1 /*
  2  * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/shared/barrierSet.hpp"
 26 #include "gc/shared/c2/barrierSetC2.hpp"
 27 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 28 #include "gc/shared/gc_globals.hpp"
 29 #include "opto/arraycopynode.hpp"
 30 #include "opto/graphKit.hpp"
 31 #include "runtime/sharedRuntime.hpp"
 32 #include "utilities/macros.hpp"
 33 #include "utilities/powerOfTwo.hpp"
 34 
 35 const TypeFunc* ArrayCopyNode::_arraycopy_type_Type = nullptr;
 36 
 37 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 38   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 39     _kind(None),
 40     _alloc_tightly_coupled(alloc_tightly_coupled),
 41     _has_negative_length_guard(has_negative_length_guard),
 42     _arguments_validated(false),
 43     _src_type(TypeOopPtr::BOTTOM),
 44     _dest_type(TypeOopPtr::BOTTOM) {
 45   init_class_id(Class_ArrayCopy);
 46   init_flags(Flag_is_macro);
 47   C->add_macro_node(this);
 48 }
 49 
 50 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 51 
 52 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
 53                                    Node* src, Node* src_offset,
 54                                    Node* dest, Node* dest_offset,
 55                                    Node* length,
 56                                    bool alloc_tightly_coupled,
 57                                    bool has_negative_length_guard,
 58                                    Node* src_klass, Node* dest_klass,
 59                                    Node* src_length, Node* dest_length) {
 60 
 61   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled, has_negative_length_guard);
 62   kit->set_predefined_input_for_runtime_call(ac);
 63 
 64   ac->init_req(ArrayCopyNode::Src, src);
 65   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
 66   ac->init_req(ArrayCopyNode::Dest, dest);
 67   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
 68   ac->init_req(ArrayCopyNode::Length, length);
 69   ac->init_req(ArrayCopyNode::SrcLen, src_length);
 70   ac->init_req(ArrayCopyNode::DestLen, dest_length);
 71   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
 72   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
 73 
 74   if (may_throw) {
 75     ac->set_req(TypeFunc::I_O , kit->i_o());
 76     kit->add_safepoint_edges(ac, false);
 77   }
 78 
 79   return ac;
 80 }
 81 
 82 void ArrayCopyNode::connect_outputs(GraphKit* kit, bool deoptimize_on_exception) {
 83   kit->set_all_memory_call(this, true);
 84   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
 85   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
 86   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true, deoptimize_on_exception);
 87   kit->set_all_memory_call(this);
 88 }
 89 
 90 #ifndef PRODUCT
 91 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
 92 
 93 void ArrayCopyNode::dump_spec(outputStream *st) const {
 94   CallNode::dump_spec(st);
 95   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
 96 }
 97 
 98 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
 99   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
100 }
101 #endif
102 
103 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
104   // check that length is constant
105   Node* length = in(ArrayCopyNode::Length);
106   const Type* length_type = phase->type(length);
107 
108   if (length_type == Type::TOP) {
109     return -1;
110   }
111 
112   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
113 
114   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
115 }
116 
117 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
118   Node* src = in(ArrayCopyNode::Src);
119   const Type* src_type = phase->type(src);
120 
121   if (is_clonebasic()) {
122     if (src_type->isa_instptr()) {
123       const TypeInstPtr* inst_src = src_type->is_instptr();
124       ciInstanceKlass* ik = inst_src->instance_klass();
125       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
126       // fields into account. They are rare anyway so easier to simply
127       // skip instances with injected fields.
128       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
129         return -1;
130       }
131       int nb_fields = ik->nof_nonstatic_fields();
132       return nb_fields;
133     } else {
134       const TypeAryPtr* ary_src = src_type->isa_aryptr();
135       assert (ary_src != nullptr, "not an array or instance?");
136       // clone passes a length as a rounded number of longs. If we're
137       // cloning an array we'll do it element by element. If the
138       // length of the input array is constant, ArrayCopyNode::Length
139       // must be too. Note that the opposite does not need to hold,
140       // because different input array lengths (e.g. int arrays with
141       // 3 or 4 elements) might lead to the same length input
142       // (e.g. 2 double-words).
143       assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
144              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
145       if (ary_src->size()->is_con()) {
146         return ary_src->size()->get_con();
147       }
148       return -1;
149     }
150   }
151 
152   return get_length_if_constant(phase);
153 }
154 
155 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
156   // Pin the load: if this is an array load, it's going to be dependent on a condition that's not a range check for that
157   // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk floating
158   // above runtime checks that guarantee it is within bounds.
159   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY | C2_UNKNOWN_CONTROL_LOAD;
160   C2AccessValuePtr addr(adr, adr_type);
161   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
162   Node* res = bs->load_at(access, type);
163   ctl = access.ctl();
164   return res;
165 }
166 
167 void ArrayCopyNode::store(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, Node* val, const Type *type, BasicType bt) {
168   DecoratorSet decorators = C2_WRITE_ACCESS | IN_HEAP | C2_ARRAY_COPY;
169   if (is_alloc_tightly_coupled()) {
170     decorators |= C2_TIGHTLY_COUPLED_ALLOC;
171   }
172   C2AccessValuePtr addr(adr, adr_type);
173   C2AccessValue value(val, type);
174   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
175   bs->store_at(access, value);
176   ctl = access.ctl();
177 }
178 
179 
180 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
181   if (!is_clonebasic()) {
182     return nullptr;
183   }
184 
185   Node* base_src = in(ArrayCopyNode::Src);
186   Node* base_dest = in(ArrayCopyNode::Dest);
187   Node* ctl = in(TypeFunc::Control);
188   Node* in_mem = in(TypeFunc::Memory);
189 
190   const Type* src_type = phase->type(base_src);
191   const TypeInstPtr* inst_src = src_type->isa_instptr();
192   if (inst_src == nullptr) {
193     return nullptr;
194   }
195 
196   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
197   if (can_reshape) {
198     phase->is_IterGVN()->_worklist.push(mem);
199   }
200 
201 
202   ciInstanceKlass* ik = inst_src->instance_klass();
203 
204   if (!inst_src->klass_is_exact()) {
205     assert(!ik->is_interface(), "inconsistent klass hierarchy");
206     if (ik->has_subklass()) {
207       // Concurrent class loading.
208       // Fail fast and return NodeSentinel to indicate that the transform failed.
209       return NodeSentinel;
210     } else {
211       phase->C->dependencies()->assert_leaf_type(ik);
212     }
213   }
214 
215   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
216 
217   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
218   for (int i = 0; i < count; i++) {
219     ciField* field = ik->nonstatic_field_at(i);
220     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
221     Node* off = phase->MakeConX(field->offset_in_bytes());
222     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
223     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
224     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_src)->isa_ptr()),
225       "slice of address and input slice don't match");
226     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_dest)->isa_ptr()),
227       "slice of address and input slice don't match");
228     BasicType bt = field->layout_type();
229 
230     const Type *type;
231     if (bt == T_OBJECT) {
232       if (!field->type()->is_loaded()) {
233         type = TypeInstPtr::BOTTOM;
234       } else {
235         ciType* field_klass = field->type();
236         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
237       }
238     } else {
239       type = Type::get_const_basic_type(bt);
240     }
241 
242     Node* v = load(bs, phase, ctl, mem, next_src, adr_type, type, bt);
243     store(bs, phase, ctl, mem, next_dest, adr_type, v, type, bt);
244   }
245 
246   if (!finish_transform(phase, can_reshape, ctl, mem)) {
247     // Return NodeSentinel to indicate that the transform failed
248     return NodeSentinel;
249   }
250 
251   return mem;
252 }
253 
254 bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
255                                        Node*& adr_src,
256                                        Node*& base_src,
257                                        Node*& adr_dest,
258                                        Node*& base_dest,
259                                        BasicType& copy_type,
260                                        const Type*& value_type,
261                                        bool& disjoint_bases) {
262   base_src = in(ArrayCopyNode::Src);
263   base_dest = in(ArrayCopyNode::Dest);
264   const Type* src_type = phase->type(base_src);
265   const TypeAryPtr* ary_src = src_type->isa_aryptr();
266 
267   Node* src_offset = in(ArrayCopyNode::SrcPos);
268   Node* dest_offset = in(ArrayCopyNode::DestPos);
269 
270   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
271     const Type* dest_type = phase->type(base_dest);
272     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
273 
274     // newly allocated object is guaranteed to not overlap with source object
275     disjoint_bases = is_alloc_tightly_coupled();
276     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
277         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
278       // We don't know if arguments are arrays
279       return false;
280     }
281 
282     BasicType src_elem = ary_src->elem()->array_element_basic_type();
283     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
284     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
285     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
286 
287     if (src_elem != dest_elem || dest_elem == T_VOID) {
288       // We don't know if arguments are arrays of the same type
289       return false;
290     }
291 
292     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
293     if (bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) {
294       // It's an object array copy but we can't emit the card marking
295       // that is needed
296       return false;
297     }
298 
299     value_type = ary_src->elem();
300 
301     uint shift  = exact_log2(type2aelembytes(dest_elem));
302     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
303 
304     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
305     if (src_offset->is_top()) {
306       // Offset is out of bounds (the ArrayCopyNode will be removed)
307       return false;
308     }
309     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
310     if (dest_offset->is_top()) {
311       // Offset is out of bounds (the ArrayCopyNode will be removed)
312       if (can_reshape) {
313         // record src_offset, so it can be deleted later (if it is dead)
314         phase->is_IterGVN()->_worklist.push(src_offset);
315       }
316       return false;
317     }
318 
319     Node* hook = new Node(1);
320     hook->init_req(0, dest_offset);
321 
322     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
323 
324     hook->destruct(phase);
325 
326     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
327 
328     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
329     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
330 
331     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
332     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
333 
334     copy_type = dest_elem;
335   } else {
336     assert(ary_src != nullptr, "should be a clone");
337     assert(is_clonebasic(), "should be");
338 
339     disjoint_bases = true;
340 
341     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
342     if (is_reference_type(elem, true)) {
343       elem = T_OBJECT;
344     }
345 
346     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
347     if (bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) {
348       return false;
349     }
350 
351     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
352     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
353 
354     // The address is offsetted to an aligned address where a raw copy would start.
355     // If the clone copy is decomposed into load-stores - the address is adjusted to
356     // point at where the array starts.
357     const Type* toff = phase->type(src_offset);
358     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
359     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
360     assert(diff >= 0, "clone should not start after 1st array element");
361     if (diff > 0) {
362       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
363       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
364     }
365     copy_type = elem;
366     value_type = ary_src->elem();
367   }
368   return true;
369 }
370 
371 const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
372   if (atp == TypeOopPtr::BOTTOM) {
373     atp = phase->type(n)->isa_ptr();
374   }
375   // adjust atp to be the correct array element address type
376   return atp->add_offset(Type::OffsetBot);
377 }
378 
379 void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, int count, Node*& forward_ctl, Node*& backward_ctl) {
380   Node* ctl = in(TypeFunc::Control);
381   if (!disjoint_bases && count > 1) {
382     Node* src_offset = in(ArrayCopyNode::SrcPos);
383     Node* dest_offset = in(ArrayCopyNode::DestPos);
384     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
385     Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
386     Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
387     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
388 
389     phase->transform(iff);
390 
391     forward_ctl = phase->transform(new IfFalseNode(iff));
392     backward_ctl = phase->transform(new IfTrueNode(iff));
393   } else {
394     forward_ctl = ctl;
395   }
396 }
397 
398 Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
399                                         bool can_reshape,
400                                         Node*& forward_ctl,
401                                         Node* mem,
402                                         const TypePtr* atp_src,
403                                         const TypePtr* atp_dest,
404                                         Node* adr_src,
405                                         Node* base_src,
406                                         Node* adr_dest,
407                                         Node* base_dest,
408                                         BasicType copy_type,
409                                         const Type* value_type,
410                                         int count) {
411   if (!forward_ctl->is_top()) {
412     // copy forward
413     MergeMemNode* mm = MergeMemNode::make(mem);
414 
415     if (count > 0) {
416       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
417       Node* v = load(bs, phase, forward_ctl, mm, adr_src, atp_src, value_type, copy_type);
418       store(bs, phase, forward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
419       for (int i = 1; i < count; i++) {
420         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
421         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
422         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
423         v = load(bs, phase, forward_ctl, mm, next_src, atp_src, value_type, copy_type);
424         store(bs, phase, forward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
425       }
426     } else if (can_reshape) {
427       PhaseIterGVN* igvn = phase->is_IterGVN();
428       igvn->_worklist.push(adr_src);
429       igvn->_worklist.push(adr_dest);
430     }
431     return mm;
432   }
433   return phase->C->top();
434 }
435 
436 Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
437                                          bool can_reshape,
438                                          Node*& backward_ctl,
439                                          Node* mem,
440                                          const TypePtr* atp_src,
441                                          const TypePtr* atp_dest,
442                                          Node* adr_src,
443                                          Node* base_src,
444                                          Node* adr_dest,
445                                          Node* base_dest,
446                                          BasicType copy_type,
447                                          const Type* value_type,
448                                          int count) {
449   if (!backward_ctl->is_top()) {
450     // copy backward
451     MergeMemNode* mm = MergeMemNode::make(mem);
452 
453     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
454     assert(copy_type != T_OBJECT || !bs->array_copy_requires_gc_barriers(false, T_OBJECT, false, false, BarrierSetC2::Optimization), "only tightly coupled allocations for object arrays");
455 
456     if (count > 0) {
457       for (int i = count-1; i >= 1; i--) {
458         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
459         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
460         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
461         Node* v = load(bs, phase, backward_ctl, mm, next_src, atp_src, value_type, copy_type);
462         store(bs, phase, backward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
463       }
464       Node* v = load(bs, phase, backward_ctl, mm, adr_src, atp_src, value_type, copy_type);
465       store(bs, phase, backward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
466     } else if (can_reshape) {
467       PhaseIterGVN* igvn = phase->is_IterGVN();
468       igvn->_worklist.push(adr_src);
469       igvn->_worklist.push(adr_dest);
470     }
471     return phase->transform(mm);
472   }
473   return phase->C->top();
474 }
475 
476 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
477                                      Node* ctl, Node *mem) {
478   if (can_reshape) {
479     PhaseIterGVN* igvn = phase->is_IterGVN();
480     igvn->set_delay_transform(false);
481     if (is_clonebasic()) {
482       Node* out_mem = proj_out(TypeFunc::Memory);
483 
484       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
485       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
486           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
487         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
488         return false;
489       }
490 
491       igvn->replace_node(out_mem->raw_out(0), mem);
492 
493       Node* out_ctl = proj_out(TypeFunc::Control);
494       igvn->replace_node(out_ctl, ctl);
495     } else {
496       // replace fallthrough projections of the ArrayCopyNode by the
497       // new memory, control and the input IO.
498       CallProjections callprojs;
499       extract_projections(&callprojs, true, false);
500 
501       if (callprojs.fallthrough_ioproj != nullptr) {
502         igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
503       }
504       if (callprojs.fallthrough_memproj != nullptr) {
505         igvn->replace_node(callprojs.fallthrough_memproj, mem);
506       }
507       if (callprojs.fallthrough_catchproj != nullptr) {
508         igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
509       }
510 
511       // The ArrayCopyNode is not disconnected. It still has the
512       // projections for the exception case. Replace current
513       // ArrayCopyNode with a dummy new one with a top() control so
514       // that this part of the graph stays consistent but is
515       // eventually removed.
516 
517       set_req(0, phase->C->top());
518       remove_dead_region(phase, can_reshape);
519     }
520   } else {
521     if (in(TypeFunc::Control) != ctl) {
522       // we can't return new memory and control from Ideal at parse time
523       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
524       phase->record_for_igvn(this);
525       return false;
526     }
527   }
528   return true;
529 }
530 
531 
532 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
533   if (remove_dead_region(phase, can_reshape))  return this;
534 
535   if (StressArrayCopyMacroNode && !can_reshape) {
536     phase->record_for_igvn(this);
537     return nullptr;
538   }
539 
540   // See if it's a small array copy and we can inline it as
541   // loads/stores
542   // Here we can only do:
543   // - arraycopy if all arguments were validated before and we don't
544   // need card marking
545   // - clone for which we don't need to do card marking
546 
547   if (!is_clonebasic() && !is_arraycopy_validated() &&
548       !is_copyofrange_validated() && !is_copyof_validated()) {
549     return nullptr;
550   }
551 
552   assert(in(TypeFunc::Control) != nullptr &&
553          in(TypeFunc::Memory) != nullptr &&
554          in(ArrayCopyNode::Src) != nullptr &&
555          in(ArrayCopyNode::Dest) != nullptr &&
556          in(ArrayCopyNode::Length) != nullptr &&
557          in(ArrayCopyNode::SrcPos) != nullptr &&
558          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
559 
560   if (in(TypeFunc::Control)->is_top() ||
561       in(TypeFunc::Memory)->is_top() ||
562       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
563       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
564       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
565       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
566     return nullptr;
567   }
568 
569   int count = get_count(phase);
570 
571   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
572     return nullptr;
573   }
574 
575   Node* mem = try_clone_instance(phase, can_reshape, count);
576   if (mem != nullptr) {
577     return (mem == NodeSentinel) ? nullptr : mem;
578   }
579 
580   Node* adr_src = nullptr;
581   Node* base_src = nullptr;
582   Node* adr_dest = nullptr;
583   Node* base_dest = nullptr;
584   BasicType copy_type = T_ILLEGAL;
585   const Type* value_type = nullptr;
586   bool disjoint_bases = false;
587 
588   if (!prepare_array_copy(phase, can_reshape,
589                           adr_src, base_src, adr_dest, base_dest,
590                           copy_type, value_type, disjoint_bases)) {
591     assert(adr_src == nullptr, "no node can be left behind");
592     assert(adr_dest == nullptr, "no node can be left behind");
593     return nullptr;
594   }
595 
596   Node* src = in(ArrayCopyNode::Src);
597   Node* dest = in(ArrayCopyNode::Dest);
598   const TypePtr* atp_src = get_address_type(phase, _src_type, src);
599   const TypePtr* atp_dest = get_address_type(phase, _dest_type, dest);
600   Node* in_mem = in(TypeFunc::Memory);
601 
602   if (can_reshape) {
603     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
604     phase->is_IterGVN()->set_delay_transform(true);
605   }
606 
607   Node* backward_ctl = phase->C->top();
608   Node* forward_ctl = phase->C->top();
609   array_copy_test_overlap(phase, can_reshape, disjoint_bases, count, forward_ctl, backward_ctl);
610 
611   Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
612                                          in_mem,
613                                          atp_src, atp_dest,
614                                          adr_src, base_src, adr_dest, base_dest,
615                                          copy_type, value_type, count);
616 
617   Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
618                                            in_mem,
619                                            atp_src, atp_dest,
620                                            adr_src, base_src, adr_dest, base_dest,
621                                            copy_type, value_type, count);
622 
623   Node* ctl = nullptr;
624   if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
625     ctl = new RegionNode(3);
626     ctl->init_req(1, forward_ctl);
627     ctl->init_req(2, backward_ctl);
628     ctl = phase->transform(ctl);
629     MergeMemNode* forward_mm = forward_mem->as_MergeMem();
630     MergeMemNode* backward_mm = backward_mem->as_MergeMem();
631     for (MergeMemStream mms(forward_mm, backward_mm); mms.next_non_empty2(); ) {
632       if (mms.memory() != mms.memory2()) {
633         Node* phi = new PhiNode(ctl, Type::MEMORY, phase->C->get_adr_type(mms.alias_idx()));
634         phi->init_req(1, mms.memory());
635         phi->init_req(2, mms.memory2());
636         phi = phase->transform(phi);
637         mms.set_memory(phi);
638       }
639     }
640     mem = forward_mem;
641   } else if (!forward_ctl->is_top()) {
642     ctl = forward_ctl;
643     mem = forward_mem;
644   } else {
645     assert(!backward_ctl->is_top(), "no copy?");
646     ctl = backward_ctl;
647     mem = backward_mem;
648   }
649 
650   if (can_reshape) {
651     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
652     phase->is_IterGVN()->set_delay_transform(false);
653   }
654 
655   if (!finish_transform(phase, can_reshape, ctl, mem)) {
656     if (can_reshape) {
657       // put in worklist, so that if it happens to be dead it is removed
658       phase->is_IterGVN()->_worklist.push(mem);
659     }
660     return nullptr;
661   }
662 
663   return mem;
664 }
665 
666 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
667   Node* dest = in(ArrayCopyNode::Dest);
668   if (dest->is_top()) {
669     return false;
670   }
671   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
672   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
673   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
674          _src_type->is_known_instance(), "result of EA not recorded");
675 
676   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
677     assert(_dest_type == TypeOopPtr::BOTTOM || _dest_type->is_known_instance(), "result of EA is known instance");
678     return t_oop->instance_id() == _dest_type->instance_id();
679   }
680 
681   return CallNode::may_modify_arraycopy_helper(dest_t, t_oop, phase);
682 }
683 
684 bool ArrayCopyNode::may_modify_helper(const TypeOopPtr* t_oop, Node* n, PhaseValues* phase, CallNode*& call) {
685   if (n != nullptr &&
686       n->is_Call() &&
687       n->as_Call()->may_modify(t_oop, phase) &&
688       (n->as_Call()->is_ArrayCopy() || n->as_Call()->is_call_to_arraycopystub())) {
689     call = n->as_Call();
690     return true;
691   }
692   return false;
693 }
694 
695 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, MemBarNode* mb, PhaseValues* phase, ArrayCopyNode*& ac) {
696   Node* c = mb->in(0);
697 
698   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
699   // step over g1 gc barrier if we're at e.g. a clone with ReduceInitialCardMarks off
700   c = bs->step_over_gc_barrier(c);
701 
702   CallNode* call = nullptr;
703   guarantee(c != nullptr, "step_over_gc_barrier failed, there must be something to step to.");
704   if (c->is_Region()) {
705     for (uint i = 1; i < c->req(); i++) {
706       if (c->in(i) != nullptr) {
707         Node* n = c->in(i)->in(0);
708         if (may_modify_helper(t_oop, n, phase, call)) {
709           ac = call->isa_ArrayCopy();
710           assert(c == mb->in(0), "only for clone");
711           return true;
712         }
713       }
714     }
715   } else if (may_modify_helper(t_oop, c->in(0), phase, call)) {
716     ac = call->isa_ArrayCopy();
717 #ifdef ASSERT
718     bool use_ReduceInitialCardMarks = BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
719       static_cast<CardTableBarrierSetC2*>(bs)->use_ReduceInitialCardMarks();
720     assert(c == mb->in(0) || (ac != nullptr && ac->is_clonebasic() && !use_ReduceInitialCardMarks), "only for clone");
721 #endif
722     return true;
723   } else if (mb->trailing_partial_array_copy()) {
724     return true;
725   }
726 
727   return false;
728 }
729 
730 // Does this array copy modify offsets between offset_lo and offset_hi
731 // in the destination array
732 // if must_modify is false, return true if the copy could write
733 // between offset_lo and offset_hi
734 // if must_modify is true, return true if the copy is guaranteed to
735 // write between offset_lo and offset_hi
736 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
737   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
738 
739   Node* dest = in(Dest);
740   Node* dest_pos = in(DestPos);
741   Node* len = in(Length);
742 
743   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
744   const TypeInt *len_t = phase->type(len)->isa_int();
745   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
746 
747   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
748     return !must_modify;
749   }
750 
751   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
752   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
753 
754   uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
755   uint elemsize = type2aelembytes(ary_elem);
756 
757   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
758   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
759   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
760   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
761 
762   if (must_modify) {
763     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
764       return true;
765     }
766   } else {
767     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
768       return true;
769     }
770   }
771   return false;
772 }
773 
774 // As an optimization, choose optimum vector size for copy length known at compile time.
775 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, int const_len) {
776   int lane_count = ArrayOperationPartialInlineSize/type2aelembytes(type);
777   if (const_len > 0) {
778     int size_in_bytes = const_len * type2aelembytes(type);
779     if (size_in_bytes <= 16)
780       lane_count = 16/type2aelembytes(type);
781     else if (size_in_bytes > 16 && size_in_bytes <= 32)
782       lane_count = 32/type2aelembytes(type);
783   }
784   return lane_count;
785 }