6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compileLog.hpp"
26 #include "ci/bcEscapeAnalyzer.hpp"
27 #include "compiler/oopMap.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/c2/barrierSetC2.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "opto/callGenerator.hpp"
32 #include "opto/callnode.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/convertnode.hpp"
35 #include "opto/escape.hpp"
36 #include "opto/locknode.hpp"
37 #include "opto/machnode.hpp"
38 #include "opto/matcher.hpp"
39 #include "opto/parse.hpp"
40 #include "opto/regalloc.hpp"
41 #include "opto/regmask.hpp"
42 #include "opto/rootnode.hpp"
43 #include "opto/runtime.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "utilities/powerOfTwo.hpp"
46 #include "code/vmreg.hpp"
47
48 // Portions of code courtesy of Clifford Click
49
50 // Optimization - Graph Style
51
52 //=============================================================================
53 uint StartNode::size_of() const { return sizeof(*this); }
54 bool StartNode::cmp( const Node &n ) const
55 { return _domain == ((StartNode&)n)._domain; }
56 const Type *StartNode::bottom_type() const { return _domain; }
57 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
58 #ifndef PRODUCT
59 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
60 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
61 #endif
62
63 //------------------------------Ideal------------------------------------------
64 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
65 return remove_dead_region(phase, can_reshape) ? this : nullptr;
66 }
67
68 //------------------------------calling_convention-----------------------------
69 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
70 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
71 }
72
73 //------------------------------Registers--------------------------------------
74 const RegMask &StartNode::in_RegMask(uint) const {
75 return RegMask::Empty;
76 }
77
78 //------------------------------match------------------------------------------
79 // Construct projections for incoming parameters, and their RegMask info
80 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
81 switch (proj->_con) {
82 case TypeFunc::Control:
83 case TypeFunc::I_O:
84 case TypeFunc::Memory:
85 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
86 case TypeFunc::FramePtr:
87 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
88 case TypeFunc::ReturnAdr:
89 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
90 case TypeFunc::Parms:
91 default: {
92 uint parm_num = proj->_con - TypeFunc::Parms;
93 const Type *t = _domain->field_at(proj->_con);
94 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
95 return new ConNode(Type::TOP);
96 uint ideal_reg = t->ideal_reg();
97 RegMask &rm = match->_calling_convention_mask[parm_num];
98 return new MachProjNode(this,proj->_con,rm,ideal_reg);
99 }
100 }
101 return nullptr;
102 }
103
104 //------------------------------StartOSRNode----------------------------------
105 // The method start node for an on stack replacement adapter
106
107 //------------------------------osr_domain-----------------------------
108 const TypeTuple *StartOSRNode::osr_domain() {
109 const Type **fields = TypeTuple::fields(2);
110 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
111
112 return TypeTuple::make(TypeFunc::Parms+1, fields);
113 }
114
115 //=============================================================================
116 const char * const ParmNode::names[TypeFunc::Parms+1] = {
117 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
118 };
119
120 #ifndef PRODUCT
121 void ParmNode::dump_spec(outputStream *st) const {
122 if( _con < TypeFunc::Parms ) {
123 st->print("%s", names[_con]);
124 } else {
125 st->print("Parm%d: ",_con-TypeFunc::Parms);
126 // Verbose and WizardMode dump bottom_type for all nodes
127 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
128 }
129 }
130
131 void ParmNode::dump_compact_spec(outputStream *st) const {
132 if (_con < TypeFunc::Parms) {
133 st->print("%s", names[_con]);
134 } else {
480 if (cik->is_instance_klass()) {
481 cik->print_name_on(st);
482 iklass = cik->as_instance_klass();
483 } else if (cik->is_type_array_klass()) {
484 cik->as_array_klass()->base_element_type()->print_name_on(st);
485 st->print("[%d]", spobj->n_fields());
486 } else if (cik->is_obj_array_klass()) {
487 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
488 if (cie->is_instance_klass()) {
489 cie->print_name_on(st);
490 } else if (cie->is_type_array_klass()) {
491 cie->as_array_klass()->base_element_type()->print_name_on(st);
492 } else {
493 ShouldNotReachHere();
494 }
495 st->print("[%d]", spobj->n_fields());
496 int ndim = cik->as_array_klass()->dimension() - 1;
497 while (ndim-- > 0) {
498 st->print("[]");
499 }
500 }
501 st->print("={");
502 uint nf = spobj->n_fields();
503 if (nf > 0) {
504 uint first_ind = spobj->first_index(mcall->jvms());
505 Node* fld_node = mcall->in(first_ind);
506 ciField* cifield;
507 if (iklass != nullptr) {
508 st->print(" [");
509 cifield = iklass->nonstatic_field_at(0);
510 cifield->print_name_on(st);
511 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
512 } else {
513 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
514 }
515 for (uint j = 1; j < nf; j++) {
516 fld_node = mcall->in(first_ind+j);
517 if (iklass != nullptr) {
518 st->print(", [");
519 cifield = iklass->nonstatic_field_at(j);
520 cifield->print_name_on(st);
521 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
522 } else {
523 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
524 }
525 }
526 }
527 st->print(" }");
528 }
529 }
530 st->cr();
531 if (caller() != nullptr) caller()->format(regalloc, n, st);
532 }
533
534
535 void JVMState::dump_spec(outputStream *st) const {
536 if (_method != nullptr) {
537 bool printed = false;
538 if (!Verbose) {
539 // The JVMS dumps make really, really long lines.
540 // Take out the most boring parts, which are the package prefixes.
720 tf()->dump_on(st);
721 }
722 if (_cnt != COUNT_UNKNOWN) {
723 st->print(" C=%f", _cnt);
724 }
725 const Node* const klass_node = in(KlassNode);
726 if (klass_node != nullptr) {
727 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
728
729 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
730 st->print(" allocationKlass:");
731 klass_ptr->exact_klass()->print_name_on(st);
732 }
733 }
734 if (jvms() != nullptr) {
735 jvms()->dump_spec(st);
736 }
737 }
738 #endif
739
740 const Type *CallNode::bottom_type() const { return tf()->range(); }
741 const Type* CallNode::Value(PhaseGVN* phase) const {
742 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
743 return Type::TOP;
744 }
745 return tf()->range();
746 }
747
748 //------------------------------calling_convention-----------------------------
749 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
750 // Use the standard compiler calling convention
751 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
752 }
753
754
755 //------------------------------match------------------------------------------
756 // Construct projections for control, I/O, memory-fields, ..., and
757 // return result(s) along with their RegMask info
758 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
759 switch (proj->_con) {
760 case TypeFunc::Control:
761 case TypeFunc::I_O:
762 case TypeFunc::Memory:
763 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
764
765 case TypeFunc::Parms+1: // For LONG & DOUBLE returns
766 assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
767 // 2nd half of doubles and longs
768 return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
769
770 case TypeFunc::Parms: { // Normal returns
771 uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
772 OptoRegPair regs = Opcode() == Op_CallLeafVector
773 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine
774 : is_CallRuntime()
775 ? match->c_return_value(ideal_reg) // Calls into C runtime
776 : match-> return_value(ideal_reg); // Calls into compiled Java code
777 RegMask rm = RegMask(regs.first());
778
779 if (Opcode() == Op_CallLeafVector) {
780 // If the return is in vector, compute appropriate regmask taking into account the whole range
781 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
782 if(OptoReg::is_valid(regs.second())) {
783 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
784 rm.Insert(r);
785 }
786 }
787 }
788 }
789
790 if( OptoReg::is_valid(regs.second()) )
791 rm.Insert( regs.second() );
792 return new MachProjNode(this,proj->_con,rm,ideal_reg);
793 }
794
795 case TypeFunc::ReturnAdr:
796 case TypeFunc::FramePtr:
797 default:
798 ShouldNotReachHere();
799 }
800 return nullptr;
801 }
802
803 // Do we Match on this edge index or not? Match no edges
804 uint CallNode::match_edge(uint idx) const {
805 return 0;
806 }
807
808 //
809 // Determine whether the call could modify the field of the specified
810 // instance at the specified offset.
811 //
812 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
813 assert((t_oop != nullptr), "sanity");
814 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
815 const TypeTuple* args = _tf->domain();
816 Node* dest = nullptr;
817 // Stubs that can be called once an ArrayCopyNode is expanded have
818 // different signatures. Look for the second pointer argument,
819 // that is the destination of the copy.
820 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
821 if (args->field_at(i)->isa_ptr()) {
822 j++;
823 if (j == 2) {
824 dest = in(i);
825 break;
826 }
827 }
828 }
829 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
830 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
831 return true;
832 }
833 return false;
834 }
835 if (t_oop->is_known_instance()) {
844 Node* proj = proj_out_or_null(TypeFunc::Parms);
845 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
846 return false;
847 }
848 }
849 if (is_CallJava() && as_CallJava()->method() != nullptr) {
850 ciMethod* meth = as_CallJava()->method();
851 if (meth->is_getter()) {
852 return false;
853 }
854 // May modify (by reflection) if an boxing object is passed
855 // as argument or returned.
856 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
857 if (proj != nullptr) {
858 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
859 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
860 (inst_t->instance_klass() == boxing_klass))) {
861 return true;
862 }
863 }
864 const TypeTuple* d = tf()->domain();
865 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
866 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
867 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
868 (inst_t->instance_klass() == boxing_klass))) {
869 return true;
870 }
871 }
872 return false;
873 }
874 }
875 return true;
876 }
877
878 // Does this call have a direct reference to n other than debug information?
879 bool CallNode::has_non_debug_use(Node *n) {
880 const TypeTuple * d = tf()->domain();
881 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
882 Node *arg = in(i);
883 if (arg == n) {
884 return true;
885 }
886 }
887 return false;
888 }
889
890 // Returns the unique CheckCastPP of a call
891 // or 'this' if there are several CheckCastPP or unexpected uses
892 // or returns null if there is no one.
893 Node *CallNode::result_cast() {
894 Node *cast = nullptr;
895
896 Node *p = proj_out_or_null(TypeFunc::Parms);
897 if (p == nullptr)
898 return nullptr;
899
900 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
901 Node *use = p->fast_out(i);
902 if (use->is_CheckCastPP()) {
903 if (cast != nullptr) {
904 return this; // more than 1 CheckCastPP
905 }
906 cast = use;
907 } else if (!use->is_Initialize() &&
908 !use->is_AddP() &&
909 use->Opcode() != Op_MemBarStoreStore) {
910 // Expected uses are restricted to a CheckCastPP, an Initialize
911 // node, a MemBarStoreStore (clone) and AddP nodes. If we
912 // encounter any other use (a Phi node can be seen in rare
913 // cases) return this to prevent incorrect optimizations.
914 return this;
915 }
916 }
917 return cast;
918 }
919
920
921 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
922 projs->fallthrough_proj = nullptr;
923 projs->fallthrough_catchproj = nullptr;
924 projs->fallthrough_ioproj = nullptr;
925 projs->catchall_ioproj = nullptr;
926 projs->catchall_catchproj = nullptr;
927 projs->fallthrough_memproj = nullptr;
928 projs->catchall_memproj = nullptr;
929 projs->resproj = nullptr;
930 projs->exobj = nullptr;
931
932 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
933 ProjNode *pn = fast_out(i)->as_Proj();
934 if (pn->outcnt() == 0) continue;
935 switch (pn->_con) {
936 case TypeFunc::Control:
937 {
938 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
939 projs->fallthrough_proj = pn;
940 const Node* cn = pn->unique_ctrl_out_or_null();
941 if (cn != nullptr && cn->is_Catch()) {
942 ProjNode *cpn = nullptr;
943 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
944 cpn = cn->fast_out(k)->as_Proj();
945 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
946 if (cpn->_con == CatchProjNode::fall_through_index)
947 projs->fallthrough_catchproj = cpn;
948 else {
949 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
950 projs->catchall_catchproj = cpn;
956 case TypeFunc::I_O:
957 if (pn->_is_io_use)
958 projs->catchall_ioproj = pn;
959 else
960 projs->fallthrough_ioproj = pn;
961 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
962 Node* e = pn->out(j);
963 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
964 assert(projs->exobj == nullptr, "only one");
965 projs->exobj = e;
966 }
967 }
968 break;
969 case TypeFunc::Memory:
970 if (pn->_is_io_use)
971 projs->catchall_memproj = pn;
972 else
973 projs->fallthrough_memproj = pn;
974 break;
975 case TypeFunc::Parms:
976 projs->resproj = pn;
977 break;
978 default:
979 assert(false, "unexpected projection from allocation node.");
980 }
981 }
982
983 // The resproj may not exist because the result could be ignored
984 // and the exception object may not exist if an exception handler
985 // swallows the exception but all the other must exist and be found.
986 assert(projs->fallthrough_proj != nullptr, "must be found");
987 do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
988 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
989 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found");
990 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found");
991 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found");
992 if (separate_io_proj) {
993 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found");
994 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found");
995 }
996 }
997
998 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
999 #ifdef ASSERT
1000 // Validate attached generator
1001 CallGenerator* cg = generator();
1002 if (cg != nullptr) {
1003 assert((is_CallStaticJava() && cg->is_mh_late_inline()) ||
1004 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1005 }
1006 #endif // ASSERT
1007 return SafePointNode::Ideal(phase, can_reshape);
1008 }
1009
1010 bool CallNode::is_call_to_arraycopystub() const {
1011 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1012 return true;
1013 }
1014 return false;
1015 }
1016
1017 //=============================================================================
1018 uint CallJavaNode::size_of() const { return sizeof(*this); }
1019 bool CallJavaNode::cmp( const Node &n ) const {
1020 CallJavaNode &call = (CallJavaNode&)n;
1021 return CallNode::cmp(call) && _method == call._method &&
1022 _override_symbolic_info == call._override_symbolic_info;
1023 }
1024
1025 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1026 // Copy debug information and adjust JVMState information
1027 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
1028 uint new_dbg_start = tf()->domain()->cnt();
1029 int jvms_adj = new_dbg_start - old_dbg_start;
1030 assert (new_dbg_start == req(), "argument count mismatch");
1031 Compile* C = phase->C;
1032
1033 // SafePointScalarObject node could be referenced several times in debug info.
1034 // Use Dict to record cloned nodes.
1035 Dict* sosn_map = new Dict(cmpkey,hashkey);
1036 for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1037 Node* old_in = sfpt->in(i);
1038 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1039 if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1040 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1041 bool new_node;
1042 Node* new_in = old_sosn->clone(sosn_map, new_node);
1043 if (new_node) { // New node?
1044 new_in->set_req(0, C->root()); // reset control edge
1045 new_in = phase->transform(new_in); // Register new node.
1046 }
1047 old_in = new_in;
1048 }
1049 add_req(old_in);
1050 }
1051
1052 // JVMS may be shared so clone it before we modify it
1053 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1054 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1055 jvms->set_map(this);
1056 jvms->set_locoff(jvms->locoff()+jvms_adj);
1057 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1058 jvms->set_monoff(jvms->monoff()+jvms_adj);
1059 jvms->set_scloff(jvms->scloff()+jvms_adj);
1060 jvms->set_endoff(jvms->endoff()+jvms_adj);
1061 }
1062 }
1063
1064 #ifdef ASSERT
1065 bool CallJavaNode::validate_symbolic_info() const {
1066 if (method() == nullptr) {
1067 return true; // call into runtime or uncommon trap
1068 }
1069 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1070 ciMethod* callee = method();
1071 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1072 assert(override_symbolic_info(), "should be set");
1073 }
1074 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1075 return true;
1076 }
1077 #endif
1078
1079 #ifndef PRODUCT
1080 void CallJavaNode::dump_spec(outputStream* st) const {
1081 if( _method ) _method->print_short_name(st);
1082 CallNode::dump_spec(st);
1083 }
1084
1085 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1086 if (_method) {
1087 _method->print_short_name(st);
1088 } else {
1089 st->print("<?>");
1090 }
1091 }
1092 #endif
1093
1094 //=============================================================================
1095 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1096 bool CallStaticJavaNode::cmp( const Node &n ) const {
1097 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1098 return CallJavaNode::cmp(call);
1099 }
1100
1101 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1102 CallGenerator* cg = generator();
1103 if (can_reshape && cg != nullptr) {
1104 assert(IncrementalInlineMH, "required");
1105 assert(cg->call_node() == this, "mismatch");
1106 assert(cg->is_mh_late_inline(), "not virtual");
1107
1108 // Check whether this MH handle call becomes a candidate for inlining.
1109 ciMethod* callee = cg->method();
1110 vmIntrinsics::ID iid = callee->intrinsic_id();
1111 if (iid == vmIntrinsics::_invokeBasic) {
1112 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1113 phase->C->prepend_late_inline(cg);
1114 set_generator(nullptr);
1115 }
1116 } else if (iid == vmIntrinsics::_linkToNative) {
1117 // never retry
1118 } else {
1119 assert(callee->has_member_arg(), "wrong type of call?");
1120 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1121 phase->C->prepend_late_inline(cg);
1134
1135 //----------------------------uncommon_trap_request----------------------------
1136 // If this is an uncommon trap, return the request code, else zero.
1137 int CallStaticJavaNode::uncommon_trap_request() const {
1138 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1139 }
1140 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1141 #ifndef PRODUCT
1142 if (!(call->req() > TypeFunc::Parms &&
1143 call->in(TypeFunc::Parms) != nullptr &&
1144 call->in(TypeFunc::Parms)->is_Con() &&
1145 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1146 assert(in_dump() != 0, "OK if dumping");
1147 tty->print("[bad uncommon trap]");
1148 return 0;
1149 }
1150 #endif
1151 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1152 }
1153
1154 #ifndef PRODUCT
1155 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1156 st->print("# Static ");
1157 if (_name != nullptr) {
1158 st->print("%s", _name);
1159 int trap_req = uncommon_trap_request();
1160 if (trap_req != 0) {
1161 char buf[100];
1162 st->print("(%s)",
1163 Deoptimization::format_trap_request(buf, sizeof(buf),
1164 trap_req));
1165 }
1166 st->print(" ");
1167 }
1168 CallJavaNode::dump_spec(st);
1169 }
1170
1171 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1172 if (_method) {
1173 _method->print_short_name(st);
1238 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1239 bool CallRuntimeNode::cmp( const Node &n ) const {
1240 CallRuntimeNode &call = (CallRuntimeNode&)n;
1241 return CallNode::cmp(call) && !strcmp(_name,call._name);
1242 }
1243 #ifndef PRODUCT
1244 void CallRuntimeNode::dump_spec(outputStream *st) const {
1245 st->print("# ");
1246 st->print("%s", _name);
1247 CallNode::dump_spec(st);
1248 }
1249 #endif
1250 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1251 bool CallLeafVectorNode::cmp( const Node &n ) const {
1252 CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1253 return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1254 }
1255
1256 //------------------------------calling_convention-----------------------------
1257 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1258 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1259 }
1260
1261 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1262 #ifdef ASSERT
1263 assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1264 "return vector size must match");
1265 const TypeTuple* d = tf()->domain();
1266 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1267 Node* arg = in(i);
1268 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1269 "vector argument size must match");
1270 }
1271 #endif
1272
1273 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1274 }
1275
1276 //=============================================================================
1277 //------------------------------calling_convention-----------------------------
1278
1279
1280 //=============================================================================
1281 #ifndef PRODUCT
1282 void CallLeafNode::dump_spec(outputStream *st) const {
1283 st->print("# ");
1284 st->print("%s", _name);
1285 CallNode::dump_spec(st);
1286 }
1287 #endif
1288
1289 //=============================================================================
1290
1291 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1292 assert(verify_jvms(jvms), "jvms must match");
1293 int loc = jvms->locoff() + idx;
1294 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1295 // If current local idx is top then local idx - 1 could
1296 // be a long/double that needs to be killed since top could
1297 // represent the 2nd half of the long/double.
1298 uint ideal = in(loc -1)->ideal_reg();
1299 if (ideal == Op_RegD || ideal == Op_RegL) {
1300 // set other (low index) half to top
1301 set_req(loc - 1, in(loc));
1302 }
1303 }
1304 set_req(loc, c);
1305 }
1306
1307 uint SafePointNode::size_of() const { return sizeof(*this); }
1308 bool SafePointNode::cmp( const Node &n ) const {
1319 }
1320 }
1321
1322
1323 //----------------------------next_exception-----------------------------------
1324 SafePointNode* SafePointNode::next_exception() const {
1325 if (len() == req()) {
1326 return nullptr;
1327 } else {
1328 Node* n = in(req());
1329 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1330 return (SafePointNode*) n;
1331 }
1332 }
1333
1334
1335 //------------------------------Ideal------------------------------------------
1336 // Skip over any collapsed Regions
1337 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1338 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1339 return remove_dead_region(phase, can_reshape) ? this : nullptr;
1340 }
1341
1342 //------------------------------Identity---------------------------------------
1343 // Remove obviously duplicate safepoints
1344 Node* SafePointNode::Identity(PhaseGVN* phase) {
1345
1346 // If you have back to back safepoints, remove one
1347 if (in(TypeFunc::Control)->is_SafePoint()) {
1348 Node* out_c = unique_ctrl_out_or_null();
1349 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1350 // outer loop's safepoint could confuse removal of the outer loop.
1351 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1352 return in(TypeFunc::Control);
1353 }
1354 }
1355
1356 // Transforming long counted loops requires a safepoint node. Do not
1357 // eliminate a safepoint until loop opts are over.
1358 if (in(0)->is_Proj() && !phase->C->major_progress()) {
1359 Node *n0 = in(0)->in(0);
1477 }
1478
1479 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1480 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1481 int nb = igvn->C->root()->find_prec_edge(this);
1482 if (nb != -1) {
1483 igvn->delete_precedence_of(igvn->C->root(), nb);
1484 }
1485 }
1486
1487 //============== SafePointScalarObjectNode ==============
1488
1489 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1490 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1491 _first_index(first_index),
1492 _depth(depth),
1493 _n_fields(n_fields),
1494 _alloc(alloc)
1495 {
1496 #ifdef ASSERT
1497 if (!alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1498 alloc->dump();
1499 assert(false, "unexpected call node");
1500 }
1501 #endif
1502 init_class_id(Class_SafePointScalarObject);
1503 }
1504
1505 // Do not allow value-numbering for SafePointScalarObject node.
1506 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1507 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1508 return (&n == this); // Always fail except on self
1509 }
1510
1511 uint SafePointScalarObjectNode::ideal_reg() const {
1512 return 0; // No matching to machine instruction
1513 }
1514
1515 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1516 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1517 }
1582 new_node = false;
1583 return (SafePointScalarMergeNode*)cached;
1584 }
1585 new_node = true;
1586 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1587 sosn_map->Insert((void*)this, (void*)res);
1588 return res;
1589 }
1590
1591 #ifndef PRODUCT
1592 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1593 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1594 }
1595 #endif
1596
1597 //=============================================================================
1598 uint AllocateNode::size_of() const { return sizeof(*this); }
1599
1600 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1601 Node *ctrl, Node *mem, Node *abio,
1602 Node *size, Node *klass_node, Node *initial_test)
1603 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1604 {
1605 init_class_id(Class_Allocate);
1606 init_flags(Flag_is_macro);
1607 _is_scalar_replaceable = false;
1608 _is_non_escaping = false;
1609 _is_allocation_MemBar_redundant = false;
1610 Node *topnode = C->top();
1611
1612 init_req( TypeFunc::Control , ctrl );
1613 init_req( TypeFunc::I_O , abio );
1614 init_req( TypeFunc::Memory , mem );
1615 init_req( TypeFunc::ReturnAdr, topnode );
1616 init_req( TypeFunc::FramePtr , topnode );
1617 init_req( AllocSize , size);
1618 init_req( KlassNode , klass_node);
1619 init_req( InitialTest , initial_test);
1620 init_req( ALength , topnode);
1621 init_req( ValidLengthTest , topnode);
1622 C->add_macro_node(this);
1623 }
1624
1625 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1626 {
1627 assert(initializer != nullptr && initializer->is_object_initializer(),
1628 "unexpected initializer method");
1629 BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1630 if (analyzer == nullptr) {
1631 return;
1632 }
1633
1634 // Allocation node is first parameter in its initializer
1635 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1636 _is_allocation_MemBar_redundant = true;
1637 }
1638 }
1639 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {
1640 Node* mark_node = nullptr;
1641 if (UseCompactObjectHeaders) {
1642 Node* klass_node = in(AllocateNode::KlassNode);
1643 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1644 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1645 } else {
1646 // For now only enable fast locking for non-array types
1647 mark_node = phase->MakeConX(markWord::prototype().value());
1648 }
1649 return mark_node;
1650 }
1651
1652 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1653 // CastII, if appropriate. If we are not allowed to create new nodes, and
1654 // a CastII is appropriate, return null.
1655 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1656 Node *length = in(AllocateNode::ALength);
1657 assert(length != nullptr, "length is not null");
1658
1659 const TypeInt* length_type = phase->find_int_type(length);
1660 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1661
1662 if (ary_type != nullptr && length_type != nullptr) {
1663 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1664 if (narrow_length_type != length_type) {
1665 // Assert one of:
1666 // - the narrow_length is 0
1667 // - the narrow_length is not wider than length
1668 assert(narrow_length_type == TypeInt::ZERO ||
1669 (length_type->is_con() && narrow_length_type->is_con() &&
2025
2026 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2027 st->print("%s", _kind_names[_kind]);
2028 }
2029 #endif
2030
2031 //=============================================================================
2032 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2033
2034 // perform any generic optimizations first (returns 'this' or null)
2035 Node *result = SafePointNode::Ideal(phase, can_reshape);
2036 if (result != nullptr) return result;
2037 // Don't bother trying to transform a dead node
2038 if (in(0) && in(0)->is_top()) return nullptr;
2039
2040 // Now see if we can optimize away this lock. We don't actually
2041 // remove the locking here, we simply set the _eliminate flag which
2042 // prevents macro expansion from expanding the lock. Since we don't
2043 // modify the graph, the value returned from this function is the
2044 // one computed above.
2045 if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2046 //
2047 // If we are locking an non-escaped object, the lock/unlock is unnecessary
2048 //
2049 ConnectionGraph *cgr = phase->C->congraph();
2050 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2051 assert(!is_eliminated() || is_coarsened(), "sanity");
2052 // The lock could be marked eliminated by lock coarsening
2053 // code during first IGVN before EA. Replace coarsened flag
2054 // to eliminate all associated locks/unlocks.
2055 #ifdef ASSERT
2056 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2057 #endif
2058 this->set_non_esc_obj();
2059 return result;
2060 }
2061
2062 if (!phase->C->do_locks_coarsening()) {
2063 return result; // Compiling without locks coarsening
2064 }
2065 //
2226 }
2227
2228 //=============================================================================
2229 uint UnlockNode::size_of() const { return sizeof(*this); }
2230
2231 //=============================================================================
2232 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2233
2234 // perform any generic optimizations first (returns 'this' or null)
2235 Node *result = SafePointNode::Ideal(phase, can_reshape);
2236 if (result != nullptr) return result;
2237 // Don't bother trying to transform a dead node
2238 if (in(0) && in(0)->is_top()) return nullptr;
2239
2240 // Now see if we can optimize away this unlock. We don't actually
2241 // remove the unlocking here, we simply set the _eliminate flag which
2242 // prevents macro expansion from expanding the unlock. Since we don't
2243 // modify the graph, the value returned from this function is the
2244 // one computed above.
2245 // Escape state is defined after Parse phase.
2246 if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2247 //
2248 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2249 //
2250 ConnectionGraph *cgr = phase->C->congraph();
2251 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2252 assert(!is_eliminated() || is_coarsened(), "sanity");
2253 // The lock could be marked eliminated by lock coarsening
2254 // code during first IGVN before EA. Replace coarsened flag
2255 // to eliminate all associated locks/unlocks.
2256 #ifdef ASSERT
2257 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2258 #endif
2259 this->set_non_esc_obj();
2260 }
2261 }
2262 return result;
2263 }
2264
2265 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const {
2266 if (C == nullptr) {
2306 }
2307 // unrelated
2308 return false;
2309 }
2310
2311 if (dest_t->isa_aryptr()) {
2312 // arraycopy or array clone
2313 if (t_oop->isa_instptr()) {
2314 return false;
2315 }
2316 if (!t_oop->isa_aryptr()) {
2317 return true;
2318 }
2319
2320 const Type* elem = dest_t->is_aryptr()->elem();
2321 if (elem == Type::BOTTOM) {
2322 // An array but we don't know what elements are
2323 return true;
2324 }
2325
2326 dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
2327 uint dest_alias = phase->C->get_alias_index(dest_t);
2328 uint t_oop_alias = phase->C->get_alias_index(t_oop);
2329
2330 return dest_alias == t_oop_alias;
2331 }
2332
2333 return true;
2334 }
|
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compileLog.hpp"
26 #include "ci/ciFlatArrayKlass.hpp"
27 #include "ci/bcEscapeAnalyzer.hpp"
28 #include "compiler/oopMap.hpp"
29 #include "gc/shared/barrierSet.hpp"
30 #include "gc/shared/c2/barrierSetC2.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "opto/callGenerator.hpp"
33 #include "opto/callnode.hpp"
34 #include "opto/castnode.hpp"
35 #include "opto/convertnode.hpp"
36 #include "opto/escape.hpp"
37 #include "opto/inlinetypenode.hpp"
38 #include "opto/locknode.hpp"
39 #include "opto/machnode.hpp"
40 #include "opto/matcher.hpp"
41 #include "opto/parse.hpp"
42 #include "opto/regalloc.hpp"
43 #include "opto/regmask.hpp"
44 #include "opto/rootnode.hpp"
45 #include "opto/runtime.hpp"
46 #include "runtime/sharedRuntime.hpp"
47 #include "runtime/stubRoutines.hpp"
48 #include "utilities/powerOfTwo.hpp"
49 #include "code/vmreg.hpp"
50
51 // Portions of code courtesy of Clifford Click
52
53 // Optimization - Graph Style
54
55 //=============================================================================
56 uint StartNode::size_of() const { return sizeof(*this); }
57 bool StartNode::cmp( const Node &n ) const
58 { return _domain == ((StartNode&)n)._domain; }
59 const Type *StartNode::bottom_type() const { return _domain; }
60 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
61 #ifndef PRODUCT
62 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
63 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
64 #endif
65
66 //------------------------------Ideal------------------------------------------
67 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
68 return remove_dead_region(phase, can_reshape) ? this : nullptr;
69 }
70
71 //------------------------------calling_convention-----------------------------
72 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
73 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
74 }
75
76 //------------------------------Registers--------------------------------------
77 const RegMask &StartNode::in_RegMask(uint) const {
78 return RegMask::Empty;
79 }
80
81 //------------------------------match------------------------------------------
82 // Construct projections for incoming parameters, and their RegMask info
83 Node *StartNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
84 switch (proj->_con) {
85 case TypeFunc::Control:
86 case TypeFunc::I_O:
87 case TypeFunc::Memory:
88 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
89 case TypeFunc::FramePtr:
90 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
91 case TypeFunc::ReturnAdr:
92 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
93 case TypeFunc::Parms:
94 default: {
95 uint parm_num = proj->_con - TypeFunc::Parms;
96 const Type *t = _domain->field_at(proj->_con);
97 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
98 return new ConNode(Type::TOP);
99 uint ideal_reg = t->ideal_reg();
100 RegMask &rm = match->_calling_convention_mask[parm_num];
101 return new MachProjNode(this,proj->_con,rm,ideal_reg);
102 }
103 }
104 return nullptr;
105 }
106
107 //=============================================================================
108 const char * const ParmNode::names[TypeFunc::Parms+1] = {
109 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
110 };
111
112 #ifndef PRODUCT
113 void ParmNode::dump_spec(outputStream *st) const {
114 if( _con < TypeFunc::Parms ) {
115 st->print("%s", names[_con]);
116 } else {
117 st->print("Parm%d: ",_con-TypeFunc::Parms);
118 // Verbose and WizardMode dump bottom_type for all nodes
119 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
120 }
121 }
122
123 void ParmNode::dump_compact_spec(outputStream *st) const {
124 if (_con < TypeFunc::Parms) {
125 st->print("%s", names[_con]);
126 } else {
472 if (cik->is_instance_klass()) {
473 cik->print_name_on(st);
474 iklass = cik->as_instance_klass();
475 } else if (cik->is_type_array_klass()) {
476 cik->as_array_klass()->base_element_type()->print_name_on(st);
477 st->print("[%d]", spobj->n_fields());
478 } else if (cik->is_obj_array_klass()) {
479 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
480 if (cie->is_instance_klass()) {
481 cie->print_name_on(st);
482 } else if (cie->is_type_array_klass()) {
483 cie->as_array_klass()->base_element_type()->print_name_on(st);
484 } else {
485 ShouldNotReachHere();
486 }
487 st->print("[%d]", spobj->n_fields());
488 int ndim = cik->as_array_klass()->dimension() - 1;
489 while (ndim-- > 0) {
490 st->print("[]");
491 }
492 } else if (cik->is_flat_array_klass()) {
493 ciKlass* cie = cik->as_flat_array_klass()->base_element_klass();
494 cie->print_name_on(st);
495 st->print("[%d]", spobj->n_fields());
496 int ndim = cik->as_array_klass()->dimension() - 1;
497 while (ndim-- > 0) {
498 st->print("[]");
499 }
500 }
501 st->print("={");
502 uint nf = spobj->n_fields();
503 if (nf > 0) {
504 uint first_ind = spobj->first_index(mcall->jvms());
505 if (iklass != nullptr && iklass->is_inlinetype()) {
506 Node* init_node = mcall->in(first_ind++);
507 if (!init_node->is_top()) {
508 st->print(" [is_init");
509 format_helper(regalloc, st, init_node, ":", -1, nullptr);
510 }
511 }
512 Node* fld_node = mcall->in(first_ind);
513 ciField* cifield;
514 if (iklass != nullptr) {
515 st->print(" [");
516 if (0 < (uint)iklass->nof_nonstatic_fields()) {
517 cifield = iklass->nonstatic_field_at(0);
518 cifield->print_name_on(st);
519 } else {
520 // Must be a null marker
521 st->print("null marker");
522 }
523 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
524 } else {
525 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
526 }
527 for (uint j = 1; j < nf; j++) {
528 fld_node = mcall->in(first_ind+j);
529 if (iklass != nullptr) {
530 st->print(", [");
531 if (j < (uint)iklass->nof_nonstatic_fields()) {
532 cifield = iklass->nonstatic_field_at(j);
533 cifield->print_name_on(st);
534 } else {
535 // Must be a null marker
536 st->print("null marker");
537 }
538 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
539 } else {
540 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
541 }
542 }
543 }
544 st->print(" }");
545 }
546 }
547 st->cr();
548 if (caller() != nullptr) caller()->format(regalloc, n, st);
549 }
550
551
552 void JVMState::dump_spec(outputStream *st) const {
553 if (_method != nullptr) {
554 bool printed = false;
555 if (!Verbose) {
556 // The JVMS dumps make really, really long lines.
557 // Take out the most boring parts, which are the package prefixes.
737 tf()->dump_on(st);
738 }
739 if (_cnt != COUNT_UNKNOWN) {
740 st->print(" C=%f", _cnt);
741 }
742 const Node* const klass_node = in(KlassNode);
743 if (klass_node != nullptr) {
744 const TypeKlassPtr* const klass_ptr = klass_node->bottom_type()->isa_klassptr();
745
746 if (klass_ptr != nullptr && klass_ptr->klass_is_exact()) {
747 st->print(" allocationKlass:");
748 klass_ptr->exact_klass()->print_name_on(st);
749 }
750 }
751 if (jvms() != nullptr) {
752 jvms()->dump_spec(st);
753 }
754 }
755 #endif
756
757 const Type *CallNode::bottom_type() const { return tf()->range_cc(); }
758 const Type* CallNode::Value(PhaseGVN* phase) const {
759 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) {
760 return Type::TOP;
761 }
762 return tf()->range_cc();
763 }
764
765 //------------------------------calling_convention-----------------------------
766 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
767 if (_entry_point == StubRoutines::store_inline_type_fields_to_buf()) {
768 // The call to that stub is a special case: its inputs are
769 // multiple values returned from a call and so it should follow
770 // the return convention.
771 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
772 return;
773 }
774 // Use the standard compiler calling convention
775 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
776 }
777
778
779 //------------------------------match------------------------------------------
780 // Construct projections for control, I/O, memory-fields, ..., and
781 // return result(s) along with their RegMask info
782 Node *CallNode::match(const ProjNode *proj, const Matcher *match, const RegMask* mask) {
783 uint con = proj->_con;
784 const TypeTuple* range_cc = tf()->range_cc();
785 if (con >= TypeFunc::Parms) {
786 if (tf()->returns_inline_type_as_fields()) {
787 // The call returns multiple values (inline type fields): we
788 // create one projection per returned value.
789 assert(con <= TypeFunc::Parms+1 || InlineTypeReturnedAsFields, "only for multi value return");
790 uint ideal_reg = range_cc->field_at(con)->ideal_reg();
791 return new MachProjNode(this, con, mask[con-TypeFunc::Parms], ideal_reg);
792 } else {
793 if (con == TypeFunc::Parms) {
794 uint ideal_reg = range_cc->field_at(TypeFunc::Parms)->ideal_reg();
795 OptoRegPair regs = Opcode() == Op_CallLeafVector
796 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine
797 : match->c_return_value(ideal_reg);
798 RegMask rm = RegMask(regs.first());
799
800 if (Opcode() == Op_CallLeafVector) {
801 // If the return is in vector, compute appropriate regmask taking into account the whole range
802 if(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ) {
803 if(OptoReg::is_valid(regs.second())) {
804 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
805 rm.Insert(r);
806 }
807 }
808 }
809 }
810
811 if (OptoReg::is_valid(regs.second())) {
812 rm.Insert(regs.second());
813 }
814 return new MachProjNode(this,con,rm,ideal_reg);
815 } else {
816 assert(con == TypeFunc::Parms+1, "only one return value");
817 assert(range_cc->field_at(TypeFunc::Parms+1) == Type::HALF, "");
818 return new MachProjNode(this,con, RegMask::Empty, (uint)OptoReg::Bad);
819 }
820 }
821 }
822
823 switch (con) {
824 case TypeFunc::Control:
825 case TypeFunc::I_O:
826 case TypeFunc::Memory:
827 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
828
829 case TypeFunc::ReturnAdr:
830 case TypeFunc::FramePtr:
831 default:
832 ShouldNotReachHere();
833 }
834 return nullptr;
835 }
836
837 // Do we Match on this edge index or not? Match no edges
838 uint CallNode::match_edge(uint idx) const {
839 return 0;
840 }
841
842 //
843 // Determine whether the call could modify the field of the specified
844 // instance at the specified offset.
845 //
846 bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
847 assert((t_oop != nullptr), "sanity");
848 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
849 const TypeTuple* args = _tf->domain_sig();
850 Node* dest = nullptr;
851 // Stubs that can be called once an ArrayCopyNode is expanded have
852 // different signatures. Look for the second pointer argument,
853 // that is the destination of the copy.
854 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
855 if (args->field_at(i)->isa_ptr()) {
856 j++;
857 if (j == 2) {
858 dest = in(i);
859 break;
860 }
861 }
862 }
863 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
864 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
865 return true;
866 }
867 return false;
868 }
869 if (t_oop->is_known_instance()) {
878 Node* proj = proj_out_or_null(TypeFunc::Parms);
879 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
880 return false;
881 }
882 }
883 if (is_CallJava() && as_CallJava()->method() != nullptr) {
884 ciMethod* meth = as_CallJava()->method();
885 if (meth->is_getter()) {
886 return false;
887 }
888 // May modify (by reflection) if an boxing object is passed
889 // as argument or returned.
890 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
891 if (proj != nullptr) {
892 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
893 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
894 (inst_t->instance_klass() == boxing_klass))) {
895 return true;
896 }
897 }
898 const TypeTuple* d = tf()->domain_cc();
899 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
900 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
901 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
902 (inst_t->instance_klass() == boxing_klass))) {
903 return true;
904 }
905 }
906 return false;
907 }
908 }
909 return true;
910 }
911
912 // Does this call have a direct reference to n other than debug information?
913 bool CallNode::has_non_debug_use(Node* n) {
914 const TypeTuple* d = tf()->domain_cc();
915 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
916 if (in(i) == n) {
917 return true;
918 }
919 }
920 return false;
921 }
922
923 bool CallNode::has_debug_use(Node* n) {
924 if (jvms() != nullptr) {
925 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
926 if (in(i) == n) {
927 return true;
928 }
929 }
930 }
931 return false;
932 }
933
934 // Returns the unique CheckCastPP of a call
935 // or 'this' if there are several CheckCastPP or unexpected uses
936 // or returns null if there is no one.
937 Node *CallNode::result_cast() {
938 Node *cast = nullptr;
939
940 Node *p = proj_out_or_null(TypeFunc::Parms);
941 if (p == nullptr)
942 return nullptr;
943
944 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
945 Node *use = p->fast_out(i);
946 if (use->is_CheckCastPP()) {
947 if (cast != nullptr) {
948 return this; // more than 1 CheckCastPP
949 }
950 cast = use;
951 } else if (!use->is_Initialize() &&
952 !use->is_AddP() &&
953 use->Opcode() != Op_MemBarStoreStore) {
954 // Expected uses are restricted to a CheckCastPP, an Initialize
955 // node, a MemBarStoreStore (clone) and AddP nodes. If we
956 // encounter any other use (a Phi node can be seen in rare
957 // cases) return this to prevent incorrect optimizations.
958 return this;
959 }
960 }
961 return cast;
962 }
963
964
965 CallProjections* CallNode::extract_projections(bool separate_io_proj, bool do_asserts) {
966 uint max_res = TypeFunc::Parms-1;
967 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
968 ProjNode *pn = fast_out(i)->as_Proj();
969 max_res = MAX2(max_res, pn->_con);
970 }
971
972 assert(max_res < _tf->range_cc()->cnt(), "result out of bounds");
973
974 uint projs_size = sizeof(CallProjections);
975 if (max_res > TypeFunc::Parms) {
976 projs_size += (max_res-TypeFunc::Parms)*sizeof(Node*);
977 }
978 char* projs_storage = resource_allocate_bytes(projs_size);
979 CallProjections* projs = new(projs_storage)CallProjections(max_res - TypeFunc::Parms + 1);
980
981 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
982 ProjNode *pn = fast_out(i)->as_Proj();
983 if (pn->outcnt() == 0) continue;
984 switch (pn->_con) {
985 case TypeFunc::Control:
986 {
987 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
988 projs->fallthrough_proj = pn;
989 const Node* cn = pn->unique_ctrl_out_or_null();
990 if (cn != nullptr && cn->is_Catch()) {
991 ProjNode *cpn = nullptr;
992 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
993 cpn = cn->fast_out(k)->as_Proj();
994 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
995 if (cpn->_con == CatchProjNode::fall_through_index)
996 projs->fallthrough_catchproj = cpn;
997 else {
998 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
999 projs->catchall_catchproj = cpn;
1005 case TypeFunc::I_O:
1006 if (pn->_is_io_use)
1007 projs->catchall_ioproj = pn;
1008 else
1009 projs->fallthrough_ioproj = pn;
1010 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
1011 Node* e = pn->out(j);
1012 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
1013 assert(projs->exobj == nullptr, "only one");
1014 projs->exobj = e;
1015 }
1016 }
1017 break;
1018 case TypeFunc::Memory:
1019 if (pn->_is_io_use)
1020 projs->catchall_memproj = pn;
1021 else
1022 projs->fallthrough_memproj = pn;
1023 break;
1024 case TypeFunc::Parms:
1025 projs->resproj[0] = pn;
1026 break;
1027 default:
1028 assert(pn->_con <= max_res, "unexpected projection from allocation node.");
1029 projs->resproj[pn->_con-TypeFunc::Parms] = pn;
1030 break;
1031 }
1032 }
1033
1034 // The resproj may not exist because the result could be ignored
1035 // and the exception object may not exist if an exception handler
1036 // swallows the exception but all the other must exist and be found.
1037 do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
1038 assert(!do_asserts || projs->fallthrough_proj != nullptr, "must be found");
1039 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
1040 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found");
1041 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found");
1042 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found");
1043 if (separate_io_proj) {
1044 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found");
1045 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found");
1046 }
1047 return projs;
1048 }
1049
1050 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1051 #ifdef ASSERT
1052 // Validate attached generator
1053 CallGenerator* cg = generator();
1054 if (cg != nullptr) {
1055 assert((is_CallStaticJava() && cg->is_mh_late_inline()) ||
1056 (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
1057 }
1058 #endif // ASSERT
1059 return SafePointNode::Ideal(phase, can_reshape);
1060 }
1061
1062 bool CallNode::is_call_to_arraycopystub() const {
1063 if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
1064 return true;
1065 }
1066 return false;
1067 }
1068
1069 //=============================================================================
1070 uint CallJavaNode::size_of() const { return sizeof(*this); }
1071 bool CallJavaNode::cmp( const Node &n ) const {
1072 CallJavaNode &call = (CallJavaNode&)n;
1073 return CallNode::cmp(call) && _method == call._method &&
1074 _override_symbolic_info == call._override_symbolic_info;
1075 }
1076
1077 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1078 // Copy debug information and adjust JVMState information
1079 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain_sig()->cnt() : (uint)TypeFunc::Parms+1;
1080 uint new_dbg_start = tf()->domain_sig()->cnt();
1081 int jvms_adj = new_dbg_start - old_dbg_start;
1082 assert (new_dbg_start == req(), "argument count mismatch");
1083 Compile* C = phase->C;
1084
1085 // SafePointScalarObject node could be referenced several times in debug info.
1086 // Use Dict to record cloned nodes.
1087 Dict* sosn_map = new Dict(cmpkey,hashkey);
1088 for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1089 Node* old_in = sfpt->in(i);
1090 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1091 if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1092 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1093 bool new_node;
1094 Node* new_in = old_sosn->clone(sosn_map, new_node);
1095 if (new_node) { // New node?
1096 new_in->set_req(0, C->root()); // reset control edge
1097 new_in = phase->transform(new_in); // Register new node.
1098 }
1099 old_in = new_in;
1100 }
1101 add_req(old_in);
1102 }
1103
1104 // JVMS may be shared so clone it before we modify it
1105 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1106 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1107 jvms->set_map(this);
1108 jvms->set_locoff(jvms->locoff()+jvms_adj);
1109 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1110 jvms->set_monoff(jvms->monoff()+jvms_adj);
1111 jvms->set_scloff(jvms->scloff()+jvms_adj);
1112 jvms->set_endoff(jvms->endoff()+jvms_adj);
1113 }
1114 }
1115
1116 #ifdef ASSERT
1117 bool CallJavaNode::validate_symbolic_info() const {
1118 if (method() == nullptr) {
1119 return true; // call into runtime or uncommon trap
1120 }
1121 Bytecodes::Code bc = jvms()->method()->java_code_at_bci(jvms()->bci());
1122 if (EnableValhalla && (bc == Bytecodes::_if_acmpeq || bc == Bytecodes::_if_acmpne)) {
1123 return true;
1124 }
1125 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1126 ciMethod* callee = method();
1127 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1128 assert(override_symbolic_info(), "should be set");
1129 }
1130 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1131 return true;
1132 }
1133 #endif
1134
1135 #ifndef PRODUCT
1136 void CallJavaNode::dump_spec(outputStream* st) const {
1137 if( _method ) _method->print_short_name(st);
1138 CallNode::dump_spec(st);
1139 }
1140
1141 void CallJavaNode::dump_compact_spec(outputStream* st) const {
1142 if (_method) {
1143 _method->print_short_name(st);
1144 } else {
1145 st->print("<?>");
1146 }
1147 }
1148 #endif
1149
1150 //=============================================================================
1151 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1152 bool CallStaticJavaNode::cmp( const Node &n ) const {
1153 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1154 return CallJavaNode::cmp(call);
1155 }
1156
1157 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1158 if (can_reshape && uncommon_trap_request() != 0) {
1159 PhaseIterGVN* igvn = phase->is_IterGVN();
1160 if (remove_unknown_flat_array_load(igvn, in(0), in(TypeFunc::Memory), in(TypeFunc::Parms))) {
1161 if (!in(0)->is_Region()) {
1162 igvn->replace_input_of(this, 0, phase->C->top());
1163 }
1164 return this;
1165 }
1166 }
1167
1168 CallGenerator* cg = generator();
1169 if (can_reshape && cg != nullptr) {
1170 assert(IncrementalInlineMH, "required");
1171 assert(cg->call_node() == this, "mismatch");
1172 assert(cg->is_mh_late_inline(), "not virtual");
1173
1174 // Check whether this MH handle call becomes a candidate for inlining.
1175 ciMethod* callee = cg->method();
1176 vmIntrinsics::ID iid = callee->intrinsic_id();
1177 if (iid == vmIntrinsics::_invokeBasic) {
1178 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1179 phase->C->prepend_late_inline(cg);
1180 set_generator(nullptr);
1181 }
1182 } else if (iid == vmIntrinsics::_linkToNative) {
1183 // never retry
1184 } else {
1185 assert(callee->has_member_arg(), "wrong type of call?");
1186 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1187 phase->C->prepend_late_inline(cg);
1200
1201 //----------------------------uncommon_trap_request----------------------------
1202 // If this is an uncommon trap, return the request code, else zero.
1203 int CallStaticJavaNode::uncommon_trap_request() const {
1204 return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1205 }
1206 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1207 #ifndef PRODUCT
1208 if (!(call->req() > TypeFunc::Parms &&
1209 call->in(TypeFunc::Parms) != nullptr &&
1210 call->in(TypeFunc::Parms)->is_Con() &&
1211 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1212 assert(in_dump() != 0, "OK if dumping");
1213 tty->print("[bad uncommon trap]");
1214 return 0;
1215 }
1216 #endif
1217 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1218 }
1219
1220 // Split if can cause the flat array branch of an array load with unknown type (see
1221 // Parse::array_load) to end in an uncommon trap. In that case, the call to
1222 // 'load_unknown_inline' is useless. Replace it with an uncommon trap with the same JVMState.
1223 bool CallStaticJavaNode::remove_unknown_flat_array_load(PhaseIterGVN* igvn, Node* ctl, Node* mem, Node* unc_arg) {
1224 if (ctl == nullptr || ctl->is_top() || mem == nullptr || mem->is_top() || !mem->is_MergeMem()) {
1225 return false;
1226 }
1227 if (ctl->is_Region()) {
1228 bool res = false;
1229 for (uint i = 1; i < ctl->req(); i++) {
1230 MergeMemNode* mm = mem->clone()->as_MergeMem();
1231 for (MergeMemStream mms(mm); mms.next_non_empty(); ) {
1232 Node* m = mms.memory();
1233 if (m->is_Phi() && m->in(0) == ctl) {
1234 mms.set_memory(m->in(i));
1235 }
1236 }
1237 if (remove_unknown_flat_array_load(igvn, ctl->in(i), mm, unc_arg)) {
1238 res = true;
1239 if (!ctl->in(i)->is_Region()) {
1240 igvn->replace_input_of(ctl, i, igvn->C->top());
1241 }
1242 }
1243 igvn->remove_dead_node(mm);
1244 }
1245 return res;
1246 }
1247 // Verify the control flow is ok
1248 Node* call = ctl;
1249 MemBarNode* membar = nullptr;
1250 for (;;) {
1251 if (call == nullptr || call->is_top()) {
1252 return false;
1253 }
1254 if (call->is_Proj() || call->is_Catch() || call->is_MemBar()) {
1255 call = call->in(0);
1256 } else if (call->Opcode() == Op_CallStaticJava && !call->in(0)->is_top() &&
1257 call->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1258 assert(call->in(0)->is_Proj() && call->in(0)->in(0)->is_MemBar(), "missing membar");
1259 membar = call->in(0)->in(0)->as_MemBar();
1260 break;
1261 } else {
1262 return false;
1263 }
1264 }
1265
1266 JVMState* jvms = call->jvms();
1267 if (igvn->C->too_many_traps(jvms->method(), jvms->bci(), Deoptimization::trap_request_reason(uncommon_trap_request()))) {
1268 return false;
1269 }
1270
1271 Node* call_mem = call->in(TypeFunc::Memory);
1272 if (call_mem == nullptr || call_mem->is_top()) {
1273 return false;
1274 }
1275 if (!call_mem->is_MergeMem()) {
1276 call_mem = MergeMemNode::make(call_mem);
1277 igvn->register_new_node_with_optimizer(call_mem);
1278 }
1279
1280 // Verify that there's no unexpected side effect
1281 for (MergeMemStream mms2(mem->as_MergeMem(), call_mem->as_MergeMem()); mms2.next_non_empty2(); ) {
1282 Node* m1 = mms2.is_empty() ? mms2.base_memory() : mms2.memory();
1283 Node* m2 = mms2.memory2();
1284
1285 for (uint i = 0; i < 100; i++) {
1286 if (m1 == m2) {
1287 break;
1288 } else if (m1->is_Proj()) {
1289 m1 = m1->in(0);
1290 } else if (m1->is_MemBar()) {
1291 m1 = m1->in(TypeFunc::Memory);
1292 } else if (m1->Opcode() == Op_CallStaticJava &&
1293 m1->as_Call()->entry_point() == OptoRuntime::load_unknown_inline_Java()) {
1294 if (m1 != call) {
1295 return false;
1296 }
1297 break;
1298 } else if (m1->is_MergeMem()) {
1299 MergeMemNode* mm = m1->as_MergeMem();
1300 int idx = mms2.alias_idx();
1301 if (idx == Compile::AliasIdxBot) {
1302 m1 = mm->base_memory();
1303 } else {
1304 m1 = mm->memory_at(idx);
1305 }
1306 } else {
1307 return false;
1308 }
1309 }
1310 }
1311 if (call_mem->outcnt() == 0) {
1312 igvn->remove_dead_node(call_mem);
1313 }
1314
1315 // Remove membar preceding the call
1316 membar->remove(igvn);
1317
1318 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
1319 CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", nullptr);
1320 unc->init_req(TypeFunc::Control, call->in(0));
1321 unc->init_req(TypeFunc::I_O, call->in(TypeFunc::I_O));
1322 unc->init_req(TypeFunc::Memory, call->in(TypeFunc::Memory));
1323 unc->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
1324 unc->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
1325 unc->init_req(TypeFunc::Parms+0, unc_arg);
1326 unc->set_cnt(PROB_UNLIKELY_MAG(4));
1327 unc->copy_call_debug_info(igvn, call->as_CallStaticJava());
1328
1329 // Replace the call with an uncommon trap
1330 igvn->replace_input_of(call, 0, igvn->C->top());
1331
1332 igvn->register_new_node_with_optimizer(unc);
1333
1334 Node* ctrl = igvn->transform(new ProjNode(unc, TypeFunc::Control));
1335 Node* halt = igvn->transform(new HaltNode(ctrl, call->in(TypeFunc::FramePtr), "uncommon trap returned which should never happen"));
1336 igvn->add_input_to(igvn->C->root(), halt);
1337
1338 return true;
1339 }
1340
1341
1342 #ifndef PRODUCT
1343 void CallStaticJavaNode::dump_spec(outputStream *st) const {
1344 st->print("# Static ");
1345 if (_name != nullptr) {
1346 st->print("%s", _name);
1347 int trap_req = uncommon_trap_request();
1348 if (trap_req != 0) {
1349 char buf[100];
1350 st->print("(%s)",
1351 Deoptimization::format_trap_request(buf, sizeof(buf),
1352 trap_req));
1353 }
1354 st->print(" ");
1355 }
1356 CallJavaNode::dump_spec(st);
1357 }
1358
1359 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1360 if (_method) {
1361 _method->print_short_name(st);
1426 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1427 bool CallRuntimeNode::cmp( const Node &n ) const {
1428 CallRuntimeNode &call = (CallRuntimeNode&)n;
1429 return CallNode::cmp(call) && !strcmp(_name,call._name);
1430 }
1431 #ifndef PRODUCT
1432 void CallRuntimeNode::dump_spec(outputStream *st) const {
1433 st->print("# ");
1434 st->print("%s", _name);
1435 CallNode::dump_spec(st);
1436 }
1437 #endif
1438 uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1439 bool CallLeafVectorNode::cmp( const Node &n ) const {
1440 CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1441 return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1442 }
1443
1444 //------------------------------calling_convention-----------------------------
1445 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1446 if (_entry_point == nullptr) {
1447 // The call to that stub is a special case: its inputs are
1448 // multiple values returned from a call and so it should follow
1449 // the return convention.
1450 SharedRuntime::java_return_convention(sig_bt, parm_regs, argcnt);
1451 return;
1452 }
1453 SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1454 }
1455
1456 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1457 #ifdef ASSERT
1458 assert(tf()->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1459 "return vector size must match");
1460 const TypeTuple* d = tf()->domain_sig();
1461 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1462 Node* arg = in(i);
1463 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1464 "vector argument size must match");
1465 }
1466 #endif
1467
1468 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1469 }
1470
1471 //=============================================================================
1472 //------------------------------calling_convention-----------------------------
1473
1474
1475 //=============================================================================
1476 #ifndef PRODUCT
1477 void CallLeafNode::dump_spec(outputStream *st) const {
1478 st->print("# ");
1479 st->print("%s", _name);
1480 CallNode::dump_spec(st);
1481 }
1482 #endif
1483
1484 uint CallLeafNoFPNode::match_edge(uint idx) const {
1485 // Null entry point is a special case for which the target is in a
1486 // register. Need to match that edge.
1487 return entry_point() == nullptr && idx == TypeFunc::Parms;
1488 }
1489
1490 //=============================================================================
1491
1492 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1493 assert(verify_jvms(jvms), "jvms must match");
1494 int loc = jvms->locoff() + idx;
1495 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1496 // If current local idx is top then local idx - 1 could
1497 // be a long/double that needs to be killed since top could
1498 // represent the 2nd half of the long/double.
1499 uint ideal = in(loc -1)->ideal_reg();
1500 if (ideal == Op_RegD || ideal == Op_RegL) {
1501 // set other (low index) half to top
1502 set_req(loc - 1, in(loc));
1503 }
1504 }
1505 set_req(loc, c);
1506 }
1507
1508 uint SafePointNode::size_of() const { return sizeof(*this); }
1509 bool SafePointNode::cmp( const Node &n ) const {
1520 }
1521 }
1522
1523
1524 //----------------------------next_exception-----------------------------------
1525 SafePointNode* SafePointNode::next_exception() const {
1526 if (len() == req()) {
1527 return nullptr;
1528 } else {
1529 Node* n = in(req());
1530 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1531 return (SafePointNode*) n;
1532 }
1533 }
1534
1535
1536 //------------------------------Ideal------------------------------------------
1537 // Skip over any collapsed Regions
1538 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1539 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1540 if (remove_dead_region(phase, can_reshape)) {
1541 return this;
1542 }
1543 // Scalarize inline types in safepoint debug info.
1544 // Delay this until all inlining is over to avoid getting inconsistent debug info.
1545 if (phase->C->scalarize_in_safepoints() && can_reshape && jvms() != nullptr) {
1546 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) {
1547 Node* n = in(i)->uncast();
1548 if (n->is_InlineType()) {
1549 n->as_InlineType()->make_scalar_in_safepoints(phase->is_IterGVN());
1550 }
1551 }
1552 }
1553 return nullptr;
1554 }
1555
1556 //------------------------------Identity---------------------------------------
1557 // Remove obviously duplicate safepoints
1558 Node* SafePointNode::Identity(PhaseGVN* phase) {
1559
1560 // If you have back to back safepoints, remove one
1561 if (in(TypeFunc::Control)->is_SafePoint()) {
1562 Node* out_c = unique_ctrl_out_or_null();
1563 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1564 // outer loop's safepoint could confuse removal of the outer loop.
1565 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1566 return in(TypeFunc::Control);
1567 }
1568 }
1569
1570 // Transforming long counted loops requires a safepoint node. Do not
1571 // eliminate a safepoint until loop opts are over.
1572 if (in(0)->is_Proj() && !phase->C->major_progress()) {
1573 Node *n0 = in(0)->in(0);
1691 }
1692
1693 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1694 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1695 int nb = igvn->C->root()->find_prec_edge(this);
1696 if (nb != -1) {
1697 igvn->delete_precedence_of(igvn->C->root(), nb);
1698 }
1699 }
1700
1701 //============== SafePointScalarObjectNode ==============
1702
1703 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1704 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1705 _first_index(first_index),
1706 _depth(depth),
1707 _n_fields(n_fields),
1708 _alloc(alloc)
1709 {
1710 #ifdef ASSERT
1711 if (alloc != nullptr && !alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1712 alloc->dump();
1713 assert(false, "unexpected call node");
1714 }
1715 #endif
1716 init_class_id(Class_SafePointScalarObject);
1717 }
1718
1719 // Do not allow value-numbering for SafePointScalarObject node.
1720 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1721 bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1722 return (&n == this); // Always fail except on self
1723 }
1724
1725 uint SafePointScalarObjectNode::ideal_reg() const {
1726 return 0; // No matching to machine instruction
1727 }
1728
1729 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1730 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1731 }
1796 new_node = false;
1797 return (SafePointScalarMergeNode*)cached;
1798 }
1799 new_node = true;
1800 SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1801 sosn_map->Insert((void*)this, (void*)res);
1802 return res;
1803 }
1804
1805 #ifndef PRODUCT
1806 void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1807 st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1808 }
1809 #endif
1810
1811 //=============================================================================
1812 uint AllocateNode::size_of() const { return sizeof(*this); }
1813
1814 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1815 Node *ctrl, Node *mem, Node *abio,
1816 Node *size, Node *klass_node,
1817 Node* initial_test,
1818 InlineTypeNode* inline_type_node)
1819 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1820 {
1821 init_class_id(Class_Allocate);
1822 init_flags(Flag_is_macro);
1823 _is_scalar_replaceable = false;
1824 _is_non_escaping = false;
1825 _is_allocation_MemBar_redundant = false;
1826 _larval = false;
1827 Node *topnode = C->top();
1828
1829 init_req( TypeFunc::Control , ctrl );
1830 init_req( TypeFunc::I_O , abio );
1831 init_req( TypeFunc::Memory , mem );
1832 init_req( TypeFunc::ReturnAdr, topnode );
1833 init_req( TypeFunc::FramePtr , topnode );
1834 init_req( AllocSize , size);
1835 init_req( KlassNode , klass_node);
1836 init_req( InitialTest , initial_test);
1837 init_req( ALength , topnode);
1838 init_req( ValidLengthTest , topnode);
1839 init_req( InlineType , inline_type_node);
1840 // DefaultValue defaults to nullptr
1841 // RawDefaultValue defaults to nullptr
1842 C->add_macro_node(this);
1843 }
1844
1845 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1846 {
1847 assert(initializer != nullptr &&
1848 (initializer->is_object_constructor() || initializer->is_class_initializer()),
1849 "unexpected initializer method");
1850 BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1851 if (analyzer == nullptr) {
1852 return;
1853 }
1854
1855 // Allocation node is first parameter in its initializer
1856 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1857 _is_allocation_MemBar_redundant = true;
1858 }
1859 }
1860
1861 Node* AllocateNode::make_ideal_mark(PhaseGVN* phase, Node* control, Node* mem) {
1862 Node* mark_node = nullptr;
1863 if (UseCompactObjectHeaders || EnableValhalla) {
1864 Node* klass_node = in(AllocateNode::KlassNode);
1865 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1866 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1867 if (EnableValhalla) {
1868 mark_node = phase->transform(mark_node);
1869 // Avoid returning a constant (old node) here because this method is used by LoadNode::Ideal
1870 mark_node = new OrXNode(mark_node, phase->MakeConX(_larval ? markWord::larval_bit_in_place : 0));
1871 }
1872 return mark_node;
1873 } else {
1874 return phase->MakeConX(markWord::prototype().value());
1875 }
1876 }
1877
1878 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1879 // CastII, if appropriate. If we are not allowed to create new nodes, and
1880 // a CastII is appropriate, return null.
1881 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1882 Node *length = in(AllocateNode::ALength);
1883 assert(length != nullptr, "length is not null");
1884
1885 const TypeInt* length_type = phase->find_int_type(length);
1886 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1887
1888 if (ary_type != nullptr && length_type != nullptr) {
1889 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1890 if (narrow_length_type != length_type) {
1891 // Assert one of:
1892 // - the narrow_length is 0
1893 // - the narrow_length is not wider than length
1894 assert(narrow_length_type == TypeInt::ZERO ||
1895 (length_type->is_con() && narrow_length_type->is_con() &&
2251
2252 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2253 st->print("%s", _kind_names[_kind]);
2254 }
2255 #endif
2256
2257 //=============================================================================
2258 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2259
2260 // perform any generic optimizations first (returns 'this' or null)
2261 Node *result = SafePointNode::Ideal(phase, can_reshape);
2262 if (result != nullptr) return result;
2263 // Don't bother trying to transform a dead node
2264 if (in(0) && in(0)->is_top()) return nullptr;
2265
2266 // Now see if we can optimize away this lock. We don't actually
2267 // remove the locking here, we simply set the _eliminate flag which
2268 // prevents macro expansion from expanding the lock. Since we don't
2269 // modify the graph, the value returned from this function is the
2270 // one computed above.
2271 const Type* obj_type = phase->type(obj_node());
2272 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2273 //
2274 // If we are locking an non-escaped object, the lock/unlock is unnecessary
2275 //
2276 ConnectionGraph *cgr = phase->C->congraph();
2277 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2278 assert(!is_eliminated() || is_coarsened(), "sanity");
2279 // The lock could be marked eliminated by lock coarsening
2280 // code during first IGVN before EA. Replace coarsened flag
2281 // to eliminate all associated locks/unlocks.
2282 #ifdef ASSERT
2283 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2284 #endif
2285 this->set_non_esc_obj();
2286 return result;
2287 }
2288
2289 if (!phase->C->do_locks_coarsening()) {
2290 return result; // Compiling without locks coarsening
2291 }
2292 //
2453 }
2454
2455 //=============================================================================
2456 uint UnlockNode::size_of() const { return sizeof(*this); }
2457
2458 //=============================================================================
2459 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2460
2461 // perform any generic optimizations first (returns 'this' or null)
2462 Node *result = SafePointNode::Ideal(phase, can_reshape);
2463 if (result != nullptr) return result;
2464 // Don't bother trying to transform a dead node
2465 if (in(0) && in(0)->is_top()) return nullptr;
2466
2467 // Now see if we can optimize away this unlock. We don't actually
2468 // remove the unlocking here, we simply set the _eliminate flag which
2469 // prevents macro expansion from expanding the unlock. Since we don't
2470 // modify the graph, the value returned from this function is the
2471 // one computed above.
2472 // Escape state is defined after Parse phase.
2473 const Type* obj_type = phase->type(obj_node());
2474 if (can_reshape && EliminateLocks && !is_non_esc_obj() && !obj_type->is_inlinetypeptr()) {
2475 //
2476 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2477 //
2478 ConnectionGraph *cgr = phase->C->congraph();
2479 if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2480 assert(!is_eliminated() || is_coarsened(), "sanity");
2481 // The lock could be marked eliminated by lock coarsening
2482 // code during first IGVN before EA. Replace coarsened flag
2483 // to eliminate all associated locks/unlocks.
2484 #ifdef ASSERT
2485 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2486 #endif
2487 this->set_non_esc_obj();
2488 }
2489 }
2490 return result;
2491 }
2492
2493 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const {
2494 if (C == nullptr) {
2534 }
2535 // unrelated
2536 return false;
2537 }
2538
2539 if (dest_t->isa_aryptr()) {
2540 // arraycopy or array clone
2541 if (t_oop->isa_instptr()) {
2542 return false;
2543 }
2544 if (!t_oop->isa_aryptr()) {
2545 return true;
2546 }
2547
2548 const Type* elem = dest_t->is_aryptr()->elem();
2549 if (elem == Type::BOTTOM) {
2550 // An array but we don't know what elements are
2551 return true;
2552 }
2553
2554 dest_t = dest_t->is_aryptr()->with_field_offset(Type::OffsetBot)->add_offset(Type::OffsetBot)->is_oopptr();
2555 t_oop = t_oop->is_aryptr()->with_field_offset(Type::OffsetBot);
2556 uint dest_alias = phase->C->get_alias_index(dest_t);
2557 uint t_oop_alias = phase->C->get_alias_index(t_oop);
2558
2559 return dest_alias == t_oop_alias;
2560 }
2561
2562 return true;
2563 }
|