1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/codeBuffer.hpp" 26 #include "c1/c1_CodeStubs.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/javaClasses.inline.hpp" 32 #include "classfile/vmClasses.hpp" 33 #include "classfile/vmSymbols.hpp" 34 #include "code/codeBlob.hpp" 35 #include "code/compiledIC.hpp" 36 #include "code/scopeDesc.hpp" 37 #include "code/vtableStubs.hpp" 38 #include "compiler/compilationPolicy.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "compiler/oopMap.hpp" 41 #include "gc/shared/barrierSet.hpp" 42 #include "gc/shared/c1/barrierSetC1.hpp" 43 #include "gc/shared/collectedHeap.hpp" 44 #include "interpreter/bytecode.hpp" 45 #include "interpreter/interpreter.hpp" 46 #include "jfr/support/jfrIntrinsics.hpp" 47 #include "logging/log.hpp" 48 #include "memory/oopFactory.hpp" 49 #include "memory/resourceArea.hpp" 50 #include "memory/universe.hpp" 51 #include "oops/access.inline.hpp" 52 #include "oops/flatArrayKlass.hpp" 53 #include "oops/flatArrayOop.inline.hpp" 54 #include "oops/objArrayKlass.hpp" 55 #include "oops/objArrayOop.inline.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "runtime/atomic.hpp" 59 #include "runtime/fieldDescriptor.inline.hpp" 60 #include "runtime/frame.inline.hpp" 61 #include "runtime/handles.inline.hpp" 62 #include "runtime/interfaceSupport.inline.hpp" 63 #include "runtime/javaCalls.hpp" 64 #include "runtime/sharedRuntime.hpp" 65 #include "runtime/stackWatermarkSet.hpp" 66 #include "runtime/stubRoutines.hpp" 67 #include "runtime/vframe.inline.hpp" 68 #include "runtime/vframeArray.hpp" 69 #include "runtime/vm_version.hpp" 70 #include "utilities/copy.hpp" 71 #include "utilities/events.hpp" 72 73 74 // Implementation of StubAssembler 75 76 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 77 _name = name; 78 _must_gc_arguments = false; 79 _frame_size = no_frame_size; 80 _num_rt_args = 0; 81 _stub_id = stub_id; 82 } 83 84 85 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 86 _name = name; 87 _must_gc_arguments = must_gc_arguments; 88 } 89 90 91 void StubAssembler::set_frame_size(int size) { 92 if (_frame_size == no_frame_size) { 93 _frame_size = size; 94 } 95 assert(_frame_size == size, "can't change the frame size"); 96 } 97 98 99 void StubAssembler::set_num_rt_args(int args) { 100 if (_num_rt_args == 0) { 101 _num_rt_args = args; 102 } 103 assert(_num_rt_args == args, "can't change the number of args"); 104 } 105 106 // Implementation of Runtime1 107 108 CodeBlob* Runtime1::_blobs[(int)C1StubId::NUM_STUBIDS]; 109 110 #define C1_BLOB_NAME_DEFINE(name) "C1 Runtime " # name "_blob", 111 const char *Runtime1::_blob_names[] = { 112 C1_STUBS_DO(C1_BLOB_NAME_DEFINE) 113 }; 114 #undef C1_STUB_NAME_DEFINE 115 116 #ifndef PRODUCT 117 // statistics 118 uint Runtime1::_generic_arraycopystub_cnt = 0; 119 uint Runtime1::_arraycopy_slowcase_cnt = 0; 120 uint Runtime1::_arraycopy_checkcast_cnt = 0; 121 uint Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 122 uint Runtime1::_new_type_array_slowcase_cnt = 0; 123 uint Runtime1::_new_object_array_slowcase_cnt = 0; 124 uint Runtime1::_new_null_free_array_slowcase_cnt = 0; 125 uint Runtime1::_new_instance_slowcase_cnt = 0; 126 uint Runtime1::_new_multi_array_slowcase_cnt = 0; 127 uint Runtime1::_load_flat_array_slowcase_cnt = 0; 128 uint Runtime1::_store_flat_array_slowcase_cnt = 0; 129 uint Runtime1::_substitutability_check_slowcase_cnt = 0; 130 uint Runtime1::_buffer_inline_args_slowcase_cnt = 0; 131 uint Runtime1::_buffer_inline_args_no_receiver_slowcase_cnt = 0; 132 uint Runtime1::_monitorenter_slowcase_cnt = 0; 133 uint Runtime1::_monitorexit_slowcase_cnt = 0; 134 uint Runtime1::_patch_code_slowcase_cnt = 0; 135 uint Runtime1::_throw_range_check_exception_count = 0; 136 uint Runtime1::_throw_index_exception_count = 0; 137 uint Runtime1::_throw_div0_exception_count = 0; 138 uint Runtime1::_throw_null_pointer_exception_count = 0; 139 uint Runtime1::_throw_class_cast_exception_count = 0; 140 uint Runtime1::_throw_incompatible_class_change_error_count = 0; 141 uint Runtime1::_throw_illegal_monitor_state_exception_count = 0; 142 uint Runtime1::_throw_identity_exception_count = 0; 143 uint Runtime1::_throw_count = 0; 144 145 static uint _byte_arraycopy_stub_cnt = 0; 146 static uint _short_arraycopy_stub_cnt = 0; 147 static uint _int_arraycopy_stub_cnt = 0; 148 static uint _long_arraycopy_stub_cnt = 0; 149 static uint _oop_arraycopy_stub_cnt = 0; 150 151 address Runtime1::arraycopy_count_address(BasicType type) { 152 switch (type) { 153 case T_BOOLEAN: 154 case T_BYTE: return (address)&_byte_arraycopy_stub_cnt; 155 case T_CHAR: 156 case T_SHORT: return (address)&_short_arraycopy_stub_cnt; 157 case T_FLOAT: 158 case T_INT: return (address)&_int_arraycopy_stub_cnt; 159 case T_DOUBLE: 160 case T_LONG: return (address)&_long_arraycopy_stub_cnt; 161 case T_ARRAY: 162 case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt; 163 default: 164 ShouldNotReachHere(); 165 return nullptr; 166 } 167 } 168 169 170 #endif 171 172 // Simple helper to see if the caller of a runtime stub which 173 // entered the VM has been deoptimized 174 175 static bool caller_is_deopted(JavaThread* current) { 176 RegisterMap reg_map(current, 177 RegisterMap::UpdateMap::skip, 178 RegisterMap::ProcessFrames::include, 179 RegisterMap::WalkContinuation::skip); 180 frame runtime_frame = current->last_frame(); 181 frame caller_frame = runtime_frame.sender(®_map); 182 assert(caller_frame.is_compiled_frame(), "must be compiled"); 183 return caller_frame.is_deoptimized_frame(); 184 } 185 186 // Stress deoptimization 187 static void deopt_caller(JavaThread* current) { 188 if (!caller_is_deopted(current)) { 189 RegisterMap reg_map(current, 190 RegisterMap::UpdateMap::skip, 191 RegisterMap::ProcessFrames::include, 192 RegisterMap::WalkContinuation::skip); 193 frame runtime_frame = current->last_frame(); 194 frame caller_frame = runtime_frame.sender(®_map); 195 Deoptimization::deoptimize_frame(current, caller_frame.id()); 196 assert(caller_is_deopted(current), "Must be deoptimized"); 197 } 198 } 199 200 class C1StubIdStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure { 201 private: 202 C1StubId _id; 203 public: 204 C1StubIdStubAssemblerCodeGenClosure(C1StubId id) : _id(id) {} 205 virtual OopMapSet* generate_code(StubAssembler* sasm) { 206 return Runtime1::generate_code_for(_id, sasm); 207 } 208 }; 209 210 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, C1StubId id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) { 211 ResourceMark rm; 212 // create code buffer for code storage 213 CodeBuffer code(buffer_blob); 214 215 OopMapSet* oop_maps; 216 int frame_size; 217 bool must_gc_arguments; 218 219 Compilation::setup_code_buffer(&code, 0); 220 221 // create assembler for code generation 222 StubAssembler* sasm = new StubAssembler(&code, name, (int)id); 223 // generate code for runtime stub 224 oop_maps = cl->generate_code(sasm); 225 assert(oop_maps == nullptr || sasm->frame_size() != no_frame_size, 226 "if stub has an oop map it must have a valid frame size"); 227 assert(!expect_oop_map || oop_maps != nullptr, "must have an oopmap"); 228 229 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 230 sasm->align(BytesPerWord); 231 // make sure all code is in code buffer 232 sasm->flush(); 233 234 frame_size = sasm->frame_size(); 235 must_gc_arguments = sasm->must_gc_arguments(); 236 // create blob - distinguish a few special cases 237 CodeBlob* blob = RuntimeStub::new_runtime_stub(name, 238 &code, 239 CodeOffsets::frame_never_safe, 240 frame_size, 241 oop_maps, 242 must_gc_arguments, 243 false /* alloc_fail_is_fatal */ ); 244 return blob; 245 } 246 247 bool Runtime1::generate_blob_for(BufferBlob* buffer_blob, C1StubId id) { 248 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 249 bool expect_oop_map = true; 250 #ifdef ASSERT 251 // Make sure that stubs that need oopmaps have them 252 switch (id) { 253 // These stubs don't need to have an oopmap 254 case C1StubId::dtrace_object_alloc_id: 255 case C1StubId::slow_subtype_check_id: 256 case C1StubId::fpu2long_stub_id: 257 case C1StubId::unwind_exception_id: 258 case C1StubId::counter_overflow_id: 259 case C1StubId::is_instance_of_id: 260 expect_oop_map = false; 261 break; 262 default: 263 break; 264 } 265 #endif 266 C1StubIdStubAssemblerCodeGenClosure cl(id); 267 CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl); 268 // install blob 269 _blobs[(int)id] = blob; 270 return blob != nullptr; 271 } 272 273 bool Runtime1::initialize(BufferBlob* blob) { 274 // platform-dependent initialization 275 initialize_pd(); 276 // generate stubs 277 int limit = (int)C1StubId::NUM_STUBIDS; 278 for (int id = 0; id < limit; id++) { 279 if (!generate_blob_for(blob, (C1StubId) id)) { 280 return false; 281 } 282 } 283 // printing 284 #ifndef PRODUCT 285 if (PrintSimpleStubs) { 286 ResourceMark rm; 287 for (int id = 0; id < limit; id++) { 288 _blobs[id]->print(); 289 if (_blobs[id]->oop_maps() != nullptr) { 290 _blobs[id]->oop_maps()->print(); 291 } 292 } 293 } 294 #endif 295 BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1(); 296 return bs->generate_c1_runtime_stubs(blob); 297 } 298 299 CodeBlob* Runtime1::blob_for(C1StubId id) { 300 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 301 return _blobs[(int)id]; 302 } 303 304 305 const char* Runtime1::name_for(C1StubId id) { 306 assert(C1StubId::NO_STUBID < id && id < C1StubId::NUM_STUBIDS, "illegal stub id"); 307 return _blob_names[(int)id]; 308 } 309 310 const char* Runtime1::name_for_address(address entry) { 311 int limit = (int)C1StubId::NUM_STUBIDS; 312 for (int i = 0; i < limit; i++) { 313 C1StubId id = (C1StubId)i; 314 if (entry == entry_for(id)) return name_for(id); 315 } 316 317 #define FUNCTION_CASE(a, f) \ 318 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 319 320 FUNCTION_CASE(entry, os::javaTimeMillis); 321 FUNCTION_CASE(entry, os::javaTimeNanos); 322 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 323 FUNCTION_CASE(entry, SharedRuntime::d2f); 324 FUNCTION_CASE(entry, SharedRuntime::d2i); 325 FUNCTION_CASE(entry, SharedRuntime::d2l); 326 FUNCTION_CASE(entry, SharedRuntime::dcos); 327 FUNCTION_CASE(entry, SharedRuntime::dexp); 328 FUNCTION_CASE(entry, SharedRuntime::dlog); 329 FUNCTION_CASE(entry, SharedRuntime::dlog10); 330 FUNCTION_CASE(entry, SharedRuntime::dpow); 331 FUNCTION_CASE(entry, SharedRuntime::drem); 332 FUNCTION_CASE(entry, SharedRuntime::dsin); 333 FUNCTION_CASE(entry, SharedRuntime::dtan); 334 FUNCTION_CASE(entry, SharedRuntime::f2i); 335 FUNCTION_CASE(entry, SharedRuntime::f2l); 336 FUNCTION_CASE(entry, SharedRuntime::frem); 337 FUNCTION_CASE(entry, SharedRuntime::l2d); 338 FUNCTION_CASE(entry, SharedRuntime::l2f); 339 FUNCTION_CASE(entry, SharedRuntime::ldiv); 340 FUNCTION_CASE(entry, SharedRuntime::lmul); 341 FUNCTION_CASE(entry, SharedRuntime::lrem); 342 FUNCTION_CASE(entry, SharedRuntime::lrem); 343 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 344 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 345 FUNCTION_CASE(entry, is_instance_of); 346 FUNCTION_CASE(entry, trace_block_entry); 347 #ifdef JFR_HAVE_INTRINSICS 348 FUNCTION_CASE(entry, JfrTime::time_function()); 349 #endif 350 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 351 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C()); 352 FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch()); 353 FUNCTION_CASE(entry, StubRoutines::dexp()); 354 FUNCTION_CASE(entry, StubRoutines::dlog()); 355 FUNCTION_CASE(entry, StubRoutines::dlog10()); 356 FUNCTION_CASE(entry, StubRoutines::dpow()); 357 FUNCTION_CASE(entry, StubRoutines::dsin()); 358 FUNCTION_CASE(entry, StubRoutines::dcos()); 359 FUNCTION_CASE(entry, StubRoutines::dtan()); 360 FUNCTION_CASE(entry, StubRoutines::dtanh()); 361 362 #undef FUNCTION_CASE 363 364 // Soft float adds more runtime names. 365 return pd_name_for_address(entry); 366 } 367 368 static void allocate_instance(JavaThread* current, Klass* klass, TRAPS) { 369 #ifndef PRODUCT 370 if (PrintC1Statistics) { 371 Runtime1::_new_instance_slowcase_cnt++; 372 } 373 #endif 374 assert(klass->is_klass(), "not a class"); 375 Handle holder(current, klass->klass_holder()); // keep the klass alive 376 InstanceKlass* h = InstanceKlass::cast(klass); 377 h->check_valid_for_instantiation(true, CHECK); 378 // make sure klass is initialized 379 h->initialize(CHECK); 380 // allocate instance and return via TLS 381 oop obj = h->allocate_instance(CHECK); 382 current->set_vm_result(obj); 383 JRT_END 384 385 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass)) 386 allocate_instance(current, klass, CHECK); 387 JRT_END 388 389 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length)) 390 #ifndef PRODUCT 391 if (PrintC1Statistics) { 392 _new_type_array_slowcase_cnt++; 393 } 394 #endif 395 // Note: no handle for klass needed since they are not used 396 // anymore after new_typeArray() and no GC can happen before. 397 // (This may have to change if this code changes!) 398 assert(klass->is_klass(), "not a class"); 399 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 400 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 401 current->set_vm_result(obj); 402 // This is pretty rare but this runtime patch is stressful to deoptimization 403 // if we deoptimize here so force a deopt to stress the path. 404 if (DeoptimizeALot) { 405 deopt_caller(current); 406 } 407 408 JRT_END 409 410 411 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length)) 412 #ifndef PRODUCT 413 if (PrintC1Statistics) { 414 _new_object_array_slowcase_cnt++; 415 } 416 #endif 417 // Note: no handle for klass needed since they are not used 418 // anymore after new_objArray() and no GC can happen before. 419 // (This may have to change if this code changes!) 420 assert(array_klass->is_klass(), "not a class"); 421 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 422 Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass(); 423 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 424 current->set_vm_result(obj); 425 // This is pretty rare but this runtime patch is stressful to deoptimization 426 // if we deoptimize here so force a deopt to stress the path. 427 if (DeoptimizeALot) { 428 deopt_caller(current); 429 } 430 JRT_END 431 432 433 JRT_ENTRY(void, Runtime1::new_null_free_array(JavaThread* current, Klass* array_klass, jint length)) 434 NOT_PRODUCT(_new_null_free_array_slowcase_cnt++;) 435 // TODO 8350865 This is dead code since 8325660 because null-free arrays can only be created via the factory methods that are not yet implemented in C1. Should probably be fixed by 8265122. 436 437 // Note: no handle for klass needed since they are not used 438 // anymore after new_objArray() and no GC can happen before. 439 // (This may have to change if this code changes!) 440 assert(array_klass->is_klass(), "not a class"); 441 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive 442 Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass(); 443 assert(elem_klass->is_inline_klass(), "must be"); 444 InlineKlass* vk = InlineKlass::cast(elem_klass); 445 // Logically creates elements, ensure klass init 446 elem_klass->initialize(CHECK); 447 arrayOop obj= nullptr; 448 if (UseArrayFlattening && vk->has_non_atomic_layout()) { 449 obj = oopFactory::new_flatArray(elem_klass, length, LayoutKind::NON_ATOMIC_FLAT, CHECK); 450 } else { 451 obj = oopFactory::new_null_free_objArray(elem_klass, length, CHECK); 452 } 453 current->set_vm_result(obj); 454 // This is pretty rare but this runtime patch is stressful to deoptimization 455 // if we deoptimize here so force a deopt to stress the path. 456 if (DeoptimizeALot) { 457 deopt_caller(current); 458 } 459 JRT_END 460 461 462 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims)) 463 #ifndef PRODUCT 464 if (PrintC1Statistics) { 465 _new_multi_array_slowcase_cnt++; 466 } 467 #endif 468 assert(klass->is_klass(), "not a class"); 469 assert(rank >= 1, "rank must be nonzero"); 470 Handle holder(current, klass->klass_holder()); // keep the klass alive 471 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 472 current->set_vm_result(obj); 473 JRT_END 474 475 476 static void profile_flat_array(JavaThread* current, bool load, bool null_free) { 477 ResourceMark rm(current); 478 vframeStream vfst(current, true); 479 assert(!vfst.at_end(), "Java frame must exist"); 480 // Check if array access profiling is enabled 481 if (vfst.nm()->comp_level() != CompLevel_full_profile || !C1UpdateMethodData) { 482 return; 483 } 484 int bci = vfst.bci(); 485 Method* method = vfst.method(); 486 MethodData* md = method->method_data(); 487 if (md != nullptr) { 488 // Lock to access ProfileData, and ensure lock is not broken by a safepoint 489 MutexLocker ml(md->extra_data_lock(), Mutex::_no_safepoint_check_flag); 490 491 ProfileData* data = md->bci_to_data(bci); 492 assert(data != nullptr, "incorrect profiling entry"); 493 if (data->is_ArrayLoadData()) { 494 assert(load, "should be an array load"); 495 ArrayLoadData* load_data = (ArrayLoadData*) data; 496 load_data->set_flat_array(); 497 if (null_free) { 498 load_data->set_null_free_array(); 499 } 500 } else { 501 assert(data->is_ArrayStoreData(), ""); 502 assert(!load, "should be an array store"); 503 ArrayStoreData* store_data = (ArrayStoreData*) data; 504 store_data->set_flat_array(); 505 if (null_free) { 506 store_data->set_null_free_array(); 507 } 508 } 509 } 510 } 511 512 JRT_ENTRY(void, Runtime1::load_flat_array(JavaThread* current, flatArrayOopDesc* array, int index)) 513 assert(array->klass()->is_flatArray_klass(), "should not be called"); 514 profile_flat_array(current, true, array->is_null_free_array()); 515 516 NOT_PRODUCT(_load_flat_array_slowcase_cnt++;) 517 assert(array->length() > 0 && index < array->length(), "already checked"); 518 flatArrayHandle vah(current, array); 519 oop obj = array->read_value_from_flat_array(index, CHECK); 520 current->set_vm_result(obj); 521 JRT_END 522 523 JRT_ENTRY(void, Runtime1::store_flat_array(JavaThread* current, flatArrayOopDesc* array, int index, oopDesc* value)) 524 // TOOD 8350865 We can call here with a non-flat array because of LIR_Assembler::emit_opFlattenedArrayCheck 525 if (array->klass()->is_flatArray_klass()) { 526 profile_flat_array(current, false, array->is_null_free_array()); 527 } 528 529 NOT_PRODUCT(_store_flat_array_slowcase_cnt++;) 530 if (value == nullptr && array->is_null_free_array()) { 531 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 532 } else { 533 assert(array->klass()->is_flatArray_klass(), "should not be called"); 534 array->write_value_to_flat_array(value, index, CHECK); 535 } 536 JRT_END 537 538 JRT_ENTRY(int, Runtime1::substitutability_check(JavaThread* current, oopDesc* left, oopDesc* right)) 539 NOT_PRODUCT(_substitutability_check_slowcase_cnt++;) 540 JavaCallArguments args; 541 args.push_oop(Handle(THREAD, left)); 542 args.push_oop(Handle(THREAD, right)); 543 JavaValue result(T_BOOLEAN); 544 JavaCalls::call_static(&result, 545 vmClasses::ValueObjectMethods_klass(), 546 vmSymbols::isSubstitutable_name(), 547 vmSymbols::object_object_boolean_signature(), 548 &args, CHECK_0); 549 return result.get_jboolean() ? 1 : 0; 550 JRT_END 551 552 553 extern "C" void ps(); 554 555 void Runtime1::buffer_inline_args_impl(JavaThread* current, Method* m, bool allocate_receiver) { 556 JavaThread* THREAD = current; 557 methodHandle method(current, m); // We are inside the verified_entry or verified_inline_ro_entry of this method. 558 oop obj = SharedRuntime::allocate_inline_types_impl(current, method, allocate_receiver, CHECK); 559 current->set_vm_result(obj); 560 } 561 562 JRT_ENTRY(void, Runtime1::buffer_inline_args(JavaThread* current, Method* method)) 563 NOT_PRODUCT(_buffer_inline_args_slowcase_cnt++;) 564 buffer_inline_args_impl(current, method, true); 565 JRT_END 566 567 JRT_ENTRY(void, Runtime1::buffer_inline_args_no_receiver(JavaThread* current, Method* method)) 568 NOT_PRODUCT(_buffer_inline_args_no_receiver_slowcase_cnt++;) 569 buffer_inline_args_impl(current, method, false); 570 JRT_END 571 572 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, C1StubId id)) 573 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", (int)id); 574 JRT_END 575 576 577 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj)) 578 ResourceMark rm(current); 579 const char* klass_name = obj->klass()->external_name(); 580 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name); 581 JRT_END 582 583 584 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 585 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 586 // method) method is passed as an argument. In order to do that it is embedded in the code as 587 // a constant. 588 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) { 589 nmethod* osr_nm = nullptr; 590 methodHandle method(current, m); 591 592 RegisterMap map(current, 593 RegisterMap::UpdateMap::skip, 594 RegisterMap::ProcessFrames::include, 595 RegisterMap::WalkContinuation::skip); 596 frame fr = current->last_frame().sender(&map); 597 nmethod* nm = (nmethod*) fr.cb(); 598 assert(nm!= nullptr && nm->is_nmethod(), "Sanity check"); 599 methodHandle enclosing_method(current, nm->method()); 600 601 CompLevel level = (CompLevel)nm->comp_level(); 602 int bci = InvocationEntryBci; 603 if (branch_bci != InvocationEntryBci) { 604 // Compute destination bci 605 address pc = method()->code_base() + branch_bci; 606 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 607 int offset = 0; 608 switch (branch) { 609 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 610 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 611 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 612 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 613 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 614 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 615 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 616 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 617 break; 618 case Bytecodes::_goto_w: 619 offset = Bytes::get_Java_u4(pc + 1); 620 break; 621 default: ; 622 } 623 bci = branch_bci + offset; 624 } 625 osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current); 626 return osr_nm; 627 } 628 629 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method)) 630 nmethod* osr_nm; 631 JRT_BLOCK 632 osr_nm = counter_overflow_helper(current, bci, method); 633 if (osr_nm != nullptr) { 634 RegisterMap map(current, 635 RegisterMap::UpdateMap::skip, 636 RegisterMap::ProcessFrames::include, 637 RegisterMap::WalkContinuation::skip); 638 frame fr = current->last_frame().sender(&map); 639 Deoptimization::deoptimize_frame(current, fr.id()); 640 } 641 JRT_BLOCK_END 642 return nullptr; 643 JRT_END 644 645 extern void vm_exit(int code); 646 647 // Enter this method from compiled code handler below. This is where we transition 648 // to VM mode. This is done as a helper routine so that the method called directly 649 // from compiled code does not have to transition to VM. This allows the entry 650 // method to see if the nmethod that we have just looked up a handler for has 651 // been deoptimized while we were in the vm. This simplifies the assembly code 652 // cpu directories. 653 // 654 // We are entering here from exception stub (via the entry method below) 655 // If there is a compiled exception handler in this method, we will continue there; 656 // otherwise we will unwind the stack and continue at the caller of top frame method 657 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 658 // control the area where we can allow a safepoint. After we exit the safepoint area we can 659 // check to see if the handler we are going to return is now in a nmethod that has 660 // been deoptimized. If that is the case we return the deopt blob 661 // unpack_with_exception entry instead. This makes life for the exception blob easier 662 // because making that same check and diverting is painful from assembly language. 663 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 664 // Reset method handle flag. 665 current->set_is_method_handle_return(false); 666 667 Handle exception(current, ex); 668 669 // This function is called when we are about to throw an exception. Therefore, 670 // we have to poll the stack watermark barrier to make sure that not yet safe 671 // stack frames are made safe before returning into them. 672 if (current->last_frame().cb() == Runtime1::blob_for(C1StubId::handle_exception_from_callee_id)) { 673 // The C1StubId::handle_exception_from_callee_id handler is invoked after the 674 // frame has been unwound. It instead builds its own stub frame, to call the 675 // runtime. But the throwing frame has already been unwound here. 676 StackWatermarkSet::after_unwind(current); 677 } 678 679 nm = CodeCache::find_nmethod(pc); 680 assert(nm != nullptr, "this is not an nmethod"); 681 // Adjust the pc as needed/ 682 if (nm->is_deopt_pc(pc)) { 683 RegisterMap map(current, 684 RegisterMap::UpdateMap::skip, 685 RegisterMap::ProcessFrames::include, 686 RegisterMap::WalkContinuation::skip); 687 frame exception_frame = current->last_frame().sender(&map); 688 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 689 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 690 pc = exception_frame.pc(); 691 } 692 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 693 // Check that exception is a subclass of Throwable 694 assert(exception->is_a(vmClasses::Throwable_klass()), 695 "Exception not subclass of Throwable"); 696 697 // debugging support 698 // tracing 699 if (log_is_enabled(Info, exceptions)) { 700 ResourceMark rm; // print_value_string 701 stringStream tempst; 702 assert(nm->method() != nullptr, "Unexpected null method()"); 703 tempst.print("C1 compiled method <%s>\n" 704 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 705 nm->method()->print_value_string(), p2i(pc), p2i(current)); 706 Exceptions::log_exception(exception, tempst.freeze()); 707 } 708 // for AbortVMOnException flag 709 Exceptions::debug_check_abort(exception); 710 711 // Check the stack guard pages and re-enable them if necessary and there is 712 // enough space on the stack to do so. Use fast exceptions only if the guard 713 // pages are enabled. 714 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 715 716 if (JvmtiExport::can_post_on_exceptions()) { 717 // To ensure correct notification of exception catches and throws 718 // we have to deoptimize here. If we attempted to notify the 719 // catches and throws during this exception lookup it's possible 720 // we could deoptimize on the way out of the VM and end back in 721 // the interpreter at the throw site. This would result in double 722 // notifications since the interpreter would also notify about 723 // these same catches and throws as it unwound the frame. 724 725 RegisterMap reg_map(current, 726 RegisterMap::UpdateMap::include, 727 RegisterMap::ProcessFrames::include, 728 RegisterMap::WalkContinuation::skip); 729 frame stub_frame = current->last_frame(); 730 frame caller_frame = stub_frame.sender(®_map); 731 732 // We don't really want to deoptimize the nmethod itself since we 733 // can actually continue in the exception handler ourselves but I 734 // don't see an easy way to have the desired effect. 735 Deoptimization::deoptimize_frame(current, caller_frame.id()); 736 assert(caller_is_deopted(current), "Must be deoptimized"); 737 738 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 739 } 740 741 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 742 if (guard_pages_enabled) { 743 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 744 if (fast_continuation != nullptr) { 745 // Set flag if return address is a method handle call site. 746 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 747 return fast_continuation; 748 } 749 } 750 751 // If the stack guard pages are enabled, check whether there is a handler in 752 // the current method. Otherwise (guard pages disabled), force an unwind and 753 // skip the exception cache update (i.e., just leave continuation as null). 754 address continuation = nullptr; 755 if (guard_pages_enabled) { 756 757 // New exception handling mechanism can support inlined methods 758 // with exception handlers since the mappings are from PC to PC 759 760 // Clear out the exception oop and pc since looking up an 761 // exception handler can cause class loading, which might throw an 762 // exception and those fields are expected to be clear during 763 // normal bytecode execution. 764 current->clear_exception_oop_and_pc(); 765 766 bool recursive_exception = false; 767 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 768 // If an exception was thrown during exception dispatch, the exception oop may have changed 769 current->set_exception_oop(exception()); 770 current->set_exception_pc(pc); 771 772 // the exception cache is used only by non-implicit exceptions 773 // Update the exception cache only when there didn't happen 774 // another exception during the computation of the compiled 775 // exception handler. Checking for exception oop equality is not 776 // sufficient because some exceptions are pre-allocated and reused. 777 if (continuation != nullptr && !recursive_exception) { 778 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 779 } 780 } 781 782 current->set_vm_result(exception()); 783 // Set flag if return address is a method handle call site. 784 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 785 786 if (log_is_enabled(Info, exceptions)) { 787 ResourceMark rm; 788 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 789 " for exception thrown at PC " PTR_FORMAT, 790 p2i(current), p2i(continuation), p2i(pc)); 791 } 792 793 return continuation; 794 JRT_END 795 796 // Enter this method from compiled code only if there is a Java exception handler 797 // in the method handling the exception. 798 // We are entering here from exception stub. We don't do a normal VM transition here. 799 // We do it in a helper. This is so we can check to see if the nmethod we have just 800 // searched for an exception handler has been deoptimized in the meantime. 801 address Runtime1::exception_handler_for_pc(JavaThread* current) { 802 oop exception = current->exception_oop(); 803 address pc = current->exception_pc(); 804 // Still in Java mode 805 DEBUG_ONLY(NoHandleMark nhm); 806 nmethod* nm = nullptr; 807 address continuation = nullptr; 808 { 809 // Enter VM mode by calling the helper 810 ResetNoHandleMark rnhm; 811 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 812 } 813 // Back in JAVA, use no oops DON'T safepoint 814 815 // Now check to see if the nmethod we were called from is now deoptimized. 816 // If so we must return to the deopt blob and deoptimize the nmethod 817 if (nm != nullptr && caller_is_deopted(current)) { 818 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 819 } 820 821 assert(continuation != nullptr, "no handler found"); 822 return continuation; 823 } 824 825 826 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a)) 827 #ifndef PRODUCT 828 if (PrintC1Statistics) { 829 _throw_range_check_exception_count++; 830 } 831 #endif 832 const int len = 35; 833 assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message."); 834 char message[2 * jintAsStringSize + len]; 835 os::snprintf_checked(message, sizeof(message), "Index %d out of bounds for length %d", index, a->length()); 836 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 837 JRT_END 838 839 840 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index)) 841 #ifndef PRODUCT 842 if (PrintC1Statistics) { 843 _throw_index_exception_count++; 844 } 845 #endif 846 char message[16]; 847 os::snprintf_checked(message, sizeof(message), "%d", index); 848 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 849 JRT_END 850 851 852 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current)) 853 #ifndef PRODUCT 854 if (PrintC1Statistics) { 855 _throw_div0_exception_count++; 856 } 857 #endif 858 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 859 JRT_END 860 861 862 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current)) 863 #ifndef PRODUCT 864 if (PrintC1Statistics) { 865 _throw_null_pointer_exception_count++; 866 } 867 #endif 868 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException()); 869 JRT_END 870 871 872 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object)) 873 #ifndef PRODUCT 874 if (PrintC1Statistics) { 875 _throw_class_cast_exception_count++; 876 } 877 #endif 878 ResourceMark rm(current); 879 char* message = SharedRuntime::generate_class_cast_message(current, object->klass()); 880 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message); 881 JRT_END 882 883 884 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current)) 885 #ifndef PRODUCT 886 if (PrintC1Statistics) { 887 _throw_incompatible_class_change_error_count++; 888 } 889 #endif 890 ResourceMark rm(current); 891 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError()); 892 JRT_END 893 894 895 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* current)) 896 NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;) 897 ResourceMark rm(current); 898 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IllegalMonitorStateException()); 899 JRT_END 900 901 JRT_ENTRY(void, Runtime1::throw_identity_exception(JavaThread* current, oopDesc* object)) 902 NOT_PRODUCT(_throw_identity_exception_count++;) 903 ResourceMark rm(current); 904 char* message = SharedRuntime::generate_identity_exception_message(current, object->klass()); 905 SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IdentityException(), message); 906 JRT_END 907 908 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock)) 909 #ifndef PRODUCT 910 if (PrintC1Statistics) { 911 _monitorenter_slowcase_cnt++; 912 } 913 #endif 914 if (LockingMode == LM_MONITOR) { 915 lock->set_obj(obj); 916 } 917 assert(obj == lock->obj(), "must match"); 918 SharedRuntime::monitor_enter_helper(obj, lock->lock(), current); 919 JRT_END 920 921 922 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock)) 923 assert(current == JavaThread::current(), "pre-condition"); 924 #ifndef PRODUCT 925 if (PrintC1Statistics) { 926 _monitorexit_slowcase_cnt++; 927 } 928 #endif 929 assert(current->last_Java_sp(), "last_Java_sp must be set"); 930 oop obj = lock->obj(); 931 assert(oopDesc::is_oop(obj), "must be null or an object"); 932 SharedRuntime::monitor_exit_helper(obj, lock->lock(), current); 933 JRT_END 934 935 // Cf. OptoRuntime::deoptimize_caller_frame 936 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request)) 937 // Called from within the owner thread, so no need for safepoint 938 RegisterMap reg_map(current, 939 RegisterMap::UpdateMap::skip, 940 RegisterMap::ProcessFrames::include, 941 RegisterMap::WalkContinuation::skip); 942 frame stub_frame = current->last_frame(); 943 assert(stub_frame.is_runtime_frame(), "Sanity check"); 944 frame caller_frame = stub_frame.sender(®_map); 945 nmethod* nm = caller_frame.cb()->as_nmethod_or_null(); 946 assert(nm != nullptr, "Sanity check"); 947 methodHandle method(current, nm->method()); 948 assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same"); 949 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 950 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 951 952 if (action == Deoptimization::Action_make_not_entrant) { 953 if (nm->make_not_entrant("C1 deoptimize")) { 954 if (reason == Deoptimization::Reason_tenured) { 955 MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/); 956 if (trap_mdo != nullptr) { 957 trap_mdo->inc_tenure_traps(); 958 } 959 } 960 } 961 } 962 963 // Deoptimize the caller frame. 964 Deoptimization::deoptimize_frame(current, caller_frame.id()); 965 // Return to the now deoptimized frame. 966 JRT_END 967 968 969 #ifndef DEOPTIMIZE_WHEN_PATCHING 970 971 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) { 972 Bytecode_field field_access(caller, bci); 973 // This can be static or non-static field access 974 Bytecodes::Code code = field_access.code(); 975 976 // We must load class, initialize class and resolve the field 977 fieldDescriptor result; // initialize class if needed 978 constantPoolHandle constants(THREAD, caller->constants()); 979 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL); 980 return result.field_holder(); 981 } 982 983 984 // 985 // This routine patches sites where a class wasn't loaded or 986 // initialized at the time the code was generated. It handles 987 // references to classes, fields and forcing of initialization. Most 988 // of the cases are straightforward and involving simply forcing 989 // resolution of a class, rewriting the instruction stream with the 990 // needed constant and replacing the call in this function with the 991 // patched code. The case for static field is more complicated since 992 // the thread which is in the process of initializing a class can 993 // access it's static fields but other threads can't so the code 994 // either has to deoptimize when this case is detected or execute a 995 // check that the current thread is the initializing thread. The 996 // current 997 // 998 // Patches basically look like this: 999 // 1000 // 1001 // patch_site: jmp patch stub ;; will be patched 1002 // continue: ... 1003 // ... 1004 // ... 1005 // ... 1006 // 1007 // They have a stub which looks like this: 1008 // 1009 // ;; patch body 1010 // movl <const>, reg (for class constants) 1011 // <or> movl [reg1 + <const>], reg (for field offsets) 1012 // <or> movl reg, [reg1 + <const>] (for field offsets) 1013 // <being_init offset> <bytes to copy> <bytes to skip> 1014 // patch_stub: call Runtime1::patch_code (through a runtime stub) 1015 // jmp patch_site 1016 // 1017 // 1018 // A normal patch is done by rewriting the patch body, usually a move, 1019 // and then copying it into place over top of the jmp instruction 1020 // being careful to flush caches and doing it in an MP-safe way. The 1021 // constants following the patch body are used to find various pieces 1022 // of the patch relative to the call site for Runtime1::patch_code. 1023 // The case for getstatic and putstatic is more complicated because 1024 // getstatic and putstatic have special semantics when executing while 1025 // the class is being initialized. getstatic/putstatic on a class 1026 // which is being_initialized may be executed by the initializing 1027 // thread but other threads have to block when they execute it. This 1028 // is accomplished in compiled code by executing a test of the current 1029 // thread against the initializing thread of the class. It's emitted 1030 // as boilerplate in their stub which allows the patched code to be 1031 // executed before it's copied back into the main body of the nmethod. 1032 // 1033 // being_init: get_thread(<tmp reg> 1034 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 1035 // jne patch_stub 1036 // movl [reg1 + <const>], reg (for field offsets) <or> 1037 // movl reg, [reg1 + <const>] (for field offsets) 1038 // jmp continue 1039 // <being_init offset> <bytes to copy> <bytes to skip> 1040 // patch_stub: jmp Runtime1::patch_code (through a runtime stub) 1041 // jmp patch_site 1042 // 1043 // If the class is being initialized the patch body is rewritten and 1044 // the patch site is rewritten to jump to being_init, instead of 1045 // patch_stub. Whenever this code is executed it checks the current 1046 // thread against the initializing thread so other threads will enter 1047 // the runtime and end up blocked waiting the class to finish 1048 // initializing inside the calls to resolve_field below. The 1049 // initializing class will continue on it's way. Once the class is 1050 // fully_initialized, the intializing_thread of the class becomes 1051 // null, so the next thread to execute this code will fail the test, 1052 // call into patch_code and complete the patching process by copying 1053 // the patch body back into the main part of the nmethod and resume 1054 // executing. 1055 1056 // NB: 1057 // 1058 // Patchable instruction sequences inherently exhibit race conditions, 1059 // where thread A is patching an instruction at the same time thread B 1060 // is executing it. The algorithms we use ensure that any observation 1061 // that B can make on any intermediate states during A's patching will 1062 // always end up with a correct outcome. This is easiest if there are 1063 // few or no intermediate states. (Some inline caches have two 1064 // related instructions that must be patched in tandem. For those, 1065 // intermediate states seem to be unavoidable, but we will get the 1066 // right answer from all possible observation orders.) 1067 // 1068 // When patching the entry instruction at the head of a method, or a 1069 // linkable call instruction inside of a method, we try very hard to 1070 // use a patch sequence which executes as a single memory transaction. 1071 // This means, in practice, that when thread A patches an instruction, 1072 // it should patch a 32-bit or 64-bit word that somehow overlaps the 1073 // instruction or is contained in it. We believe that memory hardware 1074 // will never break up such a word write, if it is naturally aligned 1075 // for the word being written. We also know that some CPUs work very 1076 // hard to create atomic updates even of naturally unaligned words, 1077 // but we don't want to bet the farm on this always working. 1078 // 1079 // Therefore, if there is any chance of a race condition, we try to 1080 // patch only naturally aligned words, as single, full-word writes. 1081 1082 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, C1StubId stub_id )) 1083 #ifndef PRODUCT 1084 if (PrintC1Statistics) { 1085 _patch_code_slowcase_cnt++; 1086 } 1087 #endif 1088 1089 ResourceMark rm(current); 1090 RegisterMap reg_map(current, 1091 RegisterMap::UpdateMap::skip, 1092 RegisterMap::ProcessFrames::include, 1093 RegisterMap::WalkContinuation::skip); 1094 frame runtime_frame = current->last_frame(); 1095 frame caller_frame = runtime_frame.sender(®_map); 1096 1097 // last java frame on stack 1098 vframeStream vfst(current, true); 1099 assert(!vfst.at_end(), "Java frame must exist"); 1100 1101 methodHandle caller_method(current, vfst.method()); 1102 // Note that caller_method->code() may not be same as caller_code because of OSR's 1103 // Note also that in the presence of inlining it is not guaranteed 1104 // that caller_method() == caller_code->method() 1105 1106 int bci = vfst.bci(); 1107 Bytecodes::Code code = caller_method()->java_code_at(bci); 1108 1109 // this is used by assertions in the access_field_patching_id 1110 BasicType patch_field_type = T_ILLEGAL; 1111 bool deoptimize_for_volatile = false; 1112 bool deoptimize_for_atomic = false; 1113 bool deoptimize_for_null_free = false; 1114 bool deoptimize_for_flat = false; 1115 int patch_field_offset = -1; 1116 Klass* init_klass = nullptr; // klass needed by load_klass_patching code 1117 Klass* load_klass = nullptr; // klass needed by load_klass_patching code 1118 Handle mirror(current, nullptr); // oop needed by load_mirror_patching code 1119 Handle appendix(current, nullptr); // oop needed by appendix_patching code 1120 bool load_klass_or_mirror_patch_id = 1121 (stub_id == C1StubId::load_klass_patching_id || stub_id == C1StubId::load_mirror_patching_id); 1122 1123 if (stub_id == C1StubId::access_field_patching_id) { 1124 1125 Bytecode_field field_access(caller_method, bci); 1126 fieldDescriptor result; // initialize class if needed 1127 Bytecodes::Code code = field_access.code(); 1128 constantPoolHandle constants(current, caller_method->constants()); 1129 LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK); 1130 patch_field_offset = result.offset(); 1131 1132 // If we're patching a field which is volatile then at compile it 1133 // must not have been know to be volatile, so the generated code 1134 // isn't correct for a volatile reference. The nmethod has to be 1135 // deoptimized so that the code can be regenerated correctly. 1136 // This check is only needed for access_field_patching since this 1137 // is the path for patching field offsets. load_klass is only 1138 // used for patching references to oops which don't need special 1139 // handling in the volatile case. 1140 1141 deoptimize_for_volatile = result.access_flags().is_volatile(); 1142 1143 // If we are patching a field which should be atomic, then 1144 // the generated code is not correct either, force deoptimizing. 1145 // We need to only cover T_LONG and T_DOUBLE fields, as we can 1146 // break access atomicity only for them. 1147 1148 // Strictly speaking, the deoptimization on 64-bit platforms 1149 // is unnecessary, and T_LONG stores on 32-bit platforms need 1150 // to be handled by special patching code when AlwaysAtomicAccesses 1151 // becomes product feature. At this point, we are still going 1152 // for the deoptimization for consistency against volatile 1153 // accesses. 1154 1155 patch_field_type = result.field_type(); 1156 deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)); 1157 1158 // The field we are patching is null-free. Deoptimize and regenerate 1159 // the compiled code if we patch a putfield/putstatic because it 1160 // does not contain the required null check. 1161 deoptimize_for_null_free = result.is_null_free_inline_type() && (field_access.is_putfield() || field_access.is_putstatic()); 1162 1163 // The field we are patching is flat. Deoptimize and regenerate 1164 // the compiled code which can't handle the layout of the flat 1165 // field because it was unknown at compile time. 1166 deoptimize_for_flat = result.is_flat(); 1167 1168 } else if (load_klass_or_mirror_patch_id) { 1169 Klass* k = nullptr; 1170 switch (code) { 1171 case Bytecodes::_putstatic: 1172 case Bytecodes::_getstatic: 1173 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 1174 init_klass = klass; 1175 mirror = Handle(current, klass->java_mirror()); 1176 } 1177 break; 1178 case Bytecodes::_new: 1179 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 1180 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 1181 } 1182 break; 1183 case Bytecodes::_multianewarray: 1184 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 1185 k = caller_method->constants()->klass_at(mna.index(), CHECK); 1186 } 1187 break; 1188 case Bytecodes::_instanceof: 1189 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 1190 k = caller_method->constants()->klass_at(io.index(), CHECK); 1191 } 1192 break; 1193 case Bytecodes::_checkcast: 1194 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 1195 k = caller_method->constants()->klass_at(cc.index(), CHECK); 1196 } 1197 break; 1198 case Bytecodes::_anewarray: 1199 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 1200 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 1201 k = ek->array_klass(CHECK); 1202 } 1203 break; 1204 case Bytecodes::_ldc: 1205 case Bytecodes::_ldc_w: 1206 case Bytecodes::_ldc2_w: 1207 { 1208 Bytecode_loadconstant cc(caller_method, bci); 1209 oop m = cc.resolve_constant(CHECK); 1210 mirror = Handle(current, m); 1211 } 1212 break; 1213 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 1214 } 1215 load_klass = k; 1216 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1217 Bytecode_invoke bytecode(caller_method, bci); 1218 Bytecodes::Code bc = bytecode.invoke_code(); 1219 1220 CallInfo info; 1221 constantPoolHandle pool(current, caller_method->constants()); 1222 int index = bytecode.index(); 1223 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 1224 switch (bc) { 1225 case Bytecodes::_invokehandle: { 1226 ResolvedMethodEntry* entry = pool->cache()->set_method_handle(index, info); 1227 appendix = Handle(current, pool->cache()->appendix_if_resolved(entry)); 1228 break; 1229 } 1230 case Bytecodes::_invokedynamic: { 1231 appendix = Handle(current, pool->cache()->set_dynamic_call(info, index)); 1232 break; 1233 } 1234 default: fatal("unexpected bytecode for load_appendix_patching_id"); 1235 } 1236 } else { 1237 ShouldNotReachHere(); 1238 } 1239 1240 if (deoptimize_for_volatile || deoptimize_for_atomic || deoptimize_for_null_free || deoptimize_for_flat) { 1241 // At compile time we assumed the field wasn't volatile/atomic but after 1242 // loading it turns out it was volatile/atomic so we have to throw the 1243 // compiled code out and let it be regenerated. 1244 if (TracePatching) { 1245 if (deoptimize_for_volatile) { 1246 tty->print_cr("Deoptimizing for patching volatile field reference"); 1247 } 1248 if (deoptimize_for_atomic) { 1249 tty->print_cr("Deoptimizing for patching atomic field reference"); 1250 } 1251 if (deoptimize_for_null_free) { 1252 tty->print_cr("Deoptimizing for patching null-free field reference"); 1253 } 1254 if (deoptimize_for_flat) { 1255 tty->print_cr("Deoptimizing for patching flat field reference"); 1256 } 1257 } 1258 1259 // It's possible the nmethod was invalidated in the last 1260 // safepoint, but if it's still alive then make it not_entrant. 1261 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1262 if (nm != nullptr) { 1263 nm->make_not_entrant("C1 code patch"); 1264 } 1265 1266 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1267 1268 // Return to the now deoptimized frame. 1269 } 1270 1271 // Now copy code back 1272 1273 { 1274 MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag); 1275 // 1276 // Deoptimization may have happened while we waited for the lock. 1277 // In that case we don't bother to do any patching we just return 1278 // and let the deopt happen 1279 if (!caller_is_deopted(current)) { 1280 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 1281 address instr_pc = jump->jump_destination(); 1282 NativeInstruction* ni = nativeInstruction_at(instr_pc); 1283 if (ni->is_jump() ) { 1284 // the jump has not been patched yet 1285 // The jump destination is slow case and therefore not part of the stubs 1286 // (stubs are only for StaticCalls) 1287 1288 // format of buffer 1289 // .... 1290 // instr byte 0 <-- copy_buff 1291 // instr byte 1 1292 // .. 1293 // instr byte n-1 1294 // n 1295 // .... <-- call destination 1296 1297 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 1298 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 1299 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 1300 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 1301 address copy_buff = stub_location - *byte_skip - *byte_count; 1302 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 1303 if (TracePatching) { 1304 ttyLocker ttyl; 1305 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 1306 p2i(instr_pc), (stub_id == C1StubId::access_field_patching_id) ? "field" : "klass"); 1307 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 1308 assert(caller_code != nullptr, "nmethod not found"); 1309 1310 // NOTE we use pc() not original_pc() because we already know they are 1311 // identical otherwise we'd have never entered this block of code 1312 1313 const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1314 assert(map != nullptr, "null check"); 1315 map->print(); 1316 tty->cr(); 1317 1318 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1319 } 1320 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1321 bool do_patch = true; 1322 if (stub_id == C1StubId::access_field_patching_id) { 1323 // The offset may not be correct if the class was not loaded at code generation time. 1324 // Set it now. 1325 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1326 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1327 assert(patch_field_offset >= 0, "illegal offset"); 1328 n_move->add_offset_in_bytes(patch_field_offset); 1329 } else if (load_klass_or_mirror_patch_id) { 1330 // If a getstatic or putstatic is referencing a klass which 1331 // isn't fully initialized, the patch body isn't copied into 1332 // place until initialization is complete. In this case the 1333 // patch site is setup so that any threads besides the 1334 // initializing thread are forced to come into the VM and 1335 // block. 1336 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1337 InstanceKlass::cast(init_klass)->is_initialized(); 1338 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1339 if (jump->jump_destination() == being_initialized_entry) { 1340 assert(do_patch == true, "initialization must be complete at this point"); 1341 } else { 1342 // patch the instruction <move reg, klass> 1343 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1344 1345 assert(n_copy->data() == 0 || 1346 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1347 "illegal init value"); 1348 if (stub_id == C1StubId::load_klass_patching_id) { 1349 assert(load_klass != nullptr, "klass not set"); 1350 n_copy->set_data((intx) (load_klass)); 1351 } else { 1352 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1353 n_copy->set_data(cast_from_oop<intx>(mirror())); 1354 } 1355 1356 if (TracePatching) { 1357 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1358 } 1359 } 1360 } else if (stub_id == C1StubId::load_appendix_patching_id) { 1361 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1362 assert(n_copy->data() == 0 || 1363 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1364 "illegal init value"); 1365 n_copy->set_data(cast_from_oop<intx>(appendix())); 1366 1367 if (TracePatching) { 1368 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1369 } 1370 } else { 1371 ShouldNotReachHere(); 1372 } 1373 1374 if (do_patch) { 1375 // replace instructions 1376 // first replace the tail, then the call 1377 #ifdef ARM 1378 if((load_klass_or_mirror_patch_id || 1379 stub_id == C1StubId::load_appendix_patching_id) && 1380 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1381 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1382 address addr = nullptr; 1383 assert(nm != nullptr, "invalid nmethod_pc"); 1384 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1385 while (mds.next()) { 1386 if (mds.type() == relocInfo::oop_type) { 1387 assert(stub_id == C1StubId::load_mirror_patching_id || 1388 stub_id == C1StubId::load_appendix_patching_id, "wrong stub id"); 1389 oop_Relocation* r = mds.oop_reloc(); 1390 addr = (address)r->oop_addr(); 1391 break; 1392 } else if (mds.type() == relocInfo::metadata_type) { 1393 assert(stub_id == C1StubId::load_klass_patching_id, "wrong stub id"); 1394 metadata_Relocation* r = mds.metadata_reloc(); 1395 addr = (address)r->metadata_addr(); 1396 break; 1397 } 1398 } 1399 assert(addr != nullptr, "metadata relocation must exist"); 1400 copy_buff -= *byte_count; 1401 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1402 n_copy2->set_pc_relative_offset(addr, instr_pc); 1403 } 1404 #endif 1405 1406 for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) { 1407 address ptr = copy_buff + i; 1408 int a_byte = (*ptr) & 0xFF; 1409 address dst = instr_pc + i; 1410 *(unsigned char*)dst = (unsigned char) a_byte; 1411 } 1412 ICache::invalidate_range(instr_pc, *byte_count); 1413 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1414 1415 if (load_klass_or_mirror_patch_id || 1416 stub_id == C1StubId::load_appendix_patching_id) { 1417 relocInfo::relocType rtype = 1418 (stub_id == C1StubId::load_klass_patching_id) ? 1419 relocInfo::metadata_type : 1420 relocInfo::oop_type; 1421 // update relocInfo to metadata 1422 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1423 assert(nm != nullptr, "invalid nmethod_pc"); 1424 1425 // The old patch site is now a move instruction so update 1426 // the reloc info so that it will get updated during 1427 // future GCs. 1428 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1429 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1430 relocInfo::none, rtype); 1431 } 1432 1433 } else { 1434 ICache::invalidate_range(copy_buff, *byte_count); 1435 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1436 } 1437 } 1438 } 1439 // If we are patching in a non-perm oop, make sure the nmethod 1440 // is on the right list. 1441 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1442 guarantee(nm != nullptr, "only nmethods can contain non-perm oops"); 1443 1444 // Since we've patched some oops in the nmethod, 1445 // (re)register it with the heap. 1446 Universe::heap()->register_nmethod(nm); 1447 } 1448 JRT_END 1449 1450 #else // DEOPTIMIZE_WHEN_PATCHING 1451 1452 static bool is_patching_needed(JavaThread* current, C1StubId stub_id) { 1453 if (stub_id == C1StubId::load_klass_patching_id || 1454 stub_id == C1StubId::load_mirror_patching_id) { 1455 // last java frame on stack 1456 vframeStream vfst(current, true); 1457 assert(!vfst.at_end(), "Java frame must exist"); 1458 1459 methodHandle caller_method(current, vfst.method()); 1460 int bci = vfst.bci(); 1461 Bytecodes::Code code = caller_method()->java_code_at(bci); 1462 1463 switch (code) { 1464 case Bytecodes::_new: 1465 case Bytecodes::_anewarray: 1466 case Bytecodes::_multianewarray: 1467 case Bytecodes::_instanceof: 1468 case Bytecodes::_checkcast: { 1469 Bytecode bc(caller_method(), caller_method->bcp_from(bci)); 1470 constantTag tag = caller_method->constants()->tag_at(bc.get_index_u2(code)); 1471 if (tag.is_unresolved_klass_in_error()) { 1472 return false; // throws resolution error 1473 } 1474 break; 1475 } 1476 1477 default: break; 1478 } 1479 } 1480 return true; 1481 } 1482 1483 void Runtime1::patch_code(JavaThread* current, C1StubId stub_id) { 1484 #ifndef PRODUCT 1485 if (PrintC1Statistics) { 1486 _patch_code_slowcase_cnt++; 1487 } 1488 #endif 1489 1490 // Enable WXWrite: the function is called by c1 stub as a runtime function 1491 // (see another implementation above). 1492 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 1493 1494 if (TracePatching) { 1495 tty->print_cr("Deoptimizing because patch is needed"); 1496 } 1497 1498 RegisterMap reg_map(current, 1499 RegisterMap::UpdateMap::skip, 1500 RegisterMap::ProcessFrames::include, 1501 RegisterMap::WalkContinuation::skip); 1502 1503 frame runtime_frame = current->last_frame(); 1504 frame caller_frame = runtime_frame.sender(®_map); 1505 assert(caller_frame.is_compiled_frame(), "Wrong frame type"); 1506 1507 if (is_patching_needed(current, stub_id)) { 1508 // Make sure the nmethod is invalidated, i.e. made not entrant. 1509 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1510 if (nm != nullptr) { 1511 nm->make_not_entrant("C1 deoptimize for patching"); 1512 } 1513 } 1514 1515 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1516 // Return to the now deoptimized frame. 1517 postcond(caller_is_deopted(current)); 1518 } 1519 1520 #endif // DEOPTIMIZE_WHEN_PATCHING 1521 1522 // Entry point for compiled code. We want to patch a nmethod. 1523 // We don't do a normal VM transition here because we want to 1524 // know after the patching is complete and any safepoint(s) are taken 1525 // if the calling nmethod was deoptimized. We do this by calling a 1526 // helper method which does the normal VM transition and when it 1527 // completes we can check for deoptimization. This simplifies the 1528 // assembly code in the cpu directories. 1529 // 1530 int Runtime1::move_klass_patching(JavaThread* current) { 1531 // 1532 // NOTE: we are still in Java 1533 // 1534 debug_only(NoHandleMark nhm;) 1535 { 1536 // Enter VM mode 1537 ResetNoHandleMark rnhm; 1538 patch_code(current, C1StubId::load_klass_patching_id); 1539 } 1540 // Back in JAVA, use no oops DON'T safepoint 1541 1542 // Return true if calling code is deoptimized 1543 1544 return caller_is_deopted(current); 1545 } 1546 1547 int Runtime1::move_mirror_patching(JavaThread* current) { 1548 // 1549 // NOTE: we are still in Java 1550 // 1551 debug_only(NoHandleMark nhm;) 1552 { 1553 // Enter VM mode 1554 ResetNoHandleMark rnhm; 1555 patch_code(current, C1StubId::load_mirror_patching_id); 1556 } 1557 // Back in JAVA, use no oops DON'T safepoint 1558 1559 // Return true if calling code is deoptimized 1560 1561 return caller_is_deopted(current); 1562 } 1563 1564 int Runtime1::move_appendix_patching(JavaThread* current) { 1565 // 1566 // NOTE: we are still in Java 1567 // 1568 debug_only(NoHandleMark nhm;) 1569 { 1570 // Enter VM mode 1571 ResetNoHandleMark rnhm; 1572 patch_code(current, C1StubId::load_appendix_patching_id); 1573 } 1574 // Back in JAVA, use no oops DON'T safepoint 1575 1576 // Return true if calling code is deoptimized 1577 1578 return caller_is_deopted(current); 1579 } 1580 1581 // Entry point for compiled code. We want to patch a nmethod. 1582 // We don't do a normal VM transition here because we want to 1583 // know after the patching is complete and any safepoint(s) are taken 1584 // if the calling nmethod was deoptimized. We do this by calling a 1585 // helper method which does the normal VM transition and when it 1586 // completes we can check for deoptimization. This simplifies the 1587 // assembly code in the cpu directories. 1588 // 1589 int Runtime1::access_field_patching(JavaThread* current) { 1590 // 1591 // NOTE: we are still in Java 1592 // 1593 // Handles created in this function will be deleted by the 1594 // HandleMarkCleaner in the transition to the VM. 1595 NoHandleMark nhm; 1596 { 1597 // Enter VM mode 1598 ResetNoHandleMark rnhm; 1599 patch_code(current, C1StubId::access_field_patching_id); 1600 } 1601 // Back in JAVA, use no oops DON'T safepoint 1602 1603 // Return true if calling code is deoptimized 1604 1605 return caller_is_deopted(current); 1606 } 1607 1608 1609 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1610 // for now we just print out the block id 1611 tty->print("%d ", block_id); 1612 JRT_END 1613 1614 1615 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1616 // had to return int instead of bool, otherwise there may be a mismatch 1617 // between the C calling convention and the Java one. 1618 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1619 // JVM takes the whole %eax as the return value, which may misinterpret 1620 // the return value as a boolean true. 1621 1622 assert(mirror != nullptr, "should null-check on mirror before calling"); 1623 Klass* k = java_lang_Class::as_Klass(mirror); 1624 return (k != nullptr && obj != nullptr && obj->is_a(k)) ? 1 : 0; 1625 JRT_END 1626 1627 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current)) 1628 ResourceMark rm; 1629 1630 RegisterMap reg_map(current, 1631 RegisterMap::UpdateMap::skip, 1632 RegisterMap::ProcessFrames::include, 1633 RegisterMap::WalkContinuation::skip); 1634 frame runtime_frame = current->last_frame(); 1635 frame caller_frame = runtime_frame.sender(®_map); 1636 1637 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1638 assert (nm != nullptr, "no more nmethod?"); 1639 nm->make_not_entrant("C1 predicate failed trap"); 1640 1641 methodHandle m(current, nm->method()); 1642 MethodData* mdo = m->method_data(); 1643 1644 if (mdo == nullptr && !HAS_PENDING_EXCEPTION) { 1645 // Build an MDO. Ignore errors like OutOfMemory; 1646 // that simply means we won't have an MDO to update. 1647 Method::build_profiling_method_data(m, THREAD); 1648 if (HAS_PENDING_EXCEPTION) { 1649 // Only metaspace OOM is expected. No Java code executed. 1650 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1651 CLEAR_PENDING_EXCEPTION; 1652 } 1653 mdo = m->method_data(); 1654 } 1655 1656 if (mdo != nullptr) { 1657 mdo->inc_trap_count(Deoptimization::Reason_none); 1658 } 1659 1660 if (TracePredicateFailedTraps) { 1661 stringStream ss1, ss2; 1662 vframeStream vfst(current); 1663 Method* inlinee = vfst.method(); 1664 inlinee->print_short_name(&ss1); 1665 m->print_short_name(&ss2); 1666 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.freeze(), vfst.bci(), ss2.freeze(), p2i(caller_frame.pc())); 1667 } 1668 1669 1670 Deoptimization::deoptimize_frame(current, caller_frame.id()); 1671 1672 JRT_END 1673 1674 // Check exception if AbortVMOnException flag set 1675 JRT_LEAF(void, Runtime1::check_abort_on_vm_exception(oopDesc* ex)) 1676 ResourceMark rm; 1677 const char* message = nullptr; 1678 if (ex->is_a(vmClasses::Throwable_klass())) { 1679 oop msg = java_lang_Throwable::message(ex); 1680 if (msg != nullptr) { 1681 message = java_lang_String::as_utf8_string(msg); 1682 } 1683 } 1684 Exceptions::debug_check_abort(ex->klass()->external_name(), message); 1685 JRT_END 1686 1687 #ifndef PRODUCT 1688 void Runtime1::print_statistics() { 1689 tty->print_cr("C1 Runtime statistics:"); 1690 tty->print_cr(" _resolve_invoke_virtual_cnt: %u", SharedRuntime::_resolve_virtual_ctr); 1691 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %u", SharedRuntime::_resolve_opt_virtual_ctr); 1692 tty->print_cr(" _resolve_invoke_static_cnt: %u", SharedRuntime::_resolve_static_ctr); 1693 tty->print_cr(" _handle_wrong_method_cnt: %u", SharedRuntime::_wrong_method_ctr); 1694 tty->print_cr(" _ic_miss_cnt: %u", SharedRuntime::_ic_miss_ctr); 1695 tty->print_cr(" _generic_arraycopystub_cnt: %u", _generic_arraycopystub_cnt); 1696 tty->print_cr(" _byte_arraycopy_cnt: %u", _byte_arraycopy_stub_cnt); 1697 tty->print_cr(" _short_arraycopy_cnt: %u", _short_arraycopy_stub_cnt); 1698 tty->print_cr(" _int_arraycopy_cnt: %u", _int_arraycopy_stub_cnt); 1699 tty->print_cr(" _long_arraycopy_cnt: %u", _long_arraycopy_stub_cnt); 1700 tty->print_cr(" _oop_arraycopy_cnt: %u", _oop_arraycopy_stub_cnt); 1701 tty->print_cr(" _arraycopy_slowcase_cnt: %u", _arraycopy_slowcase_cnt); 1702 tty->print_cr(" _arraycopy_checkcast_cnt: %u", _arraycopy_checkcast_cnt); 1703 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%u", _arraycopy_checkcast_attempt_cnt); 1704 1705 tty->print_cr(" _new_type_array_slowcase_cnt: %u", _new_type_array_slowcase_cnt); 1706 tty->print_cr(" _new_object_array_slowcase_cnt: %u", _new_object_array_slowcase_cnt); 1707 tty->print_cr(" _new_null_free_array_slowcase_cnt: %u", _new_null_free_array_slowcase_cnt); 1708 tty->print_cr(" _new_instance_slowcase_cnt: %u", _new_instance_slowcase_cnt); 1709 tty->print_cr(" _new_multi_array_slowcase_cnt: %u", _new_multi_array_slowcase_cnt); 1710 tty->print_cr(" _load_flat_array_slowcase_cnt: %u", _load_flat_array_slowcase_cnt); 1711 tty->print_cr(" _store_flat_array_slowcase_cnt: %u", _store_flat_array_slowcase_cnt); 1712 tty->print_cr(" _substitutability_check_slowcase_cnt: %u", _substitutability_check_slowcase_cnt); 1713 tty->print_cr(" _buffer_inline_args_slowcase_cnt:%u", _buffer_inline_args_slowcase_cnt); 1714 tty->print_cr(" _buffer_inline_args_no_receiver_slowcase_cnt:%u", _buffer_inline_args_no_receiver_slowcase_cnt); 1715 1716 tty->print_cr(" _monitorenter_slowcase_cnt: %u", _monitorenter_slowcase_cnt); 1717 tty->print_cr(" _monitorexit_slowcase_cnt: %u", _monitorexit_slowcase_cnt); 1718 tty->print_cr(" _patch_code_slowcase_cnt: %u", _patch_code_slowcase_cnt); 1719 1720 tty->print_cr(" _throw_range_check_exception_count: %u:", _throw_range_check_exception_count); 1721 tty->print_cr(" _throw_index_exception_count: %u:", _throw_index_exception_count); 1722 tty->print_cr(" _throw_div0_exception_count: %u:", _throw_div0_exception_count); 1723 tty->print_cr(" _throw_null_pointer_exception_count: %u:", _throw_null_pointer_exception_count); 1724 tty->print_cr(" _throw_class_cast_exception_count: %u:", _throw_class_cast_exception_count); 1725 tty->print_cr(" _throw_incompatible_class_change_error_count: %u:", _throw_incompatible_class_change_error_count); 1726 tty->print_cr(" _throw_illegal_monitor_state_exception_count: %u:", _throw_illegal_monitor_state_exception_count); 1727 tty->print_cr(" _throw_identity_exception_count: %u:", _throw_identity_exception_count); 1728 tty->print_cr(" _throw_count: %u:", _throw_count); 1729 1730 SharedRuntime::print_ic_miss_histogram(); 1731 tty->cr(); 1732 } 1733 #endif // PRODUCT