* fixed = _unhandled_first[fixedKind]; 4816 4817 if (any != Interval::end()) { 4818 // intervals may start at same position -> prefer fixed interval 4819 kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind; 4820 4821 assert((kind == fixedKind && fixed->from() <= any->from()) || 4822 (kind == anyKind && any->from() <= fixed->from()), "wrong interval!!!"); 4823 assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first"); 4824 4825 } else if (fixed != Interval::end()) { 4826 kind = fixedKind; 4827 } else { 4828 _current = nullptr; return; 4829 } 4830 _current_kind = kind; 4831 _current = _unhandled_first[kind]; 4832 _unhandled_first[kind] = _current->next(); 4833 _current->set_next(Interval::end()); 4834 _current->rewind_range(); 4835 } 4836 4837 4838 void IntervalWalker::walk_to(int lir_op_id) { 4839 assert(_current_position <= lir_op_id, "can not walk backwards"); 4840 while (current() != nullptr) { 4841 bool is_active = current()->from() <= lir_op_id; 4842 int id = is_active ? current()->from() : lir_op_id; 4843 4844 TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); }) 4845 4846 // set _current_position prior to call of walk_to 4847 _current_position = id; 4848 4849 // call walk_to even if _current_position == id 4850 walk_to(activeState, id); 4851 walk_to(inactiveState, id); 4852 4853 if (is_active) { 4854 current()->set_state(activeState); 4855 if (activate_current()) { 4856 append_sorted(active_first_addr(current_kind()), current()); 4857 DEBUG_ONLY(interval_moved(current(), current_kind(), unhandledState, activeState);) 4858 } 4859 4860 next_interval(); 4861 } else { 4862 return; 4863 } 4864 } 4865 } 4866 4867 #ifdef ASSERT 4868 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) { 4869 if (TraceLinearScanLevel >= 4) { 4870 #define print_state(state) \ 4871 switch(state) {\ 4872 case unhandledState: tty->print("unhandled"); break;\ 4873 case activeState: tty->print("active"); break;\ 4874 case inactiveState: tty->print("inactive"); break;\ 4875 case handledState: tty->print("handled"); break;\ 4876 default: ShouldNotReachHere(); \ 4877 } 4878 4879 print_state(from); tty->print(" to "); print_state(to); 4880 tty->fill_to(23); 4881 interval->print(); 4882 4883 #undef print_state 4884 } 4885 } 4886 #endif // ASSERT 4887 4888 // **** Implementation of LinearScanWalker ************************** 4889 4890 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first) 4891 : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first) 4892 , _move_resolver(allocator) 4893 { 4894 for (int i = 0; i < LinearScan::nof_regs; i++) { 4895 _spill_intervals[i] = new IntervalList(2); 4896 } 4897 } 4898 4899 4900 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) { 4901 for (int i = _first_reg; i <= _last_reg; i++) { 4902 _use_pos[i] = max_jint; 4903 4904 if (!only_process_use_pos) { 4905 _block_pos[i] = max_jint; 4906 _spill_intervals[i]->clear(); 4907 } 4908 } 4909 } 4910 4911 inline void LinearScanWalker::exclude_from_use(int reg) { 4912 assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)"); 4913 if (reg >= _first_reg && reg <= _last_reg) { 4914 _use_pos[reg] = 0; 4915 } 4916 } 4917 inline void LinearScanWalker::exclude_from_use(Interval* i) { 4918 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4919 4920 exclude_from_use(i->assigned_reg()); 4921 exclude_from_use(i->assigned_regHi()); 4922 } 4923 4924 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) { 4925 assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0"); 4926 4927 if (reg >= _first_reg && reg <= _last_reg) { 4928 if (_use_pos[reg] > use_pos) { 4929 _use_pos[reg] = use_pos; 4930 } 4931 if (!only_process_use_pos) { 4932 _spill_intervals[reg]->append(i); 4933 } 4934 } 4935 } 4936 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) { 4937 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4938 if (use_pos != -1) { 4939 set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos); 4940 set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos); 4941 } 4942 } 4943 4944 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) { 4945 if (reg >= _first_reg && reg <= _last_reg) { 4946 if (_block_pos[reg] > block_pos) { 4947 _block_pos[reg] = block_pos; 4948 } 4949 if (_use_pos[reg] > block_pos) { 4950 _use_pos[reg] = block_pos; 4951 } 4952 } 4953 } 4954 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) { 4955 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4956 if (block_pos != -1) { 4957 set_block_pos(i->assigned_reg(), i, block_pos); 4958 set_block_pos(i->assigned_regHi(), i, block_pos); 4959 } 4960 } 4961 4962 4963 void LinearScanWalker::free_exclude_active_fixed() { 4964 Interval* list = active_first(fixedKind); 4965 while (list != Interval::end()) { 4966 assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned"); 4967 exclude_from_use(list); 4968 list = list->next(); 4969 } 4970 } 4971 4972 void LinearScanWalker::free_exclude_active_any() { 4973 Interval* list = active_first(anyKind); 4974 while (list != Interval::end()) { 4975 exclude_from_use(list); 4976 list = list->next(); 4977 } 4978 } 4979 4980 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) { 4981 Interval* list = inactive_first(fixedKind); 4982 while (list != Interval::end()) { 4983 if (cur->to() <= list->current_from()) { 4984 assert(list->current_intersects_at(cur) == -1, "must not intersect"); 4985 set_use_pos(list, list->current_from(), true); 4986 } else { 4987 set_use_pos(list, list->current_intersects_at(cur), true); 4988 } 4989 list = list->next(); 4990 } 4991 } 4992 4993 void LinearScanWalker::free_collect_inactive_any(Interval* cur) { 4994 Interval* list = inactive_first(anyKind); 4995 while (list != Interval::end()) { 4996 set_use_pos(list, list->current_intersects_at(cur), true); 4997 list = list->next(); 4998 } 4999 } 5000 5001 void LinearScanWalker::spill_exclude_active_fixed() { 5002 Interval* list = active_first(fixedKind); 5003 while (list != Interval::end()) { 5004 exclude_from_use(list); 5005 list = list->next(); 5006 } 5007 } 5008 5009 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) { 5010 Interval* list = inactive_first(fixedKind); 5011 while (list != Interval::end()) { 5012 if (cur->to() > list->current_from()) { 5013 set_block_pos(list, list->current_intersects_at(cur)); 5014 } else { 5015 assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect"); 5016 } 5017 5018 list = list->next(); 5019 } 5020 } 5021 5022 void LinearScanWalker::spill_collect_active_any() { 5023 Interval* list = active_first(anyKind); 5024 while (list != Interval::end()) { 5025 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false); 5026 list = list->next(); 5027 } 5028 } 5029 5030 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) { 5031 Interval* list = inactive_first(anyKind); 5032 while (list != Interval::end()) { 5033 if (list->current_intersects(cur)) { 5034 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false); 5035 } 5036 list = list->next(); 5037 } 5038 } 5039 5040 5041 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) { 5042 // output all moves here. When source and target are equal, the move is 5043 // optimized away later in assign_reg_nums 5044 5045 op_id = (op_id + 1) & ~1; 5046 BlockBegin* op_block = allocator()->block_of_op_with_id(op_id); 5047 assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary"); 5048 5049 // calculate index of instruction inside instruction list of current block 5050 // the minimal index (for a block with no spill moves) can be calculated because the 5051 // numbering of instructions is known. 5052 // When the block already contains spill moves, the index must be increased until the 5053 // correct index is reached. 5054 LIR_OpList* list = op_block->lir()->instructions_list(); 5055 int index = (op_id - list->at(0)->id()) / 2; 5056 assert(list->at(index)->id() <= op_id, "error in calculation"); 5057 5058 while (list->at(index)->id() != op_id) { 5059 index++; 5060 assert(0 <= index && index < list->length(), "index out of bounds"); 5061 } 5062 assert(1 <= index && index < list->length(), "index out of bounds"); 5063 assert(list->at(index)->id() == op_id, "error in calculation"); 5064 5065 // insert new instruction before instruction at position index 5066 _move_resolver.move_insert_position(op_block->lir(), index - 1); 5067 _move_resolver.add_mapping(src_it, dst_it); 5068 } 5069 5070 5071 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) { 5072 int from_block_nr = min_block->linear_scan_number(); 5073 int to_block_nr = max_block->linear_scan_number(); 5074 5075 assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range"); 5076 assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range"); 5077 assert(from_block_nr < to_block_nr, "must cross block boundary"); 5078 5079 // Try to split at end of max_block. If this would be after 5080 // max_split_pos, then use the begin of max_block 5081 int optimal_split_pos = max_block->last_lir_instruction_id() + 2; 5082 if (optimal_split_pos > max_split_pos) { 5083 optimal_split_pos = max_block->first_lir_instruction_id(); 5084 } 5085 5086 int min_loop_depth = max_block->loop_depth(); 5087 for (int i = to_block_nr - 1; i >= from_block_nr; i--) { 5088 BlockBegin* cur = block_at(i); 5089 5090 if (cur->loop_depth() < min_loop_depth) { 5091 // block with lower loop-depth found -> split at the end of this block 5092 min_loop_depth = cur->loop_depth(); 5093 optimal_split_pos = cur->last_lir_instruction_id() + 2; 5094 } 5095 } 5096 assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary"); 5097 5098 return optimal_split_pos; 5099 } 5100 5101 5102 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) { 5103 int optimal_split_pos = -1; 5104 if (min_split_pos == max_split_pos) { 5105 // trivial case, no optimization of split position possible 5106 TRACE_LINEAR_SCAN(4, tty->print_cr(" min-pos and max-pos are equal, no optimization possible")); 5107 optimal_split_pos = min_split_pos; 5108 5109 } else { 5110 assert(min_split_pos < max_split_pos, "must be true then"); 5111 assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise"); 5112 5113 // reason for using min_split_pos - 1: when the minimal split pos is exactly at the 5114 // beginning of a block, then min_split_pos is also a possible split position. 5115 // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos 5116 BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1); 5117 5118 // reason for using max_split_pos - 1: otherwise there would be an assertion failure 5119 // when an interval ends at the end of the last block of the method 5120 // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no 5121 // block at this op_id) 5122 BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1); 5123 5124 assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order"); 5125 if (min_block == max_block) { 5126 // split position cannot be moved to block boundary, so split as late as possible 5127 TRACE_LINEAR_SCAN(4, tty->print_cr(" cannot move split pos to block boundary because min_pos and max_pos are in same block")); 5128 optimal_split_pos = max_split_pos; 5129 5130 } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) { 5131 // Do not move split position if the interval has a hole before max_split_pos. 5132 // Intervals resulting from Phi-Functions have more than one definition (marked 5133 // as mustHaveRegister) with a hole before each definition. When the register is needed 5134 // for the second definition, an earlier reloading is unnecessary. 5135 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has hole just before max_split_pos, so splitting at max_split_pos")); 5136 optimal_split_pos = max_split_pos; 5137 5138 } else { 5139 // search optimal block boundary between min_split_pos and max_split_pos 5140 TRACE_LINEAR_SCAN(4, tty->print_cr(" moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id())); 5141 5142 if (do_loop_optimization) { 5143 // Loop optimization: if a loop-end marker is found between min- and max-position, 5144 // then split before this loop 5145 int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2); 5146 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization: loop end found at pos %d", loop_end_pos)); 5147 5148 assert(loop_end_pos > min_split_pos, "invalid order"); 5149 if (loop_end_pos < max_split_pos) { 5150 // loop-end marker found between min- and max-position 5151 // if it is not the end marker for the same loop as the min-position, then move 5152 // the max-position to this loop block. 5153 // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading 5154 // of the interval (normally, only mustHaveRegister causes a reloading) 5155 BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos); 5156 5157 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id())); 5158 assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between"); 5159 5160 optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2); 5161 if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) { 5162 optimal_split_pos = -1; 5163 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization not necessary")); 5164 } else { 5165 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization successful")); 5166 } 5167 } 5168 } 5169 5170 if (optimal_split_pos == -1) { 5171 // not calculated by loop optimization 5172 optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos); 5173 } 5174 } 5175 } 5176 TRACE_LINEAR_SCAN(4, tty->print_cr(" optimal split position: %d", optimal_split_pos)); 5177 5178 return optimal_split_pos; 5179 } 5180 5181 5182 /* 5183 split an interval at the optimal position between min_split_pos and 5184 max_split_pos in two parts: 5185 1) the left part has already a location assigned 5186 2) the right part is sorted into to the unhandled-list 5187 */ 5188 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) { 5189 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting interval: "); it->print()); 5190 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos)); 5191 5192 assert(it->from() < min_split_pos, "cannot split at start of interval"); 5193 assert(current_position() < min_split_pos, "cannot split before current position"); 5194 assert(min_split_pos <= max_split_pos, "invalid order"); 5195 assert(max_split_pos <= it->to(), "cannot split after end of interval"); 5196 5197 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true); 5198 5199 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range"); 5200 assert(optimal_split_pos <= it->to(), "cannot split after end of interval"); 5201 assert(optimal_split_pos > it->from(), "cannot split at start of interval"); 5202 5203 if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) { 5204 // the split position would be just before the end of the interval 5205 // -> no split at all necessary 5206 TRACE_LINEAR_SCAN(4, tty->print_cr(" no split necessary because optimal split position is at end of interval")); 5207 return; 5208 } 5209 5210 // must calculate this before the actual split is performed and before split position is moved to odd op_id 5211 bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos); 5212 5213 if (!allocator()->is_block_begin(optimal_split_pos)) { 5214 // move position before actual instruction (odd op_id) 5215 optimal_split_pos = (optimal_split_pos - 1) | 1; 5216 } 5217 5218 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos)); 5219 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary"); 5220 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary"); 5221 5222 Interval* split_part = it->split(optimal_split_pos); 5223 5224 allocator()->append_interval(split_part); 5225 allocator()->copy_register_flags(it, split_part); 5226 split_part->set_insert_move_when_activated(move_necessary); 5227 append_to_unhandled(unhandled_first_addr(anyKind), split_part); 5228 5229 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts (insert_move_when_activated: %d)", move_necessary)); 5230 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print()); 5231 TRACE_LINEAR_SCAN(2, tty->print (" "); split_part->print()); 5232 } 5233 5234 /* 5235 split an interval at the optimal position between min_split_pos and 5236 max_split_pos in two parts: 5237 1) the left part has already a location assigned 5238 2) the right part is always on the stack and therefore ignored in further processing 5239 */ 5240 void LinearScanWalker::split_for_spilling(Interval* it) { 5241 // calculate allowed range of splitting position 5242 int max_split_pos = current_position(); 5243 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from()); 5244 5245 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting and spilling interval: "); it->print()); 5246 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos)); 5247 5248 assert(it->state() == activeState, "why spill interval that is not active?"); 5249 assert(it->from() <= min_split_pos, "cannot split before start of interval"); 5250 assert(min_split_pos <= max_split_pos, "invalid order"); 5251 assert(max_split_pos < it->to(), "cannot split at end end of interval"); 5252 assert(current_position() < it->to(), "interval must not end before current position"); 5253 5254 if (min_split_pos == it->from()) { 5255 // the whole interval is never used, so spill it entirely to memory 5256 TRACE_LINEAR_SCAN(2, tty->print_cr(" spilling entire interval because split pos is at beginning of interval")); 5257 assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position"); 5258 5259 allocator()->assign_spill_slot(it); 5260 allocator()->change_spill_state(it, min_split_pos); 5261 5262 // Also kick parent intervals out of register to memory when they have no use 5263 // position. This avoids short interval in register surrounded by intervals in 5264 // memory -> avoid useless moves from memory to register and back 5265 Interval* parent = it; 5266 while (parent != nullptr && parent->is_split_child()) { 5267 parent = parent->split_child_before_op_id(parent->from()); 5268 5269 if (parent->assigned_reg() < LinearScan::nof_regs) { 5270 if (parent->first_usage(shouldHaveRegister) == max_jint) { 5271 // parent is never used, so kick it out of its assigned register 5272 TRACE_LINEAR_SCAN(4, tty->print_cr(" kicking out interval %d out of its register because it is never used", parent->reg_num())); 5273 allocator()->assign_spill_slot(parent); 5274 } else { 5275 // do not go further back because the register is actually used by the interval 5276 parent = nullptr; 5277 } 5278 } 5279 } 5280 5281 } else { 5282 // search optimal split pos, split interval and spill only the right hand part 5283 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false); 5284 5285 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range"); 5286 assert(optimal_split_pos < it->to(), "cannot split at end of interval"); 5287 assert(optimal_split_pos >= it->from(), "cannot split before start of interval"); 5288 5289 if (!allocator()->is_block_begin(optimal_split_pos)) { 5290 // move position before actual instruction (odd op_id) 5291 optimal_split_pos = (optimal_split_pos - 1) | 1; 5292 } 5293 5294 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos)); 5295 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary"); 5296 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary"); 5297 5298 Interval* spilled_part = it->split(optimal_split_pos); 5299 allocator()->append_interval(spilled_part); 5300 allocator()->assign_spill_slot(spilled_part); 5301 allocator()->change_spill_state(spilled_part, optimal_split_pos); 5302 5303 if (!allocator()->is_block_begin(optimal_split_pos)) { 5304 TRACE_LINEAR_SCAN(4, tty->print_cr(" inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num())); 5305 insert_move(optimal_split_pos, it, spilled_part); 5306 } 5307 5308 // the current_split_child is needed later when moves are inserted for reloading 5309 assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child"); 5310 spilled_part->make_current_split_child(); 5311 5312 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts")); 5313 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print()); 5314 TRACE_LINEAR_SCAN(2, tty->print (" "); spilled_part->print()); 5315 } 5316 } 5317 5318 5319 void LinearScanWalker::split_stack_interval(Interval* it) { 5320 int min_split_pos = current_position() + 1; 5321 int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to()); 5322 5323 split_before_usage(it, min_split_pos, max_split_pos); 5324 } 5325 5326 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) { 5327 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1); 5328 int max_split_pos = register_available_until; 5329 5330 split_before_usage(it, min_split_pos, max_split_pos); 5331 } 5332 5333 void LinearScanWalker::split_and_spill_interval(Interval* it) { 5334 assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed"); 5335 5336 int current_pos = current_position(); 5337 if (it->state() == inactiveState) { 5338 // the interval is currently inactive, so no spill slot is needed for now. 5339 // when the split part is activated, the interval has a new chance to get a register, 5340 // so in the best case no stack slot is necessary 5341 assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise"); 5342 split_before_usage(it, current_pos + 1, current_pos + 1); 5343 5344 } else { 5345 // search the position where the interval must have a register and split 5346 // at the optimal position before. 5347 // The new created part is added to the unhandled list and will get a register 5348 // when it is activated 5349 int min_split_pos = current_pos + 1; 5350 int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to()); 5351 5352 split_before_usage(it, min_split_pos, max_split_pos); 5353 5354 assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register"); 5355 split_for_spilling(it); 5356 } 5357 } 5358 5359 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) { 5360 int min_full_reg = any_reg; 5361 int max_partial_reg = any_reg; 5362 5363 for (int i = _first_reg; i <= _last_reg; i++) { 5364 if (i == ignore_reg) { 5365 // this register must be ignored 5366 5367 } else if (_use_pos[i] >= interval_to) { 5368 // this register is free for the full interval 5369 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) { 5370 min_full_reg = i; 5371 } 5372 } else if (_use_pos[i] > reg_needed_until) { 5373 // this register is at least free until reg_needed_until 5374 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) { 5375 max_partial_reg = i; 5376 } 5377 } 5378 } 5379 5380 if (min_full_reg != any_reg) { 5381 return min_full_reg; 5382 } else if (max_partial_reg != any_reg) { 5383 *need_split = true; 5384 return max_partial_reg; 5385 } else { 5386 return any_reg; 5387 } 5388 } 5389 5390 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) { 5391 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm"); 5392 5393 int min_full_reg = any_reg; 5394 int max_partial_reg = any_reg; 5395 5396 for (int i = _first_reg; i < _last_reg; i+=2) { 5397 if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) { 5398 // this register is free for the full interval 5399 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) { 5400 min_full_reg = i; 5401 } 5402 } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) { 5403 // this register is at least free until reg_needed_until 5404 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) { 5405 max_partial_reg = i; 5406 } 5407 } 5408 } 5409 5410 if (min_full_reg != any_reg) { 5411 return min_full_reg; 5412 } else if (max_partial_reg != any_reg) { 5413 *need_split = true; 5414 return max_partial_reg; 5415 } else { 5416 return any_reg; 5417 } 5418 } 5419 5420 bool LinearScanWalker::alloc_free_reg(Interval* cur) { 5421 TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print()); 5422 5423 init_use_lists(true); 5424 free_exclude_active_fixed(); 5425 free_exclude_active_any(); 5426 free_collect_inactive_fixed(cur); 5427 free_collect_inactive_any(cur); 5428 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0"); 5429 5430 // _use_pos contains the start of the next interval that has this register assigned 5431 // (either as a fixed register or a normal allocated register in the past) 5432 // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely 5433 #ifdef ASSERT 5434 if (TraceLinearScanLevel >= 4) { 5435 tty->print_cr(" state of registers:"); 5436 for (int i = _first_reg; i <= _last_reg; i++) { 5437 tty->print(" reg %d (", i); 5438 LinearScan::print_reg_num(i); 5439 tty->print_cr("): use_pos: %d", _use_pos[i]); 5440 } 5441 } 5442 #endif 5443 5444 int hint_reg, hint_regHi; 5445 Interval* register_hint = cur->register_hint(); 5446 if (register_hint != nullptr) { 5447 hint_reg = register_hint->assigned_reg(); 5448 hint_regHi = register_hint->assigned_regHi(); 5449 5450 if (_num_phys_regs == 2 && allocator()->is_precolored_cpu_interval(register_hint)) { 5451 assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals"); 5452 hint_regHi = hint_reg + 1; // connect e.g. eax-edx 5453 } 5454 #ifdef ASSERT 5455 if (TraceLinearScanLevel >= 4) { 5456 tty->print(" hint registers %d (", hint_reg); 5457 LinearScan::print_reg_num(hint_reg); 5458 tty->print("), %d (", hint_regHi); 5459 LinearScan::print_reg_num(hint_regHi); 5460 tty->print(") from interval "); 5461 register_hint->print(); 5462 } 5463 #endif 5464 } else { 5465 hint_reg = any_reg; 5466 hint_regHi = any_reg; 5467 } 5468 assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal"); 5469 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval"); 5470 5471 // the register must be free at least until this position 5472 int reg_needed_until = cur->from() + 1; 5473 int interval_to = cur->to(); 5474 5475 bool need_split = false; 5476 int split_pos; 5477 int reg; 5478 int regHi = any_reg; 5479 5480 if (_adjacent_regs) { 5481 reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split); 5482 regHi = reg + 1; 5483 if (reg == any_reg) { 5484 return false; 5485 } 5486 split_pos = MIN2(_use_pos[reg], _use_pos[regHi]); 5487 5488 } else { 5489 reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split); 5490 if (reg == any_reg) { 5491 return false; 5492 } 5493 split_pos = _use_pos[reg]; 5494 5495 if (_num_phys_regs == 2) { 5496 regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split); 5497 5498 if (_use_pos[reg] < interval_to && regHi == any_reg) { 5499 // do not split interval if only one register can be assigned until the split pos 5500 // (when one register is found for the whole interval, split&spill is only 5501 // performed for the hi register) 5502 return false; 5503 5504 } else if (regHi != any_reg) { 5505 split_pos = MIN2(split_pos, _use_pos[regHi]); 5506 5507 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax 5508 if (reg > regHi) { 5509 int temp = reg; 5510 reg = regHi; 5511 regHi = temp; 5512 } 5513 } 5514 } 5515 } 5516 5517 cur->assign_reg(reg, regHi); 5518 #ifdef ASSERT 5519 if (TraceLinearScanLevel >= 2) { 5520 tty->print(" selected registers %d (", reg); 5521 LinearScan::print_reg_num(reg); 5522 tty->print("), %d (", regHi); 5523 LinearScan::print_reg_num(regHi); 5524 tty->print_cr(")"); 5525 } 5526 #endif 5527 assert(split_pos > 0, "invalid split_pos"); 5528 if (need_split) { 5529 // register not available for full interval, so split it 5530 split_when_partial_register_available(cur, split_pos); 5531 } 5532 5533 // only return true if interval is completely assigned 5534 return _num_phys_regs == 1 || regHi != any_reg; 5535 } 5536 5537 5538 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int ignore_reg, bool* need_split) { 5539 int max_reg = any_reg; 5540 5541 for (int i = _first_reg; i <= _last_reg; i++) { 5542 if (i == ignore_reg) { 5543 // this register must be ignored 5544 5545 } else if (_use_pos[i] > reg_needed_until) { 5546 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) { 5547 max_reg = i; 5548 } 5549 } 5550 } 5551 5552 if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) { 5553 *need_split = true; 5554 } 5555 5556 return max_reg; 5557 } 5558 5559 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, bool* need_split) { 5560 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm"); 5561 5562 int max_reg = any_reg; 5563 5564 for (int i = _first_reg; i < _last_reg; i+=2) { 5565 if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) { 5566 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) { 5567 max_reg = i; 5568 } 5569 } 5570 } 5571 5572 if (max_reg != any_reg && 5573 (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) { 5574 *need_split = true; 5575 } 5576 5577 return max_reg; 5578 } 5579 5580 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) { 5581 assert(reg != any_reg, "no register assigned"); 5582 5583 for (int i = 0; i < _spill_intervals[reg]->length(); i++) { 5584 Interval* it = _spill_intervals[reg]->at(i); 5585 remove_from_list(it); 5586 split_and_spill_interval(it); 5587 } 5588 5589 if (regHi != any_reg) { 5590 IntervalList* processed = _spill_intervals[reg]; 5591 for (int i = 0; i < _spill_intervals[regHi]->length(); i++) { 5592 Interval* it = _spill_intervals[regHi]->at(i); 5593 if (processed->find(it) == -1) { 5594 remove_from_list(it); 5595 split_and_spill_interval(it); 5596 } 5597 } 5598 } 5599 } 5600 5601 5602 // Split an Interval and spill it to memory so that cur can be placed in a register 5603 void LinearScanWalker::alloc_locked_reg(Interval* cur) { 5604 TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print()); 5605 5606 // collect current usage of registers 5607 init_use_lists(false); 5608 spill_exclude_active_fixed(); 5609 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0"); 5610 spill_block_inactive_fixed(cur); 5611 spill_collect_active_any(); 5612 spill_collect_inactive_any(cur); 5613 5614 #ifdef ASSERT 5615 if (TraceLinearScanLevel >= 4) { 5616 tty->print_cr(" state of registers:"); 5617 for (int i = _first_reg; i <= _last_reg; i++) { 5618 tty->print(" reg %d(", i); 5619 LinearScan::print_reg_num(i); 5620 tty->print("): use_pos: %d, block_pos: %d, intervals: ", _use_pos[i], _block_pos[i]); 5621 for (int j = 0; j < _spill_intervals[i]->length(); j++) { 5622 tty->print("%d ", _spill_intervals[i]->at(j)->reg_num()); 5623 } 5624 tty->cr(); 5625 } 5626 } 5627 #endif 5628 5629 // the register must be free at least until this position 5630 int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1); 5631 int interval_to = cur->to(); 5632 assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use"); 5633 5634 int split_pos = 0; 5635 int use_pos = 0; 5636 bool need_split = false; 5637 int reg, regHi; 5638 5639 if (_adjacent_regs) { 5640 reg = find_locked_double_reg(reg_needed_until, interval_to, &need_split); 5641 regHi = reg + 1; 5642 5643 if (reg != any_reg) { 5644 use_pos = MIN2(_use_pos[reg], _use_pos[regHi]); 5645 split_pos = MIN2(_block_pos[reg], _block_pos[regHi]); 5646 } 5647 } else { 5648 reg = find_locked_reg(reg_needed_until, interval_to, cur->assigned_reg(), &need_split); 5649 regHi = any_reg; 5650 5651 if (reg != any_reg) { 5652 use_pos = _use_pos[reg]; 5653 split_pos = _block_pos[reg]; 5654 5655 if (_num_phys_regs == 2) { 5656 if (cur->assigned_reg() != any_reg) { 5657 regHi = reg; 5658 reg = cur->assigned_reg(); 5659 } else { 5660 regHi = find_locked_reg(reg_needed_until, interval_to, reg, &need_split); 5661 if (regHi != any_reg) { 5662 use_pos = MIN2(use_pos, _use_pos[regHi]); 5663 split_pos = MIN2(split_pos, _block_pos[regHi]); 5664 } 5665 } 5666 5667 if (regHi != any_reg && reg > regHi) { 5668 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax 5669 int temp = reg; 5670 reg = regHi; 5671 regHi = temp; 5672 } 5673 } 5674 } 5675 } 5676 5677 if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) { 5678 // the first use of cur is later than the spilling position -> spill cur 5679 TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos)); 5680 5681 if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) { 5682 assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)"); 5683 // assign a reasonable register and do a bailout in product mode to avoid errors 5684 allocator()->assign_spill_slot(cur); 5685 BAILOUT("LinearScan: no register found"); 5686 } 5687 5688 split_and_spill_interval(cur); 5689 } else { 5690 #ifdef ASSERT 5691 if (TraceLinearScanLevel >= 4) { 5692 tty->print("decided to use register %d (", reg); 5693 LinearScan::print_reg_num(reg); 5694 tty->print("), %d (", regHi); 5695 LinearScan::print_reg_num(regHi); 5696 tty->print_cr(")"); 5697 } 5698 #endif 5699 assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found"); 5700 assert(split_pos > 0, "invalid split_pos"); 5701 assert(need_split == false || split_pos > cur->from(), "splitting interval at from"); 5702 5703 cur->assign_reg(reg, regHi); 5704 if (need_split) { 5705 // register not available for full interval, so split it 5706 split_when_partial_register_available(cur, split_pos); 5707 } 5708 5709 // perform splitting and spilling for all affected intervals 5710 split_and_spill_intersecting_intervals(reg, regHi); 5711 } 5712 } 5713 5714 bool LinearScanWalker::no_allocation_possible(Interval* cur) { 5715 #ifdef X86 5716 // fast calculation of intervals that can never get a register because the 5717 // the next instruction is a call that blocks all registers 5718 // Note: this does not work if callee-saved registers are available (e.g. on Sparc) 5719 5720 // check if this interval is the result of a split operation 5721 // (an interval got a register until this position) 5722 int pos = cur->from(); 5723 if ((pos & 1) == 1) { 5724 // the current instruction is a call that blocks all registers 5725 if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) { 5726 TRACE_LINEAR_SCAN(4, tty->print_cr(" free register cannot be available because all registers blocked by following call")); 5727 5728 // safety check that there is really no register available 5729 assert(alloc_free_reg(cur) == false, "found a register for this interval"); 5730 return true; 5731 } 5732 5733 } 5734 #endif 5735 return false; 5736 } 5737 5738 void LinearScanWalker::init_vars_for_alloc(Interval* cur) { 5739 BasicType type = cur->type(); 5740 _num_phys_regs = LinearScan::num_physical_regs(type); 5741 _adjacent_regs = LinearScan::requires_adjacent_regs(type); 5742 5743 if (pd_init_regs_for_alloc(cur)) { 5744 // the appropriate register range was selected. 5745 } else if (type == T_FLOAT || type == T_DOUBLE) { 5746 _first_reg = pd_first_fpu_reg; 5747 _last_reg = pd_last_fpu_reg; 5748 } else { 5749 _first_reg = pd_first_cpu_reg; 5750 _last_reg = FrameMap::last_cpu_reg(); 5751 } 5752 5753 assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range"); 5754 assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range"); 5755 } 5756 5757 5758 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) { 5759 if (op->code() != lir_move) { 5760 return false; 5761 } 5762 assert(op->as_Op1() != nullptr, "move must be LIR_Op1"); 5763 5764 LIR_Opr in = ((LIR_Op1*)op)->in_opr(); 5765 LIR_Opr res = ((LIR_Op1*)op)->result_opr(); 5766 return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num(); 5767 } 5768 5769 // optimization (especially for phi functions of nested loops): 5770 // assign same spill slot to non-intersecting intervals 5771 void LinearScanWalker::combine_spilled_intervals(Interval* cur) { 5772 if (cur->is_split_child()) { 5773 // optimization is only suitable for split parents 5774 return; 5775 } 5776 5777 Interval* register_hint = cur->register_hint(false); 5778 if (register_hint == nullptr) { 5779 // cur is not the target of a move, otherwise register_hint would be set 5780 return; 5781 } 5782 assert(register_hint->is_split_parent(), "register hint must be split parent"); 5783 5784 if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) { 5785 // combining the stack slots for intervals where spill move optimization is applied 5786 // is not benefitial and would cause problems 5787 return; 5788 } 5789 5790 int begin_pos = cur->from(); 5791 int end_pos = cur->to(); 5792 if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) { 5793 // safety check that lir_op_with_id is allowed 5794 return; 5795 } 5796 5797 if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) { 5798 // cur and register_hint are not connected with two moves 5799 return; 5800 } 5801 5802 Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode); 5803 Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode); 5804 if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) { 5805 // register_hint must be split, otherwise the re-writing of use positions does not work 5806 return; 5807 } 5808 5809 assert(begin_hint->assigned_reg() != any_reg, "must have register assigned"); 5810 assert(end_hint->assigned_reg() == any_reg, "must not have register assigned"); 5811 assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move"); 5812 assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move"); 5813 5814 if (begin_hint->assigned_reg() < LinearScan::nof_regs) { 5815 // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur 5816 return; 5817 } 5818 assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled"); 5819 assert(!cur->intersects(register_hint), "cur should not intersect register_hint"); 5820 5821 if (cur->intersects_any_children_of(register_hint)) { 5822 // Bail out if cur intersects any split children of register_hint, which have the same spill slot as their parent. An overlap of two intervals with 5823 // the same spill slot could result in a situation where both intervals are spilled at the same time to the same stack location which is not correct. 5824 return; 5825 } 5826 5827 // modify intervals such that cur gets the same stack slot as register_hint 5828 // delete use positions to prevent the intervals to get a register at beginning 5829 cur->set_canonical_spill_slot(register_hint->canonical_spill_slot()); 5830 cur->remove_first_use_pos(); 5831 end_hint->remove_first_use_pos(); 5832 } 5833 5834 5835 // allocate a physical register or memory location to an interval 5836 bool LinearScanWalker::activate_current() { 5837 Interval* cur = current(); 5838 bool result = true; 5839 5840 TRACE_LINEAR_SCAN(2, tty->print ("+++++ activating interval "); cur->print()); 5841 TRACE_LINEAR_SCAN(4, tty->print_cr(" split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated())); 5842 5843 if (cur->assigned_reg() >= LinearScan::nof_regs) { 5844 // activating an interval that has a stack slot assigned -> split it at first use position 5845 // used for method parameters 5846 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has spill slot assigned (method parameter) -> split it before first use")); 5847 5848 split_stack_interval(cur); 5849 result = false; 5850 5851 } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) { 5852 // activating an interval that must start in a stack slot, but may get a register later 5853 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval must start in stack slot -> split it before first use")); 5854 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned"); 5855 5856 allocator()->assign_spill_slot(cur); 5857 split_stack_interval(cur); 5858 result = false; 5859 5860 } else if (cur->assigned_reg() == any_reg) { 5861 // interval has not assigned register -> normal allocation 5862 // (this is the normal case for most intervals) 5863 TRACE_LINEAR_SCAN(4, tty->print_cr(" normal allocation of register")); 5864 5865 // assign same spill slot to non-intersecting intervals 5866 combine_spilled_intervals(cur); 5867 5868 init_vars_for_alloc(cur); 5869 if (no_allocation_possible(cur) || !alloc_free_reg(cur)) { 5870 // no empty register available. 5871 // split and spill another interval so that this interval gets a register 5872 alloc_locked_reg(cur); 5873 } 5874 5875 // spilled intervals need not be move to active-list 5876 if (cur->assigned_reg() >= LinearScan::nof_regs) { 5877 result = false; 5878 } 5879 } 5880 5881 // load spilled values that become active from stack slot to register 5882 if (cur->insert_move_when_activated()) { 5883 assert(cur->is_split_child(), "must be"); 5884 assert(cur->current_split_child() != nullptr, "must be"); 5885 assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval"); 5886 TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num())); 5887 5888 insert_move(cur->from(), cur->current_split_child(), cur); 5889 } 5890 cur->make_current_split_child(); 5891 5892 return result; // true = interval is moved to active list 5893 } 5894 5895 5896 // Implementation of EdgeMoveOptimizer 5897 5898 EdgeMoveOptimizer::EdgeMoveOptimizer() : 5899 _edge_instructions(4), 5900 _edge_instructions_idx(4) 5901 { 5902 } 5903 5904 void EdgeMoveOptimizer::optimize(BlockList* code) { 5905 EdgeMoveOptimizer optimizer = EdgeMoveOptimizer(); 5906 5907 // ignore the first block in the list (index 0 is not processed) 5908 for (int i = code->length() - 1; i >= 1; i--) { 5909 BlockBegin* block = code->at(i); 5910 5911 if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) { 5912 optimizer.optimize_moves_at_block_end(block); 5913 } 5914 if (block->number_of_sux() == 2) { 5915 optimizer.optimize_moves_at_block_begin(block); 5916 } 5917 } 5918 } 5919 5920 5921 // clear all internal data structures 5922 void EdgeMoveOptimizer::init_instructions() { 5923 _edge_instructions.clear(); 5924 _edge_instructions_idx.clear(); 5925 } 5926 5927 // append a lir-instruction-list and the index of the current operation in to the list 5928 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) { 5929 _edge_instructions.append(instructions); 5930 _edge_instructions_idx.append(instructions_idx); 5931 } 5932 5933 // return the current operation of the given edge (predecessor or successor) 5934 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) { 5935 LIR_OpList* instructions = _edge_instructions.at(edge); 5936 int idx = _edge_instructions_idx.at(edge); 5937 5938 if (idx < instructions->length()) { 5939 return instructions->at(idx); 5940 } else { 5941 return nullptr; 5942 } 5943 } 5944 5945 // removes the current operation of the given edge (predecessor or successor) 5946 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) { 5947 LIR_OpList* instructions = _edge_instructions.at(edge); 5948 int idx = _edge_instructions_idx.at(edge); 5949 instructions->remove_at(idx); 5950 5951 if (decrement_index) { 5952 _edge_instructions_idx.at_put(edge, idx - 1); 5953 } 5954 } 5955 5956 5957 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) { 5958 if (op1 == nullptr || op2 == nullptr) { 5959 // at least one block is already empty -> no optimization possible 5960 return true; 5961 } 5962 5963 if (op1->code() == lir_move && op2->code() == lir_move) { 5964 assert(op1->as_Op1() != nullptr, "move must be LIR_Op1"); 5965 assert(op2->as_Op1() != nullptr, "move must be LIR_Op1"); 5966 LIR_Op1* move1 = (LIR_Op1*)op1; 5967 LIR_Op1* move2 = (LIR_Op1*)op2; 5968 if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) { 5969 // these moves are exactly equal and can be optimized 5970 return false; 5971 } 5972 } 5973 5974 // no optimization possible 5975 return true; 5976 } 5977 5978 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) { 5979 TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id())); 5980 5981 if (block->is_predecessor(block)) { 5982 // currently we can't handle this correctly. 5983 return; 5984 } 5985 5986 init_instructions(); 5987 int num_preds = block->number_of_preds(); 5988 assert(num_preds > 1, "do not call otherwise"); 5989 assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed"); 5990 5991 // setup a list with the lir-instructions of all predecessors 5992 int i; 5993 for (i = 0; i < num_preds; i++) { 5994 BlockBegin* pred = block->pred_at(i); 5995 LIR_OpList* pred_instructions = pred->lir()->instructions_list(); 5996 5997 if (pred->number_of_sux() != 1) { 5998 // this can happen with switch-statements where multiple edges are between 5999 // the same blocks. 6000 return; 6001 } 6002 6003 assert(pred->number_of_sux() == 1, "can handle only one successor"); 6004 assert(pred->sux_at(0) == block, "invalid control flow"); 6005 assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch"); 6006 assert(pred_instructions->last()->as_OpBranch() != nullptr, "branch must be LIR_OpBranch"); 6007 assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch"); 6008 6009 if (pred_instructions->last()->info() != nullptr) { 6010 // can not optimize instructions when debug info is needed 6011 return; 6012 } 6013 6014 // ignore the unconditional branch at the end of the block 6015 append_instructions(pred_instructions, pred_instructions->length() - 2); 6016 } 6017 6018 6019 // process lir-instructions while all predecessors end with the same instruction 6020 while (true) { 6021 LIR_Op* op = instruction_at(0); 6022 for (i = 1; i < num_preds; i++) { 6023 if (operations_different(op, instruction_at(i))) { 6024 // these instructions are different and cannot be optimized -> 6025 // no further optimization possible 6026 return; 6027 } 6028 } 6029 6030 TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print()); 6031 6032 // insert the instruction at the beginning of the current block 6033 block->lir()->insert_before(1, op); 6034 6035 // delete the instruction at the end of all predecessors 6036 for (i = 0; i < num_preds; i++) { 6037 remove_cur_instruction(i, true); 6038 } 6039 } 6040 } 6041 6042 6043 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) { 6044 TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id())); 6045 6046 init_instructions(); 6047 int num_sux = block->number_of_sux(); 6048 6049 LIR_OpList* cur_instructions = block->lir()->instructions_list(); 6050 6051 assert(num_sux == 2, "method should not be called otherwise"); 6052 assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch"); 6053 assert(cur_instructions->last()->as_OpBranch() != nullptr, "branch must be LIR_OpBranch"); 6054 assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch"); 6055 6056 if (cur_instructions->last()->info() != nullptr) { 6057 // can no optimize instructions when debug info is needed 6058 return; 6059 } 6060 6061 LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2); 6062 if (branch->info() != nullptr || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) { 6063 // not a valid case for optimization 6064 // currently, only blocks that end with two branches (conditional branch followed 6065 // by unconditional branch) are optimized 6066 return; 6067 } 6068 6069 // now it is guaranteed that the block ends with two branch instructions. 6070 // the instructions are inserted at the end of the block before these two branches 6071 int insert_idx = cur_instructions->length() - 2; 6072 6073 int i; 6074 #ifdef ASSERT 6075 for (i = insert_idx - 1; i >= 0; i--) { 6076 LIR_Op* op = cur_instructions->at(i); 6077 if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != nullptr) { 6078 assert(false, "block with two successors can have only two branch instructions"); 6079 } 6080 } 6081 #endif 6082 6083 // setup a list with the lir-instructions of all successors 6084 for (i = 0; i < num_sux; i++) { 6085 BlockBegin* sux = block->sux_at(i); 6086 LIR_OpList* sux_instructions = sux->lir()->instructions_list(); 6087 6088 assert(sux_instructions->at(0)->code() == lir_label, "block must start with label"); 6089 6090 if (sux->number_of_preds() != 1) { 6091 // this can happen with switch-statements where multiple edges are between 6092 // the same blocks. 6093 return; 6094 } 6095 assert(sux->pred_at(0) == block, "invalid control flow"); 6096 assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed"); 6097 6098 // ignore the label at the beginning of the block 6099 append_instructions(sux_instructions, 1); 6100 } 6101 6102 // process lir-instructions while all successors begin with the same instruction 6103 while (true) { 6104 LIR_Op* op = instruction_at(0); 6105 for (i = 1; i < num_sux; i++) { 6106 if (operations_different(op, instruction_at(i))) { 6107 // these instructions are different and cannot be optimized -> 6108 // no further optimization possible 6109 return; 6110 } 6111 } 6112 6113 TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print()); 6114 6115 // insert instruction at end of current block 6116 block->lir()->insert_before(insert_idx, op); 6117 insert_idx++; 6118 6119 // delete the instructions at the beginning of all successors 6120 for (i = 0; i < num_sux; i++) { 6121 remove_cur_instruction(i, false); 6122 } 6123 } 6124 } 6125 6126 6127 // Implementation of ControlFlowOptimizer 6128 6129 ControlFlowOptimizer::ControlFlowOptimizer() : 6130 _original_preds(4) 6131 { 6132 } 6133 6134 void ControlFlowOptimizer::optimize(BlockList* code) { 6135 ControlFlowOptimizer optimizer = ControlFlowOptimizer(); 6136 6137 // push the OSR entry block to the end so that we're not jumping over it. 6138 BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry(); 6139 if (osr_entry) { 6140 int index = osr_entry->linear_scan_number(); 6141 assert(code->at(index) == osr_entry, "wrong index"); 6142 code->remove_at(index); 6143 code->append(osr_entry); 6144 } 6145 6146 optimizer.reorder_short_loops(code); 6147 optimizer.delete_empty_blocks(code); 6148 optimizer.delete_unnecessary_jumps(code); 6149 optimizer.delete_jumps_to_return(code); 6150 } 6151 6152 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) { 6153 int i = header_idx + 1; 6154 int max_end = MIN2(header_idx + ShortLoopSize, code->length()); 6155 while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) { 6156 i++; 6157 } 6158 6159 if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) { 6160 int end_idx = i - 1; 6161 BlockBegin* end_block = code->at(end_idx); 6162 6163 if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) { 6164 // short loop from header_idx to end_idx found -> reorder blocks such that 6165 // the header_block is the last block instead of the first block of the loop 6166 TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d", 6167 end_idx - header_idx + 1, 6168 header_block->block_id(), end_block->block_id())); 6169 6170 for (int j = header_idx; j < end_idx; j++) { 6171 code->at_put(j, code->at(j + 1)); 6172 } 6173 code->at_put(end_idx, header_block); 6174 6175 // correct the flags so that any loop alignment occurs in the right place. 6176 assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target"); 6177 code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag); 6178 code->at(header_idx)->set(BlockBegin::backward_branch_target_flag); 6179 } 6180 } 6181 } 6182 6183 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) { 6184 for (int i = code->length() - 1; i >= 0; i--) { 6185 BlockBegin* block = code->at(i); 6186 6187 if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) { 6188 reorder_short_loop(code, block, i); 6189 } 6190 } 6191 6192 DEBUG_ONLY(verify(code)); 6193 } 6194 6195 // only blocks with exactly one successor can be deleted. Such blocks 6196 // must always end with an unconditional branch to this successor 6197 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) { 6198 if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) { 6199 return false; 6200 } 6201 6202 LIR_OpList* instructions = block->lir()->instructions_list(); 6203 6204 assert(instructions->length() >= 2, "block must have label and branch"); 6205 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6206 assert(instructions->last()->as_OpBranch() != nullptr, "last instruction must always be a branch"); 6207 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional"); 6208 assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor"); 6209 6210 // block must have exactly one successor 6211 6212 if (instructions->length() == 2 && instructions->last()->info() == nullptr) { 6213 return true; 6214 } 6215 return false; 6216 } 6217 6218 // substitute branch targets in all branch-instructions of this blocks 6219 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) { 6220 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id())); 6221 6222 LIR_OpList* instructions = block->lir()->instructions_list(); 6223 6224 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6225 for (int i = instructions->length() - 1; i >= 1; i--) { 6226 LIR_Op* op = instructions->at(i); 6227 6228 if (op->code() == lir_branch || op->code() == lir_cond_float_branch) { 6229 assert(op->as_OpBranch() != nullptr, "branch must be of type LIR_OpBranch"); 6230 LIR_OpBranch* branch = (LIR_OpBranch*)op; 6231 6232 if (branch->block() == target_from) { 6233 branch->change_block(target_to); 6234 } 6235 if (branch->ublock() == target_from) { 6236 branch->change_ublock(target_to); 6237 } 6238 } 6239 } 6240 } 6241 6242 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) { 6243 int old_pos = 0; 6244 int new_pos = 0; 6245 int num_blocks = code->length(); 6246 6247 while (old_pos < num_blocks) { 6248 BlockBegin* block = code->at(old_pos); 6249 6250 if (can_delete_block(block)) { 6251 BlockBegin* new_target = block->sux_at(0); 6252 6253 // propagate backward branch target flag for correct code alignment 6254 if (block->is_set(BlockBegin::backward_branch_target_flag)) { 6255 new_target->set(BlockBegin::backward_branch_target_flag); 6256 } 6257 6258 // collect a list with all predecessors that contains each predecessor only once 6259 // the predecessors of cur are changed during the substitution, so a copy of the 6260 // predecessor list is necessary 6261 int j; 6262 _original_preds.clear(); 6263 for (j = block->number_of_preds() - 1; j >= 0; j--) { 6264 BlockBegin* pred = block->pred_at(j); 6265 if (_original_preds.find(pred) == -1) { 6266 _original_preds.append(pred); 6267 } 6268 } 6269 6270 for (j = _original_preds.length() - 1; j >= 0; j--) { 6271 BlockBegin* pred = _original_preds.at(j); 6272 substitute_branch_target(pred, block, new_target); 6273 pred->substitute_sux(block, new_target); 6274 } 6275 } else { 6276 // adjust position of this block in the block list if blocks before 6277 // have been deleted 6278 if (new_pos != old_pos) { 6279 code->at_put(new_pos, code->at(old_pos)); 6280 } 6281 new_pos++; 6282 } 6283 old_pos++; 6284 } 6285 code->trunc_to(new_pos); 6286 6287 DEBUG_ONLY(verify(code)); 6288 } 6289 6290 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) { 6291 // skip the last block because there a branch is always necessary 6292 for (int i = code->length() - 2; i >= 0; i--) { 6293 BlockBegin* block = code->at(i); 6294 LIR_OpList* instructions = block->lir()->instructions_list(); 6295 6296 LIR_Op* last_op = instructions->last(); 6297 if (last_op->code() == lir_branch) { 6298 assert(last_op->as_OpBranch() != nullptr, "branch must be of type LIR_OpBranch"); 6299 LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op; 6300 6301 assert(last_branch->block() != nullptr, "last branch must always have a block as target"); 6302 assert(last_branch->label() == last_branch->block()->label(), "must be equal"); 6303 6304 if (last_branch->info() == nullptr) { 6305 if (last_branch->block() == code->at(i + 1)) { 6306 6307 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id())); 6308 6309 // delete last branch instruction 6310 instructions->trunc_to(instructions->length() - 1); 6311 6312 } else { 6313 LIR_Op* prev_op = instructions->at(instructions->length() - 2); 6314 if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) { 6315 assert(prev_op->as_OpBranch() != nullptr, "branch must be of type LIR_OpBranch"); 6316 LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op; 6317 6318 if (prev_branch->stub() == nullptr) { 6319 6320 LIR_Op2* prev_cmp = nullptr; 6321 // There might be a cmove inserted for profiling which depends on the same 6322 // compare. If we change the condition of the respective compare, we have 6323 // to take care of this cmove as well. 6324 LIR_Op4* prev_cmove = nullptr; 6325 6326 for(int j = instructions->length() - 3; j >= 0 && prev_cmp == nullptr; j--) { 6327 prev_op = instructions->at(j); 6328 // check for the cmove 6329 if (prev_op->code() == lir_cmove) { 6330 assert(prev_op->as_Op4() != nullptr, "cmove must be of type LIR_Op4"); 6331 prev_cmove = (LIR_Op4*)prev_op; 6332 assert(prev_branch->cond() == prev_cmove->condition(), "should be the same"); 6333 } 6334 if (prev_op->code() == lir_cmp) { 6335 assert(prev_op->as_Op2() != nullptr, "branch must be of type LIR_Op2"); 6336 prev_cmp = (LIR_Op2*)prev_op; 6337 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same"); 6338 } 6339 } 6340 // Guarantee because it is dereferenced below. 6341 guarantee(prev_cmp != nullptr, "should have found comp instruction for branch"); 6342 if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == nullptr) { 6343 6344 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id())); 6345 6346 // eliminate a conditional branch to the immediate successor 6347 prev_branch->change_block(last_branch->block()); 6348 prev_branch->negate_cond(); 6349 prev_cmp->set_condition(prev_branch->cond()); 6350 instructions->trunc_to(instructions->length() - 1); 6351 // if we do change the condition, we have to change the cmove as well 6352 if (prev_cmove != nullptr) { 6353 prev_cmove->set_condition(prev_branch->cond()); 6354 LIR_Opr t = prev_cmove->in_opr1(); 6355 prev_cmove->set_in_opr1(prev_cmove->in_opr2()); 6356 prev_cmove->set_in_opr2(t); 6357 } 6358 } 6359 } 6360 } 6361 } 6362 } 6363 } 6364 } 6365 6366 DEBUG_ONLY(verify(code)); 6367 } 6368 6369 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) { 6370 #ifdef ASSERT 6371 ResourceBitMap return_converted(BlockBegin::number_of_blocks()); 6372 #endif 6373 6374 for (int i = code->length() - 1; i >= 0; i--) { 6375 BlockBegin* block = code->at(i); 6376 LIR_OpList* cur_instructions = block->lir()->instructions_list(); 6377 LIR_Op* cur_last_op = cur_instructions->last(); 6378 6379 assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6380 if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) { 6381 // the block contains only a label and a return 6382 // if a predecessor ends with an unconditional jump to this block, then the jump 6383 // can be replaced with a return instruction 6384 // 6385 // Note: the original block with only a return statement cannot be deleted completely 6386 // because the predecessors might have other (conditional) jumps to this block 6387 // -> this may lead to unnecessary return instructions in the final code 6388 6389 assert(cur_last_op->info() == nullptr, "return instructions do not have debug information"); 6390 assert(block->number_of_sux() == 0 || 6391 (return_converted.at(block->block_id()) && block->number_of_sux() == 1), 6392 "blocks that end with return must not have successors"); 6393 6394 assert(cur_last_op->as_Op1() != nullptr, "return must be LIR_Op1"); 6395 LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr(); 6396 6397 for (int j = block->number_of_preds() - 1; j >= 0; j--) { 6398 BlockBegin* pred = block->pred_at(j); 6399 LIR_OpList* pred_instructions = pred->lir()->instructions_list(); 6400 LIR_Op* pred_last_op = pred_instructions->last(); 6401 6402 if (pred_last_op->code() == lir_branch) { 6403 assert(pred_last_op->as_OpBranch() != nullptr, "branch must be LIR_OpBranch"); 6404 LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op; 6405 6406 if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == nullptr) { 6407 // replace the jump to a return with a direct return 6408 // Note: currently the edge between the blocks is not deleted 6409 pred_instructions->at_put(pred_instructions->length() - 1, new LIR_OpReturn(return_opr)); 6410 #ifdef ASSERT 6411 return_converted.set_bit(pred->block_id()); 6412 #endif 6413 } 6414 } 6415 } 6416 } 6417 } 6418 } 6419 6420 6421 #ifdef ASSERT 6422 void ControlFlowOptimizer::verify(BlockList* code) { 6423 for (int i = 0; i < code->length(); i++) { 6424 BlockBegin* block = code->at(i); 6425 LIR_OpList* instructions = block->lir()->instructions_list(); 6426 6427 int j; 6428 for (j = 0; j < instructions->length(); j++) { 6429 LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch(); 6430 6431 if (op_branch != nullptr) { 6432 assert(op_branch->block() == nullptr || code->find(op_branch->block()) != -1, "branch target not valid"); 6433 assert(op_branch->ublock() == nullptr || code->find(op_branch->ublock()) != -1, "branch target not valid"); 6434 } 6435 } 6436 6437 for (j = 0; j < block->number_of_sux() - 1; j++) { 6438 BlockBegin* sux = block->sux_at(j); 6439 assert(code->find(sux) != -1, "successor not valid"); 6440 } 6441 6442 for (j = 0; j < block->number_of_preds() - 1; j++) { 6443 BlockBegin* pred = block->pred_at(j); 6444 assert(code->find(pred) != -1, "successor not valid"); 6445 } 6446 } 6447 } 6448 #endif 6449 6450 6451 #ifndef PRODUCT 6452 6453 // Implementation of LinearStatistic 6454 6455 const char* LinearScanStatistic::counter_name(int counter_idx) { 6456 switch (counter_idx) { 6457 case counter_method: return "compiled methods"; 6458 case counter_fpu_method: return "methods using fpu"; 6459 case counter_loop_method: return "methods with loops"; 6460 case counter_exception_method:return "methods with xhandler"; 6461 6462 case counter_loop: return "loops"; 6463 case counter_block: return "blocks"; 6464 case counter_loop_block: return "blocks inside loop"; 6465 case counter_exception_block: return "exception handler entries"; 6466 case counter_interval: return "intervals"; 6467 case counter_fixed_interval: return "fixed intervals"; 6468 case counter_range: return "ranges"; 6469 case counter_fixed_range: return "fixed ranges"; 6470 case counter_use_pos: return "use positions"; 6471 case counter_fixed_use_pos: return "fixed use positions"; 6472 case counter_spill_slots: return "spill slots"; 6473 6474 // counter for classes of lir instructions 6475 case counter_instruction: return "total instructions"; 6476 case counter_label: return "labels"; 6477 case counter_entry: return "method entries"; 6478 case counter_return: return "method returns"; 6479 case counter_call: return "method calls"; 6480 case counter_move: return "moves"; 6481 case counter_cmp: return "compare"; 6482 case counter_cond_branch: return "conditional branches"; 6483 case counter_uncond_branch: return "unconditional branches"; 6484 case counter_stub_branch: return "branches to stub"; 6485 case counter_alu: return "artithmetic + logic"; 6486 case counter_alloc: return "allocations"; 6487 case counter_sync: return "synchronisation"; 6488 case counter_throw: return "throw"; 6489 case counter_unwind: return "unwind"; 6490 case counter_typecheck: return "type+null-checks"; 6491 case counter_misc_inst: return "other instructions"; 6492 case counter_other_inst: return "misc. instructions"; 6493 6494 // counter for different types of moves 6495 case counter_move_total: return "total moves"; 6496 case counter_move_reg_reg: return "register->register"; 6497 case counter_move_reg_stack: return "register->stack"; 6498 case counter_move_stack_reg: return "stack->register"; 6499 case counter_move_stack_stack:return "stack->stack"; 6500 case counter_move_reg_mem: return "register->memory"; 6501 case counter_move_mem_reg: return "memory->register"; 6502 case counter_move_const_any: return "constant->any"; 6503 6504 case blank_line_1: return ""; 6505 case blank_line_2: return ""; 6506 6507 default: ShouldNotReachHere(); return ""; 6508 } 6509 } 6510 6511 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) { 6512 if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) { 6513 return counter_method; 6514 } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) { 6515 return counter_block; 6516 } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) { 6517 return counter_instruction; 6518 } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) { 6519 return counter_move_total; 6520 } 6521 return invalid_counter; 6522 } 6523 6524 LinearScanStatistic::LinearScanStatistic() { 6525 for (int i = 0; i < number_of_counters; i++) { 6526 _counters_sum[i] = 0; 6527 _counters_max[i] = -1; 6528 } 6529 6530 } 6531 6532 // add the method-local numbers to the total sum 6533 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) { 6534 for (int i = 0; i < number_of_counters; i++) { 6535 _counters_sum[i] += method_statistic._counters_sum[i]; 6536 _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]); 6537 } 6538 } 6539 6540 void LinearScanStatistic::print(const char* title) { 6541 if (CountLinearScan || TraceLinearScanLevel > 0) { 6542 tty->cr(); 6543 tty->print_cr("***** LinearScan statistic - %s *****", title); 6544 6545 for (int i = 0; i < number_of_counters; i++) { 6546 if (_counters_sum[i] > 0 || _counters_max[i] >= 0) { 6547 tty->print("%25s: %8d", counter_name(i), _counters_sum[i]); 6548 6549 LinearScanStatistic::Counter cntr = base_counter(i); 6550 if (cntr != invalid_counter) { 6551 tty->print(" (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[cntr]); 6552 } else { 6553 tty->print(" "); 6554 } 6555 6556 if (_counters_max[i] >= 0) { 6557 tty->print("%8d", _counters_max[i]); 6558 } 6559 } 6560 tty->cr(); 6561 } 6562 } 6563 } 6564 6565 void LinearScanStatistic::collect(LinearScan* allocator) { 6566 inc_counter(counter_method); 6567 if (allocator->has_fpu_registers()) { 6568 inc_counter(counter_fpu_method); 6569 } 6570 if (allocator->num_loops() > 0) { 6571 inc_counter(counter_loop_method); 6572 } 6573 inc_counter(counter_loop, allocator->num_loops()); 6574 inc_counter(counter_spill_slots, allocator->max_spills()); 6575 6576 int i; 6577 for (i = 0; i < allocator->interval_count(); i++) { 6578 Interval* cur = allocator->interval_at(i); 6579 6580 if (cur != nullptr) { 6581 inc_counter(counter_interval); 6582 inc_counter(counter_use_pos, cur->num_use_positions()); 6583 if (LinearScan::is_precolored_interval(cur)) { 6584 inc_counter(counter_fixed_interval); 6585 inc_counter(counter_fixed_use_pos, cur->num_use_positions()); 6586 } 6587 6588 Range* range = cur->first(); 6589 while (range != Range::end()) { 6590 inc_counter(counter_range); 6591 if (LinearScan::is_precolored_interval(cur)) { 6592 inc_counter(counter_fixed_range); 6593 } 6594 range = range->next(); 6595 } 6596 } 6597 } 6598 6599 bool has_xhandlers = false; 6600 // Note: only count blocks that are in code-emit order 6601 for (i = 0; i < allocator->ir()->code()->length(); i++) { 6602 BlockBegin* cur = allocator->ir()->code()->at(i); 6603 6604 inc_counter(counter_block); 6605 if (cur->loop_depth() > 0) { 6606 inc_counter(counter_loop_block); 6607 } 6608 if (cur->is_set(BlockBegin::exception_entry_flag)) { 6609 inc_counter(counter_exception_block); 6610 has_xhandlers = true; 6611 } 6612 6613 LIR_OpList* instructions = cur->lir()->instructions_list(); 6614 for (int j = 0; j < instructions->length(); j++) { 6615 LIR_Op* op = instructions->at(j); 6616 6617 inc_counter(counter_instruction); 6618 6619 switch (op->code()) { 6620 case lir_label: inc_counter(counter_label); break; 6621 case lir_std_entry: 6622 case lir_osr_entry: inc_counter(counter_entry); break; 6623 case lir_return: inc_counter(counter_return); break; 6624 6625 case lir_rtcall: 6626 case lir_static_call: 6627 case lir_optvirtual_call: inc_counter(counter_call); break; 6628 6629 case lir_move: { 6630 inc_counter(counter_move); 6631 inc_counter(counter_move_total); 6632 6633 LIR_Opr in = op->as_Op1()->in_opr(); 6634 LIR_Opr res = op->as_Op1()->result_opr(); 6635 if (in->is_register()) { 6636 if (res->is_register()) { 6637 inc_counter(counter_move_reg_reg); 6638 } else if (res->is_stack()) { 6639 inc_counter(counter_move_reg_stack); 6640 } else if (res->is_address()) { 6641 inc_counter(counter_move_reg_mem); 6642 } else { 6643 ShouldNotReachHere(); 6644 } 6645 } else if (in->is_stack()) { 6646 if (res->is_register()) { 6647 inc_counter(counter_move_stack_reg); 6648 } else { 6649 inc_counter(counter_move_stack_stack); 6650 } 6651 } else if (in->is_address()) { 6652 assert(res->is_register(), "must be"); 6653 inc_counter(counter_move_mem_reg); 6654 } else if (in->is_constant()) { 6655 inc_counter(counter_move_const_any); 6656 } else { 6657 ShouldNotReachHere(); 6658 } 6659 break; 6660 } 6661 6662 case lir_cmp: inc_counter(counter_cmp); break; 6663 6664 case lir_branch: 6665 case lir_cond_float_branch: { 6666 LIR_OpBranch* branch = op->as_OpBranch(); 6667 if (branch->block() == nullptr) { 6668 inc_counter(counter_stub_branch); 6669 } else if (branch->cond() == lir_cond_always) { 6670 inc_counter(counter_uncond_branch); 6671 } else { 6672 inc_counter(counter_cond_branch); 6673 } 6674 break; 6675 } 6676 6677 case lir_neg: 6678 case lir_add: 6679 case lir_sub: 6680 case lir_mul: 6681 case lir_div: 6682 case lir_rem: 6683 case lir_sqrt: 6684 case lir_abs: 6685 case lir_f2hf: 6686 case lir_hf2f: 6687 case lir_logic_and: 6688 case lir_logic_or: 6689 case lir_logic_xor: 6690 case lir_shl: 6691 case lir_shr: 6692 case lir_ushr: inc_counter(counter_alu); break; 6693 6694 case lir_alloc_object: 6695 case lir_alloc_array: inc_counter(counter_alloc); break; 6696 6697 case lir_monaddr: 6698 case lir_lock: 6699 case lir_unlock: inc_counter(counter_sync); break; 6700 6701 case lir_throw: inc_counter(counter_throw); break; 6702 6703 case lir_unwind: inc_counter(counter_unwind); break; 6704 6705 case lir_null_check: 6706 case lir_leal: 6707 case lir_instanceof: 6708 case lir_checkcast: 6709 case lir_store_check: inc_counter(counter_typecheck); break; 6710 6711 case lir_nop: 6712 case lir_push: 6713 case lir_pop: 6714 case lir_convert: 6715 case lir_cmove: inc_counter(counter_misc_inst); break; 6716 6717 default: inc_counter(counter_other_inst); break; 6718 } 6719 } 6720 } 6721 6722 if (has_xhandlers) { 6723 inc_counter(counter_exception_method); 6724 } 6725 } 6726 6727 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) { 6728 if (CountLinearScan || TraceLinearScanLevel > 0) { 6729 6730 LinearScanStatistic local_statistic = LinearScanStatistic(); 6731 6732 local_statistic.collect(allocator); 6733 global_statistic.sum_up(local_statistic); 6734 6735 if (TraceLinearScanLevel > 2) { 6736 local_statistic.print("current local statistic"); 6737 } 6738 } 6739 } 6740 6741 6742 // Implementation of LinearTimers 6743 6744 LinearScanTimers::LinearScanTimers() { 6745 for (int i = 0; i < number_of_timers; i++) { 6746 timer(i)->reset(); 6747 } 6748 } 6749 6750 const char* LinearScanTimers::timer_name(int idx) { 6751 switch (idx) { 6752 case timer_do_nothing: return "Nothing (Time Check)"; 6753 case timer_number_instructions: return "Number Instructions"; 6754 case timer_compute_local_live_sets: return "Local Live Sets"; 6755 case timer_compute_global_live_sets: return "Global Live Sets"; 6756 case timer_build_intervals: return "Build Intervals"; 6757 case timer_sort_intervals_before: return "Sort Intervals Before"; 6758 case timer_allocate_registers: return "Allocate Registers"; 6759 case timer_resolve_data_flow: return "Resolve Data Flow"; 6760 case timer_sort_intervals_after: return "Sort Intervals After"; 6761 case timer_eliminate_spill_moves: return "Spill optimization"; 6762 case timer_assign_reg_num: return "Assign Reg Num"; 6763 case timer_optimize_lir: return "Optimize LIR"; 6764 default: ShouldNotReachHere(); return ""; 6765 } 6766 } 6767 6768 void LinearScanTimers::begin_method() { 6769 if (TimeEachLinearScan) { 6770 // reset all timers to measure only current method 6771 for (int i = 0; i < number_of_timers; i++) { 6772 timer(i)->reset(); 6773 } 6774 } 6775 } 6776 6777 void LinearScanTimers::end_method(LinearScan* allocator) { 6778 if (TimeEachLinearScan) { 6779 6780 double c = timer(timer_do_nothing)->seconds(); 6781 double total = 0; 6782 for (int i = 1; i < number_of_timers; i++) { 6783 total += timer(i)->seconds() - c; 6784 } 6785 6786 if (total >= 0.0005) { 6787 // print all information in one line for automatic processing 6788 tty->print("@"); allocator->compilation()->method()->print_name(); 6789 6790 tty->print("@ %d ", allocator->compilation()->method()->code_size()); 6791 tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2); 6792 tty->print("@ %d ", allocator->block_count()); 6793 tty->print("@ %d ", allocator->num_virtual_regs()); 6794 tty->print("@ %d ", allocator->interval_count()); 6795 tty->print("@ %d ", allocator->_num_calls); 6796 tty->print("@ %d ", allocator->num_loops()); 6797 6798 tty->print("@ %6.6f ", total); 6799 for (int i = 1; i < number_of_timers; i++) { 6800 tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100); 6801 } 6802 tty->cr(); 6803 } 6804 } 6805 } 6806 6807 void LinearScanTimers::print(double total_time) { 6808 if (TimeLinearScan) { 6809 // correction value: sum of dummy-timer that only measures the time that 6810 // is necessary to start and stop itself 6811 double c = timer(timer_do_nothing)->seconds(); 6812 6813 for (int i = 0; i < number_of_timers; i++) { 6814 double t = timer(i)->seconds(); 6815 tty->print_cr(" %25s: %6.3f s (%4.1f%%) corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100); 6816 } 6817 } 6818 } 6819 6820 #endif // #ifndef PRODUCT