1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "libadt/vectset.hpp" 26 #include "memory/allocation.inline.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "opto/block.hpp" 29 #include "opto/c2compiler.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/cfgnode.hpp" 32 #include "opto/machnode.hpp" 33 #include "opto/opcodes.hpp" 34 #include "opto/phaseX.hpp" 35 #include "opto/rootnode.hpp" 36 #include "opto/runtime.hpp" 37 #include "opto/chaitin.hpp" 38 #include "runtime/deoptimization.hpp" 39 40 // Portions of code courtesy of Clifford Click 41 42 // Optimization - Graph Style 43 44 // To avoid float value underflow 45 #define MIN_BLOCK_FREQUENCY 1.e-35f 46 47 //----------------------------schedule_node_into_block------------------------- 48 // Insert node n into block b. Look for projections of n and make sure they 49 // are in b also. 50 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) { 51 // Set basic block of n, Add n to b, 52 map_node_to_block(n, b); 53 b->add_inst(n); 54 55 // After Matching, nearly any old Node may have projections trailing it. 56 // These are usually machine-dependent flags. In any case, they might 57 // float to another block below this one. Move them up. 58 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 59 Node* use = n->fast_out(i); 60 if (use->is_Proj()) { 61 Block* buse = get_block_for_node(use); 62 if (buse != b) { // In wrong block? 63 if (buse != nullptr) { 64 buse->find_remove(use); // Remove from wrong block 65 } 66 map_node_to_block(use, b); 67 b->add_inst(use); 68 } 69 } 70 } 71 } 72 73 //----------------------------replace_block_proj_ctrl------------------------- 74 // Nodes that have is_block_proj() nodes as their control need to use 75 // the appropriate Region for their actual block as their control since 76 // the projection will be in a predecessor block. 77 void PhaseCFG::replace_block_proj_ctrl( Node *n ) { 78 const Node *in0 = n->in(0); 79 assert(in0 != nullptr, "Only control-dependent"); 80 const Node *p = in0->is_block_proj(); 81 if (p != nullptr && p != n) { // Control from a block projection? 82 assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here"); 83 // Find trailing Region 84 Block *pb = get_block_for_node(in0); // Block-projection already has basic block 85 uint j = 0; 86 if (pb->_num_succs != 1) { // More then 1 successor? 87 // Search for successor 88 uint max = pb->number_of_nodes(); 89 assert( max > 1, "" ); 90 uint start = max - pb->_num_succs; 91 // Find which output path belongs to projection 92 for (j = start; j < max; j++) { 93 if( pb->get_node(j) == in0 ) 94 break; 95 } 96 assert( j < max, "must find" ); 97 // Change control to match head of successor basic block 98 j -= start; 99 } 100 n->set_req(0, pb->_succs[j]->head()); 101 } 102 } 103 104 bool PhaseCFG::is_dominator(Node* dom_node, Node* node) { 105 assert(is_CFG(node) && is_CFG(dom_node), "node and dom_node must be CFG nodes"); 106 if (dom_node == node) { 107 return true; 108 } 109 Block* d = find_block_for_node(dom_node); 110 Block* n = find_block_for_node(node); 111 assert(n != nullptr && d != nullptr, "blocks must exist"); 112 113 if (d == n) { 114 if (dom_node->is_block_start()) { 115 return true; 116 } 117 if (node->is_block_start()) { 118 return false; 119 } 120 if (dom_node->is_block_proj()) { 121 return false; 122 } 123 if (node->is_block_proj()) { 124 return true; 125 } 126 127 assert(is_control_proj_or_safepoint(node), "node must be control projection or safepoint"); 128 assert(is_control_proj_or_safepoint(dom_node), "dom_node must be control projection or safepoint"); 129 130 // Neither 'node' nor 'dom_node' is a block start or block projection. 131 // Check if 'dom_node' is above 'node' in the control graph. 132 if (is_dominating_control(dom_node, node)) { 133 return true; 134 } 135 136 #ifdef ASSERT 137 // If 'dom_node' does not dominate 'node' then 'node' has to dominate 'dom_node' 138 if (!is_dominating_control(node, dom_node)) { 139 node->dump(); 140 dom_node->dump(); 141 assert(false, "neither dom_node nor node dominates the other"); 142 } 143 #endif 144 145 return false; 146 } 147 return d->dom_lca(n) == d; 148 } 149 150 bool PhaseCFG::is_CFG(Node* n) { 151 return n->is_block_proj() || n->is_block_start() || is_control_proj_or_safepoint(n); 152 } 153 154 bool PhaseCFG::is_control_proj_or_safepoint(Node* n) const { 155 bool result = (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint) || (n->is_Proj() && n->as_Proj()->bottom_type() == Type::CONTROL); 156 assert(!result || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint) 157 || (n->is_Proj() && n->as_Proj()->_con == 0), "If control projection, it must be projection 0"); 158 return result; 159 } 160 161 Block* PhaseCFG::find_block_for_node(Node* n) const { 162 if (n->is_block_start() || n->is_block_proj()) { 163 return get_block_for_node(n); 164 } else { 165 // Walk the control graph up if 'n' is not a block start nor a block projection. In this case 'n' must be 166 // an unmatched control projection or a not yet matched safepoint precedence edge in the middle of a block. 167 assert(is_control_proj_or_safepoint(n), "must be control projection or safepoint"); 168 Node* ctrl = n->in(0); 169 while (!ctrl->is_block_start()) { 170 ctrl = ctrl->in(0); 171 } 172 return get_block_for_node(ctrl); 173 } 174 } 175 176 // Walk up the control graph from 'n' and check if 'dom_ctrl' is found. 177 bool PhaseCFG::is_dominating_control(Node* dom_ctrl, Node* n) { 178 Node* ctrl = n->in(0); 179 while (!ctrl->is_block_start()) { 180 if (ctrl == dom_ctrl) { 181 return true; 182 } 183 ctrl = ctrl->in(0); 184 } 185 return false; 186 } 187 188 189 //------------------------------schedule_pinned_nodes-------------------------- 190 // Set the basic block for Nodes pinned into blocks 191 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) { 192 // Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc 193 GrowableArray <Node*> spstack(C->live_nodes() + 8); 194 spstack.push(_root); 195 while (spstack.is_nonempty()) { 196 Node* node = spstack.pop(); 197 if (!visited.test_set(node->_idx)) { // Test node and flag it as visited 198 if (node->pinned() && !has_block(node)) { // Pinned? Nail it down! 199 assert(node->in(0), "pinned Node must have Control"); 200 // Before setting block replace block_proj control edge 201 replace_block_proj_ctrl(node); 202 Node* input = node->in(0); 203 while (!input->is_block_start()) { 204 input = input->in(0); 205 } 206 Block* block = get_block_for_node(input); // Basic block of controlling input 207 schedule_node_into_block(node, block); 208 } 209 210 // If the node has precedence edges (added when CastPP nodes are 211 // removed in final_graph_reshaping), fix the control of the 212 // node to cover the precedence edges and remove the 213 // dependencies. 214 Node* n = nullptr; 215 for (uint i = node->len()-1; i >= node->req(); i--) { 216 Node* m = node->in(i); 217 if (m == nullptr) continue; 218 assert(is_CFG(m), "must be a CFG node"); 219 node->rm_prec(i); 220 if (n == nullptr) { 221 n = m; 222 } else { 223 assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other"); 224 n = is_dominator(n, m) ? m : n; 225 } 226 } 227 if (n != nullptr) { 228 assert(node->in(0), "control should have been set"); 229 assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other"); 230 if (!is_dominator(n, node->in(0))) { 231 node->set_req(0, n); 232 } 233 } 234 235 // process all inputs that are non null 236 for (int i = node->req()-1; i >= 0; --i) { 237 if (node->in(i) != nullptr) { 238 spstack.push(node->in(i)); 239 } 240 } 241 } 242 } 243 } 244 245 // Assert that new input b2 is dominated by all previous inputs. 246 // Check this by by seeing that it is dominated by b1, the deepest 247 // input observed until b2. 248 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) { 249 if (b1 == nullptr) return; 250 assert(b1->_dom_depth < b2->_dom_depth, "sanity"); 251 Block* tmp = b2; 252 while (tmp != b1 && tmp != nullptr) { 253 tmp = tmp->_idom; 254 } 255 if (tmp != b1) { 256 #ifdef ASSERT 257 // Detected an unschedulable graph. Print some nice stuff and die. 258 tty->print_cr("!!! Unschedulable graph !!!"); 259 for (uint j=0; j<n->len(); j++) { // For all inputs 260 Node* inn = n->in(j); // Get input 261 if (inn == nullptr) continue; // Ignore null, missing inputs 262 Block* inb = cfg->get_block_for_node(inn); 263 tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order, 264 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth); 265 inn->dump(); 266 } 267 tty->print("Failing node: "); 268 n->dump(); 269 assert(false, "unschedulable graph"); 270 #endif 271 cfg->C->record_failure("unschedulable graph"); 272 } 273 } 274 275 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) { 276 // Find the last input dominated by all other inputs. 277 Block* deepb = nullptr; // Deepest block so far 278 int deepb_dom_depth = 0; 279 for (uint k = 0; k < n->len(); k++) { // For all inputs 280 Node* inn = n->in(k); // Get input 281 if (inn == nullptr) continue; // Ignore null, missing inputs 282 Block* inb = cfg->get_block_for_node(inn); 283 assert(inb != nullptr, "must already have scheduled this input"); 284 if (deepb_dom_depth < (int) inb->_dom_depth) { 285 // The new inb must be dominated by the previous deepb. 286 // The various inputs must be linearly ordered in the dom 287 // tree, or else there will not be a unique deepest block. 288 assert_dom(deepb, inb, n, cfg); 289 if (cfg->C->failing()) { 290 return nullptr; 291 } 292 deepb = inb; // Save deepest block 293 deepb_dom_depth = deepb->_dom_depth; 294 } 295 } 296 assert(deepb != nullptr, "must be at least one input to n"); 297 return deepb; 298 } 299 300 301 //------------------------------schedule_early--------------------------------- 302 // Find the earliest Block any instruction can be placed in. Some instructions 303 // are pinned into Blocks. Unpinned instructions can appear in last block in 304 // which all their inputs occur. 305 bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) { 306 // Allocate stack with enough space to avoid frequent realloc 307 Node_Stack nstack(roots.size() + 8); 308 // _root will be processed among C->top() inputs 309 roots.push(C->top(), 0); 310 visited.set(C->top()->_idx); 311 312 while (roots.size() != 0) { 313 // Use local variables nstack_top_n & nstack_top_i to cache values 314 // on stack's top. 315 Node* parent_node = roots.node(); 316 uint input_index = 0; 317 roots.pop(); 318 319 while (true) { 320 if (input_index == 0) { 321 // Fixup some control. Constants without control get attached 322 // to root and nodes that use is_block_proj() nodes should be attached 323 // to the region that starts their block. 324 const Node* control_input = parent_node->in(0); 325 if (control_input != nullptr) { 326 replace_block_proj_ctrl(parent_node); 327 } else { 328 // Is a constant with NO inputs? 329 if (parent_node->req() == 1) { 330 parent_node->set_req(0, _root); 331 } 332 } 333 } 334 335 // First, visit all inputs and force them to get a block. If an 336 // input is already in a block we quit following inputs (to avoid 337 // cycles). Instead we put that Node on a worklist to be handled 338 // later (since IT'S inputs may not have a block yet). 339 340 // Assume all n's inputs will be processed 341 bool done = true; 342 343 while (input_index < parent_node->len()) { 344 Node* in = parent_node->in(input_index++); 345 if (in == nullptr) { 346 continue; 347 } 348 349 int is_visited = visited.test_set(in->_idx); 350 if (!has_block(in)) { 351 if (is_visited) { 352 assert(false, "graph should be schedulable"); 353 return false; 354 } 355 // Save parent node and next input's index. 356 nstack.push(parent_node, input_index); 357 // Process current input now. 358 parent_node = in; 359 input_index = 0; 360 // Not all n's inputs processed. 361 done = false; 362 break; 363 } else if (!is_visited) { 364 // Visit this guy later, using worklist 365 roots.push(in, 0); 366 } 367 } 368 369 if (done) { 370 // All of n's inputs have been processed, complete post-processing. 371 372 // Some instructions are pinned into a block. These include Region, 373 // Phi, Start, Return, and other control-dependent instructions and 374 // any projections which depend on them. 375 if (!parent_node->pinned()) { 376 // Set earliest legal block. 377 Block* earliest_block = find_deepest_input(parent_node, this); 378 if (C->failing()) { 379 return false; 380 } 381 map_node_to_block(parent_node, earliest_block); 382 } else { 383 assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge"); 384 } 385 386 if (nstack.is_empty()) { 387 // Finished all nodes on stack. 388 // Process next node on the worklist 'roots'. 389 break; 390 } 391 // Get saved parent node and next input's index. 392 parent_node = nstack.node(); 393 input_index = nstack.index(); 394 nstack.pop(); 395 } 396 } 397 } 398 return true; 399 } 400 401 //------------------------------dom_lca---------------------------------------- 402 // Find least common ancestor in dominator tree 403 // LCA is a current notion of LCA, to be raised above 'this'. 404 // As a convenient boundary condition, return 'this' if LCA is null. 405 // Find the LCA of those two nodes. 406 Block* Block::dom_lca(Block* LCA) { 407 if (LCA == nullptr || LCA == this) return this; 408 409 Block* anc = this; 410 while (anc->_dom_depth > LCA->_dom_depth) 411 anc = anc->_idom; // Walk up till anc is as high as LCA 412 413 while (LCA->_dom_depth > anc->_dom_depth) 414 LCA = LCA->_idom; // Walk up till LCA is as high as anc 415 416 while (LCA != anc) { // Walk both up till they are the same 417 LCA = LCA->_idom; 418 anc = anc->_idom; 419 } 420 421 return LCA; 422 } 423 424 //--------------------------raise_LCA_above_use-------------------------------- 425 // We are placing a definition, and have been given a def->use edge. 426 // The definition must dominate the use, so move the LCA upward in the 427 // dominator tree to dominate the use. If the use is a phi, adjust 428 // the LCA only with the phi input paths which actually use this def. 429 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) { 430 Block* buse = cfg->get_block_for_node(use); 431 if (buse == nullptr) return LCA; // Unused killing Projs have no use block 432 if (!use->is_Phi()) return buse->dom_lca(LCA); 433 uint pmax = use->req(); // Number of Phi inputs 434 // Why does not this loop just break after finding the matching input to 435 // the Phi? Well...it's like this. I do not have true def-use/use-def 436 // chains. Means I cannot distinguish, from the def-use direction, which 437 // of many use-defs lead from the same use to the same def. That is, this 438 // Phi might have several uses of the same def. Each use appears in a 439 // different predecessor block. But when I enter here, I cannot distinguish 440 // which use-def edge I should find the predecessor block for. So I find 441 // them all. Means I do a little extra work if a Phi uses the same value 442 // more than once. 443 for (uint j=1; j<pmax; j++) { // For all inputs 444 if (use->in(j) == def) { // Found matching input? 445 Block* pred = cfg->get_block_for_node(buse->pred(j)); 446 LCA = pred->dom_lca(LCA); 447 } 448 } 449 return LCA; 450 } 451 452 //----------------------------raise_LCA_above_marks---------------------------- 453 // Return a new LCA that dominates LCA and any of its marked predecessors. 454 // Search all my parents up to 'early' (exclusive), looking for predecessors 455 // which are marked with the given index. Return the LCA (in the dom tree) 456 // of all marked blocks. If there are none marked, return the original 457 // LCA. 458 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) { 459 Block_List worklist; 460 worklist.push(LCA); 461 while (worklist.size() > 0) { 462 Block* mid = worklist.pop(); 463 if (mid == early) continue; // stop searching here 464 465 // Test and set the visited bit. 466 if (mid->raise_LCA_visited() == mark) continue; // already visited 467 468 // Don't process the current LCA, otherwise the search may terminate early 469 if (mid != LCA && mid->raise_LCA_mark() == mark) { 470 // Raise the LCA. 471 LCA = mid->dom_lca(LCA); 472 if (LCA == early) break; // stop searching everywhere 473 assert(early->dominates(LCA), "early is high enough"); 474 // Resume searching at that point, skipping intermediate levels. 475 worklist.push(LCA); 476 if (LCA == mid) 477 continue; // Don't mark as visited to avoid early termination. 478 } else { 479 // Keep searching through this block's predecessors. 480 for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) { 481 Block* mid_parent = cfg->get_block_for_node(mid->pred(j)); 482 worklist.push(mid_parent); 483 } 484 } 485 mid->set_raise_LCA_visited(mark); 486 } 487 return LCA; 488 } 489 490 //--------------------------memory_early_block-------------------------------- 491 // This is a variation of find_deepest_input, the heart of schedule_early. 492 // Find the "early" block for a load, if we considered only memory and 493 // address inputs, that is, if other data inputs were ignored. 494 // 495 // Because a subset of edges are considered, the resulting block will 496 // be earlier (at a shallower dom_depth) than the true schedule_early 497 // point of the node. We compute this earlier block as a more permissive 498 // site for anti-dependency insertion, but only if subsume_loads is enabled. 499 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) { 500 Node* base; 501 Node* index; 502 Node* store = load->in(MemNode::Memory); 503 load->as_Mach()->memory_inputs(base, index); 504 505 assert(base != NodeSentinel && index != NodeSentinel, 506 "unexpected base/index inputs"); 507 508 Node* mem_inputs[4]; 509 int mem_inputs_length = 0; 510 if (base != nullptr) mem_inputs[mem_inputs_length++] = base; 511 if (index != nullptr) mem_inputs[mem_inputs_length++] = index; 512 if (store != nullptr) mem_inputs[mem_inputs_length++] = store; 513 514 // In the comparison below, add one to account for the control input, 515 // which may be null, but always takes up a spot in the in array. 516 if (mem_inputs_length + 1 < (int) load->req()) { 517 // This "load" has more inputs than just the memory, base and index inputs. 518 // For purposes of checking anti-dependences, we need to start 519 // from the early block of only the address portion of the instruction, 520 // and ignore other blocks that may have factored into the wider 521 // schedule_early calculation. 522 if (load->in(0) != nullptr) mem_inputs[mem_inputs_length++] = load->in(0); 523 524 Block* deepb = nullptr; // Deepest block so far 525 int deepb_dom_depth = 0; 526 for (int i = 0; i < mem_inputs_length; i++) { 527 Block* inb = cfg->get_block_for_node(mem_inputs[i]); 528 if (deepb_dom_depth < (int) inb->_dom_depth) { 529 // The new inb must be dominated by the previous deepb. 530 // The various inputs must be linearly ordered in the dom 531 // tree, or else there will not be a unique deepest block. 532 assert_dom(deepb, inb, load, cfg); 533 if (cfg->C->failing()) { 534 return nullptr; 535 } 536 deepb = inb; // Save deepest block 537 deepb_dom_depth = deepb->_dom_depth; 538 } 539 } 540 early = deepb; 541 } 542 543 return early; 544 } 545 546 // This function is used by insert_anti_dependences to find unrelated loads for stores in implicit null checks. 547 bool PhaseCFG::unrelated_load_in_store_null_block(Node* store, Node* load) { 548 // We expect an anti-dependence edge from 'load' to 'store', except when 549 // implicit_null_check() has hoisted 'store' above its early block to 550 // perform an implicit null check, and 'load' is placed in the null 551 // block. In this case it is safe to ignore the anti-dependence, as the 552 // null block is only reached if 'store' tries to write to null object and 553 // 'load' read from non-null object (there is preceding check for that) 554 // These objects can't be the same. 555 Block* store_block = get_block_for_node(store); 556 Block* load_block = get_block_for_node(load); 557 Node* end = store_block->end(); 558 if (end->is_MachNullCheck() && (end->in(1) == store) && store_block->dominates(load_block)) { 559 Node* if_true = end->find_out_with(Op_IfTrue); 560 assert(if_true != nullptr, "null check without null projection"); 561 Node* null_block_region = if_true->find_out_with(Op_Region); 562 assert(null_block_region != nullptr, "null check without null region"); 563 return get_block_for_node(null_block_region) == load_block; 564 } 565 return false; 566 } 567 568 class DefUseMemStatesQueue : public StackObj { 569 private: 570 class DefUsePair : public StackObj { 571 private: 572 Node* _def; // memory state 573 Node* _use; // use of the memory state that also modifies the memory state 574 575 public: 576 DefUsePair(Node* def, Node* use) : 577 _def(def), _use(use) { 578 } 579 580 DefUsePair() : 581 _def(nullptr), _use(nullptr) { 582 } 583 584 Node* def() const { 585 return _def; 586 } 587 588 Node* use() const { 589 return _use; 590 } 591 }; 592 593 GrowableArray<DefUsePair> _queue; 594 GrowableArray<MergeMemNode*> _worklist_visited; // visited mergemem nodes 595 596 bool already_enqueued(Node* def_mem, PhiNode* use_phi) const { 597 // def_mem is one of the inputs of use_phi and at least one input of use_phi is 598 // not def_mem. It's however possible that use_phi has def_mem as input multiple 599 // times. If that happens, use_phi is recorded as a use of def_mem multiple 600 // times as well. When PhaseCFG::insert_anti_dependences() goes over 601 // uses of def_mem and enqueues them for processing, use_phi would then be 602 // enqueued for processing multiple times when it only needs to be 603 // processed once. The code below checks if use_phi as a use of def_mem was 604 // already enqueued to avoid redundant processing of use_phi. 605 int j = _queue.length()-1; 606 // If there are any use of def_mem already enqueued, they were enqueued 607 // last (all use of def_mem are processed in one go). 608 for (; j >= 0; j--) { 609 const DefUsePair& def_use_pair = _queue.at(j); 610 if (def_use_pair.def() != def_mem) { 611 // We're done with the uses of def_mem 612 break; 613 } 614 if (def_use_pair.use() == use_phi) { 615 return true; 616 } 617 } 618 #ifdef ASSERT 619 for (; j >= 0; j--) { 620 const DefUsePair& def_use_pair = _queue.at(j); 621 assert(def_use_pair.def() != def_mem, "Should be done with the uses of def_mem"); 622 } 623 #endif 624 return false; 625 } 626 627 public: 628 DefUseMemStatesQueue(ResourceArea* area) { 629 } 630 631 void push(Node* def_mem_state, Node* use_mem_state) { 632 if (use_mem_state->is_MergeMem()) { 633 // Be sure we don't get into combinatorial problems. 634 if (!_worklist_visited.append_if_missing(use_mem_state->as_MergeMem())) { 635 return; // already on work list; do not repeat 636 } 637 } else if (use_mem_state->is_Phi()) { 638 // A Phi could have the same mem as input multiple times. If that's the case, we don't need to enqueue it 639 // more than once. We otherwise allow phis to be repeated; they can merge two relevant states. 640 if (already_enqueued(def_mem_state, use_mem_state->as_Phi())) { 641 return; 642 } 643 } 644 645 _queue.push(DefUsePair(def_mem_state, use_mem_state)); 646 } 647 648 bool is_nonempty() const { 649 return _queue.is_nonempty(); 650 } 651 652 Node* top_def() const { 653 return _queue.top().def(); 654 } 655 656 Node* top_use() const { 657 return _queue.top().use(); 658 } 659 660 void pop() { 661 _queue.pop(); 662 } 663 }; 664 665 //--------------------------insert_anti_dependences--------------------------- 666 // A load may need to witness memory that nearby stores can overwrite. 667 // For each nearby store, either insert an "anti-dependence" edge 668 // from the load to the store, or else move LCA upward to force the 669 // load to (eventually) be scheduled in a block above the store. 670 // 671 // Do not add edges to stores on distinct control-flow paths; 672 // only add edges to stores which might interfere. 673 // 674 // Return the (updated) LCA. There will not be any possibly interfering 675 // store between the load's "early block" and the updated LCA. 676 // Any stores in the updated LCA will have new precedence edges 677 // back to the load. The caller is expected to schedule the load 678 // in the LCA, in which case the precedence edges will make LCM 679 // preserve anti-dependences. The caller may also hoist the load 680 // above the LCA, if it is not the early block. 681 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) { 682 ResourceMark rm; 683 assert(load->needs_anti_dependence_check(), "must be a load of some sort"); 684 assert(LCA != nullptr, ""); 685 DEBUG_ONLY(Block* LCA_orig = LCA); 686 687 // Compute the alias index. Loads and stores with different alias indices 688 // do not need anti-dependence edges. 689 int load_alias_idx = C->get_alias_index(load->adr_type()); 690 #ifdef ASSERT 691 assert(Compile::AliasIdxTop <= load_alias_idx && load_alias_idx < C->num_alias_types(), "Invalid alias index"); 692 if (load_alias_idx == Compile::AliasIdxBot && C->do_aliasing() && 693 (PrintOpto || VerifyAliases || 694 (PrintMiscellaneous && (WizardMode || Verbose)))) { 695 // Load nodes should not consume all of memory. 696 // Reporting a bottom type indicates a bug in adlc. 697 // If some particular type of node validly consumes all of memory, 698 // sharpen the preceding "if" to exclude it, so we can catch bugs here. 699 tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory."); 700 load->dump(2); 701 if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, ""); 702 } 703 #endif 704 705 if (!C->alias_type(load_alias_idx)->is_rewritable()) { 706 // It is impossible to spoil this load by putting stores before it, 707 // because we know that the stores will never update the value 708 // which 'load' must witness. 709 return LCA; 710 } 711 712 node_idx_t load_index = load->_idx; 713 714 // Note the earliest legal placement of 'load', as determined by 715 // by the unique point in the dom tree where all memory effects 716 // and other inputs are first available. (Computed by schedule_early.) 717 // For normal loads, 'early' is the shallowest place (dom graph wise) 718 // to look for anti-deps between this load and any store. 719 Block* early = get_block_for_node(load); 720 721 // If we are subsuming loads, compute an "early" block that only considers 722 // memory or address inputs. This block may be different than the 723 // schedule_early block in that it could be at an even shallower depth in the 724 // dominator tree, and allow for a broader discovery of anti-dependences. 725 if (C->subsume_loads()) { 726 early = memory_early_block(load, early, this); 727 if (C->failing()) { 728 return nullptr; 729 } 730 } 731 732 ResourceArea* area = Thread::current()->resource_area(); 733 DefUseMemStatesQueue worklist_def_use_mem_states(area); // prior memory state to store and possible-def to explore 734 Node_List non_early_stores(area); // all relevant stores outside of early 735 bool must_raise_LCA = false; 736 737 // 'load' uses some memory state; look for users of the same state. 738 // Recurse through MergeMem nodes to the stores that use them. 739 740 // Each of these stores is a possible definition of memory 741 // that 'load' needs to use. We need to force 'load' 742 // to occur before each such store. When the store is in 743 // the same block as 'load', we insert an anti-dependence 744 // edge load->store. 745 746 // The relevant stores "nearby" the load consist of a tree rooted 747 // at initial_mem, with internal nodes of type MergeMem. 748 // Therefore, the branches visited by the worklist are of this form: 749 // initial_mem -> (MergeMem ->)* Memory state modifying node 750 // Memory state modifying nodes include Store and Phi nodes and any node for which needs_anti_dependence_check() 751 // returns false. 752 // The anti-dependence constraints apply only to the fringe of this tree. 753 754 Node* initial_mem = load->in(MemNode::Memory); 755 756 // We don't optimize the memory graph for pinned loads, so we may need to raise the 757 // root of our search tree through the corresponding slices of MergeMem nodes to 758 // get to the node that really creates the memory state for this slice. 759 if (load_alias_idx >= Compile::AliasIdxRaw) { 760 while (initial_mem->is_MergeMem()) { 761 MergeMemNode* mm = initial_mem->as_MergeMem(); 762 Node* p = mm->memory_at(load_alias_idx); 763 if (p != mm->base_memory()) { 764 initial_mem = p; 765 } else { 766 break; 767 } 768 } 769 } 770 worklist_def_use_mem_states.push(nullptr, initial_mem); 771 while (worklist_def_use_mem_states.is_nonempty()) { 772 // Examine a nearby store to see if it might interfere with our load. 773 Node* def_mem_state = worklist_def_use_mem_states.top_def(); 774 Node* use_mem_state = worklist_def_use_mem_states.top_use(); 775 worklist_def_use_mem_states.pop(); 776 777 uint op = use_mem_state->Opcode(); 778 779 #ifdef ASSERT 780 // CacheWB nodes are peculiar in a sense that they both are anti-dependent and produce memory. 781 // Allow them to be treated as a store. 782 bool is_cache_wb = false; 783 if (use_mem_state->is_Mach()) { 784 int ideal_op = use_mem_state->as_Mach()->ideal_Opcode(); 785 is_cache_wb = (ideal_op == Op_CacheWB); 786 } 787 assert(!use_mem_state->needs_anti_dependence_check() || is_cache_wb, "no loads"); 788 #endif 789 790 // MergeMems do not directly have anti-deps. 791 // Treat them as internal nodes in a forward tree of memory states, 792 // the leaves of which are each a 'possible-def'. 793 if (use_mem_state == initial_mem // root (exclusive) of tree we are searching 794 || op == Op_MergeMem // internal node of tree we are searching 795 ) { 796 def_mem_state = use_mem_state; // It's not a possibly interfering store. 797 if (use_mem_state == initial_mem) 798 initial_mem = nullptr; // only process initial memory once 799 800 for (DUIterator_Fast imax, i = def_mem_state->fast_outs(imax); i < imax; i++) { 801 use_mem_state = def_mem_state->fast_out(i); 802 if (use_mem_state->needs_anti_dependence_check()) { 803 // use_mem_state is also a kind of load (i.e. needs_anti_dependence_check), and it is not a memory state 804 // modifying node (store, Phi or MergeMem). Hence, load can't be anti dependent on this node. 805 continue; 806 } 807 worklist_def_use_mem_states.push(def_mem_state, use_mem_state); 808 } 809 continue; 810 } 811 812 if (op == Op_MachProj || op == Op_Catch) continue; 813 814 // Compute the alias index. Loads and stores with different alias 815 // indices do not need anti-dependence edges. Wide MemBar's are 816 // anti-dependent on everything (except immutable memories). 817 const TypePtr* adr_type = use_mem_state->adr_type(); 818 if (!C->can_alias(adr_type, load_alias_idx)) continue; 819 820 // Most slow-path runtime calls do NOT modify Java memory, but 821 // they can block and so write Raw memory. 822 if (use_mem_state->is_Mach()) { 823 MachNode* mstore = use_mem_state->as_Mach(); 824 if (load_alias_idx != Compile::AliasIdxRaw) { 825 // Check for call into the runtime using the Java calling 826 // convention (and from there into a wrapper); it has no 827 // _method. Can't do this optimization for Native calls because 828 // they CAN write to Java memory. 829 if (mstore->ideal_Opcode() == Op_CallStaticJava) { 830 assert(mstore->is_MachSafePoint(), ""); 831 MachSafePointNode* ms = (MachSafePointNode*) mstore; 832 assert(ms->is_MachCallJava(), ""); 833 MachCallJavaNode* mcj = (MachCallJavaNode*) ms; 834 if (mcj->_method == nullptr) { 835 // These runtime calls do not write to Java visible memory 836 // (other than Raw) and so do not require anti-dependence edges. 837 continue; 838 } 839 } 840 // Same for SafePoints: they read/write Raw but only read otherwise. 841 // This is basically a workaround for SafePoints only defining control 842 // instead of control + memory. 843 if (mstore->ideal_Opcode() == Op_SafePoint) 844 continue; 845 } else { 846 // Some raw memory, such as the load of "top" at an allocation, 847 // can be control dependent on the previous safepoint. See 848 // comments in GraphKit::allocate_heap() about control input. 849 // Inserting an anti-dep between such a safepoint and a use 850 // creates a cycle, and will cause a subsequent failure in 851 // local scheduling. (BugId 4919904) 852 // (%%% How can a control input be a safepoint and not a projection??) 853 if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore) 854 continue; 855 } 856 } 857 858 // Identify a block that the current load must be above, 859 // or else observe that 'store' is all the way up in the 860 // earliest legal block for 'load'. In the latter case, 861 // immediately insert an anti-dependence edge. 862 Block* store_block = get_block_for_node(use_mem_state); 863 assert(store_block != nullptr, "unused killing projections skipped above"); 864 865 if (use_mem_state->is_Phi()) { 866 // Loop-phis need to raise load before input. (Other phis are treated 867 // as store below.) 868 // 869 // 'load' uses memory which is one (or more) of the Phi's inputs. 870 // It must be scheduled not before the Phi, but rather before 871 // each of the relevant Phi inputs. 872 // 873 // Instead of finding the LCA of all inputs to a Phi that match 'mem', 874 // we mark each corresponding predecessor block and do a combined 875 // hoisting operation later (raise_LCA_above_marks). 876 // 877 // Do not assert(store_block != early, "Phi merging memory after access") 878 // PhiNode may be at start of block 'early' with backedge to 'early' 879 DEBUG_ONLY(bool found_match = false); 880 for (uint j = PhiNode::Input, jmax = use_mem_state->req(); j < jmax; j++) { 881 if (use_mem_state->in(j) == def_mem_state) { // Found matching input? 882 DEBUG_ONLY(found_match = true); 883 Block* pred_block = get_block_for_node(store_block->pred(j)); 884 if (pred_block != early) { 885 // If any predecessor of the Phi matches the load's "early block", 886 // we do not need a precedence edge between the Phi and 'load' 887 // since the load will be forced into a block preceding the Phi. 888 pred_block->set_raise_LCA_mark(load_index); 889 assert(!LCA_orig->dominates(pred_block) || 890 early->dominates(pred_block), "early is high enough"); 891 must_raise_LCA = true; 892 } else { 893 // anti-dependent upon PHI pinned below 'early', no edge needed 894 LCA = early; // but can not schedule below 'early' 895 } 896 } 897 } 898 assert(found_match, "no worklist bug"); 899 } else if (store_block != early) { 900 // 'store' is between the current LCA and earliest possible block. 901 // Label its block, and decide later on how to raise the LCA 902 // to include the effect on LCA of this store. 903 // If this store's block gets chosen as the raised LCA, we 904 // will find him on the non_early_stores list and stick him 905 // with a precedence edge. 906 // (But, don't bother if LCA is already raised all the way.) 907 if (LCA != early && !unrelated_load_in_store_null_block(use_mem_state, load)) { 908 store_block->set_raise_LCA_mark(load_index); 909 must_raise_LCA = true; 910 non_early_stores.push(use_mem_state); 911 } 912 } else { 913 // Found a possibly-interfering store in the load's 'early' block. 914 // This means 'load' cannot sink at all in the dominator tree. 915 // Add an anti-dep edge, and squeeze 'load' into the highest block. 916 assert(use_mem_state != load->find_exact_control(load->in(0)), "dependence cycle found"); 917 if (verify) { 918 assert(use_mem_state->find_edge(load) != -1 || unrelated_load_in_store_null_block(use_mem_state, load), 919 "missing precedence edge"); 920 } else { 921 use_mem_state->add_prec(load); 922 } 923 LCA = early; 924 // This turns off the process of gathering non_early_stores. 925 } 926 } 927 // (Worklist is now empty; all nearby stores have been visited.) 928 929 // Finished if 'load' must be scheduled in its 'early' block. 930 // If we found any stores there, they have already been given 931 // precedence edges. 932 if (LCA == early) return LCA; 933 934 // We get here only if there are no possibly-interfering stores 935 // in the load's 'early' block. Move LCA up above all predecessors 936 // which contain stores we have noted. 937 // 938 // The raised LCA block can be a home to such interfering stores, 939 // but its predecessors must not contain any such stores. 940 // 941 // The raised LCA will be a lower bound for placing the load, 942 // preventing the load from sinking past any block containing 943 // a store that may invalidate the memory state required by 'load'. 944 if (must_raise_LCA) 945 LCA = raise_LCA_above_marks(LCA, load->_idx, early, this); 946 if (LCA == early) return LCA; 947 948 // Insert anti-dependence edges from 'load' to each store 949 // in the non-early LCA block. 950 // Mine the non_early_stores list for such stores. 951 if (LCA->raise_LCA_mark() == load_index) { 952 while (non_early_stores.size() > 0) { 953 Node* store = non_early_stores.pop(); 954 Block* store_block = get_block_for_node(store); 955 if (store_block == LCA) { 956 // add anti_dependence from store to load in its own block 957 assert(store != load->find_exact_control(load->in(0)), "dependence cycle found"); 958 if (verify) { 959 assert(store->find_edge(load) != -1, "missing precedence edge"); 960 } else { 961 store->add_prec(load); 962 } 963 } else { 964 assert(store_block->raise_LCA_mark() == load_index, "block was marked"); 965 // Any other stores we found must be either inside the new LCA 966 // or else outside the original LCA. In the latter case, they 967 // did not interfere with any use of 'load'. 968 assert(LCA->dominates(store_block) 969 || !LCA_orig->dominates(store_block), "no stray stores"); 970 } 971 } 972 } 973 974 // Return the highest block containing stores; any stores 975 // within that block have been given anti-dependence edges. 976 return LCA; 977 } 978 979 // This class is used to iterate backwards over the nodes in the graph. 980 981 class Node_Backward_Iterator { 982 983 private: 984 Node_Backward_Iterator(); 985 986 public: 987 // Constructor for the iterator 988 Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg); 989 990 // Postincrement operator to iterate over the nodes 991 Node *next(); 992 993 private: 994 VectorSet &_visited; 995 Node_Stack &_stack; 996 PhaseCFG &_cfg; 997 }; 998 999 // Constructor for the Node_Backward_Iterator 1000 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg) 1001 : _visited(visited), _stack(stack), _cfg(cfg) { 1002 // The stack should contain exactly the root 1003 stack.clear(); 1004 stack.push(root, root->outcnt()); 1005 1006 // Clear the visited bits 1007 visited.clear(); 1008 } 1009 1010 // Iterator for the Node_Backward_Iterator 1011 Node *Node_Backward_Iterator::next() { 1012 1013 // If the _stack is empty, then just return null: finished. 1014 if ( !_stack.size() ) 1015 return nullptr; 1016 1017 // I visit unvisited not-anti-dependence users first, then anti-dependent 1018 // children next. I iterate backwards to support removal of nodes. 1019 // The stack holds states consisting of 3 values: 1020 // current Def node, flag which indicates 1st/2nd pass, index of current out edge 1021 Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1); 1022 bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1); 1023 uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes. 1024 _stack.pop(); 1025 1026 // I cycle here when I am entering a deeper level of recursion. 1027 // The key variable 'self' was set prior to jumping here. 1028 while( 1 ) { 1029 1030 _visited.set(self->_idx); 1031 1032 // Now schedule all uses as late as possible. 1033 const Node* src = self->is_Proj() ? self->in(0) : self; 1034 uint src_rpo = _cfg.get_block_for_node(src)->_rpo; 1035 1036 // Schedule all nodes in a post-order visit 1037 Node *unvisited = nullptr; // Unvisited anti-dependent Node, if any 1038 1039 // Scan for unvisited nodes 1040 while (idx > 0) { 1041 // For all uses, schedule late 1042 Node* n = self->raw_out(--idx); // Use 1043 1044 // Skip already visited children 1045 if ( _visited.test(n->_idx) ) 1046 continue; 1047 1048 // do not traverse backward control edges 1049 Node *use = n->is_Proj() ? n->in(0) : n; 1050 uint use_rpo = _cfg.get_block_for_node(use)->_rpo; 1051 1052 if ( use_rpo < src_rpo ) 1053 continue; 1054 1055 // Phi nodes always precede uses in a basic block 1056 if ( use_rpo == src_rpo && use->is_Phi() ) 1057 continue; 1058 1059 unvisited = n; // Found unvisited 1060 1061 // Check for possible-anti-dependent 1062 // 1st pass: No such nodes, 2nd pass: Only such nodes. 1063 if (n->needs_anti_dependence_check() == iterate_anti_dep) { 1064 unvisited = n; // Found unvisited 1065 break; 1066 } 1067 } 1068 1069 // Did I find an unvisited not-anti-dependent Node? 1070 if (!unvisited) { 1071 if (!iterate_anti_dep) { 1072 // 2nd pass: Iterate over nodes which needs_anti_dependence_check. 1073 iterate_anti_dep = true; 1074 idx = self->outcnt(); 1075 continue; 1076 } 1077 break; // All done with children; post-visit 'self' 1078 } 1079 1080 // Visit the unvisited Node. Contains the obvious push to 1081 // indicate I'm entering a deeper level of recursion. I push the 1082 // old state onto the _stack and set a new state and loop (recurse). 1083 _stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx); 1084 self = unvisited; 1085 iterate_anti_dep = false; 1086 idx = self->outcnt(); 1087 } // End recursion loop 1088 1089 return self; 1090 } 1091 1092 //------------------------------ComputeLatenciesBackwards---------------------- 1093 // Compute the latency of all the instructions. 1094 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) { 1095 #ifndef PRODUCT 1096 if (trace_opto_pipelining()) 1097 tty->print("\n#---- ComputeLatenciesBackwards ----\n"); 1098 #endif 1099 1100 Node_Backward_Iterator iter((Node *)_root, visited, stack, *this); 1101 Node *n; 1102 1103 // Walk over all the nodes from last to first 1104 while ((n = iter.next())) { 1105 // Set the latency for the definitions of this instruction 1106 partial_latency_of_defs(n); 1107 } 1108 } // end ComputeLatenciesBackwards 1109 1110 //------------------------------partial_latency_of_defs------------------------ 1111 // Compute the latency impact of this node on all defs. This computes 1112 // a number that increases as we approach the beginning of the routine. 1113 void PhaseCFG::partial_latency_of_defs(Node *n) { 1114 // Set the latency for this instruction 1115 #ifndef PRODUCT 1116 if (trace_opto_pipelining()) { 1117 tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n)); 1118 dump(); 1119 } 1120 #endif 1121 1122 if (n->is_Proj()) { 1123 n = n->in(0); 1124 } 1125 1126 if (n->is_Root()) { 1127 return; 1128 } 1129 1130 uint nlen = n->len(); 1131 uint use_latency = get_latency_for_node(n); 1132 uint use_pre_order = get_block_for_node(n)->_pre_order; 1133 1134 for (uint j = 0; j < nlen; j++) { 1135 Node *def = n->in(j); 1136 1137 if (!def || def == n) { 1138 continue; 1139 } 1140 1141 // Walk backwards thru projections 1142 if (def->is_Proj()) { 1143 def = def->in(0); 1144 } 1145 1146 #ifndef PRODUCT 1147 if (trace_opto_pipelining()) { 1148 tty->print("# in(%2d): ", j); 1149 def->dump(); 1150 } 1151 #endif 1152 1153 // If the defining block is not known, assume it is ok 1154 Block *def_block = get_block_for_node(def); 1155 uint def_pre_order = def_block ? def_block->_pre_order : 0; 1156 1157 if ((use_pre_order < def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) { 1158 continue; 1159 } 1160 1161 uint delta_latency = n->latency(j); 1162 uint current_latency = delta_latency + use_latency; 1163 1164 if (get_latency_for_node(def) < current_latency) { 1165 set_latency_for_node(def, current_latency); 1166 } 1167 1168 #ifndef PRODUCT 1169 if (trace_opto_pipelining()) { 1170 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def)); 1171 } 1172 #endif 1173 } 1174 } 1175 1176 //------------------------------latency_from_use------------------------------- 1177 // Compute the latency of a specific use 1178 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) { 1179 // If self-reference, return no latency 1180 if (use == n || use->is_Root()) { 1181 return 0; 1182 } 1183 1184 uint def_pre_order = get_block_for_node(def)->_pre_order; 1185 uint latency = 0; 1186 1187 // If the use is not a projection, then it is simple... 1188 if (!use->is_Proj()) { 1189 #ifndef PRODUCT 1190 if (trace_opto_pipelining()) { 1191 tty->print("# out(): "); 1192 use->dump(); 1193 } 1194 #endif 1195 1196 uint use_pre_order = get_block_for_node(use)->_pre_order; 1197 1198 if (use_pre_order < def_pre_order) 1199 return 0; 1200 1201 if (use_pre_order == def_pre_order && use->is_Phi()) 1202 return 0; 1203 1204 uint nlen = use->len(); 1205 uint nl = get_latency_for_node(use); 1206 1207 for ( uint j=0; j<nlen; j++ ) { 1208 if (use->in(j) == n) { 1209 // Change this if we want local latencies 1210 uint ul = use->latency(j); 1211 uint l = ul + nl; 1212 if (latency < l) latency = l; 1213 #ifndef PRODUCT 1214 if (trace_opto_pipelining()) { 1215 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d", 1216 nl, j, ul, l, latency); 1217 } 1218 #endif 1219 } 1220 } 1221 } else { 1222 // This is a projection, just grab the latency of the use(s) 1223 for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) { 1224 uint l = latency_from_use(use, def, use->fast_out(j)); 1225 if (latency < l) latency = l; 1226 } 1227 } 1228 1229 return latency; 1230 } 1231 1232 //------------------------------latency_from_uses------------------------------ 1233 // Compute the latency of this instruction relative to all of it's uses. 1234 // This computes a number that increases as we approach the beginning of the 1235 // routine. 1236 void PhaseCFG::latency_from_uses(Node *n) { 1237 // Set the latency for this instruction 1238 #ifndef PRODUCT 1239 if (trace_opto_pipelining()) { 1240 tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n)); 1241 dump(); 1242 } 1243 #endif 1244 uint latency=0; 1245 const Node *def = n->is_Proj() ? n->in(0): n; 1246 1247 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1248 uint l = latency_from_use(n, def, n->fast_out(i)); 1249 1250 if (latency < l) latency = l; 1251 } 1252 1253 set_latency_for_node(n, latency); 1254 } 1255 1256 //------------------------------is_cheaper_block------------------------- 1257 // Check if a block between early and LCA block of uses is cheaper by 1258 // frequency-based policy, latency-based policy and random-based policy 1259 bool PhaseCFG::is_cheaper_block(Block* LCA, Node* self, uint target_latency, 1260 uint end_latency, double least_freq, 1261 int cand_cnt, bool in_latency) { 1262 if (StressGCM) { 1263 // Should be randomly accepted in stress mode 1264 return C->randomized_select(cand_cnt); 1265 } 1266 1267 const double delta = 1 + PROB_UNLIKELY_MAG(4); 1268 1269 // Better Frequency. Add a small delta to the comparison to not needlessly 1270 // hoist because of, e.g., small numerical inaccuracies. 1271 if (LCA->_freq * delta < least_freq) { 1272 return true; 1273 } 1274 1275 // Otherwise, choose with latency 1276 if (!in_latency && // No block containing latency 1277 LCA->_freq < least_freq * delta && // No worse frequency 1278 target_latency >= end_latency && // within latency range 1279 !self->is_iteratively_computed() // But don't hoist IV increments 1280 // because they may end up above other uses of their phi forcing 1281 // their result register to be different from their input. 1282 ) { 1283 return true; 1284 } 1285 1286 return false; 1287 } 1288 1289 //------------------------------hoist_to_cheaper_block------------------------- 1290 // Pick a block for node self, between early and LCA block of uses, that is a 1291 // cheaper alternative to LCA. 1292 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) { 1293 Block* least = LCA; 1294 double least_freq = least->_freq; 1295 uint target = get_latency_for_node(self); 1296 uint start_latency = get_latency_for_node(LCA->head()); 1297 uint end_latency = get_latency_for_node(LCA->get_node(LCA->end_idx())); 1298 bool in_latency = (target <= start_latency); 1299 const Block* root_block = get_block_for_node(_root); 1300 1301 // Turn off latency scheduling if scheduling is just plain off 1302 if (!C->do_scheduling()) 1303 in_latency = true; 1304 1305 // Do not hoist (to cover latency) instructions which target a 1306 // single register. Hoisting stretches the live range of the 1307 // single register and may force spilling. 1308 MachNode* mach = self->is_Mach() ? self->as_Mach() : nullptr; 1309 if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty()) 1310 in_latency = true; 1311 1312 #ifndef PRODUCT 1313 if (trace_opto_pipelining()) { 1314 tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self)); 1315 self->dump(); 1316 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", 1317 LCA->_pre_order, 1318 LCA->head()->_idx, 1319 start_latency, 1320 LCA->get_node(LCA->end_idx())->_idx, 1321 end_latency, 1322 least_freq); 1323 } 1324 #endif 1325 1326 int cand_cnt = 0; // number of candidates tried 1327 1328 // Walk up the dominator tree from LCA (Lowest common ancestor) to 1329 // the earliest legal location. Capture the least execution frequency, 1330 // or choose a random block if -XX:+StressGCM, or using latency-based policy 1331 while (LCA != early) { 1332 LCA = LCA->_idom; // Follow up the dominator tree 1333 1334 if (LCA == nullptr) { 1335 // Bailout without retry 1336 assert(false, "graph should be schedulable"); 1337 C->record_method_not_compilable("late schedule failed: LCA is null"); 1338 return least; 1339 } 1340 1341 // Don't hoist machine instructions to the root basic block 1342 if (mach && LCA == root_block) 1343 break; 1344 1345 if (self->is_memory_writer() && 1346 (LCA->_loop->depth() > early->_loop->depth())) { 1347 // LCA is an invalid placement for a memory writer: choosing it would 1348 // cause memory interference, as illustrated in schedule_late(). 1349 continue; 1350 } 1351 verify_memory_writer_placement(LCA, self); 1352 1353 uint start_lat = get_latency_for_node(LCA->head()); 1354 uint end_idx = LCA->end_idx(); 1355 uint end_lat = get_latency_for_node(LCA->get_node(end_idx)); 1356 double LCA_freq = LCA->_freq; 1357 #ifndef PRODUCT 1358 if (trace_opto_pipelining()) { 1359 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", 1360 LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq); 1361 } 1362 #endif 1363 cand_cnt++; 1364 if (is_cheaper_block(LCA, self, target, end_lat, least_freq, cand_cnt, in_latency)) { 1365 least = LCA; // Found cheaper block 1366 least_freq = LCA_freq; 1367 start_latency = start_lat; 1368 end_latency = end_lat; 1369 if (target <= start_lat) 1370 in_latency = true; 1371 } 1372 } 1373 1374 #ifndef PRODUCT 1375 if (trace_opto_pipelining()) { 1376 tty->print_cr("# Choose block B%d with start latency=%d and freq=%g", 1377 least->_pre_order, start_latency, least_freq); 1378 } 1379 #endif 1380 1381 // See if the latency needs to be updated 1382 if (target < end_latency) { 1383 #ifndef PRODUCT 1384 if (trace_opto_pipelining()) { 1385 tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency); 1386 } 1387 #endif 1388 set_latency_for_node(self, end_latency); 1389 partial_latency_of_defs(self); 1390 } 1391 1392 return least; 1393 } 1394 1395 1396 //------------------------------schedule_late----------------------------------- 1397 // Now schedule all codes as LATE as possible. This is the LCA in the 1398 // dominator tree of all USES of a value. Pick the block with the least 1399 // loop nesting depth that is lowest in the dominator tree. 1400 extern const char must_clone[]; 1401 void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) { 1402 #ifndef PRODUCT 1403 if (trace_opto_pipelining()) 1404 tty->print("\n#---- schedule_late ----\n"); 1405 #endif 1406 1407 Node_Backward_Iterator iter((Node *)_root, visited, stack, *this); 1408 Node *self; 1409 1410 // Walk over all the nodes from last to first 1411 while ((self = iter.next())) { 1412 Block* early = get_block_for_node(self); // Earliest legal placement 1413 1414 if (self->is_top()) { 1415 // Top node goes in bb #2 with other constants. 1416 // It must be special-cased, because it has no out edges. 1417 early->add_inst(self); 1418 continue; 1419 } 1420 1421 // No uses, just terminate 1422 if (self->outcnt() == 0) { 1423 assert(self->is_MachProj(), "sanity"); 1424 continue; // Must be a dead machine projection 1425 } 1426 1427 // If node is pinned in the block, then no scheduling can be done. 1428 if( self->pinned() ) // Pinned in block? 1429 continue; 1430 1431 #ifdef ASSERT 1432 // Assert that memory writers (e.g. stores) have a "home" block (the block 1433 // given by their control input), and that this block corresponds to their 1434 // earliest possible placement. This guarantees that 1435 // hoist_to_cheaper_block() will always have at least one valid choice. 1436 if (self->is_memory_writer()) { 1437 assert(find_block_for_node(self->in(0)) == early, 1438 "The home of a memory writer must also be its earliest placement"); 1439 } 1440 #endif 1441 1442 MachNode* mach = self->is_Mach() ? self->as_Mach() : nullptr; 1443 if (mach) { 1444 switch (mach->ideal_Opcode()) { 1445 case Op_CreateEx: 1446 // Don't move exception creation 1447 early->add_inst(self); 1448 continue; 1449 break; 1450 case Op_CheckCastPP: { 1451 // Don't move CheckCastPP nodes away from their input, if the input 1452 // is a rawptr (5071820). 1453 Node *def = self->in(1); 1454 if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) { 1455 early->add_inst(self); 1456 #ifdef ASSERT 1457 _raw_oops.push(def); 1458 #endif 1459 continue; 1460 } 1461 break; 1462 } 1463 default: 1464 break; 1465 } 1466 if (C->has_irreducible_loop() && self->is_memory_writer()) { 1467 // If the CFG is irreducible, place memory writers in their home block. 1468 // This prevents hoist_to_cheaper_block() from accidentally placing such 1469 // nodes into deeper loops, as in the following example: 1470 // 1471 // Home placement of store in B1 (loop L1): 1472 // 1473 // B1 (L1): 1474 // m1 <- .. 1475 // m2 <- store m1, .. 1476 // B2 (L2): 1477 // jump B2 1478 // B3 (L1): 1479 // .. <- .. m2, .. 1480 // 1481 // Wrong "hoisting" of store to B2 (in loop L2, child of L1): 1482 // 1483 // B1 (L1): 1484 // m1 <- .. 1485 // B2 (L2): 1486 // m2 <- store m1, .. 1487 // # Wrong: m1 and m2 interfere at this point. 1488 // jump B2 1489 // B3 (L1): 1490 // .. <- .. m2, .. 1491 // 1492 // This "hoist inversion" can happen due to different factors such as 1493 // inaccurate estimation of frequencies for irreducible CFGs, and loops 1494 // with always-taken exits in reducible CFGs. In the reducible case, 1495 // hoist inversion is prevented by discarding invalid blocks (those in 1496 // deeper loops than the home block). In the irreducible case, the 1497 // invalid blocks cannot be identified due to incomplete loop nesting 1498 // information, hence a conservative solution is taken. 1499 #ifndef PRODUCT 1500 if (trace_opto_pipelining()) { 1501 tty->print_cr("# Irreducible loops: schedule in home block B%d:", 1502 early->_pre_order); 1503 self->dump(); 1504 } 1505 #endif 1506 schedule_node_into_block(self, early); 1507 continue; 1508 } 1509 } 1510 1511 // Gather LCA of all uses 1512 Block *LCA = nullptr; 1513 { 1514 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) { 1515 // For all uses, find LCA 1516 Node* use = self->fast_out(i); 1517 LCA = raise_LCA_above_use(LCA, use, self, this); 1518 } 1519 guarantee(LCA != nullptr, "There must be a LCA"); 1520 } // (Hide defs of imax, i from rest of block.) 1521 1522 // Place temps in the block of their use. This isn't a 1523 // requirement for correctness but it reduces useless 1524 // interference between temps and other nodes. 1525 if (mach != nullptr && mach->is_MachTemp()) { 1526 map_node_to_block(self, LCA); 1527 LCA->add_inst(self); 1528 continue; 1529 } 1530 1531 // Check if 'self' could be anti-dependent on memory 1532 if (self->needs_anti_dependence_check()) { 1533 // Hoist LCA above possible-defs and insert anti-dependences to 1534 // defs in new LCA block. 1535 LCA = insert_anti_dependences(LCA, self); 1536 if (C->failing()) { 1537 return; 1538 } 1539 } 1540 1541 if (early->_dom_depth > LCA->_dom_depth) { 1542 // Somehow the LCA has moved above the earliest legal point. 1543 // (One way this can happen is via memory_early_block.) 1544 if (C->subsume_loads() == true && !C->failing()) { 1545 // Retry with subsume_loads == false 1546 // If this is the first failure, the sentinel string will "stick" 1547 // to the Compile object, and the C2Compiler will see it and retry. 1548 C->record_failure(C2Compiler::retry_no_subsuming_loads()); 1549 } else { 1550 // Bailout without retry when (early->_dom_depth > LCA->_dom_depth) 1551 assert(C->failure_is_artificial(), "graph should be schedulable"); 1552 C->record_method_not_compilable("late schedule failed: incorrect graph" DEBUG_ONLY(COMMA true)); 1553 } 1554 return; 1555 } 1556 1557 if (self->is_memory_writer()) { 1558 // If the LCA of a memory writer is a descendant of its home loop, hoist 1559 // it into a valid placement. 1560 while (LCA->_loop->depth() > early->_loop->depth()) { 1561 LCA = LCA->_idom; 1562 } 1563 assert(LCA != nullptr, "a valid LCA must exist"); 1564 verify_memory_writer_placement(LCA, self); 1565 } 1566 1567 // If there is no opportunity to hoist, then we're done. 1568 // In stress mode, try to hoist even the single operations. 1569 bool try_to_hoist = StressGCM || (LCA != early); 1570 1571 // Must clone guys stay next to use; no hoisting allowed. 1572 // Also cannot hoist guys that alter memory or are otherwise not 1573 // allocatable (hoisting can make a value live longer, leading to 1574 // anti and output dependency problems which are normally resolved 1575 // by the register allocator giving everyone a different register). 1576 if (mach != nullptr && must_clone[mach->ideal_Opcode()]) 1577 try_to_hoist = false; 1578 1579 Block* late = nullptr; 1580 if (try_to_hoist) { 1581 // Now find the block with the least execution frequency. 1582 // Start at the latest schedule and work up to the earliest schedule 1583 // in the dominator tree. Thus the Node will dominate all its uses. 1584 late = hoist_to_cheaper_block(LCA, early, self); 1585 } else { 1586 // Just use the LCA of the uses. 1587 late = LCA; 1588 } 1589 1590 // Put the node into target block 1591 schedule_node_into_block(self, late); 1592 1593 #ifdef ASSERT 1594 if (self->needs_anti_dependence_check()) { 1595 // since precedence edges are only inserted when we're sure they 1596 // are needed make sure that after placement in a block we don't 1597 // need any new precedence edges. 1598 verify_anti_dependences(late, self); 1599 } 1600 #endif 1601 } // Loop until all nodes have been visited 1602 1603 } // end ScheduleLate 1604 1605 //------------------------------GlobalCodeMotion------------------------------- 1606 void PhaseCFG::global_code_motion() { 1607 ResourceMark rm; 1608 1609 #ifndef PRODUCT 1610 if (trace_opto_pipelining()) { 1611 tty->print("\n---- Start GlobalCodeMotion ----\n"); 1612 } 1613 #endif 1614 1615 // Initialize the node to block mapping for things on the proj_list 1616 for (uint i = 0; i < _matcher.number_of_projections(); i++) { 1617 unmap_node_from_block(_matcher.get_projection(i)); 1618 } 1619 1620 // Set the basic block for Nodes pinned into blocks 1621 VectorSet visited; 1622 schedule_pinned_nodes(visited); 1623 1624 // Find the earliest Block any instruction can be placed in. Some 1625 // instructions are pinned into Blocks. Unpinned instructions can 1626 // appear in last block in which all their inputs occur. 1627 visited.clear(); 1628 Node_Stack stack((C->live_nodes() >> 2) + 16); // pre-grow 1629 if (!schedule_early(visited, stack)) { 1630 // Bailout without retry 1631 assert(C->failure_is_artificial(), "early schedule failed"); 1632 C->record_method_not_compilable("early schedule failed" DEBUG_ONLY(COMMA true)); 1633 return; 1634 } 1635 1636 // Build Def-Use edges. 1637 // Compute the latency information (via backwards walk) for all the 1638 // instructions in the graph 1639 _node_latency = new GrowableArray<uint>(); // resource_area allocation 1640 1641 if (C->do_scheduling()) { 1642 compute_latencies_backwards(visited, stack); 1643 } 1644 1645 // Now schedule all codes as LATE as possible. This is the LCA in the 1646 // dominator tree of all USES of a value. Pick the block with the least 1647 // loop nesting depth that is lowest in the dominator tree. 1648 // ( visited.clear() called in schedule_late()->Node_Backward_Iterator() ) 1649 schedule_late(visited, stack); 1650 if (C->failing()) { 1651 return; 1652 } 1653 1654 #ifndef PRODUCT 1655 if (trace_opto_pipelining()) { 1656 tty->print("\n---- Detect implicit null checks ----\n"); 1657 } 1658 #endif 1659 1660 // Detect implicit-null-check opportunities. Basically, find null checks 1661 // with suitable memory ops nearby. Use the memory op to do the null check. 1662 // I can generate a memory op if there is not one nearby. 1663 if (C->is_method_compilation()) { 1664 // By reversing the loop direction we get a very minor gain on mpegaudio. 1665 // Feel free to revert to a forward loop for clarity. 1666 // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) { 1667 for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) { 1668 Node* proj = _matcher._null_check_tests[i]; 1669 Node* val = _matcher._null_check_tests[i + 1]; 1670 Block* block = get_block_for_node(proj); 1671 implicit_null_check(block, proj, val, C->allowed_deopt_reasons()); 1672 // The implicit_null_check will only perform the transformation 1673 // if the null branch is truly uncommon, *and* it leads to an 1674 // uncommon trap. Combined with the too_many_traps guards 1675 // above, this prevents SEGV storms reported in 6366351, 1676 // by recompiling offending methods without this optimization. 1677 if (C->failing()) { 1678 return; 1679 } 1680 } 1681 } 1682 1683 bool block_size_threshold_ok = false; 1684 intptr_t *recalc_pressure_nodes = nullptr; 1685 if (OptoRegScheduling) { 1686 for (uint i = 0; i < number_of_blocks(); i++) { 1687 Block* block = get_block(i); 1688 if (block->number_of_nodes() > 10) { 1689 block_size_threshold_ok = true; 1690 break; 1691 } 1692 } 1693 } 1694 1695 // Enabling the scheduler for register pressure plus finding blocks of size to schedule for it 1696 // is key to enabling this feature. 1697 PhaseChaitin regalloc(C->unique(), *this, _matcher, true); 1698 ResourceArea live_arena(mtCompiler, Arena::Tag::tag_reglive); // Arena for liveness 1699 ResourceMark rm_live(&live_arena); 1700 PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true); 1701 PhaseIFG ifg(&live_arena); 1702 if (OptoRegScheduling && block_size_threshold_ok) { 1703 regalloc.mark_ssa(); 1704 Compile::TracePhase tp(_t_computeLive); 1705 rm_live.reset_to_mark(); // Reclaim working storage 1706 IndexSet::reset_memory(C, &live_arena); 1707 uint node_size = regalloc._lrg_map.max_lrg_id(); 1708 ifg.init(node_size); // Empty IFG 1709 regalloc.set_ifg(ifg); 1710 regalloc.set_live(live); 1711 regalloc.gather_lrg_masks(false); // Collect LRG masks 1712 live.compute(node_size); // Compute liveness 1713 1714 recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size); 1715 for (uint i = 0; i < node_size; i++) { 1716 recalc_pressure_nodes[i] = 0; 1717 } 1718 } 1719 _regalloc = ®alloc; 1720 1721 #ifndef PRODUCT 1722 if (trace_opto_pipelining()) { 1723 tty->print("\n---- Start Local Scheduling ----\n"); 1724 } 1725 #endif 1726 1727 // Schedule locally. Right now a simple topological sort. 1728 // Later, do a real latency aware scheduler. 1729 GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1); 1730 visited.reset(); 1731 for (uint i = 0; i < number_of_blocks(); i++) { 1732 Block* block = get_block(i); 1733 if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) { 1734 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 1735 assert(C->failure_is_artificial(), "local schedule failed"); 1736 C->record_method_not_compilable("local schedule failed" DEBUG_ONLY(COMMA true)); 1737 } 1738 _regalloc = nullptr; 1739 return; 1740 } 1741 } 1742 _regalloc = nullptr; 1743 1744 // If we inserted any instructions between a Call and his CatchNode, 1745 // clone the instructions on all paths below the Catch. 1746 for (uint i = 0; i < number_of_blocks(); i++) { 1747 Block* block = get_block(i); 1748 call_catch_cleanup(block); 1749 if (C->failing()) { 1750 return; 1751 } 1752 } 1753 1754 #ifndef PRODUCT 1755 if (trace_opto_pipelining()) { 1756 tty->print("\n---- After GlobalCodeMotion ----\n"); 1757 for (uint i = 0; i < number_of_blocks(); i++) { 1758 Block* block = get_block(i); 1759 block->dump(); 1760 } 1761 } 1762 #endif 1763 // Dead. 1764 _node_latency = (GrowableArray<uint> *)((intptr_t)0xdeadbeef); 1765 } 1766 1767 bool PhaseCFG::do_global_code_motion() { 1768 1769 build_dominator_tree(); 1770 if (C->failing()) { 1771 return false; 1772 } 1773 1774 NOT_PRODUCT( C->verify_graph_edges(); ) 1775 1776 estimate_block_frequency(); 1777 1778 global_code_motion(); 1779 1780 if (C->failing()) { 1781 return false; 1782 } 1783 1784 return true; 1785 } 1786 1787 //------------------------------Estimate_Block_Frequency----------------------- 1788 // Estimate block frequencies based on IfNode probabilities. 1789 void PhaseCFG::estimate_block_frequency() { 1790 1791 // Force conditional branches leading to uncommon traps to be unlikely, 1792 // not because we get to the uncommon_trap with less relative frequency, 1793 // but because an uncommon_trap typically causes a deopt, so we only get 1794 // there once. 1795 if (C->do_freq_based_layout()) { 1796 Block_List worklist; 1797 Block* root_blk = get_block(0); 1798 for (uint i = 1; i < root_blk->num_preds(); i++) { 1799 Block *pb = get_block_for_node(root_blk->pred(i)); 1800 if (pb->has_uncommon_code()) { 1801 worklist.push(pb); 1802 } 1803 } 1804 while (worklist.size() > 0) { 1805 Block* uct = worklist.pop(); 1806 if (uct == get_root_block()) { 1807 continue; 1808 } 1809 for (uint i = 1; i < uct->num_preds(); i++) { 1810 Block *pb = get_block_for_node(uct->pred(i)); 1811 if (pb->_num_succs == 1) { 1812 worklist.push(pb); 1813 } else if (pb->num_fall_throughs() == 2) { 1814 pb->update_uncommon_branch(uct); 1815 } 1816 } 1817 } 1818 } 1819 1820 // Create the loop tree and calculate loop depth. 1821 _root_loop = create_loop_tree(); 1822 _root_loop->compute_loop_depth(0); 1823 1824 // Compute block frequency of each block, relative to a single loop entry. 1825 _root_loop->compute_freq(); 1826 1827 // Adjust all frequencies to be relative to a single method entry 1828 _root_loop->_freq = 1.0; 1829 _root_loop->scale_freq(); 1830 1831 // Save outmost loop frequency for LRG frequency threshold 1832 _outer_loop_frequency = _root_loop->outer_loop_freq(); 1833 1834 // force paths ending at uncommon traps to be infrequent 1835 if (!C->do_freq_based_layout()) { 1836 Block_List worklist; 1837 Block* root_blk = get_block(0); 1838 for (uint i = 1; i < root_blk->num_preds(); i++) { 1839 Block *pb = get_block_for_node(root_blk->pred(i)); 1840 if (pb->has_uncommon_code()) { 1841 worklist.push(pb); 1842 } 1843 } 1844 while (worklist.size() > 0) { 1845 Block* uct = worklist.pop(); 1846 uct->_freq = PROB_MIN; 1847 for (uint i = 1; i < uct->num_preds(); i++) { 1848 Block *pb = get_block_for_node(uct->pred(i)); 1849 if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) { 1850 worklist.push(pb); 1851 } 1852 } 1853 } 1854 } 1855 1856 #ifdef ASSERT 1857 for (uint i = 0; i < number_of_blocks(); i++) { 1858 Block* b = get_block(i); 1859 assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency"); 1860 } 1861 #endif 1862 1863 #ifndef PRODUCT 1864 if (PrintCFGBlockFreq) { 1865 tty->print_cr("CFG Block Frequencies"); 1866 _root_loop->dump_tree(); 1867 if (Verbose) { 1868 tty->print_cr("PhaseCFG dump"); 1869 dump(); 1870 tty->print_cr("Node dump"); 1871 _root->dump(99999); 1872 } 1873 } 1874 #endif 1875 } 1876 1877 //----------------------------create_loop_tree-------------------------------- 1878 // Create a loop tree from the CFG 1879 CFGLoop* PhaseCFG::create_loop_tree() { 1880 1881 #ifdef ASSERT 1882 assert(get_block(0) == get_root_block(), "first block should be root block"); 1883 for (uint i = 0; i < number_of_blocks(); i++) { 1884 Block* block = get_block(i); 1885 // Check that _loop field are clear...we could clear them if not. 1886 assert(block->_loop == nullptr, "clear _loop expected"); 1887 // Sanity check that the RPO numbering is reflected in the _blocks array. 1888 // It doesn't have to be for the loop tree to be built, but if it is not, 1889 // then the blocks have been reordered since dom graph building...which 1890 // may question the RPO numbering 1891 assert(block->_rpo == i, "unexpected reverse post order number"); 1892 } 1893 #endif 1894 1895 int idct = 0; 1896 CFGLoop* root_loop = new CFGLoop(idct++); 1897 1898 Block_List worklist; 1899 1900 // Assign blocks to loops 1901 for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block 1902 Block* block = get_block(i); 1903 1904 if (block->head()->is_Loop()) { 1905 Block* loop_head = block; 1906 assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); 1907 Node* tail_n = loop_head->pred(LoopNode::LoopBackControl); 1908 Block* tail = get_block_for_node(tail_n); 1909 1910 // Defensively filter out Loop nodes for non-single-entry loops. 1911 // For all reasonable loops, the head occurs before the tail in RPO. 1912 if (i <= tail->_rpo) { 1913 1914 // The tail and (recursive) predecessors of the tail 1915 // are made members of a new loop. 1916 1917 assert(worklist.size() == 0, "nonempty worklist"); 1918 CFGLoop* nloop = new CFGLoop(idct++); 1919 assert(loop_head->_loop == nullptr, "just checking"); 1920 loop_head->_loop = nloop; 1921 // Add to nloop so push_pred() will skip over inner loops 1922 nloop->add_member(loop_head); 1923 nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this); 1924 1925 while (worklist.size() > 0) { 1926 Block* member = worklist.pop(); 1927 if (member != loop_head) { 1928 for (uint j = 1; j < member->num_preds(); j++) { 1929 nloop->push_pred(member, j, worklist, this); 1930 } 1931 } 1932 } 1933 } 1934 } 1935 } 1936 1937 // Create a member list for each loop consisting 1938 // of both blocks and (immediate child) loops. 1939 for (uint i = 0; i < number_of_blocks(); i++) { 1940 Block* block = get_block(i); 1941 CFGLoop* lp = block->_loop; 1942 if (lp == nullptr) { 1943 // Not assigned to a loop. Add it to the method's pseudo loop. 1944 block->_loop = root_loop; 1945 lp = root_loop; 1946 } 1947 if (lp == root_loop || block != lp->head()) { // loop heads are already members 1948 lp->add_member(block); 1949 } 1950 if (lp != root_loop) { 1951 if (lp->parent() == nullptr) { 1952 // Not a nested loop. Make it a child of the method's pseudo loop. 1953 root_loop->add_nested_loop(lp); 1954 } 1955 if (block == lp->head()) { 1956 // Add nested loop to member list of parent loop. 1957 lp->parent()->add_member(lp); 1958 } 1959 } 1960 } 1961 1962 return root_loop; 1963 } 1964 1965 //------------------------------push_pred-------------------------------------- 1966 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) { 1967 Node* pred_n = blk->pred(i); 1968 Block* pred = cfg->get_block_for_node(pred_n); 1969 CFGLoop *pred_loop = pred->_loop; 1970 if (pred_loop == nullptr) { 1971 // Filter out blocks for non-single-entry loops. 1972 // For all reasonable loops, the head occurs before the tail in RPO. 1973 if (pred->_rpo > head()->_rpo) { 1974 pred->_loop = this; 1975 worklist.push(pred); 1976 } 1977 } else if (pred_loop != this) { 1978 // Nested loop. 1979 while (pred_loop->_parent != nullptr && pred_loop->_parent != this) { 1980 pred_loop = pred_loop->_parent; 1981 } 1982 // Make pred's loop be a child 1983 if (pred_loop->_parent == nullptr) { 1984 add_nested_loop(pred_loop); 1985 // Continue with loop entry predecessor. 1986 Block* pred_head = pred_loop->head(); 1987 assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); 1988 assert(pred_head != head(), "loop head in only one loop"); 1989 push_pred(pred_head, LoopNode::EntryControl, worklist, cfg); 1990 } else { 1991 assert(pred_loop->_parent == this && _parent == nullptr, "just checking"); 1992 } 1993 } 1994 } 1995 1996 //------------------------------add_nested_loop-------------------------------- 1997 // Make cl a child of the current loop in the loop tree. 1998 void CFGLoop::add_nested_loop(CFGLoop* cl) { 1999 assert(_parent == nullptr, "no parent yet"); 2000 assert(cl != this, "not my own parent"); 2001 cl->_parent = this; 2002 CFGLoop* ch = _child; 2003 if (ch == nullptr) { 2004 _child = cl; 2005 } else { 2006 while (ch->_sibling != nullptr) { ch = ch->_sibling; } 2007 ch->_sibling = cl; 2008 } 2009 } 2010 2011 //------------------------------compute_loop_depth----------------------------- 2012 // Store the loop depth in each CFGLoop object. 2013 // Recursively walk the children to do the same for them. 2014 void CFGLoop::compute_loop_depth(int depth) { 2015 _depth = depth; 2016 CFGLoop* ch = _child; 2017 while (ch != nullptr) { 2018 ch->compute_loop_depth(depth + 1); 2019 ch = ch->_sibling; 2020 } 2021 } 2022 2023 //------------------------------compute_freq----------------------------------- 2024 // Compute the frequency of each block and loop, relative to a single entry 2025 // into the dominating loop head. 2026 void CFGLoop::compute_freq() { 2027 // Bottom up traversal of loop tree (visit inner loops first.) 2028 // Set loop head frequency to 1.0, then transitively 2029 // compute frequency for all successors in the loop, 2030 // as well as for each exit edge. Inner loops are 2031 // treated as single blocks with loop exit targets 2032 // as the successor blocks. 2033 2034 // Nested loops first 2035 CFGLoop* ch = _child; 2036 while (ch != nullptr) { 2037 ch->compute_freq(); 2038 ch = ch->_sibling; 2039 } 2040 assert (_members.length() > 0, "no empty loops"); 2041 Block* hd = head(); 2042 hd->_freq = 1.0; 2043 for (int i = 0; i < _members.length(); i++) { 2044 CFGElement* s = _members.at(i); 2045 double freq = s->_freq; 2046 if (s->is_block()) { 2047 Block* b = s->as_Block(); 2048 for (uint j = 0; j < b->_num_succs; j++) { 2049 Block* sb = b->_succs[j]; 2050 update_succ_freq(sb, freq * b->succ_prob(j)); 2051 } 2052 } else { 2053 CFGLoop* lp = s->as_CFGLoop(); 2054 assert(lp->_parent == this, "immediate child"); 2055 for (int k = 0; k < lp->_exits.length(); k++) { 2056 Block* eb = lp->_exits.at(k).get_target(); 2057 double prob = lp->_exits.at(k).get_prob(); 2058 update_succ_freq(eb, freq * prob); 2059 } 2060 } 2061 } 2062 2063 // For all loops other than the outer, "method" loop, 2064 // sum and normalize the exit probability. The "method" loop 2065 // should keep the initial exit probability of 1, so that 2066 // inner blocks do not get erroneously scaled. 2067 if (_depth != 0) { 2068 // Total the exit probabilities for this loop. 2069 double exits_sum = 0.0f; 2070 for (int i = 0; i < _exits.length(); i++) { 2071 exits_sum += _exits.at(i).get_prob(); 2072 } 2073 2074 // Normalize the exit probabilities. Until now, the 2075 // probabilities estimate the possibility of exit per 2076 // a single loop iteration; afterward, they estimate 2077 // the probability of exit per loop entry. 2078 for (int i = 0; i < _exits.length(); i++) { 2079 Block* et = _exits.at(i).get_target(); 2080 float new_prob = 0.0f; 2081 if (_exits.at(i).get_prob() > 0.0f) { 2082 new_prob = _exits.at(i).get_prob() / exits_sum; 2083 } 2084 BlockProbPair bpp(et, new_prob); 2085 _exits.at_put(i, bpp); 2086 } 2087 2088 // Save the total, but guard against unreasonable probability, 2089 // as the value is used to estimate the loop trip count. 2090 // An infinite trip count would blur relative block 2091 // frequencies. 2092 if (exits_sum > 1.0f) exits_sum = 1.0; 2093 if (exits_sum < PROB_MIN) exits_sum = PROB_MIN; 2094 _exit_prob = exits_sum; 2095 } 2096 } 2097 2098 //------------------------------succ_prob------------------------------------- 2099 // Determine the probability of reaching successor 'i' from the receiver block. 2100 float Block::succ_prob(uint i) { 2101 int eidx = end_idx(); 2102 Node *n = get_node(eidx); // Get ending Node 2103 2104 int op = n->Opcode(); 2105 if (n->is_Mach()) { 2106 if (n->is_MachNullCheck()) { 2107 // Can only reach here if called after lcm. The original Op_If is gone, 2108 // so we attempt to infer the probability from one or both of the 2109 // successor blocks. 2110 assert(_num_succs == 2, "expecting 2 successors of a null check"); 2111 // If either successor has only one predecessor, then the 2112 // probability estimate can be derived using the 2113 // relative frequency of the successor and this block. 2114 if (_succs[i]->num_preds() == 2) { 2115 return _succs[i]->_freq / _freq; 2116 } else if (_succs[1-i]->num_preds() == 2) { 2117 return 1 - (_succs[1-i]->_freq / _freq); 2118 } else { 2119 // Estimate using both successor frequencies 2120 float freq = _succs[i]->_freq; 2121 return freq / (freq + _succs[1-i]->_freq); 2122 } 2123 } 2124 op = n->as_Mach()->ideal_Opcode(); 2125 } 2126 2127 2128 // Switch on branch type 2129 switch( op ) { 2130 case Op_CountedLoopEnd: 2131 case Op_If: { 2132 assert (i < 2, "just checking"); 2133 // Conditionals pass on only part of their frequency 2134 float prob = n->as_MachIf()->_prob; 2135 assert(prob >= 0.0 && prob <= 1.0, "out of range probability"); 2136 // If succ[i] is the FALSE branch, invert path info 2137 if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) { 2138 return 1.0f - prob; // not taken 2139 } else { 2140 return prob; // taken 2141 } 2142 } 2143 2144 case Op_Jump: 2145 return n->as_MachJump()->_probs[get_node(i + eidx + 1)->as_JumpProj()->_con]; 2146 2147 case Op_Catch: { 2148 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj(); 2149 if (ci->_con == CatchProjNode::fall_through_index) { 2150 // Fall-thru path gets the lion's share. 2151 return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs; 2152 } else { 2153 // Presume exceptional paths are equally unlikely 2154 return PROB_UNLIKELY_MAG(5); 2155 } 2156 } 2157 2158 case Op_Root: 2159 case Op_Goto: 2160 // Pass frequency straight thru to target 2161 return 1.0f; 2162 2163 case Op_NeverBranch: 2164 return 0.0f; 2165 2166 case Op_TailCall: 2167 case Op_TailJump: 2168 case Op_ForwardException: 2169 case Op_Return: 2170 case Op_Halt: 2171 case Op_Rethrow: 2172 // Do not push out freq to root block 2173 return 0.0f; 2174 2175 default: 2176 ShouldNotReachHere(); 2177 } 2178 2179 return 0.0f; 2180 } 2181 2182 //------------------------------num_fall_throughs----------------------------- 2183 // Return the number of fall-through candidates for a block 2184 int Block::num_fall_throughs() { 2185 int eidx = end_idx(); 2186 Node *n = get_node(eidx); // Get ending Node 2187 2188 int op = n->Opcode(); 2189 if (n->is_Mach()) { 2190 if (n->is_MachNullCheck()) { 2191 // In theory, either side can fall-thru, for simplicity sake, 2192 // let's say only the false branch can now. 2193 return 1; 2194 } 2195 op = n->as_Mach()->ideal_Opcode(); 2196 } 2197 2198 // Switch on branch type 2199 switch( op ) { 2200 case Op_CountedLoopEnd: 2201 case Op_If: 2202 return 2; 2203 2204 case Op_Root: 2205 case Op_Goto: 2206 return 1; 2207 2208 case Op_Catch: { 2209 for (uint i = 0; i < _num_succs; i++) { 2210 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj(); 2211 if (ci->_con == CatchProjNode::fall_through_index) { 2212 return 1; 2213 } 2214 } 2215 return 0; 2216 } 2217 2218 case Op_Jump: 2219 case Op_NeverBranch: 2220 case Op_TailCall: 2221 case Op_TailJump: 2222 case Op_ForwardException: 2223 case Op_Return: 2224 case Op_Halt: 2225 case Op_Rethrow: 2226 return 0; 2227 2228 default: 2229 ShouldNotReachHere(); 2230 } 2231 2232 return 0; 2233 } 2234 2235 //------------------------------succ_fall_through----------------------------- 2236 // Return true if a specific successor could be fall-through target. 2237 bool Block::succ_fall_through(uint i) { 2238 int eidx = end_idx(); 2239 Node *n = get_node(eidx); // Get ending Node 2240 2241 int op = n->Opcode(); 2242 if (n->is_Mach()) { 2243 if (n->is_MachNullCheck()) { 2244 // In theory, either side can fall-thru, for simplicity sake, 2245 // let's say only the false branch can now. 2246 return get_node(i + eidx + 1)->Opcode() == Op_IfFalse; 2247 } 2248 op = n->as_Mach()->ideal_Opcode(); 2249 } 2250 2251 // Switch on branch type 2252 switch( op ) { 2253 case Op_CountedLoopEnd: 2254 case Op_If: 2255 case Op_Root: 2256 case Op_Goto: 2257 return true; 2258 2259 case Op_Catch: { 2260 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj(); 2261 return ci->_con == CatchProjNode::fall_through_index; 2262 } 2263 2264 case Op_Jump: 2265 case Op_NeverBranch: 2266 case Op_TailCall: 2267 case Op_TailJump: 2268 case Op_ForwardException: 2269 case Op_Return: 2270 case Op_Halt: 2271 case Op_Rethrow: 2272 return false; 2273 2274 default: 2275 ShouldNotReachHere(); 2276 } 2277 2278 return false; 2279 } 2280 2281 //------------------------------update_uncommon_branch------------------------ 2282 // Update the probability of a two-branch to be uncommon 2283 void Block::update_uncommon_branch(Block* ub) { 2284 int eidx = end_idx(); 2285 Node *n = get_node(eidx); // Get ending Node 2286 2287 int op = n->as_Mach()->ideal_Opcode(); 2288 2289 assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If"); 2290 assert(num_fall_throughs() == 2, "must be a two way branch block"); 2291 2292 // Which successor is ub? 2293 uint s; 2294 for (s = 0; s <_num_succs; s++) { 2295 if (_succs[s] == ub) break; 2296 } 2297 assert(s < 2, "uncommon successor must be found"); 2298 2299 // If ub is the true path, make the proability small, else 2300 // ub is the false path, and make the probability large 2301 bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse); 2302 2303 // Get existing probability 2304 float p = n->as_MachIf()->_prob; 2305 2306 if (invert) p = 1.0 - p; 2307 if (p > PROB_MIN) { 2308 p = PROB_MIN; 2309 } 2310 if (invert) p = 1.0 - p; 2311 2312 n->as_MachIf()->_prob = p; 2313 } 2314 2315 //------------------------------update_succ_freq------------------------------- 2316 // Update the appropriate frequency associated with block 'b', a successor of 2317 // a block in this loop. 2318 void CFGLoop::update_succ_freq(Block* b, double freq) { 2319 if (b->_loop == this) { 2320 if (b == head()) { 2321 // back branch within the loop 2322 // Do nothing now, the loop carried frequency will be 2323 // adjust later in scale_freq(). 2324 } else { 2325 // simple branch within the loop 2326 b->_freq += freq; 2327 } 2328 } else if (!in_loop_nest(b)) { 2329 // branch is exit from this loop 2330 BlockProbPair bpp(b, freq); 2331 _exits.append(bpp); 2332 } else { 2333 // branch into nested loop 2334 CFGLoop* ch = b->_loop; 2335 ch->_freq += freq; 2336 } 2337 } 2338 2339 //------------------------------in_loop_nest----------------------------------- 2340 // Determine if block b is in the receiver's loop nest. 2341 bool CFGLoop::in_loop_nest(Block* b) { 2342 int depth = _depth; 2343 CFGLoop* b_loop = b->_loop; 2344 int b_depth = b_loop->_depth; 2345 if (depth == b_depth) { 2346 return true; 2347 } 2348 while (b_depth > depth) { 2349 b_loop = b_loop->_parent; 2350 b_depth = b_loop->_depth; 2351 } 2352 return b_loop == this; 2353 } 2354 2355 //------------------------------scale_freq------------------------------------- 2356 // Scale frequency of loops and blocks by trip counts from outer loops 2357 // Do a top down traversal of loop tree (visit outer loops first.) 2358 void CFGLoop::scale_freq() { 2359 double loop_freq = _freq * trip_count(); 2360 _freq = loop_freq; 2361 for (int i = 0; i < _members.length(); i++) { 2362 CFGElement* s = _members.at(i); 2363 double block_freq = s->_freq * loop_freq; 2364 if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY) 2365 block_freq = MIN_BLOCK_FREQUENCY; 2366 s->_freq = block_freq; 2367 } 2368 CFGLoop* ch = _child; 2369 while (ch != nullptr) { 2370 ch->scale_freq(); 2371 ch = ch->_sibling; 2372 } 2373 } 2374 2375 // Frequency of outer loop 2376 double CFGLoop::outer_loop_freq() const { 2377 if (_child != nullptr) { 2378 return _child->_freq; 2379 } 2380 return _freq; 2381 } 2382 2383 #ifndef PRODUCT 2384 //------------------------------dump_tree-------------------------------------- 2385 void CFGLoop::dump_tree() const { 2386 dump(); 2387 if (_child != nullptr) _child->dump_tree(); 2388 if (_sibling != nullptr) _sibling->dump_tree(); 2389 } 2390 2391 //------------------------------dump------------------------------------------- 2392 void CFGLoop::dump() const { 2393 for (int i = 0; i < _depth; i++) tty->print(" "); 2394 tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n", 2395 _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq); 2396 for (int i = 0; i < _depth; i++) tty->print(" "); 2397 tty->print(" members:"); 2398 int k = 0; 2399 for (int i = 0; i < _members.length(); i++) { 2400 if (k++ >= 6) { 2401 tty->print("\n "); 2402 for (int j = 0; j < _depth+1; j++) tty->print(" "); 2403 k = 0; 2404 } 2405 CFGElement *s = _members.at(i); 2406 if (s->is_block()) { 2407 Block *b = s->as_Block(); 2408 tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq); 2409 } else { 2410 CFGLoop* lp = s->as_CFGLoop(); 2411 tty->print(" L%d(%6.3f)", lp->_id, lp->_freq); 2412 } 2413 } 2414 tty->print("\n"); 2415 for (int i = 0; i < _depth; i++) tty->print(" "); 2416 tty->print(" exits: "); 2417 k = 0; 2418 for (int i = 0; i < _exits.length(); i++) { 2419 if (k++ >= 7) { 2420 tty->print("\n "); 2421 for (int j = 0; j < _depth+1; j++) tty->print(" "); 2422 k = 0; 2423 } 2424 Block *blk = _exits.at(i).get_target(); 2425 double prob = _exits.at(i).get_prob(); 2426 tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100)); 2427 } 2428 tty->print("\n"); 2429 } 2430 #endif