1 /*
  2  * Copyright (c) 2014, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "opto/addnode.hpp"
 26 #include "opto/castnode.hpp"
 27 #include "opto/connode.hpp"
 28 #include "opto/convertnode.hpp"
 29 #include "opto/divnode.hpp"
 30 #include "opto/matcher.hpp"
 31 #include "opto/movenode.hpp"
 32 #include "opto/mulnode.hpp"
 33 #include "opto/phaseX.hpp"
 34 #include "opto/subnode.hpp"
 35 #include "runtime/stubRoutines.hpp"
 36 #include "utilities/checkedCast.hpp"
 37 
 38 //=============================================================================
 39 //------------------------------Identity---------------------------------------
 40 Node* Conv2BNode::Identity(PhaseGVN* phase) {
 41   const Type *t = phase->type( in(1) );
 42   if( t == Type::TOP ) return in(1);
 43   if( t == TypeInt::ZERO ) return in(1);
 44   if( t == TypeInt::ONE ) return in(1);
 45   if( t == TypeInt::BOOL ) return in(1);
 46   return this;
 47 }
 48 
 49 //------------------------------Value------------------------------------------
 50 const Type* Conv2BNode::Value(PhaseGVN* phase) const {
 51   const Type *t = phase->type( in(1) );
 52   if( t == Type::TOP ) return Type::TOP;
 53   if( t == TypeInt::ZERO ) return TypeInt::ZERO;
 54   if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
 55   const TypePtr *tp = t->isa_ptr();
 56   if(tp != nullptr) {
 57     if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
 58     if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
 59     if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
 60     return TypeInt::BOOL;
 61   }
 62   if (t->base() != Type::Int) return TypeInt::BOOL;
 63   const TypeInt *ti = t->is_int();
 64   if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
 65   return TypeInt::BOOL;
 66 }
 67 
 68 Node* Conv2BNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 69   if (!Matcher::match_rule_supported(Op_Conv2B)) {
 70     if (phase->C->post_loop_opts_phase()) {
 71       // Get type of comparison to make
 72       const Type* t = phase->type(in(1));
 73       Node* cmp = nullptr;
 74       if (t->isa_int()) {
 75         cmp = phase->transform(new CmpINode(in(1), phase->intcon(0)));
 76       } else if (t->isa_ptr()) {
 77         cmp = phase->transform(new CmpPNode(in(1), phase->zerocon(BasicType::T_OBJECT)));
 78       } else {
 79         assert(false, "Unrecognized comparison for Conv2B: %s", NodeClassNames[in(1)->Opcode()]);
 80       }
 81 
 82       // Replace Conv2B with the cmove
 83       Node* bol = phase->transform(new BoolNode(cmp, BoolTest::eq));
 84       return new CMoveINode(bol, phase->intcon(1), phase->intcon(0), TypeInt::BOOL);
 85     } else {
 86       phase->C->record_for_post_loop_opts_igvn(this);
 87     }
 88   }
 89   return nullptr;
 90 }
 91 
 92 uint ConvertNode::ideal_reg() const {
 93   return _type->ideal_reg();
 94 }
 95 
 96 Node* ConvertNode::create_convert(BasicType source, BasicType target, Node* input) {
 97   if (source == T_INT) {
 98     if (target == T_LONG) {
 99       return new ConvI2LNode(input);
100     } else if (target == T_FLOAT) {
101       return new ConvI2FNode(input);
102     } else if (target == T_DOUBLE) {
103       return new ConvI2DNode(input);
104     }
105   } else if (source == T_LONG) {
106     if (target == T_INT) {
107       return new ConvL2INode(input);
108     } else if (target == T_FLOAT) {
109       return new ConvL2FNode(input);
110     } else if (target == T_DOUBLE) {
111       return new ConvL2DNode(input);
112     }
113   } else if (source == T_FLOAT) {
114     if (target == T_INT) {
115       return new ConvF2INode(input);
116     } else if (target == T_LONG) {
117       return new ConvF2LNode(input);
118     } else if (target == T_DOUBLE) {
119       return new ConvF2DNode(input);
120     } else if (target == T_SHORT) {
121       return new ConvF2HFNode(input);
122     }
123   } else if (source == T_DOUBLE) {
124     if (target == T_INT) {
125       return new ConvD2INode(input);
126     } else if (target == T_LONG) {
127       return new ConvD2LNode(input);
128     } else if (target == T_FLOAT) {
129       return new ConvD2FNode(input);
130     }
131   } else if (source == T_SHORT) {
132     if (target == T_FLOAT) {
133       return new ConvHF2FNode(input);
134     }
135   }
136 
137   assert(false, "Couldn't create conversion for type %s to %s", type2name(source), type2name(target));
138   return nullptr;
139 }
140 
141 // The conversions operations are all Alpha sorted.  Please keep it that way!
142 //=============================================================================
143 //------------------------------Value------------------------------------------
144 const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
145   const Type *t = phase->type( in(1) );
146   if( t == Type::TOP ) return Type::TOP;
147   if( t == Type::DOUBLE ) return Type::FLOAT;
148   const TypeD *td = t->is_double_constant();
149   return TypeF::make( (float)td->getd() );
150 }
151 
152 //------------------------------Ideal------------------------------------------
153 // If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float.
154 Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) {
155   if ( in(1)->Opcode() == Op_SqrtD ) {
156     Node* sqrtd = in(1);
157     if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) {
158       if ( Matcher::match_rule_supported(Op_SqrtF) ) {
159         Node* convf2d = sqrtd->in(1);
160         return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1));
161       }
162     }
163   }
164   return nullptr;
165 }
166 
167 //------------------------------Identity---------------------------------------
168 // Float's can be converted to doubles with no loss of bits.  Hence
169 // converting a float to a double and back to a float is a NOP.
170 Node* ConvD2FNode::Identity(PhaseGVN* phase) {
171   return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
172 }
173 
174 //=============================================================================
175 //------------------------------Value------------------------------------------
176 const Type* ConvD2INode::Value(PhaseGVN* phase) const {
177   const Type *t = phase->type( in(1) );
178   if( t == Type::TOP ) return Type::TOP;
179   if( t == Type::DOUBLE ) return TypeInt::INT;
180   const TypeD *td = t->is_double_constant();
181   return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
182 }
183 
184 //------------------------------Identity---------------------------------------
185 // Int's can be converted to doubles with no loss of bits.  Hence
186 // converting an integer to a double and back to an integer is a NOP.
187 Node* ConvD2INode::Identity(PhaseGVN* phase) {
188   return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
189 }
190 
191 //=============================================================================
192 //------------------------------Value------------------------------------------
193 const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
194   const Type *t = phase->type( in(1) );
195   if( t == Type::TOP ) return Type::TOP;
196   if( t == Type::DOUBLE ) return TypeLong::LONG;
197   const TypeD *td = t->is_double_constant();
198   return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
199 }
200 
201 //------------------------------Identity---------------------------------------
202 Node* ConvD2LNode::Identity(PhaseGVN* phase) {
203   // Remove ConvD2L->ConvL2D->ConvD2L sequences.
204   if( in(1)       ->Opcode() == Op_ConvL2D &&
205      in(1)->in(1)->Opcode() == Op_ConvD2L )
206   return in(1)->in(1);
207   return this;
208 }
209 
210 //=============================================================================
211 //------------------------------Value------------------------------------------
212 const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
213   const Type *t = phase->type( in(1) );
214   if( t == Type::TOP ) return Type::TOP;
215   if( t == Type::FLOAT ) return Type::DOUBLE;
216   const TypeF *tf = t->is_float_constant();
217   return TypeD::make( (double)tf->getf() );
218 }
219 
220 //=============================================================================
221 //------------------------------Value------------------------------------------
222 const Type* ConvF2HFNode::Value(PhaseGVN* phase) const {
223   const Type *t = phase->type( in(1) );
224   if (t == Type::TOP) return Type::TOP;
225   if (t == Type::FLOAT || StubRoutines::f2hf_adr() == nullptr) {
226     return TypeInt::SHORT;
227   }
228 
229   const TypeF *tf = t->is_float_constant();
230   return TypeInt::make( StubRoutines::f2hf(tf->getf()) );
231 }
232 
233 //------------------------------Ideal------------------------------------------
234 Node* ConvF2HFNode::Ideal(PhaseGVN* phase, bool can_reshape) {
235   // Float16 instance encapsulates a short field holding IEEE 754
236   // binary16 value. On unboxing, this short field is loaded into a
237   // GPR register while FP operation operates over floating point
238   // registers. ConvHF2F converts incoming short value to a FP32 value
239   // to perform operation at FP32 granularity. However, if target
240   // support FP16 ISA we can save this redundant up casting and
241   // optimize the graph pallet using following transformation.
242   //
243   // ConvF2HF(FP32BinOp(ConvHF2F(x), ConvHF2F(y))) =>
244   //        ReinterpretHF2S(FP16BinOp(ReinterpretS2HF(x), ReinterpretS2HF(y)))
245   //
246   // Please note we need to inject appropriate reinterpretation
247   // IR to move the values b/w GPR and floating point register
248   // before and after FP16 operation.
249 
250   if (Float16NodeFactory::is_float32_binary_oper(in(1)->Opcode()) &&
251       in(1)->in(1)->Opcode() == Op_ConvHF2F &&
252       in(1)->in(2)->Opcode() == Op_ConvHF2F) {
253     if (Matcher::match_rule_supported(Float16NodeFactory::get_float16_binary_oper(in(1)->Opcode())) &&
254         Matcher::match_rule_supported(Op_ReinterpretS2HF) &&
255         Matcher::match_rule_supported(Op_ReinterpretHF2S)) {
256       Node* in1 = phase->transform(new ReinterpretS2HFNode(in(1)->in(1)->in(1)));
257       Node* in2 = phase->transform(new ReinterpretS2HFNode(in(1)->in(2)->in(1)));
258       Node* binop = phase->transform(Float16NodeFactory::make(in(1)->Opcode(), in(1)->in(0), in1, in2));
259       return new ReinterpretHF2SNode(binop);
260     }
261   }
262   return nullptr;
263 }
264 //=============================================================================
265 //------------------------------Value------------------------------------------
266 const Type* ConvF2INode::Value(PhaseGVN* phase) const {
267   const Type *t = phase->type( in(1) );
268   if( t == Type::TOP )       return Type::TOP;
269   if( t == Type::FLOAT ) return TypeInt::INT;
270   const TypeF *tf = t->is_float_constant();
271   return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
272 }
273 
274 //------------------------------Identity---------------------------------------
275 Node* ConvF2INode::Identity(PhaseGVN* phase) {
276   // Remove ConvF2I->ConvI2F->ConvF2I sequences.
277   if( in(1)       ->Opcode() == Op_ConvI2F &&
278      in(1)->in(1)->Opcode() == Op_ConvF2I )
279   return in(1)->in(1);
280   return this;
281 }
282 
283 //=============================================================================
284 //------------------------------Value------------------------------------------
285 const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
286   const Type *t = phase->type( in(1) );
287   if( t == Type::TOP )       return Type::TOP;
288   if( t == Type::FLOAT ) return TypeLong::LONG;
289   const TypeF *tf = t->is_float_constant();
290   return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
291 }
292 
293 //------------------------------Identity---------------------------------------
294 Node* ConvF2LNode::Identity(PhaseGVN* phase) {
295   // Remove ConvF2L->ConvL2F->ConvF2L sequences.
296   if( in(1)       ->Opcode() == Op_ConvL2F &&
297      in(1)->in(1)->Opcode() == Op_ConvF2L )
298   return in(1)->in(1);
299   return this;
300 }
301 
302 //=============================================================================
303 //------------------------------Value------------------------------------------
304 const Type* ConvHF2FNode::Value(PhaseGVN* phase) const {
305   const Type *t = phase->type( in(1) );
306   if (t == Type::TOP) return Type::TOP;
307   if (t == TypeInt::SHORT || StubRoutines::hf2f_adr() == nullptr) {
308     return Type::FLOAT;
309   }
310 
311   const TypeInt *ti = t->is_int();
312   if (ti->is_con()) {
313     return TypeF::make( StubRoutines::hf2f(ti->get_con()) );
314   }
315   return Type::FLOAT;
316 }
317 
318 //=============================================================================
319 //------------------------------Value------------------------------------------
320 const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
321   const Type *t = phase->type( in(1) );
322   if( t == Type::TOP ) return Type::TOP;
323   const TypeInt *ti = t->is_int();
324   if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
325   return Type::DOUBLE;
326 }
327 
328 //=============================================================================
329 //------------------------------Value------------------------------------------
330 const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
331   const Type *t = phase->type( in(1) );
332   if( t == Type::TOP ) return Type::TOP;
333   const TypeInt *ti = t->is_int();
334   if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
335   return Type::FLOAT;
336 }
337 
338 //------------------------------Identity---------------------------------------
339 Node* ConvI2FNode::Identity(PhaseGVN* phase) {
340   // Remove ConvI2F->ConvF2I->ConvI2F sequences.
341   if( in(1)       ->Opcode() == Op_ConvF2I &&
342      in(1)->in(1)->Opcode() == Op_ConvI2F )
343   return in(1)->in(1);
344   return this;
345 }
346 
347 //=============================================================================
348 //------------------------------Value------------------------------------------
349 const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
350   const Type *t = phase->type( in(1) );
351   if (t == Type::TOP) {
352     return Type::TOP;
353   }
354   const TypeInt *ti = t->is_int();
355   const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
356   // Join my declared type against my incoming type.
357   tl = tl->filter(_type);
358   if (!tl->isa_long()) {
359     return tl;
360   }
361   const TypeLong* this_type = tl->is_long();
362   // Do NOT remove this node's type assertion until no more loop ops can happen.
363   if (phase->C->post_loop_opts_phase()) {
364     const TypeInt* in_type = phase->type(in(1))->isa_int();
365     if (in_type != nullptr &&
366         (in_type->_lo != this_type->_lo ||
367          in_type->_hi != this_type->_hi)) {
368       // Although this WORSENS the type, it increases GVN opportunities,
369       // because I2L nodes with the same input will common up, regardless
370       // of slightly differing type assertions.  Such slight differences
371       // arise routinely as a result of loop unrolling, so this is a
372       // post-unrolling graph cleanup.  Choose a type which depends only
373       // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
374       jlong lo1 = this_type->_lo;
375       jlong hi1 = this_type->_hi;
376       int   w1  = this_type->_widen;
377       if (lo1 >= 0) {
378         // Keep a range assertion of >=0.
379         lo1 = 0;        hi1 = max_jint;
380       } else if (hi1 < 0) {
381         // Keep a range assertion of <0.
382         lo1 = min_jint; hi1 = -1;
383       } else {
384         lo1 = min_jint; hi1 = max_jint;
385       }
386       return TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
387                             MIN2((jlong)in_type->_hi, hi1),
388                             MAX2((int)in_type->_widen, w1));
389     }
390   }
391   return this_type;
392 }
393 
394 Node* ConvI2LNode::Identity(PhaseGVN* phase) {
395   // If type is in "int" sub-range, we can
396   // convert I2L(L2I(x)) => x
397   // since the conversions have no effect.
398   if (in(1)->Opcode() == Op_ConvL2I) {
399     Node* x = in(1)->in(1);
400     const TypeLong* t = phase->type(x)->isa_long();
401     if (t != nullptr && t->_lo >= min_jint && t->_hi <= max_jint) {
402       return x;
403     }
404   }
405   return this;
406 }
407 
408 #ifdef ASSERT
409 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
410                                        jlong lo2, jlong hi2) {
411   // Two ranges overlap iff one range's low point falls in the other range.
412   return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
413 }
414 #endif
415 
416 template<class T> static bool subtract_overflows(T x, T y) {
417   T s = java_subtract(x, y);
418   return (x >= 0) && (y < 0) && (s < 0);
419 }
420 
421 template<class T> static bool subtract_underflows(T x, T y) {
422   T s = java_subtract(x, y);
423   return (x < 0) && (y > 0) && (s > 0);
424 }
425 
426 template<class T> static bool add_overflows(T x, T y) {
427   T s = java_add(x, y);
428   return (x > 0) && (y > 0) && (s < 0);
429 }
430 
431 template<class T> static bool add_underflows(T x, T y) {
432   T s = java_add(x, y);
433   return (x < 0) && (y < 0) && (s >= 0);
434 }
435 
436 template<class T> static bool ranges_overlap(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
437                                              const Node* n, bool pos) {
438   assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
439   T x_y_lo;
440   T x_y_hi;
441   bool x_y_lo_overflow;
442   bool x_y_hi_overflow;
443 
444   if (n->is_Sub()) {
445     x_y_lo = java_subtract(xlo, yhi);
446     x_y_hi = java_subtract(xhi, ylo);
447     x_y_lo_overflow = pos ? subtract_overflows(xlo, yhi) : subtract_underflows(xlo, yhi);
448     x_y_hi_overflow = pos ? subtract_overflows(xhi, ylo) : subtract_underflows(xhi, ylo);
449   } else {
450     assert(n->is_Add(), "Add or Sub only");
451     x_y_lo = java_add(xlo, ylo);
452     x_y_hi = java_add(xhi, yhi);
453     x_y_lo_overflow = pos ? add_overflows(xlo, ylo) : add_underflows(xlo, ylo);
454     x_y_hi_overflow = pos ? add_overflows(xhi, yhi) : add_underflows(xhi, yhi);
455   }
456   assert(!pos || !x_y_lo_overflow || x_y_hi_overflow, "x_y_lo_overflow => x_y_hi_overflow");
457   assert(pos || !x_y_hi_overflow || x_y_lo_overflow, "x_y_hi_overflow => x_y_lo_overflow");
458 
459   // Two ranges overlap iff one range's low point falls in the other range.
460   // nbits = 32 or 64
461   if (pos) {
462     // (zlo + 2**nbits  <= x_y_lo && x_y_lo <= zhi ** nbits)
463     if (x_y_lo_overflow) {
464       if (zlo <= x_y_lo && x_y_lo <= zhi) {
465         return true;
466       }
467     }
468 
469     // (x_y_lo <= zlo + 2**nbits && zlo + 2**nbits <= x_y_hi)
470     if (x_y_hi_overflow) {
471       if ((!x_y_lo_overflow || x_y_lo <= zlo) && zlo <= x_y_hi) {
472         return true;
473       }
474     }
475   } else {
476     // (zlo - 2**nbits <= x_y_hi && x_y_hi <= zhi - 2**nbits)
477     if (x_y_hi_overflow) {
478       if (zlo <= x_y_hi && x_y_hi <= zhi) {
479         return true;
480       }
481     }
482 
483     // (x_y_lo <= zhi - 2**nbits && zhi - 2**nbits <= x_y_hi)
484     if (x_y_lo_overflow) {
485       if (x_y_lo <= zhi && (!x_y_hi_overflow || zhi <= x_y_hi)) {
486         return true;
487       }
488     }
489   }
490 
491   return false;
492 }
493 
494 static bool ranges_overlap(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
495                            const Node* n, bool pos, BasicType bt) {
496   jlong xlo = tx->lo_as_long();
497   jlong xhi = tx->hi_as_long();
498   jlong ylo = ty->lo_as_long();
499   jlong yhi = ty->hi_as_long();
500   jlong zlo = tz->lo_as_long();
501   jlong zhi = tz->hi_as_long();
502 
503   if (bt == T_INT) {
504     // See if x+y can cause positive overflow into z+2**32
505     // See if x+y can cause negative overflow into z-2**32
506     bool res =  ranges_overlap(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
507                                checked_cast<jint>(xhi), checked_cast<jint>(yhi),
508                                checked_cast<jint>(zlo), checked_cast<jint>(zhi), n, pos);
509 #ifdef ASSERT
510     jlong vbit = CONST64(1) << BitsPerInt;
511     if (n->Opcode() == Op_SubI) {
512       jlong ylo0 = ylo;
513       ylo = -yhi;
514       yhi = -ylo0;
515     }
516     assert(res == long_ranges_overlap(xlo+ylo, xhi+yhi, pos ? zlo+vbit : zlo-vbit, pos ? zhi+vbit : zhi-vbit), "inconsistent result");
517 #endif
518     return res;
519   }
520   assert(bt == T_LONG, "only int or long");
521   // See if x+y can cause positive overflow into z+2**64
522   // See if x+y can cause negative overflow into z-2**64
523   return ranges_overlap(xlo, ylo, xhi, yhi, zlo, zhi, n, pos);
524 }
525 
526 #ifdef ASSERT
527 static bool compute_updates_ranges_verif(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
528                                          jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
529                                          const Node* n) {
530   jlong xlo = tx->lo_as_long();
531   jlong xhi = tx->hi_as_long();
532   jlong ylo = ty->lo_as_long();
533   jlong yhi = ty->hi_as_long();
534   jlong zlo = tz->lo_as_long();
535   jlong zhi = tz->hi_as_long();
536   if (n->is_Sub()) {
537     swap(ylo, yhi);
538     ylo = -ylo;
539     yhi = -yhi;
540   }
541 
542   rxlo = MAX2(xlo, zlo - yhi);
543   rxhi = MIN2(xhi, zhi - ylo);
544   rylo = MAX2(ylo, zlo - xhi);
545   ryhi = MIN2(yhi, zhi - xlo);
546   if (rxlo > rxhi || rylo > ryhi) {
547     return false;
548   }
549   if (n->is_Sub()) {
550     swap(rylo, ryhi);
551     rylo = -rylo;
552     ryhi = -ryhi;
553   }
554   assert(rxlo == (int) rxlo && rxhi == (int) rxhi, "x should not overflow");
555   assert(rylo == (int) rylo && ryhi == (int) ryhi, "y should not overflow");
556   return true;
557 }
558 #endif
559 
560 template<class T> static bool compute_updates_ranges(T xlo, T ylo, T xhi, T yhi, T zlo, T zhi,
561                                                      jlong& rxlo, jlong& rxhi, jlong& rylo, jlong& ryhi,
562                                                      const Node* n) {
563   assert(xlo <= xhi && ylo <= yhi && zlo <= zhi, "should not be empty types");
564 
565   // Now it's always safe to assume x+y does not overflow.
566   // This is true even if some pairs x,y might cause overflow, as long
567   // as that overflow value cannot fall into [zlo,zhi].
568 
569   // Confident that the arithmetic is "as if infinite precision",
570   // we can now use n's range to put constraints on those of x and y.
571   // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
572   // more "restricted" range by intersecting [xlo,xhi] with the
573   // range obtained by subtracting y's range from the asserted range
574   // of the I2L conversion.  Here's the interval arithmetic algebra:
575   //    x == n-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
576   //    => x in [zlo-yhi, zhi-ylo]
577   //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
578   //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
579   // And similarly, x changing place with y.
580   if (n->is_Sub()) {
581     if (add_overflows(zlo, ylo) || add_underflows(zhi, yhi) || subtract_underflows(xhi, zlo) ||
582         subtract_overflows(xlo, zhi)) {
583       return false;
584     }
585     rxlo = add_underflows(zlo, ylo) ? xlo : MAX2(xlo, java_add(zlo, ylo));
586     rxhi = add_overflows(zhi, yhi) ? xhi : MIN2(xhi, java_add(zhi, yhi));
587     ryhi = subtract_overflows(xhi, zlo) ? yhi : MIN2(yhi, java_subtract(xhi, zlo));
588     rylo = subtract_underflows(xlo, zhi) ? ylo : MAX2(ylo, java_subtract(xlo, zhi));
589   } else {
590     assert(n->is_Add(), "Add or Sub only");
591     if (subtract_overflows(zlo, yhi) || subtract_underflows(zhi, ylo) ||
592         subtract_overflows(zlo, xhi) || subtract_underflows(zhi, xlo)) {
593       return false;
594     }
595     rxlo = subtract_underflows(zlo, yhi) ? xlo : MAX2(xlo, java_subtract(zlo, yhi));
596     rxhi = subtract_overflows(zhi, ylo) ? xhi : MIN2(xhi, java_subtract(zhi, ylo));
597     rylo = subtract_underflows(zlo, xhi) ? ylo : MAX2(ylo, java_subtract(zlo, xhi));
598     ryhi = subtract_overflows(zhi, xlo) ? yhi : MIN2(yhi, java_subtract(zhi, xlo));
599   }
600 
601   if (rxlo > rxhi || rylo > ryhi) {
602     return false; // x or y is dying; don't mess w/ it
603   }
604 
605   return true;
606 }
607 
608 static bool compute_updates_ranges(const TypeInteger* tx, const TypeInteger* ty, const TypeInteger* tz,
609                                    const TypeInteger*& rx, const TypeInteger*& ry,
610                                    const Node* n, const BasicType in_bt, BasicType out_bt) {
611 
612   jlong xlo = tx->lo_as_long();
613   jlong xhi = tx->hi_as_long();
614   jlong ylo = ty->lo_as_long();
615   jlong yhi = ty->hi_as_long();
616   jlong zlo = tz->lo_as_long();
617   jlong zhi = tz->hi_as_long();
618   jlong rxlo, rxhi, rylo, ryhi;
619 
620   if (in_bt == T_INT) {
621 #ifdef ASSERT
622     jlong expected_rxlo, expected_rxhi, expected_rylo, expected_ryhi;
623     bool expected = compute_updates_ranges_verif(tx, ty, tz,
624                                                  expected_rxlo, expected_rxhi,
625                                                  expected_rylo, expected_ryhi, n);
626 #endif
627     if (!compute_updates_ranges(checked_cast<jint>(xlo), checked_cast<jint>(ylo),
628                                 checked_cast<jint>(xhi), checked_cast<jint>(yhi),
629                                 checked_cast<jint>(zlo), checked_cast<jint>(zhi),
630                                 rxlo, rxhi, rylo, ryhi, n)) {
631       assert(!expected, "inconsistent");
632       return false;
633     }
634     assert(expected && rxlo == expected_rxlo && rxhi == expected_rxhi && rylo == expected_rylo && ryhi == expected_ryhi, "inconsistent");
635   } else {
636     if (!compute_updates_ranges(xlo, ylo, xhi, yhi, zlo, zhi,
637                             rxlo, rxhi, rylo, ryhi, n)) {
638       return false;
639     }
640   }
641 
642   int widen =  MAX2(tx->widen_limit(), ty->widen_limit());
643   rx = TypeInteger::make(rxlo, rxhi, widen, out_bt);
644   ry = TypeInteger::make(rylo, ryhi, widen, out_bt);
645   return true;
646 }
647 
648 #ifdef _LP64
649 // If there is an existing ConvI2L node with the given parent and type, return
650 // it. Otherwise, create and return a new one. Both reusing existing ConvI2L
651 // nodes and postponing the idealization of new ones are needed to avoid an
652 // explosion of recursive Ideal() calls when compiling long AddI chains.
653 static Node* find_or_make_convI2L(PhaseIterGVN* igvn, Node* parent,
654                                   const TypeLong* type) {
655   Node* n = new ConvI2LNode(parent, type);
656   Node* existing = igvn->hash_find_insert(n);
657   if (existing != nullptr) {
658     n->destruct(igvn);
659     return existing;
660   }
661   return igvn->register_new_node_with_optimizer(n);
662 }
663 #endif
664 
665 bool Compile::push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
666                             BasicType in_bt, BasicType out_bt) {
667   int op = z->Opcode();
668   if (op == Op_Add(in_bt) || op == Op_Sub(in_bt)) {
669     Node* x = z->in(1);
670     Node* y = z->in(2);
671     assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
672     if (phase->type(x) == Type::TOP) {
673       return false;
674     }
675     if (phase->type(y) == Type::TOP) {
676       return false;
677     }
678     const TypeInteger* tx = phase->type(x)->is_integer(in_bt);
679     const TypeInteger* ty = phase->type(y)->is_integer(in_bt);
680 
681     if (ranges_overlap(tx, ty, tz, z, true, in_bt) ||
682         ranges_overlap(tx, ty, tz, z, false, in_bt)) {
683       return false;
684     }
685     return compute_updates_ranges(tx, ty, tz, rx, ry, z, in_bt, out_bt);
686   }
687   return false;
688 }
689 
690 
691 //------------------------------Ideal------------------------------------------
692 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
693   const TypeLong* this_type = this->type()->is_long();
694   if (can_reshape && !phase->C->post_loop_opts_phase()) {
695     // makes sure we run ::Value to potentially remove type assertion after loop opts
696     phase->C->record_for_post_loop_opts_igvn(this);
697   }
698 #ifdef _LP64
699   // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
700   // but only if x and y have subranges that cannot cause 32-bit overflow,
701   // under the assumption that x+y is in my own subrange this->type().
702 
703   // This assumption is based on a constraint (i.e., type assertion)
704   // established in Parse::array_addressing or perhaps elsewhere.
705   // This constraint has been adjoined to the "natural" type of
706   // the incoming argument in(0).  We know (because of runtime
707   // checks) - that the result value I2L(x+y) is in the joined range.
708   // Hence we can restrict the incoming terms (x, y) to values such
709   // that their sum also lands in that range.
710 
711   // This optimization is useful only on 64-bit systems, where we hope
712   // the addition will end up subsumed in an addressing mode.
713   // It is necessary to do this when optimizing an unrolled array
714   // copy loop such as x[i++] = y[i++].
715 
716   // On 32-bit systems, it's better to perform as much 32-bit math as
717   // possible before the I2L conversion, because 32-bit math is cheaper.
718   // There's no common reason to "leak" a constant offset through the I2L.
719   // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
720   PhaseIterGVN* igvn = phase->is_IterGVN();
721   Node* z = in(1);
722   const TypeInteger* rx = nullptr;
723   const TypeInteger* ry = nullptr;
724   if (Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT, T_LONG)) {
725     if (igvn == nullptr) {
726       // Postpone this optimization to iterative GVN, where we can handle deep
727       // AddI chains without an exponential number of recursive Ideal() calls.
728       phase->record_for_igvn(this);
729       return nullptr;
730     }
731     int op = z->Opcode();
732     Node* x = z->in(1);
733     Node* y = z->in(2);
734 
735     Node* cx = find_or_make_convI2L(igvn, x, rx->is_long());
736     Node* cy = find_or_make_convI2L(igvn, y, ry->is_long());
737     switch (op) {
738       case Op_AddI:  return new AddLNode(cx, cy);
739       case Op_SubI:  return new SubLNode(cx, cy);
740       default:       ShouldNotReachHere();
741     }
742   }
743 #endif //_LP64
744 
745   return nullptr;
746 }
747 
748 //=============================================================================
749 //------------------------------Value------------------------------------------
750 const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
751   const Type *t = phase->type( in(1) );
752   if( t == Type::TOP ) return Type::TOP;
753   const TypeLong *tl = t->is_long();
754   if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
755   return Type::DOUBLE;
756 }
757 
758 //=============================================================================
759 //------------------------------Value------------------------------------------
760 const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
761   const Type *t = phase->type( in(1) );
762   if( t == Type::TOP ) return Type::TOP;
763   const TypeLong *tl = t->is_long();
764   if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
765   return Type::FLOAT;
766 }
767 
768 //=============================================================================
769 //----------------------------Identity-----------------------------------------
770 Node* ConvL2INode::Identity(PhaseGVN* phase) {
771   // Convert L2I(I2L(x)) => x
772   if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
773   return this;
774 }
775 
776 //------------------------------Value------------------------------------------
777 const Type* ConvL2INode::Value(PhaseGVN* phase) const {
778   const Type *t = phase->type( in(1) );
779   if( t == Type::TOP ) return Type::TOP;
780   const TypeLong *tl = t->is_long();
781   const TypeInt* ti = TypeInt::INT;
782   if (tl->is_con()) {
783     // Easy case.
784     ti = TypeInt::make((jint)tl->get_con());
785   } else if (tl->_lo >= min_jint && tl->_hi <= max_jint) {
786     ti = TypeInt::make((jint)tl->_lo, (jint)tl->_hi, tl->_widen);
787   }
788   return ti->filter(_type);
789 }
790 
791 //------------------------------Ideal------------------------------------------
792 // Return a node which is more "ideal" than the current node.
793 // Blow off prior masking to int
794 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
795   Node *andl = in(1);
796   uint andl_op = andl->Opcode();
797   if( andl_op == Op_AndL ) {
798     // Blow off prior masking to int
799     if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
800       set_req_X(1,andl->in(1), phase);
801       return this;
802     }
803   }
804 
805   // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
806   // This replaces an 'AddL' with an 'AddI'.
807   if( andl_op == Op_AddL ) {
808     // Don't do this for nodes which have more than one user since
809     // we'll end up computing the long add anyway.
810     if (andl->outcnt() > 1) return nullptr;
811 
812     Node* x = andl->in(1);
813     Node* y = andl->in(2);
814     assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
815     if (phase->type(x) == Type::TOP)  return nullptr;
816     if (phase->type(y) == Type::TOP)  return nullptr;
817     Node *add1 = phase->transform(new ConvL2INode(x));
818     Node *add2 = phase->transform(new ConvL2INode(y));
819     return new AddINode(add1,add2);
820   }
821 
822   // Disable optimization: LoadL->ConvL2I ==> LoadI.
823   // It causes problems (sizes of Load and Store nodes do not match)
824   // in objects initialization code and Escape Analysis.
825   return nullptr;
826 }
827 
828 //=============================================================================
829 RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) {
830   ConINode* rm = gvn.intcon(rmode);
831   return new RoundDoubleModeNode(arg, (Node *)rm);
832 }
833 
834 //------------------------------Identity---------------------------------------
835 // Remove redundant roundings.
836 Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) {
837   int op = in(1)->Opcode();
838   // Redundant rounding e.g. floor(ceil(n)) -> ceil(n)
839   if(op == Op_RoundDoubleMode) return in(1);
840   return this;
841 }
842 const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const {
843   return Type::DOUBLE;
844 }
845 //=============================================================================
846 
847 const Type* ReinterpretS2HFNode::Value(PhaseGVN* phase) const {
848   const Type* type = phase->type(in(1));
849   // Convert short constant value to a Half Float constant value
850   if ((type->isa_int() && type->is_int()->is_con())) {
851      jshort hfval = type->is_int()->get_con();
852      return TypeH::make(hfval);
853   }
854   return Type::HALF_FLOAT;
855 }
856 
857 Node* ReinterpretS2HFNode::Identity(PhaseGVN* phase) {
858   if (in(1)->Opcode() == Op_ReinterpretHF2S) {
859      assert(in(1)->in(1)->bottom_type()->isa_half_float(), "");
860      return in(1)->in(1);
861   }
862   return this;
863 }
864 
865 const Type* ReinterpretHF2SNode::Value(PhaseGVN* phase) const {
866   const Type* type = phase->type(in(1));
867   // Convert Half float constant value to short constant value.
868   if (type->isa_half_float_constant()) {
869      jshort hfval = type->is_half_float_constant()->_f;
870      return TypeInt::make(hfval);
871   }
872   return TypeInt::SHORT;
873 }
874 
875 bool Float16NodeFactory::is_float32_binary_oper(int opc) {
876   switch(opc) {
877     case Op_AddF:
878     case Op_SubF:
879     case Op_MulF:
880     case Op_DivF:
881     case Op_MaxF:
882     case Op_MinF:
883       return true;
884     default:
885       return false;
886   }
887 }
888 
889 int Float16NodeFactory::get_float16_binary_oper(int opc) {
890   switch(opc) {
891     case Op_AddF:
892       return Op_AddHF;
893     case Op_SubF:
894       return Op_SubHF;
895     case Op_MulF:
896       return Op_MulHF;
897     case Op_DivF:
898       return Op_DivHF;
899     case Op_MaxF:
900       return Op_MaxHF;
901     case Op_MinF:
902       return Op_MinHF;
903     default: ShouldNotReachHere();
904   }
905 }
906 
907 Node* Float16NodeFactory::make(int opc, Node* c, Node* in1, Node* in2) {
908   switch(opc) {
909     case Op_AddF: return new AddHFNode(in1, in2);
910     case Op_SubF: return new SubHFNode(in1, in2);
911     case Op_MulF: return new MulHFNode(in1, in2);
912     case Op_DivF: return new DivHFNode(c, in1, in2);
913     case Op_MaxF: return new MaxHFNode(in1, in2);
914     case Op_MinF: return new MinHFNode(in1, in2);
915     default: ShouldNotReachHere();
916   }
917 }