1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/bcEscapeAnalyzer.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/c2/barrierSetC2.hpp" 30 #include "libadt/vectset.hpp" 31 #include "memory/allocation.hpp" 32 #include "memory/metaspace.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "opto/c2compiler.hpp" 35 #include "opto/arraycopynode.hpp" 36 #include "opto/callnode.hpp" 37 #include "opto/cfgnode.hpp" 38 #include "opto/compile.hpp" 39 #include "opto/escape.hpp" 40 #include "opto/inlinetypenode.hpp" 41 #include "opto/macro.hpp" 42 #include "opto/locknode.hpp" 43 #include "opto/phaseX.hpp" 44 #include "opto/movenode.hpp" 45 #include "opto/narrowptrnode.hpp" 46 #include "opto/castnode.hpp" 47 #include "opto/rootnode.hpp" 48 #include "utilities/macros.hpp" 49 50 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) : 51 // If ReduceAllocationMerges is enabled we might call split_through_phi during 52 // split_unique_types and that will create additional nodes that need to be 53 // pushed to the ConnectionGraph. The code below bumps the initial capacity of 54 // _nodes by 10% to account for these additional nodes. If capacity is exceeded 55 // the array will be reallocated. 56 _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr), 57 _in_worklist(C->comp_arena()), 58 _next_pidx(0), 59 _collecting(true), 60 _verify(false), 61 _compile(C), 62 _igvn(igvn), 63 _invocation(invocation), 64 _build_iterations(0), 65 _build_time(0.), 66 _node_map(C->comp_arena()) { 67 // Add unknown java object. 68 add_java_object(C->top(), PointsToNode::GlobalEscape); 69 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject(); 70 set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object")); 71 // Add ConP and ConN null oop nodes 72 Node* oop_null = igvn->zerocon(T_OBJECT); 73 assert(oop_null->_idx < nodes_size(), "should be created already"); 74 add_java_object(oop_null, PointsToNode::NoEscape); 75 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject(); 76 set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object")); 77 if (UseCompressedOops) { 78 Node* noop_null = igvn->zerocon(T_NARROWOOP); 79 assert(noop_null->_idx < nodes_size(), "should be created already"); 80 map_ideal_node(noop_null, null_obj); 81 } 82 } 83 84 bool ConnectionGraph::has_candidates(Compile *C) { 85 // EA brings benefits only when the code has allocations and/or locks which 86 // are represented by ideal Macro nodes. 87 int cnt = C->macro_count(); 88 for (int i = 0; i < cnt; i++) { 89 Node *n = C->macro_node(i); 90 if (n->is_Allocate()) { 91 return true; 92 } 93 if (n->is_Lock()) { 94 Node* obj = n->as_Lock()->obj_node()->uncast(); 95 if (!(obj->is_Parm() || obj->is_Con())) { 96 return true; 97 } 98 } 99 if (n->is_CallStaticJava() && 100 n->as_CallStaticJava()->is_boxing_method()) { 101 return true; 102 } 103 } 104 return false; 105 } 106 107 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { 108 Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]); 109 ResourceMark rm; 110 111 // Add ConP and ConN null oop nodes before ConnectionGraph construction 112 // to create space for them in ConnectionGraph::_nodes[]. 113 Node* oop_null = igvn->zerocon(T_OBJECT); 114 Node* noop_null = igvn->zerocon(T_NARROWOOP); 115 int invocation = 0; 116 if (C->congraph() != nullptr) { 117 invocation = C->congraph()->_invocation + 1; 118 } 119 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation); 120 // Perform escape analysis 121 if (congraph->compute_escape()) { 122 // There are non escaping objects. 123 C->set_congraph(congraph); 124 } 125 // Cleanup. 126 if (oop_null->outcnt() == 0) { 127 igvn->hash_delete(oop_null); 128 } 129 if (noop_null->outcnt() == 0) { 130 igvn->hash_delete(noop_null); 131 } 132 } 133 134 bool ConnectionGraph::compute_escape() { 135 Compile* C = _compile; 136 PhaseGVN* igvn = _igvn; 137 138 // Worklists used by EA. 139 Unique_Node_List delayed_worklist; 140 Unique_Node_List reducible_merges; 141 GrowableArray<Node*> alloc_worklist; 142 GrowableArray<Node*> ptr_cmp_worklist; 143 GrowableArray<MemBarStoreStoreNode*> storestore_worklist; 144 GrowableArray<ArrayCopyNode*> arraycopy_worklist; 145 GrowableArray<PointsToNode*> ptnodes_worklist; 146 GrowableArray<JavaObjectNode*> java_objects_worklist; 147 GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist; 148 GrowableArray<FieldNode*> oop_fields_worklist; 149 GrowableArray<SafePointNode*> sfn_worklist; 150 GrowableArray<MergeMemNode*> mergemem_worklist; 151 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; ) 152 153 { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]); 154 155 // 1. Populate Connection Graph (CG) with PointsTo nodes. 156 ideal_nodes.map(C->live_nodes(), nullptr); // preallocate space 157 // Initialize worklist 158 if (C->root() != nullptr) { 159 ideal_nodes.push(C->root()); 160 } 161 // Processed ideal nodes are unique on ideal_nodes list 162 // but several ideal nodes are mapped to the phantom_obj. 163 // To avoid duplicated entries on the following worklists 164 // add the phantom_obj only once to them. 165 ptnodes_worklist.append(phantom_obj); 166 java_objects_worklist.append(phantom_obj); 167 for( uint next = 0; next < ideal_nodes.size(); ++next ) { 168 Node* n = ideal_nodes.at(next); 169 if ((n->Opcode() == Op_LoadX || n->Opcode() == Op_StoreX) && 170 !n->in(MemNode::Address)->is_AddP() && 171 _igvn->type(n->in(MemNode::Address))->isa_oopptr()) { 172 // Load/Store at mark work address is at offset 0 so has no AddP which confuses EA 173 Node* addp = new AddPNode(n->in(MemNode::Address), n->in(MemNode::Address), _igvn->MakeConX(0)); 174 _igvn->register_new_node_with_optimizer(addp); 175 _igvn->replace_input_of(n, MemNode::Address, addp); 176 ideal_nodes.push(addp); 177 _nodes.at_put_grow(addp->_idx, nullptr, nullptr); 178 } 179 // Create PointsTo nodes and add them to Connection Graph. Called 180 // only once per ideal node since ideal_nodes is Unique_Node list. 181 add_node_to_connection_graph(n, &delayed_worklist); 182 PointsToNode* ptn = ptnode_adr(n->_idx); 183 if (ptn != nullptr && ptn != phantom_obj) { 184 ptnodes_worklist.append(ptn); 185 if (ptn->is_JavaObject()) { 186 java_objects_worklist.append(ptn->as_JavaObject()); 187 if ((n->is_Allocate() || n->is_CallStaticJava()) && 188 (ptn->escape_state() < PointsToNode::GlobalEscape)) { 189 // Only allocations and java static calls results are interesting. 190 non_escaped_allocs_worklist.append(ptn->as_JavaObject()); 191 } 192 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) { 193 oop_fields_worklist.append(ptn->as_Field()); 194 } 195 } 196 // Collect some interesting nodes for further use. 197 switch (n->Opcode()) { 198 case Op_MergeMem: 199 // Collect all MergeMem nodes to add memory slices for 200 // scalar replaceable objects in split_unique_types(). 201 mergemem_worklist.append(n->as_MergeMem()); 202 break; 203 case Op_CmpP: 204 case Op_CmpN: 205 // Collect compare pointers nodes. 206 if (OptimizePtrCompare) { 207 ptr_cmp_worklist.append(n); 208 } 209 break; 210 case Op_MemBarStoreStore: 211 // Collect all MemBarStoreStore nodes so that depending on the 212 // escape status of the associated Allocate node some of them 213 // may be eliminated. 214 if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) { 215 storestore_worklist.append(n->as_MemBarStoreStore()); 216 } 217 break; 218 case Op_MemBarRelease: 219 if (n->req() > MemBarNode::Precedent) { 220 record_for_optimizer(n); 221 } 222 break; 223 #ifdef ASSERT 224 case Op_AddP: 225 // Collect address nodes for graph verification. 226 addp_worklist.append(n); 227 break; 228 #endif 229 case Op_ArrayCopy: 230 // Keep a list of ArrayCopy nodes so if one of its input is non 231 // escaping, we can record a unique type 232 arraycopy_worklist.append(n->as_ArrayCopy()); 233 break; 234 default: 235 // not interested now, ignore... 236 break; 237 } 238 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 239 Node* m = n->fast_out(i); // Get user 240 ideal_nodes.push(m); 241 } 242 if (n->is_SafePoint()) { 243 sfn_worklist.append(n->as_SafePoint()); 244 } 245 } 246 247 #ifndef PRODUCT 248 if (_compile->directive()->TraceEscapeAnalysisOption) { 249 tty->print("+++++ Initial worklist for "); 250 _compile->method()->print_name(); 251 tty->print_cr(" (ea_inv=%d)", _invocation); 252 for (int i = 0; i < ptnodes_worklist.length(); i++) { 253 PointsToNode* ptn = ptnodes_worklist.at(i); 254 ptn->dump(); 255 } 256 tty->print_cr("+++++ Calculating escape states and scalar replaceability"); 257 } 258 #endif 259 260 if (non_escaped_allocs_worklist.length() == 0) { 261 _collecting = false; 262 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 263 return false; // Nothing to do. 264 } 265 // Add final simple edges to graph. 266 while(delayed_worklist.size() > 0) { 267 Node* n = delayed_worklist.pop(); 268 add_final_edges(n); 269 } 270 271 #ifdef ASSERT 272 if (VerifyConnectionGraph) { 273 // Verify that no new simple edges could be created and all 274 // local vars has edges. 275 _verify = true; 276 int ptnodes_length = ptnodes_worklist.length(); 277 for (int next = 0; next < ptnodes_length; ++next) { 278 PointsToNode* ptn = ptnodes_worklist.at(next); 279 add_final_edges(ptn->ideal_node()); 280 if (ptn->is_LocalVar() && ptn->edge_count() == 0) { 281 ptn->dump(); 282 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity"); 283 } 284 } 285 _verify = false; 286 } 287 #endif 288 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes 289 // processing, calls to CI to resolve symbols (types, fields, methods) 290 // referenced in bytecode. During symbol resolution VM may throw 291 // an exception which CI cleans and converts to compilation failure. 292 if (C->failing()) { 293 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 294 return false; 295 } 296 297 // 2. Finish Graph construction by propagating references to all 298 // java objects through graph. 299 if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist, 300 java_objects_worklist, oop_fields_worklist)) { 301 // All objects escaped or hit time or iterations limits. 302 _collecting = false; 303 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 304 return false; 305 } 306 307 // 3. Adjust scalar_replaceable state of nonescaping objects and push 308 // scalar replaceable allocations on alloc_worklist for processing 309 // in split_unique_types(). 310 GrowableArray<JavaObjectNode*> jobj_worklist; 311 int non_escaped_length = non_escaped_allocs_worklist.length(); 312 bool found_nsr_alloc = false; 313 for (int next = 0; next < non_escaped_length; next++) { 314 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 315 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape); 316 Node* n = ptn->ideal_node(); 317 if (n->is_Allocate()) { 318 n->as_Allocate()->_is_non_escaping = noescape; 319 } 320 if (noescape && ptn->scalar_replaceable()) { 321 adjust_scalar_replaceable_state(ptn, reducible_merges); 322 if (ptn->scalar_replaceable()) { 323 jobj_worklist.push(ptn); 324 } else { 325 found_nsr_alloc = true; 326 } 327 } 328 } 329 330 // Propagate NSR (Not Scalar Replaceable) state. 331 if (found_nsr_alloc) { 332 find_scalar_replaceable_allocs(jobj_worklist, reducible_merges); 333 } 334 335 // alloc_worklist will be processed in reverse push order. 336 // Therefore the reducible Phis will be processed for last and that's what we 337 // want because by then the scalarizable inputs of the merge will already have 338 // an unique instance type. 339 for (uint i = 0; i < reducible_merges.size(); i++ ) { 340 Node* n = reducible_merges.at(i); 341 alloc_worklist.append(n); 342 } 343 344 for (int next = 0; next < jobj_worklist.length(); ++next) { 345 JavaObjectNode* jobj = jobj_worklist.at(next); 346 if (jobj->scalar_replaceable()) { 347 alloc_worklist.append(jobj->ideal_node()); 348 } 349 } 350 351 #ifdef ASSERT 352 if (VerifyConnectionGraph) { 353 // Verify that graph is complete - no new edges could be added or needed. 354 verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist, 355 java_objects_worklist, addp_worklist); 356 } 357 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build"); 358 assert(null_obj->escape_state() == PointsToNode::NoEscape && 359 null_obj->edge_count() == 0 && 360 !null_obj->arraycopy_src() && 361 !null_obj->arraycopy_dst(), "sanity"); 362 #endif 363 364 _collecting = false; 365 366 } // TracePhase t3("connectionGraph") 367 368 // 4. Optimize ideal graph based on EA information. 369 bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0); 370 if (has_non_escaping_obj) { 371 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist); 372 } 373 374 #ifndef PRODUCT 375 if (PrintEscapeAnalysis) { 376 dump(ptnodes_worklist); // Dump ConnectionGraph 377 } 378 #endif 379 380 #ifdef ASSERT 381 if (VerifyConnectionGraph) { 382 int alloc_length = alloc_worklist.length(); 383 for (int next = 0; next < alloc_length; ++next) { 384 Node* n = alloc_worklist.at(next); 385 PointsToNode* ptn = ptnode_adr(n->_idx); 386 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity"); 387 } 388 } 389 390 if (VerifyReduceAllocationMerges) { 391 for (uint i = 0; i < reducible_merges.size(); i++ ) { 392 Node* n = reducible_merges.at(i); 393 if (!can_reduce_phi(n->as_Phi())) { 394 TraceReduceAllocationMerges = true; 395 n->dump(2); 396 n->dump(-2); 397 assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT."); 398 } 399 } 400 } 401 #endif 402 403 // 5. Separate memory graph for scalar replaceable allcations. 404 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0); 405 if (has_scalar_replaceable_candidates && EliminateAllocations) { 406 assert(C->do_aliasing(), "Aliasing should be enabled"); 407 // Now use the escape information to create unique types for 408 // scalar replaceable objects. 409 split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges); 410 if (C->failing()) { 411 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 412 return false; 413 } 414 C->print_method(PHASE_AFTER_EA, 2); 415 416 #ifdef ASSERT 417 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { 418 tty->print("=== No allocations eliminated for "); 419 C->method()->print_short_name(); 420 if (!EliminateAllocations) { 421 tty->print(" since EliminateAllocations is off ==="); 422 } else if(!has_scalar_replaceable_candidates) { 423 tty->print(" since there are no scalar replaceable candidates ==="); 424 } 425 tty->cr(); 426 #endif 427 } 428 429 // 6. Reduce allocation merges used as debug information. This is done after 430 // split_unique_types because the methods used to create SafePointScalarObject 431 // need to traverse the memory graph to find values for object fields. We also 432 // set to null the scalarized inputs of reducible Phis so that the Allocate 433 // that they point can be later scalar replaced. 434 bool delay = _igvn->delay_transform(); 435 _igvn->set_delay_transform(true); 436 for (uint i = 0; i < reducible_merges.size(); i++) { 437 Node* n = reducible_merges.at(i); 438 if (n->outcnt() > 0) { 439 if (!reduce_phi_on_safepoints(n->as_Phi())) { 440 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 441 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 442 return false; 443 } 444 445 // Now we set the scalar replaceable inputs of ophi to null, which is 446 // the last piece that would prevent it from being scalar replaceable. 447 reset_scalar_replaceable_entries(n->as_Phi()); 448 } 449 } 450 _igvn->set_delay_transform(delay); 451 452 // Annotate at safepoints if they have <= ArgEscape objects in their scope and at 453 // java calls if they pass ArgEscape objects as parameters. 454 if (has_non_escaping_obj && 455 (C->env()->should_retain_local_variables() || 456 C->env()->jvmti_can_get_owned_monitor_info() || 457 C->env()->jvmti_can_walk_any_space() || 458 DeoptimizeObjectsALot)) { 459 int sfn_length = sfn_worklist.length(); 460 for (int next = 0; next < sfn_length; next++) { 461 SafePointNode* sfn = sfn_worklist.at(next); 462 sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn)); 463 if (sfn->is_CallJava()) { 464 CallJavaNode* call = sfn->as_CallJava(); 465 call->set_arg_escape(has_arg_escape(call)); 466 } 467 } 468 } 469 470 NOT_PRODUCT(escape_state_statistics(java_objects_worklist);) 471 return has_non_escaping_obj; 472 } 473 474 // Check if it's profitable to reduce the Phi passed as parameter. Returns true 475 // if at least one scalar replaceable allocation participates in the merge. 476 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const { 477 bool found_sr_allocate = false; 478 479 for (uint i = 1; i < ophi->req(); i++) { 480 JavaObjectNode* ptn = unique_java_object(ophi->in(i)); 481 if (ptn != nullptr && ptn->scalar_replaceable()) { 482 AllocateNode* alloc = ptn->ideal_node()->as_Allocate(); 483 484 // Don't handle arrays. 485 if (alloc->Opcode() != Op_Allocate) { 486 assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation."); 487 continue; 488 } 489 490 if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) { 491 found_sr_allocate = true; 492 } else { 493 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);) 494 ptn->set_scalar_replaceable(false); 495 } 496 } 497 } 498 499 NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);) 500 return found_sr_allocate; 501 } 502 503 // We can reduce the Cmp if it's a comparison between the Phi and a constant. 504 // I require the 'other' input to be a constant so that I can move the Cmp 505 // around safely. 506 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const { 507 assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name()); 508 Node* left = cmp->in(1); 509 Node* right = cmp->in(2); 510 511 return (left == n || right == n) && 512 (left->is_Con() || right->is_Con()) && 513 cmp->outcnt() == 1; 514 } 515 516 // We are going to check if any of the SafePointScalarMerge entries 517 // in the SafePoint reference the Phi that we are checking. 518 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const { 519 JVMState *jvms = sfpt->jvms(); 520 521 for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) { 522 Node* sfpt_in = sfpt->in(i); 523 if (sfpt_in->is_SafePointScalarMerge()) { 524 SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge(); 525 Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms)); 526 if (nsr_ptr == n) { 527 return true; 528 } 529 } 530 } 531 532 return false; 533 } 534 535 // Check if we are able to untangle the merge. The following patterns are 536 // supported: 537 // - Phi -> SafePoints 538 // - Phi -> CmpP/N 539 // - Phi -> AddP -> Load 540 // - Phi -> CastPP -> SafePoints 541 // - Phi -> CastPP -> AddP -> Load 542 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const { 543 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 544 Node* use = n->fast_out(i); 545 546 if (use->is_SafePoint()) { 547 if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) { 548 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);) 549 return false; 550 } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) { 551 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);) 552 return false; 553 } 554 } else if (use->is_AddP()) { 555 Node* addp = use; 556 for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) { 557 Node* use_use = addp->fast_out(j); 558 const Type* load_type = _igvn->type(use_use); 559 560 if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) { 561 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());) 562 return false; 563 } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) { 564 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());) 565 return false; 566 } 567 } 568 } else if (nesting > 0) { 569 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);) 570 return false; 571 } else if (use->is_CastPP()) { 572 const Type* cast_t = _igvn->type(use); 573 if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) { 574 #ifndef PRODUCT 575 if (TraceReduceAllocationMerges) { 576 tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation); 577 use->dump(); 578 } 579 #endif 580 return false; 581 } 582 583 bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0); 584 if (!is_trivial_control) { 585 // If it's not a trivial control then we check if we can reduce the 586 // CmpP/N used by the If controlling the cast. 587 if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) { 588 Node* iff = use->in(0)->in(0); 589 // We may have an OpaqueNotNull node between If and Bool nodes. But we could also have a sub class of IfNode, 590 // for example, an OuterStripMinedLoopEnd or a Parse Predicate. Bail out in all these cases. 591 bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp(); 592 if (can_reduce) { 593 Node* iff_cmp = iff->in(1)->in(1); 594 int opc = iff_cmp->Opcode(); 595 can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp); 596 } 597 if (!can_reduce) { 598 #ifndef PRODUCT 599 if (TraceReduceAllocationMerges) { 600 tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx); 601 n->dump(5); 602 } 603 #endif 604 return false; 605 } 606 } 607 } 608 609 if (!can_reduce_check_users(use, nesting+1)) { 610 return false; 611 } 612 } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) { 613 if (!can_reduce_cmp(n, use)) { 614 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);) 615 return false; 616 } 617 } else { 618 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());) 619 return false; 620 } 621 } 622 623 return true; 624 } 625 626 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is 627 // only used in some certain code shapes. Check comments in 628 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more 629 // details. 630 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const { 631 // If there was an error attempting to reduce allocation merges for this 632 // method we might have disabled the compilation and be retrying with RAM 633 // disabled. 634 if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) { 635 return false; 636 } 637 638 const Type* phi_t = _igvn->type(ophi); 639 if (phi_t == nullptr || 640 phi_t->make_ptr() == nullptr || 641 phi_t->make_ptr()->isa_aryptr() != nullptr) { 642 return false; 643 } 644 645 if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) { 646 return false; 647 } 648 649 NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); }) 650 return true; 651 } 652 653 // This method will return a CmpP/N that we need to use on the If controlling a 654 // CastPP after it was split. This method is only called on bases that are 655 // nullable therefore we always need a controlling if for the splitted CastPP. 656 // 657 // 'curr_ctrl' is the control of the CastPP that we want to split through phi. 658 // If the CastPP currently doesn't have a control then the CmpP/N will be 659 // against the NULL constant, otherwise it will be against the constant input of 660 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later 661 // case because we have constraints on it and because the CastPP has a control 662 // input. 663 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) { 664 const Type* t = base->bottom_type(); 665 Node* con = nullptr; 666 667 if (curr_ctrl == nullptr || curr_ctrl->is_Region()) { 668 con = _igvn->zerocon(t->basic_type()); 669 } else { 670 // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp 671 assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name()); 672 Node* bol = curr_ctrl->in(0)->in(1); 673 assert(bol->is_Bool(), "unexpected node %s", bol->Name()); 674 Node* curr_cmp = bol->in(1); 675 assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name()); 676 con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2); 677 } 678 679 return CmpNode::make(base, con, t->basic_type()); 680 } 681 682 // This method 'specializes' the CastPP passed as parameter to the base passed 683 // as parameter. Note that the existing CastPP input is a Phi. "Specialize" 684 // means that the CastPP now will be specific for a given base instead of a Phi. 685 // An If-Then-Else-Region block is inserted to control the CastPP. The control 686 // of the CastPP is a copy of the current one (if there is one) or a check 687 // against NULL. 688 // 689 // Before: 690 // 691 // C1 C2 ... Cn 692 // \ | / 693 // \ | / 694 // \ | / 695 // \ | / 696 // \ | / 697 // \ | / 698 // \|/ 699 // Region B1 B2 ... Bn 700 // | \ | / 701 // | \ | / 702 // | \ | / 703 // | \ | / 704 // | \ | / 705 // | \ | / 706 // ---------------> Phi 707 // | 708 // X | 709 // | | 710 // | | 711 // ------> CastPP 712 // 713 // After (only partial illustration; base = B2, current_control = C2): 714 // 715 // C2 716 // | 717 // If 718 // / \ 719 // / \ 720 // T F 721 // /\ / 722 // / \ / 723 // / \ / 724 // C1 CastPP Reg Cn 725 // | | | 726 // | | | 727 // | | | 728 // -------------- | ---------- 729 // | | | 730 // Region 731 // 732 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) { 733 Node* control_successor = current_control->unique_ctrl_out(); 734 Node* cmp = _igvn->transform(specialize_cmp(base, castpp->in(0))); 735 Node* bol = _igvn->transform(new BoolNode(cmp, BoolTest::ne)); 736 IfNode* if_ne = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If(); 737 Node* not_eq_control = _igvn->transform(new IfTrueNode(if_ne)); 738 Node* yes_eq_control = _igvn->transform(new IfFalseNode(if_ne)); 739 Node* end_region = _igvn->transform(new RegionNode(3)); 740 741 // Insert the new if-else-region block into the graph 742 end_region->set_req(1, not_eq_control); 743 end_region->set_req(2, yes_eq_control); 744 control_successor->replace_edge(current_control, end_region, _igvn); 745 746 _igvn->_worklist.push(current_control); 747 _igvn->_worklist.push(control_successor); 748 749 return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::UnconditionalDependency, nullptr)); 750 } 751 752 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *> &alloc_worklist) { 753 const Type* load_type = _igvn->type(curr_load); 754 Node* nsr_value = _igvn->zerocon(load_type->basic_type()); 755 Node* memory = curr_load->in(MemNode::Memory); 756 757 // The data_phi merging the loads needs to be nullable if 758 // we are loading pointers. 759 if (load_type->make_ptr() != nullptr) { 760 if (load_type->isa_narrowoop()) { 761 load_type = load_type->meet(TypeNarrowOop::NULL_PTR); 762 } else if (load_type->isa_ptr()) { 763 load_type = load_type->meet(TypePtr::NULL_PTR); 764 } else { 765 assert(false, "Unexpected load ptr type."); 766 } 767 } 768 769 Node* data_phi = PhiNode::make(region, nsr_value, load_type); 770 771 for (int i = 1; i < bases_for_loads->length(); i++) { 772 Node* base = bases_for_loads->at(i); 773 Node* cmp_region = nullptr; 774 if (base != nullptr) { 775 if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node 776 cmp_region = base->unique_ctrl_out_or_null(); 777 assert(cmp_region != nullptr, "There should be."); 778 base = base->find_out_with(Op_CastPP); 779 } 780 781 Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset))); 782 Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory; 783 Node* load = curr_load->clone(); 784 load->set_req(0, nullptr); 785 load->set_req(1, mem); 786 load->set_req(2, addr); 787 788 if (cmp_region != nullptr) { // see comment on previous if 789 Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type); 790 intermediate_phi->set_req(1, _igvn->transform(load)); 791 load = intermediate_phi; 792 } 793 794 data_phi->set_req(i, _igvn->transform(load)); 795 } else { 796 // Just use the default, which is already in phi 797 } 798 } 799 800 // Takes care of updating CG and split_unique_types worklists due 801 // to cloned AddP->Load. 802 updates_after_load_split(data_phi, curr_load, alloc_worklist); 803 804 return _igvn->transform(data_phi); 805 } 806 807 // This method only reduces CastPP fields loads; SafePoints are handled 808 // separately. The idea here is basically to clone the CastPP and place copies 809 // on each input of the Phi, including non-scalar replaceable inputs. 810 // Experimentation shows that the resulting IR graph is simpler that way than if 811 // we just split the cast through scalar-replaceable inputs. 812 // 813 // The reduction process requires that CastPP's control be one of: 814 // 1) no control, 815 // 2) the same region as Ophi, or 816 // 3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant. 817 // 818 // After splitting the CastPP we'll put it under an If-Then-Else-Region control 819 // flow. If the CastPP originally had an IfTrue/False control input then we'll 820 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll 821 // juse use a CmpP/N against the NULL constant. 822 // 823 // The If-Then-Else-Region isn't always needed. For instance, if input to 824 // splitted cast was not nullable (or if it was the NULL constant) then we don't 825 // need (shouldn't) use a CastPP at all. 826 // 827 // After the casts are splitted we'll split the AddP->Loads through the Phi and 828 // connect them to the just split CastPPs. 829 // 830 // Before (CastPP control is same as Phi): 831 // 832 // Region Allocate Null Call 833 // | \ | / 834 // | \ | / 835 // | \ | / 836 // | \ | / 837 // | \ | / 838 // | \ | / 839 // ------------------> Phi # Oop Phi 840 // | | 841 // | | 842 // | | 843 // | | 844 // ----------------> CastPP 845 // | 846 // AddP 847 // | 848 // Load 849 // 850 // After (Very much simplified): 851 // 852 // Call NULL 853 // \ / 854 // CmpP 855 // | 856 // Bool#NE 857 // | 858 // If 859 // / \ 860 // T F 861 // / \ / 862 // / R 863 // CastPP | 864 // | | 865 // AddP | 866 // | | 867 // Load | 868 // \ | 0 869 // Allocate \ | / 870 // \ \ | / 871 // AddP Phi 872 // \ / 873 // Load / 874 // \ 0 / 875 // \ | / 876 // \|/ 877 // Phi # "Field" Phi 878 // 879 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node *> &alloc_worklist, GrowableArray<Node *> &memnode_worklist) { 880 Node* ophi = curr_castpp->in(1); 881 assert(ophi->is_Phi(), "Expected this to be a Phi node."); 882 883 // Identify which base should be used for AddP->Load later when spliting the 884 // CastPP->Loads through ophi. Three kind of values may be stored in this 885 // array, depending on the nullability status of the corresponding input in 886 // ophi. 887 // 888 // - nullptr: Meaning that the base is actually the NULL constant and therefore 889 // we won't try to load from it. 890 // 891 // - CFG Node: Meaning that the base is a CastPP that was specialized for 892 // this input of Ophi. I.e., we added an If->Then->Else-Region 893 // that will 'activate' the CastPp only when the input is not Null. 894 // 895 // - Other Node: Meaning that the base is not nullable and therefore we'll try 896 // to load directly from it. 897 GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr); 898 899 for (uint i = 1; i < ophi->req(); i++) { 900 Node* base = ophi->in(i); 901 const Type* base_t = _igvn->type(base); 902 903 if (base_t->maybe_null()) { 904 if (base->is_Con()) { 905 // Nothing todo as bases_for_loads[i] is already nullptr 906 } else { 907 Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i)); 908 bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag 909 } 910 } else { 911 bases_for_loads.at_put(i, base); 912 } 913 } 914 915 // Now let's split the CastPP->Loads through the Phi 916 for (int i = curr_castpp->outcnt()-1; i >= 0;) { 917 Node* use = curr_castpp->raw_out(i); 918 if (use->is_AddP()) { 919 for (int j = use->outcnt()-1; j >= 0;) { 920 Node* use_use = use->raw_out(j); 921 assert(use_use->is_Load(), "Expected this to be a Load node."); 922 923 // We can't make an unconditional load from a nullable input. The 924 // 'split_castpp_load_through_phi` method will add an 925 // 'If-Then-Else-Region` around nullable bases and only load from them 926 // when the input is not null. 927 Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist); 928 _igvn->replace_node(use_use, phi); 929 930 --j; 931 j = MIN2(j, (int)use->outcnt()-1); 932 } 933 934 _igvn->remove_dead_node(use); 935 } 936 --i; 937 i = MIN2(i, (int)curr_castpp->outcnt()-1); 938 } 939 } 940 941 // This method split a given CmpP/N through the Phi used in one of its inputs. 942 // As a result we convert a comparison with a pointer to a comparison with an 943 // integer. 944 // The only requirement is that one of the inputs of the CmpP/N must be a Phi 945 // while the other must be a constant. 946 // The splitting process is basically just cloning the CmpP/N above the input 947 // Phi. However, some (most) of the cloned CmpP/Ns won't be requred because we 948 // can prove at compile time the result of the comparison. 949 // 950 // Before: 951 // 952 // in1 in2 ... inN 953 // \ | / 954 // \ | / 955 // \ | / 956 // \ | / 957 // \ | / 958 // \ | / 959 // Phi 960 // | Other 961 // | / 962 // | / 963 // | / 964 // CmpP/N 965 // 966 // After: 967 // 968 // in1 Other in2 Other inN Other 969 // | | | | | | 970 // \ | | | | | 971 // \ / | / | / 972 // CmpP/N CmpP/N CmpP/N 973 // Bool Bool Bool 974 // \ | / 975 // \ | / 976 // \ | / 977 // \ | / 978 // \ | / 979 // \ | / 980 // \ | / 981 // \ | / 982 // Phi 983 // | 984 // | Zero 985 // | / 986 // | / 987 // | / 988 // CmpI 989 // 990 // 991 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) { 992 Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1); 993 assert(ophi->is_Phi(), "Expected this to be a Phi node."); 994 995 Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2); 996 Node* zero = _igvn->intcon(0); 997 BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test; 998 999 // This Phi will merge the result of the Cmps split through the Phi 1000 Node* res_phi = _igvn->transform(PhiNode::make(ophi->in(0), zero, TypeInt::INT)); 1001 1002 for (uint i=1; i<ophi->req(); i++) { 1003 Node* ophi_input = ophi->in(i); 1004 Node* res_phi_input = nullptr; 1005 1006 const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other); 1007 if (tcmp->singleton()) { 1008 res_phi_input = _igvn->makecon(tcmp); 1009 } else { 1010 Node* ncmp = _igvn->transform(cmp->clone()); 1011 ncmp->set_req(1, ophi_input); 1012 ncmp->set_req(2, other); 1013 Node* bol = _igvn->transform(new BoolNode(ncmp, mask)); 1014 res_phi_input = bol->as_Bool()->as_int_value(_igvn); 1015 } 1016 1017 res_phi->set_req(i, res_phi_input); 1018 } 1019 1020 Node* new_cmp = _igvn->transform(new CmpINode(res_phi, zero)); 1021 _igvn->replace_node(cmp, new_cmp); 1022 } 1023 1024 // Push the newly created AddP on alloc_worklist and patch 1025 // the connection graph. Note that the changes in the CG below 1026 // won't affect the ES of objects since the new nodes have the 1027 // same status as the old ones. 1028 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *> &alloc_worklist) { 1029 assert(data_phi != nullptr, "Output of split_through_phi is null."); 1030 assert(data_phi != previous_load, "Output of split_through_phi is same as input."); 1031 assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi."); 1032 1033 if (data_phi == nullptr || !data_phi->is_Phi()) { 1034 // Make this a retry? 1035 return ; 1036 } 1037 1038 Node* previous_addp = previous_load->in(MemNode::Address); 1039 FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field(); 1040 for (uint i = 1; i < data_phi->req(); i++) { 1041 Node* new_load = data_phi->in(i); 1042 1043 if (new_load->is_Phi()) { 1044 // new_load is currently the "intermediate_phi" from an specialized 1045 // CastPP. 1046 new_load = new_load->in(1); 1047 } 1048 1049 // "new_load" might actually be a constant, parameter, etc. 1050 if (new_load->is_Load()) { 1051 Node* new_addp = new_load->in(MemNode::Address); 1052 Node* base = get_addp_base(new_addp); 1053 1054 // The base might not be something that we can create an unique 1055 // type for. If that's the case we are done with that input. 1056 PointsToNode* jobj_ptn = unique_java_object(base); 1057 if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) { 1058 continue; 1059 } 1060 1061 // Push to alloc_worklist since the base has an unique_type 1062 alloc_worklist.append_if_missing(new_addp); 1063 1064 // Now let's add the node to the connection graph 1065 _nodes.at_grow(new_addp->_idx, nullptr); 1066 add_field(new_addp, fn->escape_state(), fn->offset()); 1067 add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx)); 1068 1069 // If the load doesn't load an object then it won't be 1070 // part of the connection graph 1071 PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx); 1072 if (curr_load_ptn != nullptr) { 1073 _nodes.at_grow(new_load->_idx, nullptr); 1074 add_local_var(new_load, curr_load_ptn->escape_state()); 1075 add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field()); 1076 } 1077 } 1078 } 1079 } 1080 1081 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *> &alloc_worklist) { 1082 // We'll pass this to 'split_through_phi' so that it'll do the split even 1083 // though the load doesn't have an unique instance type. 1084 bool ignore_missing_instance_id = true; 1085 1086 // All AddPs are present in the connection graph 1087 FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field(); 1088 1089 // Iterate over AddP looking for a Load 1090 for (int k = previous_addp->outcnt()-1; k >= 0;) { 1091 Node* previous_load = previous_addp->raw_out(k); 1092 if (previous_load->is_Load()) { 1093 Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id); 1094 1095 // Takes care of updating CG and split_unique_types worklists due to cloned 1096 // AddP->Load. 1097 updates_after_load_split(data_phi, previous_load, alloc_worklist); 1098 1099 _igvn->replace_node(previous_load, data_phi); 1100 } 1101 --k; 1102 k = MIN2(k, (int)previous_addp->outcnt()-1); 1103 } 1104 1105 // Remove the old AddP from the processing list because it's dead now 1106 assert(previous_addp->outcnt() == 0, "AddP should be dead now."); 1107 alloc_worklist.remove_if_existing(previous_addp); 1108 } 1109 1110 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the 1111 // selector is: 1112 // -> a '-1' constant, the i'th input of the original Phi is NSR. 1113 // -> a 'x' constant >=0, the i'th input of of original Phi will be SR and 1114 // the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects 1115 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const { 1116 Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1)); 1117 Node* selector = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT)); 1118 uint number_of_sr_objects = 0; 1119 for (uint i = 1; i < ophi->req(); i++) { 1120 Node* base = ophi->in(i); 1121 JavaObjectNode* ptn = unique_java_object(base); 1122 1123 if (ptn != nullptr && ptn->scalar_replaceable()) { 1124 Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects)); 1125 selector->set_req(i, sr_obj_idx); 1126 number_of_sr_objects++; 1127 } 1128 } 1129 1130 return selector->as_Phi(); 1131 } 1132 1133 // Returns true if the AddP node 'n' has at least one base that is a reducible 1134 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is 1135 // checked instead. 1136 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) { 1137 PointsToNode* ptn = ptnode_adr(n->_idx); 1138 if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) { 1139 return false; 1140 } 1141 1142 for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) { 1143 Node* base = i.get()->ideal_node(); 1144 1145 if (reducible_merges.member(base)) { 1146 return true; 1147 } 1148 1149 if (base->is_CastPP() || base->is_CheckCastPP()) { 1150 base = base->in(1); 1151 if (reducible_merges.member(base)) { 1152 return true; 1153 } 1154 } 1155 } 1156 1157 return false; 1158 } 1159 1160 // This method will call its helper method to reduce SafePoint nodes that use 1161 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same 1162 // "version" of Phi use the same debug information (regarding the Phi). 1163 // Therefore, I collect all safepoints and patch them all at once. 1164 // 1165 // The safepoints using the Phi node have to be processed before safepoints of 1166 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the 1167 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the 1168 // safepoint. If we process CastPP's safepoints before Phi's safepoints the 1169 // algorithm that process Phi's safepoints will think that the added Phi 1170 // reference is a regular reference. 1171 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) { 1172 PhiNode* selector = create_selector(ophi); 1173 Unique_Node_List safepoints; 1174 Unique_Node_List casts; 1175 1176 // Just collect the users of the Phis for later processing 1177 // in the needed order. 1178 for (uint i = 0; i < ophi->outcnt(); i++) { 1179 Node* use = ophi->raw_out(i); 1180 if (use->is_SafePoint()) { 1181 safepoints.push(use); 1182 } else if (use->is_CastPP()) { 1183 casts.push(use); 1184 } else { 1185 assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left."); 1186 } 1187 } 1188 1189 // Need to process safepoints using the Phi first 1190 if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) { 1191 return false; 1192 } 1193 1194 // Now process CastPP->safepoints 1195 for (uint i = 0; i < casts.size(); i++) { 1196 Node* cast = casts.at(i); 1197 Unique_Node_List cast_sfpts; 1198 1199 for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) { 1200 Node* use_use = cast->fast_out(j); 1201 if (use_use->is_SafePoint()) { 1202 cast_sfpts.push(use_use); 1203 } else { 1204 assert(use_use->outcnt() == 0, "Only SafePoint users should be left."); 1205 } 1206 } 1207 1208 if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) { 1209 return false; 1210 } 1211 } 1212 1213 return true; 1214 } 1215 1216 // This method will create a SafePointScalarMERGEnode for each SafePoint in 1217 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a 1218 // SafePointScalarObjectNode for each scalar replaceable input. Each 1219 // SafePointScalarMergeNode may describe multiple scalar replaced objects - 1220 // check detailed description in SafePointScalarMergeNode class header. 1221 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) { 1222 PhaseMacroExpand mexp(*_igvn); 1223 Node* original_sfpt_parent = cast != nullptr ? cast : ophi; 1224 const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr(); 1225 1226 Node* nsr_merge_pointer = ophi; 1227 if (cast != nullptr) { 1228 const Type* new_t = merge_t->meet(TypePtr::NULL_PTR); 1229 nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::RegularDependency, nullptr)); 1230 } 1231 1232 for (uint spi = 0; spi < safepoints.size(); spi++) { 1233 SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint(); 1234 JVMState *jvms = sfpt->jvms(); 1235 uint merge_idx = (sfpt->req() - jvms->scloff()); 1236 int debug_start = jvms->debug_start(); 1237 1238 SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx); 1239 smerge->init_req(0, _compile->root()); 1240 _igvn->register_new_node_with_optimizer(smerge); 1241 1242 // The next two inputs are: 1243 // (1) A copy of the original pointer to NSR objects. 1244 // (2) A selector, used to decide if we need to rematerialize an object 1245 // or use the pointer to a NSR object. 1246 // See more details of these fields in the declaration of SafePointScalarMergeNode 1247 sfpt->add_req(nsr_merge_pointer); 1248 sfpt->add_req(selector); 1249 1250 for (uint i = 1; i < ophi->req(); i++) { 1251 Node* base = ophi->in(i); 1252 JavaObjectNode* ptn = unique_java_object(base); 1253 1254 // If the base is not scalar replaceable we don't need to register information about 1255 // it at this time. 1256 if (ptn == nullptr || !ptn->scalar_replaceable()) { 1257 continue; 1258 } 1259 1260 AllocateNode* alloc = ptn->ideal_node()->as_Allocate(); 1261 Unique_Node_List value_worklist; 1262 #ifdef ASSERT 1263 const Type* res_type = alloc->result_cast()->bottom_type(); 1264 if (res_type->is_inlinetypeptr() && !Compile::current()->has_circular_inline_type()) { 1265 PhiNode* phi = ophi->as_Phi(); 1266 assert(!ophi->as_Phi()->can_push_inline_types_down(_igvn), "missed earlier scalarization opportunity"); 1267 } 1268 #endif 1269 SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt, &value_worklist); 1270 if (sobj == nullptr) { 1271 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1272 return false; 1273 } 1274 1275 // Now make a pass over the debug information replacing any references 1276 // to the allocated object with "sobj" 1277 Node* ccpp = alloc->result_cast(); 1278 sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn); 1279 1280 // Register the scalarized object as a candidate for reallocation 1281 smerge->add_req(sobj); 1282 1283 // Scalarize inline types that were added to the safepoint. 1284 // Don't allow linking a constant oop (if available) for flat array elements 1285 // because Deoptimization::reassign_flat_array_elements needs field values. 1286 const bool allow_oop = !merge_t->is_flat(); 1287 for (uint j = 0; j < value_worklist.size(); ++j) { 1288 InlineTypeNode* vt = value_worklist.at(j)->as_InlineType(); 1289 vt->make_scalar_in_safepoints(_igvn, allow_oop); 1290 } 1291 } 1292 1293 // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge" 1294 sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn); 1295 1296 // The call to 'replace_edges_in_range' above might have removed the 1297 // reference to ophi that we need at _merge_pointer_idx. The line below make 1298 // sure the reference is maintained. 1299 sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer); 1300 _igvn->_worklist.push(sfpt); 1301 } 1302 1303 return true; 1304 } 1305 1306 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *> &alloc_worklist, GrowableArray<Node *> &memnode_worklist) { 1307 bool delay = _igvn->delay_transform(); 1308 _igvn->set_delay_transform(true); 1309 _igvn->hash_delete(ophi); 1310 1311 // Copying all users first because some will be removed and others won't. 1312 // Ophi also may acquire some new users as part of Cast reduction. 1313 // CastPPs also need to be processed before CmpPs. 1314 Unique_Node_List castpps; 1315 Unique_Node_List others; 1316 for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) { 1317 Node* use = ophi->fast_out(i); 1318 1319 if (use->is_CastPP()) { 1320 castpps.push(use); 1321 } else if (use->is_AddP() || use->is_Cmp()) { 1322 others.push(use); 1323 } else if (use->is_SafePoint()) { 1324 // processed later 1325 } else { 1326 assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt()); 1327 } 1328 } 1329 1330 // CastPPs need to be processed before Cmps because during the process of 1331 // splitting CastPPs we make reference to the inputs of the Cmp that is used 1332 // by the If controlling the CastPP. 1333 for (uint i = 0; i < castpps.size(); i++) { 1334 reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist, memnode_worklist); 1335 } 1336 1337 for (uint i = 0; i < others.size(); i++) { 1338 Node* use = others.at(i); 1339 1340 if (use->is_AddP()) { 1341 reduce_phi_on_field_access(use, alloc_worklist); 1342 } else if(use->is_Cmp()) { 1343 reduce_phi_on_cmp(use); 1344 } 1345 } 1346 1347 _igvn->set_delay_transform(delay); 1348 } 1349 1350 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) { 1351 Node* null_ptr = _igvn->makecon(TypePtr::NULL_PTR); 1352 const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr(); 1353 const Type* new_t = merge_t->meet(TypePtr::NULL_PTR); 1354 Node* new_phi = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t)); 1355 1356 for (uint i = 1; i < ophi->req(); i++) { 1357 Node* base = ophi->in(i); 1358 JavaObjectNode* ptn = unique_java_object(base); 1359 1360 if (ptn != nullptr && ptn->scalar_replaceable()) { 1361 new_phi->set_req(i, null_ptr); 1362 } else { 1363 new_phi->set_req(i, ophi->in(i)); 1364 } 1365 } 1366 1367 for (int i = ophi->outcnt()-1; i >= 0;) { 1368 Node* out = ophi->raw_out(i); 1369 1370 if (out->is_ConstraintCast()) { 1371 const Type* out_t = _igvn->type(out)->make_ptr(); 1372 const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR); 1373 bool change = out_new_t != out_t; 1374 1375 for (int j = out->outcnt()-1; change && j >= 0; --j) { 1376 Node* out2 = out->raw_out(j); 1377 if (!out2->is_SafePoint()) { 1378 change = false; 1379 break; 1380 } 1381 } 1382 1383 if (change) { 1384 Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::StrongDependency, nullptr); 1385 _igvn->replace_node(out, new_cast); 1386 _igvn->register_new_node_with_optimizer(new_cast); 1387 } 1388 } 1389 1390 --i; 1391 i = MIN2(i, (int)ophi->outcnt()-1); 1392 } 1393 1394 _igvn->replace_node(ophi, new_phi); 1395 } 1396 1397 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) { 1398 if (!C->do_reduce_allocation_merges()) return; 1399 1400 Unique_Node_List ideal_nodes; 1401 ideal_nodes.map(C->live_nodes(), nullptr); // preallocate space 1402 ideal_nodes.push(root); 1403 1404 for (uint next = 0; next < ideal_nodes.size(); ++next) { 1405 Node* n = ideal_nodes.at(next); 1406 1407 if (n->is_SafePointScalarMerge()) { 1408 SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge(); 1409 1410 // Validate inputs of merge 1411 for (uint i = 1; i < merge->req(); i++) { 1412 if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) { 1413 assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject."); 1414 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1415 } 1416 } 1417 1418 // Validate users of merge 1419 for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) { 1420 Node* sfpt = merge->fast_out(i); 1421 if (sfpt->is_SafePoint()) { 1422 int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms()); 1423 1424 if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) { 1425 assert(false, "SafePointScalarMerge nodes can't be nested."); 1426 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1427 } 1428 } else { 1429 assert(false, "Only safepoints can use SafePointScalarMerge nodes."); 1430 C->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 1431 } 1432 } 1433 } 1434 1435 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1436 Node* m = n->fast_out(i); 1437 ideal_nodes.push(m); 1438 } 1439 } 1440 } 1441 1442 // Returns true if there is an object in the scope of sfn that does not escape globally. 1443 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) { 1444 Compile* C = _compile; 1445 for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1446 if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() || 1447 DeoptimizeObjectsALot) { 1448 // Jvmti agents can access locals. Must provide info about local objects at runtime. 1449 int num_locs = jvms->loc_size(); 1450 for (int idx = 0; idx < num_locs; idx++) { 1451 Node* l = sfn->local(jvms, idx); 1452 if (not_global_escape(l)) { 1453 return true; 1454 } 1455 } 1456 } 1457 if (C->env()->jvmti_can_get_owned_monitor_info() || 1458 C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) { 1459 // Jvmti agents can read monitors. Must provide info about locked objects at runtime. 1460 int num_mon = jvms->nof_monitors(); 1461 for (int idx = 0; idx < num_mon; idx++) { 1462 Node* m = sfn->monitor_obj(jvms, idx); 1463 if (m != nullptr && not_global_escape(m)) { 1464 return true; 1465 } 1466 } 1467 } 1468 } 1469 return false; 1470 } 1471 1472 // Returns true if at least one of the arguments to the call is an object 1473 // that does not escape globally. 1474 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) { 1475 if (call->method() != nullptr) { 1476 uint max_idx = TypeFunc::Parms + call->method()->arg_size(); 1477 for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) { 1478 Node* p = call->in(idx); 1479 if (not_global_escape(p)) { 1480 return true; 1481 } 1482 } 1483 } else { 1484 const char* name = call->as_CallStaticJava()->_name; 1485 assert(name != nullptr, "no name"); 1486 // no arg escapes through uncommon traps 1487 if (strcmp(name, "uncommon_trap") != 0) { 1488 // process_call_arguments() assumes that all arguments escape globally 1489 const TypeTuple* d = call->tf()->domain_sig(); 1490 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1491 const Type* at = d->field_at(i); 1492 if (at->isa_oopptr() != nullptr) { 1493 return true; 1494 } 1495 } 1496 } 1497 } 1498 return false; 1499 } 1500 1501 1502 1503 // Utility function for nodes that load an object 1504 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 1505 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1506 // ThreadLocal has RawPtr type. 1507 const Type* t = _igvn->type(n); 1508 if (t->make_ptr() != nullptr) { 1509 Node* adr = n->in(MemNode::Address); 1510 #ifdef ASSERT 1511 if (!adr->is_AddP()) { 1512 assert(_igvn->type(adr)->isa_rawptr(), "sanity"); 1513 } else { 1514 assert((ptnode_adr(adr->_idx) == nullptr || 1515 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity"); 1516 } 1517 #endif 1518 add_local_var_and_edge(n, PointsToNode::NoEscape, 1519 adr, delayed_worklist); 1520 } 1521 } 1522 1523 // Populate Connection Graph with PointsTo nodes and create simple 1524 // connection graph edges. 1525 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 1526 assert(!_verify, "this method should not be called for verification"); 1527 PhaseGVN* igvn = _igvn; 1528 uint n_idx = n->_idx; 1529 PointsToNode* n_ptn = ptnode_adr(n_idx); 1530 if (n_ptn != nullptr) { 1531 return; // No need to redefine PointsTo node during first iteration. 1532 } 1533 int opcode = n->Opcode(); 1534 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode); 1535 if (gc_handled) { 1536 return; // Ignore node if already handled by GC. 1537 } 1538 1539 if (n->is_Call()) { 1540 // Arguments to allocation and locking don't escape. 1541 if (n->is_AbstractLock()) { 1542 // Put Lock and Unlock nodes on IGVN worklist to process them during 1543 // first IGVN optimization when escape information is still available. 1544 record_for_optimizer(n); 1545 } else if (n->is_Allocate()) { 1546 add_call_node(n->as_Call()); 1547 record_for_optimizer(n); 1548 } else { 1549 if (n->is_CallStaticJava()) { 1550 const char* name = n->as_CallStaticJava()->_name; 1551 if (name != nullptr && strcmp(name, "uncommon_trap") == 0) { 1552 return; // Skip uncommon traps 1553 } 1554 } 1555 // Don't mark as processed since call's arguments have to be processed. 1556 delayed_worklist->push(n); 1557 // Check if a call returns an object. 1558 if ((n->as_Call()->returns_pointer() && 1559 n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) || 1560 (n->is_CallStaticJava() && 1561 n->as_CallStaticJava()->is_boxing_method())) { 1562 add_call_node(n->as_Call()); 1563 } else if (n->as_Call()->tf()->returns_inline_type_as_fields()) { 1564 bool returns_oop = false; 1565 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) { 1566 ProjNode* pn = n->fast_out(i)->as_Proj(); 1567 if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) { 1568 returns_oop = true; 1569 } 1570 } 1571 if (returns_oop) { 1572 add_call_node(n->as_Call()); 1573 } 1574 } 1575 } 1576 return; 1577 } 1578 // Put this check here to process call arguments since some call nodes 1579 // point to phantom_obj. 1580 if (n_ptn == phantom_obj || n_ptn == null_obj) { 1581 return; // Skip predefined nodes. 1582 } 1583 switch (opcode) { 1584 case Op_AddP: { 1585 Node* base = get_addp_base(n); 1586 PointsToNode* ptn_base = ptnode_adr(base->_idx); 1587 // Field nodes are created for all field types. They are used in 1588 // adjust_scalar_replaceable_state() and split_unique_types(). 1589 // Note, non-oop fields will have only base edges in Connection 1590 // Graph because such fields are not used for oop loads and stores. 1591 int offset = address_offset(n, igvn); 1592 add_field(n, PointsToNode::NoEscape, offset); 1593 if (ptn_base == nullptr) { 1594 delayed_worklist->push(n); // Process it later. 1595 } else { 1596 n_ptn = ptnode_adr(n_idx); 1597 add_base(n_ptn->as_Field(), ptn_base); 1598 } 1599 break; 1600 } 1601 case Op_CastX2P: { 1602 map_ideal_node(n, phantom_obj); 1603 break; 1604 } 1605 case Op_InlineType: 1606 case Op_CastPP: 1607 case Op_CheckCastPP: 1608 case Op_EncodeP: 1609 case Op_DecodeN: 1610 case Op_EncodePKlass: 1611 case Op_DecodeNKlass: { 1612 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist); 1613 break; 1614 } 1615 case Op_CMoveP: { 1616 add_local_var(n, PointsToNode::NoEscape); 1617 // Do not add edges during first iteration because some could be 1618 // not defined yet. 1619 delayed_worklist->push(n); 1620 break; 1621 } 1622 case Op_ConP: 1623 case Op_ConN: 1624 case Op_ConNKlass: { 1625 // assume all oop constants globally escape except for null 1626 PointsToNode::EscapeState es; 1627 const Type* t = igvn->type(n); 1628 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) { 1629 es = PointsToNode::NoEscape; 1630 } else { 1631 es = PointsToNode::GlobalEscape; 1632 } 1633 PointsToNode* ptn_con = add_java_object(n, es); 1634 set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer")); 1635 break; 1636 } 1637 case Op_CreateEx: { 1638 // assume that all exception objects globally escape 1639 map_ideal_node(n, phantom_obj); 1640 break; 1641 } 1642 case Op_LoadKlass: 1643 case Op_LoadNKlass: { 1644 // Unknown class is loaded 1645 map_ideal_node(n, phantom_obj); 1646 break; 1647 } 1648 case Op_LoadP: 1649 case Op_LoadN: { 1650 add_objload_to_connection_graph(n, delayed_worklist); 1651 break; 1652 } 1653 case Op_Parm: { 1654 map_ideal_node(n, phantom_obj); 1655 break; 1656 } 1657 case Op_PartialSubtypeCheck: { 1658 // Produces Null or notNull and is used in only in CmpP so 1659 // phantom_obj could be used. 1660 map_ideal_node(n, phantom_obj); // Result is unknown 1661 break; 1662 } 1663 case Op_Phi: { 1664 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1665 // ThreadLocal has RawPtr type. 1666 const Type* t = n->as_Phi()->type(); 1667 if (t->make_ptr() != nullptr) { 1668 add_local_var(n, PointsToNode::NoEscape); 1669 // Do not add edges during first iteration because some could be 1670 // not defined yet. 1671 delayed_worklist->push(n); 1672 } 1673 break; 1674 } 1675 case Op_Proj: { 1676 // we are only interested in the oop result projection from a call 1677 if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() && 1678 (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) { 1679 assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) || 1680 n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?"); 1681 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist); 1682 } 1683 break; 1684 } 1685 case Op_Rethrow: // Exception object escapes 1686 case Op_Return: { 1687 if (n->req() > TypeFunc::Parms && 1688 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 1689 // Treat Return value as LocalVar with GlobalEscape escape state. 1690 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist); 1691 } 1692 break; 1693 } 1694 case Op_CompareAndExchangeP: 1695 case Op_CompareAndExchangeN: 1696 case Op_GetAndSetP: 1697 case Op_GetAndSetN: { 1698 add_objload_to_connection_graph(n, delayed_worklist); 1699 // fall-through 1700 } 1701 case Op_StoreP: 1702 case Op_StoreN: 1703 case Op_StoreNKlass: 1704 case Op_WeakCompareAndSwapP: 1705 case Op_WeakCompareAndSwapN: 1706 case Op_CompareAndSwapP: 1707 case Op_CompareAndSwapN: { 1708 add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1709 break; 1710 } 1711 case Op_AryEq: 1712 case Op_CountPositives: 1713 case Op_StrComp: 1714 case Op_StrEquals: 1715 case Op_StrIndexOf: 1716 case Op_StrIndexOfChar: 1717 case Op_StrInflatedCopy: 1718 case Op_StrCompressedCopy: 1719 case Op_VectorizedHashCode: 1720 case Op_EncodeISOArray: { 1721 add_local_var(n, PointsToNode::ArgEscape); 1722 delayed_worklist->push(n); // Process it later. 1723 break; 1724 } 1725 case Op_ThreadLocal: { 1726 PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape); 1727 set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer")); 1728 break; 1729 } 1730 case Op_Blackhole: { 1731 // All blackhole pointer arguments are globally escaping. 1732 // Only do this if there is at least one pointer argument. 1733 // Do not add edges during first iteration because some could be 1734 // not defined yet, defer to final step. 1735 for (uint i = 0; i < n->req(); i++) { 1736 Node* in = n->in(i); 1737 if (in != nullptr) { 1738 const Type* at = _igvn->type(in); 1739 if (!at->isa_ptr()) continue; 1740 1741 add_local_var(n, PointsToNode::GlobalEscape); 1742 delayed_worklist->push(n); 1743 break; 1744 } 1745 } 1746 break; 1747 } 1748 default: 1749 ; // Do nothing for nodes not related to EA. 1750 } 1751 return; 1752 } 1753 1754 // Add final simple edges to graph. 1755 void ConnectionGraph::add_final_edges(Node *n) { 1756 PointsToNode* n_ptn = ptnode_adr(n->_idx); 1757 #ifdef ASSERT 1758 if (_verify && n_ptn->is_JavaObject()) 1759 return; // This method does not change graph for JavaObject. 1760 #endif 1761 1762 if (n->is_Call()) { 1763 process_call_arguments(n->as_Call()); 1764 return; 1765 } 1766 assert(n->is_Store() || n->is_LoadStore() || 1767 ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)), 1768 "node should be registered already"); 1769 int opcode = n->Opcode(); 1770 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode); 1771 if (gc_handled) { 1772 return; // Ignore node if already handled by GC. 1773 } 1774 switch (opcode) { 1775 case Op_AddP: { 1776 Node* base = get_addp_base(n); 1777 PointsToNode* ptn_base = ptnode_adr(base->_idx); 1778 assert(ptn_base != nullptr, "field's base should be registered"); 1779 add_base(n_ptn->as_Field(), ptn_base); 1780 break; 1781 } 1782 case Op_InlineType: 1783 case Op_CastPP: 1784 case Op_CheckCastPP: 1785 case Op_EncodeP: 1786 case Op_DecodeN: 1787 case Op_EncodePKlass: 1788 case Op_DecodeNKlass: { 1789 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr); 1790 break; 1791 } 1792 case Op_CMoveP: { 1793 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) { 1794 Node* in = n->in(i); 1795 if (in == nullptr) { 1796 continue; // ignore null 1797 } 1798 Node* uncast_in = in->uncast(); 1799 if (uncast_in->is_top() || uncast_in == n) { 1800 continue; // ignore top or inputs which go back this node 1801 } 1802 PointsToNode* ptn = ptnode_adr(in->_idx); 1803 assert(ptn != nullptr, "node should be registered"); 1804 add_edge(n_ptn, ptn); 1805 } 1806 break; 1807 } 1808 case Op_LoadP: 1809 case Op_LoadN: { 1810 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1811 // ThreadLocal has RawPtr type. 1812 assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type"); 1813 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr); 1814 break; 1815 } 1816 case Op_Phi: { 1817 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 1818 // ThreadLocal has RawPtr type. 1819 assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type"); 1820 for (uint i = 1; i < n->req(); i++) { 1821 Node* in = n->in(i); 1822 if (in == nullptr) { 1823 continue; // ignore null 1824 } 1825 Node* uncast_in = in->uncast(); 1826 if (uncast_in->is_top() || uncast_in == n) { 1827 continue; // ignore top or inputs which go back this node 1828 } 1829 PointsToNode* ptn = ptnode_adr(in->_idx); 1830 assert(ptn != nullptr, "node should be registered"); 1831 add_edge(n_ptn, ptn); 1832 } 1833 break; 1834 } 1835 case Op_Proj: { 1836 // we are only interested in the oop result projection from a call 1837 assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) || 1838 n->in(0)->as_Call()->tf()->returns_inline_type_as_fields(), "what kind of oop return is it?"); 1839 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr); 1840 break; 1841 } 1842 case Op_Rethrow: // Exception object escapes 1843 case Op_Return: { 1844 assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(), 1845 "Unexpected node type"); 1846 // Treat Return value as LocalVar with GlobalEscape escape state. 1847 add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr); 1848 break; 1849 } 1850 case Op_CompareAndExchangeP: 1851 case Op_CompareAndExchangeN: 1852 case Op_GetAndSetP: 1853 case Op_GetAndSetN:{ 1854 assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type"); 1855 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr); 1856 // fall-through 1857 } 1858 case Op_CompareAndSwapP: 1859 case Op_CompareAndSwapN: 1860 case Op_WeakCompareAndSwapP: 1861 case Op_WeakCompareAndSwapN: 1862 case Op_StoreP: 1863 case Op_StoreN: 1864 case Op_StoreNKlass:{ 1865 add_final_edges_unsafe_access(n, opcode); 1866 break; 1867 } 1868 case Op_VectorizedHashCode: 1869 case Op_AryEq: 1870 case Op_CountPositives: 1871 case Op_StrComp: 1872 case Op_StrEquals: 1873 case Op_StrIndexOf: 1874 case Op_StrIndexOfChar: 1875 case Op_StrInflatedCopy: 1876 case Op_StrCompressedCopy: 1877 case Op_EncodeISOArray: { 1878 // char[]/byte[] arrays passed to string intrinsic do not escape but 1879 // they are not scalar replaceable. Adjust escape state for them. 1880 // Start from in(2) edge since in(1) is memory edge. 1881 for (uint i = 2; i < n->req(); i++) { 1882 Node* adr = n->in(i); 1883 const Type* at = _igvn->type(adr); 1884 if (!adr->is_top() && at->isa_ptr()) { 1885 assert(at == Type::TOP || at == TypePtr::NULL_PTR || 1886 at->isa_ptr() != nullptr, "expecting a pointer"); 1887 if (adr->is_AddP()) { 1888 adr = get_addp_base(adr); 1889 } 1890 PointsToNode* ptn = ptnode_adr(adr->_idx); 1891 assert(ptn != nullptr, "node should be registered"); 1892 add_edge(n_ptn, ptn); 1893 } 1894 } 1895 break; 1896 } 1897 case Op_Blackhole: { 1898 // All blackhole pointer arguments are globally escaping. 1899 for (uint i = 0; i < n->req(); i++) { 1900 Node* in = n->in(i); 1901 if (in != nullptr) { 1902 const Type* at = _igvn->type(in); 1903 if (!at->isa_ptr()) continue; 1904 1905 if (in->is_AddP()) { 1906 in = get_addp_base(in); 1907 } 1908 1909 PointsToNode* ptn = ptnode_adr(in->_idx); 1910 assert(ptn != nullptr, "should be defined already"); 1911 set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole")); 1912 add_edge(n_ptn, ptn); 1913 } 1914 } 1915 break; 1916 } 1917 default: { 1918 // This method should be called only for EA specific nodes which may 1919 // miss some edges when they were created. 1920 #ifdef ASSERT 1921 n->dump(1); 1922 #endif 1923 guarantee(false, "unknown node"); 1924 } 1925 } 1926 return; 1927 } 1928 1929 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) { 1930 Node* adr = n->in(MemNode::Address); 1931 const Type* adr_type = _igvn->type(adr); 1932 adr_type = adr_type->make_ptr(); 1933 if (adr_type == nullptr) { 1934 return; // skip dead nodes 1935 } 1936 if (adr_type->isa_oopptr() 1937 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 1938 && adr_type == TypeRawPtr::NOTNULL 1939 && is_captured_store_address(adr))) { 1940 delayed_worklist->push(n); // Process it later. 1941 #ifdef ASSERT 1942 assert (adr->is_AddP(), "expecting an AddP"); 1943 if (adr_type == TypeRawPtr::NOTNULL) { 1944 // Verify a raw address for a store captured by Initialize node. 1945 int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 1946 assert(offs != Type::OffsetBot, "offset must be a constant"); 1947 } 1948 #endif 1949 } else { 1950 // Ignore copy the displaced header to the BoxNode (OSR compilation). 1951 if (adr->is_BoxLock()) { 1952 return; 1953 } 1954 // Stored value escapes in unsafe access. 1955 if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 1956 delayed_worklist->push(n); // Process unsafe access later. 1957 return; 1958 } 1959 #ifdef ASSERT 1960 n->dump(1); 1961 assert(false, "not unsafe"); 1962 #endif 1963 } 1964 } 1965 1966 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) { 1967 Node* adr = n->in(MemNode::Address); 1968 const Type *adr_type = _igvn->type(adr); 1969 adr_type = adr_type->make_ptr(); 1970 #ifdef ASSERT 1971 if (adr_type == nullptr) { 1972 n->dump(1); 1973 assert(adr_type != nullptr, "dead node should not be on list"); 1974 return true; 1975 } 1976 #endif 1977 1978 if (adr_type->isa_oopptr() 1979 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 1980 && adr_type == TypeRawPtr::NOTNULL 1981 && is_captured_store_address(adr))) { 1982 // Point Address to Value 1983 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 1984 assert(adr_ptn != nullptr && 1985 adr_ptn->as_Field()->is_oop(), "node should be registered"); 1986 Node* val = n->in(MemNode::ValueIn); 1987 PointsToNode* ptn = ptnode_adr(val->_idx); 1988 assert(ptn != nullptr, "node should be registered"); 1989 add_edge(adr_ptn, ptn); 1990 return true; 1991 } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 1992 // Stored value escapes in unsafe access. 1993 Node* val = n->in(MemNode::ValueIn); 1994 PointsToNode* ptn = ptnode_adr(val->_idx); 1995 assert(ptn != nullptr, "node should be registered"); 1996 set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address")); 1997 // Add edge to object for unsafe access with offset. 1998 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 1999 assert(adr_ptn != nullptr, "node should be registered"); 2000 if (adr_ptn->is_Field()) { 2001 assert(adr_ptn->as_Field()->is_oop(), "should be oop field"); 2002 add_edge(adr_ptn, ptn); 2003 } 2004 return true; 2005 } 2006 #ifdef ASSERT 2007 n->dump(1); 2008 assert(false, "not unsafe"); 2009 #endif 2010 return false; 2011 } 2012 2013 void ConnectionGraph::add_call_node(CallNode* call) { 2014 assert(call->returns_pointer() || call->tf()->returns_inline_type_as_fields(), "only for call which returns pointer"); 2015 uint call_idx = call->_idx; 2016 if (call->is_Allocate()) { 2017 Node* k = call->in(AllocateNode::KlassNode); 2018 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr(); 2019 assert(kt != nullptr, "TypeKlassPtr required."); 2020 PointsToNode::EscapeState es = PointsToNode::NoEscape; 2021 bool scalar_replaceable = true; 2022 NOT_PRODUCT(const char* nsr_reason = ""); 2023 if (call->is_AllocateArray()) { 2024 if (!kt->isa_aryklassptr()) { // StressReflectiveCode 2025 es = PointsToNode::GlobalEscape; 2026 } else { 2027 int length = call->in(AllocateNode::ALength)->find_int_con(-1); 2028 if (length < 0) { 2029 // Not scalar replaceable if the length is not constant. 2030 scalar_replaceable = false; 2031 NOT_PRODUCT(nsr_reason = "has a non-constant length"); 2032 } else if (length > EliminateAllocationArraySizeLimit) { 2033 // Not scalar replaceable if the length is too big. 2034 scalar_replaceable = false; 2035 NOT_PRODUCT(nsr_reason = "has a length that is too big"); 2036 } 2037 } 2038 } else { // Allocate instance 2039 if (!kt->isa_instklassptr()) { // StressReflectiveCode 2040 es = PointsToNode::GlobalEscape; 2041 } else { 2042 const TypeInstKlassPtr* ikt = kt->is_instklassptr(); 2043 ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass(); 2044 if (ik->is_subclass_of(_compile->env()->Thread_klass()) || 2045 ik->is_subclass_of(_compile->env()->Reference_klass()) || 2046 !ik->can_be_instantiated() || 2047 ik->has_finalizer()) { 2048 es = PointsToNode::GlobalEscape; 2049 } else { 2050 int nfields = ik->as_instance_klass()->nof_nonstatic_fields(); 2051 if (nfields > EliminateAllocationFieldsLimit) { 2052 // Not scalar replaceable if there are too many fields. 2053 scalar_replaceable = false; 2054 NOT_PRODUCT(nsr_reason = "has too many fields"); 2055 } 2056 } 2057 } 2058 } 2059 add_java_object(call, es); 2060 PointsToNode* ptn = ptnode_adr(call_idx); 2061 if (!scalar_replaceable && ptn->scalar_replaceable()) { 2062 set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason)); 2063 } 2064 } else if (call->is_CallStaticJava()) { 2065 // Call nodes could be different types: 2066 // 2067 // 1. CallDynamicJavaNode (what happened during call is unknown): 2068 // 2069 // - mapped to GlobalEscape JavaObject node if oop is returned; 2070 // 2071 // - all oop arguments are escaping globally; 2072 // 2073 // 2. CallStaticJavaNode (execute bytecode analysis if possible): 2074 // 2075 // - the same as CallDynamicJavaNode if can't do bytecode analysis; 2076 // 2077 // - mapped to GlobalEscape JavaObject node if unknown oop is returned; 2078 // - mapped to NoEscape JavaObject node if non-escaping object allocated 2079 // during call is returned; 2080 // - mapped to ArgEscape LocalVar node pointed to object arguments 2081 // which are returned and does not escape during call; 2082 // 2083 // - oop arguments escaping status is defined by bytecode analysis; 2084 // 2085 // For a static call, we know exactly what method is being called. 2086 // Use bytecode estimator to record whether the call's return value escapes. 2087 ciMethod* meth = call->as_CallJava()->method(); 2088 if (meth == nullptr) { 2089 const char* name = call->as_CallStaticJava()->_name; 2090 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 || 2091 strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0, "TODO: add failed case check"); 2092 // Returns a newly allocated non-escaped object. 2093 add_java_object(call, PointsToNode::NoEscape); 2094 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray")); 2095 } else if (meth->is_boxing_method()) { 2096 // Returns boxing object 2097 PointsToNode::EscapeState es; 2098 vmIntrinsics::ID intr = meth->intrinsic_id(); 2099 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) { 2100 // It does not escape if object is always allocated. 2101 es = PointsToNode::NoEscape; 2102 } else { 2103 // It escapes globally if object could be loaded from cache. 2104 es = PointsToNode::GlobalEscape; 2105 } 2106 add_java_object(call, es); 2107 if (es == PointsToNode::GlobalEscape) { 2108 set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache")); 2109 } 2110 } else { 2111 BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); 2112 call_analyzer->copy_dependencies(_compile->dependencies()); 2113 if (call_analyzer->is_return_allocated()) { 2114 // Returns a newly allocated non-escaped object, simply 2115 // update dependency information. 2116 // Mark it as NoEscape so that objects referenced by 2117 // it's fields will be marked as NoEscape at least. 2118 add_java_object(call, PointsToNode::NoEscape); 2119 set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call")); 2120 } else { 2121 // Determine whether any arguments are returned. 2122 const TypeTuple* d = call->tf()->domain_cc(); 2123 bool ret_arg = false; 2124 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2125 if (d->field_at(i)->isa_ptr() != nullptr && 2126 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { 2127 ret_arg = true; 2128 break; 2129 } 2130 } 2131 if (ret_arg) { 2132 add_local_var(call, PointsToNode::ArgEscape); 2133 } else { 2134 // Returns unknown object. 2135 map_ideal_node(call, phantom_obj); 2136 } 2137 } 2138 } 2139 } else { 2140 // An other type of call, assume the worst case: 2141 // returned value is unknown and globally escapes. 2142 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check"); 2143 map_ideal_node(call, phantom_obj); 2144 } 2145 } 2146 2147 void ConnectionGraph::process_call_arguments(CallNode *call) { 2148 bool is_arraycopy = false; 2149 switch (call->Opcode()) { 2150 #ifdef ASSERT 2151 case Op_Allocate: 2152 case Op_AllocateArray: 2153 case Op_Lock: 2154 case Op_Unlock: 2155 assert(false, "should be done already"); 2156 break; 2157 #endif 2158 case Op_ArrayCopy: 2159 case Op_CallLeafNoFP: 2160 // Most array copies are ArrayCopy nodes at this point but there 2161 // are still a few direct calls to the copy subroutines (See 2162 // PhaseStringOpts::copy_string()) 2163 is_arraycopy = (call->Opcode() == Op_ArrayCopy) || 2164 call->as_CallLeaf()->is_call_to_arraycopystub(); 2165 // fall through 2166 case Op_CallLeafVector: 2167 case Op_CallLeaf: { 2168 // Stub calls, objects do not escape but they are not scale replaceable. 2169 // Adjust escape state for outgoing arguments. 2170 const TypeTuple * d = call->tf()->domain_sig(); 2171 bool src_has_oops = false; 2172 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2173 const Type* at = d->field_at(i); 2174 Node *arg = call->in(i); 2175 if (arg == nullptr) { 2176 continue; 2177 } 2178 const Type *aat = _igvn->type(arg); 2179 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) { 2180 continue; 2181 } 2182 if (arg->is_AddP()) { 2183 // 2184 // The inline_native_clone() case when the arraycopy stub is called 2185 // after the allocation before Initialize and CheckCastPP nodes. 2186 // Or normal arraycopy for object arrays case. 2187 // 2188 // Set AddP's base (Allocate) as not scalar replaceable since 2189 // pointer to the base (with offset) is passed as argument. 2190 // 2191 arg = get_addp_base(arg); 2192 } 2193 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 2194 assert(arg_ptn != nullptr, "should be registered"); 2195 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state(); 2196 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) { 2197 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || 2198 aat->isa_ptr() != nullptr, "expecting an Ptr"); 2199 bool arg_has_oops = aat->isa_oopptr() && 2200 (aat->isa_instptr() || 2201 (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)) || 2202 (aat->isa_aryptr() && aat->isa_aryptr()->elem() != nullptr && 2203 aat->isa_aryptr()->is_flat() && 2204 aat->isa_aryptr()->elem()->inline_klass()->contains_oops())); 2205 if (i == TypeFunc::Parms) { 2206 src_has_oops = arg_has_oops; 2207 } 2208 // 2209 // src or dst could be j.l.Object when other is basic type array: 2210 // 2211 // arraycopy(char[],0,Object*,0,size); 2212 // arraycopy(Object*,0,char[],0,size); 2213 // 2214 // Don't add edges in such cases. 2215 // 2216 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy && 2217 arg_has_oops && (i > TypeFunc::Parms); 2218 #ifdef ASSERT 2219 if (!(is_arraycopy || 2220 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) || 2221 (call->as_CallLeaf()->_name != nullptr && 2222 (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 || 2223 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 || 2224 strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 || 2225 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 || 2226 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 || 2227 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 || 2228 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 || 2229 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 || 2230 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 || 2231 strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 || 2232 strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 || 2233 strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 || 2234 strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 || 2235 strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 || 2236 strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 || 2237 strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 || 2238 strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 || 2239 strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 || 2240 strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 || 2241 strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 || 2242 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 || 2243 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 || 2244 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 || 2245 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 || 2246 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 || 2247 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 || 2248 strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 || 2249 strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 || 2250 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 || 2251 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 || 2252 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 || 2253 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 || 2254 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 || 2255 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 || 2256 strcmp(call->as_CallLeaf()->_name, "load_unknown_inline") == 0 || 2257 strcmp(call->as_CallLeaf()->_name, "store_unknown_inline") == 0 || 2258 strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 || 2259 strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 || 2260 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 || 2261 strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 || 2262 strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 || 2263 strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 || 2264 strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 || 2265 strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0) 2266 ))) { 2267 call->dump(); 2268 fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name); 2269 } 2270 #endif 2271 // Always process arraycopy's destination object since 2272 // we need to add all possible edges to references in 2273 // source object. 2274 if (arg_esc >= PointsToNode::ArgEscape && 2275 !arg_is_arraycopy_dest) { 2276 continue; 2277 } 2278 PointsToNode::EscapeState es = PointsToNode::ArgEscape; 2279 if (call->is_ArrayCopy()) { 2280 ArrayCopyNode* ac = call->as_ArrayCopy(); 2281 if (ac->is_clonebasic() || 2282 ac->is_arraycopy_validated() || 2283 ac->is_copyof_validated() || 2284 ac->is_copyofrange_validated()) { 2285 es = PointsToNode::NoEscape; 2286 } 2287 } 2288 set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2289 if (arg_is_arraycopy_dest) { 2290 Node* src = call->in(TypeFunc::Parms); 2291 if (src->is_AddP()) { 2292 src = get_addp_base(src); 2293 } 2294 PointsToNode* src_ptn = ptnode_adr(src->_idx); 2295 assert(src_ptn != nullptr, "should be registered"); 2296 if (arg_ptn != src_ptn) { 2297 // Special arraycopy edge: 2298 // A destination object's field can't have the source object 2299 // as base since objects escape states are not related. 2300 // Only escape state of destination object's fields affects 2301 // escape state of fields in source object. 2302 add_arraycopy(call, es, src_ptn, arg_ptn); 2303 } 2304 } 2305 } 2306 } 2307 break; 2308 } 2309 case Op_CallStaticJava: { 2310 // For a static call, we know exactly what method is being called. 2311 // Use bytecode estimator to record the call's escape affects 2312 #ifdef ASSERT 2313 const char* name = call->as_CallStaticJava()->_name; 2314 assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only"); 2315 #endif 2316 ciMethod* meth = call->as_CallJava()->method(); 2317 if ((meth != nullptr) && meth->is_boxing_method()) { 2318 break; // Boxing methods do not modify any oops. 2319 } 2320 BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr; 2321 // fall-through if not a Java method or no analyzer information 2322 if (call_analyzer != nullptr) { 2323 PointsToNode* call_ptn = ptnode_adr(call->_idx); 2324 const TypeTuple* d = call->tf()->domain_cc(); 2325 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2326 const Type* at = d->field_at(i); 2327 int k = i - TypeFunc::Parms; 2328 Node* arg = call->in(i); 2329 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 2330 if (at->isa_ptr() != nullptr && 2331 call_analyzer->is_arg_returned(k)) { 2332 // The call returns arguments. 2333 if (call_ptn != nullptr) { // Is call's result used? 2334 assert(call_ptn->is_LocalVar(), "node should be registered"); 2335 assert(arg_ptn != nullptr, "node should be registered"); 2336 add_edge(call_ptn, arg_ptn); 2337 } 2338 } 2339 if (at->isa_oopptr() != nullptr && 2340 arg_ptn->escape_state() < PointsToNode::GlobalEscape) { 2341 if (!call_analyzer->is_arg_stack(k)) { 2342 // The argument global escapes 2343 set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2344 } else { 2345 set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2346 if (!call_analyzer->is_arg_local(k)) { 2347 // The argument itself doesn't escape, but any fields might 2348 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2349 } 2350 } 2351 } 2352 } 2353 if (call_ptn != nullptr && call_ptn->is_LocalVar()) { 2354 // The call returns arguments. 2355 assert(call_ptn->edge_count() > 0, "sanity"); 2356 if (!call_analyzer->is_return_local()) { 2357 // Returns also unknown object. 2358 add_edge(call_ptn, phantom_obj); 2359 } 2360 } 2361 break; 2362 } 2363 } 2364 default: { 2365 // Fall-through here if not a Java method or no analyzer information 2366 // or some other type of call, assume the worst case: all arguments 2367 // globally escape. 2368 const TypeTuple* d = call->tf()->domain_cc(); 2369 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 2370 const Type* at = d->field_at(i); 2371 if (at->isa_oopptr() != nullptr) { 2372 Node* arg = call->in(i); 2373 if (arg->is_AddP()) { 2374 arg = get_addp_base(arg); 2375 } 2376 assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already"); 2377 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call))); 2378 } 2379 } 2380 } 2381 } 2382 } 2383 2384 2385 // Finish Graph construction. 2386 bool ConnectionGraph::complete_connection_graph( 2387 GrowableArray<PointsToNode*>& ptnodes_worklist, 2388 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist, 2389 GrowableArray<JavaObjectNode*>& java_objects_worklist, 2390 GrowableArray<FieldNode*>& oop_fields_worklist) { 2391 // Normally only 1-3 passes needed to build Connection Graph depending 2392 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler. 2393 // Set limit to 20 to catch situation when something did go wrong and 2394 // bailout Escape Analysis. 2395 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag. 2396 #define GRAPH_BUILD_ITER_LIMIT 20 2397 2398 // Propagate GlobalEscape and ArgEscape escape states and check that 2399 // we still have non-escaping objects. The method pushs on _worklist 2400 // Field nodes which reference phantom_object. 2401 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) { 2402 return false; // Nothing to do. 2403 } 2404 // Now propagate references to all JavaObject nodes. 2405 int java_objects_length = java_objects_worklist.length(); 2406 elapsedTimer build_time; 2407 build_time.start(); 2408 elapsedTimer time; 2409 bool timeout = false; 2410 int new_edges = 1; 2411 int iterations = 0; 2412 do { 2413 while ((new_edges > 0) && 2414 (iterations++ < GRAPH_BUILD_ITER_LIMIT)) { 2415 double start_time = time.seconds(); 2416 time.start(); 2417 new_edges = 0; 2418 // Propagate references to phantom_object for nodes pushed on _worklist 2419 // by find_non_escaped_objects() and find_field_value(). 2420 new_edges += add_java_object_edges(phantom_obj, false); 2421 for (int next = 0; next < java_objects_length; ++next) { 2422 JavaObjectNode* ptn = java_objects_worklist.at(next); 2423 new_edges += add_java_object_edges(ptn, true); 2424 2425 #define SAMPLE_SIZE 4 2426 if ((next % SAMPLE_SIZE) == 0) { 2427 // Each 4 iterations calculate how much time it will take 2428 // to complete graph construction. 2429 time.stop(); 2430 // Poll for requests from shutdown mechanism to quiesce compiler 2431 // because Connection graph construction may take long time. 2432 CompileBroker::maybe_block(); 2433 double stop_time = time.seconds(); 2434 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE; 2435 double time_until_end = time_per_iter * (double)(java_objects_length - next); 2436 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) { 2437 timeout = true; 2438 break; // Timeout 2439 } 2440 start_time = stop_time; 2441 time.start(); 2442 } 2443 #undef SAMPLE_SIZE 2444 2445 } 2446 if (timeout) break; 2447 if (new_edges > 0) { 2448 // Update escape states on each iteration if graph was updated. 2449 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) { 2450 return false; // Nothing to do. 2451 } 2452 } 2453 time.stop(); 2454 if (time.seconds() >= EscapeAnalysisTimeout) { 2455 timeout = true; 2456 break; 2457 } 2458 } 2459 if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) { 2460 time.start(); 2461 // Find fields which have unknown value. 2462 int fields_length = oop_fields_worklist.length(); 2463 for (int next = 0; next < fields_length; next++) { 2464 FieldNode* field = oop_fields_worklist.at(next); 2465 if (field->edge_count() == 0) { 2466 new_edges += find_field_value(field); 2467 // This code may added new edges to phantom_object. 2468 // Need an other cycle to propagate references to phantom_object. 2469 } 2470 } 2471 time.stop(); 2472 if (time.seconds() >= EscapeAnalysisTimeout) { 2473 timeout = true; 2474 break; 2475 } 2476 } else { 2477 new_edges = 0; // Bailout 2478 } 2479 } while (new_edges > 0); 2480 2481 build_time.stop(); 2482 _build_time = build_time.seconds(); 2483 _build_iterations = iterations; 2484 2485 // Bailout if passed limits. 2486 if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) { 2487 Compile* C = _compile; 2488 if (C->log() != nullptr) { 2489 C->log()->begin_elem("connectionGraph_bailout reason='reached "); 2490 C->log()->text("%s", timeout ? "time" : "iterations"); 2491 C->log()->end_elem(" limit'"); 2492 } 2493 assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d", 2494 _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length()); 2495 // Possible infinite build_connection_graph loop, 2496 // bailout (no changes to ideal graph were made). 2497 return false; 2498 } 2499 2500 #undef GRAPH_BUILD_ITER_LIMIT 2501 2502 // Find fields initialized by null for non-escaping Allocations. 2503 int non_escaped_length = non_escaped_allocs_worklist.length(); 2504 for (int next = 0; next < non_escaped_length; next++) { 2505 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 2506 PointsToNode::EscapeState es = ptn->escape_state(); 2507 assert(es <= PointsToNode::ArgEscape, "sanity"); 2508 if (es == PointsToNode::NoEscape) { 2509 if (find_init_values_null(ptn, _igvn) > 0) { 2510 // Adding references to null object does not change escape states 2511 // since it does not escape. Also no fields are added to null object. 2512 add_java_object_edges(null_obj, false); 2513 } 2514 } 2515 Node* n = ptn->ideal_node(); 2516 if (n->is_Allocate()) { 2517 // The object allocated by this Allocate node will never be 2518 // seen by an other thread. Mark it so that when it is 2519 // expanded no MemBarStoreStore is added. 2520 InitializeNode* ini = n->as_Allocate()->initialization(); 2521 if (ini != nullptr) 2522 ini->set_does_not_escape(); 2523 } 2524 } 2525 return true; // Finished graph construction. 2526 } 2527 2528 // Propagate GlobalEscape and ArgEscape escape states to all nodes 2529 // and check that we still have non-escaping java objects. 2530 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist, 2531 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist) { 2532 GrowableArray<PointsToNode*> escape_worklist; 2533 // First, put all nodes with GlobalEscape and ArgEscape states on worklist. 2534 int ptnodes_length = ptnodes_worklist.length(); 2535 for (int next = 0; next < ptnodes_length; ++next) { 2536 PointsToNode* ptn = ptnodes_worklist.at(next); 2537 if (ptn->escape_state() >= PointsToNode::ArgEscape || 2538 ptn->fields_escape_state() >= PointsToNode::ArgEscape) { 2539 escape_worklist.push(ptn); 2540 } 2541 } 2542 // Set escape states to referenced nodes (edges list). 2543 while (escape_worklist.length() > 0) { 2544 PointsToNode* ptn = escape_worklist.pop(); 2545 PointsToNode::EscapeState es = ptn->escape_state(); 2546 PointsToNode::EscapeState field_es = ptn->fields_escape_state(); 2547 if (ptn->is_Field() && ptn->as_Field()->is_oop() && 2548 es >= PointsToNode::ArgEscape) { 2549 // GlobalEscape or ArgEscape state of field means it has unknown value. 2550 if (add_edge(ptn, phantom_obj)) { 2551 // New edge was added 2552 add_field_uses_to_worklist(ptn->as_Field()); 2553 } 2554 } 2555 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2556 PointsToNode* e = i.get(); 2557 if (e->is_Arraycopy()) { 2558 assert(ptn->arraycopy_dst(), "sanity"); 2559 // Propagate only fields escape state through arraycopy edge. 2560 if (e->fields_escape_state() < field_es) { 2561 set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2562 escape_worklist.push(e); 2563 } 2564 } else if (es >= field_es) { 2565 // fields_escape_state is also set to 'es' if it is less than 'es'. 2566 if (e->escape_state() < es) { 2567 set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2568 escape_worklist.push(e); 2569 } 2570 } else { 2571 // Propagate field escape state. 2572 bool es_changed = false; 2573 if (e->fields_escape_state() < field_es) { 2574 set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2575 es_changed = true; 2576 } 2577 if ((e->escape_state() < field_es) && 2578 e->is_Field() && ptn->is_JavaObject() && 2579 e->as_Field()->is_oop()) { 2580 // Change escape state of referenced fields. 2581 set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2582 es_changed = true; 2583 } else if (e->escape_state() < es) { 2584 set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); 2585 es_changed = true; 2586 } 2587 if (es_changed) { 2588 escape_worklist.push(e); 2589 } 2590 } 2591 } 2592 } 2593 // Remove escaped objects from non_escaped list. 2594 for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) { 2595 JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next); 2596 if (ptn->escape_state() >= PointsToNode::GlobalEscape) { 2597 non_escaped_allocs_worklist.delete_at(next); 2598 } 2599 if (ptn->escape_state() == PointsToNode::NoEscape) { 2600 // Find fields in non-escaped allocations which have unknown value. 2601 find_init_values_phantom(ptn); 2602 } 2603 } 2604 return (non_escaped_allocs_worklist.length() > 0); 2605 } 2606 2607 // Add all references to JavaObject node by walking over all uses. 2608 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) { 2609 int new_edges = 0; 2610 if (populate_worklist) { 2611 // Populate _worklist by uses of jobj's uses. 2612 for (UseIterator i(jobj); i.has_next(); i.next()) { 2613 PointsToNode* use = i.get(); 2614 if (use->is_Arraycopy()) { 2615 continue; 2616 } 2617 add_uses_to_worklist(use); 2618 if (use->is_Field() && use->as_Field()->is_oop()) { 2619 // Put on worklist all field's uses (loads) and 2620 // related field nodes (same base and offset). 2621 add_field_uses_to_worklist(use->as_Field()); 2622 } 2623 } 2624 } 2625 for (int l = 0; l < _worklist.length(); l++) { 2626 PointsToNode* use = _worklist.at(l); 2627 if (PointsToNode::is_base_use(use)) { 2628 // Add reference from jobj to field and from field to jobj (field's base). 2629 use = PointsToNode::get_use_node(use)->as_Field(); 2630 if (add_base(use->as_Field(), jobj)) { 2631 new_edges++; 2632 } 2633 continue; 2634 } 2635 assert(!use->is_JavaObject(), "sanity"); 2636 if (use->is_Arraycopy()) { 2637 if (jobj == null_obj) { // null object does not have field edges 2638 continue; 2639 } 2640 // Added edge from Arraycopy node to arraycopy's source java object 2641 if (add_edge(use, jobj)) { 2642 jobj->set_arraycopy_src(); 2643 new_edges++; 2644 } 2645 // and stop here. 2646 continue; 2647 } 2648 if (!add_edge(use, jobj)) { 2649 continue; // No new edge added, there was such edge already. 2650 } 2651 new_edges++; 2652 if (use->is_LocalVar()) { 2653 add_uses_to_worklist(use); 2654 if (use->arraycopy_dst()) { 2655 for (EdgeIterator i(use); i.has_next(); i.next()) { 2656 PointsToNode* e = i.get(); 2657 if (e->is_Arraycopy()) { 2658 if (jobj == null_obj) { // null object does not have field edges 2659 continue; 2660 } 2661 // Add edge from arraycopy's destination java object to Arraycopy node. 2662 if (add_edge(jobj, e)) { 2663 new_edges++; 2664 jobj->set_arraycopy_dst(); 2665 } 2666 } 2667 } 2668 } 2669 } else { 2670 // Added new edge to stored in field values. 2671 // Put on worklist all field's uses (loads) and 2672 // related field nodes (same base and offset). 2673 add_field_uses_to_worklist(use->as_Field()); 2674 } 2675 } 2676 _worklist.clear(); 2677 _in_worklist.reset(); 2678 return new_edges; 2679 } 2680 2681 // Put on worklist all related field nodes. 2682 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) { 2683 assert(field->is_oop(), "sanity"); 2684 int offset = field->offset(); 2685 add_uses_to_worklist(field); 2686 // Loop over all bases of this field and push on worklist Field nodes 2687 // with the same offset and base (since they may reference the same field). 2688 for (BaseIterator i(field); i.has_next(); i.next()) { 2689 PointsToNode* base = i.get(); 2690 add_fields_to_worklist(field, base); 2691 // Check if the base was source object of arraycopy and go over arraycopy's 2692 // destination objects since values stored to a field of source object are 2693 // accessible by uses (loads) of fields of destination objects. 2694 if (base->arraycopy_src()) { 2695 for (UseIterator j(base); j.has_next(); j.next()) { 2696 PointsToNode* arycp = j.get(); 2697 if (arycp->is_Arraycopy()) { 2698 for (UseIterator k(arycp); k.has_next(); k.next()) { 2699 PointsToNode* abase = k.get(); 2700 if (abase->arraycopy_dst() && abase != base) { 2701 // Look for the same arraycopy reference. 2702 add_fields_to_worklist(field, abase); 2703 } 2704 } 2705 } 2706 } 2707 } 2708 } 2709 } 2710 2711 // Put on worklist all related field nodes. 2712 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) { 2713 int offset = field->offset(); 2714 if (base->is_LocalVar()) { 2715 for (UseIterator j(base); j.has_next(); j.next()) { 2716 PointsToNode* f = j.get(); 2717 if (PointsToNode::is_base_use(f)) { // Field 2718 f = PointsToNode::get_use_node(f); 2719 if (f == field || !f->as_Field()->is_oop()) { 2720 continue; 2721 } 2722 int offs = f->as_Field()->offset(); 2723 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 2724 add_to_worklist(f); 2725 } 2726 } 2727 } 2728 } else { 2729 assert(base->is_JavaObject(), "sanity"); 2730 if (// Skip phantom_object since it is only used to indicate that 2731 // this field's content globally escapes. 2732 (base != phantom_obj) && 2733 // null object node does not have fields. 2734 (base != null_obj)) { 2735 for (EdgeIterator i(base); i.has_next(); i.next()) { 2736 PointsToNode* f = i.get(); 2737 // Skip arraycopy edge since store to destination object field 2738 // does not update value in source object field. 2739 if (f->is_Arraycopy()) { 2740 assert(base->arraycopy_dst(), "sanity"); 2741 continue; 2742 } 2743 if (f == field || !f->as_Field()->is_oop()) { 2744 continue; 2745 } 2746 int offs = f->as_Field()->offset(); 2747 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 2748 add_to_worklist(f); 2749 } 2750 } 2751 } 2752 } 2753 } 2754 2755 // Find fields which have unknown value. 2756 int ConnectionGraph::find_field_value(FieldNode* field) { 2757 // Escaped fields should have init value already. 2758 assert(field->escape_state() == PointsToNode::NoEscape, "sanity"); 2759 int new_edges = 0; 2760 for (BaseIterator i(field); i.has_next(); i.next()) { 2761 PointsToNode* base = i.get(); 2762 if (base->is_JavaObject()) { 2763 // Skip Allocate's fields which will be processed later. 2764 if (base->ideal_node()->is_Allocate()) { 2765 return 0; 2766 } 2767 assert(base == null_obj, "only null ptr base expected here"); 2768 } 2769 } 2770 if (add_edge(field, phantom_obj)) { 2771 // New edge was added 2772 new_edges++; 2773 add_field_uses_to_worklist(field); 2774 } 2775 return new_edges; 2776 } 2777 2778 // Find fields initializing values for allocations. 2779 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) { 2780 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 2781 PointsToNode* init_val = phantom_obj; 2782 Node* alloc = pta->ideal_node(); 2783 2784 // Do nothing for Allocate nodes since its fields values are 2785 // "known" unless they are initialized by arraycopy/clone. 2786 if (alloc->is_Allocate() && !pta->arraycopy_dst()) { 2787 if (alloc->as_Allocate()->in(AllocateNode::DefaultValue) != nullptr) { 2788 // Non-flat inline type arrays are initialized with 2789 // the default value instead of null. Handle them here. 2790 init_val = ptnode_adr(alloc->as_Allocate()->in(AllocateNode::DefaultValue)->_idx); 2791 assert(init_val != nullptr, "default value should be registered"); 2792 } else { 2793 return 0; 2794 } 2795 } 2796 // Non-escaped allocation returned from Java or runtime call has unknown values in fields. 2797 assert(pta->arraycopy_dst() || alloc->is_CallStaticJava() || init_val != phantom_obj, "sanity"); 2798 #ifdef ASSERT 2799 if (alloc->is_CallStaticJava() && alloc->as_CallStaticJava()->method() == nullptr) { 2800 const char* name = alloc->as_CallStaticJava()->_name; 2801 assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0 || 2802 strncmp(name, "C2 Runtime load_unknown_inline", 30) == 0, "sanity"); 2803 } 2804 #endif 2805 // Non-escaped allocation returned from Java or runtime call have unknown values in fields. 2806 int new_edges = 0; 2807 for (EdgeIterator i(pta); i.has_next(); i.next()) { 2808 PointsToNode* field = i.get(); 2809 if (field->is_Field() && field->as_Field()->is_oop()) { 2810 if (add_edge(field, init_val)) { 2811 // New edge was added 2812 new_edges++; 2813 add_field_uses_to_worklist(field->as_Field()); 2814 } 2815 } 2816 } 2817 return new_edges; 2818 } 2819 2820 // Find fields initializing values for allocations. 2821 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) { 2822 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 2823 Node* alloc = pta->ideal_node(); 2824 // Do nothing for Call nodes since its fields values are unknown. 2825 if (!alloc->is_Allocate() || alloc->as_Allocate()->in(AllocateNode::DefaultValue) != nullptr) { 2826 return 0; 2827 } 2828 InitializeNode* ini = alloc->as_Allocate()->initialization(); 2829 bool visited_bottom_offset = false; 2830 GrowableArray<int> offsets_worklist; 2831 int new_edges = 0; 2832 2833 // Check if an oop field's initializing value is recorded and add 2834 // a corresponding null if field's value if it is not recorded. 2835 // Connection Graph does not record a default initialization by null 2836 // captured by Initialize node. 2837 // 2838 for (EdgeIterator i(pta); i.has_next(); i.next()) { 2839 PointsToNode* field = i.get(); // Field (AddP) 2840 if (!field->is_Field() || !field->as_Field()->is_oop()) { 2841 continue; // Not oop field 2842 } 2843 int offset = field->as_Field()->offset(); 2844 if (offset == Type::OffsetBot) { 2845 if (!visited_bottom_offset) { 2846 // OffsetBot is used to reference array's element, 2847 // always add reference to null to all Field nodes since we don't 2848 // known which element is referenced. 2849 if (add_edge(field, null_obj)) { 2850 // New edge was added 2851 new_edges++; 2852 add_field_uses_to_worklist(field->as_Field()); 2853 visited_bottom_offset = true; 2854 } 2855 } 2856 } else { 2857 // Check only oop fields. 2858 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type(); 2859 if (adr_type->isa_rawptr()) { 2860 #ifdef ASSERT 2861 // Raw pointers are used for initializing stores so skip it 2862 // since it should be recorded already 2863 Node* base = get_addp_base(field->ideal_node()); 2864 assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type"); 2865 #endif 2866 continue; 2867 } 2868 if (!offsets_worklist.contains(offset)) { 2869 offsets_worklist.append(offset); 2870 Node* value = nullptr; 2871 if (ini != nullptr) { 2872 // StoreP::memory_type() == T_ADDRESS 2873 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS; 2874 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase); 2875 // Make sure initializing store has the same type as this AddP. 2876 // This AddP may reference non existing field because it is on a 2877 // dead branch of bimorphic call which is not eliminated yet. 2878 if (store != nullptr && store->is_Store() && 2879 store->as_Store()->memory_type() == ft) { 2880 value = store->in(MemNode::ValueIn); 2881 #ifdef ASSERT 2882 if (VerifyConnectionGraph) { 2883 // Verify that AddP already points to all objects the value points to. 2884 PointsToNode* val = ptnode_adr(value->_idx); 2885 assert((val != nullptr), "should be processed already"); 2886 PointsToNode* missed_obj = nullptr; 2887 if (val->is_JavaObject()) { 2888 if (!field->points_to(val->as_JavaObject())) { 2889 missed_obj = val; 2890 } 2891 } else { 2892 if (!val->is_LocalVar() || (val->edge_count() == 0)) { 2893 tty->print_cr("----------init store has invalid value -----"); 2894 store->dump(); 2895 val->dump(); 2896 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already"); 2897 } 2898 for (EdgeIterator j(val); j.has_next(); j.next()) { 2899 PointsToNode* obj = j.get(); 2900 if (obj->is_JavaObject()) { 2901 if (!field->points_to(obj->as_JavaObject())) { 2902 missed_obj = obj; 2903 break; 2904 } 2905 } 2906 } 2907 } 2908 if (missed_obj != nullptr) { 2909 tty->print_cr("----------field---------------------------------"); 2910 field->dump(); 2911 tty->print_cr("----------missed reference to object------------"); 2912 missed_obj->dump(); 2913 tty->print_cr("----------object referenced by init store-------"); 2914 store->dump(); 2915 val->dump(); 2916 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference"); 2917 } 2918 } 2919 #endif 2920 } else { 2921 // There could be initializing stores which follow allocation. 2922 // For example, a volatile field store is not collected 2923 // by Initialize node. 2924 // 2925 // Need to check for dependent loads to separate such stores from 2926 // stores which follow loads. For now, add initial value null so 2927 // that compare pointers optimization works correctly. 2928 } 2929 } 2930 if (value == nullptr) { 2931 // A field's initializing value was not recorded. Add null. 2932 if (add_edge(field, null_obj)) { 2933 // New edge was added 2934 new_edges++; 2935 add_field_uses_to_worklist(field->as_Field()); 2936 } 2937 } 2938 } 2939 } 2940 } 2941 return new_edges; 2942 } 2943 2944 // Adjust scalar_replaceable state after Connection Graph is built. 2945 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) { 2946 // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)' 2947 // returns true. If one of the constraints in this method set 'jobj' to NSR 2948 // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as 2949 // input, 'adjust_scalar_replaceable_state' will eventually be called with 2950 // that other object and the Phi will become a reducible Phi. 2951 // There could be multiple merges involving the same jobj. 2952 Unique_Node_List candidates; 2953 2954 // Search for non-escaping objects which are not scalar replaceable 2955 // and mark them to propagate the state to referenced objects. 2956 2957 for (UseIterator i(jobj); i.has_next(); i.next()) { 2958 PointsToNode* use = i.get(); 2959 if (use->is_Arraycopy()) { 2960 continue; 2961 } 2962 if (use->is_Field()) { 2963 FieldNode* field = use->as_Field(); 2964 assert(field->is_oop() && field->scalar_replaceable(), "sanity"); 2965 // 1. An object is not scalar replaceable if the field into which it is 2966 // stored has unknown offset (stored into unknown element of an array). 2967 if (field->offset() == Type::OffsetBot) { 2968 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset")); 2969 return; 2970 } 2971 for (BaseIterator i(field); i.has_next(); i.next()) { 2972 PointsToNode* base = i.get(); 2973 // 2. An object is not scalar replaceable if the field into which it is 2974 // stored has multiple bases one of which is null. 2975 if ((base == null_obj) && (field->base_count() > 1)) { 2976 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base")); 2977 return; 2978 } 2979 // 2.5. An object is not scalar replaceable if the field into which it is 2980 // stored has NSR base. 2981 if (!base->scalar_replaceable()) { 2982 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base")); 2983 return; 2984 } 2985 } 2986 } 2987 assert(use->is_Field() || use->is_LocalVar(), "sanity"); 2988 // 3. An object is not scalar replaceable if it is merged with other objects 2989 // and we can't remove the merge 2990 for (EdgeIterator j(use); j.has_next(); j.next()) { 2991 PointsToNode* ptn = j.get(); 2992 if (ptn->is_JavaObject() && ptn != jobj) { 2993 Node* use_n = use->ideal_node(); 2994 2995 // These other local vars may point to multiple objects through a Phi 2996 // In this case we skip them and see if we can reduce the Phi. 2997 if (use_n->is_CastPP() || use_n->is_CheckCastPP()) { 2998 use_n = use_n->in(1); 2999 } 3000 3001 // If it's already a candidate or confirmed reducible merge we can skip verification 3002 if (candidates.member(use_n) || reducible_merges.member(use_n)) { 3003 continue; 3004 } 3005 3006 if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) { 3007 candidates.push(use_n); 3008 } else { 3009 // Mark all objects as NSR if we can't remove the merge 3010 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn))); 3011 set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj))); 3012 } 3013 } 3014 } 3015 if (!jobj->scalar_replaceable()) { 3016 return; 3017 } 3018 } 3019 3020 for (EdgeIterator j(jobj); j.has_next(); j.next()) { 3021 if (j.get()->is_Arraycopy()) { 3022 continue; 3023 } 3024 3025 // Non-escaping object node should point only to field nodes. 3026 FieldNode* field = j.get()->as_Field(); 3027 int offset = field->as_Field()->offset(); 3028 3029 // 4. An object is not scalar replaceable if it has a field with unknown 3030 // offset (array's element is accessed in loop). 3031 if (offset == Type::OffsetBot) { 3032 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset")); 3033 return; 3034 } 3035 // 5. Currently an object is not scalar replaceable if a LoadStore node 3036 // access its field since the field value is unknown after it. 3037 // 3038 Node* n = field->ideal_node(); 3039 3040 // Test for an unsafe access that was parsed as maybe off heap 3041 // (with a CheckCastPP to raw memory). 3042 assert(n->is_AddP(), "expect an address computation"); 3043 if (n->in(AddPNode::Base)->is_top() && 3044 n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) { 3045 assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected"); 3046 assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected"); 3047 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access")); 3048 return; 3049 } 3050 3051 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3052 Node* u = n->fast_out(i); 3053 if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) { 3054 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access")); 3055 return; 3056 } 3057 } 3058 3059 // 6. Or the address may point to more then one object. This may produce 3060 // the false positive result (set not scalar replaceable) 3061 // since the flow-insensitive escape analysis can't separate 3062 // the case when stores overwrite the field's value from the case 3063 // when stores happened on different control branches. 3064 // 3065 // Note: it will disable scalar replacement in some cases: 3066 // 3067 // Point p[] = new Point[1]; 3068 // p[0] = new Point(); // Will be not scalar replaced 3069 // 3070 // but it will save us from incorrect optimizations in next cases: 3071 // 3072 // Point p[] = new Point[1]; 3073 // if ( x ) p[0] = new Point(); // Will be not scalar replaced 3074 // 3075 if (field->base_count() > 1 && candidates.size() == 0) { 3076 if (has_non_reducible_merge(field, reducible_merges)) { 3077 for (BaseIterator i(field); i.has_next(); i.next()) { 3078 PointsToNode* base = i.get(); 3079 // Don't take into account LocalVar nodes which 3080 // may point to only one object which should be also 3081 // this field's base by now. 3082 if (base->is_JavaObject() && base != jobj) { 3083 // Mark all bases. 3084 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object")); 3085 set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object")); 3086 } 3087 } 3088 3089 if (!jobj->scalar_replaceable()) { 3090 return; 3091 } 3092 } 3093 } 3094 } 3095 3096 // The candidate is truly a reducible merge only if none of the other 3097 // constraints ruled it as NSR. There could be multiple merges involving the 3098 // same jobj. 3099 assert(jobj->scalar_replaceable(), "sanity"); 3100 for (uint i = 0; i < candidates.size(); i++ ) { 3101 Node* candidate = candidates.at(i); 3102 reducible_merges.push(candidate); 3103 } 3104 } 3105 3106 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) { 3107 for (BaseIterator i(field); i.has_next(); i.next()) { 3108 Node* base = i.get()->ideal_node(); 3109 if (base->is_Phi() && !reducible_merges.member(base)) { 3110 return true; 3111 } 3112 } 3113 return false; 3114 } 3115 3116 void ConnectionGraph::revisit_reducible_phi_status(JavaObjectNode* jobj, Unique_Node_List& reducible_merges) { 3117 assert(jobj != nullptr && !jobj->scalar_replaceable(), "jobj should be set as NSR before calling this function."); 3118 3119 // Look for 'phis' that refer to 'jobj' as the last 3120 // remaining scalar replaceable input. 3121 uint reducible_merges_cnt = reducible_merges.size(); 3122 for (uint i = 0; i < reducible_merges_cnt; i++) { 3123 Node* phi = reducible_merges.at(i); 3124 3125 // This 'Phi' will be a 'good' if it still points to 3126 // at least one scalar replaceable object. Note that 'obj' 3127 // was/should be marked as NSR before calling this function. 3128 bool good_phi = false; 3129 3130 for (uint j = 1; j < phi->req(); j++) { 3131 JavaObjectNode* phi_in_obj = unique_java_object(phi->in(j)); 3132 if (phi_in_obj != nullptr && phi_in_obj->scalar_replaceable()) { 3133 good_phi = true; 3134 break; 3135 } 3136 } 3137 3138 if (!good_phi) { 3139 NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Phi %d became non-reducible after node %d became NSR.", phi->_idx, jobj->ideal_node()->_idx);) 3140 reducible_merges.remove(i); 3141 3142 // Decrement the index because the 'remove' call above actually 3143 // moves the last entry of the list to position 'i'. 3144 i--; 3145 3146 reducible_merges_cnt--; 3147 } 3148 } 3149 } 3150 3151 // Propagate NSR (Not scalar replaceable) state. 3152 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist, Unique_Node_List &reducible_merges) { 3153 int jobj_length = jobj_worklist.length(); 3154 bool found_nsr_alloc = true; 3155 while (found_nsr_alloc) { 3156 found_nsr_alloc = false; 3157 for (int next = 0; next < jobj_length; ++next) { 3158 JavaObjectNode* jobj = jobj_worklist.at(next); 3159 for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) { 3160 PointsToNode* use = i.get(); 3161 if (use->is_Field()) { 3162 FieldNode* field = use->as_Field(); 3163 assert(field->is_oop() && field->scalar_replaceable(), "sanity"); 3164 assert(field->offset() != Type::OffsetBot, "sanity"); 3165 for (BaseIterator i(field); i.has_next(); i.next()) { 3166 PointsToNode* base = i.get(); 3167 // An object is not scalar replaceable if the field into which 3168 // it is stored has NSR base. 3169 if ((base != null_obj) && !base->scalar_replaceable()) { 3170 set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base")); 3171 // Any merge that had only 'jobj' as scalar-replaceable will now be non-reducible, 3172 // because there is no point in reducing a Phi that won't improve the number of SR 3173 // objects. 3174 revisit_reducible_phi_status(jobj, reducible_merges); 3175 found_nsr_alloc = true; 3176 break; 3177 } 3178 } 3179 } 3180 } 3181 } 3182 } 3183 } 3184 3185 #ifdef ASSERT 3186 void ConnectionGraph::verify_connection_graph( 3187 GrowableArray<PointsToNode*>& ptnodes_worklist, 3188 GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist, 3189 GrowableArray<JavaObjectNode*>& java_objects_worklist, 3190 GrowableArray<Node*>& addp_worklist) { 3191 // Verify that graph is complete - no new edges could be added. 3192 int java_objects_length = java_objects_worklist.length(); 3193 int non_escaped_length = non_escaped_allocs_worklist.length(); 3194 int new_edges = 0; 3195 for (int next = 0; next < java_objects_length; ++next) { 3196 JavaObjectNode* ptn = java_objects_worklist.at(next); 3197 new_edges += add_java_object_edges(ptn, true); 3198 } 3199 assert(new_edges == 0, "graph was not complete"); 3200 // Verify that escape state is final. 3201 int length = non_escaped_allocs_worklist.length(); 3202 find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist); 3203 assert((non_escaped_length == non_escaped_allocs_worklist.length()) && 3204 (non_escaped_length == length) && 3205 (_worklist.length() == 0), "escape state was not final"); 3206 3207 // Verify fields information. 3208 int addp_length = addp_worklist.length(); 3209 for (int next = 0; next < addp_length; ++next ) { 3210 Node* n = addp_worklist.at(next); 3211 FieldNode* field = ptnode_adr(n->_idx)->as_Field(); 3212 if (field->is_oop()) { 3213 // Verify that field has all bases 3214 Node* base = get_addp_base(n); 3215 PointsToNode* ptn = ptnode_adr(base->_idx); 3216 if (ptn->is_JavaObject()) { 3217 assert(field->has_base(ptn->as_JavaObject()), "sanity"); 3218 } else { 3219 assert(ptn->is_LocalVar(), "sanity"); 3220 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3221 PointsToNode* e = i.get(); 3222 if (e->is_JavaObject()) { 3223 assert(field->has_base(e->as_JavaObject()), "sanity"); 3224 } 3225 } 3226 } 3227 // Verify that all fields have initializing values. 3228 if (field->edge_count() == 0) { 3229 tty->print_cr("----------field does not have references----------"); 3230 field->dump(); 3231 for (BaseIterator i(field); i.has_next(); i.next()) { 3232 PointsToNode* base = i.get(); 3233 tty->print_cr("----------field has next base---------------------"); 3234 base->dump(); 3235 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) { 3236 tty->print_cr("----------base has fields-------------------------"); 3237 for (EdgeIterator j(base); j.has_next(); j.next()) { 3238 j.get()->dump(); 3239 } 3240 tty->print_cr("----------base has references---------------------"); 3241 for (UseIterator j(base); j.has_next(); j.next()) { 3242 j.get()->dump(); 3243 } 3244 } 3245 } 3246 for (UseIterator i(field); i.has_next(); i.next()) { 3247 i.get()->dump(); 3248 } 3249 assert(field->edge_count() > 0, "sanity"); 3250 } 3251 } 3252 } 3253 } 3254 #endif 3255 3256 // Optimize ideal graph. 3257 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist, 3258 GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) { 3259 Compile* C = _compile; 3260 PhaseIterGVN* igvn = _igvn; 3261 if (EliminateLocks) { 3262 // Mark locks before changing ideal graph. 3263 int cnt = C->macro_count(); 3264 for (int i = 0; i < cnt; i++) { 3265 Node *n = C->macro_node(i); 3266 if (n->is_AbstractLock()) { // Lock and Unlock nodes 3267 AbstractLockNode* alock = n->as_AbstractLock(); 3268 if (!alock->is_non_esc_obj()) { 3269 const Type* obj_type = igvn->type(alock->obj_node()); 3270 if (can_eliminate_lock(alock) && !obj_type->is_inlinetypeptr()) { 3271 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity"); 3272 // The lock could be marked eliminated by lock coarsening 3273 // code during first IGVN before EA. Replace coarsened flag 3274 // to eliminate all associated locks/unlocks. 3275 #ifdef ASSERT 3276 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3"); 3277 #endif 3278 alock->set_non_esc_obj(); 3279 } 3280 } 3281 } 3282 } 3283 } 3284 3285 if (OptimizePtrCompare) { 3286 for (int i = 0; i < ptr_cmp_worklist.length(); i++) { 3287 Node *n = ptr_cmp_worklist.at(i); 3288 assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be"); 3289 const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2)); 3290 if (tcmp->singleton()) { 3291 Node* cmp = igvn->makecon(tcmp); 3292 #ifndef PRODUCT 3293 if (PrintOptimizePtrCompare) { 3294 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ")); 3295 if (Verbose) { 3296 n->dump(1); 3297 } 3298 } 3299 #endif 3300 igvn->replace_node(n, cmp); 3301 } 3302 } 3303 } 3304 3305 // For MemBarStoreStore nodes added in library_call.cpp, check 3306 // escape status of associated AllocateNode and optimize out 3307 // MemBarStoreStore node if the allocated object never escapes. 3308 for (int i = 0; i < storestore_worklist.length(); i++) { 3309 Node* storestore = storestore_worklist.at(i); 3310 Node* alloc = storestore->in(MemBarNode::Precedent)->in(0); 3311 if (alloc->is_Allocate() && not_global_escape(alloc)) { 3312 if (alloc->in(AllocateNode::InlineType) != nullptr) { 3313 // Non-escaping inline type buffer allocations don't require a membar 3314 storestore->as_MemBar()->remove(_igvn); 3315 } else { 3316 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot); 3317 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory)); 3318 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control)); 3319 igvn->register_new_node_with_optimizer(mb); 3320 igvn->replace_node(storestore, mb); 3321 } 3322 } 3323 } 3324 } 3325 3326 // Optimize objects compare. 3327 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) { 3328 assert(OptimizePtrCompare, "sanity"); 3329 const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO 3330 const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE 3331 const TypeInt* UNKNOWN = TypeInt::CC; // [-1, 0,1] 3332 3333 PointsToNode* ptn1 = ptnode_adr(left->_idx); 3334 PointsToNode* ptn2 = ptnode_adr(right->_idx); 3335 JavaObjectNode* jobj1 = unique_java_object(left); 3336 JavaObjectNode* jobj2 = unique_java_object(right); 3337 3338 // The use of this method during allocation merge reduction may cause 'left' 3339 // or 'right' be something (e.g., a Phi) that isn't in the connection graph or 3340 // that doesn't reference an unique java object. 3341 if (ptn1 == nullptr || ptn2 == nullptr || 3342 jobj1 == nullptr || jobj2 == nullptr) { 3343 return UNKNOWN; 3344 } 3345 3346 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity"); 3347 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity"); 3348 3349 // Check simple cases first. 3350 if (jobj1 != nullptr) { 3351 if (jobj1->escape_state() == PointsToNode::NoEscape) { 3352 if (jobj1 == jobj2) { 3353 // Comparing the same not escaping object. 3354 return EQ; 3355 } 3356 Node* obj = jobj1->ideal_node(); 3357 // Comparing not escaping allocation. 3358 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 3359 !ptn2->points_to(jobj1)) { 3360 return NE; // This includes nullness check. 3361 } 3362 } 3363 } 3364 if (jobj2 != nullptr) { 3365 if (jobj2->escape_state() == PointsToNode::NoEscape) { 3366 Node* obj = jobj2->ideal_node(); 3367 // Comparing not escaping allocation. 3368 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 3369 !ptn1->points_to(jobj2)) { 3370 return NE; // This includes nullness check. 3371 } 3372 } 3373 } 3374 if (jobj1 != nullptr && jobj1 != phantom_obj && 3375 jobj2 != nullptr && jobj2 != phantom_obj && 3376 jobj1->ideal_node()->is_Con() && 3377 jobj2->ideal_node()->is_Con()) { 3378 // Klass or String constants compare. Need to be careful with 3379 // compressed pointers - compare types of ConN and ConP instead of nodes. 3380 const Type* t1 = jobj1->ideal_node()->get_ptr_type(); 3381 const Type* t2 = jobj2->ideal_node()->get_ptr_type(); 3382 if (t1->make_ptr() == t2->make_ptr()) { 3383 return EQ; 3384 } else { 3385 return NE; 3386 } 3387 } 3388 if (ptn1->meet(ptn2)) { 3389 return UNKNOWN; // Sets are not disjoint 3390 } 3391 3392 // Sets are disjoint. 3393 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj); 3394 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj); 3395 bool set1_has_null_ptr = ptn1->points_to(null_obj); 3396 bool set2_has_null_ptr = ptn2->points_to(null_obj); 3397 if ((set1_has_unknown_ptr && set2_has_null_ptr) || 3398 (set2_has_unknown_ptr && set1_has_null_ptr)) { 3399 // Check nullness of unknown object. 3400 return UNKNOWN; 3401 } 3402 3403 // Disjointness by itself is not sufficient since 3404 // alias analysis is not complete for escaped objects. 3405 // Disjoint sets are definitely unrelated only when 3406 // at least one set has only not escaping allocations. 3407 if (!set1_has_unknown_ptr && !set1_has_null_ptr) { 3408 if (ptn1->non_escaping_allocation()) { 3409 return NE; 3410 } 3411 } 3412 if (!set2_has_unknown_ptr && !set2_has_null_ptr) { 3413 if (ptn2->non_escaping_allocation()) { 3414 return NE; 3415 } 3416 } 3417 return UNKNOWN; 3418 } 3419 3420 // Connection Graph construction functions. 3421 3422 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) { 3423 PointsToNode* ptadr = _nodes.at(n->_idx); 3424 if (ptadr != nullptr) { 3425 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity"); 3426 return; 3427 } 3428 Compile* C = _compile; 3429 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es); 3430 map_ideal_node(n, ptadr); 3431 } 3432 3433 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) { 3434 PointsToNode* ptadr = _nodes.at(n->_idx); 3435 if (ptadr != nullptr) { 3436 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity"); 3437 return ptadr; 3438 } 3439 Compile* C = _compile; 3440 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es); 3441 map_ideal_node(n, ptadr); 3442 return ptadr; 3443 } 3444 3445 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) { 3446 PointsToNode* ptadr = _nodes.at(n->_idx); 3447 if (ptadr != nullptr) { 3448 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity"); 3449 return; 3450 } 3451 bool unsafe = false; 3452 bool is_oop = is_oop_field(n, offset, &unsafe); 3453 if (unsafe) { 3454 es = PointsToNode::GlobalEscape; 3455 } 3456 Compile* C = _compile; 3457 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop); 3458 map_ideal_node(n, field); 3459 } 3460 3461 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es, 3462 PointsToNode* src, PointsToNode* dst) { 3463 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar"); 3464 assert((src != null_obj) && (dst != null_obj), "not for ConP null"); 3465 PointsToNode* ptadr = _nodes.at(n->_idx); 3466 if (ptadr != nullptr) { 3467 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity"); 3468 return; 3469 } 3470 Compile* C = _compile; 3471 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es); 3472 map_ideal_node(n, ptadr); 3473 // Add edge from arraycopy node to source object. 3474 (void)add_edge(ptadr, src); 3475 src->set_arraycopy_src(); 3476 // Add edge from destination object to arraycopy node. 3477 (void)add_edge(dst, ptadr); 3478 dst->set_arraycopy_dst(); 3479 } 3480 3481 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) { 3482 const Type* adr_type = n->as_AddP()->bottom_type(); 3483 int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot; 3484 BasicType bt = T_INT; 3485 if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) { 3486 // Check only oop fields. 3487 if (!adr_type->isa_aryptr() || 3488 adr_type->isa_aryptr()->elem() == Type::BOTTOM || 3489 adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) { 3490 // OffsetBot is used to reference array's element. Ignore first AddP. 3491 if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) { 3492 bt = T_OBJECT; 3493 } 3494 } 3495 } else if (offset != oopDesc::klass_offset_in_bytes()) { 3496 if (adr_type->isa_instptr()) { 3497 ciField* field = _compile->alias_type(adr_type->is_ptr())->field(); 3498 if (field != nullptr) { 3499 bt = field->layout_type(); 3500 } else { 3501 // Check for unsafe oop field access 3502 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 3503 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 3504 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 3505 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 3506 bt = T_OBJECT; 3507 (*unsafe) = true; 3508 } 3509 } 3510 } else if (adr_type->isa_aryptr()) { 3511 if (offset == arrayOopDesc::length_offset_in_bytes()) { 3512 // Ignore array length load. 3513 } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) { 3514 // Ignore first AddP. 3515 } else { 3516 const Type* elemtype = adr_type->is_aryptr()->elem(); 3517 if (adr_type->is_aryptr()->is_flat() && field_offset != Type::OffsetBot) { 3518 ciInlineKlass* vk = elemtype->inline_klass(); 3519 field_offset += vk->first_field_offset(); 3520 bt = vk->get_field_by_offset(field_offset, false)->layout_type(); 3521 } else { 3522 bt = elemtype->array_element_basic_type(); 3523 } 3524 } 3525 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) { 3526 // Allocation initialization, ThreadLocal field access, unsafe access 3527 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 3528 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 3529 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 3530 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 3531 bt = T_OBJECT; 3532 } 3533 } 3534 } 3535 // Note: T_NARROWOOP is not classed as a real reference type 3536 return (is_reference_type(bt) || bt == T_NARROWOOP); 3537 } 3538 3539 // Returns unique pointed java object or null. 3540 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const { 3541 // If the node was created after the escape computation we can't answer. 3542 uint idx = n->_idx; 3543 if (idx >= nodes_size()) { 3544 return nullptr; 3545 } 3546 PointsToNode* ptn = ptnode_adr(idx); 3547 if (ptn == nullptr) { 3548 return nullptr; 3549 } 3550 if (ptn->is_JavaObject()) { 3551 return ptn->as_JavaObject(); 3552 } 3553 assert(ptn->is_LocalVar(), "sanity"); 3554 // Check all java objects it points to. 3555 JavaObjectNode* jobj = nullptr; 3556 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3557 PointsToNode* e = i.get(); 3558 if (e->is_JavaObject()) { 3559 if (jobj == nullptr) { 3560 jobj = e->as_JavaObject(); 3561 } else if (jobj != e) { 3562 return nullptr; 3563 } 3564 } 3565 } 3566 return jobj; 3567 } 3568 3569 // Return true if this node points only to non-escaping allocations. 3570 bool PointsToNode::non_escaping_allocation() { 3571 if (is_JavaObject()) { 3572 Node* n = ideal_node(); 3573 if (n->is_Allocate() || n->is_CallStaticJava()) { 3574 return (escape_state() == PointsToNode::NoEscape); 3575 } else { 3576 return false; 3577 } 3578 } 3579 assert(is_LocalVar(), "sanity"); 3580 // Check all java objects it points to. 3581 for (EdgeIterator i(this); i.has_next(); i.next()) { 3582 PointsToNode* e = i.get(); 3583 if (e->is_JavaObject()) { 3584 Node* n = e->ideal_node(); 3585 if ((e->escape_state() != PointsToNode::NoEscape) || 3586 !(n->is_Allocate() || n->is_CallStaticJava())) { 3587 return false; 3588 } 3589 } 3590 } 3591 return true; 3592 } 3593 3594 // Return true if we know the node does not escape globally. 3595 bool ConnectionGraph::not_global_escape(Node *n) { 3596 assert(!_collecting, "should not call during graph construction"); 3597 // If the node was created after the escape computation we can't answer. 3598 uint idx = n->_idx; 3599 if (idx >= nodes_size()) { 3600 return false; 3601 } 3602 PointsToNode* ptn = ptnode_adr(idx); 3603 if (ptn == nullptr) { 3604 return false; // not in congraph (e.g. ConI) 3605 } 3606 PointsToNode::EscapeState es = ptn->escape_state(); 3607 // If we have already computed a value, return it. 3608 if (es >= PointsToNode::GlobalEscape) { 3609 return false; 3610 } 3611 if (ptn->is_JavaObject()) { 3612 return true; // (es < PointsToNode::GlobalEscape); 3613 } 3614 assert(ptn->is_LocalVar(), "sanity"); 3615 // Check all java objects it points to. 3616 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 3617 if (i.get()->escape_state() >= PointsToNode::GlobalEscape) { 3618 return false; 3619 } 3620 } 3621 return true; 3622 } 3623 3624 // Return true if locked object does not escape globally 3625 // and locked code region (identified by BoxLockNode) is balanced: 3626 // all compiled code paths have corresponding Lock/Unlock pairs. 3627 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) { 3628 if (alock->is_balanced() && not_global_escape(alock->obj_node())) { 3629 if (EliminateNestedLocks) { 3630 // We can mark whole locking region as Local only when only 3631 // one object is used for locking. 3632 alock->box_node()->as_BoxLock()->set_local(); 3633 } 3634 return true; 3635 } 3636 return false; 3637 } 3638 3639 // Helper functions 3640 3641 // Return true if this node points to specified node or nodes it points to. 3642 bool PointsToNode::points_to(JavaObjectNode* ptn) const { 3643 if (is_JavaObject()) { 3644 return (this == ptn); 3645 } 3646 assert(is_LocalVar() || is_Field(), "sanity"); 3647 for (EdgeIterator i(this); i.has_next(); i.next()) { 3648 if (i.get() == ptn) { 3649 return true; 3650 } 3651 } 3652 return false; 3653 } 3654 3655 // Return true if one node points to an other. 3656 bool PointsToNode::meet(PointsToNode* ptn) { 3657 if (this == ptn) { 3658 return true; 3659 } else if (ptn->is_JavaObject()) { 3660 return this->points_to(ptn->as_JavaObject()); 3661 } else if (this->is_JavaObject()) { 3662 return ptn->points_to(this->as_JavaObject()); 3663 } 3664 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity"); 3665 int ptn_count = ptn->edge_count(); 3666 for (EdgeIterator i(this); i.has_next(); i.next()) { 3667 PointsToNode* this_e = i.get(); 3668 for (int j = 0; j < ptn_count; j++) { 3669 if (this_e == ptn->edge(j)) { 3670 return true; 3671 } 3672 } 3673 } 3674 return false; 3675 } 3676 3677 #ifdef ASSERT 3678 // Return true if bases point to this java object. 3679 bool FieldNode::has_base(JavaObjectNode* jobj) const { 3680 for (BaseIterator i(this); i.has_next(); i.next()) { 3681 if (i.get() == jobj) { 3682 return true; 3683 } 3684 } 3685 return false; 3686 } 3687 #endif 3688 3689 bool ConnectionGraph::is_captured_store_address(Node* addp) { 3690 // Handle simple case first. 3691 assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access"); 3692 if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) { 3693 return true; 3694 } else if (addp->in(AddPNode::Address)->is_Phi()) { 3695 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 3696 Node* addp_use = addp->fast_out(i); 3697 if (addp_use->is_Store()) { 3698 for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) { 3699 if (addp_use->fast_out(j)->is_Initialize()) { 3700 return true; 3701 } 3702 } 3703 } 3704 } 3705 } 3706 return false; 3707 } 3708 3709 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) { 3710 const Type *adr_type = phase->type(adr); 3711 if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) { 3712 // We are computing a raw address for a store captured by an Initialize 3713 // compute an appropriate address type. AddP cases #3 and #5 (see below). 3714 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 3715 assert(offs != Type::OffsetBot || 3716 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), 3717 "offset must be a constant or it is initialization of array"); 3718 return offs; 3719 } 3720 return adr_type->is_ptr()->flat_offset(); 3721 } 3722 3723 Node* ConnectionGraph::get_addp_base(Node *addp) { 3724 assert(addp->is_AddP(), "must be AddP"); 3725 // 3726 // AddP cases for Base and Address inputs: 3727 // case #1. Direct object's field reference: 3728 // Allocate 3729 // | 3730 // Proj #5 ( oop result ) 3731 // | 3732 // CheckCastPP (cast to instance type) 3733 // | | 3734 // AddP ( base == address ) 3735 // 3736 // case #2. Indirect object's field reference: 3737 // Phi 3738 // | 3739 // CastPP (cast to instance type) 3740 // | | 3741 // AddP ( base == address ) 3742 // 3743 // case #3. Raw object's field reference for Initialize node: 3744 // Allocate 3745 // | 3746 // Proj #5 ( oop result ) 3747 // top | 3748 // \ | 3749 // AddP ( base == top ) 3750 // 3751 // case #4. Array's element reference: 3752 // {CheckCastPP | CastPP} 3753 // | | | 3754 // | AddP ( array's element offset ) 3755 // | | 3756 // AddP ( array's offset ) 3757 // 3758 // case #5. Raw object's field reference for arraycopy stub call: 3759 // The inline_native_clone() case when the arraycopy stub is called 3760 // after the allocation before Initialize and CheckCastPP nodes. 3761 // Allocate 3762 // | 3763 // Proj #5 ( oop result ) 3764 // | | 3765 // AddP ( base == address ) 3766 // 3767 // case #6. Constant Pool, ThreadLocal, CastX2P or 3768 // Raw object's field reference: 3769 // {ConP, ThreadLocal, CastX2P, raw Load} 3770 // top | 3771 // \ | 3772 // AddP ( base == top ) 3773 // 3774 // case #7. Klass's field reference. 3775 // LoadKlass 3776 // | | 3777 // AddP ( base == address ) 3778 // 3779 // case #8. narrow Klass's field reference. 3780 // LoadNKlass 3781 // | 3782 // DecodeN 3783 // | | 3784 // AddP ( base == address ) 3785 // 3786 // case #9. Mixed unsafe access 3787 // {instance} 3788 // | 3789 // CheckCastPP (raw) 3790 // top | 3791 // \ | 3792 // AddP ( base == top ) 3793 // 3794 Node *base = addp->in(AddPNode::Base); 3795 if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9. 3796 base = addp->in(AddPNode::Address); 3797 while (base->is_AddP()) { 3798 // Case #6 (unsafe access) may have several chained AddP nodes. 3799 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only"); 3800 base = base->in(AddPNode::Address); 3801 } 3802 if (base->Opcode() == Op_CheckCastPP && 3803 base->bottom_type()->isa_rawptr() && 3804 _igvn->type(base->in(1))->isa_oopptr()) { 3805 base = base->in(1); // Case #9 3806 } else { 3807 Node* uncast_base = base->uncast(); 3808 int opcode = uncast_base->Opcode(); 3809 assert(opcode == Op_ConP || opcode == Op_ThreadLocal || 3810 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() || 3811 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) || 3812 is_captured_store_address(addp), "sanity"); 3813 } 3814 } 3815 return base; 3816 } 3817 3818 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) { 3819 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); 3820 Node* addp2 = addp->raw_out(0); 3821 if (addp->outcnt() == 1 && addp2->is_AddP() && 3822 addp2->in(AddPNode::Base) == n && 3823 addp2->in(AddPNode::Address) == addp) { 3824 assert(addp->in(AddPNode::Base) == n, "expecting the same base"); 3825 // 3826 // Find array's offset to push it on worklist first and 3827 // as result process an array's element offset first (pushed second) 3828 // to avoid CastPP for the array's offset. 3829 // Otherwise the inserted CastPP (LocalVar) will point to what 3830 // the AddP (Field) points to. Which would be wrong since 3831 // the algorithm expects the CastPP has the same point as 3832 // as AddP's base CheckCastPP (LocalVar). 3833 // 3834 // ArrayAllocation 3835 // | 3836 // CheckCastPP 3837 // | 3838 // memProj (from ArrayAllocation CheckCastPP) 3839 // | || 3840 // | || Int (element index) 3841 // | || | ConI (log(element size)) 3842 // | || | / 3843 // | || LShift 3844 // | || / 3845 // | AddP (array's element offset) 3846 // | | 3847 // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) 3848 // | / / 3849 // AddP (array's offset) 3850 // | 3851 // Load/Store (memory operation on array's element) 3852 // 3853 return addp2; 3854 } 3855 return nullptr; 3856 } 3857 3858 // 3859 // Adjust the type and inputs of an AddP which computes the 3860 // address of a field of an instance 3861 // 3862 bool ConnectionGraph::split_AddP(Node *addp, Node *base) { 3863 PhaseGVN* igvn = _igvn; 3864 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); 3865 assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr"); 3866 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); 3867 if (t == nullptr) { 3868 // We are computing a raw address for a store captured by an Initialize 3869 // compute an appropriate address type (cases #3 and #5). 3870 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); 3871 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); 3872 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); 3873 assert(offs != Type::OffsetBot, "offset must be a constant"); 3874 if (base_t->isa_aryptr() != nullptr) { 3875 // In the case of a flat inline type array, each field has its 3876 // own slice so we need to extract the field being accessed from 3877 // the address computation 3878 t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr(); 3879 } else { 3880 t = base_t->add_offset(offs)->is_oopptr(); 3881 } 3882 } 3883 int inst_id = base_t->instance_id(); 3884 assert(!t->is_known_instance() || t->instance_id() == inst_id, 3885 "old type must be non-instance or match new type"); 3886 3887 // The type 't' could be subclass of 'base_t'. 3888 // As result t->offset() could be large then base_t's size and it will 3889 // cause the failure in add_offset() with narrow oops since TypeOopPtr() 3890 // constructor verifies correctness of the offset. 3891 // 3892 // It could happened on subclass's branch (from the type profiling 3893 // inlining) which was not eliminated during parsing since the exactness 3894 // of the allocation type was not propagated to the subclass type check. 3895 // 3896 // Or the type 't' could be not related to 'base_t' at all. 3897 // It could happen when CHA type is different from MDO type on a dead path 3898 // (for example, from instanceof check) which is not collapsed during parsing. 3899 // 3900 // Do nothing for such AddP node and don't process its users since 3901 // this code branch will go away. 3902 // 3903 if (!t->is_known_instance() && 3904 !base_t->maybe_java_subtype_of(t)) { 3905 return false; // bail out 3906 } 3907 const TypePtr* tinst = base_t->add_offset(t->offset()); 3908 if (tinst->isa_aryptr() && t->isa_aryptr()) { 3909 // In the case of a flat inline type array, each field has its 3910 // own slice so we need to keep track of the field being accessed. 3911 tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get()); 3912 // Keep array properties (not flat/null-free) 3913 tinst = tinst->is_aryptr()->update_properties(t->is_aryptr()); 3914 if (tinst == nullptr) { 3915 return false; // Skip dead path with inconsistent properties 3916 } 3917 } 3918 3919 // Do NOT remove the next line: ensure a new alias index is allocated 3920 // for the instance type. Note: C++ will not remove it since the call 3921 // has side effect. 3922 int alias_idx = _compile->get_alias_index(tinst); 3923 igvn->set_type(addp, tinst); 3924 // record the allocation in the node map 3925 set_map(addp, get_map(base->_idx)); 3926 // Set addp's Base and Address to 'base'. 3927 Node *abase = addp->in(AddPNode::Base); 3928 Node *adr = addp->in(AddPNode::Address); 3929 if (adr->is_Proj() && adr->in(0)->is_Allocate() && 3930 adr->in(0)->_idx == (uint)inst_id) { 3931 // Skip AddP cases #3 and #5. 3932 } else { 3933 assert(!abase->is_top(), "sanity"); // AddP case #3 3934 if (abase != base) { 3935 igvn->hash_delete(addp); 3936 addp->set_req(AddPNode::Base, base); 3937 if (abase == adr) { 3938 addp->set_req(AddPNode::Address, base); 3939 } else { 3940 // AddP case #4 (adr is array's element offset AddP node) 3941 #ifdef ASSERT 3942 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); 3943 assert(adr->is_AddP() && atype != nullptr && 3944 atype->instance_id() == inst_id, "array's element offset should be processed first"); 3945 #endif 3946 } 3947 igvn->hash_insert(addp); 3948 } 3949 } 3950 // Put on IGVN worklist since at least addp's type was changed above. 3951 record_for_optimizer(addp); 3952 return true; 3953 } 3954 3955 // 3956 // Create a new version of orig_phi if necessary. Returns either the newly 3957 // created phi or an existing phi. Sets create_new to indicate whether a new 3958 // phi was created. Cache the last newly created phi in the node map. 3959 // 3960 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) { 3961 Compile *C = _compile; 3962 PhaseGVN* igvn = _igvn; 3963 new_created = false; 3964 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); 3965 // nothing to do if orig_phi is bottom memory or matches alias_idx 3966 if (phi_alias_idx == alias_idx) { 3967 return orig_phi; 3968 } 3969 // Have we recently created a Phi for this alias index? 3970 PhiNode *result = get_map_phi(orig_phi->_idx); 3971 if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) { 3972 return result; 3973 } 3974 // Previous check may fail when the same wide memory Phi was split into Phis 3975 // for different memory slices. Search all Phis for this region. 3976 if (result != nullptr) { 3977 Node* region = orig_phi->in(0); 3978 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 3979 Node* phi = region->fast_out(i); 3980 if (phi->is_Phi() && 3981 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { 3982 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); 3983 return phi->as_Phi(); 3984 } 3985 } 3986 } 3987 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) { 3988 if (C->do_escape_analysis() == true && !C->failing()) { 3989 // Retry compilation without escape analysis. 3990 // If this is the first failure, the sentinel string will "stick" 3991 // to the Compile object, and the C2Compiler will see it and retry. 3992 C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 3993 } 3994 return nullptr; 3995 } 3996 orig_phi_worklist.append_if_missing(orig_phi); 3997 const TypePtr *atype = C->get_adr_type(alias_idx); 3998 result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype); 3999 C->copy_node_notes_to(result, orig_phi); 4000 igvn->set_type(result, result->bottom_type()); 4001 record_for_optimizer(result); 4002 set_map(orig_phi, result); 4003 new_created = true; 4004 return result; 4005 } 4006 4007 // 4008 // Return a new version of Memory Phi "orig_phi" with the inputs having the 4009 // specified alias index. 4010 // 4011 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) { 4012 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); 4013 Compile *C = _compile; 4014 PhaseGVN* igvn = _igvn; 4015 bool new_phi_created; 4016 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created); 4017 if (!new_phi_created) { 4018 return result; 4019 } 4020 GrowableArray<PhiNode *> phi_list; 4021 GrowableArray<uint> cur_input; 4022 PhiNode *phi = orig_phi; 4023 uint idx = 1; 4024 bool finished = false; 4025 while(!finished) { 4026 while (idx < phi->req()) { 4027 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1); 4028 if (mem != nullptr && mem->is_Phi()) { 4029 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created); 4030 if (new_phi_created) { 4031 // found an phi for which we created a new split, push current one on worklist and begin 4032 // processing new one 4033 phi_list.push(phi); 4034 cur_input.push(idx); 4035 phi = mem->as_Phi(); 4036 result = newphi; 4037 idx = 1; 4038 continue; 4039 } else { 4040 mem = newphi; 4041 } 4042 } 4043 if (C->failing()) { 4044 return nullptr; 4045 } 4046 result->set_req(idx++, mem); 4047 } 4048 #ifdef ASSERT 4049 // verify that the new Phi has an input for each input of the original 4050 assert( phi->req() == result->req(), "must have same number of inputs."); 4051 assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match"); 4052 #endif 4053 // Check if all new phi's inputs have specified alias index. 4054 // Otherwise use old phi. 4055 for (uint i = 1; i < phi->req(); i++) { 4056 Node* in = result->in(i); 4057 assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond."); 4058 } 4059 // we have finished processing a Phi, see if there are any more to do 4060 finished = (phi_list.length() == 0 ); 4061 if (!finished) { 4062 phi = phi_list.pop(); 4063 idx = cur_input.pop(); 4064 PhiNode *prev_result = get_map_phi(phi->_idx); 4065 prev_result->set_req(idx++, result); 4066 result = prev_result; 4067 } 4068 } 4069 return result; 4070 } 4071 4072 // 4073 // The next methods are derived from methods in MemNode. 4074 // 4075 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { 4076 Node *mem = mmem; 4077 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 4078 // means an array I have not precisely typed yet. Do not do any 4079 // alias stuff with it any time soon. 4080 if (toop->base() != Type::AnyPtr && 4081 !(toop->isa_instptr() && 4082 toop->is_instptr()->instance_klass()->is_java_lang_Object() && 4083 toop->offset() == Type::OffsetBot)) { 4084 mem = mmem->memory_at(alias_idx); 4085 // Update input if it is progress over what we have now 4086 } 4087 return mem; 4088 } 4089 4090 // 4091 // Move memory users to their memory slices. 4092 // 4093 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) { 4094 Compile* C = _compile; 4095 PhaseGVN* igvn = _igvn; 4096 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); 4097 assert(tp != nullptr, "ptr type"); 4098 int alias_idx = C->get_alias_index(tp); 4099 int general_idx = C->get_general_index(alias_idx); 4100 4101 // Move users first 4102 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4103 Node* use = n->fast_out(i); 4104 if (use->is_MergeMem()) { 4105 MergeMemNode* mmem = use->as_MergeMem(); 4106 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); 4107 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { 4108 continue; // Nothing to do 4109 } 4110 // Replace previous general reference to mem node. 4111 uint orig_uniq = C->unique(); 4112 Node* m = find_inst_mem(n, general_idx, orig_phis); 4113 assert(orig_uniq == C->unique(), "no new nodes"); 4114 mmem->set_memory_at(general_idx, m); 4115 --imax; 4116 --i; 4117 } else if (use->is_MemBar()) { 4118 assert(!use->is_Initialize(), "initializing stores should not be moved"); 4119 if (use->req() > MemBarNode::Precedent && 4120 use->in(MemBarNode::Precedent) == n) { 4121 // Don't move related membars. 4122 record_for_optimizer(use); 4123 continue; 4124 } 4125 tp = use->as_MemBar()->adr_type()->isa_ptr(); 4126 if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) || 4127 alias_idx == general_idx) { 4128 continue; // Nothing to do 4129 } 4130 // Move to general memory slice. 4131 uint orig_uniq = C->unique(); 4132 Node* m = find_inst_mem(n, general_idx, orig_phis); 4133 assert(orig_uniq == C->unique(), "no new nodes"); 4134 igvn->hash_delete(use); 4135 imax -= use->replace_edge(n, m, igvn); 4136 igvn->hash_insert(use); 4137 record_for_optimizer(use); 4138 --i; 4139 #ifdef ASSERT 4140 } else if (use->is_Mem()) { 4141 // Memory nodes should have new memory input. 4142 tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); 4143 assert(tp != nullptr, "ptr type"); 4144 int idx = C->get_alias_index(tp); 4145 assert(get_map(use->_idx) != nullptr || idx == alias_idx, 4146 "Following memory nodes should have new memory input or be on the same memory slice"); 4147 } else if (use->is_Phi()) { 4148 // Phi nodes should be split and moved already. 4149 tp = use->as_Phi()->adr_type()->isa_ptr(); 4150 assert(tp != nullptr, "ptr type"); 4151 int idx = C->get_alias_index(tp); 4152 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); 4153 } else { 4154 use->dump(); 4155 assert(false, "should not be here"); 4156 #endif 4157 } 4158 } 4159 } 4160 4161 // 4162 // Search memory chain of "mem" to find a MemNode whose address 4163 // is the specified alias index. 4164 // 4165 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000 4166 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, uint rec_depth) { 4167 if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) { 4168 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4169 return nullptr; 4170 } 4171 if (orig_mem == nullptr) { 4172 return orig_mem; 4173 } 4174 Compile* C = _compile; 4175 PhaseGVN* igvn = _igvn; 4176 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); 4177 bool is_instance = (toop != nullptr) && toop->is_known_instance(); 4178 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 4179 Node *prev = nullptr; 4180 Node *result = orig_mem; 4181 while (prev != result) { 4182 prev = result; 4183 if (result == start_mem) { 4184 break; // hit one of our sentinels 4185 } 4186 if (result->is_Mem()) { 4187 const Type *at = igvn->type(result->in(MemNode::Address)); 4188 if (at == Type::TOP) { 4189 break; // Dead 4190 } 4191 assert (at->isa_ptr() != nullptr, "pointer type required."); 4192 int idx = C->get_alias_index(at->is_ptr()); 4193 if (idx == alias_idx) { 4194 break; // Found 4195 } 4196 if (!is_instance && (at->isa_oopptr() == nullptr || 4197 !at->is_oopptr()->is_known_instance())) { 4198 break; // Do not skip store to general memory slice. 4199 } 4200 result = result->in(MemNode::Memory); 4201 } 4202 if (!is_instance) { 4203 continue; // don't search further for non-instance types 4204 } 4205 // skip over a call which does not affect this memory slice 4206 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 4207 Node *proj_in = result->in(0); 4208 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { 4209 break; // hit one of our sentinels 4210 } else if (proj_in->is_Call()) { 4211 // ArrayCopy node processed here as well 4212 CallNode *call = proj_in->as_Call(); 4213 if (!call->may_modify(toop, igvn)) { 4214 result = call->in(TypeFunc::Memory); 4215 } 4216 } else if (proj_in->is_Initialize()) { 4217 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 4218 // Stop if this is the initialization for the object instance which 4219 // which contains this memory slice, otherwise skip over it. 4220 if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) { 4221 result = proj_in->in(TypeFunc::Memory); 4222 } 4223 } else if (proj_in->is_MemBar()) { 4224 // Check if there is an array copy for a clone 4225 // Step over GC barrier when ReduceInitialCardMarks is disabled 4226 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4227 Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0)); 4228 4229 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 4230 // Stop if it is a clone 4231 ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy(); 4232 if (ac->may_modify(toop, igvn)) { 4233 break; 4234 } 4235 } 4236 result = proj_in->in(TypeFunc::Memory); 4237 } 4238 } else if (result->is_MergeMem()) { 4239 MergeMemNode *mmem = result->as_MergeMem(); 4240 result = step_through_mergemem(mmem, alias_idx, toop); 4241 if (result == mmem->base_memory()) { 4242 // Didn't find instance memory, search through general slice recursively. 4243 result = mmem->memory_at(C->get_general_index(alias_idx)); 4244 result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1); 4245 if (C->failing()) { 4246 return nullptr; 4247 } 4248 mmem->set_memory_at(alias_idx, result); 4249 } 4250 } else if (result->is_Phi() && 4251 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { 4252 Node *un = result->as_Phi()->unique_input(igvn); 4253 if (un != nullptr) { 4254 orig_phis.append_if_missing(result->as_Phi()); 4255 result = un; 4256 } else { 4257 break; 4258 } 4259 } else if (result->is_ClearArray()) { 4260 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) { 4261 // Can not bypass initialization of the instance 4262 // we are looking for. 4263 break; 4264 } 4265 // Otherwise skip it (the call updated 'result' value). 4266 } else if (result->Opcode() == Op_SCMemProj) { 4267 Node* mem = result->in(0); 4268 Node* adr = nullptr; 4269 if (mem->is_LoadStore()) { 4270 adr = mem->in(MemNode::Address); 4271 } else { 4272 assert(mem->Opcode() == Op_EncodeISOArray || 4273 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 4274 adr = mem->in(3); // Memory edge corresponds to destination array 4275 } 4276 const Type *at = igvn->type(adr); 4277 if (at != Type::TOP) { 4278 assert(at->isa_ptr() != nullptr, "pointer type required."); 4279 int idx = C->get_alias_index(at->is_ptr()); 4280 if (idx == alias_idx) { 4281 // Assert in debug mode 4282 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 4283 break; // In product mode return SCMemProj node 4284 } 4285 } 4286 result = mem->in(MemNode::Memory); 4287 } else if (result->Opcode() == Op_StrInflatedCopy) { 4288 Node* adr = result->in(3); // Memory edge corresponds to destination array 4289 const Type *at = igvn->type(adr); 4290 if (at != Type::TOP) { 4291 assert(at->isa_ptr() != nullptr, "pointer type required."); 4292 int idx = C->get_alias_index(at->is_ptr()); 4293 if (idx == alias_idx) { 4294 // Assert in debug mode 4295 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 4296 break; // In product mode return SCMemProj node 4297 } 4298 } 4299 result = result->in(MemNode::Memory); 4300 } 4301 } 4302 if (result->is_Phi()) { 4303 PhiNode *mphi = result->as_Phi(); 4304 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 4305 const TypePtr *t = mphi->adr_type(); 4306 if (!is_instance) { 4307 // Push all non-instance Phis on the orig_phis worklist to update inputs 4308 // during Phase 4 if needed. 4309 orig_phis.append_if_missing(mphi); 4310 } else if (C->get_alias_index(t) != alias_idx) { 4311 // Create a new Phi with the specified alias index type. 4312 result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1); 4313 } 4314 } 4315 // the result is either MemNode, PhiNode, InitializeNode. 4316 return result; 4317 } 4318 4319 // 4320 // Convert the types of non-escaped object to instance types where possible, 4321 // propagate the new type information through the graph, and update memory 4322 // edges and MergeMem inputs to reflect the new type. 4323 // 4324 // We start with allocations (and calls which may be allocations) on alloc_worklist. 4325 // The processing is done in 4 phases: 4326 // 4327 // Phase 1: Process possible allocations from alloc_worklist. Create instance 4328 // types for the CheckCastPP for allocations where possible. 4329 // Propagate the new types through users as follows: 4330 // casts and Phi: push users on alloc_worklist 4331 // AddP: cast Base and Address inputs to the instance type 4332 // push any AddP users on alloc_worklist and push any memnode 4333 // users onto memnode_worklist. 4334 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 4335 // search the Memory chain for a store with the appropriate type 4336 // address type. If a Phi is found, create a new version with 4337 // the appropriate memory slices from each of the Phi inputs. 4338 // For stores, process the users as follows: 4339 // MemNode: push on memnode_worklist 4340 // MergeMem: push on mergemem_worklist 4341 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice 4342 // moving the first node encountered of each instance type to the 4343 // the input corresponding to its alias index. 4344 // appropriate memory slice. 4345 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. 4346 // 4347 // In the following example, the CheckCastPP nodes are the cast of allocation 4348 // results and the allocation of node 29 is non-escaped and eligible to be an 4349 // instance type. 4350 // 4351 // We start with: 4352 // 4353 // 7 Parm #memory 4354 // 10 ConI "12" 4355 // 19 CheckCastPP "Foo" 4356 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4357 // 29 CheckCastPP "Foo" 4358 // 30 AddP _ 29 29 10 Foo+12 alias_index=4 4359 // 4360 // 40 StoreP 25 7 20 ... alias_index=4 4361 // 50 StoreP 35 40 30 ... alias_index=4 4362 // 60 StoreP 45 50 20 ... alias_index=4 4363 // 70 LoadP _ 60 30 ... alias_index=4 4364 // 80 Phi 75 50 60 Memory alias_index=4 4365 // 90 LoadP _ 80 30 ... alias_index=4 4366 // 100 LoadP _ 80 20 ... alias_index=4 4367 // 4368 // 4369 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 4370 // and creating a new alias index for node 30. This gives: 4371 // 4372 // 7 Parm #memory 4373 // 10 ConI "12" 4374 // 19 CheckCastPP "Foo" 4375 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4376 // 29 CheckCastPP "Foo" iid=24 4377 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 4378 // 4379 // 40 StoreP 25 7 20 ... alias_index=4 4380 // 50 StoreP 35 40 30 ... alias_index=6 4381 // 60 StoreP 45 50 20 ... alias_index=4 4382 // 70 LoadP _ 60 30 ... alias_index=6 4383 // 80 Phi 75 50 60 Memory alias_index=4 4384 // 90 LoadP _ 80 30 ... alias_index=6 4385 // 100 LoadP _ 80 20 ... alias_index=4 4386 // 4387 // In phase 2, new memory inputs are computed for the loads and stores, 4388 // And a new version of the phi is created. In phase 4, the inputs to 4389 // node 80 are updated and then the memory nodes are updated with the 4390 // values computed in phase 2. This results in: 4391 // 4392 // 7 Parm #memory 4393 // 10 ConI "12" 4394 // 19 CheckCastPP "Foo" 4395 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 4396 // 29 CheckCastPP "Foo" iid=24 4397 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 4398 // 4399 // 40 StoreP 25 7 20 ... alias_index=4 4400 // 50 StoreP 35 7 30 ... alias_index=6 4401 // 60 StoreP 45 40 20 ... alias_index=4 4402 // 70 LoadP _ 50 30 ... alias_index=6 4403 // 80 Phi 75 40 60 Memory alias_index=4 4404 // 120 Phi 75 50 50 Memory alias_index=6 4405 // 90 LoadP _ 120 30 ... alias_index=6 4406 // 100 LoadP _ 80 20 ... alias_index=4 4407 // 4408 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist, 4409 GrowableArray<ArrayCopyNode*> &arraycopy_worklist, 4410 GrowableArray<MergeMemNode*> &mergemem_worklist, 4411 Unique_Node_List &reducible_merges) { 4412 DEBUG_ONLY(Unique_Node_List reduced_merges;) 4413 GrowableArray<Node *> memnode_worklist; 4414 GrowableArray<PhiNode *> orig_phis; 4415 PhaseIterGVN *igvn = _igvn; 4416 uint new_index_start = (uint) _compile->num_alias_types(); 4417 VectorSet visited; 4418 ideal_nodes.clear(); // Reset for use with set_map/get_map. 4419 uint unique_old = _compile->unique(); 4420 4421 // Phase 1: Process possible allocations from alloc_worklist. 4422 // Create instance types for the CheckCastPP for allocations where possible. 4423 // 4424 // (Note: don't forget to change the order of the second AddP node on 4425 // the alloc_worklist if the order of the worklist processing is changed, 4426 // see the comment in find_second_addp().) 4427 // 4428 while (alloc_worklist.length() != 0) { 4429 Node *n = alloc_worklist.pop(); 4430 uint ni = n->_idx; 4431 if (n->is_Call()) { 4432 CallNode *alloc = n->as_Call(); 4433 // copy escape information to call node 4434 PointsToNode* ptn = ptnode_adr(alloc->_idx); 4435 PointsToNode::EscapeState es = ptn->escape_state(); 4436 // We have an allocation or call which returns a Java object, 4437 // see if it is non-escaped. 4438 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) { 4439 continue; 4440 } 4441 // Find CheckCastPP for the allocate or for the return value of a call 4442 n = alloc->result_cast(); 4443 if (n == nullptr) { // No uses except Initialize node 4444 if (alloc->is_Allocate()) { 4445 // Set the scalar_replaceable flag for allocation 4446 // so it could be eliminated if it has no uses. 4447 alloc->as_Allocate()->_is_scalar_replaceable = true; 4448 } 4449 continue; 4450 } 4451 if (!n->is_CheckCastPP()) { // not unique CheckCastPP. 4452 // we could reach here for allocate case if one init is associated with many allocs. 4453 if (alloc->is_Allocate()) { 4454 alloc->as_Allocate()->_is_scalar_replaceable = false; 4455 } 4456 continue; 4457 } 4458 4459 // The inline code for Object.clone() casts the allocation result to 4460 // java.lang.Object and then to the actual type of the allocated 4461 // object. Detect this case and use the second cast. 4462 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when 4463 // the allocation result is cast to java.lang.Object and then 4464 // to the actual Array type. 4465 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL 4466 && (alloc->is_AllocateArray() || 4467 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) { 4468 Node *cast2 = nullptr; 4469 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4470 Node *use = n->fast_out(i); 4471 if (use->is_CheckCastPP()) { 4472 cast2 = use; 4473 break; 4474 } 4475 } 4476 if (cast2 != nullptr) { 4477 n = cast2; 4478 } else { 4479 // Non-scalar replaceable if the allocation type is unknown statically 4480 // (reflection allocation), the object can't be restored during 4481 // deoptimization without precise type. 4482 continue; 4483 } 4484 } 4485 4486 const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); 4487 if (t == nullptr) { 4488 continue; // not a TypeOopPtr 4489 } 4490 if (!t->klass_is_exact()) { 4491 continue; // not an unique type 4492 } 4493 if (alloc->is_Allocate()) { 4494 // Set the scalar_replaceable flag for allocation 4495 // so it could be eliminated. 4496 alloc->as_Allocate()->_is_scalar_replaceable = true; 4497 } 4498 set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state 4499 // in order for an object to be scalar-replaceable, it must be: 4500 // - a direct allocation (not a call returning an object) 4501 // - non-escaping 4502 // - eligible to be a unique type 4503 // - not determined to be ineligible by escape analysis 4504 set_map(alloc, n); 4505 set_map(n, alloc); 4506 const TypeOopPtr* tinst = t->cast_to_instance_id(ni); 4507 igvn->hash_delete(n); 4508 igvn->set_type(n, tinst); 4509 n->raise_bottom_type(tinst); 4510 igvn->hash_insert(n); 4511 record_for_optimizer(n); 4512 // Allocate an alias index for the header fields. Accesses to 4513 // the header emitted during macro expansion wouldn't have 4514 // correct memory state otherwise. 4515 _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes())); 4516 _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes())); 4517 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) { 4518 4519 // First, put on the worklist all Field edges from Connection Graph 4520 // which is more accurate than putting immediate users from Ideal Graph. 4521 for (EdgeIterator e(ptn); e.has_next(); e.next()) { 4522 PointsToNode* tgt = e.get(); 4523 if (tgt->is_Arraycopy()) { 4524 continue; 4525 } 4526 Node* use = tgt->ideal_node(); 4527 assert(tgt->is_Field() && use->is_AddP(), 4528 "only AddP nodes are Field edges in CG"); 4529 if (use->outcnt() > 0) { // Don't process dead nodes 4530 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); 4531 if (addp2 != nullptr) { 4532 assert(alloc->is_AllocateArray(),"array allocation was expected"); 4533 alloc_worklist.append_if_missing(addp2); 4534 } 4535 alloc_worklist.append_if_missing(use); 4536 } 4537 } 4538 4539 // An allocation may have an Initialize which has raw stores. Scan 4540 // the users of the raw allocation result and push AddP users 4541 // on alloc_worklist. 4542 Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms); 4543 assert (raw_result != nullptr, "must have an allocation result"); 4544 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { 4545 Node *use = raw_result->fast_out(i); 4546 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes 4547 Node* addp2 = find_second_addp(use, raw_result); 4548 if (addp2 != nullptr) { 4549 assert(alloc->is_AllocateArray(),"array allocation was expected"); 4550 alloc_worklist.append_if_missing(addp2); 4551 } 4552 alloc_worklist.append_if_missing(use); 4553 } else if (use->is_MemBar()) { 4554 memnode_worklist.append_if_missing(use); 4555 } 4556 } 4557 } 4558 } else if (n->is_AddP()) { 4559 if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) { 4560 // This AddP will go away when we reduce the the Phi 4561 continue; 4562 } 4563 Node* addp_base = get_addp_base(n); 4564 JavaObjectNode* jobj = unique_java_object(addp_base); 4565 if (jobj == nullptr || jobj == phantom_obj) { 4566 #ifdef ASSERT 4567 ptnode_adr(get_addp_base(n)->_idx)->dump(); 4568 ptnode_adr(n->_idx)->dump(); 4569 assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation"); 4570 #endif 4571 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4572 return; 4573 } 4574 Node *base = get_map(jobj->idx()); // CheckCastPP node 4575 if (!split_AddP(n, base)) continue; // wrong type from dead path 4576 } else if (n->is_Phi() || 4577 n->is_CheckCastPP() || 4578 n->is_EncodeP() || 4579 n->is_DecodeN() || 4580 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { 4581 if (visited.test_set(n->_idx)) { 4582 assert(n->is_Phi(), "loops only through Phi's"); 4583 continue; // already processed 4584 } 4585 // Reducible Phi's will be removed from the graph after split_unique_types 4586 // finishes. For now we just try to split out the SR inputs of the merge. 4587 Node* parent = n->in(1); 4588 if (reducible_merges.member(n)) { 4589 reduce_phi(n->as_Phi(), alloc_worklist, memnode_worklist); 4590 #ifdef ASSERT 4591 if (VerifyReduceAllocationMerges) { 4592 reduced_merges.push(n); 4593 } 4594 #endif 4595 continue; 4596 } else if (reducible_merges.member(parent)) { 4597 // 'n' is an user of a reducible merge (a Phi). It will be simplified as 4598 // part of reduce_merge. 4599 continue; 4600 } 4601 JavaObjectNode* jobj = unique_java_object(n); 4602 if (jobj == nullptr || jobj == phantom_obj) { 4603 #ifdef ASSERT 4604 ptnode_adr(n->_idx)->dump(); 4605 assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation"); 4606 #endif 4607 _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis()); 4608 return; 4609 } else { 4610 Node *val = get_map(jobj->idx()); // CheckCastPP node 4611 TypeNode *tn = n->as_Type(); 4612 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr(); 4613 assert(tinst != nullptr && tinst->is_known_instance() && 4614 tinst->instance_id() == jobj->idx() , "instance type expected."); 4615 4616 const Type *tn_type = igvn->type(tn); 4617 const TypeOopPtr *tn_t; 4618 if (tn_type->isa_narrowoop()) { 4619 tn_t = tn_type->make_ptr()->isa_oopptr(); 4620 } else { 4621 tn_t = tn_type->isa_oopptr(); 4622 } 4623 if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) { 4624 if (tn_t->isa_aryptr()) { 4625 // Keep array properties (not flat/null-free) 4626 tinst = tinst->is_aryptr()->update_properties(tn_t->is_aryptr()); 4627 if (tinst == nullptr) { 4628 continue; // Skip dead path with inconsistent properties 4629 } 4630 } 4631 if (tn_type->isa_narrowoop()) { 4632 tn_type = tinst->make_narrowoop(); 4633 } else { 4634 tn_type = tinst; 4635 } 4636 igvn->hash_delete(tn); 4637 igvn->set_type(tn, tn_type); 4638 tn->set_type(tn_type); 4639 igvn->hash_insert(tn); 4640 record_for_optimizer(n); 4641 } else { 4642 assert(tn_type == TypePtr::NULL_PTR || 4643 (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)), 4644 "unexpected type"); 4645 continue; // Skip dead path with different type 4646 } 4647 } 4648 } else { 4649 debug_only(n->dump();) 4650 assert(false, "EA: unexpected node"); 4651 continue; 4652 } 4653 // push allocation's users on appropriate worklist 4654 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4655 Node *use = n->fast_out(i); 4656 if (use->is_Mem() && use->in(MemNode::Address) == n) { 4657 // Load/store to instance's field 4658 memnode_worklist.append_if_missing(use); 4659 } else if (use->is_MemBar()) { 4660 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 4661 memnode_worklist.append_if_missing(use); 4662 } 4663 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes 4664 Node* addp2 = find_second_addp(use, n); 4665 if (addp2 != nullptr) { 4666 alloc_worklist.append_if_missing(addp2); 4667 } 4668 alloc_worklist.append_if_missing(use); 4669 } else if (use->is_Phi() || 4670 use->is_CheckCastPP() || 4671 use->is_EncodeNarrowPtr() || 4672 use->is_DecodeNarrowPtr() || 4673 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { 4674 alloc_worklist.append_if_missing(use); 4675 #ifdef ASSERT 4676 } else if (use->is_Mem()) { 4677 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); 4678 } else if (use->is_MergeMem()) { 4679 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 4680 } else if (use->is_SafePoint()) { 4681 // Look for MergeMem nodes for calls which reference unique allocation 4682 // (through CheckCastPP nodes) even for debug info. 4683 Node* m = use->in(TypeFunc::Memory); 4684 if (m->is_MergeMem()) { 4685 assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 4686 } 4687 } else if (use->Opcode() == Op_EncodeISOArray) { 4688 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 4689 // EncodeISOArray overwrites destination array 4690 memnode_worklist.append_if_missing(use); 4691 } 4692 } else if (use->Opcode() == Op_Return) { 4693 // Allocation is referenced by field of returned inline type 4694 assert(_compile->tf()->returns_inline_type_as_fields(), "EA: unexpected reference by ReturnNode"); 4695 } else { 4696 uint op = use->Opcode(); 4697 if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) && 4698 (use->in(MemNode::Memory) == n)) { 4699 // They overwrite memory edge corresponding to destination array, 4700 memnode_worklist.append_if_missing(use); 4701 } else if (!(op == Op_CmpP || op == Op_Conv2B || 4702 op == Op_CastP2X || 4703 op == Op_FastLock || op == Op_AryEq || 4704 op == Op_StrComp || op == Op_CountPositives || 4705 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || 4706 op == Op_StrEquals || op == Op_VectorizedHashCode || 4707 op == Op_StrIndexOf || op == Op_StrIndexOfChar || 4708 op == Op_SubTypeCheck || op == Op_InlineType || op == Op_FlatArrayCheck || 4709 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) { 4710 n->dump(); 4711 use->dump(); 4712 assert(false, "EA: missing allocation reference path"); 4713 } 4714 #endif 4715 } 4716 } 4717 4718 } 4719 4720 #ifdef ASSERT 4721 if (VerifyReduceAllocationMerges) { 4722 for (uint i = 0; i < reducible_merges.size(); i++) { 4723 Node* phi = reducible_merges.at(i); 4724 4725 if (!reduced_merges.member(phi)) { 4726 phi->dump(2); 4727 phi->dump(-2); 4728 assert(false, "This reducible merge wasn't reduced."); 4729 } 4730 4731 // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts. 4732 for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) { 4733 Node* use = phi->fast_out(j); 4734 if (!use->is_SafePoint() && !use->is_CastPP()) { 4735 phi->dump(2); 4736 phi->dump(-2); 4737 assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt()); 4738 } 4739 } 4740 } 4741 } 4742 #endif 4743 4744 // Go over all ArrayCopy nodes and if one of the inputs has a unique 4745 // type, record it in the ArrayCopy node so we know what memory this 4746 // node uses/modified. 4747 for (int next = 0; next < arraycopy_worklist.length(); next++) { 4748 ArrayCopyNode* ac = arraycopy_worklist.at(next); 4749 Node* dest = ac->in(ArrayCopyNode::Dest); 4750 if (dest->is_AddP()) { 4751 dest = get_addp_base(dest); 4752 } 4753 JavaObjectNode* jobj = unique_java_object(dest); 4754 if (jobj != nullptr) { 4755 Node *base = get_map(jobj->idx()); 4756 if (base != nullptr) { 4757 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 4758 ac->_dest_type = base_t; 4759 } 4760 } 4761 Node* src = ac->in(ArrayCopyNode::Src); 4762 if (src->is_AddP()) { 4763 src = get_addp_base(src); 4764 } 4765 jobj = unique_java_object(src); 4766 if (jobj != nullptr) { 4767 Node* base = get_map(jobj->idx()); 4768 if (base != nullptr) { 4769 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 4770 ac->_src_type = base_t; 4771 } 4772 } 4773 } 4774 4775 // New alias types were created in split_AddP(). 4776 uint new_index_end = (uint) _compile->num_alias_types(); 4777 4778 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 4779 // compute new values for Memory inputs (the Memory inputs are not 4780 // actually updated until phase 4.) 4781 if (memnode_worklist.length() == 0) 4782 return; // nothing to do 4783 while (memnode_worklist.length() != 0) { 4784 Node *n = memnode_worklist.pop(); 4785 if (visited.test_set(n->_idx)) { 4786 continue; 4787 } 4788 if (n->is_Phi() || n->is_ClearArray()) { 4789 // we don't need to do anything, but the users must be pushed 4790 } else if (n->is_MemBar()) { // Initialize, MemBar nodes 4791 // we don't need to do anything, but the users must be pushed 4792 n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory); 4793 if (n == nullptr) { 4794 continue; 4795 } 4796 } else if (n->is_CallLeaf()) { 4797 // Runtime calls with narrow memory input (no MergeMem node) 4798 // get the memory projection 4799 n = n->as_Call()->proj_out_or_null(TypeFunc::Memory); 4800 if (n == nullptr) { 4801 continue; 4802 } 4803 } else if (n->Opcode() == Op_StrCompressedCopy || 4804 n->Opcode() == Op_EncodeISOArray) { 4805 // get the memory projection 4806 n = n->find_out_with(Op_SCMemProj); 4807 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required"); 4808 } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != nullptr && 4809 strcmp(n->as_CallLeaf()->_name, "store_unknown_inline") == 0) { 4810 n = n->as_CallLeaf()->proj_out(TypeFunc::Memory); 4811 } else { 4812 assert(n->is_Mem(), "memory node required."); 4813 Node *addr = n->in(MemNode::Address); 4814 const Type *addr_t = igvn->type(addr); 4815 if (addr_t == Type::TOP) { 4816 continue; 4817 } 4818 assert (addr_t->isa_ptr() != nullptr, "pointer type required."); 4819 int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); 4820 assert ((uint)alias_idx < new_index_end, "wrong alias index"); 4821 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis); 4822 if (_compile->failing()) { 4823 return; 4824 } 4825 if (mem != n->in(MemNode::Memory)) { 4826 // We delay the memory edge update since we need old one in 4827 // MergeMem code below when instances memory slices are separated. 4828 set_map(n, mem); 4829 } 4830 if (n->is_Load()) { 4831 continue; // don't push users 4832 } else if (n->is_LoadStore()) { 4833 // get the memory projection 4834 n = n->find_out_with(Op_SCMemProj); 4835 assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required"); 4836 } 4837 } 4838 // push user on appropriate worklist 4839 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4840 Node *use = n->fast_out(i); 4841 if (use->is_Phi() || use->is_ClearArray()) { 4842 memnode_worklist.append_if_missing(use); 4843 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) { 4844 memnode_worklist.append_if_missing(use); 4845 } else if (use->is_MemBar() || use->is_CallLeaf()) { 4846 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 4847 memnode_worklist.append_if_missing(use); 4848 } 4849 #ifdef ASSERT 4850 } else if (use->is_Mem()) { 4851 assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); 4852 } else if (use->is_MergeMem()) { 4853 assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 4854 } else if (use->Opcode() == Op_EncodeISOArray) { 4855 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 4856 // EncodeISOArray overwrites destination array 4857 memnode_worklist.append_if_missing(use); 4858 } 4859 } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != nullptr && 4860 strcmp(use->as_CallLeaf()->_name, "store_unknown_inline") == 0) { 4861 // store_unknown_inline overwrites destination array 4862 memnode_worklist.append_if_missing(use); 4863 } else { 4864 uint op = use->Opcode(); 4865 if ((use->in(MemNode::Memory) == n) && 4866 (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) { 4867 // They overwrite memory edge corresponding to destination array, 4868 memnode_worklist.append_if_missing(use); 4869 } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) || 4870 op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives || 4871 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode || 4872 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || op == Op_FlatArrayCheck)) { 4873 n->dump(); 4874 use->dump(); 4875 assert(false, "EA: missing memory path"); 4876 } 4877 #endif 4878 } 4879 } 4880 } 4881 4882 // Phase 3: Process MergeMem nodes from mergemem_worklist. 4883 // Walk each memory slice moving the first node encountered of each 4884 // instance type to the input corresponding to its alias index. 4885 uint length = mergemem_worklist.length(); 4886 for( uint next = 0; next < length; ++next ) { 4887 MergeMemNode* nmm = mergemem_worklist.at(next); 4888 assert(!visited.test_set(nmm->_idx), "should not be visited before"); 4889 // Note: we don't want to use MergeMemStream here because we only want to 4890 // scan inputs which exist at the start, not ones we add during processing. 4891 // Note 2: MergeMem may already contains instance memory slices added 4892 // during find_inst_mem() call when memory nodes were processed above. 4893 igvn->hash_delete(nmm); 4894 uint nslices = MIN2(nmm->req(), new_index_start); 4895 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { 4896 Node* mem = nmm->in(i); 4897 Node* cur = nullptr; 4898 if (mem == nullptr || mem->is_top()) { 4899 continue; 4900 } 4901 // First, update mergemem by moving memory nodes to corresponding slices 4902 // if their type became more precise since this mergemem was created. 4903 while (mem->is_Mem()) { 4904 const Type *at = igvn->type(mem->in(MemNode::Address)); 4905 if (at != Type::TOP) { 4906 assert (at->isa_ptr() != nullptr, "pointer type required."); 4907 uint idx = (uint)_compile->get_alias_index(at->is_ptr()); 4908 if (idx == i) { 4909 if (cur == nullptr) { 4910 cur = mem; 4911 } 4912 } else { 4913 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { 4914 nmm->set_memory_at(idx, mem); 4915 } 4916 } 4917 } 4918 mem = mem->in(MemNode::Memory); 4919 } 4920 nmm->set_memory_at(i, (cur != nullptr) ? cur : mem); 4921 // Find any instance of the current type if we haven't encountered 4922 // already a memory slice of the instance along the memory chain. 4923 for (uint ni = new_index_start; ni < new_index_end; ni++) { 4924 if((uint)_compile->get_general_index(ni) == i) { 4925 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); 4926 if (nmm->is_empty_memory(m)) { 4927 Node* result = find_inst_mem(mem, ni, orig_phis); 4928 if (_compile->failing()) { 4929 return; 4930 } 4931 nmm->set_memory_at(ni, result); 4932 } 4933 } 4934 } 4935 } 4936 // Find the rest of instances values 4937 for (uint ni = new_index_start; ni < new_index_end; ni++) { 4938 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); 4939 Node* result = step_through_mergemem(nmm, ni, tinst); 4940 if (result == nmm->base_memory()) { 4941 // Didn't find instance memory, search through general slice recursively. 4942 result = nmm->memory_at(_compile->get_general_index(ni)); 4943 result = find_inst_mem(result, ni, orig_phis); 4944 if (_compile->failing()) { 4945 return; 4946 } 4947 nmm->set_memory_at(ni, result); 4948 } 4949 } 4950 4951 // If we have crossed the 3/4 point of max node limit it's too risky 4952 // to continue with EA/SR because we might hit the max node limit. 4953 if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) { 4954 if (_compile->do_reduce_allocation_merges()) { 4955 _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges()); 4956 } else if (_invocation > 0) { 4957 _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis()); 4958 } else { 4959 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 4960 } 4961 return; 4962 } 4963 4964 igvn->hash_insert(nmm); 4965 record_for_optimizer(nmm); 4966 } 4967 4968 // Phase 4: Update the inputs of non-instance memory Phis and 4969 // the Memory input of memnodes 4970 // First update the inputs of any non-instance Phi's from 4971 // which we split out an instance Phi. Note we don't have 4972 // to recursively process Phi's encountered on the input memory 4973 // chains as is done in split_memory_phi() since they will 4974 // also be processed here. 4975 for (int j = 0; j < orig_phis.length(); j++) { 4976 PhiNode *phi = orig_phis.at(j); 4977 int alias_idx = _compile->get_alias_index(phi->adr_type()); 4978 igvn->hash_delete(phi); 4979 for (uint i = 1; i < phi->req(); i++) { 4980 Node *mem = phi->in(i); 4981 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis); 4982 if (_compile->failing()) { 4983 return; 4984 } 4985 if (mem != new_mem) { 4986 phi->set_req(i, new_mem); 4987 } 4988 } 4989 igvn->hash_insert(phi); 4990 record_for_optimizer(phi); 4991 } 4992 4993 // Update the memory inputs of MemNodes with the value we computed 4994 // in Phase 2 and move stores memory users to corresponding memory slices. 4995 // Disable memory split verification code until the fix for 6984348. 4996 // Currently it produces false negative results since it does not cover all cases. 4997 #if 0 // ifdef ASSERT 4998 visited.Reset(); 4999 Node_Stack old_mems(arena, _compile->unique() >> 2); 5000 #endif 5001 for (uint i = 0; i < ideal_nodes.size(); i++) { 5002 Node* n = ideal_nodes.at(i); 5003 Node* nmem = get_map(n->_idx); 5004 assert(nmem != nullptr, "sanity"); 5005 if (n->is_Mem()) { 5006 #if 0 // ifdef ASSERT 5007 Node* old_mem = n->in(MemNode::Memory); 5008 if (!visited.test_set(old_mem->_idx)) { 5009 old_mems.push(old_mem, old_mem->outcnt()); 5010 } 5011 #endif 5012 assert(n->in(MemNode::Memory) != nmem, "sanity"); 5013 if (!n->is_Load()) { 5014 // Move memory users of a store first. 5015 move_inst_mem(n, orig_phis); 5016 } 5017 // Now update memory input 5018 igvn->hash_delete(n); 5019 n->set_req(MemNode::Memory, nmem); 5020 igvn->hash_insert(n); 5021 record_for_optimizer(n); 5022 } else { 5023 assert(n->is_Allocate() || n->is_CheckCastPP() || 5024 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()"); 5025 } 5026 } 5027 #if 0 // ifdef ASSERT 5028 // Verify that memory was split correctly 5029 while (old_mems.is_nonempty()) { 5030 Node* old_mem = old_mems.node(); 5031 uint old_cnt = old_mems.index(); 5032 old_mems.pop(); 5033 assert(old_cnt == old_mem->outcnt(), "old mem could be lost"); 5034 } 5035 #endif 5036 } 5037 5038 #ifndef PRODUCT 5039 int ConnectionGraph::_no_escape_counter = 0; 5040 int ConnectionGraph::_arg_escape_counter = 0; 5041 int ConnectionGraph::_global_escape_counter = 0; 5042 5043 static const char *node_type_names[] = { 5044 "UnknownType", 5045 "JavaObject", 5046 "LocalVar", 5047 "Field", 5048 "Arraycopy" 5049 }; 5050 5051 static const char *esc_names[] = { 5052 "UnknownEscape", 5053 "NoEscape", 5054 "ArgEscape", 5055 "GlobalEscape" 5056 }; 5057 5058 void PointsToNode::dump_header(bool print_state, outputStream* out) const { 5059 NodeType nt = node_type(); 5060 out->print("%s(%d) ", node_type_names[(int) nt], _pidx); 5061 if (print_state) { 5062 EscapeState es = escape_state(); 5063 EscapeState fields_es = fields_escape_state(); 5064 out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]); 5065 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) { 5066 out->print("NSR "); 5067 } 5068 } 5069 } 5070 5071 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const { 5072 dump_header(print_state, out); 5073 if (is_Field()) { 5074 FieldNode* f = (FieldNode*)this; 5075 if (f->is_oop()) { 5076 out->print("oop "); 5077 } 5078 if (f->offset() > 0) { 5079 out->print("+%d ", f->offset()); 5080 } 5081 out->print("("); 5082 for (BaseIterator i(f); i.has_next(); i.next()) { 5083 PointsToNode* b = i.get(); 5084 out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : "")); 5085 } 5086 out->print(" )"); 5087 } 5088 out->print("["); 5089 for (EdgeIterator i(this); i.has_next(); i.next()) { 5090 PointsToNode* e = i.get(); 5091 out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : ""); 5092 } 5093 out->print(" ["); 5094 for (UseIterator i(this); i.has_next(); i.next()) { 5095 PointsToNode* u = i.get(); 5096 bool is_base = false; 5097 if (PointsToNode::is_base_use(u)) { 5098 is_base = true; 5099 u = PointsToNode::get_use_node(u)->as_Field(); 5100 } 5101 out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : ""); 5102 } 5103 out->print(" ]] "); 5104 if (_node == nullptr) { 5105 out->print("<null>%s", newline ? "\n" : ""); 5106 } else { 5107 _node->dump(newline ? "\n" : "", false, out); 5108 } 5109 } 5110 5111 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) { 5112 bool first = true; 5113 int ptnodes_length = ptnodes_worklist.length(); 5114 for (int i = 0; i < ptnodes_length; i++) { 5115 PointsToNode *ptn = ptnodes_worklist.at(i); 5116 if (ptn == nullptr || !ptn->is_JavaObject()) { 5117 continue; 5118 } 5119 PointsToNode::EscapeState es = ptn->escape_state(); 5120 if ((es != PointsToNode::NoEscape) && !Verbose) { 5121 continue; 5122 } 5123 Node* n = ptn->ideal_node(); 5124 if (n->is_Allocate() || (n->is_CallStaticJava() && 5125 n->as_CallStaticJava()->is_boxing_method())) { 5126 if (first) { 5127 tty->cr(); 5128 tty->print("======== Connection graph for "); 5129 _compile->method()->print_short_name(); 5130 tty->cr(); 5131 tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d", 5132 _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length()); 5133 tty->cr(); 5134 first = false; 5135 } 5136 ptn->dump(); 5137 // Print all locals and fields which reference this allocation 5138 for (UseIterator j(ptn); j.has_next(); j.next()) { 5139 PointsToNode* use = j.get(); 5140 if (use->is_LocalVar()) { 5141 use->dump(Verbose); 5142 } else if (Verbose) { 5143 use->dump(); 5144 } 5145 } 5146 tty->cr(); 5147 } 5148 } 5149 } 5150 5151 void ConnectionGraph::print_statistics() { 5152 tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", Atomic::load(&_no_escape_counter), Atomic::load(&_arg_escape_counter), Atomic::load(&_global_escape_counter)); 5153 } 5154 5155 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) { 5156 if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation 5157 return; 5158 } 5159 for (int next = 0; next < java_objects_worklist.length(); ++next) { 5160 JavaObjectNode* ptn = java_objects_worklist.at(next); 5161 if (ptn->ideal_node()->is_Allocate()) { 5162 if (ptn->escape_state() == PointsToNode::NoEscape) { 5163 Atomic::inc(&ConnectionGraph::_no_escape_counter); 5164 } else if (ptn->escape_state() == PointsToNode::ArgEscape) { 5165 Atomic::inc(&ConnectionGraph::_arg_escape_counter); 5166 } else if (ptn->escape_state() == PointsToNode::GlobalEscape) { 5167 Atomic::inc(&ConnectionGraph::_global_escape_counter); 5168 } else { 5169 assert(false, "Unexpected Escape State"); 5170 } 5171 } 5172 } 5173 } 5174 5175 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const { 5176 if (_compile->directive()->TraceEscapeAnalysisOption) { 5177 assert(ptn != nullptr, "should not be null"); 5178 assert(reason != nullptr, "should not be null"); 5179 ptn->dump_header(true); 5180 PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es; 5181 PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state(); 5182 tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason); 5183 } 5184 } 5185 5186 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const { 5187 if (_compile->directive()->TraceEscapeAnalysisOption) { 5188 stringStream ss; 5189 ss.print("propagated from: "); 5190 from->dump(true, &ss, false); 5191 return ss.as_string(); 5192 } else { 5193 return nullptr; 5194 } 5195 } 5196 5197 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const { 5198 if (_compile->directive()->TraceEscapeAnalysisOption) { 5199 stringStream ss; 5200 ss.print("escapes as arg to:"); 5201 call->dump("", false, &ss); 5202 return ss.as_string(); 5203 } else { 5204 return nullptr; 5205 } 5206 } 5207 5208 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const { 5209 if (_compile->directive()->TraceEscapeAnalysisOption) { 5210 stringStream ss; 5211 ss.print("is merged with other object: "); 5212 other->dump_header(true, &ss); 5213 return ss.as_string(); 5214 } else { 5215 return nullptr; 5216 } 5217 } 5218 5219 #endif 5220 5221 void ConnectionGraph::record_for_optimizer(Node *n) { 5222 _igvn->_worklist.push(n); 5223 _igvn->add_users_to_worklist(n); 5224 }