1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciConstant.hpp" 26 #include "ci/ciField.hpp" 27 #include "ci/ciInlineKlass.hpp" 28 #include "ci/ciMethod.hpp" 29 #include "ci/ciMethodData.hpp" 30 #include "ci/ciObjArrayKlass.hpp" 31 #include "ci/ciStreams.hpp" 32 #include "ci/ciTypeArrayKlass.hpp" 33 #include "ci/ciTypeFlow.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "interpreter/bytecode.hpp" 36 #include "interpreter/bytecodes.hpp" 37 #include "memory/allocation.inline.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/oop.inline.hpp" 40 #include "opto/compile.hpp" 41 #include "runtime/deoptimization.hpp" 42 #include "utilities/growableArray.hpp" 43 44 // ciTypeFlow::JsrSet 45 // 46 // A JsrSet represents some set of JsrRecords. This class 47 // is used to record a set of all jsr routines which we permit 48 // execution to return (ret) from. 49 // 50 // During abstract interpretation, JsrSets are used to determine 51 // whether two paths which reach a given block are unique, and 52 // should be cloned apart, or are compatible, and should merge 53 // together. 54 55 // ------------------------------------------------------------------ 56 // ciTypeFlow::JsrSet::JsrSet 57 58 // Allocate growable array storage in Arena. 59 ciTypeFlow::JsrSet::JsrSet(Arena* arena, int default_len) : _set(arena, default_len, 0, nullptr) { 60 assert(arena != nullptr, "invariant"); 61 } 62 63 // Allocate growable array storage in current ResourceArea. 64 ciTypeFlow::JsrSet::JsrSet(int default_len) : _set(default_len, 0, nullptr) {} 65 66 // ------------------------------------------------------------------ 67 // ciTypeFlow::JsrSet::copy_into 68 void ciTypeFlow::JsrSet::copy_into(JsrSet* jsrs) { 69 int len = size(); 70 jsrs->_set.clear(); 71 for (int i = 0; i < len; i++) { 72 jsrs->_set.append(_set.at(i)); 73 } 74 } 75 76 // ------------------------------------------------------------------ 77 // ciTypeFlow::JsrSet::is_compatible_with 78 // 79 // !!!! MISGIVINGS ABOUT THIS... disregard 80 // 81 // Is this JsrSet compatible with some other JsrSet? 82 // 83 // In set-theoretic terms, a JsrSet can be viewed as a partial function 84 // from entry addresses to return addresses. Two JsrSets A and B are 85 // compatible iff 86 // 87 // For any x, 88 // A(x) defined and B(x) defined implies A(x) == B(x) 89 // 90 // Less formally, two JsrSets are compatible when they have identical 91 // return addresses for any entry addresses they share in common. 92 bool ciTypeFlow::JsrSet::is_compatible_with(JsrSet* other) { 93 // Walk through both sets in parallel. If the same entry address 94 // appears in both sets, then the return address must match for 95 // the sets to be compatible. 96 int size1 = size(); 97 int size2 = other->size(); 98 99 // Special case. If nothing is on the jsr stack, then there can 100 // be no ret. 101 if (size2 == 0) { 102 return true; 103 } else if (size1 != size2) { 104 return false; 105 } else { 106 for (int i = 0; i < size1; i++) { 107 JsrRecord* record1 = record_at(i); 108 JsrRecord* record2 = other->record_at(i); 109 if (record1->entry_address() != record2->entry_address() || 110 record1->return_address() != record2->return_address()) { 111 return false; 112 } 113 } 114 return true; 115 } 116 117 #if 0 118 int pos1 = 0; 119 int pos2 = 0; 120 int size1 = size(); 121 int size2 = other->size(); 122 while (pos1 < size1 && pos2 < size2) { 123 JsrRecord* record1 = record_at(pos1); 124 JsrRecord* record2 = other->record_at(pos2); 125 int entry1 = record1->entry_address(); 126 int entry2 = record2->entry_address(); 127 if (entry1 < entry2) { 128 pos1++; 129 } else if (entry1 > entry2) { 130 pos2++; 131 } else { 132 if (record1->return_address() == record2->return_address()) { 133 pos1++; 134 pos2++; 135 } else { 136 // These two JsrSets are incompatible. 137 return false; 138 } 139 } 140 } 141 // The two JsrSets agree. 142 return true; 143 #endif 144 } 145 146 // ------------------------------------------------------------------ 147 // ciTypeFlow::JsrSet::insert_jsr_record 148 // 149 // Insert the given JsrRecord into the JsrSet, maintaining the order 150 // of the set and replacing any element with the same entry address. 151 void ciTypeFlow::JsrSet::insert_jsr_record(JsrRecord* record) { 152 int len = size(); 153 int entry = record->entry_address(); 154 int pos = 0; 155 for ( ; pos < len; pos++) { 156 JsrRecord* current = record_at(pos); 157 if (entry == current->entry_address()) { 158 // Stomp over this entry. 159 _set.at_put(pos, record); 160 assert(size() == len, "must be same size"); 161 return; 162 } else if (entry < current->entry_address()) { 163 break; 164 } 165 } 166 167 // Insert the record into the list. 168 JsrRecord* swap = record; 169 JsrRecord* temp = nullptr; 170 for ( ; pos < len; pos++) { 171 temp = _set.at(pos); 172 _set.at_put(pos, swap); 173 swap = temp; 174 } 175 _set.append(swap); 176 assert(size() == len+1, "must be larger"); 177 } 178 179 // ------------------------------------------------------------------ 180 // ciTypeFlow::JsrSet::remove_jsr_record 181 // 182 // Remove the JsrRecord with the given return address from the JsrSet. 183 void ciTypeFlow::JsrSet::remove_jsr_record(int return_address) { 184 int len = size(); 185 for (int i = 0; i < len; i++) { 186 if (record_at(i)->return_address() == return_address) { 187 // We have found the proper entry. Remove it from the 188 // JsrSet and exit. 189 for (int j = i + 1; j < len ; j++) { 190 _set.at_put(j - 1, _set.at(j)); 191 } 192 _set.trunc_to(len - 1); 193 assert(size() == len-1, "must be smaller"); 194 return; 195 } 196 } 197 assert(false, "verify: returning from invalid subroutine"); 198 } 199 200 // ------------------------------------------------------------------ 201 // ciTypeFlow::JsrSet::apply_control 202 // 203 // Apply the effect of a control-flow bytecode on the JsrSet. The 204 // only bytecodes that modify the JsrSet are jsr and ret. 205 void ciTypeFlow::JsrSet::apply_control(ciTypeFlow* analyzer, 206 ciBytecodeStream* str, 207 ciTypeFlow::StateVector* state) { 208 Bytecodes::Code code = str->cur_bc(); 209 if (code == Bytecodes::_jsr) { 210 JsrRecord* record = 211 analyzer->make_jsr_record(str->get_dest(), str->next_bci()); 212 insert_jsr_record(record); 213 } else if (code == Bytecodes::_jsr_w) { 214 JsrRecord* record = 215 analyzer->make_jsr_record(str->get_far_dest(), str->next_bci()); 216 insert_jsr_record(record); 217 } else if (code == Bytecodes::_ret) { 218 Cell local = state->local(str->get_index()); 219 ciType* return_address = state->type_at(local); 220 assert(return_address->is_return_address(), "verify: wrong type"); 221 if (size() == 0) { 222 // Ret-state underflow: Hit a ret w/o any previous jsrs. Bail out. 223 // This can happen when a loop is inside a finally clause (4614060). 224 analyzer->record_failure("OSR in finally clause"); 225 return; 226 } 227 remove_jsr_record(return_address->as_return_address()->bci()); 228 } 229 } 230 231 #ifndef PRODUCT 232 // ------------------------------------------------------------------ 233 // ciTypeFlow::JsrSet::print_on 234 void ciTypeFlow::JsrSet::print_on(outputStream* st) const { 235 st->print("{ "); 236 int num_elements = size(); 237 if (num_elements > 0) { 238 int i = 0; 239 for( ; i < num_elements - 1; i++) { 240 _set.at(i)->print_on(st); 241 st->print(", "); 242 } 243 _set.at(i)->print_on(st); 244 st->print(" "); 245 } 246 st->print("}"); 247 } 248 #endif 249 250 // ciTypeFlow::StateVector 251 // 252 // A StateVector summarizes the type information at some point in 253 // the program. 254 255 // ------------------------------------------------------------------ 256 // ciTypeFlow::StateVector::type_meet 257 // 258 // Meet two types. 259 // 260 // The semi-lattice of types use by this analysis are modeled on those 261 // of the verifier. The lattice is as follows: 262 // 263 // top_type() >= all non-extremal types >= bottom_type 264 // and 265 // Every primitive type is comparable only with itself. The meet of 266 // reference types is determined by their kind: instance class, 267 // interface, or array class. The meet of two types of the same 268 // kind is their least common ancestor. The meet of two types of 269 // different kinds is always java.lang.Object. 270 ciType* ciTypeFlow::StateVector::type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer) { 271 assert(t1 != t2, "checked in caller"); 272 if (t1->equals(top_type())) { 273 return t2; 274 } else if (t2->equals(top_type())) { 275 return t1; 276 } 277 // Unwrap after saving nullness information and handling top meets 278 bool null_free1 = t1->is_null_free(); 279 bool null_free2 = t2->is_null_free(); 280 if (t1->unwrap() == t2->unwrap() && null_free1 == null_free2) { 281 return t1; 282 } 283 t1 = t1->unwrap(); 284 t2 = t2->unwrap(); 285 286 if (t1->is_primitive_type() || t2->is_primitive_type()) { 287 // Special case null_type. null_type meet any reference type T 288 // is T. null_type meet null_type is null_type. 289 if (t1->equals(null_type())) { 290 if (!t2->is_primitive_type() || t2->equals(null_type())) { 291 return t2; 292 } 293 } else if (t2->equals(null_type())) { 294 if (!t1->is_primitive_type()) { 295 return t1; 296 } 297 } 298 299 // At least one of the two types is a non-top primitive type. 300 // The other type is not equal to it. Fall to bottom. 301 return bottom_type(); 302 } 303 304 // Both types are non-top non-primitive types. That is, 305 // both types are either instanceKlasses or arrayKlasses. 306 ciKlass* object_klass = analyzer->env()->Object_klass(); 307 ciKlass* k1 = t1->as_klass(); 308 ciKlass* k2 = t2->as_klass(); 309 if (k1->equals(object_klass) || k2->equals(object_klass)) { 310 return object_klass; 311 } else if (!k1->is_loaded() || !k2->is_loaded()) { 312 // Unloaded classes fall to java.lang.Object at a merge. 313 return object_klass; 314 } else if (k1->is_interface() != k2->is_interface()) { 315 // When an interface meets a non-interface, we get Object; 316 // This is what the verifier does. 317 return object_klass; 318 } else if (k1->is_array_klass() || k2->is_array_klass()) { 319 // When an array meets a non-array, we get Object. 320 // When (obj/flat)Array meets typeArray, we also get Object. 321 // And when typeArray meets different typeArray, we again get Object. 322 // But when (obj/flat)Array meets (obj/flat)Array, we look carefully at element types. 323 if ((k1->is_obj_array_klass() || k1->is_flat_array_klass()) && 324 (k2->is_obj_array_klass() || k2->is_flat_array_klass())) { 325 ciType* elem1 = k1->as_array_klass()->element_klass(); 326 ciType* elem2 = k2->as_array_klass()->element_klass(); 327 ciType* elem = elem1; 328 if (elem1 != elem2) { 329 elem = type_meet_internal(elem1, elem2, analyzer)->as_klass(); 330 } 331 // Do an easy shortcut if one type is a super of the other. 332 if (elem == elem1 && !elem->is_inlinetype()) { 333 assert(k1 == ciArrayKlass::make(elem), "shortcut is OK"); 334 return k1; 335 } else if (elem == elem2 && !elem->is_inlinetype()) { 336 assert(k2 == ciArrayKlass::make(elem), "shortcut is OK"); 337 return k2; 338 } else { 339 return ciArrayKlass::make(elem); 340 } 341 } else { 342 return object_klass; 343 } 344 } else { 345 // Must be two plain old instance klasses. 346 assert(k1->is_instance_klass(), "previous cases handle non-instances"); 347 assert(k2->is_instance_klass(), "previous cases handle non-instances"); 348 ciType* result = k1->least_common_ancestor(k2); 349 if (null_free1 && null_free2 && result->is_inlinetype()) { 350 result = analyzer->mark_as_null_free(result); 351 } 352 return result; 353 } 354 } 355 356 357 // ------------------------------------------------------------------ 358 // ciTypeFlow::StateVector::StateVector 359 // 360 // Build a new state vector 361 ciTypeFlow::StateVector::StateVector(ciTypeFlow* analyzer) { 362 _outer = analyzer; 363 _stack_size = -1; 364 _monitor_count = -1; 365 // Allocate the _types array 366 int max_cells = analyzer->max_cells(); 367 _types = (ciType**)analyzer->arena()->Amalloc(sizeof(ciType*) * max_cells); 368 for (int i=0; i<max_cells; i++) { 369 _types[i] = top_type(); 370 } 371 _trap_bci = -1; 372 _trap_index = 0; 373 _def_locals.clear(); 374 } 375 376 377 // ------------------------------------------------------------------ 378 // ciTypeFlow::get_start_state 379 // 380 // Set this vector to the method entry state. 381 const ciTypeFlow::StateVector* ciTypeFlow::get_start_state() { 382 StateVector* state = new StateVector(this); 383 if (is_osr_flow()) { 384 ciTypeFlow* non_osr_flow = method()->get_flow_analysis(); 385 if (non_osr_flow->failing()) { 386 record_failure(non_osr_flow->failure_reason()); 387 return nullptr; 388 } 389 JsrSet* jsrs = new JsrSet(4); 390 Block* non_osr_block = non_osr_flow->existing_block_at(start_bci(), jsrs); 391 if (non_osr_block == nullptr) { 392 record_failure("cannot reach OSR point"); 393 return nullptr; 394 } 395 // load up the non-OSR state at this point 396 non_osr_block->copy_state_into(state); 397 int non_osr_start = non_osr_block->start(); 398 if (non_osr_start != start_bci()) { 399 // must flow forward from it 400 if (CITraceTypeFlow) { 401 tty->print_cr(">> Interpreting pre-OSR block %d:", non_osr_start); 402 } 403 Block* block = block_at(non_osr_start, jsrs); 404 assert(block->limit() == start_bci(), "must flow forward to start"); 405 flow_block(block, state, jsrs); 406 } 407 return state; 408 // Note: The code below would be an incorrect for an OSR flow, 409 // even if it were possible for an OSR entry point to be at bci zero. 410 } 411 // "Push" the method signature into the first few locals. 412 state->set_stack_size(-max_locals()); 413 if (!method()->is_static()) { 414 ciType* holder = method()->holder(); 415 if (holder->is_inlinetype()) { 416 // The receiver is null-free 417 holder = mark_as_null_free(holder); 418 } 419 state->push(holder); 420 assert(state->tos() == state->local(0), ""); 421 } 422 for (ciSignatureStream str(method()->signature()); 423 !str.at_return_type(); 424 str.next()) { 425 state->push_translate(str.type()); 426 } 427 // Set the rest of the locals to bottom. 428 assert(state->stack_size() <= 0, "stack size should not be strictly positive"); 429 while (state->stack_size() < 0) { 430 state->push(state->bottom_type()); 431 } 432 // Lock an object, if necessary. 433 state->set_monitor_count(method()->is_synchronized() ? 1 : 0); 434 return state; 435 } 436 437 // ------------------------------------------------------------------ 438 // ciTypeFlow::StateVector::copy_into 439 // 440 // Copy our value into some other StateVector 441 void ciTypeFlow::StateVector::copy_into(ciTypeFlow::StateVector* copy) 442 const { 443 copy->set_stack_size(stack_size()); 444 copy->set_monitor_count(monitor_count()); 445 Cell limit = limit_cell(); 446 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 447 copy->set_type_at(c, type_at(c)); 448 } 449 } 450 451 // ------------------------------------------------------------------ 452 // ciTypeFlow::StateVector::meet 453 // 454 // Meets this StateVector with another, destructively modifying this 455 // one. Returns true if any modification takes place. 456 bool ciTypeFlow::StateVector::meet(const ciTypeFlow::StateVector* incoming) { 457 if (monitor_count() == -1) { 458 set_monitor_count(incoming->monitor_count()); 459 } 460 assert(monitor_count() == incoming->monitor_count(), "monitors must match"); 461 462 if (stack_size() == -1) { 463 set_stack_size(incoming->stack_size()); 464 Cell limit = limit_cell(); 465 #ifdef ASSERT 466 { for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 467 assert(type_at(c) == top_type(), ""); 468 } } 469 #endif 470 // Make a simple copy of the incoming state. 471 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 472 set_type_at(c, incoming->type_at(c)); 473 } 474 return true; // it is always different the first time 475 } 476 #ifdef ASSERT 477 if (stack_size() != incoming->stack_size()) { 478 _outer->method()->print_codes(); 479 tty->print_cr("!!!! Stack size conflict"); 480 tty->print_cr("Current state:"); 481 print_on(tty); 482 tty->print_cr("Incoming state:"); 483 ((StateVector*)incoming)->print_on(tty); 484 } 485 #endif 486 assert(stack_size() == incoming->stack_size(), "sanity"); 487 488 bool different = false; 489 Cell limit = limit_cell(); 490 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 491 ciType* t1 = type_at(c); 492 ciType* t2 = incoming->type_at(c); 493 if (!t1->equals(t2)) { 494 ciType* new_type = type_meet(t1, t2); 495 if (!t1->equals(new_type)) { 496 set_type_at(c, new_type); 497 different = true; 498 } 499 } 500 } 501 return different; 502 } 503 504 // ------------------------------------------------------------------ 505 // ciTypeFlow::StateVector::meet_exception 506 // 507 // Meets this StateVector with another, destructively modifying this 508 // one. The incoming state is coming via an exception. Returns true 509 // if any modification takes place. 510 bool ciTypeFlow::StateVector::meet_exception(ciInstanceKlass* exc, 511 const ciTypeFlow::StateVector* incoming) { 512 if (monitor_count() == -1) { 513 set_monitor_count(incoming->monitor_count()); 514 } 515 assert(monitor_count() == incoming->monitor_count(), "monitors must match"); 516 517 if (stack_size() == -1) { 518 set_stack_size(1); 519 } 520 521 assert(stack_size() == 1, "must have one-element stack"); 522 523 bool different = false; 524 525 // Meet locals from incoming array. 526 Cell limit = local_limit_cell(); 527 for (Cell c = start_cell(); c < limit; c = next_cell(c)) { 528 ciType* t1 = type_at(c); 529 ciType* t2 = incoming->type_at(c); 530 if (!t1->equals(t2)) { 531 ciType* new_type = type_meet(t1, t2); 532 if (!t1->equals(new_type)) { 533 set_type_at(c, new_type); 534 different = true; 535 } 536 } 537 } 538 539 // Handle stack separately. When an exception occurs, the 540 // only stack entry is the exception instance. 541 ciType* tos_type = type_at_tos(); 542 if (!tos_type->equals(exc)) { 543 ciType* new_type = type_meet(tos_type, exc); 544 if (!tos_type->equals(new_type)) { 545 set_type_at_tos(new_type); 546 different = true; 547 } 548 } 549 550 return different; 551 } 552 553 // ------------------------------------------------------------------ 554 // ciTypeFlow::StateVector::push_translate 555 void ciTypeFlow::StateVector::push_translate(ciType* type) { 556 BasicType basic_type = type->basic_type(); 557 if (basic_type == T_BOOLEAN || basic_type == T_CHAR || 558 basic_type == T_BYTE || basic_type == T_SHORT) { 559 push_int(); 560 } else { 561 push(type); 562 if (type->is_two_word()) { 563 push(half_type(type)); 564 } 565 } 566 } 567 568 // ------------------------------------------------------------------ 569 // ciTypeFlow::StateVector::do_aload 570 void ciTypeFlow::StateVector::do_aload(ciBytecodeStream* str) { 571 pop_int(); 572 ciArrayKlass* array_klass = pop_objOrFlatArray(); 573 if (array_klass == nullptr) { 574 // Did aload on a null reference; push a null and ignore the exception. 575 // This instruction will never continue normally. All we have to do 576 // is report a value that will meet correctly with any downstream 577 // reference types on paths that will truly be executed. This null type 578 // meets with any reference type to yield that same reference type. 579 // (The compiler will generate an unconditional exception here.) 580 push(null_type()); 581 return; 582 } 583 if (!array_klass->is_loaded()) { 584 // Only fails for some -Xcomp runs 585 trap(str, array_klass, 586 Deoptimization::make_trap_request 587 (Deoptimization::Reason_unloaded, 588 Deoptimization::Action_reinterpret)); 589 return; 590 } 591 ciKlass* element_klass = array_klass->element_klass(); 592 if (!element_klass->is_loaded() && element_klass->is_instance_klass()) { 593 Untested("unloaded array element class in ciTypeFlow"); 594 trap(str, element_klass, 595 Deoptimization::make_trap_request 596 (Deoptimization::Reason_unloaded, 597 Deoptimization::Action_reinterpret)); 598 } else { 599 push_object(element_klass); 600 } 601 } 602 603 604 // ------------------------------------------------------------------ 605 // ciTypeFlow::StateVector::do_checkcast 606 void ciTypeFlow::StateVector::do_checkcast(ciBytecodeStream* str) { 607 bool will_link; 608 ciKlass* klass = str->get_klass(will_link); 609 if (!will_link) { 610 // VM's interpreter will not load 'klass' if object is nullptr. 611 // Type flow after this block may still be needed in two situations: 612 // 1) C2 uses do_null_assert() and continues compilation for later blocks 613 // 2) C2 does an OSR compile in a later block (see bug 4778368). 614 pop_object(); 615 do_null_assert(klass); 616 } else { 617 ciType* type = pop_value(); 618 type = type->unwrap(); 619 if (type->is_loaded() && klass->is_loaded() && 620 type != klass && type->is_subtype_of(klass)) { 621 // Useless cast, propagate more precise type of object 622 klass = type->as_klass(); 623 } 624 push_object(klass); 625 } 626 } 627 628 // ------------------------------------------------------------------ 629 // ciTypeFlow::StateVector::do_getfield 630 void ciTypeFlow::StateVector::do_getfield(ciBytecodeStream* str) { 631 // could add assert here for type of object. 632 pop_object(); 633 do_getstatic(str); 634 } 635 636 // ------------------------------------------------------------------ 637 // ciTypeFlow::StateVector::do_getstatic 638 void ciTypeFlow::StateVector::do_getstatic(ciBytecodeStream* str) { 639 bool will_link; 640 ciField* field = str->get_field(will_link); 641 if (!will_link) { 642 trap(str, field->holder(), str->get_field_holder_index()); 643 } else { 644 ciType* field_type = field->type(); 645 if (field->is_static() && field->is_null_free() && 646 !field_type->as_instance_klass()->is_initialized()) { 647 // Deoptimize if we load from a static field with an uninitialized inline type 648 // because we need to throw an exception if initialization of the type failed. 649 trap(str, field_type->as_klass(), 650 Deoptimization::make_trap_request 651 (Deoptimization::Reason_unloaded, 652 Deoptimization::Action_reinterpret)); 653 return; 654 } else if (!field_type->is_loaded()) { 655 // Normally, we need the field's type to be loaded if we are to 656 // do anything interesting with its value. 657 // We used to do this: trap(str, str->get_field_signature_index()); 658 // 659 // There is one good reason not to trap here. Execution can 660 // get past this "getfield" or "getstatic" if the value of 661 // the field is null. As long as the value is null, the class 662 // does not need to be loaded! The compiler must assume that 663 // the value of the unloaded class reference is null; if the code 664 // ever sees a non-null value, loading has occurred. 665 // 666 // This actually happens often enough to be annoying. If the 667 // compiler throws an uncommon trap at this bytecode, you can 668 // get an endless loop of recompilations, when all the code 669 // needs to do is load a series of null values. Also, a trap 670 // here can make an OSR entry point unreachable, triggering the 671 // assert on non_osr_block in ciTypeFlow::get_start_state. 672 // (See bug 4379915.) 673 do_null_assert(field_type->as_klass()); 674 } else { 675 if (field->is_null_free()) { 676 field_type = outer()->mark_as_null_free(field_type); 677 } 678 push_translate(field_type); 679 } 680 } 681 } 682 683 // ------------------------------------------------------------------ 684 // ciTypeFlow::StateVector::do_invoke 685 void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str, 686 bool has_receiver) { 687 bool will_link; 688 ciSignature* declared_signature = nullptr; 689 ciMethod* callee = str->get_method(will_link, &declared_signature); 690 assert(declared_signature != nullptr, "cannot be null"); 691 if (!will_link) { 692 // We weren't able to find the method. 693 if (str->cur_bc() == Bytecodes::_invokedynamic) { 694 trap(str, nullptr, 695 Deoptimization::make_trap_request 696 (Deoptimization::Reason_uninitialized, 697 Deoptimization::Action_reinterpret)); 698 } else { 699 ciKlass* unloaded_holder = callee->holder(); 700 trap(str, unloaded_holder, str->get_method_holder_index()); 701 } 702 } else { 703 // We are using the declared signature here because it might be 704 // different from the callee signature (Cf. invokedynamic and 705 // invokehandle). 706 ciSignatureStream sigstr(declared_signature); 707 const int arg_size = declared_signature->size(); 708 const int stack_base = stack_size() - arg_size; 709 int i = 0; 710 for( ; !sigstr.at_return_type(); sigstr.next()) { 711 ciType* type = sigstr.type(); 712 ciType* stack_type = type_at(stack(stack_base + i++)); 713 // Do I want to check this type? 714 // assert(stack_type->is_subtype_of(type), "bad type for field value"); 715 if (type->is_two_word()) { 716 ciType* stack_type2 = type_at(stack(stack_base + i++)); 717 assert(stack_type2->equals(half_type(type)), "must be 2nd half"); 718 } 719 } 720 assert(arg_size == i, "must match"); 721 for (int j = 0; j < arg_size; j++) { 722 pop(); 723 } 724 if (has_receiver) { 725 // Check this? 726 pop_object(); 727 } 728 assert(!sigstr.is_done(), "must have return type"); 729 ciType* return_type = sigstr.type(); 730 if (!return_type->is_void()) { 731 if (!return_type->is_loaded()) { 732 // As in do_getstatic(), generally speaking, we need the return type to 733 // be loaded if we are to do anything interesting with its value. 734 // We used to do this: trap(str, str->get_method_signature_index()); 735 // 736 // We do not trap here since execution can get past this invoke if 737 // the return value is null. As long as the value is null, the class 738 // does not need to be loaded! The compiler must assume that 739 // the value of the unloaded class reference is null; if the code 740 // ever sees a non-null value, loading has occurred. 741 // 742 // See do_getstatic() for similar explanation, as well as bug 4684993. 743 if (InlineTypeReturnedAsFields) { 744 // Return might be in scalarized form but we can't handle it because we 745 // don't know the type. This can happen due to a missing preload attribute. 746 // TODO 8284443 Use PhaseMacroExpand::expand_mh_intrinsic_return for this 747 trap(str, nullptr, 748 Deoptimization::make_trap_request 749 (Deoptimization::Reason_uninitialized, 750 Deoptimization::Action_reinterpret)); 751 } else { 752 do_null_assert(return_type->as_klass()); 753 } 754 } else { 755 push_translate(return_type); 756 } 757 } 758 } 759 } 760 761 // ------------------------------------------------------------------ 762 // ciTypeFlow::StateVector::do_jsr 763 void ciTypeFlow::StateVector::do_jsr(ciBytecodeStream* str) { 764 push(ciReturnAddress::make(str->next_bci())); 765 } 766 767 // ------------------------------------------------------------------ 768 // ciTypeFlow::StateVector::do_ldc 769 void ciTypeFlow::StateVector::do_ldc(ciBytecodeStream* str) { 770 if (str->is_in_error()) { 771 trap(str, nullptr, Deoptimization::make_trap_request(Deoptimization::Reason_unhandled, 772 Deoptimization::Action_none)); 773 return; 774 } 775 ciConstant con = str->get_constant(); 776 if (con.is_valid()) { 777 int cp_index = str->get_constant_pool_index(); 778 if (!con.is_loaded()) { 779 trap(str, nullptr, Deoptimization::make_trap_request(Deoptimization::Reason_unloaded, 780 Deoptimization::Action_reinterpret, 781 cp_index)); 782 return; 783 } 784 BasicType basic_type = str->get_basic_type_for_constant_at(cp_index); 785 if (is_reference_type(basic_type)) { 786 ciObject* obj = con.as_object(); 787 if (obj->is_null_object()) { 788 push_null(); 789 } else { 790 assert(obj->is_instance() || obj->is_array(), "must be java_mirror of klass"); 791 ciType* type = obj->klass(); 792 if (type->is_inlinetype()) { 793 type = outer()->mark_as_null_free(type); 794 } 795 push(type); 796 } 797 } else { 798 assert(basic_type == con.basic_type() || con.basic_type() == T_OBJECT, 799 "not a boxed form: %s vs %s", type2name(basic_type), type2name(con.basic_type())); 800 push_translate(ciType::make(basic_type)); 801 } 802 } else { 803 // OutOfMemoryError in the CI while loading a String constant. 804 push_null(); 805 outer()->record_failure("ldc did not link"); 806 } 807 } 808 809 // ------------------------------------------------------------------ 810 // ciTypeFlow::StateVector::do_multianewarray 811 void ciTypeFlow::StateVector::do_multianewarray(ciBytecodeStream* str) { 812 int dimensions = str->get_dimensions(); 813 bool will_link; 814 ciArrayKlass* array_klass = str->get_klass(will_link)->as_array_klass(); 815 if (!will_link) { 816 trap(str, array_klass, str->get_klass_index()); 817 } else { 818 for (int i = 0; i < dimensions; i++) { 819 pop_int(); 820 } 821 push_object(array_klass); 822 } 823 } 824 825 // ------------------------------------------------------------------ 826 // ciTypeFlow::StateVector::do_new 827 void ciTypeFlow::StateVector::do_new(ciBytecodeStream* str) { 828 bool will_link; 829 ciKlass* klass = str->get_klass(will_link); 830 if (!will_link || str->is_unresolved_klass()) { 831 trap(str, klass, str->get_klass_index()); 832 } else { 833 push_object(klass); 834 } 835 } 836 837 // ------------------------------------------------------------------ 838 // ciTypeFlow::StateVector::do_newarray 839 void ciTypeFlow::StateVector::do_newarray(ciBytecodeStream* str) { 840 pop_int(); 841 ciKlass* klass = ciTypeArrayKlass::make((BasicType)str->get_index()); 842 push_object(klass); 843 } 844 845 // ------------------------------------------------------------------ 846 // ciTypeFlow::StateVector::do_putfield 847 void ciTypeFlow::StateVector::do_putfield(ciBytecodeStream* str) { 848 do_putstatic(str); 849 if (_trap_bci != -1) return; // unloaded field holder, etc. 850 // could add assert here for type of object. 851 pop_object(); 852 } 853 854 // ------------------------------------------------------------------ 855 // ciTypeFlow::StateVector::do_putstatic 856 void ciTypeFlow::StateVector::do_putstatic(ciBytecodeStream* str) { 857 bool will_link; 858 ciField* field = str->get_field(will_link); 859 if (!will_link) { 860 trap(str, field->holder(), str->get_field_holder_index()); 861 } else { 862 ciType* field_type = field->type(); 863 ciType* type = pop_value(); 864 // Do I want to check this type? 865 // assert(type->is_subtype_of(field_type), "bad type for field value"); 866 if (field_type->is_two_word()) { 867 ciType* type2 = pop_value(); 868 assert(type2->is_two_word(), "must be 2nd half"); 869 assert(type == half_type(type2), "must be 2nd half"); 870 } 871 } 872 } 873 874 // ------------------------------------------------------------------ 875 // ciTypeFlow::StateVector::do_ret 876 void ciTypeFlow::StateVector::do_ret(ciBytecodeStream* str) { 877 Cell index = local(str->get_index()); 878 879 ciType* address = type_at(index); 880 assert(address->is_return_address(), "bad return address"); 881 set_type_at(index, bottom_type()); 882 } 883 884 // ------------------------------------------------------------------ 885 // ciTypeFlow::StateVector::trap 886 // 887 // Stop interpretation of this path with a trap. 888 void ciTypeFlow::StateVector::trap(ciBytecodeStream* str, ciKlass* klass, int index) { 889 _trap_bci = str->cur_bci(); 890 _trap_index = index; 891 892 // Log information about this trap: 893 CompileLog* log = outer()->env()->log(); 894 if (log != nullptr) { 895 int mid = log->identify(outer()->method()); 896 int kid = (klass == nullptr)? -1: log->identify(klass); 897 log->begin_elem("uncommon_trap method='%d' bci='%d'", mid, str->cur_bci()); 898 char buf[100]; 899 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 900 index)); 901 if (kid >= 0) 902 log->print(" klass='%d'", kid); 903 log->end_elem(); 904 } 905 } 906 907 // ------------------------------------------------------------------ 908 // ciTypeFlow::StateVector::do_null_assert 909 // Corresponds to graphKit::do_null_assert. 910 void ciTypeFlow::StateVector::do_null_assert(ciKlass* unloaded_klass) { 911 if (unloaded_klass->is_loaded()) { 912 // We failed to link, but we can still compute with this class, 913 // since it is loaded somewhere. The compiler will uncommon_trap 914 // if the object is not null, but the typeflow pass can not assume 915 // that the object will be null, otherwise it may incorrectly tell 916 // the parser that an object is known to be null. 4761344, 4807707 917 push_object(unloaded_klass); 918 } else { 919 // The class is not loaded anywhere. It is safe to model the 920 // null in the typestates, because we can compile in a null check 921 // which will deoptimize us if someone manages to load the 922 // class later. 923 push_null(); 924 } 925 } 926 927 928 // ------------------------------------------------------------------ 929 // ciTypeFlow::StateVector::apply_one_bytecode 930 // 931 // Apply the effect of one bytecode to this StateVector 932 bool ciTypeFlow::StateVector::apply_one_bytecode(ciBytecodeStream* str) { 933 _trap_bci = -1; 934 _trap_index = 0; 935 936 if (CITraceTypeFlow) { 937 tty->print_cr(">> Interpreting bytecode %d:%s", str->cur_bci(), 938 Bytecodes::name(str->cur_bc())); 939 } 940 941 switch(str->cur_bc()) { 942 case Bytecodes::_aaload: do_aload(str); break; 943 944 case Bytecodes::_aastore: 945 { 946 pop_object(); 947 pop_int(); 948 pop_objOrFlatArray(); 949 break; 950 } 951 case Bytecodes::_aconst_null: 952 { 953 push_null(); 954 break; 955 } 956 case Bytecodes::_aload: load_local_object(str->get_index()); break; 957 case Bytecodes::_aload_0: load_local_object(0); break; 958 case Bytecodes::_aload_1: load_local_object(1); break; 959 case Bytecodes::_aload_2: load_local_object(2); break; 960 case Bytecodes::_aload_3: load_local_object(3); break; 961 962 case Bytecodes::_anewarray: 963 { 964 pop_int(); 965 bool will_link; 966 ciKlass* element_klass = str->get_klass(will_link); 967 if (!will_link) { 968 trap(str, element_klass, str->get_klass_index()); 969 } else { 970 push_object(ciArrayKlass::make(element_klass)); 971 } 972 break; 973 } 974 case Bytecodes::_areturn: 975 case Bytecodes::_ifnonnull: 976 case Bytecodes::_ifnull: 977 { 978 pop_object(); 979 break; 980 } 981 case Bytecodes::_monitorenter: 982 { 983 pop_object(); 984 set_monitor_count(monitor_count() + 1); 985 break; 986 } 987 case Bytecodes::_monitorexit: 988 { 989 pop_object(); 990 assert(monitor_count() > 0, "must be a monitor to exit from"); 991 set_monitor_count(monitor_count() - 1); 992 break; 993 } 994 case Bytecodes::_arraylength: 995 { 996 pop_array(); 997 push_int(); 998 break; 999 } 1000 case Bytecodes::_astore: store_local_object(str->get_index()); break; 1001 case Bytecodes::_astore_0: store_local_object(0); break; 1002 case Bytecodes::_astore_1: store_local_object(1); break; 1003 case Bytecodes::_astore_2: store_local_object(2); break; 1004 case Bytecodes::_astore_3: store_local_object(3); break; 1005 1006 case Bytecodes::_athrow: 1007 { 1008 NEEDS_CLEANUP; 1009 pop_object(); 1010 break; 1011 } 1012 case Bytecodes::_baload: 1013 case Bytecodes::_caload: 1014 case Bytecodes::_iaload: 1015 case Bytecodes::_saload: 1016 { 1017 pop_int(); 1018 ciTypeArrayKlass* array_klass = pop_typeArray(); 1019 // Put assert here for right type? 1020 push_int(); 1021 break; 1022 } 1023 case Bytecodes::_bastore: 1024 case Bytecodes::_castore: 1025 case Bytecodes::_iastore: 1026 case Bytecodes::_sastore: 1027 { 1028 pop_int(); 1029 pop_int(); 1030 pop_typeArray(); 1031 // assert here? 1032 break; 1033 } 1034 case Bytecodes::_bipush: 1035 case Bytecodes::_iconst_m1: 1036 case Bytecodes::_iconst_0: 1037 case Bytecodes::_iconst_1: 1038 case Bytecodes::_iconst_2: 1039 case Bytecodes::_iconst_3: 1040 case Bytecodes::_iconst_4: 1041 case Bytecodes::_iconst_5: 1042 case Bytecodes::_sipush: 1043 { 1044 push_int(); 1045 break; 1046 } 1047 case Bytecodes::_checkcast: do_checkcast(str); break; 1048 1049 case Bytecodes::_d2f: 1050 { 1051 pop_double(); 1052 push_float(); 1053 break; 1054 } 1055 case Bytecodes::_d2i: 1056 { 1057 pop_double(); 1058 push_int(); 1059 break; 1060 } 1061 case Bytecodes::_d2l: 1062 { 1063 pop_double(); 1064 push_long(); 1065 break; 1066 } 1067 case Bytecodes::_dadd: 1068 case Bytecodes::_ddiv: 1069 case Bytecodes::_dmul: 1070 case Bytecodes::_drem: 1071 case Bytecodes::_dsub: 1072 { 1073 pop_double(); 1074 pop_double(); 1075 push_double(); 1076 break; 1077 } 1078 case Bytecodes::_daload: 1079 { 1080 pop_int(); 1081 ciTypeArrayKlass* array_klass = pop_typeArray(); 1082 // Put assert here for right type? 1083 push_double(); 1084 break; 1085 } 1086 case Bytecodes::_dastore: 1087 { 1088 pop_double(); 1089 pop_int(); 1090 pop_typeArray(); 1091 // assert here? 1092 break; 1093 } 1094 case Bytecodes::_dcmpg: 1095 case Bytecodes::_dcmpl: 1096 { 1097 pop_double(); 1098 pop_double(); 1099 push_int(); 1100 break; 1101 } 1102 case Bytecodes::_dconst_0: 1103 case Bytecodes::_dconst_1: 1104 { 1105 push_double(); 1106 break; 1107 } 1108 case Bytecodes::_dload: load_local_double(str->get_index()); break; 1109 case Bytecodes::_dload_0: load_local_double(0); break; 1110 case Bytecodes::_dload_1: load_local_double(1); break; 1111 case Bytecodes::_dload_2: load_local_double(2); break; 1112 case Bytecodes::_dload_3: load_local_double(3); break; 1113 1114 case Bytecodes::_dneg: 1115 { 1116 pop_double(); 1117 push_double(); 1118 break; 1119 } 1120 case Bytecodes::_dreturn: 1121 { 1122 pop_double(); 1123 break; 1124 } 1125 case Bytecodes::_dstore: store_local_double(str->get_index()); break; 1126 case Bytecodes::_dstore_0: store_local_double(0); break; 1127 case Bytecodes::_dstore_1: store_local_double(1); break; 1128 case Bytecodes::_dstore_2: store_local_double(2); break; 1129 case Bytecodes::_dstore_3: store_local_double(3); break; 1130 1131 case Bytecodes::_dup: 1132 { 1133 push(type_at_tos()); 1134 break; 1135 } 1136 case Bytecodes::_dup_x1: 1137 { 1138 ciType* value1 = pop_value(); 1139 ciType* value2 = pop_value(); 1140 push(value1); 1141 push(value2); 1142 push(value1); 1143 break; 1144 } 1145 case Bytecodes::_dup_x2: 1146 { 1147 ciType* value1 = pop_value(); 1148 ciType* value2 = pop_value(); 1149 ciType* value3 = pop_value(); 1150 push(value1); 1151 push(value3); 1152 push(value2); 1153 push(value1); 1154 break; 1155 } 1156 case Bytecodes::_dup2: 1157 { 1158 ciType* value1 = pop_value(); 1159 ciType* value2 = pop_value(); 1160 push(value2); 1161 push(value1); 1162 push(value2); 1163 push(value1); 1164 break; 1165 } 1166 case Bytecodes::_dup2_x1: 1167 { 1168 ciType* value1 = pop_value(); 1169 ciType* value2 = pop_value(); 1170 ciType* value3 = pop_value(); 1171 push(value2); 1172 push(value1); 1173 push(value3); 1174 push(value2); 1175 push(value1); 1176 break; 1177 } 1178 case Bytecodes::_dup2_x2: 1179 { 1180 ciType* value1 = pop_value(); 1181 ciType* value2 = pop_value(); 1182 ciType* value3 = pop_value(); 1183 ciType* value4 = pop_value(); 1184 push(value2); 1185 push(value1); 1186 push(value4); 1187 push(value3); 1188 push(value2); 1189 push(value1); 1190 break; 1191 } 1192 case Bytecodes::_f2d: 1193 { 1194 pop_float(); 1195 push_double(); 1196 break; 1197 } 1198 case Bytecodes::_f2i: 1199 { 1200 pop_float(); 1201 push_int(); 1202 break; 1203 } 1204 case Bytecodes::_f2l: 1205 { 1206 pop_float(); 1207 push_long(); 1208 break; 1209 } 1210 case Bytecodes::_fadd: 1211 case Bytecodes::_fdiv: 1212 case Bytecodes::_fmul: 1213 case Bytecodes::_frem: 1214 case Bytecodes::_fsub: 1215 { 1216 pop_float(); 1217 pop_float(); 1218 push_float(); 1219 break; 1220 } 1221 case Bytecodes::_faload: 1222 { 1223 pop_int(); 1224 ciTypeArrayKlass* array_klass = pop_typeArray(); 1225 // Put assert here. 1226 push_float(); 1227 break; 1228 } 1229 case Bytecodes::_fastore: 1230 { 1231 pop_float(); 1232 pop_int(); 1233 ciTypeArrayKlass* array_klass = pop_typeArray(); 1234 // Put assert here. 1235 break; 1236 } 1237 case Bytecodes::_fcmpg: 1238 case Bytecodes::_fcmpl: 1239 { 1240 pop_float(); 1241 pop_float(); 1242 push_int(); 1243 break; 1244 } 1245 case Bytecodes::_fconst_0: 1246 case Bytecodes::_fconst_1: 1247 case Bytecodes::_fconst_2: 1248 { 1249 push_float(); 1250 break; 1251 } 1252 case Bytecodes::_fload: load_local_float(str->get_index()); break; 1253 case Bytecodes::_fload_0: load_local_float(0); break; 1254 case Bytecodes::_fload_1: load_local_float(1); break; 1255 case Bytecodes::_fload_2: load_local_float(2); break; 1256 case Bytecodes::_fload_3: load_local_float(3); break; 1257 1258 case Bytecodes::_fneg: 1259 { 1260 pop_float(); 1261 push_float(); 1262 break; 1263 } 1264 case Bytecodes::_freturn: 1265 { 1266 pop_float(); 1267 break; 1268 } 1269 case Bytecodes::_fstore: store_local_float(str->get_index()); break; 1270 case Bytecodes::_fstore_0: store_local_float(0); break; 1271 case Bytecodes::_fstore_1: store_local_float(1); break; 1272 case Bytecodes::_fstore_2: store_local_float(2); break; 1273 case Bytecodes::_fstore_3: store_local_float(3); break; 1274 1275 case Bytecodes::_getfield: do_getfield(str); break; 1276 case Bytecodes::_getstatic: do_getstatic(str); break; 1277 1278 case Bytecodes::_goto: 1279 case Bytecodes::_goto_w: 1280 case Bytecodes::_nop: 1281 case Bytecodes::_return: 1282 { 1283 // do nothing. 1284 break; 1285 } 1286 case Bytecodes::_i2b: 1287 case Bytecodes::_i2c: 1288 case Bytecodes::_i2s: 1289 case Bytecodes::_ineg: 1290 { 1291 pop_int(); 1292 push_int(); 1293 break; 1294 } 1295 case Bytecodes::_i2d: 1296 { 1297 pop_int(); 1298 push_double(); 1299 break; 1300 } 1301 case Bytecodes::_i2f: 1302 { 1303 pop_int(); 1304 push_float(); 1305 break; 1306 } 1307 case Bytecodes::_i2l: 1308 { 1309 pop_int(); 1310 push_long(); 1311 break; 1312 } 1313 case Bytecodes::_iadd: 1314 case Bytecodes::_iand: 1315 case Bytecodes::_idiv: 1316 case Bytecodes::_imul: 1317 case Bytecodes::_ior: 1318 case Bytecodes::_irem: 1319 case Bytecodes::_ishl: 1320 case Bytecodes::_ishr: 1321 case Bytecodes::_isub: 1322 case Bytecodes::_iushr: 1323 case Bytecodes::_ixor: 1324 { 1325 pop_int(); 1326 pop_int(); 1327 push_int(); 1328 break; 1329 } 1330 case Bytecodes::_if_acmpeq: 1331 case Bytecodes::_if_acmpne: 1332 { 1333 pop_object(); 1334 pop_object(); 1335 break; 1336 } 1337 case Bytecodes::_if_icmpeq: 1338 case Bytecodes::_if_icmpge: 1339 case Bytecodes::_if_icmpgt: 1340 case Bytecodes::_if_icmple: 1341 case Bytecodes::_if_icmplt: 1342 case Bytecodes::_if_icmpne: 1343 { 1344 pop_int(); 1345 pop_int(); 1346 break; 1347 } 1348 case Bytecodes::_ifeq: 1349 case Bytecodes::_ifle: 1350 case Bytecodes::_iflt: 1351 case Bytecodes::_ifge: 1352 case Bytecodes::_ifgt: 1353 case Bytecodes::_ifne: 1354 case Bytecodes::_ireturn: 1355 case Bytecodes::_lookupswitch: 1356 case Bytecodes::_tableswitch: 1357 { 1358 pop_int(); 1359 break; 1360 } 1361 case Bytecodes::_iinc: 1362 { 1363 int lnum = str->get_index(); 1364 check_int(local(lnum)); 1365 store_to_local(lnum); 1366 break; 1367 } 1368 case Bytecodes::_iload: load_local_int(str->get_index()); break; 1369 case Bytecodes::_iload_0: load_local_int(0); break; 1370 case Bytecodes::_iload_1: load_local_int(1); break; 1371 case Bytecodes::_iload_2: load_local_int(2); break; 1372 case Bytecodes::_iload_3: load_local_int(3); break; 1373 1374 case Bytecodes::_instanceof: 1375 { 1376 // Check for uncommon trap: 1377 do_checkcast(str); 1378 pop_object(); 1379 push_int(); 1380 break; 1381 } 1382 case Bytecodes::_invokeinterface: do_invoke(str, true); break; 1383 case Bytecodes::_invokespecial: do_invoke(str, true); break; 1384 case Bytecodes::_invokestatic: do_invoke(str, false); break; 1385 case Bytecodes::_invokevirtual: do_invoke(str, true); break; 1386 case Bytecodes::_invokedynamic: do_invoke(str, false); break; 1387 1388 case Bytecodes::_istore: store_local_int(str->get_index()); break; 1389 case Bytecodes::_istore_0: store_local_int(0); break; 1390 case Bytecodes::_istore_1: store_local_int(1); break; 1391 case Bytecodes::_istore_2: store_local_int(2); break; 1392 case Bytecodes::_istore_3: store_local_int(3); break; 1393 1394 case Bytecodes::_jsr: 1395 case Bytecodes::_jsr_w: do_jsr(str); break; 1396 1397 case Bytecodes::_l2d: 1398 { 1399 pop_long(); 1400 push_double(); 1401 break; 1402 } 1403 case Bytecodes::_l2f: 1404 { 1405 pop_long(); 1406 push_float(); 1407 break; 1408 } 1409 case Bytecodes::_l2i: 1410 { 1411 pop_long(); 1412 push_int(); 1413 break; 1414 } 1415 case Bytecodes::_ladd: 1416 case Bytecodes::_land: 1417 case Bytecodes::_ldiv: 1418 case Bytecodes::_lmul: 1419 case Bytecodes::_lor: 1420 case Bytecodes::_lrem: 1421 case Bytecodes::_lsub: 1422 case Bytecodes::_lxor: 1423 { 1424 pop_long(); 1425 pop_long(); 1426 push_long(); 1427 break; 1428 } 1429 case Bytecodes::_laload: 1430 { 1431 pop_int(); 1432 ciTypeArrayKlass* array_klass = pop_typeArray(); 1433 // Put assert here for right type? 1434 push_long(); 1435 break; 1436 } 1437 case Bytecodes::_lastore: 1438 { 1439 pop_long(); 1440 pop_int(); 1441 pop_typeArray(); 1442 // assert here? 1443 break; 1444 } 1445 case Bytecodes::_lcmp: 1446 { 1447 pop_long(); 1448 pop_long(); 1449 push_int(); 1450 break; 1451 } 1452 case Bytecodes::_lconst_0: 1453 case Bytecodes::_lconst_1: 1454 { 1455 push_long(); 1456 break; 1457 } 1458 case Bytecodes::_ldc: 1459 case Bytecodes::_ldc_w: 1460 case Bytecodes::_ldc2_w: 1461 { 1462 do_ldc(str); 1463 break; 1464 } 1465 1466 case Bytecodes::_lload: load_local_long(str->get_index()); break; 1467 case Bytecodes::_lload_0: load_local_long(0); break; 1468 case Bytecodes::_lload_1: load_local_long(1); break; 1469 case Bytecodes::_lload_2: load_local_long(2); break; 1470 case Bytecodes::_lload_3: load_local_long(3); break; 1471 1472 case Bytecodes::_lneg: 1473 { 1474 pop_long(); 1475 push_long(); 1476 break; 1477 } 1478 case Bytecodes::_lreturn: 1479 { 1480 pop_long(); 1481 break; 1482 } 1483 case Bytecodes::_lshl: 1484 case Bytecodes::_lshr: 1485 case Bytecodes::_lushr: 1486 { 1487 pop_int(); 1488 pop_long(); 1489 push_long(); 1490 break; 1491 } 1492 case Bytecodes::_lstore: store_local_long(str->get_index()); break; 1493 case Bytecodes::_lstore_0: store_local_long(0); break; 1494 case Bytecodes::_lstore_1: store_local_long(1); break; 1495 case Bytecodes::_lstore_2: store_local_long(2); break; 1496 case Bytecodes::_lstore_3: store_local_long(3); break; 1497 1498 case Bytecodes::_multianewarray: do_multianewarray(str); break; 1499 1500 case Bytecodes::_new: do_new(str); break; 1501 1502 case Bytecodes::_newarray: do_newarray(str); break; 1503 1504 case Bytecodes::_pop: 1505 { 1506 pop(); 1507 break; 1508 } 1509 case Bytecodes::_pop2: 1510 { 1511 pop(); 1512 pop(); 1513 break; 1514 } 1515 1516 case Bytecodes::_putfield: do_putfield(str); break; 1517 case Bytecodes::_putstatic: do_putstatic(str); break; 1518 1519 case Bytecodes::_ret: do_ret(str); break; 1520 1521 case Bytecodes::_swap: 1522 { 1523 ciType* value1 = pop_value(); 1524 ciType* value2 = pop_value(); 1525 push(value1); 1526 push(value2); 1527 break; 1528 } 1529 1530 case Bytecodes::_wide: 1531 default: 1532 { 1533 // The iterator should skip this. 1534 ShouldNotReachHere(); 1535 break; 1536 } 1537 } 1538 1539 if (CITraceTypeFlow) { 1540 print_on(tty); 1541 } 1542 1543 return (_trap_bci != -1); 1544 } 1545 1546 #ifndef PRODUCT 1547 // ------------------------------------------------------------------ 1548 // ciTypeFlow::StateVector::print_cell_on 1549 void ciTypeFlow::StateVector::print_cell_on(outputStream* st, Cell c) const { 1550 ciType* type = type_at(c)->unwrap(); 1551 if (type == top_type()) { 1552 st->print("top"); 1553 } else if (type == bottom_type()) { 1554 st->print("bottom"); 1555 } else if (type == null_type()) { 1556 st->print("null"); 1557 } else if (type == long2_type()) { 1558 st->print("long2"); 1559 } else if (type == double2_type()) { 1560 st->print("double2"); 1561 } else if (is_int(type)) { 1562 st->print("int"); 1563 } else if (is_long(type)) { 1564 st->print("long"); 1565 } else if (is_float(type)) { 1566 st->print("float"); 1567 } else if (is_double(type)) { 1568 st->print("double"); 1569 } else if (type->is_return_address()) { 1570 st->print("address(%d)", type->as_return_address()->bci()); 1571 } else { 1572 if (type->is_klass()) { 1573 type->as_klass()->name()->print_symbol_on(st); 1574 } else { 1575 st->print("UNEXPECTED TYPE"); 1576 type->print(); 1577 } 1578 } 1579 } 1580 1581 // ------------------------------------------------------------------ 1582 // ciTypeFlow::StateVector::print_on 1583 void ciTypeFlow::StateVector::print_on(outputStream* st) const { 1584 int num_locals = _outer->max_locals(); 1585 int num_stack = stack_size(); 1586 int num_monitors = monitor_count(); 1587 st->print_cr(" State : locals %d, stack %d, monitors %d", num_locals, num_stack, num_monitors); 1588 if (num_stack >= 0) { 1589 int i; 1590 for (i = 0; i < num_locals; i++) { 1591 st->print(" local %2d : ", i); 1592 print_cell_on(st, local(i)); 1593 st->cr(); 1594 } 1595 for (i = 0; i < num_stack; i++) { 1596 st->print(" stack %2d : ", i); 1597 print_cell_on(st, stack(i)); 1598 st->cr(); 1599 } 1600 } 1601 } 1602 #endif 1603 1604 1605 // ------------------------------------------------------------------ 1606 // ciTypeFlow::SuccIter::next 1607 // 1608 void ciTypeFlow::SuccIter::next() { 1609 int succ_ct = _pred->successors()->length(); 1610 int next = _index + 1; 1611 if (next < succ_ct) { 1612 _index = next; 1613 _succ = _pred->successors()->at(next); 1614 return; 1615 } 1616 for (int i = next - succ_ct; i < _pred->exceptions()->length(); i++) { 1617 // Do not compile any code for unloaded exception types. 1618 // Following compiler passes are responsible for doing this also. 1619 ciInstanceKlass* exception_klass = _pred->exc_klasses()->at(i); 1620 if (exception_klass->is_loaded()) { 1621 _index = next; 1622 _succ = _pred->exceptions()->at(i); 1623 return; 1624 } 1625 next++; 1626 } 1627 _index = -1; 1628 _succ = nullptr; 1629 } 1630 1631 // ------------------------------------------------------------------ 1632 // ciTypeFlow::SuccIter::set_succ 1633 // 1634 void ciTypeFlow::SuccIter::set_succ(Block* succ) { 1635 int succ_ct = _pred->successors()->length(); 1636 if (_index < succ_ct) { 1637 _pred->successors()->at_put(_index, succ); 1638 } else { 1639 int idx = _index - succ_ct; 1640 _pred->exceptions()->at_put(idx, succ); 1641 } 1642 } 1643 1644 // ciTypeFlow::Block 1645 // 1646 // A basic block. 1647 1648 // ------------------------------------------------------------------ 1649 // ciTypeFlow::Block::Block 1650 ciTypeFlow::Block::Block(ciTypeFlow* outer, 1651 ciBlock *ciblk, 1652 ciTypeFlow::JsrSet* jsrs) : _predecessors(outer->arena(), 1, 0, nullptr) { 1653 _ciblock = ciblk; 1654 _exceptions = nullptr; 1655 _exc_klasses = nullptr; 1656 _successors = nullptr; 1657 _state = new (outer->arena()) StateVector(outer); 1658 JsrSet* new_jsrs = 1659 new (outer->arena()) JsrSet(outer->arena(), jsrs->size()); 1660 jsrs->copy_into(new_jsrs); 1661 _jsrs = new_jsrs; 1662 _next = nullptr; 1663 _on_work_list = false; 1664 _backedge_copy = false; 1665 _has_monitorenter = false; 1666 _trap_bci = -1; 1667 _trap_index = 0; 1668 df_init(); 1669 1670 if (CITraceTypeFlow) { 1671 tty->print_cr(">> Created new block"); 1672 print_on(tty); 1673 } 1674 1675 assert(this->outer() == outer, "outer link set up"); 1676 assert(!outer->have_block_count(), "must not have mapped blocks yet"); 1677 } 1678 1679 // ------------------------------------------------------------------ 1680 // ciTypeFlow::Block::df_init 1681 void ciTypeFlow::Block::df_init() { 1682 _pre_order = -1; assert(!has_pre_order(), ""); 1683 _post_order = -1; assert(!has_post_order(), ""); 1684 _loop = nullptr; 1685 _irreducible_loop_head = false; 1686 _irreducible_loop_secondary_entry = false; 1687 _rpo_next = nullptr; 1688 } 1689 1690 // ------------------------------------------------------------------ 1691 // ciTypeFlow::Block::successors 1692 // 1693 // Get the successors for this Block. 1694 GrowableArray<ciTypeFlow::Block*>* 1695 ciTypeFlow::Block::successors(ciBytecodeStream* str, 1696 ciTypeFlow::StateVector* state, 1697 ciTypeFlow::JsrSet* jsrs) { 1698 if (_successors == nullptr) { 1699 if (CITraceTypeFlow) { 1700 tty->print(">> Computing successors for block "); 1701 print_value_on(tty); 1702 tty->cr(); 1703 } 1704 1705 ciTypeFlow* analyzer = outer(); 1706 Arena* arena = analyzer->arena(); 1707 Block* block = nullptr; 1708 bool has_successor = !has_trap() && 1709 (control() != ciBlock::fall_through_bci || limit() < analyzer->code_size()); 1710 if (!has_successor) { 1711 _successors = 1712 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1713 // No successors 1714 } else if (control() == ciBlock::fall_through_bci) { 1715 assert(str->cur_bci() == limit(), "bad block end"); 1716 // This block simply falls through to the next. 1717 _successors = 1718 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1719 1720 Block* block = analyzer->block_at(limit(), _jsrs); 1721 assert(_successors->length() == FALL_THROUGH, ""); 1722 _successors->append(block); 1723 } else { 1724 int current_bci = str->cur_bci(); 1725 int next_bci = str->next_bci(); 1726 int branch_bci = -1; 1727 Block* target = nullptr; 1728 assert(str->next_bci() == limit(), "bad block end"); 1729 // This block is not a simple fall-though. Interpret 1730 // the current bytecode to find our successors. 1731 switch (str->cur_bc()) { 1732 case Bytecodes::_ifeq: case Bytecodes::_ifne: 1733 case Bytecodes::_iflt: case Bytecodes::_ifge: 1734 case Bytecodes::_ifgt: case Bytecodes::_ifle: 1735 case Bytecodes::_if_icmpeq: case Bytecodes::_if_icmpne: 1736 case Bytecodes::_if_icmplt: case Bytecodes::_if_icmpge: 1737 case Bytecodes::_if_icmpgt: case Bytecodes::_if_icmple: 1738 case Bytecodes::_if_acmpeq: case Bytecodes::_if_acmpne: 1739 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: 1740 // Our successors are the branch target and the next bci. 1741 branch_bci = str->get_dest(); 1742 _successors = 1743 new (arena) GrowableArray<Block*>(arena, 2, 0, nullptr); 1744 assert(_successors->length() == IF_NOT_TAKEN, ""); 1745 _successors->append(analyzer->block_at(next_bci, jsrs)); 1746 assert(_successors->length() == IF_TAKEN, ""); 1747 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1748 break; 1749 1750 case Bytecodes::_goto: 1751 branch_bci = str->get_dest(); 1752 _successors = 1753 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1754 assert(_successors->length() == GOTO_TARGET, ""); 1755 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1756 break; 1757 1758 case Bytecodes::_jsr: 1759 branch_bci = str->get_dest(); 1760 _successors = 1761 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1762 assert(_successors->length() == GOTO_TARGET, ""); 1763 _successors->append(analyzer->block_at(branch_bci, jsrs)); 1764 break; 1765 1766 case Bytecodes::_goto_w: 1767 case Bytecodes::_jsr_w: 1768 _successors = 1769 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1770 assert(_successors->length() == GOTO_TARGET, ""); 1771 _successors->append(analyzer->block_at(str->get_far_dest(), jsrs)); 1772 break; 1773 1774 case Bytecodes::_tableswitch: { 1775 Bytecode_tableswitch tableswitch(str); 1776 1777 int len = tableswitch.length(); 1778 _successors = 1779 new (arena) GrowableArray<Block*>(arena, len+1, 0, nullptr); 1780 int bci = current_bci + tableswitch.default_offset(); 1781 Block* block = analyzer->block_at(bci, jsrs); 1782 assert(_successors->length() == SWITCH_DEFAULT, ""); 1783 _successors->append(block); 1784 while (--len >= 0) { 1785 int bci = current_bci + tableswitch.dest_offset_at(len); 1786 block = analyzer->block_at(bci, jsrs); 1787 assert(_successors->length() >= SWITCH_CASES, ""); 1788 _successors->append_if_missing(block); 1789 } 1790 break; 1791 } 1792 1793 case Bytecodes::_lookupswitch: { 1794 Bytecode_lookupswitch lookupswitch(str); 1795 1796 int npairs = lookupswitch.number_of_pairs(); 1797 _successors = 1798 new (arena) GrowableArray<Block*>(arena, npairs+1, 0, nullptr); 1799 int bci = current_bci + lookupswitch.default_offset(); 1800 Block* block = analyzer->block_at(bci, jsrs); 1801 assert(_successors->length() == SWITCH_DEFAULT, ""); 1802 _successors->append(block); 1803 while(--npairs >= 0) { 1804 LookupswitchPair pair = lookupswitch.pair_at(npairs); 1805 int bci = current_bci + pair.offset(); 1806 Block* block = analyzer->block_at(bci, jsrs); 1807 assert(_successors->length() >= SWITCH_CASES, ""); 1808 _successors->append_if_missing(block); 1809 } 1810 break; 1811 } 1812 1813 case Bytecodes::_athrow: 1814 case Bytecodes::_ireturn: 1815 case Bytecodes::_lreturn: 1816 case Bytecodes::_freturn: 1817 case Bytecodes::_dreturn: 1818 case Bytecodes::_areturn: 1819 case Bytecodes::_return: 1820 _successors = 1821 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1822 // No successors 1823 break; 1824 1825 case Bytecodes::_ret: { 1826 _successors = 1827 new (arena) GrowableArray<Block*>(arena, 1, 0, nullptr); 1828 1829 Cell local = state->local(str->get_index()); 1830 ciType* return_address = state->type_at(local); 1831 assert(return_address->is_return_address(), "verify: wrong type"); 1832 int bci = return_address->as_return_address()->bci(); 1833 assert(_successors->length() == GOTO_TARGET, ""); 1834 _successors->append(analyzer->block_at(bci, jsrs)); 1835 break; 1836 } 1837 1838 case Bytecodes::_wide: 1839 default: 1840 ShouldNotReachHere(); 1841 break; 1842 } 1843 } 1844 1845 // Set predecessor information 1846 for (int i = 0; i < _successors->length(); i++) { 1847 Block* block = _successors->at(i); 1848 block->predecessors()->append(this); 1849 } 1850 } 1851 return _successors; 1852 } 1853 1854 // ------------------------------------------------------------------ 1855 // ciTypeFlow::Block:compute_exceptions 1856 // 1857 // Compute the exceptional successors and types for this Block. 1858 void ciTypeFlow::Block::compute_exceptions() { 1859 assert(_exceptions == nullptr && _exc_klasses == nullptr, "repeat"); 1860 1861 if (CITraceTypeFlow) { 1862 tty->print(">> Computing exceptions for block "); 1863 print_value_on(tty); 1864 tty->cr(); 1865 } 1866 1867 ciTypeFlow* analyzer = outer(); 1868 Arena* arena = analyzer->arena(); 1869 1870 // Any bci in the block will do. 1871 ciExceptionHandlerStream str(analyzer->method(), start()); 1872 1873 // Allocate our growable arrays. 1874 int exc_count = str.count(); 1875 _exceptions = new (arena) GrowableArray<Block*>(arena, exc_count, 0, nullptr); 1876 _exc_klasses = new (arena) GrowableArray<ciInstanceKlass*>(arena, exc_count, 1877 0, nullptr); 1878 1879 for ( ; !str.is_done(); str.next()) { 1880 ciExceptionHandler* handler = str.handler(); 1881 int bci = handler->handler_bci(); 1882 ciInstanceKlass* klass = nullptr; 1883 if (bci == -1) { 1884 // There is no catch all. It is possible to exit the method. 1885 break; 1886 } 1887 if (handler->is_catch_all()) { 1888 klass = analyzer->env()->Throwable_klass(); 1889 } else { 1890 klass = handler->catch_klass(); 1891 } 1892 Block* block = analyzer->block_at(bci, _jsrs); 1893 _exceptions->append(block); 1894 block->predecessors()->append(this); 1895 _exc_klasses->append(klass); 1896 } 1897 } 1898 1899 // ------------------------------------------------------------------ 1900 // ciTypeFlow::Block::set_backedge_copy 1901 // Use this only to make a pre-existing public block into a backedge copy. 1902 void ciTypeFlow::Block::set_backedge_copy(bool z) { 1903 assert(z || (z == is_backedge_copy()), "cannot make a backedge copy public"); 1904 _backedge_copy = z; 1905 } 1906 1907 // Analogous to PhaseIdealLoop::is_in_irreducible_loop 1908 bool ciTypeFlow::Block::is_in_irreducible_loop() const { 1909 if (!outer()->has_irreducible_entry()) { 1910 return false; // No irreducible loop in method. 1911 } 1912 Loop* lp = loop(); // Innermost loop containing block. 1913 if (lp == nullptr) { 1914 assert(!is_post_visited(), "must have enclosing loop once post-visited"); 1915 return false; // Not yet processed, so we do not know, yet. 1916 } 1917 // Walk all the way up the loop-tree, search for an irreducible loop. 1918 do { 1919 if (lp->is_irreducible()) { 1920 return true; // We are in irreducible loop. 1921 } 1922 if (lp->head()->pre_order() == 0) { 1923 return false; // Found root loop, terminate. 1924 } 1925 lp = lp->parent(); 1926 } while (lp != nullptr); 1927 // We have "lp->parent() == nullptr", which happens only for infinite loops, 1928 // where no parent is attached to the loop. We did not find any irreducible 1929 // loop from this block out to lp. Thus lp only has one entry, and no exit 1930 // (it is infinite and reducible). We can always rewrite an infinite loop 1931 // that is nested inside other loops: 1932 // while(condition) { infinite_loop; } 1933 // with an equivalent program where the infinite loop is an outermost loop 1934 // that is not nested in any loop: 1935 // while(condition) { break; } infinite_loop; 1936 // Thus, we can understand lp as an outermost loop, and can terminate and 1937 // conclude: this block is in no irreducible loop. 1938 return false; 1939 } 1940 1941 // ------------------------------------------------------------------ 1942 // ciTypeFlow::Block::is_clonable_exit 1943 // 1944 // At most 2 normal successors, one of which continues looping, 1945 // and all exceptional successors must exit. 1946 bool ciTypeFlow::Block::is_clonable_exit(ciTypeFlow::Loop* lp) { 1947 int normal_cnt = 0; 1948 int in_loop_cnt = 0; 1949 for (SuccIter iter(this); !iter.done(); iter.next()) { 1950 Block* succ = iter.succ(); 1951 if (iter.is_normal_ctrl()) { 1952 if (++normal_cnt > 2) return false; 1953 if (lp->contains(succ->loop())) { 1954 if (++in_loop_cnt > 1) return false; 1955 } 1956 } else { 1957 if (lp->contains(succ->loop())) return false; 1958 } 1959 } 1960 return in_loop_cnt == 1; 1961 } 1962 1963 // ------------------------------------------------------------------ 1964 // ciTypeFlow::Block::looping_succ 1965 // 1966 ciTypeFlow::Block* ciTypeFlow::Block::looping_succ(ciTypeFlow::Loop* lp) { 1967 assert(successors()->length() <= 2, "at most 2 normal successors"); 1968 for (SuccIter iter(this); !iter.done(); iter.next()) { 1969 Block* succ = iter.succ(); 1970 if (lp->contains(succ->loop())) { 1971 return succ; 1972 } 1973 } 1974 return nullptr; 1975 } 1976 1977 #ifndef PRODUCT 1978 // ------------------------------------------------------------------ 1979 // ciTypeFlow::Block::print_value_on 1980 void ciTypeFlow::Block::print_value_on(outputStream* st) const { 1981 if (has_pre_order()) st->print("#%-2d ", pre_order()); 1982 if (has_rpo()) st->print("rpo#%-2d ", rpo()); 1983 st->print("[%d - %d)", start(), limit()); 1984 if (is_loop_head()) st->print(" lphd"); 1985 if (is_in_irreducible_loop()) st->print(" in_irred"); 1986 if (is_irreducible_loop_head()) st->print(" irred_head"); 1987 if (is_irreducible_loop_secondary_entry()) st->print(" irred_entry"); 1988 if (_jsrs->size() > 0) { st->print("/"); _jsrs->print_on(st); } 1989 if (is_backedge_copy()) st->print("/backedge_copy"); 1990 } 1991 1992 // ------------------------------------------------------------------ 1993 // ciTypeFlow::Block::print_on 1994 void ciTypeFlow::Block::print_on(outputStream* st) const { 1995 if ((Verbose || WizardMode) && (limit() >= 0)) { 1996 // Don't print 'dummy' blocks (i.e. blocks with limit() '-1') 1997 outer()->method()->print_codes_on(start(), limit(), st); 1998 } 1999 st->print_cr(" ==================================================== "); 2000 st->print (" "); 2001 print_value_on(st); 2002 st->print(" Stored locals: "); def_locals()->print_on(st, outer()->method()->max_locals()); tty->cr(); 2003 if (loop() && loop()->parent() != nullptr) { 2004 st->print(" loops:"); 2005 Loop* lp = loop(); 2006 do { 2007 st->print(" %d<-%d", lp->head()->pre_order(),lp->tail()->pre_order()); 2008 if (lp->is_irreducible()) st->print("(ir)"); 2009 lp = lp->parent(); 2010 } while (lp->parent() != nullptr); 2011 } 2012 st->cr(); 2013 _state->print_on(st); 2014 if (_successors == nullptr) { 2015 st->print_cr(" No successor information"); 2016 } else { 2017 int num_successors = _successors->length(); 2018 st->print_cr(" Successors : %d", num_successors); 2019 for (int i = 0; i < num_successors; i++) { 2020 Block* successor = _successors->at(i); 2021 st->print(" "); 2022 successor->print_value_on(st); 2023 st->cr(); 2024 } 2025 } 2026 if (_predecessors.is_empty()) { 2027 st->print_cr(" No predecessor information"); 2028 } else { 2029 int num_predecessors = _predecessors.length(); 2030 st->print_cr(" Predecessors : %d", num_predecessors); 2031 for (int i = 0; i < num_predecessors; i++) { 2032 Block* predecessor = _predecessors.at(i); 2033 st->print(" "); 2034 predecessor->print_value_on(st); 2035 st->cr(); 2036 } 2037 } 2038 if (_exceptions == nullptr) { 2039 st->print_cr(" No exception information"); 2040 } else { 2041 int num_exceptions = _exceptions->length(); 2042 st->print_cr(" Exceptions : %d", num_exceptions); 2043 for (int i = 0; i < num_exceptions; i++) { 2044 Block* exc_succ = _exceptions->at(i); 2045 ciInstanceKlass* exc_klass = _exc_klasses->at(i); 2046 st->print(" "); 2047 exc_succ->print_value_on(st); 2048 st->print(" -- "); 2049 exc_klass->name()->print_symbol_on(st); 2050 st->cr(); 2051 } 2052 } 2053 if (has_trap()) { 2054 st->print_cr(" Traps on %d with trap index %d", trap_bci(), trap_index()); 2055 } 2056 st->print_cr(" ==================================================== "); 2057 } 2058 #endif 2059 2060 #ifndef PRODUCT 2061 // ------------------------------------------------------------------ 2062 // ciTypeFlow::LocalSet::print_on 2063 void ciTypeFlow::LocalSet::print_on(outputStream* st, int limit) const { 2064 st->print("{"); 2065 for (int i = 0; i < max; i++) { 2066 if (test(i)) st->print(" %d", i); 2067 } 2068 if (limit > max) { 2069 st->print(" %d..%d ", max, limit); 2070 } 2071 st->print(" }"); 2072 } 2073 #endif 2074 2075 // ciTypeFlow 2076 // 2077 // This is a pass over the bytecodes which computes the following: 2078 // basic block structure 2079 // interpreter type-states (a la the verifier) 2080 2081 // ------------------------------------------------------------------ 2082 // ciTypeFlow::ciTypeFlow 2083 ciTypeFlow::ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci) { 2084 _env = env; 2085 _method = method; 2086 _has_irreducible_entry = false; 2087 _osr_bci = osr_bci; 2088 _failure_reason = nullptr; 2089 assert(0 <= start_bci() && start_bci() < code_size() , "correct osr_bci argument: 0 <= %d < %d", start_bci(), code_size()); 2090 _work_list = nullptr; 2091 2092 int ciblock_count = _method->get_method_blocks()->num_blocks(); 2093 _idx_to_blocklist = NEW_ARENA_ARRAY(arena(), GrowableArray<Block*>*, ciblock_count); 2094 for (int i = 0; i < ciblock_count; i++) { 2095 _idx_to_blocklist[i] = nullptr; 2096 } 2097 _block_map = nullptr; // until all blocks are seen 2098 _jsr_records = nullptr; 2099 } 2100 2101 // ------------------------------------------------------------------ 2102 // ciTypeFlow::work_list_next 2103 // 2104 // Get the next basic block from our work list. 2105 ciTypeFlow::Block* ciTypeFlow::work_list_next() { 2106 assert(!work_list_empty(), "work list must not be empty"); 2107 Block* next_block = _work_list; 2108 _work_list = next_block->next(); 2109 next_block->set_next(nullptr); 2110 next_block->set_on_work_list(false); 2111 return next_block; 2112 } 2113 2114 // ------------------------------------------------------------------ 2115 // ciTypeFlow::add_to_work_list 2116 // 2117 // Add a basic block to our work list. 2118 // List is sorted by decreasing postorder sort (same as increasing RPO) 2119 void ciTypeFlow::add_to_work_list(ciTypeFlow::Block* block) { 2120 assert(!block->is_on_work_list(), "must not already be on work list"); 2121 2122 if (CITraceTypeFlow) { 2123 tty->print(">> Adding block "); 2124 block->print_value_on(tty); 2125 tty->print_cr(" to the work list : "); 2126 } 2127 2128 block->set_on_work_list(true); 2129 2130 // decreasing post order sort 2131 2132 Block* prev = nullptr; 2133 Block* current = _work_list; 2134 int po = block->post_order(); 2135 while (current != nullptr) { 2136 if (!current->has_post_order() || po > current->post_order()) 2137 break; 2138 prev = current; 2139 current = current->next(); 2140 } 2141 if (prev == nullptr) { 2142 block->set_next(_work_list); 2143 _work_list = block; 2144 } else { 2145 block->set_next(current); 2146 prev->set_next(block); 2147 } 2148 2149 if (CITraceTypeFlow) { 2150 tty->cr(); 2151 } 2152 } 2153 2154 // ------------------------------------------------------------------ 2155 // ciTypeFlow::block_at 2156 // 2157 // Return the block beginning at bci which has a JsrSet compatible 2158 // with jsrs. 2159 ciTypeFlow::Block* ciTypeFlow::block_at(int bci, ciTypeFlow::JsrSet* jsrs, CreateOption option) { 2160 // First find the right ciBlock. 2161 if (CITraceTypeFlow) { 2162 tty->print(">> Requesting block for %d/", bci); 2163 jsrs->print_on(tty); 2164 tty->cr(); 2165 } 2166 2167 ciBlock* ciblk = _method->get_method_blocks()->block_containing(bci); 2168 assert(ciblk->start_bci() == bci, "bad ciBlock boundaries"); 2169 Block* block = get_block_for(ciblk->index(), jsrs, option); 2170 2171 assert(block == nullptr? (option == no_create): block->is_backedge_copy() == (option == create_backedge_copy), "create option consistent with result"); 2172 2173 if (CITraceTypeFlow) { 2174 if (block != nullptr) { 2175 tty->print(">> Found block "); 2176 block->print_value_on(tty); 2177 tty->cr(); 2178 } else { 2179 tty->print_cr(">> No such block."); 2180 } 2181 } 2182 2183 return block; 2184 } 2185 2186 // ------------------------------------------------------------------ 2187 // ciTypeFlow::make_jsr_record 2188 // 2189 // Make a JsrRecord for a given (entry, return) pair, if such a record 2190 // does not already exist. 2191 ciTypeFlow::JsrRecord* ciTypeFlow::make_jsr_record(int entry_address, 2192 int return_address) { 2193 if (_jsr_records == nullptr) { 2194 _jsr_records = new (arena()) GrowableArray<JsrRecord*>(arena(), 2195 2, 2196 0, 2197 nullptr); 2198 } 2199 JsrRecord* record = nullptr; 2200 int len = _jsr_records->length(); 2201 for (int i = 0; i < len; i++) { 2202 JsrRecord* record = _jsr_records->at(i); 2203 if (record->entry_address() == entry_address && 2204 record->return_address() == return_address) { 2205 return record; 2206 } 2207 } 2208 2209 record = new (arena()) JsrRecord(entry_address, return_address); 2210 _jsr_records->append(record); 2211 return record; 2212 } 2213 2214 // ------------------------------------------------------------------ 2215 // ciTypeFlow::flow_exceptions 2216 // 2217 // Merge the current state into all exceptional successors at the 2218 // current point in the code. 2219 void ciTypeFlow::flow_exceptions(GrowableArray<ciTypeFlow::Block*>* exceptions, 2220 GrowableArray<ciInstanceKlass*>* exc_klasses, 2221 ciTypeFlow::StateVector* state) { 2222 int len = exceptions->length(); 2223 assert(exc_klasses->length() == len, "must have same length"); 2224 for (int i = 0; i < len; i++) { 2225 Block* block = exceptions->at(i); 2226 ciInstanceKlass* exception_klass = exc_klasses->at(i); 2227 2228 if (!exception_klass->is_loaded()) { 2229 // Do not compile any code for unloaded exception types. 2230 // Following compiler passes are responsible for doing this also. 2231 continue; 2232 } 2233 2234 if (block->meet_exception(exception_klass, state)) { 2235 // Block was modified and has PO. Add it to the work list. 2236 if (block->has_post_order() && 2237 !block->is_on_work_list()) { 2238 add_to_work_list(block); 2239 } 2240 } 2241 } 2242 } 2243 2244 // ------------------------------------------------------------------ 2245 // ciTypeFlow::flow_successors 2246 // 2247 // Merge the current state into all successors at the current point 2248 // in the code. 2249 void ciTypeFlow::flow_successors(GrowableArray<ciTypeFlow::Block*>* successors, 2250 ciTypeFlow::StateVector* state) { 2251 int len = successors->length(); 2252 for (int i = 0; i < len; i++) { 2253 Block* block = successors->at(i); 2254 if (block->meet(state)) { 2255 // Block was modified and has PO. Add it to the work list. 2256 if (block->has_post_order() && 2257 !block->is_on_work_list()) { 2258 add_to_work_list(block); 2259 } 2260 } 2261 } 2262 } 2263 2264 // ------------------------------------------------------------------ 2265 // ciTypeFlow::can_trap 2266 // 2267 // Tells if a given instruction is able to generate an exception edge. 2268 bool ciTypeFlow::can_trap(ciBytecodeStream& str) { 2269 // Cf. GenerateOopMap::do_exception_edge. 2270 if (!Bytecodes::can_trap(str.cur_bc())) return false; 2271 2272 switch (str.cur_bc()) { 2273 case Bytecodes::_ldc: 2274 case Bytecodes::_ldc_w: 2275 case Bytecodes::_ldc2_w: 2276 return str.is_in_error() || !str.get_constant().is_loaded(); 2277 2278 case Bytecodes::_aload_0: 2279 // These bytecodes can trap for rewriting. We need to assume that 2280 // they do not throw exceptions to make the monitor analysis work. 2281 return false; 2282 2283 case Bytecodes::_ireturn: 2284 case Bytecodes::_lreturn: 2285 case Bytecodes::_freturn: 2286 case Bytecodes::_dreturn: 2287 case Bytecodes::_areturn: 2288 case Bytecodes::_return: 2289 // We can assume the monitor stack is empty in this analysis. 2290 return false; 2291 2292 case Bytecodes::_monitorexit: 2293 // We can assume monitors are matched in this analysis. 2294 return false; 2295 2296 default: 2297 return true; 2298 } 2299 } 2300 2301 // ------------------------------------------------------------------ 2302 // ciTypeFlow::clone_loop_heads 2303 // 2304 // Clone the loop heads 2305 bool ciTypeFlow::clone_loop_heads(StateVector* temp_vector, JsrSet* temp_set) { 2306 bool rslt = false; 2307 for (PreorderLoops iter(loop_tree_root()); !iter.done(); iter.next()) { 2308 Loop* lp = iter.current(); 2309 Block* head = lp->head(); 2310 if (lp == loop_tree_root() || 2311 lp->is_irreducible() || 2312 !head->is_clonable_exit(lp)) 2313 continue; 2314 2315 // Avoid BoxLock merge. 2316 if (EliminateNestedLocks && head->has_monitorenter()) 2317 continue; 2318 2319 // check not already cloned 2320 if (head->backedge_copy_count() != 0) 2321 continue; 2322 2323 // Don't clone head of OSR loop to get correct types in start block. 2324 if (is_osr_flow() && head->start() == start_bci()) 2325 continue; 2326 2327 // check _no_ shared head below us 2328 Loop* ch; 2329 for (ch = lp->child(); ch != nullptr && ch->head() != head; ch = ch->sibling()); 2330 if (ch != nullptr) 2331 continue; 2332 2333 // Clone head 2334 Block* new_head = head->looping_succ(lp); 2335 Block* clone = clone_loop_head(lp, temp_vector, temp_set); 2336 // Update lp's info 2337 clone->set_loop(lp); 2338 lp->set_head(new_head); 2339 lp->set_tail(clone); 2340 // And move original head into outer loop 2341 head->set_loop(lp->parent()); 2342 2343 rslt = true; 2344 } 2345 return rslt; 2346 } 2347 2348 // ------------------------------------------------------------------ 2349 // ciTypeFlow::clone_loop_head 2350 // 2351 // Clone lp's head and replace tail's successors with clone. 2352 // 2353 // | 2354 // v 2355 // head <-> body 2356 // | 2357 // v 2358 // exit 2359 // 2360 // new_head 2361 // 2362 // | 2363 // v 2364 // head ----------\ 2365 // | | 2366 // | v 2367 // | clone <-> body 2368 // | | 2369 // | /--/ 2370 // | | 2371 // v v 2372 // exit 2373 // 2374 ciTypeFlow::Block* ciTypeFlow::clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) { 2375 Block* head = lp->head(); 2376 Block* tail = lp->tail(); 2377 if (CITraceTypeFlow) { 2378 tty->print(">> Requesting clone of loop head "); head->print_value_on(tty); 2379 tty->print(" for predecessor "); tail->print_value_on(tty); 2380 tty->cr(); 2381 } 2382 Block* clone = block_at(head->start(), head->jsrs(), create_backedge_copy); 2383 assert(clone->backedge_copy_count() == 1, "one backedge copy for all back edges"); 2384 2385 assert(!clone->has_pre_order(), "just created"); 2386 clone->set_next_pre_order(); 2387 2388 // Accumulate profiled count for all backedges that share this loop's head 2389 int total_count = lp->profiled_count(); 2390 for (Loop* lp1 = lp->parent(); lp1 != nullptr; lp1 = lp1->parent()) { 2391 for (Loop* lp2 = lp1; lp2 != nullptr; lp2 = lp2->sibling()) { 2392 if (lp2->head() == head && !lp2->tail()->is_backedge_copy()) { 2393 total_count += lp2->profiled_count(); 2394 } 2395 } 2396 } 2397 // Have the most frequent ones branch to the clone instead 2398 int count = 0; 2399 int loops_with_shared_head = 0; 2400 Block* latest_tail = tail; 2401 bool done = false; 2402 for (Loop* lp1 = lp; lp1 != nullptr && !done; lp1 = lp1->parent()) { 2403 for (Loop* lp2 = lp1; lp2 != nullptr && !done; lp2 = lp2->sibling()) { 2404 if (lp2->head() == head && !lp2->tail()->is_backedge_copy()) { 2405 count += lp2->profiled_count(); 2406 if (lp2->tail()->post_order() < latest_tail->post_order()) { 2407 latest_tail = lp2->tail(); 2408 } 2409 loops_with_shared_head++; 2410 for (SuccIter iter(lp2->tail()); !iter.done(); iter.next()) { 2411 if (iter.succ() == head) { 2412 iter.set_succ(clone); 2413 // Update predecessor information 2414 head->predecessors()->remove(lp2->tail()); 2415 clone->predecessors()->append(lp2->tail()); 2416 } 2417 } 2418 flow_block(lp2->tail(), temp_vector, temp_set); 2419 if (lp2->head() == lp2->tail()) { 2420 // For self-loops, clone->head becomes clone->clone 2421 flow_block(clone, temp_vector, temp_set); 2422 for (SuccIter iter(clone); !iter.done(); iter.next()) { 2423 if (iter.succ() == lp2->head()) { 2424 iter.set_succ(clone); 2425 // Update predecessor information 2426 lp2->head()->predecessors()->remove(clone); 2427 clone->predecessors()->append(clone); 2428 break; 2429 } 2430 } 2431 } 2432 if (total_count == 0 || count > (total_count * .9)) { 2433 done = true; 2434 } 2435 } 2436 } 2437 } 2438 assert(loops_with_shared_head >= 1, "at least one new"); 2439 clone->set_rpo_next(latest_tail->rpo_next()); 2440 latest_tail->set_rpo_next(clone); 2441 flow_block(clone, temp_vector, temp_set); 2442 2443 return clone; 2444 } 2445 2446 // ------------------------------------------------------------------ 2447 // ciTypeFlow::flow_block 2448 // 2449 // Interpret the effects of the bytecodes on the incoming state 2450 // vector of a basic block. Push the changed state to succeeding 2451 // basic blocks. 2452 void ciTypeFlow::flow_block(ciTypeFlow::Block* block, 2453 ciTypeFlow::StateVector* state, 2454 ciTypeFlow::JsrSet* jsrs) { 2455 if (CITraceTypeFlow) { 2456 tty->print("\n>> ANALYZING BLOCK : "); 2457 tty->cr(); 2458 block->print_on(tty); 2459 } 2460 assert(block->has_pre_order(), "pre-order is assigned before 1st flow"); 2461 2462 int start = block->start(); 2463 int limit = block->limit(); 2464 int control = block->control(); 2465 if (control != ciBlock::fall_through_bci) { 2466 limit = control; 2467 } 2468 2469 // Grab the state from the current block. 2470 block->copy_state_into(state); 2471 state->def_locals()->clear(); 2472 2473 GrowableArray<Block*>* exceptions = block->exceptions(); 2474 GrowableArray<ciInstanceKlass*>* exc_klasses = block->exc_klasses(); 2475 bool has_exceptions = exceptions->length() > 0; 2476 2477 bool exceptions_used = false; 2478 2479 ciBytecodeStream str(method()); 2480 str.reset_to_bci(start); 2481 Bytecodes::Code code; 2482 while ((code = str.next()) != ciBytecodeStream::EOBC() && 2483 str.cur_bci() < limit) { 2484 // Check for exceptional control flow from this point. 2485 if (has_exceptions && can_trap(str)) { 2486 flow_exceptions(exceptions, exc_klasses, state); 2487 exceptions_used = true; 2488 } 2489 // Apply the effects of the current bytecode to our state. 2490 bool res = state->apply_one_bytecode(&str); 2491 2492 // Watch for bailouts. 2493 if (failing()) return; 2494 2495 if (str.cur_bc() == Bytecodes::_monitorenter) { 2496 block->set_has_monitorenter(); 2497 } 2498 2499 if (res) { 2500 2501 // We have encountered a trap. Record it in this block. 2502 block->set_trap(state->trap_bci(), state->trap_index()); 2503 2504 if (CITraceTypeFlow) { 2505 tty->print_cr(">> Found trap"); 2506 block->print_on(tty); 2507 } 2508 2509 // Save set of locals defined in this block 2510 block->def_locals()->add(state->def_locals()); 2511 2512 // Record (no) successors. 2513 block->successors(&str, state, jsrs); 2514 2515 assert(!has_exceptions || exceptions_used, "Not removing exceptions"); 2516 2517 // Discontinue interpretation of this Block. 2518 return; 2519 } 2520 } 2521 2522 GrowableArray<Block*>* successors = nullptr; 2523 if (control != ciBlock::fall_through_bci) { 2524 // Check for exceptional control flow from this point. 2525 if (has_exceptions && can_trap(str)) { 2526 flow_exceptions(exceptions, exc_klasses, state); 2527 exceptions_used = true; 2528 } 2529 2530 // Fix the JsrSet to reflect effect of the bytecode. 2531 block->copy_jsrs_into(jsrs); 2532 jsrs->apply_control(this, &str, state); 2533 2534 // Find successor edges based on old state and new JsrSet. 2535 successors = block->successors(&str, state, jsrs); 2536 2537 // Apply the control changes to the state. 2538 state->apply_one_bytecode(&str); 2539 } else { 2540 // Fall through control 2541 successors = block->successors(&str, nullptr, nullptr); 2542 } 2543 2544 // Save set of locals defined in this block 2545 block->def_locals()->add(state->def_locals()); 2546 2547 // Remove untaken exception paths 2548 if (!exceptions_used) 2549 exceptions->clear(); 2550 2551 // Pass our state to successors. 2552 flow_successors(successors, state); 2553 } 2554 2555 // ------------------------------------------------------------------ 2556 // ciTypeFlow::PreOrderLoops::next 2557 // 2558 // Advance to next loop tree using a preorder, left-to-right traversal. 2559 void ciTypeFlow::PreorderLoops::next() { 2560 assert(!done(), "must not be done."); 2561 if (_current->child() != nullptr) { 2562 _current = _current->child(); 2563 } else if (_current->sibling() != nullptr) { 2564 _current = _current->sibling(); 2565 } else { 2566 while (_current != _root && _current->sibling() == nullptr) { 2567 _current = _current->parent(); 2568 } 2569 if (_current == _root) { 2570 _current = nullptr; 2571 assert(done(), "must be done."); 2572 } else { 2573 assert(_current->sibling() != nullptr, "must be more to do"); 2574 _current = _current->sibling(); 2575 } 2576 } 2577 } 2578 2579 // If the tail is a branch to the head, retrieve how many times that path was taken from profiling 2580 int ciTypeFlow::Loop::profiled_count() { 2581 if (_profiled_count >= 0) { 2582 return _profiled_count; 2583 } 2584 ciMethodData* methodData = outer()->method()->method_data(); 2585 if (!methodData->is_mature()) { 2586 _profiled_count = 0; 2587 return 0; 2588 } 2589 ciTypeFlow::Block* tail = this->tail(); 2590 if (tail->control() == -1 || tail->has_trap()) { 2591 _profiled_count = 0; 2592 return 0; 2593 } 2594 2595 ciProfileData* data = methodData->bci_to_data(tail->control()); 2596 2597 if (data == nullptr || !data->is_JumpData()) { 2598 _profiled_count = 0; 2599 return 0; 2600 } 2601 2602 ciBytecodeStream iter(outer()->method()); 2603 iter.reset_to_bci(tail->control()); 2604 2605 bool is_an_if = false; 2606 bool wide = false; 2607 Bytecodes::Code bc = iter.next(); 2608 switch (bc) { 2609 case Bytecodes::_ifeq: 2610 case Bytecodes::_ifne: 2611 case Bytecodes::_iflt: 2612 case Bytecodes::_ifge: 2613 case Bytecodes::_ifgt: 2614 case Bytecodes::_ifle: 2615 case Bytecodes::_if_icmpeq: 2616 case Bytecodes::_if_icmpne: 2617 case Bytecodes::_if_icmplt: 2618 case Bytecodes::_if_icmpge: 2619 case Bytecodes::_if_icmpgt: 2620 case Bytecodes::_if_icmple: 2621 case Bytecodes::_if_acmpeq: 2622 case Bytecodes::_if_acmpne: 2623 case Bytecodes::_ifnull: 2624 case Bytecodes::_ifnonnull: 2625 is_an_if = true; 2626 break; 2627 case Bytecodes::_goto_w: 2628 case Bytecodes::_jsr_w: 2629 wide = true; 2630 break; 2631 case Bytecodes::_goto: 2632 case Bytecodes::_jsr: 2633 break; 2634 default: 2635 fatal(" invalid bytecode: %s", Bytecodes::name(iter.cur_bc())); 2636 } 2637 2638 GrowableArray<ciTypeFlow::Block*>* succs = tail->successors(); 2639 2640 if (!is_an_if) { 2641 assert(((wide ? iter.get_far_dest() : iter.get_dest()) == head()->start()) == (succs->at(ciTypeFlow::GOTO_TARGET) == head()), "branch should lead to loop head"); 2642 if (succs->at(ciTypeFlow::GOTO_TARGET) == head()) { 2643 _profiled_count = outer()->method()->scale_count(data->as_JumpData()->taken()); 2644 return _profiled_count; 2645 } 2646 } else { 2647 assert((iter.get_dest() == head()->start()) == (succs->at(ciTypeFlow::IF_TAKEN) == head()), "bytecode and CFG not consistent"); 2648 assert((tail->limit() == head()->start()) == (succs->at(ciTypeFlow::IF_NOT_TAKEN) == head()), "bytecode and CFG not consistent"); 2649 if (succs->at(ciTypeFlow::IF_TAKEN) == head()) { 2650 _profiled_count = outer()->method()->scale_count(data->as_JumpData()->taken()); 2651 return _profiled_count; 2652 } else if (succs->at(ciTypeFlow::IF_NOT_TAKEN) == head()) { 2653 _profiled_count = outer()->method()->scale_count(data->as_BranchData()->not_taken()); 2654 return _profiled_count; 2655 } 2656 } 2657 2658 _profiled_count = 0; 2659 return _profiled_count; 2660 } 2661 2662 bool ciTypeFlow::Loop::at_insertion_point(Loop* lp, Loop* current) { 2663 int lp_pre_order = lp->head()->pre_order(); 2664 if (current->head()->pre_order() < lp_pre_order) { 2665 return true; 2666 } else if (current->head()->pre_order() > lp_pre_order) { 2667 return false; 2668 } 2669 // In the case of a shared head, make the most frequent head/tail (as reported by profiling) the inner loop 2670 if (current->head() == lp->head()) { 2671 int lp_count = lp->profiled_count(); 2672 int current_count = current->profiled_count(); 2673 if (current_count < lp_count) { 2674 return true; 2675 } else if (current_count > lp_count) { 2676 return false; 2677 } 2678 } 2679 if (current->tail()->pre_order() > lp->tail()->pre_order()) { 2680 return true; 2681 } 2682 return false; 2683 } 2684 2685 // ------------------------------------------------------------------ 2686 // ciTypeFlow::Loop::sorted_merge 2687 // 2688 // Merge the branch lp into this branch, sorting on the loop head 2689 // pre_orders. Returns the leaf of the merged branch. 2690 // Child and sibling pointers will be setup later. 2691 // Sort is (looking from leaf towards the root) 2692 // descending on primary key: loop head's pre_order, and 2693 // ascending on secondary key: loop tail's pre_order. 2694 ciTypeFlow::Loop* ciTypeFlow::Loop::sorted_merge(Loop* lp) { 2695 Loop* leaf = this; 2696 Loop* prev = nullptr; 2697 Loop* current = leaf; 2698 while (lp != nullptr) { 2699 int lp_pre_order = lp->head()->pre_order(); 2700 // Find insertion point for "lp" 2701 while (current != nullptr) { 2702 if (current == lp) { 2703 return leaf; // Already in list 2704 } 2705 if (at_insertion_point(lp, current)) { 2706 break; 2707 } 2708 prev = current; 2709 current = current->parent(); 2710 } 2711 Loop* next_lp = lp->parent(); // Save future list of items to insert 2712 // Insert lp before current 2713 lp->set_parent(current); 2714 if (prev != nullptr) { 2715 prev->set_parent(lp); 2716 } else { 2717 leaf = lp; 2718 } 2719 prev = lp; // Inserted item is new prev[ious] 2720 lp = next_lp; // Next item to insert 2721 } 2722 return leaf; 2723 } 2724 2725 // ------------------------------------------------------------------ 2726 // ciTypeFlow::build_loop_tree 2727 // 2728 // Incrementally build loop tree. 2729 void ciTypeFlow::build_loop_tree(Block* blk) { 2730 assert(!blk->is_post_visited(), "precondition"); 2731 Loop* innermost = nullptr; // merge of loop tree branches over all successors 2732 2733 for (SuccIter iter(blk); !iter.done(); iter.next()) { 2734 Loop* lp = nullptr; 2735 Block* succ = iter.succ(); 2736 if (!succ->is_post_visited()) { 2737 // Found backedge since predecessor post visited, but successor is not 2738 assert(succ->pre_order() <= blk->pre_order(), "should be backedge"); 2739 2740 // Create a LoopNode to mark this loop. 2741 lp = new (arena()) Loop(succ, blk); 2742 if (succ->loop() == nullptr) 2743 succ->set_loop(lp); 2744 // succ->loop will be updated to innermost loop on a later call, when blk==succ 2745 2746 } else { // Nested loop 2747 lp = succ->loop(); 2748 2749 // If succ is loop head, find outer loop. 2750 while (lp != nullptr && lp->head() == succ) { 2751 lp = lp->parent(); 2752 } 2753 if (lp == nullptr) { 2754 // Infinite loop, it's parent is the root 2755 lp = loop_tree_root(); 2756 } 2757 } 2758 2759 // Check for irreducible loop. 2760 // Successor has already been visited. If the successor's loop head 2761 // has already been post-visited, then this is another entry into the loop. 2762 while (lp->head()->is_post_visited() && lp != loop_tree_root()) { 2763 _has_irreducible_entry = true; 2764 lp->set_irreducible(succ); 2765 if (!succ->is_on_work_list()) { 2766 // Assume irreducible entries need more data flow 2767 add_to_work_list(succ); 2768 } 2769 Loop* plp = lp->parent(); 2770 if (plp == nullptr) { 2771 // This only happens for some irreducible cases. The parent 2772 // will be updated during a later pass. 2773 break; 2774 } 2775 lp = plp; 2776 } 2777 2778 // Merge loop tree branch for all successors. 2779 innermost = innermost == nullptr ? lp : innermost->sorted_merge(lp); 2780 2781 } // end loop 2782 2783 if (innermost == nullptr) { 2784 assert(blk->successors()->length() == 0, "CFG exit"); 2785 blk->set_loop(loop_tree_root()); 2786 } else if (innermost->head() == blk) { 2787 // If loop header, complete the tree pointers 2788 if (blk->loop() != innermost) { 2789 #ifdef ASSERT 2790 assert(blk->loop()->head() == innermost->head(), "same head"); 2791 Loop* dl; 2792 for (dl = innermost; dl != nullptr && dl != blk->loop(); dl = dl->parent()); 2793 assert(dl == blk->loop(), "blk->loop() already in innermost list"); 2794 #endif 2795 blk->set_loop(innermost); 2796 } 2797 innermost->def_locals()->add(blk->def_locals()); 2798 Loop* l = innermost; 2799 Loop* p = l->parent(); 2800 while (p && l->head() == blk) { 2801 l->set_sibling(p->child()); // Put self on parents 'next child' 2802 p->set_child(l); // Make self the first child of parent 2803 p->def_locals()->add(l->def_locals()); 2804 l = p; // Walk up the parent chain 2805 p = l->parent(); 2806 } 2807 } else { 2808 blk->set_loop(innermost); 2809 innermost->def_locals()->add(blk->def_locals()); 2810 } 2811 } 2812 2813 // ------------------------------------------------------------------ 2814 // ciTypeFlow::Loop::contains 2815 // 2816 // Returns true if lp is nested loop. 2817 bool ciTypeFlow::Loop::contains(ciTypeFlow::Loop* lp) const { 2818 assert(lp != nullptr, ""); 2819 if (this == lp || head() == lp->head()) return true; 2820 int depth1 = depth(); 2821 int depth2 = lp->depth(); 2822 if (depth1 > depth2) 2823 return false; 2824 while (depth1 < depth2) { 2825 depth2--; 2826 lp = lp->parent(); 2827 } 2828 return this == lp; 2829 } 2830 2831 // ------------------------------------------------------------------ 2832 // ciTypeFlow::Loop::depth 2833 // 2834 // Loop depth 2835 int ciTypeFlow::Loop::depth() const { 2836 int dp = 0; 2837 for (Loop* lp = this->parent(); lp != nullptr; lp = lp->parent()) 2838 dp++; 2839 return dp; 2840 } 2841 2842 #ifndef PRODUCT 2843 // ------------------------------------------------------------------ 2844 // ciTypeFlow::Loop::print 2845 void ciTypeFlow::Loop::print(outputStream* st, int indent) const { 2846 for (int i = 0; i < indent; i++) st->print(" "); 2847 st->print("%d<-%d %s", 2848 is_root() ? 0 : this->head()->pre_order(), 2849 is_root() ? 0 : this->tail()->pre_order(), 2850 is_irreducible()?" irr":""); 2851 st->print(" defs: "); 2852 def_locals()->print_on(st, _head->outer()->method()->max_locals()); 2853 st->cr(); 2854 for (Loop* ch = child(); ch != nullptr; ch = ch->sibling()) 2855 ch->print(st, indent+2); 2856 } 2857 #endif 2858 2859 // ------------------------------------------------------------------ 2860 // ciTypeFlow::df_flow_types 2861 // 2862 // Perform the depth first type flow analysis. Helper for flow_types. 2863 void ciTypeFlow::df_flow_types(Block* start, 2864 bool do_flow, 2865 StateVector* temp_vector, 2866 JsrSet* temp_set) { 2867 int dft_len = 100; 2868 GrowableArray<Block*> stk(dft_len); 2869 2870 ciBlock* dummy = _method->get_method_blocks()->make_dummy_block(); 2871 JsrSet* root_set = new JsrSet(0); 2872 Block* root_head = new (arena()) Block(this, dummy, root_set); 2873 Block* root_tail = new (arena()) Block(this, dummy, root_set); 2874 root_head->set_pre_order(0); 2875 root_head->set_post_order(0); 2876 root_tail->set_pre_order(max_jint); 2877 root_tail->set_post_order(max_jint); 2878 set_loop_tree_root(new (arena()) Loop(root_head, root_tail)); 2879 2880 stk.push(start); 2881 2882 _next_pre_order = 0; // initialize pre_order counter 2883 _rpo_list = nullptr; 2884 int next_po = 0; // initialize post_order counter 2885 2886 // Compute RPO and the control flow graph 2887 int size; 2888 while ((size = stk.length()) > 0) { 2889 Block* blk = stk.top(); // Leave node on stack 2890 if (!blk->is_visited()) { 2891 // forward arc in graph 2892 assert (!blk->has_pre_order(), ""); 2893 blk->set_next_pre_order(); 2894 2895 if (_next_pre_order >= (int)Compile::current()->max_node_limit() / 2) { 2896 // Too many basic blocks. Bail out. 2897 // This can happen when try/finally constructs are nested to depth N, 2898 // and there is O(2**N) cloning of jsr bodies. See bug 4697245! 2899 // "MaxNodeLimit / 2" is used because probably the parser will 2900 // generate at least twice that many nodes and bail out. 2901 record_failure("too many basic blocks"); 2902 return; 2903 } 2904 if (do_flow) { 2905 flow_block(blk, temp_vector, temp_set); 2906 if (failing()) return; // Watch for bailouts. 2907 } 2908 } else if (!blk->is_post_visited()) { 2909 // cross or back arc 2910 for (SuccIter iter(blk); !iter.done(); iter.next()) { 2911 Block* succ = iter.succ(); 2912 if (!succ->is_visited()) { 2913 stk.push(succ); 2914 } 2915 } 2916 if (stk.length() == size) { 2917 // There were no additional children, post visit node now 2918 stk.pop(); // Remove node from stack 2919 2920 build_loop_tree(blk); 2921 blk->set_post_order(next_po++); // Assign post order 2922 prepend_to_rpo_list(blk); 2923 assert(blk->is_post_visited(), ""); 2924 2925 if (blk->is_loop_head() && !blk->is_on_work_list()) { 2926 // Assume loop heads need more data flow 2927 add_to_work_list(blk); 2928 } 2929 } 2930 } else { 2931 stk.pop(); // Remove post-visited node from stack 2932 } 2933 } 2934 } 2935 2936 // ------------------------------------------------------------------ 2937 // ciTypeFlow::flow_types 2938 // 2939 // Perform the type flow analysis, creating and cloning Blocks as 2940 // necessary. 2941 void ciTypeFlow::flow_types() { 2942 ResourceMark rm; 2943 StateVector* temp_vector = new StateVector(this); 2944 JsrSet* temp_set = new JsrSet(4); 2945 2946 // Create the method entry block. 2947 Block* start = block_at(start_bci(), temp_set); 2948 2949 // Load the initial state into it. 2950 const StateVector* start_state = get_start_state(); 2951 if (failing()) return; 2952 start->meet(start_state); 2953 2954 // Depth first visit 2955 df_flow_types(start, true /*do flow*/, temp_vector, temp_set); 2956 2957 if (failing()) return; 2958 assert(_rpo_list == start, "must be start"); 2959 2960 // Any loops found? 2961 if (loop_tree_root()->child() != nullptr && 2962 env()->comp_level() >= CompLevel_full_optimization) { 2963 // Loop optimizations are not performed on Tier1 compiles. 2964 2965 bool changed = clone_loop_heads(temp_vector, temp_set); 2966 2967 // If some loop heads were cloned, recompute postorder and loop tree 2968 if (changed) { 2969 loop_tree_root()->set_child(nullptr); 2970 for (Block* blk = _rpo_list; blk != nullptr;) { 2971 Block* next = blk->rpo_next(); 2972 blk->df_init(); 2973 blk = next; 2974 } 2975 df_flow_types(start, false /*no flow*/, temp_vector, temp_set); 2976 } 2977 } 2978 2979 if (CITraceTypeFlow) { 2980 tty->print_cr("\nLoop tree"); 2981 loop_tree_root()->print(); 2982 } 2983 2984 // Continue flow analysis until fixed point reached 2985 2986 debug_only(int max_block = _next_pre_order;) 2987 2988 while (!work_list_empty()) { 2989 Block* blk = work_list_next(); 2990 assert (blk->has_post_order(), "post order assigned above"); 2991 2992 flow_block(blk, temp_vector, temp_set); 2993 2994 assert (max_block == _next_pre_order, "no new blocks"); 2995 assert (!failing(), "no more bailouts"); 2996 } 2997 } 2998 2999 // ------------------------------------------------------------------ 3000 // ciTypeFlow::map_blocks 3001 // 3002 // Create the block map, which indexes blocks in reverse post-order. 3003 void ciTypeFlow::map_blocks() { 3004 assert(_block_map == nullptr, "single initialization"); 3005 int block_ct = _next_pre_order; 3006 _block_map = NEW_ARENA_ARRAY(arena(), Block*, block_ct); 3007 assert(block_ct == block_count(), ""); 3008 3009 Block* blk = _rpo_list; 3010 for (int m = 0; m < block_ct; m++) { 3011 int rpo = blk->rpo(); 3012 assert(rpo == m, "should be sequential"); 3013 _block_map[rpo] = blk; 3014 blk = blk->rpo_next(); 3015 } 3016 assert(blk == nullptr, "should be done"); 3017 3018 for (int j = 0; j < block_ct; j++) { 3019 assert(_block_map[j] != nullptr, "must not drop any blocks"); 3020 Block* block = _block_map[j]; 3021 // Remove dead blocks from successor lists: 3022 for (int e = 0; e <= 1; e++) { 3023 GrowableArray<Block*>* l = e? block->exceptions(): block->successors(); 3024 for (int k = 0; k < l->length(); k++) { 3025 Block* s = l->at(k); 3026 if (!s->has_post_order()) { 3027 if (CITraceTypeFlow) { 3028 tty->print("Removing dead %s successor of #%d: ", (e? "exceptional": "normal"), block->pre_order()); 3029 s->print_value_on(tty); 3030 tty->cr(); 3031 } 3032 l->remove(s); 3033 --k; 3034 } 3035 } 3036 } 3037 } 3038 } 3039 3040 // ------------------------------------------------------------------ 3041 // ciTypeFlow::get_block_for 3042 // 3043 // Find a block with this ciBlock which has a compatible JsrSet. 3044 // If no such block exists, create it, unless the option is no_create. 3045 // If the option is create_backedge_copy, always create a fresh backedge copy. 3046 ciTypeFlow::Block* ciTypeFlow::get_block_for(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs, CreateOption option) { 3047 Arena* a = arena(); 3048 GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex]; 3049 if (blocks == nullptr) { 3050 // Query only? 3051 if (option == no_create) return nullptr; 3052 3053 // Allocate the growable array. 3054 blocks = new (a) GrowableArray<Block*>(a, 4, 0, nullptr); 3055 _idx_to_blocklist[ciBlockIndex] = blocks; 3056 } 3057 3058 if (option != create_backedge_copy) { 3059 int len = blocks->length(); 3060 for (int i = 0; i < len; i++) { 3061 Block* block = blocks->at(i); 3062 if (!block->is_backedge_copy() && block->is_compatible_with(jsrs)) { 3063 return block; 3064 } 3065 } 3066 } 3067 3068 // Query only? 3069 if (option == no_create) return nullptr; 3070 3071 // We did not find a compatible block. Create one. 3072 Block* new_block = new (a) Block(this, _method->get_method_blocks()->block(ciBlockIndex), jsrs); 3073 if (option == create_backedge_copy) new_block->set_backedge_copy(true); 3074 blocks->append(new_block); 3075 return new_block; 3076 } 3077 3078 // ------------------------------------------------------------------ 3079 // ciTypeFlow::backedge_copy_count 3080 // 3081 int ciTypeFlow::backedge_copy_count(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs) const { 3082 GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex]; 3083 3084 if (blocks == nullptr) { 3085 return 0; 3086 } 3087 3088 int count = 0; 3089 int len = blocks->length(); 3090 for (int i = 0; i < len; i++) { 3091 Block* block = blocks->at(i); 3092 if (block->is_backedge_copy() && block->is_compatible_with(jsrs)) { 3093 count++; 3094 } 3095 } 3096 3097 return count; 3098 } 3099 3100 // ------------------------------------------------------------------ 3101 // ciTypeFlow::do_flow 3102 // 3103 // Perform type inference flow analysis. 3104 void ciTypeFlow::do_flow() { 3105 if (CITraceTypeFlow) { 3106 tty->print_cr("\nPerforming flow analysis on method"); 3107 method()->print(); 3108 if (is_osr_flow()) tty->print(" at OSR bci %d", start_bci()); 3109 tty->cr(); 3110 method()->print_codes(); 3111 } 3112 if (CITraceTypeFlow) { 3113 tty->print_cr("Initial CI Blocks"); 3114 print_on(tty); 3115 } 3116 flow_types(); 3117 // Watch for bailouts. 3118 if (failing()) { 3119 return; 3120 } 3121 3122 map_blocks(); 3123 3124 if (CIPrintTypeFlow || CITraceTypeFlow) { 3125 rpo_print_on(tty); 3126 } 3127 } 3128 3129 // ------------------------------------------------------------------ 3130 // ciTypeFlow::is_dominated_by 3131 // 3132 // Determine if the instruction at bci is dominated by the instruction at dom_bci. 3133 bool ciTypeFlow::is_dominated_by(int bci, int dom_bci) { 3134 assert(!method()->has_jsrs(), "jsrs are not supported"); 3135 3136 ResourceMark rm; 3137 JsrSet* jsrs = new ciTypeFlow::JsrSet(); 3138 int index = _method->get_method_blocks()->block_containing(bci)->index(); 3139 int dom_index = _method->get_method_blocks()->block_containing(dom_bci)->index(); 3140 Block* block = get_block_for(index, jsrs, ciTypeFlow::no_create); 3141 Block* dom_block = get_block_for(dom_index, jsrs, ciTypeFlow::no_create); 3142 3143 // Start block dominates all other blocks 3144 if (start_block()->rpo() == dom_block->rpo()) { 3145 return true; 3146 } 3147 3148 // Dominated[i] is true if block i is dominated by dom_block 3149 int num_blocks = block_count(); 3150 bool* dominated = NEW_RESOURCE_ARRAY(bool, num_blocks); 3151 for (int i = 0; i < num_blocks; ++i) { 3152 dominated[i] = true; 3153 } 3154 dominated[start_block()->rpo()] = false; 3155 3156 // Iterative dominator algorithm 3157 bool changed = true; 3158 while (changed) { 3159 changed = false; 3160 // Use reverse postorder iteration 3161 for (Block* blk = _rpo_list; blk != nullptr; blk = blk->rpo_next()) { 3162 if (blk->is_start()) { 3163 // Ignore start block 3164 continue; 3165 } 3166 // The block is dominated if it is the dominating block 3167 // itself or if all predecessors are dominated. 3168 int index = blk->rpo(); 3169 bool dom = (index == dom_block->rpo()); 3170 if (!dom) { 3171 // Check if all predecessors are dominated 3172 dom = true; 3173 for (int i = 0; i < blk->predecessors()->length(); ++i) { 3174 Block* pred = blk->predecessors()->at(i); 3175 if (!dominated[pred->rpo()]) { 3176 dom = false; 3177 break; 3178 } 3179 } 3180 } 3181 // Update dominator information 3182 if (dominated[index] != dom) { 3183 changed = true; 3184 dominated[index] = dom; 3185 } 3186 } 3187 } 3188 // block dominated by dom_block? 3189 return dominated[block->rpo()]; 3190 } 3191 3192 // ------------------------------------------------------------------ 3193 // ciTypeFlow::record_failure() 3194 // The ciTypeFlow object keeps track of failure reasons separately from the ciEnv. 3195 // This is required because there is not a 1-1 relation between the ciEnv and 3196 // the TypeFlow passes within a compilation task. For example, if the compiler 3197 // is considering inlining a method, it will request a TypeFlow. If that fails, 3198 // the compilation as a whole may continue without the inlining. Some TypeFlow 3199 // requests are not optional; if they fail the requestor is responsible for 3200 // copying the failure reason up to the ciEnv. (See Parse::Parse.) 3201 void ciTypeFlow::record_failure(const char* reason) { 3202 if (env()->log() != nullptr) { 3203 env()->log()->elem("failure reason='%s' phase='typeflow'", reason); 3204 } 3205 if (_failure_reason == nullptr) { 3206 // Record the first failure reason. 3207 _failure_reason = reason; 3208 } 3209 } 3210 3211 ciType* ciTypeFlow::mark_as_null_free(ciType* type) { 3212 // Wrap the type to carry the information that it is null-free 3213 return env()->make_null_free_wrapper(type); 3214 } 3215 3216 #ifndef PRODUCT 3217 void ciTypeFlow::print() const { print_on(tty); } 3218 3219 // ------------------------------------------------------------------ 3220 // ciTypeFlow::print_on 3221 void ciTypeFlow::print_on(outputStream* st) const { 3222 // Walk through CI blocks 3223 st->print_cr("********************************************************"); 3224 st->print ("TypeFlow for "); 3225 method()->name()->print_symbol_on(st); 3226 int limit_bci = code_size(); 3227 st->print_cr(" %d bytes", limit_bci); 3228 ciMethodBlocks* mblks = _method->get_method_blocks(); 3229 ciBlock* current = nullptr; 3230 for (int bci = 0; bci < limit_bci; bci++) { 3231 ciBlock* blk = mblks->block_containing(bci); 3232 if (blk != nullptr && blk != current) { 3233 current = blk; 3234 current->print_on(st); 3235 3236 GrowableArray<Block*>* blocks = _idx_to_blocklist[blk->index()]; 3237 int num_blocks = (blocks == nullptr) ? 0 : blocks->length(); 3238 3239 if (num_blocks == 0) { 3240 st->print_cr(" No Blocks"); 3241 } else { 3242 for (int i = 0; i < num_blocks; i++) { 3243 Block* block = blocks->at(i); 3244 block->print_on(st); 3245 } 3246 } 3247 st->print_cr("--------------------------------------------------------"); 3248 st->cr(); 3249 } 3250 } 3251 st->print_cr("********************************************************"); 3252 st->cr(); 3253 } 3254 3255 void ciTypeFlow::rpo_print_on(outputStream* st) const { 3256 st->print_cr("********************************************************"); 3257 st->print ("TypeFlow for "); 3258 method()->name()->print_symbol_on(st); 3259 int limit_bci = code_size(); 3260 st->print_cr(" %d bytes", limit_bci); 3261 for (Block* blk = _rpo_list; blk != nullptr; blk = blk->rpo_next()) { 3262 blk->print_on(st); 3263 st->print_cr("--------------------------------------------------------"); 3264 st->cr(); 3265 } 3266 st->print_cr("********************************************************"); 3267 st->cr(); 3268 } 3269 #endif