1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_CALLNODE_HPP
  26 #define SHARE_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 #include "utilities/growableArray.hpp"
  36 
  37 // Portions of code courtesy of Clifford Click
  38 
  39 // Optimization - Graph Style
  40 
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class         CallLeafVectorNode;
  52 class     AllocateNode;
  53 class       AllocateArrayNode;
  54 class     AbstractLockNode;
  55 class       LockNode;
  56 class       UnlockNode;
  57 class FastLockNode;
  58 
  59 //------------------------------StartNode--------------------------------------
  60 // The method start node
  61 class StartNode : public MultiNode {
  62   virtual bool cmp( const Node &n ) const;
  63   virtual uint size_of() const; // Size is bigger
  64 public:
  65   const TypeTuple *_domain;
  66   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  67     init_class_id(Class_Start);
  68     init_req(0,this);
  69     init_req(1,root);
  70   }
  71   virtual int Opcode() const;
  72   virtual bool pinned() const { return true; };
  73   virtual const Type *bottom_type() const;
  74   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  75   virtual const Type* Value(PhaseGVN* phase) const;
  76   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  77   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  78   virtual const RegMask &in_RegMask(uint) const;
  79   virtual Node *match( const ProjNode *proj, const Matcher *m );
  80   virtual uint ideal_reg() const { return 0; }
  81 #ifndef PRODUCT
  82   virtual void  dump_spec(outputStream *st) const;
  83   virtual void  dump_compact_spec(outputStream *st) const;
  84 #endif
  85 };
  86 
  87 //------------------------------StartOSRNode-----------------------------------
  88 // The method start node for on stack replacement code
  89 class StartOSRNode : public StartNode {
  90 public:
  91   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  92   virtual int   Opcode() const;
  93   static  const TypeTuple *osr_domain();
  94 };
  95 
  96 
  97 //------------------------------ParmNode---------------------------------------
  98 // Incoming parameters
  99 class ParmNode : public ProjNode {
 100   static const char * const names[TypeFunc::Parms+1];
 101 public:
 102   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 103     init_class_id(Class_Parm);
 104   }
 105   virtual int Opcode() const;
 106   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 107   virtual uint ideal_reg() const;
 108 #ifndef PRODUCT
 109   virtual void dump_spec(outputStream *st) const;
 110   virtual void dump_compact_spec(outputStream *st) const;
 111 #endif
 112 };
 113 
 114 
 115 //------------------------------ReturnNode-------------------------------------
 116 // Return from subroutine node
 117 class ReturnNode : public Node {
 118 public:
 119   ReturnNode(uint edges, Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr);
 120   virtual int Opcode() const;
 121   virtual bool  is_CFG() const { return true; }
 122   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 123   virtual bool depends_only_on_test() const { return false; }
 124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 125   virtual const Type* Value(PhaseGVN* phase) const;
 126   virtual uint ideal_reg() const { return NotAMachineReg; }
 127   virtual uint match_edge(uint idx) const;
 128 #ifndef PRODUCT
 129   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 130 #endif
 131 };
 132 
 133 
 134 //------------------------------RethrowNode------------------------------------
 135 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 136 // ends the current basic block like a ReturnNode.  Restores registers and
 137 // unwinds stack.  Rethrow happens in the caller's method.
 138 class RethrowNode : public Node {
 139  public:
 140   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 141   virtual int Opcode() const;
 142   virtual bool  is_CFG() const { return true; }
 143   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 144   virtual bool depends_only_on_test() const { return false; }
 145   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 146   virtual const Type* Value(PhaseGVN* phase) const;
 147   virtual uint match_edge(uint idx) const;
 148   virtual uint ideal_reg() const { return NotAMachineReg; }
 149 #ifndef PRODUCT
 150   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 151 #endif
 152 };
 153 
 154 
 155 //------------------------------ForwardExceptionNode---------------------------
 156 // Pop stack frame and jump to StubRoutines::forward_exception_entry()
 157 class ForwardExceptionNode : public ReturnNode {
 158 public:
 159   ForwardExceptionNode(Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* retadr)
 160     : ReturnNode(TypeFunc::Parms, cntrl, i_o, memory, frameptr, retadr) {
 161   }
 162 
 163   virtual int Opcode() const;
 164 };
 165 
 166 //------------------------------TailCallNode-----------------------------------
 167 // Pop stack frame and jump indirect
 168 class TailCallNode : public ReturnNode {
 169 public:
 170   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 171     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 172     init_req(TypeFunc::Parms, target);
 173     init_req(TypeFunc::Parms+1, moop);
 174   }
 175 
 176   virtual int Opcode() const;
 177   virtual uint match_edge(uint idx) const;
 178 };
 179 
 180 //------------------------------TailJumpNode-----------------------------------
 181 // Pop stack frame and jump indirect
 182 class TailJumpNode : public ReturnNode {
 183 public:
 184   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 185     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 186     init_req(TypeFunc::Parms, target);
 187     init_req(TypeFunc::Parms+1, ex_oop);
 188   }
 189 
 190   virtual int Opcode() const;
 191   virtual uint match_edge(uint idx) const;
 192 };
 193 
 194 //-------------------------------JVMState-------------------------------------
 195 // A linked list of JVMState nodes captures the whole interpreter state,
 196 // plus GC roots, for all active calls at some call site in this compilation
 197 // unit.  (If there is no inlining, then the list has exactly one link.)
 198 // This provides a way to map the optimized program back into the interpreter,
 199 // or to let the GC mark the stack.
 200 class JVMState : public ResourceObj {
 201 public:
 202   typedef enum {
 203     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 204     Reexecute_False     =  0, // false       -- do not reexecute
 205     Reexecute_True      =  1  // true        -- reexecute the bytecode
 206   } ReexecuteState; //Reexecute State
 207 
 208 private:
 209   JVMState*         _caller;    // List pointer for forming scope chains
 210   uint              _depth;     // One more than caller depth, or one.
 211   uint              _locoff;    // Offset to locals in input edge mapping
 212   uint              _stkoff;    // Offset to stack in input edge mapping
 213   uint              _monoff;    // Offset to monitors in input edge mapping
 214   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 215   uint              _endoff;    // Offset to end of input edge mapping
 216   uint              _sp;        // Java Expression Stack Pointer for this state
 217   int               _bci;       // Byte Code Index of this JVM point
 218   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 219   ciMethod*         _method;    // Method Pointer
 220   SafePointNode*    _map;       // Map node associated with this scope
 221 public:
 222   friend class Compile;
 223   friend class PreserveReexecuteState;
 224 
 225   // Because JVMState objects live over the entire lifetime of the
 226   // Compile object, they are allocated into the comp_arena, which
 227   // does not get resource marked or reset during the compile process
 228   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 229   void operator delete( void * ) { } // fast deallocation
 230 
 231   // Create a new JVMState, ready for abstract interpretation.
 232   JVMState(ciMethod* method, JVMState* caller);
 233   JVMState(int stack_size);  // root state; has a null method
 234 
 235   // Access functions for the JVM
 236   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 237   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 238   uint              locoff() const { return _locoff; }
 239   uint              stkoff() const { return _stkoff; }
 240   uint              argoff() const { return _stkoff + _sp; }
 241   uint              monoff() const { return _monoff; }
 242   uint              scloff() const { return _scloff; }
 243   uint              endoff() const { return _endoff; }
 244   uint              oopoff() const { return debug_end(); }
 245 
 246   int            loc_size() const { return stkoff() - locoff(); }
 247   int            stk_size() const { return monoff() - stkoff(); }
 248   int            mon_size() const { return scloff() - monoff(); }
 249   int            scl_size() const { return endoff() - scloff(); }
 250 
 251   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 252   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 253   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 254   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 255 
 256   uint                      sp() const { return _sp; }
 257   int                      bci() const { return _bci; }
 258   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 259   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 260   bool              has_method() const { return _method != nullptr; }
 261   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 262   JVMState*             caller() const { return _caller; }
 263   SafePointNode*           map() const { return _map; }
 264   uint                   depth() const { return _depth; }
 265   uint             debug_start() const; // returns locoff of root caller
 266   uint               debug_end() const; // returns endoff of self
 267   uint              debug_size() const {
 268     return loc_size() + sp() + mon_size() + scl_size();
 269   }
 270   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 271 
 272   // Returns the JVM state at the desired depth (1 == root).
 273   JVMState* of_depth(int d) const;
 274 
 275   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 276   bool same_calls_as(const JVMState* that) const;
 277 
 278   // Monitors (monitors are stored as (boxNode, objNode) pairs
 279   enum { logMonitorEdges = 1 };
 280   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 281   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 282   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 283   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 284   bool is_monitor_box(uint off)    const {
 285     assert(is_mon(off), "should be called only for monitor edge");
 286     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 287   }
 288   bool is_monitor_use(uint off)    const { return (is_mon(off)
 289                                                    && is_monitor_box(off))
 290                                              || (caller() && caller()->is_monitor_use(off)); }
 291 
 292   // Initialization functions for the JVM
 293   void              set_locoff(uint off) { _locoff = off; }
 294   void              set_stkoff(uint off) { _stkoff = off; }
 295   void              set_monoff(uint off) { _monoff = off; }
 296   void              set_scloff(uint off) { _scloff = off; }
 297   void              set_endoff(uint off) { _endoff = off; }
 298   void              set_offsets(uint off) {
 299     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 300   }
 301   void              set_map(SafePointNode* map) { _map = map; }
 302   void              bind_map(SafePointNode* map); // set_map() and set_jvms() for the SafePointNode
 303   void              set_sp(uint sp) { _sp = sp; }
 304                     // _reexecute is initialized to "undefined" for a new bci
 305   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 306   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 307 
 308   // Miscellaneous utility functions
 309   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 310   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 311   void      set_map_deep(SafePointNode *map);// reset map for all callers
 312   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 313   int       interpreter_frame_size() const;
 314 
 315 #ifndef PRODUCT
 316   void      print_method_with_lineno(outputStream* st, bool show_name) const;
 317   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 318   void      dump_spec(outputStream *st) const;
 319   void      dump_on(outputStream* st) const;
 320   void      dump() const {
 321     dump_on(tty);
 322   }
 323 #endif
 324 };
 325 
 326 //------------------------------SafePointNode----------------------------------
 327 // A SafePointNode is a subclass of a MultiNode for convenience (and
 328 // potential code sharing) only - conceptually it is independent of
 329 // the Node semantics.
 330 class SafePointNode : public MultiNode {
 331   friend JVMState;
 332   friend class GraphKit;
 333 
 334   virtual bool           cmp( const Node &n ) const;
 335   virtual uint           size_of() const;       // Size is bigger
 336 
 337 protected:
 338   JVMState* const _jvms;      // Pointer to list of JVM State objects
 339   // Many calls take *all* of memory as input,
 340   // but some produce a limited subset of that memory as output.
 341   // The adr_type reports the call's behavior as a store, not a load.
 342   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 343   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 344   bool            _has_ea_local_in_scope; // NoEscape or ArgEscape objects in JVM States
 345 
 346   void set_jvms(JVMState* s) {
 347   assert(s != nullptr, "assign null value to _jvms");
 348     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 349   }
 350 public:
 351   SafePointNode(uint edges, JVMState* jvms,
 352                 // A plain safepoint advertises no memory effects (null):
 353                 const TypePtr* adr_type = nullptr)
 354     : MultiNode( edges ),
 355       _jvms(jvms),
 356       _adr_type(adr_type),
 357       _has_ea_local_in_scope(false)
 358   {
 359     init_class_id(Class_SafePoint);
 360   }
 361 
 362   JVMState* jvms() const { return _jvms; }
 363   virtual bool needs_deep_clone_jvms(Compile* C) { return false; }
 364   void clone_jvms(Compile* C) {
 365     if (jvms() != nullptr) {
 366       if (needs_deep_clone_jvms(C)) {
 367         set_jvms(jvms()->clone_deep(C));
 368         jvms()->set_map_deep(this);
 369       } else {
 370         jvms()->clone_shallow(C)->bind_map(this);
 371       }
 372     }
 373   }
 374 
 375  private:
 376   void verify_input(JVMState* jvms, uint idx) const {
 377     assert(verify_jvms(jvms), "jvms must match");
 378     Node* n = in(idx);
 379     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 380            in(idx + 1)->is_top(), "2nd half of long/double");
 381   }
 382 
 383  public:
 384   // Functionality from old debug nodes which has changed
 385   Node *local(JVMState* jvms, uint idx) const {
 386     verify_input(jvms, jvms->locoff() + idx);
 387     return in(jvms->locoff() + idx);
 388   }
 389   Node *stack(JVMState* jvms, uint idx) const {
 390     verify_input(jvms, jvms->stkoff() + idx);
 391     return in(jvms->stkoff() + idx);
 392   }
 393   Node *argument(JVMState* jvms, uint idx) const {
 394     verify_input(jvms, jvms->argoff() + idx);
 395     return in(jvms->argoff() + idx);
 396   }
 397   Node *monitor_box(JVMState* jvms, uint idx) const {
 398     assert(verify_jvms(jvms), "jvms must match");
 399     return in(jvms->monitor_box_offset(idx));
 400   }
 401   Node *monitor_obj(JVMState* jvms, uint idx) const {
 402     assert(verify_jvms(jvms), "jvms must match");
 403     return in(jvms->monitor_obj_offset(idx));
 404   }
 405 
 406   void  set_local(JVMState* jvms, uint idx, Node *c);
 407 
 408   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 409     assert(verify_jvms(jvms), "jvms must match");
 410     set_req(jvms->stkoff() + idx, c);
 411   }
 412   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 413     assert(verify_jvms(jvms), "jvms must match");
 414     set_req(jvms->argoff() + idx, c);
 415   }
 416   void ensure_stack(JVMState* jvms, uint stk_size) {
 417     assert(verify_jvms(jvms), "jvms must match");
 418     int grow_by = (int)stk_size - (int)jvms->stk_size();
 419     if (grow_by > 0)  grow_stack(jvms, grow_by);
 420   }
 421   void grow_stack(JVMState* jvms, uint grow_by);
 422   // Handle monitor stack
 423   void push_monitor( const FastLockNode *lock );
 424   void pop_monitor ();
 425   Node *peek_monitor_box() const;
 426   Node *peek_monitor_obj() const;
 427   // Peek Operand Stacks, JVMS 2.6.2
 428   Node* peek_operand(uint off = 0) const;
 429 
 430   // Access functions for the JVM
 431   Node *control  () const { return in(TypeFunc::Control  ); }
 432   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 433   Node *memory   () const { return in(TypeFunc::Memory   ); }
 434   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 435   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 436 
 437   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 438   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 439   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 440 
 441   MergeMemNode* merged_memory() const {
 442     return in(TypeFunc::Memory)->as_MergeMem();
 443   }
 444 
 445   // The parser marks useless maps as dead when it's done with them:
 446   bool is_killed() { return in(TypeFunc::Control) == nullptr; }
 447 
 448   // Exception states bubbling out of subgraphs such as inlined calls
 449   // are recorded here.  (There might be more than one, hence the "next".)
 450   // This feature is used only for safepoints which serve as "maps"
 451   // for JVM states during parsing, intrinsic expansion, etc.
 452   SafePointNode*         next_exception() const;
 453   void               set_next_exception(SafePointNode* n);
 454   bool                   has_exceptions() const { return next_exception() != nullptr; }
 455 
 456   // Helper methods to operate on replaced nodes
 457   ReplacedNodes replaced_nodes() const {
 458     return _replaced_nodes;
 459   }
 460 
 461   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 462     _replaced_nodes = replaced_nodes;
 463   }
 464 
 465   void clone_replaced_nodes() {
 466     _replaced_nodes.clone();
 467   }
 468   void record_replaced_node(Node* initial, Node* improved) {
 469     _replaced_nodes.record(initial, improved);
 470   }
 471   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 472     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 473   }
 474   void delete_replaced_nodes() {
 475     _replaced_nodes.reset();
 476   }
 477   void apply_replaced_nodes(uint idx) {
 478     _replaced_nodes.apply(this, idx);
 479   }
 480   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 481     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 482   }
 483   bool has_replaced_nodes() const {
 484     return !_replaced_nodes.is_empty();
 485   }
 486   void set_has_ea_local_in_scope(bool b) {
 487     _has_ea_local_in_scope = b;
 488   }
 489   bool has_ea_local_in_scope() const {
 490     return _has_ea_local_in_scope;
 491   }
 492 
 493   void disconnect_from_root(PhaseIterGVN *igvn);
 494 
 495   // Standard Node stuff
 496   virtual int            Opcode() const;
 497   virtual bool           pinned() const { return true; }
 498   virtual const Type*    Value(PhaseGVN* phase) const;
 499   virtual const Type*    bottom_type() const { return Type::CONTROL; }
 500   virtual const TypePtr* adr_type() const { return _adr_type; }
 501   void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; }
 502   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 503   virtual Node*          Identity(PhaseGVN* phase);
 504   virtual uint           ideal_reg() const { return 0; }
 505   virtual const RegMask &in_RegMask(uint) const;
 506   virtual const RegMask &out_RegMask() const;
 507   virtual uint           match_edge(uint idx) const;
 508 
 509 #ifndef PRODUCT
 510   virtual void           dump_spec(outputStream *st) const;
 511 #endif
 512 };
 513 
 514 //------------------------------SafePointScalarObjectNode----------------------
 515 // A SafePointScalarObjectNode represents the state of a scalarized object
 516 // at a safepoint.
 517 class SafePointScalarObjectNode: public TypeNode {
 518   uint _first_index;              // First input edge relative index of a SafePoint node where
 519                                   // states of the scalarized object fields are collected.
 520   uint _depth;                    // Depth of the JVM state the _first_index field refers to
 521   uint _n_fields;                 // Number of non-static fields of the scalarized object.
 522 
 523   Node* _alloc;                   // Just for debugging purposes.
 524 
 525   virtual uint hash() const;
 526   virtual bool cmp( const Node &n ) const;
 527 
 528   uint first_index() const { return _first_index; }
 529 
 530 public:
 531   SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields);
 532 
 533   virtual int Opcode() const;
 534   virtual uint           ideal_reg() const;
 535   virtual const RegMask &in_RegMask(uint) const;
 536   virtual const RegMask &out_RegMask() const;
 537   virtual uint           match_edge(uint idx) const;
 538 
 539   uint first_index(JVMState* jvms) const {
 540     assert(jvms != nullptr, "missed JVMS");
 541     return jvms->of_depth(_depth)->scloff() + _first_index;
 542   }
 543   uint n_fields()    const { return _n_fields; }
 544 
 545 #ifdef ASSERT
 546   Node* alloc() const { return _alloc; }
 547 #endif
 548 
 549   virtual uint size_of() const { return sizeof(*this); }
 550 
 551   // Assumes that "this" is an argument to a safepoint node "s", and that
 552   // "new_call" is being created to correspond to "s".  But the difference
 553   // between the start index of the jvmstates of "new_call" and "s" is
 554   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 555   // corresponds appropriately to "this" in "new_call".  Assumes that
 556   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 557   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 558   SafePointScalarObjectNode* clone(Dict* sosn_map, bool& new_node) const;
 559 
 560 #ifndef PRODUCT
 561   virtual void              dump_spec(outputStream *st) const;
 562 #endif
 563 };
 564 
 565 //------------------------------SafePointScalarMergeNode----------------------
 566 //
 567 // This class represents an allocation merge that is used as debug information
 568 // and had at least one of its input scalar replaced.
 569 //
 570 // The required inputs of this node, except the control, are pointers to
 571 // SafePointScalarObjectNodes that describe scalarized inputs of the original
 572 // allocation merge. The other(s) properties of the class are described below.
 573 //
 574 // _merge_pointer_idx : index in the SafePointNode's input array where the
 575 //   description of the _allocation merge_ starts. The index is zero based and
 576 //   relative to the SafePoint's scloff. The two entries in the SafePointNode's
 577 //   input array starting at '_merge_pointer_idx` are Phi nodes representing:
 578 //
 579 //   1) The original merge Phi. During rematerialization this input will only be
 580 //   used if the "selector Phi" (see below) indicates that the execution of the
 581 //   Phi took the path of a non scalarized input.
 582 //
 583 //   2) A "selector Phi". The output of this Phi will be '-1' if the execution
 584 //   of the method exercised a non scalarized input of the original Phi.
 585 //   Otherwise, the output will be >=0, and it will indicate the index-1 in the
 586 //   SafePointScalarMergeNode input array where the description of the
 587 //   scalarized object that should be used is.
 588 //
 589 // As an example, consider a Phi merging 3 inputs, of which the last 2 are
 590 // scalar replaceable.
 591 //
 592 //    Phi(Region, NSR, SR, SR)
 593 //
 594 // During scalar replacement the SR inputs will be changed to null:
 595 //
 596 //    Phi(Region, NSR, nullptr, nullptr)
 597 //
 598 // A corresponding selector Phi will be created with a configuration like this:
 599 //
 600 //    Phi(Region, -1, 0, 1)
 601 //
 602 // During execution of the compiled method, if the execution reaches a Trap, the
 603 // output of the selector Phi will tell if we need to rematerialize one of the
 604 // scalar replaced inputs or if we should just use the pointer returned by the
 605 // original Phi.
 606 
 607 class SafePointScalarMergeNode: public TypeNode {
 608   int _merge_pointer_idx;         // This is the first input edge relative
 609                                   // index of a SafePoint node where metadata information relative
 610                                   // to restoring the merge is stored. The corresponding input
 611                                   // in the associated SafePoint will point to a Phi representing
 612                                   // potential non-scalar replaced objects.
 613 
 614   virtual uint hash() const;
 615   virtual bool cmp( const Node &n ) const;
 616 
 617 public:
 618   SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx);
 619 
 620   virtual int            Opcode() const;
 621   virtual uint           ideal_reg() const;
 622   virtual const RegMask &in_RegMask(uint) const;
 623   virtual const RegMask &out_RegMask() const;
 624   virtual uint           match_edge(uint idx) const;
 625 
 626   virtual uint size_of() const { return sizeof(*this); }
 627 
 628   int merge_pointer_idx(JVMState* jvms) const {
 629     assert(jvms != nullptr, "JVMS reference is null.");
 630     return jvms->scloff() + _merge_pointer_idx;
 631   }
 632 
 633   int selector_idx(JVMState* jvms) const {
 634     assert(jvms != nullptr, "JVMS reference is null.");
 635     return jvms->scloff() + _merge_pointer_idx + 1;
 636   }
 637 
 638   // Assumes that "this" is an argument to a safepoint node "s", and that
 639   // "new_call" is being created to correspond to "s".  But the difference
 640   // between the start index of the jvmstates of "new_call" and "s" is
 641   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 642   // corresponds appropriately to "this" in "new_call".  Assumes that
 643   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 644   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 645   SafePointScalarMergeNode* clone(Dict* sosn_map, bool& new_node) const;
 646 
 647 #ifndef PRODUCT
 648   virtual void              dump_spec(outputStream *st) const;
 649 #endif
 650 };
 651 
 652 // Simple container for the outgoing projections of a call.  Useful
 653 // for serious surgery on calls.
 654 class CallProjections : public StackObj {
 655 public:
 656   Node* fallthrough_proj;
 657   Node* fallthrough_catchproj;
 658   Node* fallthrough_memproj;
 659   Node* fallthrough_ioproj;
 660   Node* catchall_catchproj;
 661   Node* catchall_memproj;
 662   Node* catchall_ioproj;
 663   Node* resproj;
 664   Node* exobj;
 665 };
 666 
 667 class CallGenerator;
 668 
 669 //------------------------------CallNode---------------------------------------
 670 // Call nodes now subsume the function of debug nodes at callsites, so they
 671 // contain the functionality of a full scope chain of debug nodes.
 672 class CallNode : public SafePointNode {
 673 
 674 protected:
 675   bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase);
 676 
 677 public:
 678   const TypeFunc* _tf;          // Function type
 679   address         _entry_point; // Address of method being called
 680   float           _cnt;         // Estimate of number of times called
 681   CallGenerator*  _generator;   // corresponding CallGenerator for some late inline calls
 682   const char*     _name;        // Printable name, if _method is null
 683 
 684   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type, JVMState* jvms = nullptr)
 685     : SafePointNode(tf->domain()->cnt(), jvms, adr_type),
 686       _tf(tf),
 687       _entry_point(addr),
 688       _cnt(COUNT_UNKNOWN),
 689       _generator(nullptr),
 690       _name(nullptr)
 691   {
 692     init_class_id(Class_Call);
 693   }
 694 
 695   const TypeFunc* tf()         const { return _tf; }
 696   address  entry_point()       const { return _entry_point; }
 697   float    cnt()               const { return _cnt; }
 698   CallGenerator* generator()   const { return _generator; }
 699 
 700   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 701   void set_entry_point(address p)       { _entry_point = p; }
 702   void set_cnt(float c)                 { _cnt = c; }
 703   void set_generator(CallGenerator* cg) { _generator = cg; }
 704 
 705   virtual const Type* bottom_type() const;
 706   virtual const Type* Value(PhaseGVN* phase) const;
 707   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 708   virtual Node* Identity(PhaseGVN* phase) { return this; }
 709   virtual bool        cmp(const Node &n) const;
 710   virtual uint        size_of() const = 0;
 711   virtual void        calling_convention(BasicType* sig_bt, VMRegPair* parm_regs, uint argcnt) const;
 712   virtual Node*       match(const ProjNode* proj, const Matcher* m);
 713   virtual uint        ideal_reg() const { return NotAMachineReg; }
 714   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 715   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 716   virtual bool        guaranteed_safepoint()  { return true; }
 717   // For macro nodes, the JVMState gets modified during expansion. If calls
 718   // use MachConstantBase, it gets modified during matching. So when cloning
 719   // the node the JVMState must be deep cloned. Default is to shallow clone.
 720   virtual bool needs_deep_clone_jvms(Compile* C) { return C->needs_deep_clone_jvms(); }
 721 
 722   // Returns true if the call may modify n
 723   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase);
 724   // Does this node have a use of n other than in debug information?
 725   bool                has_non_debug_use(Node* n);
 726   // Returns the unique CheckCastPP of a call
 727   // or result projection is there are several CheckCastPP
 728   // or returns null if there is no one.
 729   Node* result_cast();
 730   // Does this node returns pointer?
 731   bool returns_pointer() const {
 732     const TypeTuple* r = tf()->range();
 733     return (r->cnt() > TypeFunc::Parms &&
 734             r->field_at(TypeFunc::Parms)->isa_ptr());
 735   }
 736 
 737   // Collect all the interesting edges from a call for use in
 738   // replacing the call by something else.  Used by macro expansion
 739   // and the late inlining support.
 740   void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true);
 741 
 742   virtual uint match_edge(uint idx) const;
 743 
 744   bool is_call_to_arraycopystub() const;
 745 
 746   virtual void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {}
 747 
 748 #ifndef PRODUCT
 749   virtual void        dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;
 750   virtual void        dump_spec(outputStream* st) const;
 751 #endif
 752 };
 753 
 754 
 755 //------------------------------CallJavaNode-----------------------------------
 756 // Make a static or dynamic subroutine call node using Java calling
 757 // convention.  (The "Java" calling convention is the compiler's calling
 758 // convention, as opposed to the interpreter's or that of native C.)
 759 class CallJavaNode : public CallNode {
 760 protected:
 761   virtual bool cmp( const Node &n ) const;
 762   virtual uint size_of() const; // Size is bigger
 763 
 764   ciMethod* _method;               // Method being direct called
 765   bool    _optimized_virtual;
 766   bool    _method_handle_invoke;
 767   bool    _override_symbolic_info; // Override symbolic call site info from bytecode
 768   bool    _arg_escape;             // ArgEscape in parameter list
 769 public:
 770   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method)
 771     : CallNode(tf, addr, TypePtr::BOTTOM),
 772       _method(method),
 773       _optimized_virtual(false),
 774       _method_handle_invoke(false),
 775       _override_symbolic_info(false),
 776       _arg_escape(false)
 777   {
 778     init_class_id(Class_CallJava);
 779   }
 780 
 781   virtual int   Opcode() const;
 782   ciMethod* method() const                 { return _method; }
 783   void  set_method(ciMethod *m)            { _method = m; }
 784   void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
 785   bool  is_optimized_virtual() const       { return _optimized_virtual; }
 786   void  set_method_handle_invoke(bool f)   { _method_handle_invoke = f; }
 787   bool  is_method_handle_invoke() const    { return _method_handle_invoke; }
 788   void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
 789   bool  override_symbolic_info() const     { return _override_symbolic_info; }
 790   void  set_arg_escape(bool f)             { _arg_escape = f; }
 791   bool  arg_escape() const                 { return _arg_escape; }
 792   void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode *sfpt);
 793 
 794   DEBUG_ONLY( bool validate_symbolic_info() const; )
 795 
 796 #ifndef PRODUCT
 797   virtual void  dump_spec(outputStream *st) const;
 798   virtual void  dump_compact_spec(outputStream *st) const;
 799 #endif
 800 };
 801 
 802 //------------------------------CallStaticJavaNode-----------------------------
 803 // Make a direct subroutine call using Java calling convention (for static
 804 // calls and optimized virtual calls, plus calls to wrappers for run-time
 805 // routines); generates static stub.
 806 class CallStaticJavaNode : public CallJavaNode {
 807   virtual bool cmp( const Node &n ) const;
 808   virtual uint size_of() const; // Size is bigger
 809 public:
 810   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method)
 811     : CallJavaNode(tf, addr, method) {
 812     init_class_id(Class_CallStaticJava);
 813     if (C->eliminate_boxing() && (method != nullptr) && method->is_boxing_method()) {
 814       init_flags(Flag_is_macro);
 815       C->add_macro_node(this);
 816     }
 817   }
 818   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type)
 819     : CallJavaNode(tf, addr, nullptr) {
 820     init_class_id(Class_CallStaticJava);
 821     // This node calls a runtime stub, which often has narrow memory effects.
 822     _adr_type = adr_type;
 823     _name = name;
 824   }
 825 
 826   // If this is an uncommon trap, return the request code, else zero.
 827   int uncommon_trap_request() const;
 828   bool is_uncommon_trap() const;
 829   static int extract_uncommon_trap_request(const Node* call);
 830 
 831   bool is_boxing_method() const {
 832     return is_macro() && (method() != nullptr) && method()->is_boxing_method();
 833   }
 834   // Late inlining modifies the JVMState, so we need to deep clone it
 835   // when the call node is cloned (because it is macro node).
 836   virtual bool needs_deep_clone_jvms(Compile* C) {
 837     return is_boxing_method() || CallNode::needs_deep_clone_jvms(C);
 838   }
 839 
 840   virtual int         Opcode() const;
 841   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 842 
 843 #ifndef PRODUCT
 844   virtual void        dump_spec(outputStream *st) const;
 845   virtual void        dump_compact_spec(outputStream *st) const;
 846 #endif
 847 };
 848 
 849 //------------------------------CallDynamicJavaNode----------------------------
 850 // Make a dispatched call using Java calling convention.
 851 class CallDynamicJavaNode : public CallJavaNode {
 852   virtual bool cmp( const Node &n ) const;
 853   virtual uint size_of() const; // Size is bigger
 854 public:
 855   CallDynamicJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int vtable_index)
 856     : CallJavaNode(tf,addr,method), _vtable_index(vtable_index) {
 857     init_class_id(Class_CallDynamicJava);
 858   }
 859 
 860   // Late inlining modifies the JVMState, so we need to deep clone it
 861   // when the call node is cloned.
 862   virtual bool needs_deep_clone_jvms(Compile* C) {
 863     return IncrementalInlineVirtual || CallNode::needs_deep_clone_jvms(C);
 864   }
 865 
 866   int _vtable_index;
 867   virtual int   Opcode() const;
 868   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 869 #ifndef PRODUCT
 870   virtual void  dump_spec(outputStream *st) const;
 871 #endif
 872 };
 873 
 874 //------------------------------CallRuntimeNode--------------------------------
 875 // Make a direct subroutine call node into compiled C++ code.
 876 class CallRuntimeNode : public CallNode {
 877 protected:
 878   virtual bool cmp( const Node &n ) const;
 879   virtual uint size_of() const; // Size is bigger
 880 public:
 881   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 882                   const TypePtr* adr_type, JVMState* jvms = nullptr)
 883     : CallNode(tf, addr, adr_type, jvms)
 884   {
 885     init_class_id(Class_CallRuntime);
 886     _name = name;
 887   }
 888 
 889   virtual int   Opcode() const;
 890   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 891 
 892 #ifndef PRODUCT
 893   virtual void  dump_spec(outputStream *st) const;
 894 #endif
 895 };
 896 
 897 //------------------------------CallLeafNode-----------------------------------
 898 // Make a direct subroutine call node into compiled C++ code, without
 899 // safepoints
 900 class CallLeafNode : public CallRuntimeNode {
 901 public:
 902   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 903                const TypePtr* adr_type)
 904     : CallRuntimeNode(tf, addr, name, adr_type)
 905   {
 906     init_class_id(Class_CallLeaf);
 907   }
 908   virtual int   Opcode() const;
 909   virtual bool        guaranteed_safepoint()  { return false; }
 910 #ifndef PRODUCT
 911   virtual void  dump_spec(outputStream *st) const;
 912 #endif
 913 };
 914 
 915 //------------------------------CallLeafNoFPNode-------------------------------
 916 // CallLeafNode, not using floating point or using it in the same manner as
 917 // the generated code
 918 class CallLeafNoFPNode : public CallLeafNode {
 919 public:
 920   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 921                    const TypePtr* adr_type)
 922     : CallLeafNode(tf, addr, name, adr_type)
 923   {
 924     init_class_id(Class_CallLeafNoFP);
 925   }
 926   virtual int   Opcode() const;
 927 };
 928 
 929 //------------------------------CallLeafVectorNode-------------------------------
 930 // CallLeafNode but calling with vector calling convention instead.
 931 class CallLeafVectorNode : public CallLeafNode {
 932 private:
 933   uint _num_bits;
 934 protected:
 935   virtual bool cmp( const Node &n ) const;
 936   virtual uint size_of() const; // Size is bigger
 937 public:
 938   CallLeafVectorNode(const TypeFunc* tf, address addr, const char* name,
 939                    const TypePtr* adr_type, uint num_bits)
 940     : CallLeafNode(tf, addr, name, adr_type), _num_bits(num_bits)
 941   {
 942   }
 943   virtual int   Opcode() const;
 944   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 945 };
 946 
 947 
 948 //------------------------------Allocate---------------------------------------
 949 // High-level memory allocation
 950 //
 951 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 952 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 953 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 954 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 955 //  order to differentiate the uses of the projection on the normal control path from
 956 //  those on the exception return path.
 957 //
 958 class AllocateNode : public CallNode {
 959 public:
 960   enum {
 961     // Output:
 962     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 963     // Inputs:
 964     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 965     KlassNode,                        // type (maybe dynamic) of the obj.
 966     InitialTest,                      // slow-path test (may be constant)
 967     ALength,                          // array length (or TOP if none)
 968     ValidLengthTest,
 969     ParmLimit
 970   };
 971 
 972   static const TypeFunc* alloc_type(const Type* t) {
 973     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 974     fields[AllocSize]   = TypeInt::POS;
 975     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 976     fields[InitialTest] = TypeInt::BOOL;
 977     fields[ALength]     = t;  // length (can be a bad length)
 978     fields[ValidLengthTest] = TypeInt::BOOL;
 979 
 980     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 981 
 982     // create result type (range)
 983     fields = TypeTuple::fields(1);
 984     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 985 
 986     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 987 
 988     return TypeFunc::make(domain, range);
 989   }
 990 
 991   // Result of Escape Analysis
 992   bool _is_scalar_replaceable;
 993   bool _is_non_escaping;
 994   // True when MemBar for new is redundant with MemBar at initialzer exit
 995   bool _is_allocation_MemBar_redundant;
 996 
 997   virtual uint size_of() const; // Size is bigger
 998   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 999                Node *size, Node *klass_node, Node *initial_test);
1000   // Expansion modifies the JVMState, so we need to deep clone it
1001   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1002   virtual int Opcode() const;
1003   virtual uint ideal_reg() const { return Op_RegP; }
1004   virtual bool        guaranteed_safepoint()  { return false; }
1005 
1006   // allocations do not modify their arguments
1007   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { return false;}
1008 
1009   // Pattern-match a possible usage of AllocateNode.
1010   // Return null if no allocation is recognized.
1011   // The operand is the pointer produced by the (possible) allocation.
1012   // It must be a projection of the Allocate or its subsequent CastPP.
1013   // (Note:  This function is defined in file graphKit.cpp, near
1014   // GraphKit::new_instance/new_array, whose output it recognizes.)
1015   // The 'ptr' may not have an offset unless the 'offset' argument is given.
1016   static AllocateNode* Ideal_allocation(Node* ptr);
1017 
1018   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
1019   // an offset, which is reported back to the caller.
1020   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
1021   static AllocateNode* Ideal_allocation(Node* ptr, PhaseValues* phase,
1022                                         intptr_t& offset);
1023 
1024   // Dig the klass operand out of a (possible) allocation site.
1025   static Node* Ideal_klass(Node* ptr, PhaseValues* phase) {
1026     AllocateNode* allo = Ideal_allocation(ptr);
1027     return (allo == nullptr) ? nullptr : allo->in(KlassNode);
1028   }
1029 
1030   // Conservatively small estimate of offset of first non-header byte.
1031   int minimum_header_size() {
1032     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
1033                                 instanceOopDesc::base_offset_in_bytes();
1034   }
1035 
1036   // Return the corresponding initialization barrier (or null if none).
1037   // Walks out edges to find it...
1038   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1039   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1040   InitializeNode* initialization();
1041 
1042   // Convenience for initialization->maybe_set_complete(phase)
1043   bool maybe_set_complete(PhaseGVN* phase);
1044 
1045   // Return true if allocation doesn't escape thread, its escape state
1046   // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
1047   // is true when its allocation's escape state is noEscape or
1048   // ArgEscape. In case allocation's InitializeNode is null, check
1049   // AlllocateNode._is_non_escaping flag.
1050   // AlllocateNode._is_non_escaping is true when its escape state is
1051   // noEscape.
1052   bool does_not_escape_thread() {
1053     InitializeNode* init = nullptr;
1054     return _is_non_escaping || (((init = initialization()) != nullptr) && init->does_not_escape());
1055   }
1056 
1057   // If object doesn't escape in <.init> method and there is memory barrier
1058   // inserted at exit of its <.init>, memory barrier for new is not necessary.
1059   // Inovke this method when MemBar at exit of initializer and post-dominate
1060   // allocation node.
1061   void compute_MemBar_redundancy(ciMethod* initializer);
1062   bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; }
1063 
1064   Node* make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem);
1065 
1066   NOT_PRODUCT(virtual void dump_spec(outputStream* st) const;)
1067 };
1068 
1069 //------------------------------AllocateArray---------------------------------
1070 //
1071 // High-level array allocation
1072 //
1073 class AllocateArrayNode : public AllocateNode {
1074 public:
1075   AllocateArrayNode(Compile* C, const TypeFunc* atype, Node* ctrl, Node* mem, Node* abio, Node* size, Node* klass_node,
1076                     Node* initial_test, Node* count_val, Node* valid_length_test)
1077     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
1078                    initial_test)
1079   {
1080     init_class_id(Class_AllocateArray);
1081     set_req(AllocateNode::ALength,        count_val);
1082     set_req(AllocateNode::ValidLengthTest, valid_length_test);
1083   }
1084   virtual int Opcode() const;
1085 
1086   // Dig the length operand out of a array allocation site.
1087   Node* Ideal_length() {
1088     return in(AllocateNode::ALength);
1089   }
1090 
1091   // Dig the length operand out of a array allocation site and narrow the
1092   // type with a CastII, if necesssary
1093   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseValues* phase, bool can_create = true);
1094 
1095   // Pattern-match a possible usage of AllocateArrayNode.
1096   // Return null if no allocation is recognized.
1097   static AllocateArrayNode* Ideal_array_allocation(Node* ptr) {
1098     AllocateNode* allo = Ideal_allocation(ptr);
1099     return (allo == nullptr || !allo->is_AllocateArray())
1100            ? nullptr : allo->as_AllocateArray();
1101   }
1102 };
1103 
1104 //------------------------------AbstractLockNode-----------------------------------
1105 class AbstractLockNode: public CallNode {
1106 private:
1107   enum {
1108     Regular = 0,  // Normal lock
1109     NonEscObj,    // Lock is used for non escaping object
1110     Coarsened,    // Lock was coarsened
1111     Nested        // Nested lock
1112   } _kind;
1113 
1114   static const char* _kind_names[Nested+1];
1115 
1116 #ifndef PRODUCT
1117   NamedCounter* _counter;
1118 #endif
1119 
1120 protected:
1121   // helper functions for lock elimination
1122   //
1123 
1124   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
1125                             GrowableArray<AbstractLockNode*> &lock_ops);
1126   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1127                                        GrowableArray<AbstractLockNode*> &lock_ops);
1128   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1129                                GrowableArray<AbstractLockNode*> &lock_ops);
1130   LockNode *find_matching_lock(UnlockNode* unlock);
1131 
1132   // Update the counter to indicate that this lock was eliminated.
1133   void set_eliminated_lock_counter() PRODUCT_RETURN;
1134 
1135 public:
1136   AbstractLockNode(const TypeFunc *tf)
1137     : CallNode(tf, nullptr, TypeRawPtr::BOTTOM),
1138       _kind(Regular)
1139   {
1140 #ifndef PRODUCT
1141     _counter = nullptr;
1142 #endif
1143   }
1144   virtual int Opcode() const = 0;
1145   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1146   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1147   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1148   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1149 
1150   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1151 
1152   virtual uint size_of() const { return sizeof(*this); }
1153 
1154   bool is_eliminated()  const { return (_kind != Regular); }
1155   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1156   bool is_coarsened()   const { return (_kind == Coarsened); }
1157   bool is_nested()      const { return (_kind == Nested); }
1158 
1159   const char * kind_as_string() const;
1160   void log_lock_optimization(Compile* c, const char * tag, Node* bad_lock = nullptr) const;
1161 
1162   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1163   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1164   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1165 
1166   // Check that all locks/unlocks associated with object come from balanced regions.
1167   // They can become unbalanced after coarsening optimization or on OSR entry.
1168   bool is_balanced();
1169 
1170   // locking does not modify its arguments
1171   virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase){ return false; }
1172 
1173 #ifndef PRODUCT
1174   void create_lock_counter(JVMState* s);
1175   NamedCounter* counter() const { return _counter; }
1176   virtual void dump_spec(outputStream* st) const;
1177   virtual void dump_compact_spec(outputStream* st) const;
1178 #endif
1179 };
1180 
1181 //------------------------------Lock---------------------------------------
1182 // High-level lock operation
1183 //
1184 // This is a subclass of CallNode because it is a macro node which gets expanded
1185 // into a code sequence containing a call.  This node takes 3 "parameters":
1186 //    0  -  object to lock
1187 //    1 -   a BoxLockNode
1188 //    2 -   a FastLockNode
1189 //
1190 class LockNode : public AbstractLockNode {
1191   static const TypeFunc* _lock_type_Type;
1192 public:
1193 
1194   static inline const TypeFunc* lock_type() {
1195     assert(_lock_type_Type != nullptr, "should be initialized");
1196     return _lock_type_Type;
1197   }
1198 
1199   static void initialize_lock_Type() {
1200     assert(_lock_type_Type == nullptr, "should be called once");
1201     // create input type (domain)
1202     const Type **fields = TypeTuple::fields(3);
1203     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1204     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1205     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1206     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1207 
1208     // create result type (range)
1209     fields = TypeTuple::fields(0);
1210 
1211     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1212 
1213     _lock_type_Type = TypeFunc::make(domain,range);
1214   }
1215 
1216   virtual int Opcode() const;
1217   virtual uint size_of() const; // Size is bigger
1218   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1219     init_class_id(Class_Lock);
1220     init_flags(Flag_is_macro);
1221     C->add_macro_node(this);
1222   }
1223   virtual bool        guaranteed_safepoint()  { return false; }
1224 
1225   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1226   // Expansion modifies the JVMState, so we need to deep clone it
1227   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1228 
1229   bool is_nested_lock_region(); // Is this Lock nested?
1230   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1231 };
1232 
1233 //------------------------------Unlock---------------------------------------
1234 // High-level unlock operation
1235 class UnlockNode : public AbstractLockNode {
1236 private:
1237 #ifdef ASSERT
1238   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1239 #endif
1240 public:
1241   virtual int Opcode() const;
1242   virtual uint size_of() const; // Size is bigger
1243   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1244 #ifdef ASSERT
1245     , _dbg_jvms(nullptr)
1246 #endif
1247   {
1248     init_class_id(Class_Unlock);
1249     init_flags(Flag_is_macro);
1250     C->add_macro_node(this);
1251   }
1252   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1253   // unlock is never a safepoint
1254   virtual bool        guaranteed_safepoint()  { return false; }
1255 #ifdef ASSERT
1256   void set_dbg_jvms(JVMState* s) {
1257     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1258   }
1259   JVMState* dbg_jvms() const { return _dbg_jvms; }
1260 #else
1261   JVMState* dbg_jvms() const { return nullptr; }
1262 #endif
1263 };
1264 #endif // SHARE_OPTO_CALLNODE_HPP