1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/arena.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/inlinetypenode.hpp" 61 #include "opto/locknode.hpp" 62 #include "opto/loopnode.hpp" 63 #include "opto/machnode.hpp" 64 #include "opto/macro.hpp" 65 #include "opto/matcher.hpp" 66 #include "opto/mathexactnode.hpp" 67 #include "opto/memnode.hpp" 68 #include "opto/movenode.hpp" 69 #include "opto/mulnode.hpp" 70 #include "opto/narrowptrnode.hpp" 71 #include "opto/node.hpp" 72 #include "opto/opaquenode.hpp" 73 #include "opto/opcodes.hpp" 74 #include "opto/output.hpp" 75 #include "opto/parse.hpp" 76 #include "opto/phaseX.hpp" 77 #include "opto/rootnode.hpp" 78 #include "opto/runtime.hpp" 79 #include "opto/stringopts.hpp" 80 #include "opto/type.hpp" 81 #include "opto/vector.hpp" 82 #include "opto/vectornode.hpp" 83 #include "runtime/globals_extension.hpp" 84 #include "runtime/sharedRuntime.hpp" 85 #include "runtime/signature.hpp" 86 #include "runtime/stubRoutines.hpp" 87 #include "runtime/timer.hpp" 88 #include "utilities/align.hpp" 89 #include "utilities/copy.hpp" 90 #include "utilities/macros.hpp" 91 #include "utilities/resourceHash.hpp" 92 93 // -------------------- Compile::mach_constant_base_node ----------------------- 94 // Constant table base node singleton. 95 MachConstantBaseNode* Compile::mach_constant_base_node() { 96 if (_mach_constant_base_node == nullptr) { 97 _mach_constant_base_node = new MachConstantBaseNode(); 98 _mach_constant_base_node->add_req(C->root()); 99 } 100 return _mach_constant_base_node; 101 } 102 103 104 /// Support for intrinsics. 105 106 // Return the index at which m must be inserted (or already exists). 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 108 class IntrinsicDescPair { 109 private: 110 ciMethod* _m; 111 bool _is_virtual; 112 public: 113 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 114 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 115 ciMethod* m= elt->method(); 116 ciMethod* key_m = key->_m; 117 if (key_m < m) return -1; 118 else if (key_m > m) return 1; 119 else { 120 bool is_virtual = elt->is_virtual(); 121 bool key_virtual = key->_is_virtual; 122 if (key_virtual < is_virtual) return -1; 123 else if (key_virtual > is_virtual) return 1; 124 else return 0; 125 } 126 } 127 }; 128 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 129 #ifdef ASSERT 130 for (int i = 1; i < _intrinsics.length(); i++) { 131 CallGenerator* cg1 = _intrinsics.at(i-1); 132 CallGenerator* cg2 = _intrinsics.at(i); 133 assert(cg1->method() != cg2->method() 134 ? cg1->method() < cg2->method() 135 : cg1->is_virtual() < cg2->is_virtual(), 136 "compiler intrinsics list must stay sorted"); 137 } 138 #endif 139 IntrinsicDescPair pair(m, is_virtual); 140 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 141 } 142 143 void Compile::register_intrinsic(CallGenerator* cg) { 144 bool found = false; 145 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 146 assert(!found, "registering twice"); 147 _intrinsics.insert_before(index, cg); 148 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 149 } 150 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 152 assert(m->is_loaded(), "don't try this on unloaded methods"); 153 if (_intrinsics.length() > 0) { 154 bool found = false; 155 int index = intrinsic_insertion_index(m, is_virtual, found); 156 if (found) { 157 return _intrinsics.at(index); 158 } 159 } 160 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 161 if (m->intrinsic_id() != vmIntrinsics::_none && 162 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 163 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 164 if (cg != nullptr) { 165 // Save it for next time: 166 register_intrinsic(cg); 167 return cg; 168 } else { 169 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 170 } 171 } 172 return nullptr; 173 } 174 175 // Compile::make_vm_intrinsic is defined in library_call.cpp. 176 177 #ifndef PRODUCT 178 // statistics gathering... 179 180 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 182 183 inline int as_int(vmIntrinsics::ID id) { 184 return vmIntrinsics::as_int(id); 185 } 186 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 188 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 189 int oflags = _intrinsic_hist_flags[as_int(id)]; 190 assert(flags != 0, "what happened?"); 191 if (is_virtual) { 192 flags |= _intrinsic_virtual; 193 } 194 bool changed = (flags != oflags); 195 if ((flags & _intrinsic_worked) != 0) { 196 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 197 if (count == 1) { 198 changed = true; // first time 199 } 200 // increment the overall count also: 201 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 202 } 203 if (changed) { 204 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 205 // Something changed about the intrinsic's virtuality. 206 if ((flags & _intrinsic_virtual) != 0) { 207 // This is the first use of this intrinsic as a virtual call. 208 if (oflags != 0) { 209 // We already saw it as a non-virtual, so note both cases. 210 flags |= _intrinsic_both; 211 } 212 } else if ((oflags & _intrinsic_both) == 0) { 213 // This is the first use of this intrinsic as a non-virtual 214 flags |= _intrinsic_both; 215 } 216 } 217 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 218 } 219 // update the overall flags also: 220 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 221 return changed; 222 } 223 224 static char* format_flags(int flags, char* buf) { 225 buf[0] = 0; 226 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 227 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 228 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 229 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 230 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 231 if (buf[0] == 0) strcat(buf, ","); 232 assert(buf[0] == ',', "must be"); 233 return &buf[1]; 234 } 235 236 void Compile::print_intrinsic_statistics() { 237 char flagsbuf[100]; 238 ttyLocker ttyl; 239 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 240 tty->print_cr("Compiler intrinsic usage:"); 241 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 242 if (total == 0) total = 1; // avoid div0 in case of no successes 243 #define PRINT_STAT_LINE(name, c, f) \ 244 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 245 for (auto id : EnumRange<vmIntrinsicID>{}) { 246 int flags = _intrinsic_hist_flags[as_int(id)]; 247 juint count = _intrinsic_hist_count[as_int(id)]; 248 if ((flags | count) != 0) { 249 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 250 } 251 } 252 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 253 if (xtty != nullptr) xtty->tail("statistics"); 254 } 255 256 void Compile::print_statistics() { 257 { ttyLocker ttyl; 258 if (xtty != nullptr) xtty->head("statistics type='opto'"); 259 Parse::print_statistics(); 260 PhaseStringOpts::print_statistics(); 261 PhaseCCP::print_statistics(); 262 PhaseRegAlloc::print_statistics(); 263 PhaseOutput::print_statistics(); 264 PhasePeephole::print_statistics(); 265 PhaseIdealLoop::print_statistics(); 266 ConnectionGraph::print_statistics(); 267 PhaseMacroExpand::print_statistics(); 268 if (xtty != nullptr) xtty->tail("statistics"); 269 } 270 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 271 // put this under its own <statistics> element. 272 print_intrinsic_statistics(); 273 } 274 } 275 #endif //PRODUCT 276 277 void Compile::gvn_replace_by(Node* n, Node* nn) { 278 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 279 Node* use = n->last_out(i); 280 bool is_in_table = initial_gvn()->hash_delete(use); 281 uint uses_found = 0; 282 for (uint j = 0; j < use->len(); j++) { 283 if (use->in(j) == n) { 284 if (j < use->req()) 285 use->set_req(j, nn); 286 else 287 use->set_prec(j, nn); 288 uses_found++; 289 } 290 } 291 if (is_in_table) { 292 // reinsert into table 293 initial_gvn()->hash_find_insert(use); 294 } 295 record_for_igvn(use); 296 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 297 i -= uses_found; // we deleted 1 or more copies of this edge 298 } 299 } 300 301 302 // Identify all nodes that are reachable from below, useful. 303 // Use breadth-first pass that records state in a Unique_Node_List, 304 // recursive traversal is slower. 305 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 306 int estimated_worklist_size = live_nodes(); 307 useful.map( estimated_worklist_size, nullptr ); // preallocate space 308 309 // Initialize worklist 310 if (root() != nullptr) { useful.push(root()); } 311 // If 'top' is cached, declare it useful to preserve cached node 312 if (cached_top_node()) { useful.push(cached_top_node()); } 313 314 // Push all useful nodes onto the list, breadthfirst 315 for( uint next = 0; next < useful.size(); ++next ) { 316 assert( next < unique(), "Unique useful nodes < total nodes"); 317 Node *n = useful.at(next); 318 uint max = n->len(); 319 for( uint i = 0; i < max; ++i ) { 320 Node *m = n->in(i); 321 if (not_a_node(m)) continue; 322 useful.push(m); 323 } 324 } 325 } 326 327 // Update dead_node_list with any missing dead nodes using useful 328 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 329 void Compile::update_dead_node_list(Unique_Node_List &useful) { 330 uint max_idx = unique(); 331 VectorSet& useful_node_set = useful.member_set(); 332 333 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 334 // If node with index node_idx is not in useful set, 335 // mark it as dead in dead node list. 336 if (!useful_node_set.test(node_idx)) { 337 record_dead_node(node_idx); 338 } 339 } 340 } 341 342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 343 int shift = 0; 344 for (int i = 0; i < inlines->length(); i++) { 345 CallGenerator* cg = inlines->at(i); 346 if (useful.member(cg->call_node())) { 347 if (shift > 0) { 348 inlines->at_put(i - shift, cg); 349 } 350 } else { 351 shift++; // skip over the dead element 352 } 353 } 354 if (shift > 0) { 355 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 356 } 357 } 358 359 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 360 assert(dead != nullptr && dead->is_Call(), "sanity"); 361 int found = 0; 362 for (int i = 0; i < inlines->length(); i++) { 363 if (inlines->at(i)->call_node() == dead) { 364 inlines->remove_at(i); 365 found++; 366 NOT_DEBUG( break; ) // elements are unique, so exit early 367 } 368 } 369 assert(found <= 1, "not unique"); 370 } 371 372 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 373 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 374 for (int i = node_list.length() - 1; i >= 0; i--) { 375 N* node = node_list.at(i); 376 if (!useful.member(node)) { 377 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 378 } 379 } 380 } 381 382 void Compile::remove_useless_node(Node* dead) { 383 remove_modified_node(dead); 384 385 // Constant node that has no out-edges and has only one in-edge from 386 // root is usually dead. However, sometimes reshaping walk makes 387 // it reachable by adding use edges. So, we will NOT count Con nodes 388 // as dead to be conservative about the dead node count at any 389 // given time. 390 if (!dead->is_Con()) { 391 record_dead_node(dead->_idx); 392 } 393 if (dead->is_macro()) { 394 remove_macro_node(dead); 395 } 396 if (dead->is_expensive()) { 397 remove_expensive_node(dead); 398 } 399 if (dead->is_OpaqueTemplateAssertionPredicate()) { 400 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 401 } 402 if (dead->is_ParsePredicate()) { 403 remove_parse_predicate(dead->as_ParsePredicate()); 404 } 405 if (dead->for_post_loop_opts_igvn()) { 406 remove_from_post_loop_opts_igvn(dead); 407 } 408 if (dead->is_InlineType()) { 409 remove_inline_type(dead); 410 } 411 if (dead->for_merge_stores_igvn()) { 412 remove_from_merge_stores_igvn(dead); 413 } 414 if (dead->is_Call()) { 415 remove_useless_late_inlines( &_late_inlines, dead); 416 remove_useless_late_inlines( &_string_late_inlines, dead); 417 remove_useless_late_inlines( &_boxing_late_inlines, dead); 418 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 419 420 if (dead->is_CallStaticJava()) { 421 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 422 } 423 } 424 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 425 bs->unregister_potential_barrier_node(dead); 426 } 427 428 // Disconnect all useless nodes by disconnecting those at the boundary. 429 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 430 uint next = 0; 431 while (next < useful.size()) { 432 Node *n = useful.at(next++); 433 if (n->is_SafePoint()) { 434 // We're done with a parsing phase. Replaced nodes are not valid 435 // beyond that point. 436 n->as_SafePoint()->delete_replaced_nodes(); 437 } 438 // Use raw traversal of out edges since this code removes out edges 439 int max = n->outcnt(); 440 for (int j = 0; j < max; ++j) { 441 Node* child = n->raw_out(j); 442 if (!useful.member(child)) { 443 assert(!child->is_top() || child != top(), 444 "If top is cached in Compile object it is in useful list"); 445 // Only need to remove this out-edge to the useless node 446 n->raw_del_out(j); 447 --j; 448 --max; 449 if (child->is_data_proj_of_pure_function(n)) { 450 worklist.push(n); 451 } 452 } 453 } 454 if (n->outcnt() == 1 && n->has_special_unique_user()) { 455 assert(useful.member(n->unique_out()), "do not push a useless node"); 456 worklist.push(n->unique_out()); 457 } 458 if (n->outcnt() == 0) { 459 worklist.push(n); 460 } 461 } 462 463 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 464 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 465 // Remove useless Template Assertion Predicate opaque nodes 466 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 467 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 468 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 469 remove_useless_nodes(_inline_type_nodes, useful); // remove useless inline type nodes 470 #ifdef ASSERT 471 if (_modified_nodes != nullptr) { 472 _modified_nodes->remove_useless_nodes(useful.member_set()); 473 } 474 #endif 475 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 476 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 477 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 478 #ifdef ASSERT 479 if (_modified_nodes != nullptr) { 480 _modified_nodes->remove_useless_nodes(useful.member_set()); 481 } 482 #endif 483 484 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 485 bs->eliminate_useless_gc_barriers(useful, this); 486 // clean up the late inline lists 487 remove_useless_late_inlines( &_late_inlines, useful); 488 remove_useless_late_inlines( &_string_late_inlines, useful); 489 remove_useless_late_inlines( &_boxing_late_inlines, useful); 490 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 491 debug_only(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 492 } 493 494 // ============================================================================ 495 //------------------------------CompileWrapper--------------------------------- 496 class CompileWrapper : public StackObj { 497 Compile *const _compile; 498 public: 499 CompileWrapper(Compile* compile); 500 501 ~CompileWrapper(); 502 }; 503 504 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 505 // the Compile* pointer is stored in the current ciEnv: 506 ciEnv* env = compile->env(); 507 assert(env == ciEnv::current(), "must already be a ciEnv active"); 508 assert(env->compiler_data() == nullptr, "compile already active?"); 509 env->set_compiler_data(compile); 510 assert(compile == Compile::current(), "sanity"); 511 512 compile->set_type_dict(nullptr); 513 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 514 compile->clone_map().set_clone_idx(0); 515 compile->set_type_last_size(0); 516 compile->set_last_tf(nullptr, nullptr); 517 compile->set_indexSet_arena(nullptr); 518 compile->set_indexSet_free_block_list(nullptr); 519 compile->init_type_arena(); 520 Type::Initialize(compile); 521 _compile->begin_method(); 522 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 523 } 524 CompileWrapper::~CompileWrapper() { 525 // simulate crash during compilation 526 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 527 528 _compile->end_method(); 529 _compile->env()->set_compiler_data(nullptr); 530 } 531 532 533 //----------------------------print_compile_messages--------------------------- 534 void Compile::print_compile_messages() { 535 #ifndef PRODUCT 536 // Check if recompiling 537 if (!subsume_loads() && PrintOpto) { 538 // Recompiling without allowing machine instructions to subsume loads 539 tty->print_cr("*********************************************************"); 540 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 541 tty->print_cr("*********************************************************"); 542 } 543 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 544 // Recompiling without escape analysis 545 tty->print_cr("*********************************************************"); 546 tty->print_cr("** Bailout: Recompile without escape analysis **"); 547 tty->print_cr("*********************************************************"); 548 } 549 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 550 // Recompiling without iterative escape analysis 551 tty->print_cr("*********************************************************"); 552 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 553 tty->print_cr("*********************************************************"); 554 } 555 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 556 // Recompiling without reducing allocation merges 557 tty->print_cr("*********************************************************"); 558 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 559 tty->print_cr("*********************************************************"); 560 } 561 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 562 // Recompiling without boxing elimination 563 tty->print_cr("*********************************************************"); 564 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 565 tty->print_cr("*********************************************************"); 566 } 567 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 568 // Recompiling without locks coarsening 569 tty->print_cr("*********************************************************"); 570 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 571 tty->print_cr("*********************************************************"); 572 } 573 if (env()->break_at_compile()) { 574 // Open the debugger when compiling this method. 575 tty->print("### Breaking when compiling: "); 576 method()->print_short_name(); 577 tty->cr(); 578 BREAKPOINT; 579 } 580 581 if( PrintOpto ) { 582 if (is_osr_compilation()) { 583 tty->print("[OSR]%3d", _compile_id); 584 } else { 585 tty->print("%3d", _compile_id); 586 } 587 } 588 #endif 589 } 590 591 #ifndef PRODUCT 592 void Compile::print_ideal_ir(const char* phase_name) { 593 // keep the following output all in one block 594 // This output goes directly to the tty, not the compiler log. 595 // To enable tools to match it up with the compilation activity, 596 // be sure to tag this tty output with the compile ID. 597 598 // Node dumping can cause a safepoint, which can break the tty lock. 599 // Buffer all node dumps, so that all safepoints happen before we lock. 600 ResourceMark rm; 601 stringStream ss; 602 603 if (_output == nullptr) { 604 ss.print_cr("AFTER: %s", phase_name); 605 // Print out all nodes in ascending order of index. 606 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 607 } else { 608 // Dump the node blockwise if we have a scheduling 609 _output->print_scheduling(&ss); 610 } 611 612 // Check that the lock is not broken by a safepoint. 613 NoSafepointVerifier nsv; 614 ttyLocker ttyl; 615 if (xtty != nullptr) { 616 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 617 compile_id(), 618 is_osr_compilation() ? " compile_kind='osr'" : "", 619 phase_name); 620 } 621 622 tty->print("%s", ss.as_string()); 623 624 if (xtty != nullptr) { 625 xtty->tail("ideal"); 626 } 627 } 628 #endif 629 630 // ============================================================================ 631 //------------------------------Compile standard------------------------------- 632 633 // Compile a method. entry_bci is -1 for normal compilations and indicates 634 // the continuation bci for on stack replacement. 635 636 637 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 638 Options options, DirectiveSet* directive) 639 : Phase(Compiler), 640 _compile_id(ci_env->compile_id()), 641 _options(options), 642 _method(target), 643 _entry_bci(osr_bci), 644 _ilt(nullptr), 645 _stub_function(nullptr), 646 _stub_name(nullptr), 647 _stub_entry_point(nullptr), 648 _max_node_limit(MaxNodeLimit), 649 _post_loop_opts_phase(false), 650 _merge_stores_phase(false), 651 _allow_macro_nodes(true), 652 _inlining_progress(false), 653 _inlining_incrementally(false), 654 _do_cleanup(false), 655 _has_reserved_stack_access(target->has_reserved_stack_access()), 656 _has_circular_inline_type(false), 657 #ifndef PRODUCT 658 _igv_idx(0), 659 _trace_opto_output(directive->TraceOptoOutputOption), 660 #endif 661 _has_method_handle_invokes(false), 662 _clinit_barrier_on_entry(false), 663 _stress_seed(0), 664 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 665 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 666 _env(ci_env), 667 _directive(directive), 668 _log(ci_env->log()), 669 _first_failure_details(nullptr), 670 _intrinsics(comp_arena(), 0, 0, nullptr), 671 _macro_nodes(comp_arena(), 8, 0, nullptr), 672 _parse_predicates(comp_arena(), 8, 0, nullptr), 673 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 674 _expensive_nodes(comp_arena(), 8, 0, nullptr), 675 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 676 _inline_type_nodes (comp_arena(), 8, 0, nullptr), 677 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 678 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 679 _coarsened_locks(comp_arena(), 8, 0, nullptr), 680 _congraph(nullptr), 681 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 682 _unique(0), 683 _dead_node_count(0), 684 _dead_node_list(comp_arena()), 685 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 686 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 687 _node_arena(&_node_arena_one), 688 _mach_constant_base_node(nullptr), 689 _Compile_types(mtCompiler, Arena::Tag::tag_type), 690 _initial_gvn(nullptr), 691 _igvn_worklist(nullptr), 692 _types(nullptr), 693 _node_hash(nullptr), 694 _late_inlines(comp_arena(), 2, 0, nullptr), 695 _string_late_inlines(comp_arena(), 2, 0, nullptr), 696 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 697 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 698 _late_inlines_pos(0), 699 _number_of_mh_late_inlines(0), 700 _oom(false), 701 _replay_inline_data(nullptr), 702 _inline_printer(this), 703 _java_calls(0), 704 _inner_loops(0), 705 _interpreter_frame_size(0), 706 _output(nullptr) 707 #ifndef PRODUCT 708 , 709 _in_dump_cnt(0) 710 #endif 711 { 712 C = this; 713 CompileWrapper cw(this); 714 715 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 716 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 717 718 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 719 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 720 // We can always print a disassembly, either abstract (hex dump) or 721 // with the help of a suitable hsdis library. Thus, we should not 722 // couple print_assembly and print_opto_assembly controls. 723 // But: always print opto and regular assembly on compile command 'print'. 724 bool print_assembly = directive->PrintAssemblyOption; 725 set_print_assembly(print_opto_assembly || print_assembly); 726 #else 727 set_print_assembly(false); // must initialize. 728 #endif 729 730 #ifndef PRODUCT 731 set_parsed_irreducible_loop(false); 732 #endif 733 734 if (directive->ReplayInlineOption) { 735 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 736 } 737 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 738 set_print_intrinsics(directive->PrintIntrinsicsOption); 739 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 740 741 if (ProfileTraps) { 742 // Make sure the method being compiled gets its own MDO, 743 // so we can at least track the decompile_count(). 744 method()->ensure_method_data(); 745 } 746 747 if (StressLCM || StressGCM || StressIGVN || StressCCP || 748 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 749 initialize_stress_seed(directive); 750 } 751 752 Init(/*do_aliasing=*/ true); 753 754 print_compile_messages(); 755 756 _ilt = InlineTree::build_inline_tree_root(); 757 758 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 759 assert(num_alias_types() >= AliasIdxRaw, ""); 760 761 #define MINIMUM_NODE_HASH 1023 762 763 // GVN that will be run immediately on new nodes 764 uint estimated_size = method()->code_size()*4+64; 765 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 766 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 767 _types = new (comp_arena()) Type_Array(comp_arena()); 768 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 769 PhaseGVN gvn; 770 set_initial_gvn(&gvn); 771 772 { // Scope for timing the parser 773 TracePhase tp(_t_parser); 774 775 // Put top into the hash table ASAP. 776 initial_gvn()->transform(top()); 777 778 // Set up tf(), start(), and find a CallGenerator. 779 CallGenerator* cg = nullptr; 780 if (is_osr_compilation()) { 781 init_tf(TypeFunc::make(method(), /* is_osr_compilation = */ true)); 782 StartNode* s = new StartOSRNode(root(), tf()->domain_sig()); 783 initial_gvn()->set_type_bottom(s); 784 verify_start(s); 785 cg = CallGenerator::for_osr(method(), entry_bci()); 786 } else { 787 // Normal case. 788 init_tf(TypeFunc::make(method())); 789 StartNode* s = new StartNode(root(), tf()->domain_cc()); 790 initial_gvn()->set_type_bottom(s); 791 verify_start(s); 792 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 793 // With java.lang.ref.reference.get() we must go through the 794 // intrinsic - even when get() is the root 795 // method of the compile - so that, if necessary, the value in 796 // the referent field of the reference object gets recorded by 797 // the pre-barrier code. 798 cg = find_intrinsic(method(), false); 799 } 800 if (cg == nullptr) { 801 float past_uses = method()->interpreter_invocation_count(); 802 float expected_uses = past_uses; 803 cg = CallGenerator::for_inline(method(), expected_uses); 804 } 805 } 806 if (failing()) return; 807 if (cg == nullptr) { 808 const char* reason = InlineTree::check_can_parse(method()); 809 assert(reason != nullptr, "expect reason for parse failure"); 810 stringStream ss; 811 ss.print("cannot parse method: %s", reason); 812 record_method_not_compilable(ss.as_string()); 813 return; 814 } 815 816 gvn.set_type(root(), root()->bottom_type()); 817 818 JVMState* jvms = build_start_state(start(), tf()); 819 if ((jvms = cg->generate(jvms)) == nullptr) { 820 assert(failure_reason() != nullptr, "expect reason for parse failure"); 821 stringStream ss; 822 ss.print("method parse failed: %s", failure_reason()); 823 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 824 return; 825 } 826 GraphKit kit(jvms); 827 828 if (!kit.stopped()) { 829 // Accept return values, and transfer control we know not where. 830 // This is done by a special, unique ReturnNode bound to root. 831 return_values(kit.jvms()); 832 } 833 834 if (kit.has_exceptions()) { 835 // Any exceptions that escape from this call must be rethrown 836 // to whatever caller is dynamically above us on the stack. 837 // This is done by a special, unique RethrowNode bound to root. 838 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 839 } 840 841 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 842 843 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 844 inline_string_calls(true); 845 } 846 847 if (failing()) return; 848 849 // Remove clutter produced by parsing. 850 if (!failing()) { 851 ResourceMark rm; 852 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 853 } 854 } 855 856 // Note: Large methods are capped off in do_one_bytecode(). 857 if (failing()) return; 858 859 // After parsing, node notes are no longer automagic. 860 // They must be propagated by register_new_node_with_optimizer(), 861 // clone(), or the like. 862 set_default_node_notes(nullptr); 863 864 #ifndef PRODUCT 865 if (should_print_igv(1)) { 866 _igv_printer->print_inlining(); 867 } 868 #endif 869 870 if (failing()) return; 871 NOT_PRODUCT( verify_graph_edges(); ) 872 873 // Now optimize 874 Optimize(); 875 if (failing()) return; 876 NOT_PRODUCT( verify_graph_edges(); ) 877 878 #ifndef PRODUCT 879 if (should_print_ideal()) { 880 print_ideal_ir("print_ideal"); 881 } 882 #endif 883 884 #ifdef ASSERT 885 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 886 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 887 #endif 888 889 // Dump compilation data to replay it. 890 if (directive->DumpReplayOption) { 891 env()->dump_replay_data(_compile_id); 892 } 893 if (directive->DumpInlineOption && (ilt() != nullptr)) { 894 env()->dump_inline_data(_compile_id); 895 } 896 897 // Now that we know the size of all the monitors we can add a fixed slot 898 // for the original deopt pc. 899 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 900 if (needs_stack_repair()) { 901 // One extra slot for the special stack increment value 902 next_slot += 2; 903 } 904 // TODO 8284443 Only reserve extra slot if needed 905 if (InlineTypeReturnedAsFields) { 906 // One extra slot to hold the IsInit information for a nullable 907 // inline type return if we run out of registers. 908 next_slot += 2; 909 } 910 set_fixed_slots(next_slot); 911 912 // Compute when to use implicit null checks. Used by matching trap based 913 // nodes and NullCheck optimization. 914 set_allowed_deopt_reasons(); 915 916 // Now generate code 917 Code_Gen(); 918 } 919 920 //------------------------------Compile---------------------------------------- 921 // Compile a runtime stub 922 Compile::Compile(ciEnv* ci_env, 923 TypeFunc_generator generator, 924 address stub_function, 925 const char *stub_name, 926 int is_fancy_jump, 927 bool pass_tls, 928 bool return_pc, 929 DirectiveSet* directive) 930 : Phase(Compiler), 931 _compile_id(0), 932 _options(Options::for_runtime_stub()), 933 _method(nullptr), 934 _entry_bci(InvocationEntryBci), 935 _stub_function(stub_function), 936 _stub_name(stub_name), 937 _stub_entry_point(nullptr), 938 _max_node_limit(MaxNodeLimit), 939 _post_loop_opts_phase(false), 940 _merge_stores_phase(false), 941 _allow_macro_nodes(true), 942 _inlining_progress(false), 943 _inlining_incrementally(false), 944 _has_reserved_stack_access(false), 945 _has_circular_inline_type(false), 946 #ifndef PRODUCT 947 _igv_idx(0), 948 _trace_opto_output(directive->TraceOptoOutputOption), 949 #endif 950 _has_method_handle_invokes(false), 951 _clinit_barrier_on_entry(false), 952 _stress_seed(0), 953 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 954 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 955 _env(ci_env), 956 _directive(directive), 957 _log(ci_env->log()), 958 _first_failure_details(nullptr), 959 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 960 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 961 _congraph(nullptr), 962 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 963 _unique(0), 964 _dead_node_count(0), 965 _dead_node_list(comp_arena()), 966 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 967 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 968 _node_arena(&_node_arena_one), 969 _mach_constant_base_node(nullptr), 970 _Compile_types(mtCompiler, Arena::Tag::tag_type), 971 _initial_gvn(nullptr), 972 _igvn_worklist(nullptr), 973 _types(nullptr), 974 _node_hash(nullptr), 975 _number_of_mh_late_inlines(0), 976 _oom(false), 977 _replay_inline_data(nullptr), 978 _inline_printer(this), 979 _java_calls(0), 980 _inner_loops(0), 981 _interpreter_frame_size(0), 982 _output(nullptr), 983 #ifndef PRODUCT 984 _in_dump_cnt(0), 985 #endif 986 _allowed_reasons(0) { 987 C = this; 988 989 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 990 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 991 992 #ifndef PRODUCT 993 set_print_assembly(PrintFrameConverterAssembly); 994 set_parsed_irreducible_loop(false); 995 #else 996 set_print_assembly(false); // Must initialize. 997 #endif 998 set_has_irreducible_loop(false); // no loops 999 1000 CompileWrapper cw(this); 1001 Init(/*do_aliasing=*/ false); 1002 init_tf((*generator)()); 1003 1004 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 1005 _types = new (comp_arena()) Type_Array(comp_arena()); 1006 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 1007 1008 if (StressLCM || StressGCM || StressBailout) { 1009 initialize_stress_seed(directive); 1010 } 1011 1012 { 1013 PhaseGVN gvn; 1014 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1015 gvn.transform(top()); 1016 1017 GraphKit kit; 1018 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1019 } 1020 1021 NOT_PRODUCT( verify_graph_edges(); ) 1022 1023 Code_Gen(); 1024 } 1025 1026 Compile::~Compile() { 1027 delete _first_failure_details; 1028 }; 1029 1030 //------------------------------Init------------------------------------------- 1031 // Prepare for a single compilation 1032 void Compile::Init(bool aliasing) { 1033 _do_aliasing = aliasing; 1034 _unique = 0; 1035 _regalloc = nullptr; 1036 1037 _tf = nullptr; // filled in later 1038 _top = nullptr; // cached later 1039 _matcher = nullptr; // filled in later 1040 _cfg = nullptr; // filled in later 1041 1042 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1043 1044 _node_note_array = nullptr; 1045 _default_node_notes = nullptr; 1046 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1047 1048 _immutable_memory = nullptr; // filled in at first inquiry 1049 1050 #ifdef ASSERT 1051 _phase_optimize_finished = false; 1052 _phase_verify_ideal_loop = false; 1053 _exception_backedge = false; 1054 _type_verify = nullptr; 1055 #endif 1056 1057 // Globally visible Nodes 1058 // First set TOP to null to give safe behavior during creation of RootNode 1059 set_cached_top_node(nullptr); 1060 set_root(new RootNode()); 1061 // Now that you have a Root to point to, create the real TOP 1062 set_cached_top_node( new ConNode(Type::TOP) ); 1063 set_recent_alloc(nullptr, nullptr); 1064 1065 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1066 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1067 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1068 env()->set_dependencies(new Dependencies(env())); 1069 1070 _fixed_slots = 0; 1071 set_has_split_ifs(false); 1072 set_has_loops(false); // first approximation 1073 set_has_stringbuilder(false); 1074 set_has_boxed_value(false); 1075 _trap_can_recompile = false; // no traps emitted yet 1076 _major_progress = true; // start out assuming good things will happen 1077 set_has_unsafe_access(false); 1078 set_max_vector_size(0); 1079 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1080 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1081 set_decompile_count(0); 1082 1083 #ifndef PRODUCT 1084 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1085 #endif 1086 1087 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1088 _loop_opts_cnt = LoopOptsCount; 1089 _has_flat_accesses = false; 1090 _flat_accesses_share_alias = true; 1091 _scalarize_in_safepoints = false; 1092 1093 set_do_inlining(Inline); 1094 set_max_inline_size(MaxInlineSize); 1095 set_freq_inline_size(FreqInlineSize); 1096 set_do_scheduling(OptoScheduling); 1097 1098 set_do_vector_loop(false); 1099 set_has_monitors(false); 1100 set_has_scoped_access(false); 1101 1102 if (AllowVectorizeOnDemand) { 1103 if (has_method() && _directive->VectorizeOption) { 1104 set_do_vector_loop(true); 1105 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1106 } else if (has_method() && method()->name() != nullptr && 1107 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1108 set_do_vector_loop(true); 1109 } 1110 } 1111 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1112 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1113 1114 _max_node_limit = _directive->MaxNodeLimitOption; 1115 1116 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1117 set_clinit_barrier_on_entry(true); 1118 } 1119 if (debug_info()->recording_non_safepoints()) { 1120 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1121 (comp_arena(), 8, 0, nullptr)); 1122 set_default_node_notes(Node_Notes::make(this)); 1123 } 1124 1125 const int grow_ats = 16; 1126 _max_alias_types = grow_ats; 1127 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1128 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1129 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1130 { 1131 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1132 } 1133 // Initialize the first few types. 1134 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1135 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1136 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1137 _num_alias_types = AliasIdxRaw+1; 1138 // Zero out the alias type cache. 1139 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1140 // A null adr_type hits in the cache right away. Preload the right answer. 1141 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1142 } 1143 1144 #ifdef ASSERT 1145 // Verify that the current StartNode is valid. 1146 void Compile::verify_start(StartNode* s) const { 1147 assert(failing_internal() || s == start(), "should be StartNode"); 1148 } 1149 #endif 1150 1151 /** 1152 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1153 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1154 * the ideal graph. 1155 */ 1156 StartNode* Compile::start() const { 1157 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1158 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1159 Node* start = root()->fast_out(i); 1160 if (start->is_Start()) { 1161 return start->as_Start(); 1162 } 1163 } 1164 fatal("Did not find Start node!"); 1165 return nullptr; 1166 } 1167 1168 //-------------------------------immutable_memory------------------------------------- 1169 // Access immutable memory 1170 Node* Compile::immutable_memory() { 1171 if (_immutable_memory != nullptr) { 1172 return _immutable_memory; 1173 } 1174 StartNode* s = start(); 1175 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1176 Node *p = s->fast_out(i); 1177 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1178 _immutable_memory = p; 1179 return _immutable_memory; 1180 } 1181 } 1182 ShouldNotReachHere(); 1183 return nullptr; 1184 } 1185 1186 //----------------------set_cached_top_node------------------------------------ 1187 // Install the cached top node, and make sure Node::is_top works correctly. 1188 void Compile::set_cached_top_node(Node* tn) { 1189 if (tn != nullptr) verify_top(tn); 1190 Node* old_top = _top; 1191 _top = tn; 1192 // Calling Node::setup_is_top allows the nodes the chance to adjust 1193 // their _out arrays. 1194 if (_top != nullptr) _top->setup_is_top(); 1195 if (old_top != nullptr) old_top->setup_is_top(); 1196 assert(_top == nullptr || top()->is_top(), ""); 1197 } 1198 1199 #ifdef ASSERT 1200 uint Compile::count_live_nodes_by_graph_walk() { 1201 Unique_Node_List useful(comp_arena()); 1202 // Get useful node list by walking the graph. 1203 identify_useful_nodes(useful); 1204 return useful.size(); 1205 } 1206 1207 void Compile::print_missing_nodes() { 1208 1209 // Return if CompileLog is null and PrintIdealNodeCount is false. 1210 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1211 return; 1212 } 1213 1214 // This is an expensive function. It is executed only when the user 1215 // specifies VerifyIdealNodeCount option or otherwise knows the 1216 // additional work that needs to be done to identify reachable nodes 1217 // by walking the flow graph and find the missing ones using 1218 // _dead_node_list. 1219 1220 Unique_Node_List useful(comp_arena()); 1221 // Get useful node list by walking the graph. 1222 identify_useful_nodes(useful); 1223 1224 uint l_nodes = C->live_nodes(); 1225 uint l_nodes_by_walk = useful.size(); 1226 1227 if (l_nodes != l_nodes_by_walk) { 1228 if (_log != nullptr) { 1229 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1230 _log->stamp(); 1231 _log->end_head(); 1232 } 1233 VectorSet& useful_member_set = useful.member_set(); 1234 int last_idx = l_nodes_by_walk; 1235 for (int i = 0; i < last_idx; i++) { 1236 if (useful_member_set.test(i)) { 1237 if (_dead_node_list.test(i)) { 1238 if (_log != nullptr) { 1239 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1240 } 1241 if (PrintIdealNodeCount) { 1242 // Print the log message to tty 1243 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1244 useful.at(i)->dump(); 1245 } 1246 } 1247 } 1248 else if (! _dead_node_list.test(i)) { 1249 if (_log != nullptr) { 1250 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1251 } 1252 if (PrintIdealNodeCount) { 1253 // Print the log message to tty 1254 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1255 } 1256 } 1257 } 1258 if (_log != nullptr) { 1259 _log->tail("mismatched_nodes"); 1260 } 1261 } 1262 } 1263 void Compile::record_modified_node(Node* n) { 1264 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1265 _modified_nodes->push(n); 1266 } 1267 } 1268 1269 void Compile::remove_modified_node(Node* n) { 1270 if (_modified_nodes != nullptr) { 1271 _modified_nodes->remove(n); 1272 } 1273 } 1274 #endif 1275 1276 #ifndef PRODUCT 1277 void Compile::verify_top(Node* tn) const { 1278 if (tn != nullptr) { 1279 assert(tn->is_Con(), "top node must be a constant"); 1280 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1281 assert(tn->in(0) != nullptr, "must have live top node"); 1282 } 1283 } 1284 #endif 1285 1286 1287 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1288 1289 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1290 guarantee(arr != nullptr, ""); 1291 int num_blocks = arr->length(); 1292 if (grow_by < num_blocks) grow_by = num_blocks; 1293 int num_notes = grow_by * _node_notes_block_size; 1294 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1295 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1296 while (num_notes > 0) { 1297 arr->append(notes); 1298 notes += _node_notes_block_size; 1299 num_notes -= _node_notes_block_size; 1300 } 1301 assert(num_notes == 0, "exact multiple, please"); 1302 } 1303 1304 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1305 if (source == nullptr || dest == nullptr) return false; 1306 1307 if (dest->is_Con()) 1308 return false; // Do not push debug info onto constants. 1309 1310 #ifdef ASSERT 1311 // Leave a bread crumb trail pointing to the original node: 1312 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1313 dest->set_debug_orig(source); 1314 } 1315 #endif 1316 1317 if (node_note_array() == nullptr) 1318 return false; // Not collecting any notes now. 1319 1320 // This is a copy onto a pre-existing node, which may already have notes. 1321 // If both nodes have notes, do not overwrite any pre-existing notes. 1322 Node_Notes* source_notes = node_notes_at(source->_idx); 1323 if (source_notes == nullptr || source_notes->is_clear()) return false; 1324 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1325 if (dest_notes == nullptr || dest_notes->is_clear()) { 1326 return set_node_notes_at(dest->_idx, source_notes); 1327 } 1328 1329 Node_Notes merged_notes = (*source_notes); 1330 // The order of operations here ensures that dest notes will win... 1331 merged_notes.update_from(dest_notes); 1332 return set_node_notes_at(dest->_idx, &merged_notes); 1333 } 1334 1335 1336 //--------------------------allow_range_check_smearing------------------------- 1337 // Gating condition for coalescing similar range checks. 1338 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1339 // single covering check that is at least as strong as any of them. 1340 // If the optimization succeeds, the simplified (strengthened) range check 1341 // will always succeed. If it fails, we will deopt, and then give up 1342 // on the optimization. 1343 bool Compile::allow_range_check_smearing() const { 1344 // If this method has already thrown a range-check, 1345 // assume it was because we already tried range smearing 1346 // and it failed. 1347 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1348 return !already_trapped; 1349 } 1350 1351 1352 //------------------------------flatten_alias_type----------------------------- 1353 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1354 assert(do_aliasing(), "Aliasing should be enabled"); 1355 int offset = tj->offset(); 1356 TypePtr::PTR ptr = tj->ptr(); 1357 1358 // Known instance (scalarizable allocation) alias only with itself. 1359 bool is_known_inst = tj->isa_oopptr() != nullptr && 1360 tj->is_oopptr()->is_known_instance(); 1361 1362 // Process weird unsafe references. 1363 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1364 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1365 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1366 tj = TypeOopPtr::BOTTOM; 1367 ptr = tj->ptr(); 1368 offset = tj->offset(); 1369 } 1370 1371 // Array pointers need some flattening 1372 const TypeAryPtr* ta = tj->isa_aryptr(); 1373 if (ta && ta->is_stable()) { 1374 // Erase stability property for alias analysis. 1375 tj = ta = ta->cast_to_stable(false); 1376 } 1377 if (ta && ta->is_not_flat()) { 1378 // Erase not flat property for alias analysis. 1379 tj = ta = ta->cast_to_not_flat(false); 1380 } 1381 if (ta && ta->is_not_null_free()) { 1382 // Erase not null free property for alias analysis. 1383 tj = ta = ta->cast_to_not_null_free(false); 1384 } 1385 1386 if( ta && is_known_inst ) { 1387 if ( offset != Type::OffsetBot && 1388 offset > arrayOopDesc::length_offset_in_bytes() ) { 1389 offset = Type::OffsetBot; // Flatten constant access into array body only 1390 tj = ta = ta-> 1391 remove_speculative()-> 1392 cast_to_ptr_type(ptr)-> 1393 with_offset(offset); 1394 } 1395 } else if (ta) { 1396 // For arrays indexed by constant indices, we flatten the alias 1397 // space to include all of the array body. Only the header, klass 1398 // and array length can be accessed un-aliased. 1399 // For flat inline type array, each field has its own slice so 1400 // we must include the field offset. 1401 if( offset != Type::OffsetBot ) { 1402 if( ta->const_oop() ) { // MethodData* or Method* 1403 offset = Type::OffsetBot; // Flatten constant access into array body 1404 tj = ta = ta-> 1405 remove_speculative()-> 1406 cast_to_ptr_type(ptr)-> 1407 cast_to_exactness(false)-> 1408 with_offset(offset); 1409 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1410 // range is OK as-is. 1411 tj = ta = TypeAryPtr::RANGE; 1412 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1413 tj = TypeInstPtr::KLASS; // all klass loads look alike 1414 ta = TypeAryPtr::RANGE; // generic ignored junk 1415 ptr = TypePtr::BotPTR; 1416 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1417 tj = TypeInstPtr::MARK; 1418 ta = TypeAryPtr::RANGE; // generic ignored junk 1419 ptr = TypePtr::BotPTR; 1420 } else { // Random constant offset into array body 1421 offset = Type::OffsetBot; // Flatten constant access into array body 1422 tj = ta = ta-> 1423 remove_speculative()-> 1424 cast_to_ptr_type(ptr)-> 1425 cast_to_exactness(false)-> 1426 with_offset(offset); 1427 } 1428 } 1429 // Arrays of fixed size alias with arrays of unknown size. 1430 if (ta->size() != TypeInt::POS) { 1431 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1432 tj = ta = ta-> 1433 remove_speculative()-> 1434 cast_to_ptr_type(ptr)-> 1435 with_ary(tary)-> 1436 cast_to_exactness(false); 1437 } 1438 // Arrays of known objects become arrays of unknown objects. 1439 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1440 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1441 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset()); 1442 } 1443 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1444 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1445 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), ta->field_offset()); 1446 } 1447 // Initially all flattened array accesses share a single slice 1448 if (ta->is_flat() && ta->elem() != TypeInstPtr::BOTTOM && _flat_accesses_share_alias) { 1449 const TypeAry* tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size(), /* stable= */ false, /* flat= */ true); 1450 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,Type::Offset(offset), Type::Offset(Type::OffsetBot)); 1451 } 1452 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1453 // cannot be distinguished by bytecode alone. 1454 if (ta->elem() == TypeInt::BOOL) { 1455 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1456 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1457 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset()); 1458 } 1459 // During the 2nd round of IterGVN, NotNull castings are removed. 1460 // Make sure the Bottom and NotNull variants alias the same. 1461 // Also, make sure exact and non-exact variants alias the same. 1462 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1463 tj = ta = ta-> 1464 remove_speculative()-> 1465 cast_to_ptr_type(TypePtr::BotPTR)-> 1466 cast_to_exactness(false)-> 1467 with_offset(offset); 1468 } 1469 } 1470 1471 // Oop pointers need some flattening 1472 const TypeInstPtr *to = tj->isa_instptr(); 1473 if (to && to != TypeOopPtr::BOTTOM) { 1474 ciInstanceKlass* ik = to->instance_klass(); 1475 if( ptr == TypePtr::Constant ) { 1476 if (ik != ciEnv::current()->Class_klass() || 1477 offset < ik->layout_helper_size_in_bytes()) { 1478 // No constant oop pointers (such as Strings); they alias with 1479 // unknown strings. 1480 assert(!is_known_inst, "not scalarizable allocation"); 1481 tj = to = to-> 1482 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1483 remove_speculative()-> 1484 cast_to_ptr_type(TypePtr::BotPTR)-> 1485 cast_to_exactness(false); 1486 } 1487 } else if( is_known_inst ) { 1488 tj = to; // Keep NotNull and klass_is_exact for instance type 1489 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1490 // During the 2nd round of IterGVN, NotNull castings are removed. 1491 // Make sure the Bottom and NotNull variants alias the same. 1492 // Also, make sure exact and non-exact variants alias the same. 1493 tj = to = to-> 1494 remove_speculative()-> 1495 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1496 cast_to_ptr_type(TypePtr::BotPTR)-> 1497 cast_to_exactness(false); 1498 } 1499 if (to->speculative() != nullptr) { 1500 tj = to = to->remove_speculative(); 1501 } 1502 // Canonicalize the holder of this field 1503 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1504 // First handle header references such as a LoadKlassNode, even if the 1505 // object's klass is unloaded at compile time (4965979). 1506 if (!is_known_inst) { // Do it only for non-instance types 1507 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, Type::Offset(offset)); 1508 } 1509 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1510 // Static fields are in the space above the normal instance 1511 // fields in the java.lang.Class instance. 1512 if (ik != ciEnv::current()->Class_klass()) { 1513 to = nullptr; 1514 tj = TypeOopPtr::BOTTOM; 1515 offset = tj->offset(); 1516 } 1517 } else { 1518 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1519 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1520 assert(tj->offset() == offset, "no change to offset expected"); 1521 bool xk = to->klass_is_exact(); 1522 int instance_id = to->instance_id(); 1523 1524 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1525 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1526 // its interfaces are included. 1527 if (xk && ik->equals(canonical_holder)) { 1528 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id), "exact type should be canonical type"); 1529 } else { 1530 assert(xk || !is_known_inst, "Known instance should be exact type"); 1531 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, Type::Offset(offset), instance_id); 1532 } 1533 } 1534 } 1535 1536 // Klass pointers to object array klasses need some flattening 1537 const TypeKlassPtr *tk = tj->isa_klassptr(); 1538 if( tk ) { 1539 // If we are referencing a field within a Klass, we need 1540 // to assume the worst case of an Object. Both exact and 1541 // inexact types must flatten to the same alias class so 1542 // use NotNull as the PTR. 1543 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1544 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1545 env()->Object_klass(), 1546 Type::Offset(offset)); 1547 } 1548 1549 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1550 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1551 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1552 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), Type::Offset(offset)); 1553 } else { 1554 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, Type::Offset(offset), tk->is_not_flat(), tk->is_not_null_free(), tk->is_flat(), tk->is_null_free()); 1555 } 1556 } 1557 // Check for precise loads from the primary supertype array and force them 1558 // to the supertype cache alias index. Check for generic array loads from 1559 // the primary supertype array and also force them to the supertype cache 1560 // alias index. Since the same load can reach both, we need to merge 1561 // these 2 disparate memories into the same alias class. Since the 1562 // primary supertype array is read-only, there's no chance of confusion 1563 // where we bypass an array load and an array store. 1564 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1565 if (offset == Type::OffsetBot || 1566 (offset >= primary_supers_offset && 1567 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1568 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1569 offset = in_bytes(Klass::secondary_super_cache_offset()); 1570 tj = tk = tk->with_offset(offset); 1571 } 1572 } 1573 1574 // Flatten all Raw pointers together. 1575 if (tj->base() == Type::RawPtr) 1576 tj = TypeRawPtr::BOTTOM; 1577 1578 if (tj->base() == Type::AnyPtr) 1579 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1580 1581 offset = tj->offset(); 1582 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1583 1584 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1585 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1586 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1587 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1588 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1589 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1590 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1591 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1592 assert( tj->ptr() != TypePtr::TopPTR && 1593 tj->ptr() != TypePtr::AnyNull && 1594 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1595 // assert( tj->ptr() != TypePtr::Constant || 1596 // tj->base() == Type::RawPtr || 1597 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1598 1599 return tj; 1600 } 1601 1602 void Compile::AliasType::Init(int i, const TypePtr* at) { 1603 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1604 _index = i; 1605 _adr_type = at; 1606 _field = nullptr; 1607 _element = nullptr; 1608 _is_rewritable = true; // default 1609 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1610 if (atoop != nullptr && atoop->is_known_instance()) { 1611 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1612 _general_index = Compile::current()->get_alias_index(gt); 1613 } else { 1614 _general_index = 0; 1615 } 1616 } 1617 1618 BasicType Compile::AliasType::basic_type() const { 1619 if (element() != nullptr) { 1620 const Type* element = adr_type()->is_aryptr()->elem(); 1621 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1622 } if (field() != nullptr) { 1623 return field()->layout_type(); 1624 } else { 1625 return T_ILLEGAL; // unknown 1626 } 1627 } 1628 1629 //---------------------------------print_on------------------------------------ 1630 #ifndef PRODUCT 1631 void Compile::AliasType::print_on(outputStream* st) { 1632 if (index() < 10) 1633 st->print("@ <%d> ", index()); 1634 else st->print("@ <%d>", index()); 1635 st->print(is_rewritable() ? " " : " RO"); 1636 int offset = adr_type()->offset(); 1637 if (offset == Type::OffsetBot) 1638 st->print(" +any"); 1639 else st->print(" +%-3d", offset); 1640 st->print(" in "); 1641 adr_type()->dump_on(st); 1642 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1643 if (field() != nullptr && tjp) { 1644 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1645 tjp->offset() != field()->offset_in_bytes()) { 1646 st->print(" != "); 1647 field()->print(); 1648 st->print(" ***"); 1649 } 1650 } 1651 } 1652 1653 void print_alias_types() { 1654 Compile* C = Compile::current(); 1655 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1656 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1657 C->alias_type(idx)->print_on(tty); 1658 tty->cr(); 1659 } 1660 } 1661 #endif 1662 1663 1664 //----------------------------probe_alias_cache-------------------------------- 1665 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1666 intptr_t key = (intptr_t) adr_type; 1667 key ^= key >> logAliasCacheSize; 1668 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1669 } 1670 1671 1672 //-----------------------------grow_alias_types-------------------------------- 1673 void Compile::grow_alias_types() { 1674 const int old_ats = _max_alias_types; // how many before? 1675 const int new_ats = old_ats; // how many more? 1676 const int grow_ats = old_ats+new_ats; // how many now? 1677 _max_alias_types = grow_ats; 1678 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1679 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1680 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1681 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1682 } 1683 1684 1685 //--------------------------------find_alias_type------------------------------ 1686 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field, bool uncached) { 1687 if (!do_aliasing()) { 1688 return alias_type(AliasIdxBot); 1689 } 1690 1691 AliasCacheEntry* ace = nullptr; 1692 if (!uncached) { 1693 ace = probe_alias_cache(adr_type); 1694 if (ace->_adr_type == adr_type) { 1695 return alias_type(ace->_index); 1696 } 1697 } 1698 1699 // Handle special cases. 1700 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1701 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1702 1703 // Do it the slow way. 1704 const TypePtr* flat = flatten_alias_type(adr_type); 1705 1706 #ifdef ASSERT 1707 { 1708 ResourceMark rm; 1709 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1710 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1711 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1712 Type::str(adr_type)); 1713 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1714 const TypeOopPtr* foop = flat->is_oopptr(); 1715 // Scalarizable allocations have exact klass always. 1716 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1717 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1718 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1719 Type::str(foop), Type::str(xoop)); 1720 } 1721 } 1722 #endif 1723 1724 int idx = AliasIdxTop; 1725 for (int i = 0; i < num_alias_types(); i++) { 1726 if (alias_type(i)->adr_type() == flat) { 1727 idx = i; 1728 break; 1729 } 1730 } 1731 1732 if (idx == AliasIdxTop) { 1733 if (no_create) return nullptr; 1734 // Grow the array if necessary. 1735 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1736 // Add a new alias type. 1737 idx = _num_alias_types++; 1738 _alias_types[idx]->Init(idx, flat); 1739 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1740 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1741 if (flat->isa_instptr()) { 1742 if (flat->offset() == java_lang_Class::klass_offset() 1743 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1744 alias_type(idx)->set_rewritable(false); 1745 } 1746 ciField* field = nullptr; 1747 if (flat->isa_aryptr()) { 1748 #ifdef ASSERT 1749 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1750 // (T_BYTE has the weakest alignment and size restrictions...) 1751 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1752 #endif 1753 const Type* elemtype = flat->is_aryptr()->elem(); 1754 if (flat->offset() == TypePtr::OffsetBot) { 1755 alias_type(idx)->set_element(elemtype); 1756 } 1757 int field_offset = flat->is_aryptr()->field_offset().get(); 1758 if (flat->is_flat() && 1759 field_offset != Type::OffsetBot) { 1760 ciInlineKlass* vk = elemtype->inline_klass(); 1761 field_offset += vk->payload_offset(); 1762 field = vk->get_field_by_offset(field_offset, false); 1763 } 1764 } 1765 if (flat->isa_klassptr()) { 1766 if (UseCompactObjectHeaders) { 1767 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1768 alias_type(idx)->set_rewritable(false); 1769 } 1770 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1771 alias_type(idx)->set_rewritable(false); 1772 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1773 alias_type(idx)->set_rewritable(false); 1774 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1775 alias_type(idx)->set_rewritable(false); 1776 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1777 alias_type(idx)->set_rewritable(false); 1778 if (flat->offset() == in_bytes(Klass::layout_helper_offset())) 1779 alias_type(idx)->set_rewritable(false); 1780 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1781 alias_type(idx)->set_rewritable(false); 1782 } 1783 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1784 // but the base pointer type is not distinctive enough to identify 1785 // references into JavaThread.) 1786 1787 // Check for final fields. 1788 const TypeInstPtr* tinst = flat->isa_instptr(); 1789 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1790 if (tinst->const_oop() != nullptr && 1791 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1792 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1793 // static field 1794 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1795 field = k->get_field_by_offset(tinst->offset(), true); 1796 } else if (tinst->is_inlinetypeptr()) { 1797 // Inline type field 1798 ciInlineKlass* vk = tinst->inline_klass(); 1799 field = vk->get_field_by_offset(tinst->offset(), false); 1800 } else { 1801 ciInstanceKlass *k = tinst->instance_klass(); 1802 field = k->get_field_by_offset(tinst->offset(), false); 1803 } 1804 } 1805 assert(field == nullptr || 1806 original_field == nullptr || 1807 (field->holder() == original_field->holder() && 1808 field->offset_in_bytes() == original_field->offset_in_bytes() && 1809 field->is_static() == original_field->is_static()), "wrong field?"); 1810 // Set field() and is_rewritable() attributes. 1811 if (field != nullptr) { 1812 alias_type(idx)->set_field(field); 1813 if (flat->isa_aryptr()) { 1814 // Fields of flat arrays are rewritable although they are declared final 1815 assert(flat->is_flat(), "must be a flat array"); 1816 alias_type(idx)->set_rewritable(true); 1817 } 1818 } 1819 } 1820 1821 // Fill the cache for next time. 1822 if (!uncached) { 1823 ace->_adr_type = adr_type; 1824 ace->_index = idx; 1825 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1826 1827 // Might as well try to fill the cache for the flattened version, too. 1828 AliasCacheEntry* face = probe_alias_cache(flat); 1829 if (face->_adr_type == nullptr) { 1830 face->_adr_type = flat; 1831 face->_index = idx; 1832 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1833 } 1834 } 1835 1836 return alias_type(idx); 1837 } 1838 1839 1840 Compile::AliasType* Compile::alias_type(ciField* field) { 1841 const TypeOopPtr* t; 1842 if (field->is_static()) 1843 t = TypeInstPtr::make(field->holder()->java_mirror()); 1844 else 1845 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1846 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1847 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1848 return atp; 1849 } 1850 1851 1852 //------------------------------have_alias_type-------------------------------- 1853 bool Compile::have_alias_type(const TypePtr* adr_type) { 1854 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1855 if (ace->_adr_type == adr_type) { 1856 return true; 1857 } 1858 1859 // Handle special cases. 1860 if (adr_type == nullptr) return true; 1861 if (adr_type == TypePtr::BOTTOM) return true; 1862 1863 return find_alias_type(adr_type, true, nullptr) != nullptr; 1864 } 1865 1866 //-----------------------------must_alias-------------------------------------- 1867 // True if all values of the given address type are in the given alias category. 1868 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1869 if (alias_idx == AliasIdxBot) return true; // the universal category 1870 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1871 if (alias_idx == AliasIdxTop) return false; // the empty category 1872 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1873 1874 // the only remaining possible overlap is identity 1875 int adr_idx = get_alias_index(adr_type); 1876 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1877 assert(adr_idx == alias_idx || 1878 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1879 && adr_type != TypeOopPtr::BOTTOM), 1880 "should not be testing for overlap with an unsafe pointer"); 1881 return adr_idx == alias_idx; 1882 } 1883 1884 //------------------------------can_alias-------------------------------------- 1885 // True if any values of the given address type are in the given alias category. 1886 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1887 if (alias_idx == AliasIdxTop) return false; // the empty category 1888 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1889 // Known instance doesn't alias with bottom memory 1890 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1891 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1892 1893 // the only remaining possible overlap is identity 1894 int adr_idx = get_alias_index(adr_type); 1895 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1896 return adr_idx == alias_idx; 1897 } 1898 1899 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1900 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1901 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1902 if (parse_predicate_count() == 0) { 1903 return; 1904 } 1905 for (int i = 0; i < parse_predicate_count(); i++) { 1906 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1907 parse_predicate->mark_useless(igvn); 1908 } 1909 _parse_predicates.clear(); 1910 } 1911 1912 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1913 if (!n->for_post_loop_opts_igvn()) { 1914 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1915 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1916 _for_post_loop_igvn.append(n); 1917 } 1918 } 1919 1920 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1921 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1922 _for_post_loop_igvn.remove(n); 1923 } 1924 1925 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1926 // Verify that all previous optimizations produced a valid graph 1927 // at least to this point, even if no loop optimizations were done. 1928 PhaseIdealLoop::verify(igvn); 1929 1930 C->set_post_loop_opts_phase(); // no more loop opts allowed 1931 1932 assert(!C->major_progress(), "not cleared"); 1933 1934 if (_for_post_loop_igvn.length() > 0) { 1935 while (_for_post_loop_igvn.length() > 0) { 1936 Node* n = _for_post_loop_igvn.pop(); 1937 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1938 igvn._worklist.push(n); 1939 } 1940 igvn.optimize(); 1941 if (failing()) return; 1942 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1943 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1944 1945 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1946 if (C->major_progress()) { 1947 C->clear_major_progress(); // ensure that major progress is now clear 1948 } 1949 } 1950 } 1951 1952 void Compile::add_inline_type(Node* n) { 1953 assert(n->is_InlineType(), "unexpected node"); 1954 _inline_type_nodes.push(n); 1955 } 1956 1957 void Compile::remove_inline_type(Node* n) { 1958 assert(n->is_InlineType(), "unexpected node"); 1959 if (_inline_type_nodes.contains(n)) { 1960 _inline_type_nodes.remove(n); 1961 } 1962 } 1963 1964 // Does the return value keep otherwise useless inline type allocations alive? 1965 static bool return_val_keeps_allocations_alive(Node* ret_val) { 1966 ResourceMark rm; 1967 Unique_Node_List wq; 1968 wq.push(ret_val); 1969 bool some_allocations = false; 1970 for (uint i = 0; i < wq.size(); i++) { 1971 Node* n = wq.at(i); 1972 if (n->outcnt() > 1) { 1973 // Some other use for the allocation 1974 return false; 1975 } else if (n->is_InlineType()) { 1976 wq.push(n->in(1)); 1977 } else if (n->is_Phi()) { 1978 for (uint j = 1; j < n->req(); j++) { 1979 wq.push(n->in(j)); 1980 } 1981 } else if (n->is_CheckCastPP() && 1982 n->in(1)->is_Proj() && 1983 n->in(1)->in(0)->is_Allocate()) { 1984 some_allocations = true; 1985 } else if (n->is_CheckCastPP()) { 1986 wq.push(n->in(1)); 1987 } 1988 } 1989 return some_allocations; 1990 } 1991 1992 void Compile::process_inline_types(PhaseIterGVN &igvn, bool remove) { 1993 // Make sure that the return value does not keep an otherwise unused allocation alive 1994 if (tf()->returns_inline_type_as_fields()) { 1995 Node* ret = nullptr; 1996 for (uint i = 1; i < root()->req(); i++) { 1997 Node* in = root()->in(i); 1998 if (in->Opcode() == Op_Return) { 1999 assert(ret == nullptr, "only one return"); 2000 ret = in; 2001 } 2002 } 2003 if (ret != nullptr) { 2004 Node* ret_val = ret->in(TypeFunc::Parms); 2005 if (igvn.type(ret_val)->isa_oopptr() && 2006 return_val_keeps_allocations_alive(ret_val)) { 2007 igvn.replace_input_of(ret, TypeFunc::Parms, InlineTypeNode::tagged_klass(igvn.type(ret_val)->inline_klass(), igvn)); 2008 assert(ret_val->outcnt() == 0, "should be dead now"); 2009 igvn.remove_dead_node(ret_val); 2010 } 2011 } 2012 } 2013 if (_inline_type_nodes.length() == 0) { 2014 return; 2015 } 2016 // Scalarize inline types in safepoint debug info. 2017 // Delay this until all inlining is over to avoid getting inconsistent debug info. 2018 set_scalarize_in_safepoints(true); 2019 for (int i = _inline_type_nodes.length()-1; i >= 0; i--) { 2020 InlineTypeNode* vt = _inline_type_nodes.at(i)->as_InlineType(); 2021 vt->make_scalar_in_safepoints(&igvn); 2022 igvn.record_for_igvn(vt); 2023 } 2024 if (remove) { 2025 // Remove inline type nodes by replacing them with their oop input 2026 while (_inline_type_nodes.length() > 0) { 2027 InlineTypeNode* vt = _inline_type_nodes.pop()->as_InlineType(); 2028 if (vt->outcnt() == 0) { 2029 igvn.remove_dead_node(vt); 2030 continue; 2031 } 2032 for (DUIterator i = vt->outs(); vt->has_out(i); i++) { 2033 DEBUG_ONLY(bool must_be_buffered = false); 2034 Node* u = vt->out(i); 2035 // Check if any users are blackholes. If so, rewrite them to use either the 2036 // allocated buffer, or individual components, instead of the inline type node 2037 // that goes away. 2038 if (u->is_Blackhole()) { 2039 BlackholeNode* bh = u->as_Blackhole(); 2040 2041 // Unlink the old input 2042 int idx = bh->find_edge(vt); 2043 assert(idx != -1, "The edge should be there"); 2044 bh->del_req(idx); 2045 --i; 2046 2047 if (vt->is_allocated(&igvn)) { 2048 // Already has the allocated instance, blackhole that 2049 bh->add_req(vt->get_oop()); 2050 } else { 2051 // Not allocated yet, blackhole the components 2052 for (uint c = 0; c < vt->field_count(); c++) { 2053 bh->add_req(vt->field_value(c)); 2054 } 2055 } 2056 2057 // Node modified, record for IGVN 2058 igvn.record_for_igvn(bh); 2059 } 2060 #ifdef ASSERT 2061 // Verify that inline type is buffered when replacing by oop 2062 else if (u->is_InlineType()) { 2063 // InlineType uses don't need buffering because they are about to be replaced as well 2064 } else if (u->is_Phi()) { 2065 // TODO 8302217 Remove this once InlineTypeNodes are reliably pushed through 2066 } else { 2067 must_be_buffered = true; 2068 } 2069 if (must_be_buffered && !vt->is_allocated(&igvn)) { 2070 vt->dump(0); 2071 u->dump(0); 2072 assert(false, "Should have been buffered"); 2073 } 2074 #endif 2075 } 2076 igvn.replace_node(vt, vt->get_oop()); 2077 } 2078 } 2079 igvn.optimize(); 2080 } 2081 2082 void Compile::adjust_flat_array_access_aliases(PhaseIterGVN& igvn) { 2083 if (!_has_flat_accesses) { 2084 return; 2085 } 2086 // Initially, all flat array accesses share the same slice to 2087 // keep dependencies with Object[] array accesses (that could be 2088 // to a flat array) correct. We're done with parsing so we 2089 // now know all flat array accesses in this compile 2090 // unit. Let's move flat array accesses to their own slice, 2091 // one per element field. This should help memory access 2092 // optimizations. 2093 ResourceMark rm; 2094 Unique_Node_List wq; 2095 wq.push(root()); 2096 2097 Node_List mergememnodes; 2098 Node_List memnodes; 2099 2100 // Alias index currently shared by all flat memory accesses 2101 int index = get_alias_index(TypeAryPtr::INLINES); 2102 2103 // Find MergeMem nodes and flat array accesses 2104 for (uint i = 0; i < wq.size(); i++) { 2105 Node* n = wq.at(i); 2106 if (n->is_Mem()) { 2107 const TypePtr* adr_type = nullptr; 2108 adr_type = get_adr_type(get_alias_index(n->adr_type())); 2109 if (adr_type == TypeAryPtr::INLINES) { 2110 memnodes.push(n); 2111 } 2112 } else if (n->is_MergeMem()) { 2113 MergeMemNode* mm = n->as_MergeMem(); 2114 if (mm->memory_at(index) != mm->base_memory()) { 2115 mergememnodes.push(n); 2116 } 2117 } 2118 for (uint j = 0; j < n->req(); j++) { 2119 Node* m = n->in(j); 2120 if (m != nullptr) { 2121 wq.push(m); 2122 } 2123 } 2124 } 2125 2126 if (memnodes.size() > 0) { 2127 _flat_accesses_share_alias = false; 2128 2129 // We are going to change the slice for the flat array 2130 // accesses so we need to clear the cache entries that refer to 2131 // them. 2132 for (uint i = 0; i < AliasCacheSize; i++) { 2133 AliasCacheEntry* ace = &_alias_cache[i]; 2134 if (ace->_adr_type != nullptr && 2135 ace->_adr_type->is_flat()) { 2136 ace->_adr_type = nullptr; 2137 ace->_index = (i != 0) ? 0 : AliasIdxTop; // Make sure the nullptr adr_type resolves to AliasIdxTop 2138 } 2139 } 2140 2141 // Find what aliases we are going to add 2142 int start_alias = num_alias_types()-1; 2143 int stop_alias = 0; 2144 2145 for (uint i = 0; i < memnodes.size(); i++) { 2146 Node* m = memnodes.at(i); 2147 const TypePtr* adr_type = nullptr; 2148 adr_type = m->adr_type(); 2149 #ifdef ASSERT 2150 m->as_Mem()->set_adr_type(adr_type); 2151 #endif 2152 int idx = get_alias_index(adr_type); 2153 start_alias = MIN2(start_alias, idx); 2154 stop_alias = MAX2(stop_alias, idx); 2155 } 2156 2157 assert(stop_alias >= start_alias, "should have expanded aliases"); 2158 2159 Node_Stack stack(0); 2160 #ifdef ASSERT 2161 VectorSet seen(Thread::current()->resource_area()); 2162 #endif 2163 // Now let's fix the memory graph so each flat array access 2164 // is moved to the right slice. Start from the MergeMem nodes. 2165 uint last = unique(); 2166 for (uint i = 0; i < mergememnodes.size(); i++) { 2167 MergeMemNode* current = mergememnodes.at(i)->as_MergeMem(); 2168 Node* n = current->memory_at(index); 2169 MergeMemNode* mm = nullptr; 2170 do { 2171 // Follow memory edges through memory accesses, phis and 2172 // narrow membars and push nodes on the stack. Once we hit 2173 // bottom memory, we pop element off the stack one at a 2174 // time, in reverse order, and move them to the right slice 2175 // by changing their memory edges. 2176 if ((n->is_Phi() && n->adr_type() != TypePtr::BOTTOM) || n->is_Mem() || n->adr_type() == TypeAryPtr::INLINES) { 2177 assert(!seen.test_set(n->_idx), ""); 2178 // Uses (a load for instance) will need to be moved to the 2179 // right slice as well and will get a new memory state 2180 // that we don't know yet. The use could also be the 2181 // backedge of a loop. We put a place holder node between 2182 // the memory node and its uses. We replace that place 2183 // holder with the correct memory state once we know it, 2184 // i.e. when nodes are popped off the stack. Using the 2185 // place holder make the logic work in the presence of 2186 // loops. 2187 if (n->outcnt() > 1) { 2188 Node* place_holder = nullptr; 2189 assert(!n->has_out_with(Op_Node), ""); 2190 for (DUIterator k = n->outs(); n->has_out(k); k++) { 2191 Node* u = n->out(k); 2192 if (u != current && u->_idx < last) { 2193 bool success = false; 2194 for (uint l = 0; l < u->req(); l++) { 2195 if (!stack.is_empty() && u == stack.node() && l == stack.index()) { 2196 continue; 2197 } 2198 Node* in = u->in(l); 2199 if (in == n) { 2200 if (place_holder == nullptr) { 2201 place_holder = new Node(1); 2202 place_holder->init_req(0, n); 2203 } 2204 igvn.replace_input_of(u, l, place_holder); 2205 success = true; 2206 } 2207 } 2208 if (success) { 2209 --k; 2210 } 2211 } 2212 } 2213 } 2214 if (n->is_Phi()) { 2215 stack.push(n, 1); 2216 n = n->in(1); 2217 } else if (n->is_Mem()) { 2218 stack.push(n, n->req()); 2219 n = n->in(MemNode::Memory); 2220 } else { 2221 assert(n->is_Proj() && n->in(0)->Opcode() == Op_MemBarCPUOrder, ""); 2222 stack.push(n, n->req()); 2223 n = n->in(0)->in(TypeFunc::Memory); 2224 } 2225 } else { 2226 assert(n->adr_type() == TypePtr::BOTTOM || (n->Opcode() == Op_Node && n->_idx >= last) || (n->is_Proj() && n->in(0)->is_Initialize()), ""); 2227 // Build a new MergeMem node to carry the new memory state 2228 // as we build it. IGVN should fold extraneous MergeMem 2229 // nodes. 2230 mm = MergeMemNode::make(n); 2231 igvn.register_new_node_with_optimizer(mm); 2232 while (stack.size() > 0) { 2233 Node* m = stack.node(); 2234 uint idx = stack.index(); 2235 if (m->is_Mem()) { 2236 // Move memory node to its new slice 2237 const TypePtr* adr_type = m->adr_type(); 2238 int alias = get_alias_index(adr_type); 2239 Node* prev = mm->memory_at(alias); 2240 igvn.replace_input_of(m, MemNode::Memory, prev); 2241 mm->set_memory_at(alias, m); 2242 } else if (m->is_Phi()) { 2243 // We need as many new phis as there are new aliases 2244 igvn.replace_input_of(m, idx, mm); 2245 if (idx == m->req()-1) { 2246 Node* r = m->in(0); 2247 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2248 const TypePtr* adr_type = get_adr_type(j); 2249 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2250 continue; 2251 } 2252 Node* phi = new PhiNode(r, Type::MEMORY, get_adr_type(j)); 2253 igvn.register_new_node_with_optimizer(phi); 2254 for (uint k = 1; k < m->req(); k++) { 2255 phi->init_req(k, m->in(k)->as_MergeMem()->memory_at(j)); 2256 } 2257 mm->set_memory_at(j, phi); 2258 } 2259 Node* base_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2260 igvn.register_new_node_with_optimizer(base_phi); 2261 for (uint k = 1; k < m->req(); k++) { 2262 base_phi->init_req(k, m->in(k)->as_MergeMem()->base_memory()); 2263 } 2264 mm->set_base_memory(base_phi); 2265 } 2266 } else { 2267 // This is a MemBarCPUOrder node from 2268 // Parse::array_load()/Parse::array_store(), in the 2269 // branch that handles flat arrays hidden under 2270 // an Object[] array. We also need one new membar per 2271 // new alias to keep the unknown access that the 2272 // membars protect properly ordered with accesses to 2273 // known flat array. 2274 assert(m->is_Proj(), "projection expected"); 2275 Node* ctrl = m->in(0)->in(TypeFunc::Control); 2276 igvn.replace_input_of(m->in(0), TypeFunc::Control, top()); 2277 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2278 const TypePtr* adr_type = get_adr_type(j); 2279 if (!adr_type->isa_aryptr() || !adr_type->is_flat() || j == (uint)index) { 2280 continue; 2281 } 2282 MemBarNode* mb = new MemBarCPUOrderNode(this, j, nullptr); 2283 igvn.register_new_node_with_optimizer(mb); 2284 Node* mem = mm->memory_at(j); 2285 mb->init_req(TypeFunc::Control, ctrl); 2286 mb->init_req(TypeFunc::Memory, mem); 2287 ctrl = new ProjNode(mb, TypeFunc::Control); 2288 igvn.register_new_node_with_optimizer(ctrl); 2289 mem = new ProjNode(mb, TypeFunc::Memory); 2290 igvn.register_new_node_with_optimizer(mem); 2291 mm->set_memory_at(j, mem); 2292 } 2293 igvn.replace_node(m->in(0)->as_Multi()->proj_out(TypeFunc::Control), ctrl); 2294 } 2295 if (idx < m->req()-1) { 2296 idx += 1; 2297 stack.set_index(idx); 2298 n = m->in(idx); 2299 break; 2300 } 2301 // Take care of place holder nodes 2302 if (m->has_out_with(Op_Node)) { 2303 Node* place_holder = m->find_out_with(Op_Node); 2304 if (place_holder != nullptr) { 2305 Node* mm_clone = mm->clone(); 2306 igvn.register_new_node_with_optimizer(mm_clone); 2307 Node* hook = new Node(1); 2308 hook->init_req(0, mm); 2309 igvn.replace_node(place_holder, mm_clone); 2310 hook->destruct(&igvn); 2311 } 2312 assert(!m->has_out_with(Op_Node), "place holder should be gone now"); 2313 } 2314 stack.pop(); 2315 } 2316 } 2317 } while(stack.size() > 0); 2318 // Fix the memory state at the MergeMem we started from 2319 igvn.rehash_node_delayed(current); 2320 for (uint j = (uint)start_alias; j <= (uint)stop_alias; j++) { 2321 const TypePtr* adr_type = get_adr_type(j); 2322 if (!adr_type->isa_aryptr() || !adr_type->is_flat()) { 2323 continue; 2324 } 2325 current->set_memory_at(j, mm); 2326 } 2327 current->set_memory_at(index, current->base_memory()); 2328 } 2329 igvn.optimize(); 2330 } 2331 print_method(PHASE_SPLIT_INLINES_ARRAY, 2); 2332 #ifdef ASSERT 2333 if (!_flat_accesses_share_alias) { 2334 wq.clear(); 2335 wq.push(root()); 2336 for (uint i = 0; i < wq.size(); i++) { 2337 Node* n = wq.at(i); 2338 assert(n->adr_type() != TypeAryPtr::INLINES, "should have been removed from the graph"); 2339 for (uint j = 0; j < n->req(); j++) { 2340 Node* m = n->in(j); 2341 if (m != nullptr) { 2342 wq.push(m); 2343 } 2344 } 2345 } 2346 } 2347 #endif 2348 } 2349 2350 void Compile::record_for_merge_stores_igvn(Node* n) { 2351 if (!n->for_merge_stores_igvn()) { 2352 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 2353 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 2354 _for_merge_stores_igvn.append(n); 2355 } 2356 } 2357 2358 void Compile::remove_from_merge_stores_igvn(Node* n) { 2359 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 2360 _for_merge_stores_igvn.remove(n); 2361 } 2362 2363 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 2364 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 2365 // the stores, and we merge the wrong sequence of stores. 2366 // Example: 2367 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 2368 // Apply MergeStores: 2369 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 2370 // Remove more RangeChecks: 2371 // StoreI [ StoreL ] StoreI 2372 // But now it would have been better to do this instead: 2373 // [ StoreL ] [ StoreL ] 2374 // 2375 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 2376 // since we never unset _merge_stores_phase. 2377 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 2378 C->set_merge_stores_phase(); 2379 2380 if (_for_merge_stores_igvn.length() > 0) { 2381 while (_for_merge_stores_igvn.length() > 0) { 2382 Node* n = _for_merge_stores_igvn.pop(); 2383 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 2384 igvn._worklist.push(n); 2385 } 2386 igvn.optimize(); 2387 if (failing()) return; 2388 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 2389 print_method(PHASE_AFTER_MERGE_STORES, 3); 2390 } 2391 } 2392 2393 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 2394 if (OptimizeUnstableIf) { 2395 _unstable_if_traps.append(trap); 2396 } 2397 } 2398 2399 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 2400 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 2401 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2402 Node* n = trap->uncommon_trap(); 2403 if (!useful.member(n)) { 2404 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 2405 } 2406 } 2407 } 2408 2409 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 2410 // or fold-compares case. Return true if succeed or not found. 2411 // 2412 // In rare cases, the found trap has been processed. It is too late to delete it. Return 2413 // false and ask fold-compares to yield. 2414 // 2415 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 2416 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 2417 // when deoptimization does happen. 2418 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 2419 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 2420 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2421 if (trap->uncommon_trap() == unc) { 2422 if (yield && trap->modified()) { 2423 return false; 2424 } 2425 _unstable_if_traps.delete_at(i); 2426 break; 2427 } 2428 } 2429 return true; 2430 } 2431 2432 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 2433 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 2434 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 2435 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 2436 UnstableIfTrap* trap = _unstable_if_traps.at(i); 2437 CallStaticJavaNode* unc = trap->uncommon_trap(); 2438 int next_bci = trap->next_bci(); 2439 bool modified = trap->modified(); 2440 2441 if (next_bci != -1 && !modified) { 2442 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 2443 JVMState* jvms = unc->jvms(); 2444 ciMethod* method = jvms->method(); 2445 ciBytecodeStream iter(method); 2446 2447 iter.force_bci(jvms->bci()); 2448 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 2449 Bytecodes::Code c = iter.cur_bc(); 2450 Node* lhs = nullptr; 2451 Node* rhs = nullptr; 2452 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 2453 lhs = unc->peek_operand(0); 2454 rhs = unc->peek_operand(1); 2455 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 2456 lhs = unc->peek_operand(0); 2457 } 2458 2459 ResourceMark rm; 2460 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 2461 assert(live_locals.is_valid(), "broken liveness info"); 2462 int len = (int)live_locals.size(); 2463 2464 for (int i = 0; i < len; i++) { 2465 Node* local = unc->local(jvms, i); 2466 // kill local using the liveness of next_bci. 2467 // give up when the local looks like an operand to secure reexecution. 2468 if (!live_locals.at(i) && !local->is_top() && local != lhs && local != rhs) { 2469 uint idx = jvms->locoff() + i; 2470 #ifdef ASSERT 2471 if (PrintOpto && Verbose) { 2472 tty->print("[unstable_if] kill local#%d: ", idx); 2473 local->dump(); 2474 tty->cr(); 2475 } 2476 #endif 2477 igvn.replace_input_of(unc, idx, top()); 2478 modified = true; 2479 } 2480 } 2481 } 2482 2483 // keep the modified trap for late query 2484 if (modified) { 2485 trap->set_modified(); 2486 } else { 2487 _unstable_if_traps.delete_at(i); 2488 } 2489 } 2490 igvn.optimize(); 2491 } 2492 2493 // StringOpts and late inlining of string methods 2494 void Compile::inline_string_calls(bool parse_time) { 2495 { 2496 // remove useless nodes to make the usage analysis simpler 2497 ResourceMark rm; 2498 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2499 } 2500 2501 { 2502 ResourceMark rm; 2503 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2504 PhaseStringOpts pso(initial_gvn()); 2505 print_method(PHASE_AFTER_STRINGOPTS, 3); 2506 } 2507 2508 // now inline anything that we skipped the first time around 2509 if (!parse_time) { 2510 _late_inlines_pos = _late_inlines.length(); 2511 } 2512 2513 while (_string_late_inlines.length() > 0) { 2514 CallGenerator* cg = _string_late_inlines.pop(); 2515 cg->do_late_inline(); 2516 if (failing()) return; 2517 } 2518 _string_late_inlines.trunc_to(0); 2519 } 2520 2521 // Late inlining of boxing methods 2522 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2523 if (_boxing_late_inlines.length() > 0) { 2524 assert(has_boxed_value(), "inconsistent"); 2525 2526 set_inlining_incrementally(true); 2527 2528 igvn_worklist()->ensure_empty(); // should be done with igvn 2529 2530 _late_inlines_pos = _late_inlines.length(); 2531 2532 while (_boxing_late_inlines.length() > 0) { 2533 CallGenerator* cg = _boxing_late_inlines.pop(); 2534 cg->do_late_inline(); 2535 if (failing()) return; 2536 } 2537 _boxing_late_inlines.trunc_to(0); 2538 2539 inline_incrementally_cleanup(igvn); 2540 2541 set_inlining_incrementally(false); 2542 } 2543 } 2544 2545 bool Compile::inline_incrementally_one() { 2546 assert(IncrementalInline, "incremental inlining should be on"); 2547 2548 TracePhase tp(_t_incrInline_inline); 2549 2550 set_inlining_progress(false); 2551 set_do_cleanup(false); 2552 2553 for (int i = 0; i < _late_inlines.length(); i++) { 2554 _late_inlines_pos = i+1; 2555 CallGenerator* cg = _late_inlines.at(i); 2556 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2557 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2558 cg->do_late_inline(); 2559 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2560 if (failing()) { 2561 return false; 2562 } else if (inlining_progress()) { 2563 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2564 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2565 break; // process one call site at a time 2566 } 2567 } else { 2568 // Ignore late inline direct calls when inlining is not allowed. 2569 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2570 } 2571 } 2572 // Remove processed elements. 2573 _late_inlines.remove_till(_late_inlines_pos); 2574 _late_inlines_pos = 0; 2575 2576 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2577 2578 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2579 2580 set_inlining_progress(false); 2581 set_do_cleanup(false); 2582 2583 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2584 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2585 } 2586 2587 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2588 { 2589 TracePhase tp(_t_incrInline_pru); 2590 ResourceMark rm; 2591 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2592 } 2593 { 2594 TracePhase tp(_t_incrInline_igvn); 2595 igvn.reset_from_gvn(initial_gvn()); 2596 igvn.optimize(); 2597 if (failing()) return; 2598 } 2599 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2600 } 2601 2602 // Perform incremental inlining until bound on number of live nodes is reached 2603 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2604 TracePhase tp(_t_incrInline); 2605 2606 set_inlining_incrementally(true); 2607 uint low_live_nodes = 0; 2608 2609 while (_late_inlines.length() > 0) { 2610 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2611 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2612 TracePhase tp(_t_incrInline_ideal); 2613 // PhaseIdealLoop is expensive so we only try it once we are 2614 // out of live nodes and we only try it again if the previous 2615 // helped got the number of nodes down significantly 2616 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2617 if (failing()) return; 2618 low_live_nodes = live_nodes(); 2619 _major_progress = true; 2620 } 2621 2622 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2623 bool do_print_inlining = print_inlining() || print_intrinsics(); 2624 if (do_print_inlining || log() != nullptr) { 2625 // Print inlining message for candidates that we couldn't inline for lack of space. 2626 for (int i = 0; i < _late_inlines.length(); i++) { 2627 CallGenerator* cg = _late_inlines.at(i); 2628 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2629 if (do_print_inlining) { 2630 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2631 } 2632 log_late_inline_failure(cg, msg); 2633 } 2634 } 2635 break; // finish 2636 } 2637 } 2638 2639 igvn_worklist()->ensure_empty(); // should be done with igvn 2640 2641 while (inline_incrementally_one()) { 2642 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2643 } 2644 if (failing()) return; 2645 2646 inline_incrementally_cleanup(igvn); 2647 2648 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2649 2650 if (failing()) return; 2651 2652 if (_late_inlines.length() == 0) { 2653 break; // no more progress 2654 } 2655 } 2656 2657 igvn_worklist()->ensure_empty(); // should be done with igvn 2658 2659 if (_string_late_inlines.length() > 0) { 2660 assert(has_stringbuilder(), "inconsistent"); 2661 2662 inline_string_calls(false); 2663 2664 if (failing()) return; 2665 2666 inline_incrementally_cleanup(igvn); 2667 } 2668 2669 set_inlining_incrementally(false); 2670 } 2671 2672 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2673 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2674 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2675 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2676 // as if "inlining_incrementally() == true" were set. 2677 assert(inlining_incrementally() == false, "not allowed"); 2678 #ifdef ASSERT 2679 Unique_Node_List* modified_nodes = _modified_nodes; 2680 _modified_nodes = nullptr; 2681 #endif 2682 assert(_late_inlines.length() > 0, "sanity"); 2683 2684 while (_late_inlines.length() > 0) { 2685 igvn_worklist()->ensure_empty(); // should be done with igvn 2686 2687 while (inline_incrementally_one()) { 2688 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2689 } 2690 if (failing()) return; 2691 2692 inline_incrementally_cleanup(igvn); 2693 } 2694 DEBUG_ONLY( _modified_nodes = modified_nodes; ) 2695 } 2696 2697 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2698 if (_loop_opts_cnt > 0) { 2699 while (major_progress() && (_loop_opts_cnt > 0)) { 2700 TracePhase tp(_t_idealLoop); 2701 PhaseIdealLoop::optimize(igvn, mode); 2702 _loop_opts_cnt--; 2703 if (failing()) return false; 2704 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2705 } 2706 } 2707 return true; 2708 } 2709 2710 // Remove edges from "root" to each SafePoint at a backward branch. 2711 // They were inserted during parsing (see add_safepoint()) to make 2712 // infinite loops without calls or exceptions visible to root, i.e., 2713 // useful. 2714 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2715 Node *r = root(); 2716 if (r != nullptr) { 2717 for (uint i = r->req(); i < r->len(); ++i) { 2718 Node *n = r->in(i); 2719 if (n != nullptr && n->is_SafePoint()) { 2720 r->rm_prec(i); 2721 if (n->outcnt() == 0) { 2722 igvn.remove_dead_node(n); 2723 } 2724 --i; 2725 } 2726 } 2727 // Parsing may have added top inputs to the root node (Path 2728 // leading to the Halt node proven dead). Make sure we get a 2729 // chance to clean them up. 2730 igvn._worklist.push(r); 2731 igvn.optimize(); 2732 } 2733 } 2734 2735 //------------------------------Optimize--------------------------------------- 2736 // Given a graph, optimize it. 2737 void Compile::Optimize() { 2738 TracePhase tp(_t_optimizer); 2739 2740 #ifndef PRODUCT 2741 if (env()->break_at_compile()) { 2742 BREAKPOINT; 2743 } 2744 2745 #endif 2746 2747 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2748 #ifdef ASSERT 2749 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2750 #endif 2751 2752 ResourceMark rm; 2753 2754 NOT_PRODUCT( verify_graph_edges(); ) 2755 2756 print_method(PHASE_AFTER_PARSING, 1); 2757 2758 { 2759 // Iterative Global Value Numbering, including ideal transforms 2760 // Initialize IterGVN with types and values from parse-time GVN 2761 PhaseIterGVN igvn(initial_gvn()); 2762 #ifdef ASSERT 2763 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2764 #endif 2765 { 2766 TracePhase tp(_t_iterGVN); 2767 igvn.optimize(); 2768 } 2769 2770 if (failing()) return; 2771 2772 print_method(PHASE_ITER_GVN1, 2); 2773 2774 process_for_unstable_if_traps(igvn); 2775 2776 if (failing()) return; 2777 2778 inline_incrementally(igvn); 2779 2780 print_method(PHASE_INCREMENTAL_INLINE, 2); 2781 2782 if (failing()) return; 2783 2784 if (eliminate_boxing()) { 2785 // Inline valueOf() methods now. 2786 inline_boxing_calls(igvn); 2787 2788 if (failing()) return; 2789 2790 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2791 inline_incrementally(igvn); 2792 } 2793 2794 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2795 2796 if (failing()) return; 2797 } 2798 2799 // Remove the speculative part of types and clean up the graph from 2800 // the extra CastPP nodes whose only purpose is to carry them. Do 2801 // that early so that optimizations are not disrupted by the extra 2802 // CastPP nodes. 2803 remove_speculative_types(igvn); 2804 2805 if (failing()) return; 2806 2807 // No more new expensive nodes will be added to the list from here 2808 // so keep only the actual candidates for optimizations. 2809 cleanup_expensive_nodes(igvn); 2810 2811 if (failing()) return; 2812 2813 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2814 if (EnableVectorSupport && has_vbox_nodes()) { 2815 TracePhase tp(_t_vector); 2816 PhaseVector pv(igvn); 2817 pv.optimize_vector_boxes(); 2818 if (failing()) return; 2819 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2820 } 2821 assert(!has_vbox_nodes(), "sanity"); 2822 2823 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2824 Compile::TracePhase tp(_t_renumberLive); 2825 igvn_worklist()->ensure_empty(); // should be done with igvn 2826 { 2827 ResourceMark rm; 2828 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2829 } 2830 igvn.reset_from_gvn(initial_gvn()); 2831 igvn.optimize(); 2832 if (failing()) return; 2833 } 2834 2835 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2836 // safepoints 2837 remove_root_to_sfpts_edges(igvn); 2838 2839 // Process inline type nodes now that all inlining is over 2840 process_inline_types(igvn); 2841 2842 adjust_flat_array_access_aliases(igvn); 2843 2844 if (failing()) return; 2845 2846 // Perform escape analysis 2847 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2848 if (has_loops()) { 2849 // Cleanup graph (remove dead nodes). 2850 TracePhase tp(_t_idealLoop); 2851 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2852 if (failing()) return; 2853 } 2854 bool progress; 2855 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2856 do { 2857 ConnectionGraph::do_analysis(this, &igvn); 2858 2859 if (failing()) return; 2860 2861 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2862 2863 // Optimize out fields loads from scalar replaceable allocations. 2864 igvn.optimize(); 2865 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2866 2867 if (failing()) return; 2868 2869 if (congraph() != nullptr && macro_count() > 0) { 2870 TracePhase tp(_t_macroEliminate); 2871 PhaseMacroExpand mexp(igvn); 2872 mexp.eliminate_macro_nodes(); 2873 if (failing()) return; 2874 2875 igvn.set_delay_transform(false); 2876 igvn.optimize(); 2877 if (failing()) return; 2878 2879 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2880 } 2881 2882 ConnectionGraph::verify_ram_nodes(this, root()); 2883 if (failing()) return; 2884 2885 progress = do_iterative_escape_analysis() && 2886 (macro_count() < mcount) && 2887 ConnectionGraph::has_candidates(this); 2888 // Try again if candidates exist and made progress 2889 // by removing some allocations and/or locks. 2890 } while (progress); 2891 } 2892 2893 // Loop transforms on the ideal graph. Range Check Elimination, 2894 // peeling, unrolling, etc. 2895 2896 // Set loop opts counter 2897 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2898 { 2899 TracePhase tp(_t_idealLoop); 2900 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2901 _loop_opts_cnt--; 2902 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2903 if (failing()) return; 2904 } 2905 // Loop opts pass if partial peeling occurred in previous pass 2906 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2907 TracePhase tp(_t_idealLoop); 2908 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2909 _loop_opts_cnt--; 2910 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2911 if (failing()) return; 2912 } 2913 // Loop opts pass for loop-unrolling before CCP 2914 if(major_progress() && (_loop_opts_cnt > 0)) { 2915 TracePhase tp(_t_idealLoop); 2916 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2917 _loop_opts_cnt--; 2918 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2919 } 2920 if (!failing()) { 2921 // Verify that last round of loop opts produced a valid graph 2922 PhaseIdealLoop::verify(igvn); 2923 } 2924 } 2925 if (failing()) return; 2926 2927 // Conditional Constant Propagation; 2928 print_method(PHASE_BEFORE_CCP1, 2); 2929 PhaseCCP ccp( &igvn ); 2930 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2931 { 2932 TracePhase tp(_t_ccp); 2933 ccp.do_transform(); 2934 } 2935 print_method(PHASE_CCP1, 2); 2936 2937 assert( true, "Break here to ccp.dump_old2new_map()"); 2938 2939 // Iterative Global Value Numbering, including ideal transforms 2940 { 2941 TracePhase tp(_t_iterGVN2); 2942 igvn.reset_from_igvn(&ccp); 2943 igvn.optimize(); 2944 } 2945 print_method(PHASE_ITER_GVN2, 2); 2946 2947 if (failing()) return; 2948 2949 // Loop transforms on the ideal graph. Range Check Elimination, 2950 // peeling, unrolling, etc. 2951 if (!optimize_loops(igvn, LoopOptsDefault)) { 2952 return; 2953 } 2954 2955 if (failing()) return; 2956 2957 C->clear_major_progress(); // ensure that major progress is now clear 2958 2959 process_for_post_loop_opts_igvn(igvn); 2960 2961 process_for_merge_stores_igvn(igvn); 2962 2963 if (failing()) return; 2964 2965 #ifdef ASSERT 2966 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2967 #endif 2968 2969 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2970 2971 if (_late_inlines.length() > 0) { 2972 // More opportunities to optimize virtual and MH calls. 2973 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2974 process_late_inline_calls_no_inline(igvn); 2975 } 2976 2977 { 2978 TracePhase tp(_t_macroExpand); 2979 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2980 PhaseMacroExpand mex(igvn); 2981 if (mex.expand_macro_nodes()) { 2982 assert(failing(), "must bail out w/ explicit message"); 2983 return; 2984 } 2985 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2986 } 2987 2988 // Process inline type nodes again and remove them. From here 2989 // on we don't need to keep track of field values anymore. 2990 process_inline_types(igvn, /* remove= */ true); 2991 2992 { 2993 TracePhase tp(_t_barrierExpand); 2994 if (bs->expand_barriers(this, igvn)) { 2995 assert(failing(), "must bail out w/ explicit message"); 2996 return; 2997 } 2998 print_method(PHASE_BARRIER_EXPANSION, 2); 2999 } 3000 3001 if (C->max_vector_size() > 0) { 3002 C->optimize_logic_cones(igvn); 3003 igvn.optimize(); 3004 if (failing()) return; 3005 } 3006 3007 DEBUG_ONLY( _modified_nodes = nullptr; ) 3008 DEBUG_ONLY( _late_inlines.clear(); ) 3009 3010 assert(igvn._worklist.size() == 0, "not empty"); 3011 } // (End scope of igvn; run destructor if necessary for asserts.) 3012 3013 check_no_dead_use(); 3014 3015 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 3016 // to remove hashes to unlock nodes for modifications. 3017 C->node_hash()->clear(); 3018 3019 // A method with only infinite loops has no edges entering loops from root 3020 { 3021 TracePhase tp(_t_graphReshaping); 3022 if (final_graph_reshaping()) { 3023 assert(failing(), "must bail out w/ explicit message"); 3024 return; 3025 } 3026 } 3027 3028 print_method(PHASE_OPTIMIZE_FINISHED, 2); 3029 DEBUG_ONLY(set_phase_optimize_finished();) 3030 } 3031 3032 #ifdef ASSERT 3033 void Compile::check_no_dead_use() const { 3034 ResourceMark rm; 3035 Unique_Node_List wq; 3036 wq.push(root()); 3037 for (uint i = 0; i < wq.size(); ++i) { 3038 Node* n = wq.at(i); 3039 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 3040 Node* u = n->fast_out(j); 3041 if (u->outcnt() == 0 && !u->is_Con()) { 3042 u->dump(); 3043 fatal("no reachable node should have no use"); 3044 } 3045 wq.push(u); 3046 } 3047 } 3048 } 3049 #endif 3050 3051 void Compile::inline_vector_reboxing_calls() { 3052 if (C->_vector_reboxing_late_inlines.length() > 0) { 3053 _late_inlines_pos = C->_late_inlines.length(); 3054 while (_vector_reboxing_late_inlines.length() > 0) { 3055 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 3056 cg->do_late_inline(); 3057 if (failing()) return; 3058 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 3059 } 3060 _vector_reboxing_late_inlines.trunc_to(0); 3061 } 3062 } 3063 3064 bool Compile::has_vbox_nodes() { 3065 if (C->_vector_reboxing_late_inlines.length() > 0) { 3066 return true; 3067 } 3068 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 3069 Node * n = C->macro_node(macro_idx); 3070 assert(n->is_macro(), "only macro nodes expected here"); 3071 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 3072 return true; 3073 } 3074 } 3075 return false; 3076 } 3077 3078 //---------------------------- Bitwise operation packing optimization --------------------------- 3079 3080 static bool is_vector_unary_bitwise_op(Node* n) { 3081 return n->Opcode() == Op_XorV && 3082 VectorNode::is_vector_bitwise_not_pattern(n); 3083 } 3084 3085 static bool is_vector_binary_bitwise_op(Node* n) { 3086 switch (n->Opcode()) { 3087 case Op_AndV: 3088 case Op_OrV: 3089 return true; 3090 3091 case Op_XorV: 3092 return !is_vector_unary_bitwise_op(n); 3093 3094 default: 3095 return false; 3096 } 3097 } 3098 3099 static bool is_vector_ternary_bitwise_op(Node* n) { 3100 return n->Opcode() == Op_MacroLogicV; 3101 } 3102 3103 static bool is_vector_bitwise_op(Node* n) { 3104 return is_vector_unary_bitwise_op(n) || 3105 is_vector_binary_bitwise_op(n) || 3106 is_vector_ternary_bitwise_op(n); 3107 } 3108 3109 static bool is_vector_bitwise_cone_root(Node* n) { 3110 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 3111 return false; 3112 } 3113 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3114 if (is_vector_bitwise_op(n->fast_out(i))) { 3115 return false; 3116 } 3117 } 3118 return true; 3119 } 3120 3121 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 3122 uint cnt = 0; 3123 if (is_vector_bitwise_op(n)) { 3124 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 3125 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3126 for (uint i = 1; i < inp_cnt; i++) { 3127 Node* in = n->in(i); 3128 bool skip = VectorNode::is_all_ones_vector(in); 3129 if (!skip && !inputs.member(in)) { 3130 inputs.push(in); 3131 cnt++; 3132 } 3133 } 3134 assert(cnt <= 1, "not unary"); 3135 } else { 3136 uint last_req = inp_cnt; 3137 if (is_vector_ternary_bitwise_op(n)) { 3138 last_req = inp_cnt - 1; // skip last input 3139 } 3140 for (uint i = 1; i < last_req; i++) { 3141 Node* def = n->in(i); 3142 if (!inputs.member(def)) { 3143 inputs.push(def); 3144 cnt++; 3145 } 3146 } 3147 } 3148 } else { // not a bitwise operations 3149 if (!inputs.member(n)) { 3150 inputs.push(n); 3151 cnt++; 3152 } 3153 } 3154 return cnt; 3155 } 3156 3157 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 3158 Unique_Node_List useful_nodes; 3159 C->identify_useful_nodes(useful_nodes); 3160 3161 for (uint i = 0; i < useful_nodes.size(); i++) { 3162 Node* n = useful_nodes.at(i); 3163 if (is_vector_bitwise_cone_root(n)) { 3164 list.push(n); 3165 } 3166 } 3167 } 3168 3169 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 3170 const TypeVect* vt, 3171 Unique_Node_List& partition, 3172 Unique_Node_List& inputs) { 3173 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 3174 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 3175 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 3176 3177 Node* in1 = inputs.at(0); 3178 Node* in2 = inputs.at(1); 3179 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 3180 3181 uint func = compute_truth_table(partition, inputs); 3182 3183 Node* pn = partition.at(partition.size() - 1); 3184 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 3185 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 3186 } 3187 3188 static uint extract_bit(uint func, uint pos) { 3189 return (func & (1 << pos)) >> pos; 3190 } 3191 3192 // 3193 // A macro logic node represents a truth table. It has 4 inputs, 3194 // First three inputs corresponds to 3 columns of a truth table 3195 // and fourth input captures the logic function. 3196 // 3197 // eg. fn = (in1 AND in2) OR in3; 3198 // 3199 // MacroNode(in1,in2,in3,fn) 3200 // 3201 // ----------------- 3202 // in1 in2 in3 fn 3203 // ----------------- 3204 // 0 0 0 0 3205 // 0 0 1 1 3206 // 0 1 0 0 3207 // 0 1 1 1 3208 // 1 0 0 0 3209 // 1 0 1 1 3210 // 1 1 0 1 3211 // 1 1 1 1 3212 // 3213 3214 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 3215 int res = 0; 3216 for (int i = 0; i < 8; i++) { 3217 int bit1 = extract_bit(in1, i); 3218 int bit2 = extract_bit(in2, i); 3219 int bit3 = extract_bit(in3, i); 3220 3221 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 3222 int func_bit = extract_bit(func, func_bit_pos); 3223 3224 res |= func_bit << i; 3225 } 3226 return res; 3227 } 3228 3229 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 3230 assert(n != nullptr, ""); 3231 assert(eval_map.contains(n), "absent"); 3232 return *(eval_map.get(n)); 3233 } 3234 3235 static void eval_operands(Node* n, 3236 uint& func1, uint& func2, uint& func3, 3237 ResourceHashtable<Node*,uint>& eval_map) { 3238 assert(is_vector_bitwise_op(n), ""); 3239 3240 if (is_vector_unary_bitwise_op(n)) { 3241 Node* opnd = n->in(1); 3242 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 3243 opnd = n->in(2); 3244 } 3245 func1 = eval_operand(opnd, eval_map); 3246 } else if (is_vector_binary_bitwise_op(n)) { 3247 func1 = eval_operand(n->in(1), eval_map); 3248 func2 = eval_operand(n->in(2), eval_map); 3249 } else { 3250 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 3251 func1 = eval_operand(n->in(1), eval_map); 3252 func2 = eval_operand(n->in(2), eval_map); 3253 func3 = eval_operand(n->in(3), eval_map); 3254 } 3255 } 3256 3257 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 3258 assert(inputs.size() <= 3, "sanity"); 3259 ResourceMark rm; 3260 uint res = 0; 3261 ResourceHashtable<Node*,uint> eval_map; 3262 3263 // Populate precomputed functions for inputs. 3264 // Each input corresponds to one column of 3 input truth-table. 3265 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 3266 0xCC, // (_, b, _) -> b 3267 0xF0 }; // (a, _, _) -> a 3268 for (uint i = 0; i < inputs.size(); i++) { 3269 eval_map.put(inputs.at(i), input_funcs[2-i]); 3270 } 3271 3272 for (uint i = 0; i < partition.size(); i++) { 3273 Node* n = partition.at(i); 3274 3275 uint func1 = 0, func2 = 0, func3 = 0; 3276 eval_operands(n, func1, func2, func3, eval_map); 3277 3278 switch (n->Opcode()) { 3279 case Op_OrV: 3280 assert(func3 == 0, "not binary"); 3281 res = func1 | func2; 3282 break; 3283 case Op_AndV: 3284 assert(func3 == 0, "not binary"); 3285 res = func1 & func2; 3286 break; 3287 case Op_XorV: 3288 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 3289 assert(func2 == 0 && func3 == 0, "not unary"); 3290 res = (~func1) & 0xFF; 3291 } else { 3292 assert(func3 == 0, "not binary"); 3293 res = func1 ^ func2; 3294 } 3295 break; 3296 case Op_MacroLogicV: 3297 // Ordering of inputs may change during evaluation of sub-tree 3298 // containing MacroLogic node as a child node, thus a re-evaluation 3299 // makes sure that function is evaluated in context of current 3300 // inputs. 3301 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 3302 break; 3303 3304 default: assert(false, "not supported: %s", n->Name()); 3305 } 3306 assert(res <= 0xFF, "invalid"); 3307 eval_map.put(n, res); 3308 } 3309 return res; 3310 } 3311 3312 // Criteria under which nodes gets packed into a macro logic node:- 3313 // 1) Parent and both child nodes are all unmasked or masked with 3314 // same predicates. 3315 // 2) Masked parent can be packed with left child if it is predicated 3316 // and both have same predicates. 3317 // 3) Masked parent can be packed with right child if its un-predicated 3318 // or has matching predication condition. 3319 // 4) An unmasked parent can be packed with an unmasked child. 3320 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 3321 assert(partition.size() == 0, "not empty"); 3322 assert(inputs.size() == 0, "not empty"); 3323 if (is_vector_ternary_bitwise_op(n)) { 3324 return false; 3325 } 3326 3327 bool is_unary_op = is_vector_unary_bitwise_op(n); 3328 if (is_unary_op) { 3329 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 3330 return false; // too few inputs 3331 } 3332 3333 bool pack_left_child = true; 3334 bool pack_right_child = true; 3335 3336 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 3337 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 3338 3339 int left_child_input_cnt = 0; 3340 int right_child_input_cnt = 0; 3341 3342 bool parent_is_predicated = n->is_predicated_vector(); 3343 bool left_child_predicated = n->in(1)->is_predicated_vector(); 3344 bool right_child_predicated = n->in(2)->is_predicated_vector(); 3345 3346 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 3347 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 3348 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 3349 3350 do { 3351 if (pack_left_child && left_child_LOP && 3352 ((!parent_is_predicated && !left_child_predicated) || 3353 ((parent_is_predicated && left_child_predicated && 3354 parent_pred == left_child_pred)))) { 3355 partition.push(n->in(1)); 3356 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 3357 } else { 3358 inputs.push(n->in(1)); 3359 left_child_input_cnt = 1; 3360 } 3361 3362 if (pack_right_child && right_child_LOP && 3363 (!right_child_predicated || 3364 (right_child_predicated && parent_is_predicated && 3365 parent_pred == right_child_pred))) { 3366 partition.push(n->in(2)); 3367 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 3368 } else { 3369 inputs.push(n->in(2)); 3370 right_child_input_cnt = 1; 3371 } 3372 3373 if (inputs.size() > 3) { 3374 assert(partition.size() > 0, ""); 3375 inputs.clear(); 3376 partition.clear(); 3377 if (left_child_input_cnt > right_child_input_cnt) { 3378 pack_left_child = false; 3379 } else { 3380 pack_right_child = false; 3381 } 3382 } else { 3383 break; 3384 } 3385 } while(true); 3386 3387 if(partition.size()) { 3388 partition.push(n); 3389 } 3390 3391 return (partition.size() == 2 || partition.size() == 3) && 3392 (inputs.size() == 2 || inputs.size() == 3); 3393 } 3394 3395 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 3396 assert(is_vector_bitwise_op(n), "not a root"); 3397 3398 visited.set(n->_idx); 3399 3400 // 1) Do a DFS walk over the logic cone. 3401 for (uint i = 1; i < n->req(); i++) { 3402 Node* in = n->in(i); 3403 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 3404 process_logic_cone_root(igvn, in, visited); 3405 } 3406 } 3407 3408 // 2) Bottom up traversal: Merge node[s] with 3409 // the parent to form macro logic node. 3410 Unique_Node_List partition; 3411 Unique_Node_List inputs; 3412 if (compute_logic_cone(n, partition, inputs)) { 3413 const TypeVect* vt = n->bottom_type()->is_vect(); 3414 Node* pn = partition.at(partition.size() - 1); 3415 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 3416 if (mask == nullptr || 3417 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 3418 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 3419 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 3420 igvn.replace_node(n, macro_logic); 3421 } 3422 } 3423 } 3424 3425 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 3426 ResourceMark rm; 3427 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 3428 Unique_Node_List list; 3429 collect_logic_cone_roots(list); 3430 3431 while (list.size() > 0) { 3432 Node* n = list.pop(); 3433 const TypeVect* vt = n->bottom_type()->is_vect(); 3434 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 3435 if (supported) { 3436 VectorSet visited(comp_arena()); 3437 process_logic_cone_root(igvn, n, visited); 3438 } 3439 } 3440 } 3441 } 3442 3443 //------------------------------Code_Gen--------------------------------------- 3444 // Given a graph, generate code for it 3445 void Compile::Code_Gen() { 3446 if (failing()) { 3447 return; 3448 } 3449 3450 // Perform instruction selection. You might think we could reclaim Matcher 3451 // memory PDQ, but actually the Matcher is used in generating spill code. 3452 // Internals of the Matcher (including some VectorSets) must remain live 3453 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 3454 // set a bit in reclaimed memory. 3455 3456 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3457 // nodes. Mapping is only valid at the root of each matched subtree. 3458 NOT_PRODUCT( verify_graph_edges(); ) 3459 3460 Matcher matcher; 3461 _matcher = &matcher; 3462 { 3463 TracePhase tp(_t_matcher); 3464 matcher.match(); 3465 if (failing()) { 3466 return; 3467 } 3468 } 3469 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3470 // nodes. Mapping is only valid at the root of each matched subtree. 3471 NOT_PRODUCT( verify_graph_edges(); ) 3472 3473 // If you have too many nodes, or if matching has failed, bail out 3474 check_node_count(0, "out of nodes matching instructions"); 3475 if (failing()) { 3476 return; 3477 } 3478 3479 print_method(PHASE_MATCHING, 2); 3480 3481 // Build a proper-looking CFG 3482 PhaseCFG cfg(node_arena(), root(), matcher); 3483 if (failing()) { 3484 return; 3485 } 3486 _cfg = &cfg; 3487 { 3488 TracePhase tp(_t_scheduler); 3489 bool success = cfg.do_global_code_motion(); 3490 if (!success) { 3491 return; 3492 } 3493 3494 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3495 NOT_PRODUCT( verify_graph_edges(); ) 3496 cfg.verify(); 3497 if (failing()) { 3498 return; 3499 } 3500 } 3501 3502 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3503 _regalloc = ®alloc; 3504 { 3505 TracePhase tp(_t_registerAllocation); 3506 // Perform register allocation. After Chaitin, use-def chains are 3507 // no longer accurate (at spill code) and so must be ignored. 3508 // Node->LRG->reg mappings are still accurate. 3509 _regalloc->Register_Allocate(); 3510 3511 // Bail out if the allocator builds too many nodes 3512 if (failing()) { 3513 return; 3514 } 3515 3516 print_method(PHASE_REGISTER_ALLOCATION, 2); 3517 } 3518 3519 // Prior to register allocation we kept empty basic blocks in case the 3520 // the allocator needed a place to spill. After register allocation we 3521 // are not adding any new instructions. If any basic block is empty, we 3522 // can now safely remove it. 3523 { 3524 TracePhase tp(_t_blockOrdering); 3525 cfg.remove_empty_blocks(); 3526 if (do_freq_based_layout()) { 3527 PhaseBlockLayout layout(cfg); 3528 } else { 3529 cfg.set_loop_alignment(); 3530 } 3531 cfg.fixup_flow(); 3532 cfg.remove_unreachable_blocks(); 3533 cfg.verify_dominator_tree(); 3534 print_method(PHASE_BLOCK_ORDERING, 3); 3535 } 3536 3537 // Apply peephole optimizations 3538 if( OptoPeephole ) { 3539 TracePhase tp(_t_peephole); 3540 PhasePeephole peep( _regalloc, cfg); 3541 peep.do_transform(); 3542 print_method(PHASE_PEEPHOLE, 3); 3543 } 3544 3545 // Do late expand if CPU requires this. 3546 if (Matcher::require_postalloc_expand) { 3547 TracePhase tp(_t_postalloc_expand); 3548 cfg.postalloc_expand(_regalloc); 3549 print_method(PHASE_POSTALLOC_EXPAND, 3); 3550 } 3551 3552 #ifdef ASSERT 3553 { 3554 CompilationMemoryStatistic::do_test_allocations(); 3555 if (failing()) return; 3556 } 3557 #endif 3558 3559 // Convert Nodes to instruction bits in a buffer 3560 { 3561 TracePhase tp(_t_output); 3562 PhaseOutput output; 3563 output.Output(); 3564 if (failing()) return; 3565 output.install(); 3566 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3567 } 3568 3569 // He's dead, Jim. 3570 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3571 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3572 } 3573 3574 //------------------------------Final_Reshape_Counts--------------------------- 3575 // This class defines counters to help identify when a method 3576 // may/must be executed using hardware with only 24-bit precision. 3577 struct Final_Reshape_Counts : public StackObj { 3578 int _call_count; // count non-inlined 'common' calls 3579 int _float_count; // count float ops requiring 24-bit precision 3580 int _double_count; // count double ops requiring more precision 3581 int _java_call_count; // count non-inlined 'java' calls 3582 int _inner_loop_count; // count loops which need alignment 3583 VectorSet _visited; // Visitation flags 3584 Node_List _tests; // Set of IfNodes & PCTableNodes 3585 3586 Final_Reshape_Counts() : 3587 _call_count(0), _float_count(0), _double_count(0), 3588 _java_call_count(0), _inner_loop_count(0) { } 3589 3590 void inc_call_count () { _call_count ++; } 3591 void inc_float_count () { _float_count ++; } 3592 void inc_double_count() { _double_count++; } 3593 void inc_java_call_count() { _java_call_count++; } 3594 void inc_inner_loop_count() { _inner_loop_count++; } 3595 3596 int get_call_count () const { return _call_count ; } 3597 int get_float_count () const { return _float_count ; } 3598 int get_double_count() const { return _double_count; } 3599 int get_java_call_count() const { return _java_call_count; } 3600 int get_inner_loop_count() const { return _inner_loop_count; } 3601 }; 3602 3603 //------------------------------final_graph_reshaping_impl---------------------- 3604 // Implement items 1-5 from final_graph_reshaping below. 3605 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3606 3607 if ( n->outcnt() == 0 ) return; // dead node 3608 uint nop = n->Opcode(); 3609 3610 // Check for 2-input instruction with "last use" on right input. 3611 // Swap to left input. Implements item (2). 3612 if( n->req() == 3 && // two-input instruction 3613 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3614 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3615 n->in(2)->outcnt() == 1 &&// right use IS a last use 3616 !n->in(2)->is_Con() ) { // right use is not a constant 3617 // Check for commutative opcode 3618 switch( nop ) { 3619 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3620 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3621 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3622 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3623 case Op_AndL: case Op_XorL: case Op_OrL: 3624 case Op_AndI: case Op_XorI: case Op_OrI: { 3625 // Move "last use" input to left by swapping inputs 3626 n->swap_edges(1, 2); 3627 break; 3628 } 3629 default: 3630 break; 3631 } 3632 } 3633 3634 #ifdef ASSERT 3635 if( n->is_Mem() ) { 3636 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3637 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3638 // oop will be recorded in oop map if load crosses safepoint 3639 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3640 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3641 "raw memory operations should have control edge"); 3642 } 3643 if (n->is_MemBar()) { 3644 MemBarNode* mb = n->as_MemBar(); 3645 if (mb->trailing_store() || mb->trailing_load_store()) { 3646 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3647 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3648 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3649 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3650 } else if (mb->leading()) { 3651 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3652 } 3653 } 3654 #endif 3655 // Count FPU ops and common calls, implements item (3) 3656 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3657 if (!gc_handled) { 3658 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3659 } 3660 3661 // Collect CFG split points 3662 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3663 frc._tests.push(n); 3664 } 3665 } 3666 3667 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3668 if (!UseDivMod) { 3669 return; 3670 } 3671 3672 // Check if "a % b" and "a / b" both exist 3673 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3674 if (d == nullptr) { 3675 return; 3676 } 3677 3678 // Replace them with a fused divmod if supported 3679 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3680 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3681 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3682 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3683 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3684 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3685 // DivMod node so the dependency is not lost. 3686 divmod->add_prec_from(n); 3687 divmod->add_prec_from(d); 3688 d->subsume_by(divmod->div_proj(), this); 3689 n->subsume_by(divmod->mod_proj(), this); 3690 } else { 3691 // Replace "a % b" with "a - ((a / b) * b)" 3692 Node* mult = MulNode::make(d, d->in(2), bt); 3693 Node* sub = SubNode::make(d->in(1), mult, bt); 3694 n->subsume_by(sub, this); 3695 } 3696 } 3697 3698 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3699 switch( nop ) { 3700 // Count all float operations that may use FPU 3701 case Op_AddF: 3702 case Op_SubF: 3703 case Op_MulF: 3704 case Op_DivF: 3705 case Op_NegF: 3706 case Op_ModF: 3707 case Op_ConvI2F: 3708 case Op_ConF: 3709 case Op_CmpF: 3710 case Op_CmpF3: 3711 case Op_StoreF: 3712 case Op_LoadF: 3713 // case Op_ConvL2F: // longs are split into 32-bit halves 3714 frc.inc_float_count(); 3715 break; 3716 3717 case Op_ConvF2D: 3718 case Op_ConvD2F: 3719 frc.inc_float_count(); 3720 frc.inc_double_count(); 3721 break; 3722 3723 // Count all double operations that may use FPU 3724 case Op_AddD: 3725 case Op_SubD: 3726 case Op_MulD: 3727 case Op_DivD: 3728 case Op_NegD: 3729 case Op_ModD: 3730 case Op_ConvI2D: 3731 case Op_ConvD2I: 3732 // case Op_ConvL2D: // handled by leaf call 3733 // case Op_ConvD2L: // handled by leaf call 3734 case Op_ConD: 3735 case Op_CmpD: 3736 case Op_CmpD3: 3737 case Op_StoreD: 3738 case Op_LoadD: 3739 case Op_LoadD_unaligned: 3740 frc.inc_double_count(); 3741 break; 3742 case Op_Opaque1: // Remove Opaque Nodes before matching 3743 n->subsume_by(n->in(1), this); 3744 break; 3745 case Op_CallStaticJava: 3746 case Op_CallJava: 3747 case Op_CallDynamicJava: 3748 frc.inc_java_call_count(); // Count java call site; 3749 case Op_CallRuntime: 3750 case Op_CallLeaf: 3751 case Op_CallLeafVector: 3752 case Op_CallLeafNoFP: { 3753 assert (n->is_Call(), ""); 3754 CallNode *call = n->as_Call(); 3755 // Count call sites where the FP mode bit would have to be flipped. 3756 // Do not count uncommon runtime calls: 3757 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3758 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3759 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3760 frc.inc_call_count(); // Count the call site 3761 } else { // See if uncommon argument is shared 3762 Node *n = call->in(TypeFunc::Parms); 3763 int nop = n->Opcode(); 3764 // Clone shared simple arguments to uncommon calls, item (1). 3765 if (n->outcnt() > 1 && 3766 !n->is_Proj() && 3767 nop != Op_CreateEx && 3768 nop != Op_CheckCastPP && 3769 nop != Op_DecodeN && 3770 nop != Op_DecodeNKlass && 3771 !n->is_Mem() && 3772 !n->is_Phi()) { 3773 Node *x = n->clone(); 3774 call->set_req(TypeFunc::Parms, x); 3775 } 3776 } 3777 break; 3778 } 3779 case Op_StoreB: 3780 case Op_StoreC: 3781 case Op_StoreI: 3782 case Op_StoreL: 3783 case Op_StoreLSpecial: 3784 case Op_CompareAndSwapB: 3785 case Op_CompareAndSwapS: 3786 case Op_CompareAndSwapI: 3787 case Op_CompareAndSwapL: 3788 case Op_CompareAndSwapP: 3789 case Op_CompareAndSwapN: 3790 case Op_WeakCompareAndSwapB: 3791 case Op_WeakCompareAndSwapS: 3792 case Op_WeakCompareAndSwapI: 3793 case Op_WeakCompareAndSwapL: 3794 case Op_WeakCompareAndSwapP: 3795 case Op_WeakCompareAndSwapN: 3796 case Op_CompareAndExchangeB: 3797 case Op_CompareAndExchangeS: 3798 case Op_CompareAndExchangeI: 3799 case Op_CompareAndExchangeL: 3800 case Op_CompareAndExchangeP: 3801 case Op_CompareAndExchangeN: 3802 case Op_GetAndAddS: 3803 case Op_GetAndAddB: 3804 case Op_GetAndAddI: 3805 case Op_GetAndAddL: 3806 case Op_GetAndSetS: 3807 case Op_GetAndSetB: 3808 case Op_GetAndSetI: 3809 case Op_GetAndSetL: 3810 case Op_GetAndSetP: 3811 case Op_GetAndSetN: 3812 case Op_StoreP: 3813 case Op_StoreN: 3814 case Op_StoreNKlass: 3815 case Op_LoadB: 3816 case Op_LoadUB: 3817 case Op_LoadUS: 3818 case Op_LoadI: 3819 case Op_LoadKlass: 3820 case Op_LoadNKlass: 3821 case Op_LoadL: 3822 case Op_LoadL_unaligned: 3823 case Op_LoadP: 3824 case Op_LoadN: 3825 case Op_LoadRange: 3826 case Op_LoadS: 3827 break; 3828 3829 case Op_AddP: { // Assert sane base pointers 3830 Node *addp = n->in(AddPNode::Address); 3831 assert( !addp->is_AddP() || 3832 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3833 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3834 "Base pointers must match (addp %u)", addp->_idx ); 3835 #ifdef _LP64 3836 if ((UseCompressedOops || UseCompressedClassPointers) && 3837 addp->Opcode() == Op_ConP && 3838 addp == n->in(AddPNode::Base) && 3839 n->in(AddPNode::Offset)->is_Con()) { 3840 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3841 // on the platform and on the compressed oops mode. 3842 // Use addressing with narrow klass to load with offset on x86. 3843 // Some platforms can use the constant pool to load ConP. 3844 // Do this transformation here since IGVN will convert ConN back to ConP. 3845 const Type* t = addp->bottom_type(); 3846 bool is_oop = t->isa_oopptr() != nullptr; 3847 bool is_klass = t->isa_klassptr() != nullptr; 3848 3849 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3850 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3851 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3852 Node* nn = nullptr; 3853 3854 int op = is_oop ? Op_ConN : Op_ConNKlass; 3855 3856 // Look for existing ConN node of the same exact type. 3857 Node* r = root(); 3858 uint cnt = r->outcnt(); 3859 for (uint i = 0; i < cnt; i++) { 3860 Node* m = r->raw_out(i); 3861 if (m!= nullptr && m->Opcode() == op && 3862 m->bottom_type()->make_ptr() == t) { 3863 nn = m; 3864 break; 3865 } 3866 } 3867 if (nn != nullptr) { 3868 // Decode a narrow oop to match address 3869 // [R12 + narrow_oop_reg<<3 + offset] 3870 if (is_oop) { 3871 nn = new DecodeNNode(nn, t); 3872 } else { 3873 nn = new DecodeNKlassNode(nn, t); 3874 } 3875 // Check for succeeding AddP which uses the same Base. 3876 // Otherwise we will run into the assertion above when visiting that guy. 3877 for (uint i = 0; i < n->outcnt(); ++i) { 3878 Node *out_i = n->raw_out(i); 3879 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3880 out_i->set_req(AddPNode::Base, nn); 3881 #ifdef ASSERT 3882 for (uint j = 0; j < out_i->outcnt(); ++j) { 3883 Node *out_j = out_i->raw_out(j); 3884 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3885 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3886 } 3887 #endif 3888 } 3889 } 3890 n->set_req(AddPNode::Base, nn); 3891 n->set_req(AddPNode::Address, nn); 3892 if (addp->outcnt() == 0) { 3893 addp->disconnect_inputs(this); 3894 } 3895 } 3896 } 3897 } 3898 #endif 3899 break; 3900 } 3901 3902 case Op_CastPP: { 3903 // Remove CastPP nodes to gain more freedom during scheduling but 3904 // keep the dependency they encode as control or precedence edges 3905 // (if control is set already) on memory operations. Some CastPP 3906 // nodes don't have a control (don't carry a dependency): skip 3907 // those. 3908 if (n->in(0) != nullptr) { 3909 ResourceMark rm; 3910 Unique_Node_List wq; 3911 wq.push(n); 3912 for (uint next = 0; next < wq.size(); ++next) { 3913 Node *m = wq.at(next); 3914 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3915 Node* use = m->fast_out(i); 3916 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3917 use->ensure_control_or_add_prec(n->in(0)); 3918 } else { 3919 switch(use->Opcode()) { 3920 case Op_AddP: 3921 case Op_DecodeN: 3922 case Op_DecodeNKlass: 3923 case Op_CheckCastPP: 3924 case Op_CastPP: 3925 wq.push(use); 3926 break; 3927 } 3928 } 3929 } 3930 } 3931 } 3932 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3933 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3934 Node* in1 = n->in(1); 3935 const Type* t = n->bottom_type(); 3936 Node* new_in1 = in1->clone(); 3937 new_in1->as_DecodeN()->set_type(t); 3938 3939 if (!Matcher::narrow_oop_use_complex_address()) { 3940 // 3941 // x86, ARM and friends can handle 2 adds in addressing mode 3942 // and Matcher can fold a DecodeN node into address by using 3943 // a narrow oop directly and do implicit null check in address: 3944 // 3945 // [R12 + narrow_oop_reg<<3 + offset] 3946 // NullCheck narrow_oop_reg 3947 // 3948 // On other platforms (Sparc) we have to keep new DecodeN node and 3949 // use it to do implicit null check in address: 3950 // 3951 // decode_not_null narrow_oop_reg, base_reg 3952 // [base_reg + offset] 3953 // NullCheck base_reg 3954 // 3955 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3956 // to keep the information to which null check the new DecodeN node 3957 // corresponds to use it as value in implicit_null_check(). 3958 // 3959 new_in1->set_req(0, n->in(0)); 3960 } 3961 3962 n->subsume_by(new_in1, this); 3963 if (in1->outcnt() == 0) { 3964 in1->disconnect_inputs(this); 3965 } 3966 } else { 3967 n->subsume_by(n->in(1), this); 3968 if (n->outcnt() == 0) { 3969 n->disconnect_inputs(this); 3970 } 3971 } 3972 break; 3973 } 3974 case Op_CastII: { 3975 n->as_CastII()->remove_range_check_cast(this); 3976 break; 3977 } 3978 #ifdef _LP64 3979 case Op_CmpP: 3980 // Do this transformation here to preserve CmpPNode::sub() and 3981 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3982 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3983 Node* in1 = n->in(1); 3984 Node* in2 = n->in(2); 3985 if (!in1->is_DecodeNarrowPtr()) { 3986 in2 = in1; 3987 in1 = n->in(2); 3988 } 3989 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3990 3991 Node* new_in2 = nullptr; 3992 if (in2->is_DecodeNarrowPtr()) { 3993 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3994 new_in2 = in2->in(1); 3995 } else if (in2->Opcode() == Op_ConP) { 3996 const Type* t = in2->bottom_type(); 3997 if (t == TypePtr::NULL_PTR) { 3998 assert(in1->is_DecodeN(), "compare klass to null?"); 3999 // Don't convert CmpP null check into CmpN if compressed 4000 // oops implicit null check is not generated. 4001 // This will allow to generate normal oop implicit null check. 4002 if (Matcher::gen_narrow_oop_implicit_null_checks()) 4003 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 4004 // 4005 // This transformation together with CastPP transformation above 4006 // will generated code for implicit null checks for compressed oops. 4007 // 4008 // The original code after Optimize() 4009 // 4010 // LoadN memory, narrow_oop_reg 4011 // decode narrow_oop_reg, base_reg 4012 // CmpP base_reg, nullptr 4013 // CastPP base_reg // NotNull 4014 // Load [base_reg + offset], val_reg 4015 // 4016 // after these transformations will be 4017 // 4018 // LoadN memory, narrow_oop_reg 4019 // CmpN narrow_oop_reg, nullptr 4020 // decode_not_null narrow_oop_reg, base_reg 4021 // Load [base_reg + offset], val_reg 4022 // 4023 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 4024 // since narrow oops can be used in debug info now (see the code in 4025 // final_graph_reshaping_walk()). 4026 // 4027 // At the end the code will be matched to 4028 // on x86: 4029 // 4030 // Load_narrow_oop memory, narrow_oop_reg 4031 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 4032 // NullCheck narrow_oop_reg 4033 // 4034 // and on sparc: 4035 // 4036 // Load_narrow_oop memory, narrow_oop_reg 4037 // decode_not_null narrow_oop_reg, base_reg 4038 // Load [base_reg + offset], val_reg 4039 // NullCheck base_reg 4040 // 4041 } else if (t->isa_oopptr()) { 4042 new_in2 = ConNode::make(t->make_narrowoop()); 4043 } else if (t->isa_klassptr()) { 4044 new_in2 = ConNode::make(t->make_narrowklass()); 4045 } 4046 } 4047 if (new_in2 != nullptr) { 4048 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 4049 n->subsume_by(cmpN, this); 4050 if (in1->outcnt() == 0) { 4051 in1->disconnect_inputs(this); 4052 } 4053 if (in2->outcnt() == 0) { 4054 in2->disconnect_inputs(this); 4055 } 4056 } 4057 } 4058 break; 4059 4060 case Op_DecodeN: 4061 case Op_DecodeNKlass: 4062 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 4063 // DecodeN could be pinned when it can't be fold into 4064 // an address expression, see the code for Op_CastPP above. 4065 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 4066 break; 4067 4068 case Op_EncodeP: 4069 case Op_EncodePKlass: { 4070 Node* in1 = n->in(1); 4071 if (in1->is_DecodeNarrowPtr()) { 4072 n->subsume_by(in1->in(1), this); 4073 } else if (in1->Opcode() == Op_ConP) { 4074 const Type* t = in1->bottom_type(); 4075 if (t == TypePtr::NULL_PTR) { 4076 assert(t->isa_oopptr(), "null klass?"); 4077 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 4078 } else if (t->isa_oopptr()) { 4079 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 4080 } else if (t->isa_klassptr()) { 4081 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 4082 } 4083 } 4084 if (in1->outcnt() == 0) { 4085 in1->disconnect_inputs(this); 4086 } 4087 break; 4088 } 4089 4090 case Op_Proj: { 4091 if (OptimizeStringConcat || IncrementalInline) { 4092 ProjNode* proj = n->as_Proj(); 4093 if (proj->_is_io_use) { 4094 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 4095 // Separate projections were used for the exception path which 4096 // are normally removed by a late inline. If it wasn't inlined 4097 // then they will hang around and should just be replaced with 4098 // the original one. Merge them. 4099 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 4100 if (non_io_proj != nullptr) { 4101 proj->subsume_by(non_io_proj , this); 4102 } 4103 } 4104 } 4105 break; 4106 } 4107 4108 case Op_Phi: 4109 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 4110 // The EncodeP optimization may create Phi with the same edges 4111 // for all paths. It is not handled well by Register Allocator. 4112 Node* unique_in = n->in(1); 4113 assert(unique_in != nullptr, ""); 4114 uint cnt = n->req(); 4115 for (uint i = 2; i < cnt; i++) { 4116 Node* m = n->in(i); 4117 assert(m != nullptr, ""); 4118 if (unique_in != m) 4119 unique_in = nullptr; 4120 } 4121 if (unique_in != nullptr) { 4122 n->subsume_by(unique_in, this); 4123 } 4124 } 4125 break; 4126 4127 #endif 4128 4129 case Op_ModI: 4130 handle_div_mod_op(n, T_INT, false); 4131 break; 4132 4133 case Op_ModL: 4134 handle_div_mod_op(n, T_LONG, false); 4135 break; 4136 4137 case Op_UModI: 4138 handle_div_mod_op(n, T_INT, true); 4139 break; 4140 4141 case Op_UModL: 4142 handle_div_mod_op(n, T_LONG, true); 4143 break; 4144 4145 case Op_LoadVector: 4146 case Op_StoreVector: 4147 #ifdef ASSERT 4148 // Add VerifyVectorAlignment node between adr and load / store. 4149 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 4150 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 4151 n->as_StoreVector()->must_verify_alignment(); 4152 if (must_verify_alignment) { 4153 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 4154 n->as_StoreVector()->memory_size(); 4155 // The memory access should be aligned to the vector width in bytes. 4156 // However, the underlying array is possibly less well aligned, but at least 4157 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 4158 // a loop we can expect at least the following alignment: 4159 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 4160 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 4161 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 4162 // Create mask from alignment. e.g. 0b1000 -> 0b0111 4163 jlong mask = guaranteed_alignment - 1; 4164 Node* mask_con = ConLNode::make(mask); 4165 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 4166 n->set_req(MemNode::Address, va); 4167 } 4168 } 4169 #endif 4170 break; 4171 4172 case Op_LoadVectorGather: 4173 case Op_StoreVectorScatter: 4174 case Op_LoadVectorGatherMasked: 4175 case Op_StoreVectorScatterMasked: 4176 case Op_VectorCmpMasked: 4177 case Op_VectorMaskGen: 4178 case Op_LoadVectorMasked: 4179 case Op_StoreVectorMasked: 4180 break; 4181 4182 case Op_AddReductionVI: 4183 case Op_AddReductionVL: 4184 case Op_AddReductionVF: 4185 case Op_AddReductionVD: 4186 case Op_MulReductionVI: 4187 case Op_MulReductionVL: 4188 case Op_MulReductionVF: 4189 case Op_MulReductionVD: 4190 case Op_MinReductionV: 4191 case Op_MaxReductionV: 4192 case Op_AndReductionV: 4193 case Op_OrReductionV: 4194 case Op_XorReductionV: 4195 break; 4196 4197 case Op_PackB: 4198 case Op_PackS: 4199 case Op_PackI: 4200 case Op_PackF: 4201 case Op_PackL: 4202 case Op_PackD: 4203 if (n->req()-1 > 2) { 4204 // Replace many operand PackNodes with a binary tree for matching 4205 PackNode* p = (PackNode*) n; 4206 Node* btp = p->binary_tree_pack(1, n->req()); 4207 n->subsume_by(btp, this); 4208 } 4209 break; 4210 case Op_Loop: 4211 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 4212 case Op_CountedLoop: 4213 case Op_LongCountedLoop: 4214 case Op_OuterStripMinedLoop: 4215 if (n->as_Loop()->is_inner_loop()) { 4216 frc.inc_inner_loop_count(); 4217 } 4218 n->as_Loop()->verify_strip_mined(0); 4219 break; 4220 case Op_LShiftI: 4221 case Op_RShiftI: 4222 case Op_URShiftI: 4223 case Op_LShiftL: 4224 case Op_RShiftL: 4225 case Op_URShiftL: 4226 if (Matcher::need_masked_shift_count) { 4227 // The cpu's shift instructions don't restrict the count to the 4228 // lower 5/6 bits. We need to do the masking ourselves. 4229 Node* in2 = n->in(2); 4230 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 4231 const TypeInt* t = in2->find_int_type(); 4232 if (t != nullptr && t->is_con()) { 4233 juint shift = t->get_con(); 4234 if (shift > mask) { // Unsigned cmp 4235 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 4236 } 4237 } else { 4238 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 4239 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 4240 n->set_req(2, shift); 4241 } 4242 } 4243 if (in2->outcnt() == 0) { // Remove dead node 4244 in2->disconnect_inputs(this); 4245 } 4246 } 4247 break; 4248 case Op_MemBarStoreStore: 4249 case Op_MemBarRelease: 4250 // Break the link with AllocateNode: it is no longer useful and 4251 // confuses register allocation. 4252 if (n->req() > MemBarNode::Precedent) { 4253 n->set_req(MemBarNode::Precedent, top()); 4254 } 4255 break; 4256 case Op_MemBarAcquire: { 4257 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 4258 // At parse time, the trailing MemBarAcquire for a volatile load 4259 // is created with an edge to the load. After optimizations, 4260 // that input may be a chain of Phis. If those phis have no 4261 // other use, then the MemBarAcquire keeps them alive and 4262 // register allocation can be confused. 4263 dead_nodes.push(n->in(MemBarNode::Precedent)); 4264 n->set_req(MemBarNode::Precedent, top()); 4265 } 4266 break; 4267 } 4268 case Op_Blackhole: 4269 break; 4270 case Op_RangeCheck: { 4271 RangeCheckNode* rc = n->as_RangeCheck(); 4272 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 4273 n->subsume_by(iff, this); 4274 frc._tests.push(iff); 4275 break; 4276 } 4277 case Op_ConvI2L: { 4278 if (!Matcher::convi2l_type_required) { 4279 // Code generation on some platforms doesn't need accurate 4280 // ConvI2L types. Widening the type can help remove redundant 4281 // address computations. 4282 n->as_Type()->set_type(TypeLong::INT); 4283 ResourceMark rm; 4284 Unique_Node_List wq; 4285 wq.push(n); 4286 for (uint next = 0; next < wq.size(); next++) { 4287 Node *m = wq.at(next); 4288 4289 for(;;) { 4290 // Loop over all nodes with identical inputs edges as m 4291 Node* k = m->find_similar(m->Opcode()); 4292 if (k == nullptr) { 4293 break; 4294 } 4295 // Push their uses so we get a chance to remove node made 4296 // redundant 4297 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 4298 Node* u = k->fast_out(i); 4299 if (u->Opcode() == Op_LShiftL || 4300 u->Opcode() == Op_AddL || 4301 u->Opcode() == Op_SubL || 4302 u->Opcode() == Op_AddP) { 4303 wq.push(u); 4304 } 4305 } 4306 // Replace all nodes with identical edges as m with m 4307 k->subsume_by(m, this); 4308 } 4309 } 4310 } 4311 break; 4312 } 4313 case Op_CmpUL: { 4314 if (!Matcher::has_match_rule(Op_CmpUL)) { 4315 // No support for unsigned long comparisons 4316 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 4317 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 4318 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 4319 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 4320 Node* andl = new AndLNode(orl, remove_sign_mask); 4321 Node* cmp = new CmpLNode(andl, n->in(2)); 4322 n->subsume_by(cmp, this); 4323 } 4324 break; 4325 } 4326 #ifdef ASSERT 4327 case Op_InlineType: { 4328 n->dump(-1); 4329 assert(false, "inline type node was not removed"); 4330 break; 4331 } 4332 case Op_ConNKlass: { 4333 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 4334 ciKlass* klass = tp->is_klassptr()->exact_klass(); 4335 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 4336 break; 4337 } 4338 #endif 4339 default: 4340 assert(!n->is_Call(), ""); 4341 assert(!n->is_Mem(), ""); 4342 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 4343 break; 4344 } 4345 } 4346 4347 //------------------------------final_graph_reshaping_walk--------------------- 4348 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 4349 // requires that the walk visits a node's inputs before visiting the node. 4350 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 4351 Unique_Node_List sfpt; 4352 4353 frc._visited.set(root->_idx); // first, mark node as visited 4354 uint cnt = root->req(); 4355 Node *n = root; 4356 uint i = 0; 4357 while (true) { 4358 if (i < cnt) { 4359 // Place all non-visited non-null inputs onto stack 4360 Node* m = n->in(i); 4361 ++i; 4362 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 4363 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 4364 // compute worst case interpreter size in case of a deoptimization 4365 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 4366 4367 sfpt.push(m); 4368 } 4369 cnt = m->req(); 4370 nstack.push(n, i); // put on stack parent and next input's index 4371 n = m; 4372 i = 0; 4373 } 4374 } else { 4375 // Now do post-visit work 4376 final_graph_reshaping_impl(n, frc, dead_nodes); 4377 if (nstack.is_empty()) 4378 break; // finished 4379 n = nstack.node(); // Get node from stack 4380 cnt = n->req(); 4381 i = nstack.index(); 4382 nstack.pop(); // Shift to the next node on stack 4383 } 4384 } 4385 4386 // Skip next transformation if compressed oops are not used. 4387 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 4388 (!UseCompressedOops && !UseCompressedClassPointers)) 4389 return; 4390 4391 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 4392 // It could be done for an uncommon traps or any safepoints/calls 4393 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 4394 while (sfpt.size() > 0) { 4395 n = sfpt.pop(); 4396 JVMState *jvms = n->as_SafePoint()->jvms(); 4397 assert(jvms != nullptr, "sanity"); 4398 int start = jvms->debug_start(); 4399 int end = n->req(); 4400 bool is_uncommon = (n->is_CallStaticJava() && 4401 n->as_CallStaticJava()->uncommon_trap_request() != 0); 4402 for (int j = start; j < end; j++) { 4403 Node* in = n->in(j); 4404 if (in->is_DecodeNarrowPtr()) { 4405 bool safe_to_skip = true; 4406 if (!is_uncommon ) { 4407 // Is it safe to skip? 4408 for (uint i = 0; i < in->outcnt(); i++) { 4409 Node* u = in->raw_out(i); 4410 if (!u->is_SafePoint() || 4411 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 4412 safe_to_skip = false; 4413 } 4414 } 4415 } 4416 if (safe_to_skip) { 4417 n->set_req(j, in->in(1)); 4418 } 4419 if (in->outcnt() == 0) { 4420 in->disconnect_inputs(this); 4421 } 4422 } 4423 } 4424 } 4425 } 4426 4427 //------------------------------final_graph_reshaping-------------------------- 4428 // Final Graph Reshaping. 4429 // 4430 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 4431 // and not commoned up and forced early. Must come after regular 4432 // optimizations to avoid GVN undoing the cloning. Clone constant 4433 // inputs to Loop Phis; these will be split by the allocator anyways. 4434 // Remove Opaque nodes. 4435 // (2) Move last-uses by commutative operations to the left input to encourage 4436 // Intel update-in-place two-address operations and better register usage 4437 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 4438 // calls canonicalizing them back. 4439 // (3) Count the number of double-precision FP ops, single-precision FP ops 4440 // and call sites. On Intel, we can get correct rounding either by 4441 // forcing singles to memory (requires extra stores and loads after each 4442 // FP bytecode) or we can set a rounding mode bit (requires setting and 4443 // clearing the mode bit around call sites). The mode bit is only used 4444 // if the relative frequency of single FP ops to calls is low enough. 4445 // This is a key transform for SPEC mpeg_audio. 4446 // (4) Detect infinite loops; blobs of code reachable from above but not 4447 // below. Several of the Code_Gen algorithms fail on such code shapes, 4448 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 4449 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4450 // Detection is by looking for IfNodes where only 1 projection is 4451 // reachable from below or CatchNodes missing some targets. 4452 // (5) Assert for insane oop offsets in debug mode. 4453 4454 bool Compile::final_graph_reshaping() { 4455 // an infinite loop may have been eliminated by the optimizer, 4456 // in which case the graph will be empty. 4457 if (root()->req() == 1) { 4458 // Do not compile method that is only a trivial infinite loop, 4459 // since the content of the loop may have been eliminated. 4460 record_method_not_compilable("trivial infinite loop"); 4461 return true; 4462 } 4463 4464 // Expensive nodes have their control input set to prevent the GVN 4465 // from freely commoning them. There's no GVN beyond this point so 4466 // no need to keep the control input. We want the expensive nodes to 4467 // be freely moved to the least frequent code path by gcm. 4468 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4469 for (int i = 0; i < expensive_count(); i++) { 4470 _expensive_nodes.at(i)->set_req(0, nullptr); 4471 } 4472 4473 Final_Reshape_Counts frc; 4474 4475 // Visit everybody reachable! 4476 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4477 Node_Stack nstack(live_nodes() >> 1); 4478 Unique_Node_List dead_nodes; 4479 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4480 4481 // Check for unreachable (from below) code (i.e., infinite loops). 4482 for( uint i = 0; i < frc._tests.size(); i++ ) { 4483 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4484 // Get number of CFG targets. 4485 // Note that PCTables include exception targets after calls. 4486 uint required_outcnt = n->required_outcnt(); 4487 if (n->outcnt() != required_outcnt) { 4488 // Check for a few special cases. Rethrow Nodes never take the 4489 // 'fall-thru' path, so expected kids is 1 less. 4490 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4491 if (n->in(0)->in(0)->is_Call()) { 4492 CallNode* call = n->in(0)->in(0)->as_Call(); 4493 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4494 required_outcnt--; // Rethrow always has 1 less kid 4495 } else if (call->req() > TypeFunc::Parms && 4496 call->is_CallDynamicJava()) { 4497 // Check for null receiver. In such case, the optimizer has 4498 // detected that the virtual call will always result in a null 4499 // pointer exception. The fall-through projection of this CatchNode 4500 // will not be populated. 4501 Node* arg0 = call->in(TypeFunc::Parms); 4502 if (arg0->is_Type() && 4503 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4504 required_outcnt--; 4505 } 4506 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4507 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4508 // Check for illegal array length. In such case, the optimizer has 4509 // detected that the allocation attempt will always result in an 4510 // exception. There is no fall-through projection of this CatchNode . 4511 assert(call->is_CallStaticJava(), "static call expected"); 4512 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4513 uint valid_length_test_input = call->req() - 1; 4514 Node* valid_length_test = call->in(valid_length_test_input); 4515 call->del_req(valid_length_test_input); 4516 if (valid_length_test->find_int_con(1) == 0) { 4517 required_outcnt--; 4518 } 4519 dead_nodes.push(valid_length_test); 4520 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4521 continue; 4522 } 4523 } 4524 } 4525 4526 // Recheck with a better notion of 'required_outcnt' 4527 if (n->outcnt() != required_outcnt) { 4528 record_method_not_compilable("malformed control flow"); 4529 return true; // Not all targets reachable! 4530 } 4531 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4532 CallNode* call = n->in(0)->in(0)->as_Call(); 4533 if (call->entry_point() == OptoRuntime::new_array_Java() || 4534 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4535 assert(call->is_CallStaticJava(), "static call expected"); 4536 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4537 uint valid_length_test_input = call->req() - 1; 4538 dead_nodes.push(call->in(valid_length_test_input)); 4539 call->del_req(valid_length_test_input); // valid length test useless now 4540 } 4541 } 4542 // Check that I actually visited all kids. Unreached kids 4543 // must be infinite loops. 4544 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4545 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4546 record_method_not_compilable("infinite loop"); 4547 return true; // Found unvisited kid; must be unreach 4548 } 4549 4550 // Here so verification code in final_graph_reshaping_walk() 4551 // always see an OuterStripMinedLoopEnd 4552 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4553 IfNode* init_iff = n->as_If(); 4554 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4555 n->subsume_by(iff, this); 4556 } 4557 } 4558 4559 while (dead_nodes.size() > 0) { 4560 Node* m = dead_nodes.pop(); 4561 if (m->outcnt() == 0 && m != top()) { 4562 for (uint j = 0; j < m->req(); j++) { 4563 Node* in = m->in(j); 4564 if (in != nullptr) { 4565 dead_nodes.push(in); 4566 } 4567 } 4568 m->disconnect_inputs(this); 4569 } 4570 } 4571 4572 #ifdef IA32 4573 // If original bytecodes contained a mixture of floats and doubles 4574 // check if the optimizer has made it homogeneous, item (3). 4575 if (UseSSE == 0 && 4576 frc.get_float_count() > 32 && 4577 frc.get_double_count() == 0 && 4578 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4579 set_24_bit_selection_and_mode(false, true); 4580 } 4581 #endif // IA32 4582 4583 set_java_calls(frc.get_java_call_count()); 4584 set_inner_loops(frc.get_inner_loop_count()); 4585 4586 // No infinite loops, no reason to bail out. 4587 return false; 4588 } 4589 4590 //-----------------------------too_many_traps---------------------------------- 4591 // Report if there are too many traps at the current method and bci. 4592 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4593 bool Compile::too_many_traps(ciMethod* method, 4594 int bci, 4595 Deoptimization::DeoptReason reason) { 4596 ciMethodData* md = method->method_data(); 4597 if (md->is_empty()) { 4598 // Assume the trap has not occurred, or that it occurred only 4599 // because of a transient condition during start-up in the interpreter. 4600 return false; 4601 } 4602 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4603 if (md->has_trap_at(bci, m, reason) != 0) { 4604 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4605 // Also, if there are multiple reasons, or if there is no per-BCI record, 4606 // assume the worst. 4607 if (log()) 4608 log()->elem("observe trap='%s' count='%d'", 4609 Deoptimization::trap_reason_name(reason), 4610 md->trap_count(reason)); 4611 return true; 4612 } else { 4613 // Ignore method/bci and see if there have been too many globally. 4614 return too_many_traps(reason, md); 4615 } 4616 } 4617 4618 // Less-accurate variant which does not require a method and bci. 4619 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4620 ciMethodData* logmd) { 4621 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4622 // Too many traps globally. 4623 // Note that we use cumulative trap_count, not just md->trap_count. 4624 if (log()) { 4625 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4626 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4627 Deoptimization::trap_reason_name(reason), 4628 mcount, trap_count(reason)); 4629 } 4630 return true; 4631 } else { 4632 // The coast is clear. 4633 return false; 4634 } 4635 } 4636 4637 //--------------------------too_many_recompiles-------------------------------- 4638 // Report if there are too many recompiles at the current method and bci. 4639 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4640 // Is not eager to return true, since this will cause the compiler to use 4641 // Action_none for a trap point, to avoid too many recompilations. 4642 bool Compile::too_many_recompiles(ciMethod* method, 4643 int bci, 4644 Deoptimization::DeoptReason reason) { 4645 ciMethodData* md = method->method_data(); 4646 if (md->is_empty()) { 4647 // Assume the trap has not occurred, or that it occurred only 4648 // because of a transient condition during start-up in the interpreter. 4649 return false; 4650 } 4651 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4652 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4653 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4654 Deoptimization::DeoptReason per_bc_reason 4655 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4656 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4657 if ((per_bc_reason == Deoptimization::Reason_none 4658 || md->has_trap_at(bci, m, reason) != 0) 4659 // The trap frequency measure we care about is the recompile count: 4660 && md->trap_recompiled_at(bci, m) 4661 && md->overflow_recompile_count() >= bc_cutoff) { 4662 // Do not emit a trap here if it has already caused recompilations. 4663 // Also, if there are multiple reasons, or if there is no per-BCI record, 4664 // assume the worst. 4665 if (log()) 4666 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4667 Deoptimization::trap_reason_name(reason), 4668 md->trap_count(reason), 4669 md->overflow_recompile_count()); 4670 return true; 4671 } else if (trap_count(reason) != 0 4672 && decompile_count() >= m_cutoff) { 4673 // Too many recompiles globally, and we have seen this sort of trap. 4674 // Use cumulative decompile_count, not just md->decompile_count. 4675 if (log()) 4676 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4677 Deoptimization::trap_reason_name(reason), 4678 md->trap_count(reason), trap_count(reason), 4679 md->decompile_count(), decompile_count()); 4680 return true; 4681 } else { 4682 // The coast is clear. 4683 return false; 4684 } 4685 } 4686 4687 // Compute when not to trap. Used by matching trap based nodes and 4688 // NullCheck optimization. 4689 void Compile::set_allowed_deopt_reasons() { 4690 _allowed_reasons = 0; 4691 if (is_method_compilation()) { 4692 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4693 assert(rs < BitsPerInt, "recode bit map"); 4694 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4695 _allowed_reasons |= nth_bit(rs); 4696 } 4697 } 4698 } 4699 } 4700 4701 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4702 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4703 } 4704 4705 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4706 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4707 } 4708 4709 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4710 if (holder->is_initialized()) { 4711 return false; 4712 } 4713 if (holder->is_being_initialized()) { 4714 if (accessing_method->holder() == holder) { 4715 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4716 // <init>, or a static method. In all those cases, there was an initialization 4717 // barrier on the holder klass passed. 4718 if (accessing_method->is_class_initializer() || 4719 accessing_method->is_object_constructor() || 4720 accessing_method->is_static()) { 4721 return false; 4722 } 4723 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4724 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4725 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4726 // child class can become fully initialized while its parent class is still being initialized. 4727 if (accessing_method->is_class_initializer()) { 4728 return false; 4729 } 4730 } 4731 ciMethod* root = method(); // the root method of compilation 4732 if (root != accessing_method) { 4733 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4734 } 4735 } 4736 return true; 4737 } 4738 4739 #ifndef PRODUCT 4740 //------------------------------verify_bidirectional_edges--------------------- 4741 // For each input edge to a node (ie - for each Use-Def edge), verify that 4742 // there is a corresponding Def-Use edge. 4743 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4744 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4745 uint stack_size = live_nodes() >> 4; 4746 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4747 if (root_and_safepoints != nullptr) { 4748 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4749 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4750 Node* root_or_safepoint = root_and_safepoints->at(i); 4751 // If the node is a safepoint, let's check if it still has a control input 4752 // Lack of control input signifies that this node was killed by CCP or 4753 // recursively by remove_globally_dead_node and it shouldn't be a starting 4754 // point. 4755 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4756 nstack.push(root_or_safepoint); 4757 } 4758 } 4759 } else { 4760 nstack.push(_root); 4761 } 4762 4763 while (nstack.size() > 0) { 4764 Node* n = nstack.pop(); 4765 if (visited.member(n)) { 4766 continue; 4767 } 4768 visited.push(n); 4769 4770 // Walk over all input edges, checking for correspondence 4771 uint length = n->len(); 4772 for (uint i = 0; i < length; i++) { 4773 Node* in = n->in(i); 4774 if (in != nullptr && !visited.member(in)) { 4775 nstack.push(in); // Put it on stack 4776 } 4777 if (in != nullptr && !in->is_top()) { 4778 // Count instances of `next` 4779 int cnt = 0; 4780 for (uint idx = 0; idx < in->_outcnt; idx++) { 4781 if (in->_out[idx] == n) { 4782 cnt++; 4783 } 4784 } 4785 assert(cnt > 0, "Failed to find Def-Use edge."); 4786 // Check for duplicate edges 4787 // walk the input array downcounting the input edges to n 4788 for (uint j = 0; j < length; j++) { 4789 if (n->in(j) == in) { 4790 cnt--; 4791 } 4792 } 4793 assert(cnt == 0, "Mismatched edge count."); 4794 } else if (in == nullptr) { 4795 assert(i == 0 || i >= n->req() || 4796 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4797 (n->is_Allocate() && i >= AllocateNode::InlineType) || 4798 (n->is_Unlock() && i == (n->req() - 1)) || 4799 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4800 "only region, phi, arraycopy, allocate, unlock or membar nodes have null data edges"); 4801 } else { 4802 assert(in->is_top(), "sanity"); 4803 // Nothing to check. 4804 } 4805 } 4806 } 4807 } 4808 4809 //------------------------------verify_graph_edges--------------------------- 4810 // Walk the Graph and verify that there is a one-to-one correspondence 4811 // between Use-Def edges and Def-Use edges in the graph. 4812 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4813 if (VerifyGraphEdges) { 4814 Unique_Node_List visited; 4815 4816 // Call graph walk to check edges 4817 verify_bidirectional_edges(visited, root_and_safepoints); 4818 if (no_dead_code) { 4819 // Now make sure that no visited node is used by an unvisited node. 4820 bool dead_nodes = false; 4821 Unique_Node_List checked; 4822 while (visited.size() > 0) { 4823 Node* n = visited.pop(); 4824 checked.push(n); 4825 for (uint i = 0; i < n->outcnt(); i++) { 4826 Node* use = n->raw_out(i); 4827 if (checked.member(use)) continue; // already checked 4828 if (visited.member(use)) continue; // already in the graph 4829 if (use->is_Con()) continue; // a dead ConNode is OK 4830 // At this point, we have found a dead node which is DU-reachable. 4831 if (!dead_nodes) { 4832 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4833 dead_nodes = true; 4834 } 4835 use->dump(2); 4836 tty->print_cr("---"); 4837 checked.push(use); // No repeats; pretend it is now checked. 4838 } 4839 } 4840 assert(!dead_nodes, "using nodes must be reachable from root"); 4841 } 4842 } 4843 } 4844 #endif 4845 4846 // The Compile object keeps track of failure reasons separately from the ciEnv. 4847 // This is required because there is not quite a 1-1 relation between the 4848 // ciEnv and its compilation task and the Compile object. Note that one 4849 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4850 // to backtrack and retry without subsuming loads. Other than this backtracking 4851 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4852 // by the logic in C2Compiler. 4853 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4854 if (log() != nullptr) { 4855 log()->elem("failure reason='%s' phase='compile'", reason); 4856 } 4857 if (_failure_reason.get() == nullptr) { 4858 // Record the first failure reason. 4859 _failure_reason.set(reason); 4860 if (CaptureBailoutInformation) { 4861 _first_failure_details = new CompilationFailureInfo(reason); 4862 } 4863 } else { 4864 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4865 } 4866 4867 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4868 C->print_method(PHASE_FAILURE, 1); 4869 } 4870 _root = nullptr; // flush the graph, too 4871 } 4872 4873 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4874 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4875 _compile(Compile::current()), 4876 _log(nullptr), 4877 _dolog(CITimeVerbose) 4878 { 4879 assert(_compile != nullptr, "sanity check"); 4880 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4881 if (_dolog) { 4882 _log = _compile->log(); 4883 } 4884 if (_log != nullptr) { 4885 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4886 _log->stamp(); 4887 _log->end_head(); 4888 } 4889 4890 // Inform memory statistic, if enabled 4891 if (CompilationMemoryStatistic::enabled()) { 4892 CompilationMemoryStatistic::on_phase_start((int)id, name); 4893 } 4894 } 4895 4896 Compile::TracePhase::TracePhase(PhaseTraceId id) 4897 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4898 4899 Compile::TracePhase::~TracePhase() { 4900 4901 // Inform memory statistic, if enabled 4902 if (CompilationMemoryStatistic::enabled()) { 4903 CompilationMemoryStatistic::on_phase_end(); 4904 } 4905 4906 if (_compile->failing_internal()) { 4907 if (_log != nullptr) { 4908 _log->done("phase"); 4909 } 4910 return; // timing code, not stressing bailouts. 4911 } 4912 #ifdef ASSERT 4913 if (PrintIdealNodeCount) { 4914 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4915 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4916 } 4917 4918 if (VerifyIdealNodeCount) { 4919 _compile->print_missing_nodes(); 4920 } 4921 #endif 4922 4923 if (_log != nullptr) { 4924 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4925 } 4926 } 4927 4928 //----------------------------static_subtype_check----------------------------- 4929 // Shortcut important common cases when superklass is exact: 4930 // (0) superklass is java.lang.Object (can occur in reflective code) 4931 // (1) subklass is already limited to a subtype of superklass => always ok 4932 // (2) subklass does not overlap with superklass => always fail 4933 // (3) superklass has NO subtypes and we can check with a simple compare. 4934 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4935 if (skip) { 4936 return SSC_full_test; // Let caller generate the general case. 4937 } 4938 4939 if (subk->is_java_subtype_of(superk)) { 4940 return SSC_always_true; // (0) and (1) this test cannot fail 4941 } 4942 4943 if (!subk->maybe_java_subtype_of(superk)) { 4944 return SSC_always_false; // (2) true path dead; no dynamic test needed 4945 } 4946 4947 const Type* superelem = superk; 4948 if (superk->isa_aryklassptr()) { 4949 int ignored; 4950 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4951 4952 // Do not fold the subtype check to an array klass pointer comparison for null-able inline type arrays 4953 // because null-free [LMyValue <: null-able [LMyValue but the klasses are different. Perform a full test. 4954 if (!superk->is_aryklassptr()->is_null_free() && superk->is_aryklassptr()->elem()->isa_instklassptr() && 4955 superk->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->is_inlinetype()) { 4956 return SSC_full_test; 4957 } 4958 } 4959 4960 if (superelem->isa_instklassptr()) { 4961 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4962 if (!ik->has_subklass()) { 4963 if (!ik->is_final()) { 4964 // Add a dependency if there is a chance of a later subclass. 4965 dependencies()->assert_leaf_type(ik); 4966 } 4967 if (!superk->maybe_java_subtype_of(subk)) { 4968 return SSC_always_false; 4969 } 4970 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4971 } 4972 } else { 4973 // A primitive array type has no subtypes. 4974 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4975 } 4976 4977 return SSC_full_test; 4978 } 4979 4980 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4981 #ifdef _LP64 4982 // The scaled index operand to AddP must be a clean 64-bit value. 4983 // Java allows a 32-bit int to be incremented to a negative 4984 // value, which appears in a 64-bit register as a large 4985 // positive number. Using that large positive number as an 4986 // operand in pointer arithmetic has bad consequences. 4987 // On the other hand, 32-bit overflow is rare, and the possibility 4988 // can often be excluded, if we annotate the ConvI2L node with 4989 // a type assertion that its value is known to be a small positive 4990 // number. (The prior range check has ensured this.) 4991 // This assertion is used by ConvI2LNode::Ideal. 4992 int index_max = max_jint - 1; // array size is max_jint, index is one less 4993 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4994 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4995 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4996 #endif 4997 return idx; 4998 } 4999 5000 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 5001 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 5002 if (ctrl != nullptr) { 5003 // Express control dependency by a CastII node with a narrow type. 5004 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 5005 // node from floating above the range check during loop optimizations. Otherwise, the 5006 // ConvI2L node may be eliminated independently of the range check, causing the data path 5007 // to become TOP while the control path is still there (although it's unreachable). 5008 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 5009 value = phase->transform(value); 5010 } 5011 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 5012 return phase->transform(new ConvI2LNode(value, ltype)); 5013 } 5014 5015 void Compile::dump_print_inlining() { 5016 inline_printer()->print_on(tty); 5017 } 5018 5019 void Compile::log_late_inline(CallGenerator* cg) { 5020 if (log() != nullptr) { 5021 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 5022 cg->unique_id()); 5023 JVMState* p = cg->call_node()->jvms(); 5024 while (p != nullptr) { 5025 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 5026 p = p->caller(); 5027 } 5028 log()->tail("late_inline"); 5029 } 5030 } 5031 5032 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 5033 log_late_inline(cg); 5034 if (log() != nullptr) { 5035 log()->inline_fail(msg); 5036 } 5037 } 5038 5039 void Compile::log_inline_id(CallGenerator* cg) { 5040 if (log() != nullptr) { 5041 // The LogCompilation tool needs a unique way to identify late 5042 // inline call sites. This id must be unique for this call site in 5043 // this compilation. Try to have it unique across compilations as 5044 // well because it can be convenient when grepping through the log 5045 // file. 5046 // Distinguish OSR compilations from others in case CICountOSR is 5047 // on. 5048 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 5049 cg->set_unique_id(id); 5050 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 5051 } 5052 } 5053 5054 void Compile::log_inline_failure(const char* msg) { 5055 if (C->log() != nullptr) { 5056 C->log()->inline_fail(msg); 5057 } 5058 } 5059 5060 5061 // Dump inlining replay data to the stream. 5062 // Don't change thread state and acquire any locks. 5063 void Compile::dump_inline_data(outputStream* out) { 5064 InlineTree* inl_tree = ilt(); 5065 if (inl_tree != nullptr) { 5066 out->print(" inline %d", inl_tree->count()); 5067 inl_tree->dump_replay_data(out); 5068 } 5069 } 5070 5071 void Compile::dump_inline_data_reduced(outputStream* out) { 5072 assert(ReplayReduce, ""); 5073 5074 InlineTree* inl_tree = ilt(); 5075 if (inl_tree == nullptr) { 5076 return; 5077 } 5078 // Enable iterative replay file reduction 5079 // Output "compile" lines for depth 1 subtrees, 5080 // simulating that those trees were compiled 5081 // instead of inlined. 5082 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 5083 InlineTree* sub = inl_tree->subtrees().at(i); 5084 if (sub->inline_level() != 1) { 5085 continue; 5086 } 5087 5088 ciMethod* method = sub->method(); 5089 int entry_bci = -1; 5090 int comp_level = env()->task()->comp_level(); 5091 out->print("compile "); 5092 method->dump_name_as_ascii(out); 5093 out->print(" %d %d", entry_bci, comp_level); 5094 out->print(" inline %d", sub->count()); 5095 sub->dump_replay_data(out, -1); 5096 out->cr(); 5097 } 5098 } 5099 5100 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 5101 if (n1->Opcode() < n2->Opcode()) return -1; 5102 else if (n1->Opcode() > n2->Opcode()) return 1; 5103 5104 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 5105 for (uint i = 1; i < n1->req(); i++) { 5106 if (n1->in(i) < n2->in(i)) return -1; 5107 else if (n1->in(i) > n2->in(i)) return 1; 5108 } 5109 5110 return 0; 5111 } 5112 5113 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 5114 Node* n1 = *n1p; 5115 Node* n2 = *n2p; 5116 5117 return cmp_expensive_nodes(n1, n2); 5118 } 5119 5120 void Compile::sort_expensive_nodes() { 5121 if (!expensive_nodes_sorted()) { 5122 _expensive_nodes.sort(cmp_expensive_nodes); 5123 } 5124 } 5125 5126 bool Compile::expensive_nodes_sorted() const { 5127 for (int i = 1; i < _expensive_nodes.length(); i++) { 5128 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 5129 return false; 5130 } 5131 } 5132 return true; 5133 } 5134 5135 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 5136 if (_expensive_nodes.length() == 0) { 5137 return false; 5138 } 5139 5140 assert(OptimizeExpensiveOps, "optimization off?"); 5141 5142 // Take this opportunity to remove dead nodes from the list 5143 int j = 0; 5144 for (int i = 0; i < _expensive_nodes.length(); i++) { 5145 Node* n = _expensive_nodes.at(i); 5146 if (!n->is_unreachable(igvn)) { 5147 assert(n->is_expensive(), "should be expensive"); 5148 _expensive_nodes.at_put(j, n); 5149 j++; 5150 } 5151 } 5152 _expensive_nodes.trunc_to(j); 5153 5154 // Then sort the list so that similar nodes are next to each other 5155 // and check for at least two nodes of identical kind with same data 5156 // inputs. 5157 sort_expensive_nodes(); 5158 5159 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 5160 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 5161 return true; 5162 } 5163 } 5164 5165 return false; 5166 } 5167 5168 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 5169 if (_expensive_nodes.length() == 0) { 5170 return; 5171 } 5172 5173 assert(OptimizeExpensiveOps, "optimization off?"); 5174 5175 // Sort to bring similar nodes next to each other and clear the 5176 // control input of nodes for which there's only a single copy. 5177 sort_expensive_nodes(); 5178 5179 int j = 0; 5180 int identical = 0; 5181 int i = 0; 5182 bool modified = false; 5183 for (; i < _expensive_nodes.length()-1; i++) { 5184 assert(j <= i, "can't write beyond current index"); 5185 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 5186 identical++; 5187 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5188 continue; 5189 } 5190 if (identical > 0) { 5191 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5192 identical = 0; 5193 } else { 5194 Node* n = _expensive_nodes.at(i); 5195 igvn.replace_input_of(n, 0, nullptr); 5196 igvn.hash_insert(n); 5197 modified = true; 5198 } 5199 } 5200 if (identical > 0) { 5201 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 5202 } else if (_expensive_nodes.length() >= 1) { 5203 Node* n = _expensive_nodes.at(i); 5204 igvn.replace_input_of(n, 0, nullptr); 5205 igvn.hash_insert(n); 5206 modified = true; 5207 } 5208 _expensive_nodes.trunc_to(j); 5209 if (modified) { 5210 igvn.optimize(); 5211 } 5212 } 5213 5214 void Compile::add_expensive_node(Node * n) { 5215 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 5216 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 5217 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 5218 if (OptimizeExpensiveOps) { 5219 _expensive_nodes.append(n); 5220 } else { 5221 // Clear control input and let IGVN optimize expensive nodes if 5222 // OptimizeExpensiveOps is off. 5223 n->set_req(0, nullptr); 5224 } 5225 } 5226 5227 /** 5228 * Track coarsened Lock and Unlock nodes. 5229 */ 5230 5231 class Lock_List : public Node_List { 5232 uint _origin_cnt; 5233 public: 5234 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 5235 uint origin_cnt() const { return _origin_cnt; } 5236 }; 5237 5238 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 5239 int length = locks.length(); 5240 if (length > 0) { 5241 // Have to keep this list until locks elimination during Macro nodes elimination. 5242 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 5243 AbstractLockNode* alock = locks.at(0); 5244 BoxLockNode* box = alock->box_node()->as_BoxLock(); 5245 for (int i = 0; i < length; i++) { 5246 AbstractLockNode* lock = locks.at(i); 5247 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 5248 locks_list->push(lock); 5249 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 5250 if (this_box != box) { 5251 // Locking regions (BoxLock) could be Unbalanced here: 5252 // - its coarsened locks were eliminated in earlier 5253 // macro nodes elimination followed by loop unroll 5254 // - it is OSR locking region (no Lock node) 5255 // Preserve Unbalanced status in such cases. 5256 if (!this_box->is_unbalanced()) { 5257 this_box->set_coarsened(); 5258 } 5259 if (!box->is_unbalanced()) { 5260 box->set_coarsened(); 5261 } 5262 } 5263 } 5264 _coarsened_locks.append(locks_list); 5265 } 5266 } 5267 5268 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 5269 int count = coarsened_count(); 5270 for (int i = 0; i < count; i++) { 5271 Node_List* locks_list = _coarsened_locks.at(i); 5272 for (uint j = 0; j < locks_list->size(); j++) { 5273 Node* lock = locks_list->at(j); 5274 assert(lock->is_AbstractLock(), "sanity"); 5275 if (!useful.member(lock)) { 5276 locks_list->yank(lock); 5277 } 5278 } 5279 } 5280 } 5281 5282 void Compile::remove_coarsened_lock(Node* n) { 5283 if (n->is_AbstractLock()) { 5284 int count = coarsened_count(); 5285 for (int i = 0; i < count; i++) { 5286 Node_List* locks_list = _coarsened_locks.at(i); 5287 locks_list->yank(n); 5288 } 5289 } 5290 } 5291 5292 bool Compile::coarsened_locks_consistent() { 5293 int count = coarsened_count(); 5294 for (int i = 0; i < count; i++) { 5295 bool unbalanced = false; 5296 bool modified = false; // track locks kind modifications 5297 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 5298 uint size = locks_list->size(); 5299 if (size == 0) { 5300 unbalanced = false; // All locks were eliminated - good 5301 } else if (size != locks_list->origin_cnt()) { 5302 unbalanced = true; // Some locks were removed from list 5303 } else { 5304 for (uint j = 0; j < size; j++) { 5305 Node* lock = locks_list->at(j); 5306 // All nodes in group should have the same state (modified or not) 5307 if (!lock->as_AbstractLock()->is_coarsened()) { 5308 if (j == 0) { 5309 // first on list was modified, the rest should be too for consistency 5310 modified = true; 5311 } else if (!modified) { 5312 // this lock was modified but previous locks on the list were not 5313 unbalanced = true; 5314 break; 5315 } 5316 } else if (modified) { 5317 // previous locks on list were modified but not this lock 5318 unbalanced = true; 5319 break; 5320 } 5321 } 5322 } 5323 if (unbalanced) { 5324 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 5325 #ifdef ASSERT 5326 if (PrintEliminateLocks) { 5327 tty->print_cr("=== unbalanced coarsened locks ==="); 5328 for (uint l = 0; l < size; l++) { 5329 locks_list->at(l)->dump(); 5330 } 5331 } 5332 #endif 5333 record_failure(C2Compiler::retry_no_locks_coarsening()); 5334 return false; 5335 } 5336 } 5337 return true; 5338 } 5339 5340 // Mark locking regions (identified by BoxLockNode) as unbalanced if 5341 // locks coarsening optimization removed Lock/Unlock nodes from them. 5342 // Such regions become unbalanced because coarsening only removes part 5343 // of Lock/Unlock nodes in region. As result we can't execute other 5344 // locks elimination optimizations which assume all code paths have 5345 // corresponding pair of Lock/Unlock nodes - they are balanced. 5346 void Compile::mark_unbalanced_boxes() const { 5347 int count = coarsened_count(); 5348 for (int i = 0; i < count; i++) { 5349 Node_List* locks_list = _coarsened_locks.at(i); 5350 uint size = locks_list->size(); 5351 if (size > 0) { 5352 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 5353 BoxLockNode* box = alock->box_node()->as_BoxLock(); 5354 if (alock->is_coarsened()) { 5355 // coarsened_locks_consistent(), which is called before this method, verifies 5356 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 5357 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 5358 for (uint j = 1; j < size; j++) { 5359 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 5360 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 5361 if (box != this_box) { 5362 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 5363 box->set_unbalanced(); 5364 this_box->set_unbalanced(); 5365 } 5366 } 5367 } 5368 } 5369 } 5370 } 5371 5372 /** 5373 * Remove the speculative part of types and clean up the graph 5374 */ 5375 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 5376 if (UseTypeSpeculation) { 5377 Unique_Node_List worklist; 5378 worklist.push(root()); 5379 int modified = 0; 5380 // Go over all type nodes that carry a speculative type, drop the 5381 // speculative part of the type and enqueue the node for an igvn 5382 // which may optimize it out. 5383 for (uint next = 0; next < worklist.size(); ++next) { 5384 Node *n = worklist.at(next); 5385 if (n->is_Type()) { 5386 TypeNode* tn = n->as_Type(); 5387 const Type* t = tn->type(); 5388 const Type* t_no_spec = t->remove_speculative(); 5389 if (t_no_spec != t) { 5390 bool in_hash = igvn.hash_delete(n); 5391 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 5392 tn->set_type(t_no_spec); 5393 igvn.hash_insert(n); 5394 igvn._worklist.push(n); // give it a chance to go away 5395 modified++; 5396 } 5397 } 5398 // Iterate over outs - endless loops is unreachable from below 5399 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5400 Node *m = n->fast_out(i); 5401 if (not_a_node(m)) { 5402 continue; 5403 } 5404 worklist.push(m); 5405 } 5406 } 5407 // Drop the speculative part of all types in the igvn's type table 5408 igvn.remove_speculative_types(); 5409 if (modified > 0) { 5410 igvn.optimize(); 5411 if (failing()) return; 5412 } 5413 #ifdef ASSERT 5414 // Verify that after the IGVN is over no speculative type has resurfaced 5415 worklist.clear(); 5416 worklist.push(root()); 5417 for (uint next = 0; next < worklist.size(); ++next) { 5418 Node *n = worklist.at(next); 5419 const Type* t = igvn.type_or_null(n); 5420 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 5421 if (n->is_Type()) { 5422 t = n->as_Type()->type(); 5423 assert(t == t->remove_speculative(), "no more speculative types"); 5424 } 5425 // Iterate over outs - endless loops is unreachable from below 5426 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5427 Node *m = n->fast_out(i); 5428 if (not_a_node(m)) { 5429 continue; 5430 } 5431 worklist.push(m); 5432 } 5433 } 5434 igvn.check_no_speculative_types(); 5435 #endif 5436 } 5437 } 5438 5439 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) { 5440 const TypeInstPtr* ta = phase->type(a)->isa_instptr(); 5441 const TypeInstPtr* tb = phase->type(b)->isa_instptr(); 5442 if (!EnableValhalla || ta == nullptr || tb == nullptr || 5443 ta->is_zero_type() || tb->is_zero_type() || 5444 !ta->can_be_inline_type() || !tb->can_be_inline_type()) { 5445 // Use old acmp if one operand is null or not an inline type 5446 return new CmpPNode(a, b); 5447 } else if (ta->is_inlinetypeptr() || tb->is_inlinetypeptr()) { 5448 // We know that one operand is an inline type. Therefore, 5449 // new acmp will only return true if both operands are nullptr. 5450 // Check if both operands are null by or'ing the oops. 5451 a = phase->transform(new CastP2XNode(nullptr, a)); 5452 b = phase->transform(new CastP2XNode(nullptr, b)); 5453 a = phase->transform(new OrXNode(a, b)); 5454 return new CmpXNode(a, phase->MakeConX(0)); 5455 } 5456 // Use new acmp 5457 return nullptr; 5458 } 5459 5460 // Auxiliary methods to support randomized stressing/fuzzing. 5461 5462 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 5463 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 5464 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 5465 FLAG_SET_ERGO(StressSeed, _stress_seed); 5466 } else { 5467 _stress_seed = StressSeed; 5468 } 5469 if (_log != nullptr) { 5470 _log->elem("stress_test seed='%u'", _stress_seed); 5471 } 5472 } 5473 5474 int Compile::random() { 5475 _stress_seed = os::next_random(_stress_seed); 5476 return static_cast<int>(_stress_seed); 5477 } 5478 5479 // This method can be called the arbitrary number of times, with current count 5480 // as the argument. The logic allows selecting a single candidate from the 5481 // running list of candidates as follows: 5482 // int count = 0; 5483 // Cand* selected = null; 5484 // while(cand = cand->next()) { 5485 // if (randomized_select(++count)) { 5486 // selected = cand; 5487 // } 5488 // } 5489 // 5490 // Including count equalizes the chances any candidate is "selected". 5491 // This is useful when we don't have the complete list of candidates to choose 5492 // from uniformly. In this case, we need to adjust the randomicity of the 5493 // selection, or else we will end up biasing the selection towards the latter 5494 // candidates. 5495 // 5496 // Quick back-envelope calculation shows that for the list of n candidates 5497 // the equal probability for the candidate to persist as "best" can be 5498 // achieved by replacing it with "next" k-th candidate with the probability 5499 // of 1/k. It can be easily shown that by the end of the run, the 5500 // probability for any candidate is converged to 1/n, thus giving the 5501 // uniform distribution among all the candidates. 5502 // 5503 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5504 #define RANDOMIZED_DOMAIN_POW 29 5505 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5506 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5507 bool Compile::randomized_select(int count) { 5508 assert(count > 0, "only positive"); 5509 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5510 } 5511 5512 #ifdef ASSERT 5513 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5514 bool Compile::fail_randomly() { 5515 if ((random() % StressBailoutMean) != 0) { 5516 return false; 5517 } 5518 record_failure("StressBailout"); 5519 return true; 5520 } 5521 5522 bool Compile::failure_is_artificial() { 5523 return C->failure_reason_is("StressBailout"); 5524 } 5525 #endif 5526 5527 CloneMap& Compile::clone_map() { return _clone_map; } 5528 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5529 5530 void NodeCloneInfo::dump_on(outputStream* st) const { 5531 st->print(" {%d:%d} ", idx(), gen()); 5532 } 5533 5534 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5535 uint64_t val = value(old->_idx); 5536 NodeCloneInfo cio(val); 5537 assert(val != 0, "old node should be in the map"); 5538 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5539 insert(nnn->_idx, cin.get()); 5540 #ifndef PRODUCT 5541 if (is_debug()) { 5542 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5543 } 5544 #endif 5545 } 5546 5547 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5548 NodeCloneInfo cio(value(old->_idx)); 5549 if (cio.get() == 0) { 5550 cio.set(old->_idx, 0); 5551 insert(old->_idx, cio.get()); 5552 #ifndef PRODUCT 5553 if (is_debug()) { 5554 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5555 } 5556 #endif 5557 } 5558 clone(old, nnn, gen); 5559 } 5560 5561 int CloneMap::max_gen() const { 5562 int g = 0; 5563 DictI di(_dict); 5564 for(; di.test(); ++di) { 5565 int t = gen(di._key); 5566 if (g < t) { 5567 g = t; 5568 #ifndef PRODUCT 5569 if (is_debug()) { 5570 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5571 } 5572 #endif 5573 } 5574 } 5575 return g; 5576 } 5577 5578 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5579 uint64_t val = value(key); 5580 if (val != 0) { 5581 NodeCloneInfo ni(val); 5582 ni.dump_on(st); 5583 } 5584 } 5585 5586 void Compile::shuffle_macro_nodes() { 5587 if (_macro_nodes.length() < 2) { 5588 return; 5589 } 5590 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5591 uint j = C->random() % (i + 1); 5592 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5593 } 5594 } 5595 5596 // Move Allocate nodes to the start of the list 5597 void Compile::sort_macro_nodes() { 5598 int count = macro_count(); 5599 int allocates = 0; 5600 for (int i = 0; i < count; i++) { 5601 Node* n = macro_node(i); 5602 if (n->is_Allocate()) { 5603 if (i != allocates) { 5604 Node* tmp = macro_node(allocates); 5605 _macro_nodes.at_put(allocates, n); 5606 _macro_nodes.at_put(i, tmp); 5607 } 5608 allocates++; 5609 } 5610 } 5611 } 5612 5613 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5614 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5615 EventCompilerPhase event(UNTIMED); 5616 if (event.should_commit()) { 5617 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5618 } 5619 #ifndef PRODUCT 5620 ResourceMark rm; 5621 stringStream ss; 5622 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5623 int iter = ++_igv_phase_iter[cpt]; 5624 if (iter > 1) { 5625 ss.print(" %d", iter); 5626 } 5627 if (n != nullptr) { 5628 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5629 if (n->is_Call()) { 5630 CallNode* call = n->as_Call(); 5631 if (call->_name != nullptr) { 5632 // E.g. uncommon traps etc. 5633 ss.print(" - %s", call->_name); 5634 } else if (call->is_CallJava()) { 5635 CallJavaNode* call_java = call->as_CallJava(); 5636 if (call_java->method() != nullptr) { 5637 ss.print(" -"); 5638 call_java->method()->print_short_name(&ss); 5639 } 5640 } 5641 } 5642 } 5643 5644 const char* name = ss.as_string(); 5645 if (should_print_igv(level)) { 5646 _igv_printer->print_graph(name); 5647 } 5648 if (should_print_phase(cpt)) { 5649 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5650 } 5651 #endif 5652 C->_latest_stage_start_counter.stamp(); 5653 } 5654 5655 // Only used from CompileWrapper 5656 void Compile::begin_method() { 5657 #ifndef PRODUCT 5658 if (_method != nullptr && should_print_igv(1)) { 5659 _igv_printer->begin_method(); 5660 } 5661 #endif 5662 C->_latest_stage_start_counter.stamp(); 5663 } 5664 5665 // Only used from CompileWrapper 5666 void Compile::end_method() { 5667 EventCompilerPhase event(UNTIMED); 5668 if (event.should_commit()) { 5669 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5670 } 5671 5672 #ifndef PRODUCT 5673 if (_method != nullptr && should_print_igv(1)) { 5674 _igv_printer->end_method(); 5675 } 5676 #endif 5677 } 5678 5679 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5680 #ifndef PRODUCT 5681 if (_directive->should_print_phase(cpt)) { 5682 return true; 5683 } 5684 #endif 5685 return false; 5686 } 5687 5688 #ifndef PRODUCT 5689 void Compile::init_igv() { 5690 if (_igv_printer == nullptr) { 5691 _igv_printer = IdealGraphPrinter::printer(); 5692 _igv_printer->set_compile(this); 5693 } 5694 } 5695 #endif 5696 5697 bool Compile::should_print_igv(const int level) { 5698 #ifndef PRODUCT 5699 if (PrintIdealGraphLevel < 0) { // disabled by the user 5700 return false; 5701 } 5702 5703 bool need = directive()->IGVPrintLevelOption >= level; 5704 if (need) { 5705 Compile::init_igv(); 5706 } 5707 return need; 5708 #else 5709 return false; 5710 #endif 5711 } 5712 5713 #ifndef PRODUCT 5714 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5715 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5716 5717 // Called from debugger. Prints method to the default file with the default phase name. 5718 // This works regardless of any Ideal Graph Visualizer flags set or not. 5719 void igv_print() { 5720 Compile::current()->igv_print_method_to_file(); 5721 } 5722 5723 // Same as igv_print() above but with a specified phase name. 5724 void igv_print(const char* phase_name) { 5725 Compile::current()->igv_print_method_to_file(phase_name); 5726 } 5727 5728 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5729 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5730 // This works regardless of any Ideal Graph Visualizer flags set or not. 5731 void igv_print(bool network) { 5732 if (network) { 5733 Compile::current()->igv_print_method_to_network(); 5734 } else { 5735 Compile::current()->igv_print_method_to_file(); 5736 } 5737 } 5738 5739 // Same as igv_print(bool network) above but with a specified phase name. 5740 void igv_print(bool network, const char* phase_name) { 5741 if (network) { 5742 Compile::current()->igv_print_method_to_network(phase_name); 5743 } else { 5744 Compile::current()->igv_print_method_to_file(phase_name); 5745 } 5746 } 5747 5748 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5749 void igv_print_default() { 5750 Compile::current()->print_method(PHASE_DEBUG, 0); 5751 } 5752 5753 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5754 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5755 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5756 void igv_append() { 5757 Compile::current()->igv_print_method_to_file("Debug", true); 5758 } 5759 5760 // Same as igv_append() above but with a specified phase name. 5761 void igv_append(const char* phase_name) { 5762 Compile::current()->igv_print_method_to_file(phase_name, true); 5763 } 5764 5765 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5766 const char* file_name = "custom_debug.xml"; 5767 if (_debug_file_printer == nullptr) { 5768 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5769 } else { 5770 _debug_file_printer->update_compiled_method(C->method()); 5771 } 5772 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5773 _debug_file_printer->print_graph(phase_name); 5774 } 5775 5776 void Compile::igv_print_method_to_network(const char* phase_name) { 5777 ResourceMark rm; 5778 GrowableArray<const Node*> empty_list; 5779 igv_print_graph_to_network(phase_name, (Node*) C->root(), empty_list); 5780 } 5781 5782 void Compile::igv_print_graph_to_network(const char* name, Node* node, GrowableArray<const Node*>& visible_nodes) { 5783 if (_debug_network_printer == nullptr) { 5784 _debug_network_printer = new IdealGraphPrinter(C); 5785 } else { 5786 _debug_network_printer->update_compiled_method(C->method()); 5787 } 5788 tty->print_cr("Method printed over network stream to IGV"); 5789 _debug_network_printer->print(name, C->root(), visible_nodes); 5790 } 5791 #endif 5792 5793 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5794 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5795 return value; 5796 } 5797 Node* result = nullptr; 5798 if (bt == T_BYTE) { 5799 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5800 result = new RShiftINode(result, phase->intcon(24)); 5801 } else if (bt == T_BOOLEAN) { 5802 result = new AndINode(value, phase->intcon(0xFF)); 5803 } else if (bt == T_CHAR) { 5804 result = new AndINode(value,phase->intcon(0xFFFF)); 5805 } else if (bt == T_FLOAT) { 5806 result = new MoveI2FNode(value); 5807 } else { 5808 assert(bt == T_SHORT, "unexpected narrow type"); 5809 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5810 result = new RShiftINode(result, phase->intcon(16)); 5811 } 5812 if (transform_res) { 5813 result = phase->transform(result); 5814 } 5815 return result; 5816 } 5817 5818 void Compile::record_method_not_compilable_oom() { 5819 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5820 }