1 /* 2 * Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/ciInlineKlass.hpp" 28 #include "ci/ciUtilities.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "ci/ciObjArray.hpp" 31 #include "asm/register.hpp" 32 #include "compiler/compileLog.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/c2/barrierSetC2.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/castnode.hpp" 39 #include "opto/convertnode.hpp" 40 #include "opto/graphKit.hpp" 41 #include "opto/idealKit.hpp" 42 #include "opto/inlinetypenode.hpp" 43 #include "opto/intrinsicnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/opaquenode.hpp" 48 #include "opto/parse.hpp" 49 #include "opto/rootnode.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subtypenode.hpp" 52 #include "runtime/deoptimization.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "utilities/bitMap.inline.hpp" 55 #include "utilities/powerOfTwo.hpp" 56 #include "utilities/growableArray.hpp" 57 58 //----------------------------GraphKit----------------------------------------- 59 // Main utility constructor. 60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn) 61 : Phase(Phase::Parser), 62 _env(C->env()), 63 _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()), 64 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 65 { 66 assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled"); 67 _exceptions = jvms->map()->next_exception(); 68 if (_exceptions != nullptr) jvms->map()->set_next_exception(nullptr); 69 set_jvms(jvms); 70 #ifdef ASSERT 71 if (_gvn.is_IterGVN() != nullptr) { 72 assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used"); 73 // Save the initial size of _for_igvn worklist for verification (see ~GraphKit) 74 _worklist_size = _gvn.C->igvn_worklist()->size(); 75 } 76 #endif 77 } 78 79 // Private constructor for parser. 80 GraphKit::GraphKit() 81 : Phase(Phase::Parser), 82 _env(C->env()), 83 _gvn(*C->initial_gvn()), 84 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2()) 85 { 86 _exceptions = nullptr; 87 set_map(nullptr); 88 debug_only(_sp = -99); 89 debug_only(set_bci(-99)); 90 } 91 92 93 94 //---------------------------clean_stack--------------------------------------- 95 // Clear away rubbish from the stack area of the JVM state. 96 // This destroys any arguments that may be waiting on the stack. 97 void GraphKit::clean_stack(int from_sp) { 98 SafePointNode* map = this->map(); 99 JVMState* jvms = this->jvms(); 100 int stk_size = jvms->stk_size(); 101 int stkoff = jvms->stkoff(); 102 Node* top = this->top(); 103 for (int i = from_sp; i < stk_size; i++) { 104 if (map->in(stkoff + i) != top) { 105 map->set_req(stkoff + i, top); 106 } 107 } 108 } 109 110 111 //--------------------------------sync_jvms----------------------------------- 112 // Make sure our current jvms agrees with our parse state. 113 JVMState* GraphKit::sync_jvms() const { 114 JVMState* jvms = this->jvms(); 115 jvms->set_bci(bci()); // Record the new bci in the JVMState 116 jvms->set_sp(sp()); // Record the new sp in the JVMState 117 assert(jvms_in_sync(), "jvms is now in sync"); 118 return jvms; 119 } 120 121 //--------------------------------sync_jvms_for_reexecute--------------------- 122 // Make sure our current jvms agrees with our parse state. This version 123 // uses the reexecute_sp for reexecuting bytecodes. 124 JVMState* GraphKit::sync_jvms_for_reexecute() { 125 JVMState* jvms = this->jvms(); 126 jvms->set_bci(bci()); // Record the new bci in the JVMState 127 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 128 return jvms; 129 } 130 131 #ifdef ASSERT 132 bool GraphKit::jvms_in_sync() const { 133 Parse* parse = is_Parse(); 134 if (parse == nullptr) { 135 if (bci() != jvms()->bci()) return false; 136 if (sp() != (int)jvms()->sp()) return false; 137 return true; 138 } 139 if (jvms()->method() != parse->method()) return false; 140 if (jvms()->bci() != parse->bci()) return false; 141 int jvms_sp = jvms()->sp(); 142 if (jvms_sp != parse->sp()) return false; 143 int jvms_depth = jvms()->depth(); 144 if (jvms_depth != parse->depth()) return false; 145 return true; 146 } 147 148 // Local helper checks for special internal merge points 149 // used to accumulate and merge exception states. 150 // They are marked by the region's in(0) edge being the map itself. 151 // Such merge points must never "escape" into the parser at large, 152 // until they have been handed to gvn.transform. 153 static bool is_hidden_merge(Node* reg) { 154 if (reg == nullptr) return false; 155 if (reg->is_Phi()) { 156 reg = reg->in(0); 157 if (reg == nullptr) return false; 158 } 159 return reg->is_Region() && reg->in(0) != nullptr && reg->in(0)->is_Root(); 160 } 161 162 void GraphKit::verify_map() const { 163 if (map() == nullptr) return; // null map is OK 164 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 165 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 166 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 167 } 168 169 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 170 assert(ex_map->next_exception() == nullptr, "not already part of a chain"); 171 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 172 } 173 #endif 174 175 //---------------------------stop_and_kill_map--------------------------------- 176 // Set _map to null, signalling a stop to further bytecode execution. 177 // First smash the current map's control to a constant, to mark it dead. 178 void GraphKit::stop_and_kill_map() { 179 SafePointNode* dead_map = stop(); 180 if (dead_map != nullptr) { 181 dead_map->disconnect_inputs(C); // Mark the map as killed. 182 assert(dead_map->is_killed(), "must be so marked"); 183 } 184 } 185 186 187 //--------------------------------stopped-------------------------------------- 188 // Tell if _map is null, or control is top. 189 bool GraphKit::stopped() { 190 if (map() == nullptr) return true; 191 else if (control() == top()) return true; 192 else return false; 193 } 194 195 196 //-----------------------------has_exception_handler---------------------------------- 197 // Tell if this method or any caller method has exception handlers. 198 bool GraphKit::has_exception_handler() { 199 for (JVMState* jvmsp = jvms(); jvmsp != nullptr; jvmsp = jvmsp->caller()) { 200 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 201 return true; 202 } 203 } 204 return false; 205 } 206 207 //------------------------------save_ex_oop------------------------------------ 208 // Save an exception without blowing stack contents or other JVM state. 209 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 210 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 211 ex_map->add_req(ex_oop); 212 debug_only(verify_exception_state(ex_map)); 213 } 214 215 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 216 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 217 Node* ex_oop = ex_map->in(ex_map->req()-1); 218 if (clear_it) ex_map->del_req(ex_map->req()-1); 219 return ex_oop; 220 } 221 222 //-----------------------------saved_ex_oop------------------------------------ 223 // Recover a saved exception from its map. 224 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 225 return common_saved_ex_oop(ex_map, false); 226 } 227 228 //--------------------------clear_saved_ex_oop--------------------------------- 229 // Erase a previously saved exception from its map. 230 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 231 return common_saved_ex_oop(ex_map, true); 232 } 233 234 #ifdef ASSERT 235 //---------------------------has_saved_ex_oop---------------------------------- 236 // Erase a previously saved exception from its map. 237 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 238 return ex_map->req() == ex_map->jvms()->endoff()+1; 239 } 240 #endif 241 242 //-------------------------make_exception_state-------------------------------- 243 // Turn the current JVM state into an exception state, appending the ex_oop. 244 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 245 sync_jvms(); 246 SafePointNode* ex_map = stop(); // do not manipulate this map any more 247 set_saved_ex_oop(ex_map, ex_oop); 248 return ex_map; 249 } 250 251 252 //--------------------------add_exception_state-------------------------------- 253 // Add an exception to my list of exceptions. 254 void GraphKit::add_exception_state(SafePointNode* ex_map) { 255 if (ex_map == nullptr || ex_map->control() == top()) { 256 return; 257 } 258 #ifdef ASSERT 259 verify_exception_state(ex_map); 260 if (has_exceptions()) { 261 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 262 } 263 #endif 264 265 // If there is already an exception of exactly this type, merge with it. 266 // In particular, null-checks and other low-level exceptions common up here. 267 Node* ex_oop = saved_ex_oop(ex_map); 268 const Type* ex_type = _gvn.type(ex_oop); 269 if (ex_oop == top()) { 270 // No action needed. 271 return; 272 } 273 assert(ex_type->isa_instptr(), "exception must be an instance"); 274 for (SafePointNode* e2 = _exceptions; e2 != nullptr; e2 = e2->next_exception()) { 275 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 276 // We check sp also because call bytecodes can generate exceptions 277 // both before and after arguments are popped! 278 if (ex_type2 == ex_type 279 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 280 combine_exception_states(ex_map, e2); 281 return; 282 } 283 } 284 285 // No pre-existing exception of the same type. Chain it on the list. 286 push_exception_state(ex_map); 287 } 288 289 //-----------------------add_exception_states_from----------------------------- 290 void GraphKit::add_exception_states_from(JVMState* jvms) { 291 SafePointNode* ex_map = jvms->map()->next_exception(); 292 if (ex_map != nullptr) { 293 jvms->map()->set_next_exception(nullptr); 294 for (SafePointNode* next_map; ex_map != nullptr; ex_map = next_map) { 295 next_map = ex_map->next_exception(); 296 ex_map->set_next_exception(nullptr); 297 add_exception_state(ex_map); 298 } 299 } 300 } 301 302 //-----------------------transfer_exceptions_into_jvms------------------------- 303 JVMState* GraphKit::transfer_exceptions_into_jvms() { 304 if (map() == nullptr) { 305 // We need a JVMS to carry the exceptions, but the map has gone away. 306 // Create a scratch JVMS, cloned from any of the exception states... 307 if (has_exceptions()) { 308 _map = _exceptions; 309 _map = clone_map(); 310 _map->set_next_exception(nullptr); 311 clear_saved_ex_oop(_map); 312 debug_only(verify_map()); 313 } else { 314 // ...or created from scratch 315 JVMState* jvms = new (C) JVMState(_method, nullptr); 316 jvms->set_bci(_bci); 317 jvms->set_sp(_sp); 318 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 319 set_jvms(jvms); 320 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 321 set_all_memory(top()); 322 while (map()->req() < jvms->endoff()) map()->add_req(top()); 323 } 324 // (This is a kludge, in case you didn't notice.) 325 set_control(top()); 326 } 327 JVMState* jvms = sync_jvms(); 328 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 329 jvms->map()->set_next_exception(_exceptions); 330 _exceptions = nullptr; // done with this set of exceptions 331 return jvms; 332 } 333 334 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 335 assert(is_hidden_merge(dstphi), "must be a special merge node"); 336 assert(is_hidden_merge(srcphi), "must be a special merge node"); 337 uint limit = srcphi->req(); 338 for (uint i = PhiNode::Input; i < limit; i++) { 339 dstphi->add_req(srcphi->in(i)); 340 } 341 } 342 static inline void add_one_req(Node* dstphi, Node* src) { 343 assert(is_hidden_merge(dstphi), "must be a special merge node"); 344 assert(!is_hidden_merge(src), "must not be a special merge node"); 345 dstphi->add_req(src); 346 } 347 348 //-----------------------combine_exception_states------------------------------ 349 // This helper function combines exception states by building phis on a 350 // specially marked state-merging region. These regions and phis are 351 // untransformed, and can build up gradually. The region is marked by 352 // having a control input of its exception map, rather than null. Such 353 // regions do not appear except in this function, and in use_exception_state. 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 355 if (failing_internal()) { 356 return; // dying anyway... 357 } 358 JVMState* ex_jvms = ex_map->_jvms; 359 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 360 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 361 assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 362 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 363 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 364 assert(ex_map->req() == phi_map->req(), "matching maps"); 365 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 366 Node* hidden_merge_mark = root(); 367 Node* region = phi_map->control(); 368 MergeMemNode* phi_mem = phi_map->merged_memory(); 369 MergeMemNode* ex_mem = ex_map->merged_memory(); 370 if (region->in(0) != hidden_merge_mark) { 371 // The control input is not (yet) a specially-marked region in phi_map. 372 // Make it so, and build some phis. 373 region = new RegionNode(2); 374 _gvn.set_type(region, Type::CONTROL); 375 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 376 region->init_req(1, phi_map->control()); 377 phi_map->set_control(region); 378 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 379 record_for_igvn(io_phi); 380 _gvn.set_type(io_phi, Type::ABIO); 381 phi_map->set_i_o(io_phi); 382 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 383 Node* m = mms.memory(); 384 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 385 record_for_igvn(m_phi); 386 _gvn.set_type(m_phi, Type::MEMORY); 387 mms.set_memory(m_phi); 388 } 389 } 390 391 // Either or both of phi_map and ex_map might already be converted into phis. 392 Node* ex_control = ex_map->control(); 393 // if there is special marking on ex_map also, we add multiple edges from src 394 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 395 // how wide was the destination phi_map, originally? 396 uint orig_width = region->req(); 397 398 if (add_multiple) { 399 add_n_reqs(region, ex_control); 400 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 401 } else { 402 // ex_map has no merges, so we just add single edges everywhere 403 add_one_req(region, ex_control); 404 add_one_req(phi_map->i_o(), ex_map->i_o()); 405 } 406 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 407 if (mms.is_empty()) { 408 // get a copy of the base memory, and patch some inputs into it 409 const TypePtr* adr_type = mms.adr_type(C); 410 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 411 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 412 mms.set_memory(phi); 413 // Prepare to append interesting stuff onto the newly sliced phi: 414 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 415 } 416 // Append stuff from ex_map: 417 if (add_multiple) { 418 add_n_reqs(mms.memory(), mms.memory2()); 419 } else { 420 add_one_req(mms.memory(), mms.memory2()); 421 } 422 } 423 uint limit = ex_map->req(); 424 for (uint i = TypeFunc::Parms; i < limit; i++) { 425 // Skip everything in the JVMS after tos. (The ex_oop follows.) 426 if (i == tos) i = ex_jvms->monoff(); 427 Node* src = ex_map->in(i); 428 Node* dst = phi_map->in(i); 429 if (src != dst) { 430 PhiNode* phi; 431 if (dst->in(0) != region) { 432 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 433 record_for_igvn(phi); 434 _gvn.set_type(phi, phi->type()); 435 phi_map->set_req(i, dst); 436 // Prepare to append interesting stuff onto the new phi: 437 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 438 } else { 439 assert(dst->is_Phi(), "nobody else uses a hidden region"); 440 phi = dst->as_Phi(); 441 } 442 if (add_multiple && src->in(0) == ex_control) { 443 // Both are phis. 444 add_n_reqs(dst, src); 445 } else { 446 while (dst->req() < region->req()) add_one_req(dst, src); 447 } 448 const Type* srctype = _gvn.type(src); 449 if (phi->type() != srctype) { 450 const Type* dsttype = phi->type()->meet_speculative(srctype); 451 if (phi->type() != dsttype) { 452 phi->set_type(dsttype); 453 _gvn.set_type(phi, dsttype); 454 } 455 } 456 } 457 } 458 phi_map->merge_replaced_nodes_with(ex_map); 459 } 460 461 //--------------------------use_exception_state-------------------------------- 462 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 463 if (failing_internal()) { stop(); return top(); } 464 Node* region = phi_map->control(); 465 Node* hidden_merge_mark = root(); 466 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 467 Node* ex_oop = clear_saved_ex_oop(phi_map); 468 if (region->in(0) == hidden_merge_mark) { 469 // Special marking for internal ex-states. Process the phis now. 470 region->set_req(0, region); // now it's an ordinary region 471 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 472 // Note: Setting the jvms also sets the bci and sp. 473 set_control(_gvn.transform(region)); 474 uint tos = jvms()->stkoff() + sp(); 475 for (uint i = 1; i < tos; i++) { 476 Node* x = phi_map->in(i); 477 if (x->in(0) == region) { 478 assert(x->is_Phi(), "expected a special phi"); 479 phi_map->set_req(i, _gvn.transform(x)); 480 } 481 } 482 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 483 Node* x = mms.memory(); 484 if (x->in(0) == region) { 485 assert(x->is_Phi(), "nobody else uses a hidden region"); 486 mms.set_memory(_gvn.transform(x)); 487 } 488 } 489 if (ex_oop->in(0) == region) { 490 assert(ex_oop->is_Phi(), "expected a special phi"); 491 ex_oop = _gvn.transform(ex_oop); 492 } 493 } else { 494 set_jvms(phi_map->jvms()); 495 } 496 497 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 498 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 499 return ex_oop; 500 } 501 502 //---------------------------------java_bc------------------------------------- 503 Bytecodes::Code GraphKit::java_bc() const { 504 ciMethod* method = this->method(); 505 int bci = this->bci(); 506 if (method != nullptr && bci != InvocationEntryBci) 507 return method->java_code_at_bci(bci); 508 else 509 return Bytecodes::_illegal; 510 } 511 512 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 513 bool must_throw) { 514 // if the exception capability is set, then we will generate code 515 // to check the JavaThread.should_post_on_exceptions flag to see 516 // if we actually need to report exception events (for this 517 // thread). If we don't need to report exception events, we will 518 // take the normal fast path provided by add_exception_events. If 519 // exception event reporting is enabled for this thread, we will 520 // take the uncommon_trap in the BuildCutout below. 521 522 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 523 Node* jthread = _gvn.transform(new ThreadLocalNode()); 524 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 525 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 526 527 // Test the should_post_on_exceptions_flag vs. 0 528 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 529 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 530 531 // Branch to slow_path if should_post_on_exceptions_flag was true 532 { BuildCutout unless(this, tst, PROB_MAX); 533 // Do not try anything fancy if we're notifying the VM on every throw. 534 // Cf. case Bytecodes::_athrow in parse2.cpp. 535 uncommon_trap(reason, Deoptimization::Action_none, 536 (ciKlass*)nullptr, (char*)nullptr, must_throw); 537 } 538 539 } 540 541 //------------------------------builtin_throw---------------------------------- 542 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason) { 543 bool must_throw = true; 544 545 // If this particular condition has not yet happened at this 546 // bytecode, then use the uncommon trap mechanism, and allow for 547 // a future recompilation if several traps occur here. 548 // If the throw is hot, try to use a more complicated inline mechanism 549 // which keeps execution inside the compiled code. 550 bool treat_throw_as_hot = false; 551 ciMethodData* md = method()->method_data(); 552 553 if (ProfileTraps) { 554 if (too_many_traps(reason)) { 555 treat_throw_as_hot = true; 556 } 557 // (If there is no MDO at all, assume it is early in 558 // execution, and that any deopts are part of the 559 // startup transient, and don't need to be remembered.) 560 561 // Also, if there is a local exception handler, treat all throws 562 // as hot if there has been at least one in this method. 563 if (C->trap_count(reason) != 0 564 && method()->method_data()->trap_count(reason) != 0 565 && has_exception_handler()) { 566 treat_throw_as_hot = true; 567 } 568 } 569 570 // If this throw happens frequently, an uncommon trap might cause 571 // a performance pothole. If there is a local exception handler, 572 // and if this particular bytecode appears to be deoptimizing often, 573 // let us handle the throw inline, with a preconstructed instance. 574 // Note: If the deopt count has blown up, the uncommon trap 575 // runtime is going to flush this nmethod, not matter what. 576 if (treat_throw_as_hot && method()->can_omit_stack_trace()) { 577 // If the throw is local, we use a pre-existing instance and 578 // punt on the backtrace. This would lead to a missing backtrace 579 // (a repeat of 4292742) if the backtrace object is ever asked 580 // for its backtrace. 581 // Fixing this remaining case of 4292742 requires some flavor of 582 // escape analysis. Leave that for the future. 583 ciInstance* ex_obj = nullptr; 584 switch (reason) { 585 case Deoptimization::Reason_null_check: 586 ex_obj = env()->NullPointerException_instance(); 587 break; 588 case Deoptimization::Reason_div0_check: 589 ex_obj = env()->ArithmeticException_instance(); 590 break; 591 case Deoptimization::Reason_range_check: 592 ex_obj = env()->ArrayIndexOutOfBoundsException_instance(); 593 break; 594 case Deoptimization::Reason_class_check: 595 ex_obj = env()->ClassCastException_instance(); 596 break; 597 case Deoptimization::Reason_array_check: 598 ex_obj = env()->ArrayStoreException_instance(); 599 break; 600 default: 601 break; 602 } 603 if (failing()) { stop(); return; } // exception allocation might fail 604 if (ex_obj != nullptr) { 605 if (env()->jvmti_can_post_on_exceptions()) { 606 // check if we must post exception events, take uncommon trap if so 607 uncommon_trap_if_should_post_on_exceptions(reason, must_throw); 608 // here if should_post_on_exceptions is false 609 // continue on with the normal codegen 610 } 611 612 // Cheat with a preallocated exception object. 613 if (C->log() != nullptr) 614 C->log()->elem("hot_throw preallocated='1' reason='%s'", 615 Deoptimization::trap_reason_name(reason)); 616 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 617 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 618 619 // Clear the detail message of the preallocated exception object. 620 // Weblogic sometimes mutates the detail message of exceptions 621 // using reflection. 622 int offset = java_lang_Throwable::get_detailMessage_offset(); 623 const TypePtr* adr_typ = ex_con->add_offset(offset); 624 625 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 626 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 627 Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP); 628 629 if (!method()->has_exception_handlers()) { 630 // We don't need to preserve the stack if there's no handler as the entire frame is going to be popped anyway. 631 // This prevents issues with exception handling and late inlining. 632 set_sp(0); 633 clean_stack(0); 634 } 635 636 add_exception_state(make_exception_state(ex_node)); 637 return; 638 } 639 } 640 641 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 642 // It won't be much cheaper than bailing to the interp., since we'll 643 // have to pass up all the debug-info, and the runtime will have to 644 // create the stack trace. 645 646 // Usual case: Bail to interpreter. 647 // Reserve the right to recompile if we haven't seen anything yet. 648 649 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : nullptr; 650 Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile; 651 if (treat_throw_as_hot 652 && (method()->method_data()->trap_recompiled_at(bci(), m) 653 || C->too_many_traps(reason))) { 654 // We cannot afford to take more traps here. Suffer in the interpreter. 655 if (C->log() != nullptr) 656 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 657 Deoptimization::trap_reason_name(reason), 658 C->trap_count(reason)); 659 action = Deoptimization::Action_none; 660 } 661 662 // "must_throw" prunes the JVM state to include only the stack, if there 663 // are no local exception handlers. This should cut down on register 664 // allocation time and code size, by drastically reducing the number 665 // of in-edges on the call to the uncommon trap. 666 667 uncommon_trap(reason, action, (ciKlass*)nullptr, (char*)nullptr, must_throw); 668 } 669 670 671 //----------------------------PreserveJVMState--------------------------------- 672 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 673 debug_only(kit->verify_map()); 674 _kit = kit; 675 _map = kit->map(); // preserve the map 676 _sp = kit->sp(); 677 kit->set_map(clone_map ? kit->clone_map() : nullptr); 678 #ifdef ASSERT 679 _bci = kit->bci(); 680 Parse* parser = kit->is_Parse(); 681 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 682 _block = block; 683 #endif 684 } 685 PreserveJVMState::~PreserveJVMState() { 686 GraphKit* kit = _kit; 687 #ifdef ASSERT 688 assert(kit->bci() == _bci, "bci must not shift"); 689 Parse* parser = kit->is_Parse(); 690 int block = (parser == nullptr || parser->block() == nullptr) ? -1 : parser->block()->rpo(); 691 assert(block == _block, "block must not shift"); 692 #endif 693 kit->set_map(_map); 694 kit->set_sp(_sp); 695 } 696 697 698 //-----------------------------BuildCutout------------------------------------- 699 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 700 : PreserveJVMState(kit) 701 { 702 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 703 SafePointNode* outer_map = _map; // preserved map is caller's 704 SafePointNode* inner_map = kit->map(); 705 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 706 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 707 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 708 } 709 BuildCutout::~BuildCutout() { 710 GraphKit* kit = _kit; 711 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 712 } 713 714 //---------------------------PreserveReexecuteState---------------------------- 715 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 716 assert(!kit->stopped(), "must call stopped() before"); 717 _kit = kit; 718 _sp = kit->sp(); 719 _reexecute = kit->jvms()->_reexecute; 720 } 721 PreserveReexecuteState::~PreserveReexecuteState() { 722 if (_kit->stopped()) return; 723 _kit->jvms()->_reexecute = _reexecute; 724 _kit->set_sp(_sp); 725 } 726 727 //------------------------------clone_map-------------------------------------- 728 // Implementation of PreserveJVMState 729 // 730 // Only clone_map(...) here. If this function is only used in the 731 // PreserveJVMState class we may want to get rid of this extra 732 // function eventually and do it all there. 733 734 SafePointNode* GraphKit::clone_map() { 735 if (map() == nullptr) return nullptr; 736 737 // Clone the memory edge first 738 Node* mem = MergeMemNode::make(map()->memory()); 739 gvn().set_type_bottom(mem); 740 741 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 742 JVMState* jvms = this->jvms(); 743 JVMState* clonejvms = jvms->clone_shallow(C); 744 clonemap->set_memory(mem); 745 clonemap->set_jvms(clonejvms); 746 clonejvms->set_map(clonemap); 747 record_for_igvn(clonemap); 748 gvn().set_type_bottom(clonemap); 749 return clonemap; 750 } 751 752 //-----------------------------destruct_map_clone------------------------------ 753 // 754 // Order of destruct is important to increase the likelyhood that memory can be re-used. We need 755 // to destruct/free/delete in the exact opposite order as clone_map(). 756 void GraphKit::destruct_map_clone(SafePointNode* sfp) { 757 if (sfp == nullptr) return; 758 759 Node* mem = sfp->memory(); 760 JVMState* jvms = sfp->jvms(); 761 762 if (jvms != nullptr) { 763 delete jvms; 764 } 765 766 remove_for_igvn(sfp); 767 gvn().clear_type(sfp); 768 sfp->destruct(&_gvn); 769 770 if (mem != nullptr) { 771 gvn().clear_type(mem); 772 mem->destruct(&_gvn); 773 } 774 } 775 776 //-----------------------------set_map_clone----------------------------------- 777 void GraphKit::set_map_clone(SafePointNode* m) { 778 _map = m; 779 _map = clone_map(); 780 _map->set_next_exception(nullptr); 781 debug_only(verify_map()); 782 } 783 784 785 //----------------------------kill_dead_locals--------------------------------- 786 // Detect any locals which are known to be dead, and force them to top. 787 void GraphKit::kill_dead_locals() { 788 // Consult the liveness information for the locals. If any 789 // of them are unused, then they can be replaced by top(). This 790 // should help register allocation time and cut down on the size 791 // of the deoptimization information. 792 793 // This call is made from many of the bytecode handling 794 // subroutines called from the Big Switch in do_one_bytecode. 795 // Every bytecode which might include a slow path is responsible 796 // for killing its dead locals. The more consistent we 797 // are about killing deads, the fewer useless phis will be 798 // constructed for them at various merge points. 799 800 // bci can be -1 (InvocationEntryBci). We return the entry 801 // liveness for the method. 802 803 if (method() == nullptr || method()->code_size() == 0) { 804 // We are building a graph for a call to a native method. 805 // All locals are live. 806 return; 807 } 808 809 ResourceMark rm; 810 811 // Consult the liveness information for the locals. If any 812 // of them are unused, then they can be replaced by top(). This 813 // should help register allocation time and cut down on the size 814 // of the deoptimization information. 815 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 816 817 int len = (int)live_locals.size(); 818 assert(len <= jvms()->loc_size(), "too many live locals"); 819 for (int local = 0; local < len; local++) { 820 if (!live_locals.at(local)) { 821 set_local(local, top()); 822 } 823 } 824 } 825 826 #ifdef ASSERT 827 //-------------------------dead_locals_are_killed------------------------------ 828 // Return true if all dead locals are set to top in the map. 829 // Used to assert "clean" debug info at various points. 830 bool GraphKit::dead_locals_are_killed() { 831 if (method() == nullptr || method()->code_size() == 0) { 832 // No locals need to be dead, so all is as it should be. 833 return true; 834 } 835 836 // Make sure somebody called kill_dead_locals upstream. 837 ResourceMark rm; 838 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 839 if (jvms->loc_size() == 0) continue; // no locals to consult 840 SafePointNode* map = jvms->map(); 841 ciMethod* method = jvms->method(); 842 int bci = jvms->bci(); 843 if (jvms == this->jvms()) { 844 bci = this->bci(); // it might not yet be synched 845 } 846 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 847 int len = (int)live_locals.size(); 848 if (!live_locals.is_valid() || len == 0) 849 // This method is trivial, or is poisoned by a breakpoint. 850 return true; 851 assert(len == jvms->loc_size(), "live map consistent with locals map"); 852 for (int local = 0; local < len; local++) { 853 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 854 if (PrintMiscellaneous && (Verbose || WizardMode)) { 855 tty->print_cr("Zombie local %d: ", local); 856 jvms->dump(); 857 } 858 return false; 859 } 860 } 861 } 862 return true; 863 } 864 865 #endif //ASSERT 866 867 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens. 868 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 869 ciMethod* cur_method = jvms->method(); 870 int cur_bci = jvms->bci(); 871 if (cur_method != nullptr && cur_bci != InvocationEntryBci) { 872 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 873 return Interpreter::bytecode_should_reexecute(code) || 874 (is_anewarray && (code == Bytecodes::_multianewarray)); 875 // Reexecute _multianewarray bytecode which was replaced with 876 // sequence of [a]newarray. See Parse::do_multianewarray(). 877 // 878 // Note: interpreter should not have it set since this optimization 879 // is limited by dimensions and guarded by flag so in some cases 880 // multianewarray() runtime calls will be generated and 881 // the bytecode should not be reexecutes (stack will not be reset). 882 } else { 883 return false; 884 } 885 } 886 887 // Helper function for adding JVMState and debug information to node 888 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 889 // Add the safepoint edges to the call (or other safepoint). 890 891 // Make sure dead locals are set to top. This 892 // should help register allocation time and cut down on the size 893 // of the deoptimization information. 894 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 895 896 // Walk the inline list to fill in the correct set of JVMState's 897 // Also fill in the associated edges for each JVMState. 898 899 // If the bytecode needs to be reexecuted we need to put 900 // the arguments back on the stack. 901 const bool should_reexecute = jvms()->should_reexecute(); 902 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 903 904 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 905 // undefined if the bci is different. This is normal for Parse but it 906 // should not happen for LibraryCallKit because only one bci is processed. 907 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 908 "in LibraryCallKit the reexecute bit should not change"); 909 910 // If we are guaranteed to throw, we can prune everything but the 911 // input to the current bytecode. 912 bool can_prune_locals = false; 913 uint stack_slots_not_pruned = 0; 914 int inputs = 0, depth = 0; 915 if (must_throw) { 916 assert(method() == youngest_jvms->method(), "sanity"); 917 if (compute_stack_effects(inputs, depth)) { 918 can_prune_locals = true; 919 stack_slots_not_pruned = inputs; 920 } 921 } 922 923 if (env()->should_retain_local_variables()) { 924 // At any safepoint, this method can get breakpointed, which would 925 // then require an immediate deoptimization. 926 can_prune_locals = false; // do not prune locals 927 stack_slots_not_pruned = 0; 928 } 929 930 // do not scribble on the input jvms 931 JVMState* out_jvms = youngest_jvms->clone_deep(C); 932 call->set_jvms(out_jvms); // Start jvms list for call node 933 934 // For a known set of bytecodes, the interpreter should reexecute them if 935 // deoptimization happens. We set the reexecute state for them here 936 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 937 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 938 #ifdef ASSERT 939 int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects() 940 assert(method() == youngest_jvms->method(), "sanity"); 941 assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc())); 942 assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution"); 943 #endif // ASSERT 944 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 945 } 946 947 // Presize the call: 948 DEBUG_ONLY(uint non_debug_edges = call->req()); 949 call->add_req_batch(top(), youngest_jvms->debug_depth()); 950 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 951 952 // Set up edges so that the call looks like this: 953 // Call [state:] ctl io mem fptr retadr 954 // [parms:] parm0 ... parmN 955 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 956 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 957 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 958 // Note that caller debug info precedes callee debug info. 959 960 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 961 uint debug_ptr = call->req(); 962 963 // Loop over the map input edges associated with jvms, add them 964 // to the call node, & reset all offsets to match call node array. 965 966 JVMState* callee_jvms = nullptr; 967 for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) { 968 uint debug_end = debug_ptr; 969 uint debug_start = debug_ptr - in_jvms->debug_size(); 970 debug_ptr = debug_start; // back up the ptr 971 972 uint p = debug_start; // walks forward in [debug_start, debug_end) 973 uint j, k, l; 974 SafePointNode* in_map = in_jvms->map(); 975 out_jvms->set_map(call); 976 977 if (can_prune_locals) { 978 assert(in_jvms->method() == out_jvms->method(), "sanity"); 979 // If the current throw can reach an exception handler in this JVMS, 980 // then we must keep everything live that can reach that handler. 981 // As a quick and dirty approximation, we look for any handlers at all. 982 if (in_jvms->method()->has_exception_handlers()) { 983 can_prune_locals = false; 984 } 985 } 986 987 // Add the Locals 988 k = in_jvms->locoff(); 989 l = in_jvms->loc_size(); 990 out_jvms->set_locoff(p); 991 if (!can_prune_locals) { 992 for (j = 0; j < l; j++) { 993 Node* val = in_map->in(k + j); 994 // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state 995 if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() && 996 callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) && 997 val->bottom_type()->is_inlinetypeptr()) { 998 val = callee_jvms->map()->local(callee_jvms, 0); // Receiver 999 } 1000 call->set_req(p++, val); 1001 } 1002 } else { 1003 p += l; // already set to top above by add_req_batch 1004 } 1005 1006 // Add the Expression Stack 1007 k = in_jvms->stkoff(); 1008 l = in_jvms->sp(); 1009 out_jvms->set_stkoff(p); 1010 if (!can_prune_locals) { 1011 for (j = 0; j < l; j++) { 1012 Node* val = in_map->in(k + j); 1013 // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state 1014 if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() && 1015 callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) && 1016 val->bottom_type()->is_inlinetypeptr()) { 1017 val = callee_jvms->map()->local(callee_jvms, 0); // Receiver 1018 } 1019 call->set_req(p++, val); 1020 } 1021 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 1022 // Divide stack into {S0,...,S1}, where S0 is set to top. 1023 uint s1 = stack_slots_not_pruned; 1024 stack_slots_not_pruned = 0; // for next iteration 1025 if (s1 > l) s1 = l; 1026 uint s0 = l - s1; 1027 p += s0; // skip the tops preinstalled by add_req_batch 1028 for (j = s0; j < l; j++) 1029 call->set_req(p++, in_map->in(k+j)); 1030 } else { 1031 p += l; // already set to top above by add_req_batch 1032 } 1033 1034 // Add the Monitors 1035 k = in_jvms->monoff(); 1036 l = in_jvms->mon_size(); 1037 out_jvms->set_monoff(p); 1038 for (j = 0; j < l; j++) 1039 call->set_req(p++, in_map->in(k+j)); 1040 1041 // Copy any scalar object fields. 1042 k = in_jvms->scloff(); 1043 l = in_jvms->scl_size(); 1044 out_jvms->set_scloff(p); 1045 for (j = 0; j < l; j++) 1046 call->set_req(p++, in_map->in(k+j)); 1047 1048 // Finish the new jvms. 1049 out_jvms->set_endoff(p); 1050 1051 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 1052 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 1053 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 1054 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 1055 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 1056 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 1057 1058 // Update the two tail pointers in parallel. 1059 callee_jvms = out_jvms; 1060 out_jvms = out_jvms->caller(); 1061 in_jvms = in_jvms->caller(); 1062 } 1063 1064 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 1065 1066 // Test the correctness of JVMState::debug_xxx accessors: 1067 assert(call->jvms()->debug_start() == non_debug_edges, ""); 1068 assert(call->jvms()->debug_end() == call->req(), ""); 1069 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1070 } 1071 1072 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1073 Bytecodes::Code code = java_bc(); 1074 if (code == Bytecodes::_wide) { 1075 code = method()->java_code_at_bci(bci() + 1); 1076 } 1077 1078 if (code != Bytecodes::_illegal) { 1079 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1080 } 1081 1082 auto rsize = [&]() { 1083 assert(code != Bytecodes::_illegal, "code is illegal!"); 1084 BasicType rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1085 return (rtype < T_CONFLICT) ? type2size[rtype] : 0; 1086 }; 1087 1088 switch (code) { 1089 case Bytecodes::_illegal: 1090 return false; 1091 1092 case Bytecodes::_ldc: 1093 case Bytecodes::_ldc_w: 1094 case Bytecodes::_ldc2_w: 1095 inputs = 0; 1096 break; 1097 1098 case Bytecodes::_dup: inputs = 1; break; 1099 case Bytecodes::_dup_x1: inputs = 2; break; 1100 case Bytecodes::_dup_x2: inputs = 3; break; 1101 case Bytecodes::_dup2: inputs = 2; break; 1102 case Bytecodes::_dup2_x1: inputs = 3; break; 1103 case Bytecodes::_dup2_x2: inputs = 4; break; 1104 case Bytecodes::_swap: inputs = 2; break; 1105 case Bytecodes::_arraylength: inputs = 1; break; 1106 1107 case Bytecodes::_getstatic: 1108 case Bytecodes::_putstatic: 1109 case Bytecodes::_getfield: 1110 case Bytecodes::_putfield: 1111 { 1112 bool ignored_will_link; 1113 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1114 int size = field->type()->size(); 1115 bool is_get = (depth >= 0), is_static = (depth & 1); 1116 inputs = (is_static ? 0 : 1); 1117 if (is_get) { 1118 depth = size - inputs; 1119 } else { 1120 inputs += size; // putxxx pops the value from the stack 1121 depth = - inputs; 1122 } 1123 } 1124 break; 1125 1126 case Bytecodes::_invokevirtual: 1127 case Bytecodes::_invokespecial: 1128 case Bytecodes::_invokestatic: 1129 case Bytecodes::_invokedynamic: 1130 case Bytecodes::_invokeinterface: 1131 { 1132 bool ignored_will_link; 1133 ciSignature* declared_signature = nullptr; 1134 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1135 assert(declared_signature != nullptr, "cannot be null"); 1136 inputs = declared_signature->arg_size_for_bc(code); 1137 int size = declared_signature->return_type()->size(); 1138 depth = size - inputs; 1139 } 1140 break; 1141 1142 case Bytecodes::_multianewarray: 1143 { 1144 ciBytecodeStream iter(method()); 1145 iter.reset_to_bci(bci()); 1146 iter.next(); 1147 inputs = iter.get_dimensions(); 1148 assert(rsize() == 1, ""); 1149 depth = 1 - inputs; 1150 } 1151 break; 1152 1153 case Bytecodes::_ireturn: 1154 case Bytecodes::_lreturn: 1155 case Bytecodes::_freturn: 1156 case Bytecodes::_dreturn: 1157 case Bytecodes::_areturn: 1158 assert(rsize() == -depth, ""); 1159 inputs = -depth; 1160 break; 1161 1162 case Bytecodes::_jsr: 1163 case Bytecodes::_jsr_w: 1164 inputs = 0; 1165 depth = 1; // S.B. depth=1, not zero 1166 break; 1167 1168 default: 1169 // bytecode produces a typed result 1170 inputs = rsize() - depth; 1171 assert(inputs >= 0, ""); 1172 break; 1173 } 1174 1175 #ifdef ASSERT 1176 // spot check 1177 int outputs = depth + inputs; 1178 assert(outputs >= 0, "sanity"); 1179 switch (code) { 1180 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1181 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1182 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1183 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1184 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1185 default: break; 1186 } 1187 #endif //ASSERT 1188 1189 return true; 1190 } 1191 1192 1193 1194 //------------------------------basic_plus_adr--------------------------------- 1195 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1196 // short-circuit a common case 1197 if (offset == intcon(0)) return ptr; 1198 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1199 } 1200 1201 Node* GraphKit::ConvI2L(Node* offset) { 1202 // short-circuit a common case 1203 jint offset_con = find_int_con(offset, Type::OffsetBot); 1204 if (offset_con != Type::OffsetBot) { 1205 return longcon((jlong) offset_con); 1206 } 1207 return _gvn.transform( new ConvI2LNode(offset)); 1208 } 1209 1210 Node* GraphKit::ConvI2UL(Node* offset) { 1211 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1212 if (offset_con != (juint) Type::OffsetBot) { 1213 return longcon((julong) offset_con); 1214 } 1215 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1216 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1217 return _gvn.transform( new AndLNode(conv, mask) ); 1218 } 1219 1220 Node* GraphKit::ConvL2I(Node* offset) { 1221 // short-circuit a common case 1222 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1223 if (offset_con != (jlong)Type::OffsetBot) { 1224 return intcon((int) offset_con); 1225 } 1226 return _gvn.transform( new ConvL2INode(offset)); 1227 } 1228 1229 //-------------------------load_object_klass----------------------------------- 1230 Node* GraphKit::load_object_klass(Node* obj) { 1231 // Special-case a fresh allocation to avoid building nodes: 1232 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1233 if (akls != nullptr) return akls; 1234 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1235 return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 1236 } 1237 1238 //-------------------------load_array_length----------------------------------- 1239 Node* GraphKit::load_array_length(Node* array) { 1240 // Special-case a fresh allocation to avoid building nodes: 1241 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array); 1242 Node *alen; 1243 if (alloc == nullptr) { 1244 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1245 alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS)); 1246 } else { 1247 alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false); 1248 } 1249 return alen; 1250 } 1251 1252 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc, 1253 const TypeOopPtr* oop_type, 1254 bool replace_length_in_map) { 1255 Node* length = alloc->Ideal_length(); 1256 if (replace_length_in_map == false || map()->find_edge(length) >= 0) { 1257 Node* ccast = alloc->make_ideal_length(oop_type, &_gvn); 1258 if (ccast != length) { 1259 // do not transform ccast here, it might convert to top node for 1260 // negative array length and break assumptions in parsing stage. 1261 _gvn.set_type_bottom(ccast); 1262 record_for_igvn(ccast); 1263 if (replace_length_in_map) { 1264 replace_in_map(length, ccast); 1265 } 1266 return ccast; 1267 } 1268 } 1269 return length; 1270 } 1271 1272 //------------------------------do_null_check---------------------------------- 1273 // Helper function to do a null pointer check. Returned value is 1274 // the incoming address with null casted away. You are allowed to use the 1275 // not-null value only if you are control dependent on the test. 1276 #ifndef PRODUCT 1277 extern uint explicit_null_checks_inserted, 1278 explicit_null_checks_elided; 1279 #endif 1280 Node* GraphKit::null_check_common(Node* value, BasicType type, 1281 // optional arguments for variations: 1282 bool assert_null, 1283 Node* *null_control, 1284 bool speculative, 1285 bool is_init_check) { 1286 assert(!assert_null || null_control == nullptr, "not both at once"); 1287 if (stopped()) return top(); 1288 NOT_PRODUCT(explicit_null_checks_inserted++); 1289 1290 if (value->is_InlineType()) { 1291 // Null checking a scalarized but nullable inline type. Check the IsInit 1292 // input instead of the oop input to avoid keeping buffer allocations alive. 1293 InlineTypeNode* vtptr = value->as_InlineType(); 1294 while (vtptr->get_oop()->is_InlineType()) { 1295 vtptr = vtptr->get_oop()->as_InlineType(); 1296 } 1297 null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true); 1298 if (stopped()) { 1299 return top(); 1300 } 1301 if (assert_null) { 1302 // TODO 8284443 Scalarize here (this currently leads to compilation bailouts) 1303 // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass()); 1304 // replace_in_map(value, vtptr); 1305 // return vtptr; 1306 replace_in_map(value, null()); 1307 return null(); 1308 } 1309 bool do_replace_in_map = (null_control == nullptr || (*null_control) == top()); 1310 return cast_not_null(value, do_replace_in_map); 1311 } 1312 1313 // Construct null check 1314 Node *chk = nullptr; 1315 switch(type) { 1316 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1317 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1318 case T_ARRAY : // fall through 1319 type = T_OBJECT; // simplify further tests 1320 case T_OBJECT : { 1321 const Type *t = _gvn.type( value ); 1322 1323 const TypeOopPtr* tp = t->isa_oopptr(); 1324 if (tp != nullptr && !tp->is_loaded() 1325 // Only for do_null_check, not any of its siblings: 1326 && !assert_null && null_control == nullptr) { 1327 // Usually, any field access or invocation on an unloaded oop type 1328 // will simply fail to link, since the statically linked class is 1329 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1330 // the static class is loaded but the sharper oop type is not. 1331 // Rather than checking for this obscure case in lots of places, 1332 // we simply observe that a null check on an unloaded class 1333 // will always be followed by a nonsense operation, so we 1334 // can just issue the uncommon trap here. 1335 // Our access to the unloaded class will only be correct 1336 // after it has been loaded and initialized, which requires 1337 // a trip through the interpreter. 1338 ciKlass* klass = tp->unloaded_klass(); 1339 #ifndef PRODUCT 1340 if (WizardMode) { tty->print("Null check of unloaded "); klass->print(); tty->cr(); } 1341 #endif 1342 uncommon_trap(Deoptimization::Reason_unloaded, 1343 Deoptimization::Action_reinterpret, 1344 klass, "!loaded"); 1345 return top(); 1346 } 1347 1348 if (assert_null) { 1349 // See if the type is contained in NULL_PTR. 1350 // If so, then the value is already null. 1351 if (t->higher_equal(TypePtr::NULL_PTR)) { 1352 NOT_PRODUCT(explicit_null_checks_elided++); 1353 return value; // Elided null assert quickly! 1354 } 1355 } else { 1356 // See if mixing in the null pointer changes type. 1357 // If so, then the null pointer was not allowed in the original 1358 // type. In other words, "value" was not-null. 1359 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1360 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1361 NOT_PRODUCT(explicit_null_checks_elided++); 1362 return value; // Elided null check quickly! 1363 } 1364 } 1365 chk = new CmpPNode( value, null() ); 1366 break; 1367 } 1368 1369 default: 1370 fatal("unexpected type: %s", type2name(type)); 1371 } 1372 assert(chk != nullptr, "sanity check"); 1373 chk = _gvn.transform(chk); 1374 1375 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1376 BoolNode *btst = new BoolNode( chk, btest); 1377 Node *tst = _gvn.transform( btst ); 1378 1379 //----------- 1380 // if peephole optimizations occurred, a prior test existed. 1381 // If a prior test existed, maybe it dominates as we can avoid this test. 1382 if (tst != btst && type == T_OBJECT) { 1383 // At this point we want to scan up the CFG to see if we can 1384 // find an identical test (and so avoid this test altogether). 1385 Node *cfg = control(); 1386 int depth = 0; 1387 while( depth < 16 ) { // Limit search depth for speed 1388 if( cfg->Opcode() == Op_IfTrue && 1389 cfg->in(0)->in(1) == tst ) { 1390 // Found prior test. Use "cast_not_null" to construct an identical 1391 // CastPP (and hence hash to) as already exists for the prior test. 1392 // Return that casted value. 1393 if (assert_null) { 1394 replace_in_map(value, null()); 1395 return null(); // do not issue the redundant test 1396 } 1397 Node *oldcontrol = control(); 1398 set_control(cfg); 1399 Node *res = cast_not_null(value); 1400 set_control(oldcontrol); 1401 NOT_PRODUCT(explicit_null_checks_elided++); 1402 return res; 1403 } 1404 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1405 if (cfg == nullptr) break; // Quit at region nodes 1406 depth++; 1407 } 1408 } 1409 1410 //----------- 1411 // Branch to failure if null 1412 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1413 Deoptimization::DeoptReason reason; 1414 if (assert_null) { 1415 reason = Deoptimization::reason_null_assert(speculative); 1416 } else if (type == T_OBJECT || is_init_check) { 1417 reason = Deoptimization::reason_null_check(speculative); 1418 } else { 1419 reason = Deoptimization::Reason_div0_check; 1420 } 1421 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1422 // ciMethodData::has_trap_at will return a conservative -1 if any 1423 // must-be-null assertion has failed. This could cause performance 1424 // problems for a method after its first do_null_assert failure. 1425 // Consider using 'Reason_class_check' instead? 1426 1427 // To cause an implicit null check, we set the not-null probability 1428 // to the maximum (PROB_MAX). For an explicit check the probability 1429 // is set to a smaller value. 1430 if (null_control != nullptr || too_many_traps(reason)) { 1431 // probability is less likely 1432 ok_prob = PROB_LIKELY_MAG(3); 1433 } else if (!assert_null && 1434 (ImplicitNullCheckThreshold > 0) && 1435 method() != nullptr && 1436 (method()->method_data()->trap_count(reason) 1437 >= (uint)ImplicitNullCheckThreshold)) { 1438 ok_prob = PROB_LIKELY_MAG(3); 1439 } 1440 1441 if (null_control != nullptr) { 1442 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1443 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1444 set_control( _gvn.transform( new IfTrueNode(iff))); 1445 #ifndef PRODUCT 1446 if (null_true == top()) { 1447 explicit_null_checks_elided++; 1448 } 1449 #endif 1450 (*null_control) = null_true; 1451 } else { 1452 BuildCutout unless(this, tst, ok_prob); 1453 // Check for optimizer eliding test at parse time 1454 if (stopped()) { 1455 // Failure not possible; do not bother making uncommon trap. 1456 NOT_PRODUCT(explicit_null_checks_elided++); 1457 } else if (assert_null) { 1458 uncommon_trap(reason, 1459 Deoptimization::Action_make_not_entrant, 1460 nullptr, "assert_null"); 1461 } else { 1462 replace_in_map(value, zerocon(type)); 1463 builtin_throw(reason); 1464 } 1465 } 1466 1467 // Must throw exception, fall-thru not possible? 1468 if (stopped()) { 1469 return top(); // No result 1470 } 1471 1472 if (assert_null) { 1473 // Cast obj to null on this path. 1474 replace_in_map(value, zerocon(type)); 1475 return zerocon(type); 1476 } 1477 1478 // Cast obj to not-null on this path, if there is no null_control. 1479 // (If there is a null_control, a non-null value may come back to haunt us.) 1480 if (type == T_OBJECT) { 1481 Node* cast = cast_not_null(value, false); 1482 if (null_control == nullptr || (*null_control) == top()) 1483 replace_in_map(value, cast); 1484 value = cast; 1485 } 1486 1487 return value; 1488 } 1489 1490 //------------------------------cast_not_null---------------------------------- 1491 // Cast obj to not-null on this path 1492 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1493 if (obj->is_InlineType()) { 1494 Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map); 1495 vt->as_InlineType()->set_is_init(_gvn); 1496 vt = _gvn.transform(vt); 1497 if (do_replace_in_map) { 1498 replace_in_map(obj, vt); 1499 } 1500 return vt; 1501 } 1502 const Type *t = _gvn.type(obj); 1503 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1504 // Object is already not-null? 1505 if( t == t_not_null ) return obj; 1506 1507 Node* cast = new CastPPNode(control(), obj,t_not_null); 1508 cast = _gvn.transform( cast ); 1509 1510 // Scan for instances of 'obj' in the current JVM mapping. 1511 // These instances are known to be not-null after the test. 1512 if (do_replace_in_map) 1513 replace_in_map(obj, cast); 1514 1515 return cast; // Return casted value 1516 } 1517 1518 // Sometimes in intrinsics, we implicitly know an object is not null 1519 // (there's no actual null check) so we can cast it to not null. In 1520 // the course of optimizations, the input to the cast can become null. 1521 // In that case that data path will die and we need the control path 1522 // to become dead as well to keep the graph consistent. So we have to 1523 // add a check for null for which one branch can't be taken. It uses 1524 // an OpaqueNotNull node that will cause the check to be removed after loop 1525 // opts so the test goes away and the compiled code doesn't execute a 1526 // useless check. 1527 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) { 1528 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) { 1529 return value; 1530 } 1531 Node* chk = _gvn.transform(new CmpPNode(value, null())); 1532 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne)); 1533 Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst)); 1534 IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN); 1535 _gvn.set_type(iff, iff->Value(&_gvn)); 1536 if (!tst->is_Con()) { 1537 record_for_igvn(iff); 1538 } 1539 Node *if_f = _gvn.transform(new IfFalseNode(iff)); 1540 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr)); 1541 Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic")); 1542 C->root()->add_req(halt); 1543 Node *if_t = _gvn.transform(new IfTrueNode(iff)); 1544 set_control(if_t); 1545 return cast_not_null(value, do_replace_in_map); 1546 } 1547 1548 1549 //--------------------------replace_in_map------------------------------------- 1550 void GraphKit::replace_in_map(Node* old, Node* neww) { 1551 if (old == neww) { 1552 return; 1553 } 1554 1555 map()->replace_edge(old, neww); 1556 1557 // Note: This operation potentially replaces any edge 1558 // on the map. This includes locals, stack, and monitors 1559 // of the current (innermost) JVM state. 1560 1561 // don't let inconsistent types from profiling escape this 1562 // method 1563 1564 const Type* told = _gvn.type(old); 1565 const Type* tnew = _gvn.type(neww); 1566 1567 if (!tnew->higher_equal(told)) { 1568 return; 1569 } 1570 1571 map()->record_replaced_node(old, neww); 1572 } 1573 1574 1575 //============================================================================= 1576 //--------------------------------memory--------------------------------------- 1577 Node* GraphKit::memory(uint alias_idx) { 1578 MergeMemNode* mem = merged_memory(); 1579 Node* p = mem->memory_at(alias_idx); 1580 assert(p != mem->empty_memory(), "empty"); 1581 _gvn.set_type(p, Type::MEMORY); // must be mapped 1582 return p; 1583 } 1584 1585 //-----------------------------reset_memory------------------------------------ 1586 Node* GraphKit::reset_memory() { 1587 Node* mem = map()->memory(); 1588 // do not use this node for any more parsing! 1589 debug_only( map()->set_memory((Node*)nullptr) ); 1590 return _gvn.transform( mem ); 1591 } 1592 1593 //------------------------------set_all_memory--------------------------------- 1594 void GraphKit::set_all_memory(Node* newmem) { 1595 Node* mergemem = MergeMemNode::make(newmem); 1596 gvn().set_type_bottom(mergemem); 1597 map()->set_memory(mergemem); 1598 } 1599 1600 //------------------------------set_all_memory_call---------------------------- 1601 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1602 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1603 set_all_memory(newmem); 1604 } 1605 1606 //============================================================================= 1607 // 1608 // parser factory methods for MemNodes 1609 // 1610 // These are layered on top of the factory methods in LoadNode and StoreNode, 1611 // and integrate with the parser's memory state and _gvn engine. 1612 // 1613 1614 // factory methods in "int adr_idx" 1615 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1616 int adr_idx, 1617 MemNode::MemOrd mo, 1618 LoadNode::ControlDependency control_dependency, 1619 bool require_atomic_access, 1620 bool unaligned, 1621 bool mismatched, 1622 bool unsafe, 1623 uint8_t barrier_data) { 1624 // Fix 8344108 and renable the commented assert 1625 //assert(adr_idx == C->get_alias_index(_gvn.type(adr)->isa_ptr()), "slice of address and input slice don't match"); 1626 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1627 const TypePtr* adr_type = nullptr; // debug-mode-only argument 1628 debug_only(adr_type = C->get_adr_type(adr_idx)); 1629 Node* mem = memory(adr_idx); 1630 Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data); 1631 ld = _gvn.transform(ld); 1632 1633 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) { 1634 // Improve graph before escape analysis and boxing elimination. 1635 record_for_igvn(ld); 1636 if (ld->is_DecodeN()) { 1637 // Also record the actual load (LoadN) in case ld is DecodeN. In some 1638 // rare corner cases, ld->in(1) can be something other than LoadN (e.g., 1639 // a Phi). Recording such cases is still perfectly sound, but may be 1640 // unnecessary and result in some minor IGVN overhead. 1641 record_for_igvn(ld->in(1)); 1642 } 1643 } 1644 return ld; 1645 } 1646 1647 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1648 int adr_idx, 1649 MemNode::MemOrd mo, 1650 bool require_atomic_access, 1651 bool unaligned, 1652 bool mismatched, 1653 bool unsafe, 1654 int barrier_data) { 1655 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1656 // Fix 8344108 and renable the commented assert 1657 //assert(adr_idx == C->get_alias_index(_gvn.type(adr)->isa_ptr()), "slice of address and input slice don't match"); 1658 const TypePtr* adr_type = nullptr; 1659 debug_only(adr_type = C->get_adr_type(adr_idx)); 1660 Node *mem = memory(adr_idx); 1661 Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access); 1662 if (unaligned) { 1663 st->as_Store()->set_unaligned_access(); 1664 } 1665 if (mismatched) { 1666 st->as_Store()->set_mismatched_access(); 1667 } 1668 if (unsafe) { 1669 st->as_Store()->set_unsafe_access(); 1670 } 1671 st->as_Store()->set_barrier_data(barrier_data); 1672 st = _gvn.transform(st); 1673 set_memory(st, adr_idx); 1674 // Back-to-back stores can only remove intermediate store with DU info 1675 // so push on worklist for optimizer. 1676 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1677 record_for_igvn(st); 1678 1679 return st; 1680 } 1681 1682 Node* GraphKit::access_store_at(Node* obj, 1683 Node* adr, 1684 const TypePtr* adr_type, 1685 Node* val, 1686 const Type* val_type, 1687 BasicType bt, 1688 DecoratorSet decorators, 1689 bool safe_for_replace) { 1690 // Transformation of a value which could be null pointer (CastPP #null) 1691 // could be delayed during Parse (for example, in adjust_map_after_if()). 1692 // Execute transformation here to avoid barrier generation in such case. 1693 if (_gvn.type(val) == TypePtr::NULL_PTR) { 1694 val = _gvn.makecon(TypePtr::NULL_PTR); 1695 } 1696 1697 if (stopped()) { 1698 return top(); // Dead path ? 1699 } 1700 1701 assert(val != nullptr, "not dead path"); 1702 if (val->is_InlineType()) { 1703 // Store to non-flat field. Buffer the inline type and make sure 1704 // the store is re-executed if the allocation triggers deoptimization. 1705 PreserveReexecuteState preexecs(this); 1706 jvms()->set_should_reexecute(true); 1707 val = val->as_InlineType()->buffer(this, safe_for_replace); 1708 } 1709 1710 C2AccessValuePtr addr(adr, adr_type); 1711 C2AccessValue value(val, val_type); 1712 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr); 1713 if (access.is_raw()) { 1714 return _barrier_set->BarrierSetC2::store_at(access, value); 1715 } else { 1716 return _barrier_set->store_at(access, value); 1717 } 1718 } 1719 1720 Node* GraphKit::access_load_at(Node* obj, // containing obj 1721 Node* adr, // actual address to store val at 1722 const TypePtr* adr_type, 1723 const Type* val_type, 1724 BasicType bt, 1725 DecoratorSet decorators, 1726 Node* ctl) { 1727 if (stopped()) { 1728 return top(); // Dead path ? 1729 } 1730 1731 C2AccessValuePtr addr(adr, adr_type); 1732 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl); 1733 if (access.is_raw()) { 1734 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1735 } else { 1736 return _barrier_set->load_at(access, val_type); 1737 } 1738 } 1739 1740 Node* GraphKit::access_load(Node* adr, // actual address to load val at 1741 const Type* val_type, 1742 BasicType bt, 1743 DecoratorSet decorators) { 1744 if (stopped()) { 1745 return top(); // Dead path ? 1746 } 1747 1748 C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr()); 1749 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr); 1750 if (access.is_raw()) { 1751 return _barrier_set->BarrierSetC2::load_at(access, val_type); 1752 } else { 1753 return _barrier_set->load_at(access, val_type); 1754 } 1755 } 1756 1757 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj, 1758 Node* adr, 1759 const TypePtr* adr_type, 1760 int alias_idx, 1761 Node* expected_val, 1762 Node* new_val, 1763 const Type* value_type, 1764 BasicType bt, 1765 DecoratorSet decorators) { 1766 C2AccessValuePtr addr(adr, adr_type); 1767 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1768 bt, obj, addr, alias_idx); 1769 if (access.is_raw()) { 1770 return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1771 } else { 1772 return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type); 1773 } 1774 } 1775 1776 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj, 1777 Node* adr, 1778 const TypePtr* adr_type, 1779 int alias_idx, 1780 Node* expected_val, 1781 Node* new_val, 1782 const Type* value_type, 1783 BasicType bt, 1784 DecoratorSet decorators) { 1785 C2AccessValuePtr addr(adr, adr_type); 1786 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1787 bt, obj, addr, alias_idx); 1788 if (access.is_raw()) { 1789 return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1790 } else { 1791 return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type); 1792 } 1793 } 1794 1795 Node* GraphKit::access_atomic_xchg_at(Node* obj, 1796 Node* adr, 1797 const TypePtr* adr_type, 1798 int alias_idx, 1799 Node* new_val, 1800 const Type* value_type, 1801 BasicType bt, 1802 DecoratorSet decorators) { 1803 C2AccessValuePtr addr(adr, adr_type); 1804 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, 1805 bt, obj, addr, alias_idx); 1806 if (access.is_raw()) { 1807 return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type); 1808 } else { 1809 return _barrier_set->atomic_xchg_at(access, new_val, value_type); 1810 } 1811 } 1812 1813 Node* GraphKit::access_atomic_add_at(Node* obj, 1814 Node* adr, 1815 const TypePtr* adr_type, 1816 int alias_idx, 1817 Node* new_val, 1818 const Type* value_type, 1819 BasicType bt, 1820 DecoratorSet decorators) { 1821 C2AccessValuePtr addr(adr, adr_type); 1822 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx); 1823 if (access.is_raw()) { 1824 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type); 1825 } else { 1826 return _barrier_set->atomic_add_at(access, new_val, value_type); 1827 } 1828 } 1829 1830 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) { 1831 return _barrier_set->clone(this, src, dst, size, is_array); 1832 } 1833 1834 //-------------------------array_element_address------------------------- 1835 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1836 const TypeInt* sizetype, Node* ctrl) { 1837 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 1838 assert(!arytype->is_flat() || elembt == T_OBJECT, "element type of flat arrays are T_OBJECT"); 1839 uint shift; 1840 if (arytype->is_flat() && arytype->klass_is_exact()) { 1841 // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different 1842 // value classes at runtime with a potentially different layout. The caller needs to fall back to call 1843 // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that 1844 // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even 1845 // though we don't need the address node in this case and throw it away again. 1846 shift = arytype->flat_log_elem_size(); 1847 } else { 1848 shift = exact_log2(type2aelembytes(elembt)); 1849 } 1850 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1851 1852 // short-circuit a common case (saves lots of confusing waste motion) 1853 jint idx_con = find_int_con(idx, -1); 1854 if (idx_con >= 0) { 1855 intptr_t offset = header + ((intptr_t)idx_con << shift); 1856 return basic_plus_adr(ary, offset); 1857 } 1858 1859 // must be correct type for alignment purposes 1860 Node* base = basic_plus_adr(ary, header); 1861 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1862 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1863 return basic_plus_adr(ary, base, scale); 1864 } 1865 1866 //-------------------------load_array_element------------------------- 1867 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) { 1868 const Type* elemtype = arytype->elem(); 1869 BasicType elembt = elemtype->array_element_basic_type(); 1870 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1871 if (elembt == T_NARROWOOP) { 1872 elembt = T_OBJECT; // To satisfy switch in LoadNode::make() 1873 } 1874 Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt, 1875 IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0)); 1876 return ld; 1877 } 1878 1879 //-------------------------set_arguments_for_java_call------------------------- 1880 // Arguments (pre-popped from the stack) are taken from the JVMS. 1881 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) { 1882 PreserveReexecuteState preexecs(this); 1883 if (EnableValhalla) { 1884 // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization. 1885 // At this point, the call hasn't been executed yet, so we will only ever execute the call once. 1886 jvms()->set_should_reexecute(true); 1887 int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc()); 1888 inc_sp(arg_size); 1889 } 1890 // Add the call arguments 1891 const TypeTuple* domain = call->tf()->domain_sig(); 1892 uint nargs = domain->cnt(); 1893 int arg_num = 0; 1894 for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) { 1895 Node* arg = argument(i-TypeFunc::Parms); 1896 const Type* t = domain->field_at(i); 1897 // TODO 8284443 A static call to a mismatched method should still be scalarized 1898 if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) { 1899 // We don't pass inline type arguments by reference but instead pass each field of the inline type 1900 if (!arg->is_InlineType()) { 1901 assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type"); 1902 arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free()); 1903 } 1904 InlineTypeNode* vt = arg->as_InlineType(); 1905 vt->pass_fields(this, call, idx, true, !t->maybe_null()); 1906 // If an inline type argument is passed as fields, attach the Method* to the call site 1907 // to be able to access the extended signature later via attached_method_before_pc(). 1908 // For example, see CompiledMethod::preserve_callee_argument_oops(). 1909 call->set_override_symbolic_info(true); 1910 // Register an evol dependency on the callee method to make sure that this method is deoptimized and 1911 // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched. 1912 C->dependencies()->assert_evol_method(call->method()); 1913 arg_num++; 1914 continue; 1915 } else if (arg->is_InlineType()) { 1916 // Pass inline type argument via oop to callee 1917 InlineTypeNode* inline_type = arg->as_InlineType(); 1918 const ciMethod* method = call->method(); 1919 ciInstanceKlass* holder = method->holder(); 1920 const bool is_receiver = (i == TypeFunc::Parms); 1921 const bool is_abstract_or_object_klass_constructor = method->is_object_constructor() && 1922 (holder->is_abstract() || holder->is_java_lang_Object()); 1923 const bool is_larval_receiver_on_super_constructor = is_receiver && is_abstract_or_object_klass_constructor; 1924 bool must_init_buffer = true; 1925 // We always need to buffer inline types when they are escaping. However, we can skip the actual initialization 1926 // of the buffer if the inline type is a larval because we are going to update the buffer anyway which requires 1927 // us to create a new one. But there is one special case where we are still required to initialize the buffer: 1928 // When we have a larval receiver invoked on an abstract (value class) constructor or the Object constructor (that 1929 // is not going to be inlined). After this call, the larval is completely initialized and thus not a larval anymore. 1930 // We therefore need to force an initialization of the buffer to not lose all the field writes so far in case the 1931 // buffer needs to be used (e.g. to read from when deoptimizing at runtime) or further updated in abstract super 1932 // value class constructors which could have more fields to be initialized. Note that we do not need to 1933 // initialize the buffer when invoking another constructor in the same class on a larval receiver because we 1934 // have not initialized any fields, yet (this is done completely by the other constructor call). 1935 if (inline_type->is_larval() && !is_larval_receiver_on_super_constructor) { 1936 must_init_buffer = false; 1937 } 1938 arg = inline_type->buffer(this, true, must_init_buffer); 1939 } 1940 if (t != Type::HALF) { 1941 arg_num++; 1942 } 1943 call->init_req(idx++, arg); 1944 } 1945 } 1946 1947 //---------------------------set_edges_for_java_call--------------------------- 1948 // Connect a newly created call into the current JVMS. 1949 // A return value node (if any) is returned from set_edges_for_java_call. 1950 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1951 1952 // Add the predefined inputs: 1953 call->init_req( TypeFunc::Control, control() ); 1954 call->init_req( TypeFunc::I_O , i_o() ); 1955 call->init_req( TypeFunc::Memory , reset_memory() ); 1956 call->init_req( TypeFunc::FramePtr, frameptr() ); 1957 call->init_req( TypeFunc::ReturnAdr, top() ); 1958 1959 add_safepoint_edges(call, must_throw); 1960 1961 Node* xcall = _gvn.transform(call); 1962 1963 if (xcall == top()) { 1964 set_control(top()); 1965 return; 1966 } 1967 assert(xcall == call, "call identity is stable"); 1968 1969 // Re-use the current map to produce the result. 1970 1971 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1972 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1973 set_all_memory_call(xcall, separate_io_proj); 1974 1975 //return xcall; // no need, caller already has it 1976 } 1977 1978 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) { 1979 if (stopped()) return top(); // maybe the call folded up? 1980 1981 // Note: Since any out-of-line call can produce an exception, 1982 // we always insert an I_O projection from the call into the result. 1983 1984 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize); 1985 1986 if (separate_io_proj) { 1987 // The caller requested separate projections be used by the fall 1988 // through and exceptional paths, so replace the projections for 1989 // the fall through path. 1990 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 1991 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 1992 } 1993 1994 // Capture the return value, if any. 1995 Node* ret; 1996 if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) { 1997 ret = top(); 1998 } else if (call->tf()->returns_inline_type_as_fields()) { 1999 // Return of multiple values (inline type fields): we create a 2000 // InlineType node, each field is a projection from the call. 2001 ciInlineKlass* vk = call->method()->return_type()->as_inline_klass(); 2002 uint base_input = TypeFunc::Parms; 2003 ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false); 2004 } else { 2005 ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 2006 ciType* t = call->method()->return_type(); 2007 if (t->is_klass()) { 2008 const Type* type = TypeOopPtr::make_from_klass(t->as_klass()); 2009 if (type->is_inlinetypeptr()) { 2010 ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free()); 2011 } 2012 } 2013 } 2014 2015 // We just called the constructor on a value type receiver. Reload it from the buffer 2016 ciMethod* method = call->method(); 2017 if (method->is_object_constructor() && !method->holder()->is_java_lang_Object()) { 2018 InlineTypeNode* inline_type_receiver = call->in(TypeFunc::Parms)->isa_InlineType(); 2019 if (inline_type_receiver != nullptr) { 2020 assert(inline_type_receiver->is_larval(), "must be larval"); 2021 assert(inline_type_receiver->is_allocated(&gvn()), "larval must be buffered"); 2022 InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, inline_type_receiver->get_oop(), 2023 inline_type_receiver->bottom_type()->inline_klass(), true); 2024 assert(!reloaded->is_larval(), "should not be larval anymore"); 2025 replace_in_map(inline_type_receiver, reloaded); 2026 } 2027 } 2028 2029 return ret; 2030 } 2031 2032 //--------------------set_predefined_input_for_runtime_call-------------------- 2033 // Reading and setting the memory state is way conservative here. 2034 // The real problem is that I am not doing real Type analysis on memory, 2035 // so I cannot distinguish card mark stores from other stores. Across a GC 2036 // point the Store Barrier and the card mark memory has to agree. I cannot 2037 // have a card mark store and its barrier split across the GC point from 2038 // either above or below. Here I get that to happen by reading ALL of memory. 2039 // A better answer would be to separate out card marks from other memory. 2040 // For now, return the input memory state, so that it can be reused 2041 // after the call, if this call has restricted memory effects. 2042 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) { 2043 // Set fixed predefined input arguments 2044 Node* memory = reset_memory(); 2045 Node* m = narrow_mem == nullptr ? memory : narrow_mem; 2046 call->init_req( TypeFunc::Control, control() ); 2047 call->init_req( TypeFunc::I_O, top() ); // does no i/o 2048 call->init_req( TypeFunc::Memory, m ); // may gc ptrs 2049 call->init_req( TypeFunc::FramePtr, frameptr() ); 2050 call->init_req( TypeFunc::ReturnAdr, top() ); 2051 return memory; 2052 } 2053 2054 //-------------------set_predefined_output_for_runtime_call-------------------- 2055 // Set control and memory (not i_o) from the call. 2056 // If keep_mem is not null, use it for the output state, 2057 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 2058 // If hook_mem is null, this call produces no memory effects at all. 2059 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 2060 // then only that memory slice is taken from the call. 2061 // In the last case, we must put an appropriate memory barrier before 2062 // the call, so as to create the correct anti-dependencies on loads 2063 // preceding the call. 2064 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 2065 Node* keep_mem, 2066 const TypePtr* hook_mem) { 2067 // no i/o 2068 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 2069 if (keep_mem) { 2070 // First clone the existing memory state 2071 set_all_memory(keep_mem); 2072 if (hook_mem != nullptr) { 2073 // Make memory for the call 2074 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 2075 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 2076 // We also use hook_mem to extract specific effects from arraycopy stubs. 2077 set_memory(mem, hook_mem); 2078 } 2079 // ...else the call has NO memory effects. 2080 2081 // Make sure the call advertises its memory effects precisely. 2082 // This lets us build accurate anti-dependences in gcm.cpp. 2083 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 2084 "call node must be constructed correctly"); 2085 } else { 2086 assert(hook_mem == nullptr, ""); 2087 // This is not a "slow path" call; all memory comes from the call. 2088 set_all_memory_call(call); 2089 } 2090 } 2091 2092 // Keep track of MergeMems feeding into other MergeMems 2093 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) { 2094 if (!mem->is_MergeMem()) { 2095 return; 2096 } 2097 for (SimpleDUIterator i(mem); i.has_next(); i.next()) { 2098 Node* use = i.get(); 2099 if (use->is_MergeMem()) { 2100 wl.push(use); 2101 } 2102 } 2103 } 2104 2105 // Replace the call with the current state of the kit. 2106 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) { 2107 JVMState* ejvms = nullptr; 2108 if (has_exceptions()) { 2109 ejvms = transfer_exceptions_into_jvms(); 2110 } 2111 2112 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 2113 ReplacedNodes replaced_nodes_exception; 2114 Node* ex_ctl = top(); 2115 2116 SafePointNode* final_state = stop(); 2117 2118 // Find all the needed outputs of this call 2119 CallProjections* callprojs = call->extract_projections(true, do_asserts); 2120 2121 Unique_Node_List wl; 2122 Node* init_mem = call->in(TypeFunc::Memory); 2123 Node* final_mem = final_state->in(TypeFunc::Memory); 2124 Node* final_ctl = final_state->in(TypeFunc::Control); 2125 Node* final_io = final_state->in(TypeFunc::I_O); 2126 2127 // Replace all the old call edges with the edges from the inlining result 2128 if (callprojs->fallthrough_catchproj != nullptr) { 2129 C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl); 2130 } 2131 if (callprojs->fallthrough_memproj != nullptr) { 2132 if (final_mem->is_MergeMem()) { 2133 // Parser's exits MergeMem was not transformed but may be optimized 2134 final_mem = _gvn.transform(final_mem); 2135 } 2136 C->gvn_replace_by(callprojs->fallthrough_memproj, final_mem); 2137 add_mergemem_users_to_worklist(wl, final_mem); 2138 } 2139 if (callprojs->fallthrough_ioproj != nullptr) { 2140 C->gvn_replace_by(callprojs->fallthrough_ioproj, final_io); 2141 } 2142 2143 // Replace the result with the new result if it exists and is used 2144 if (callprojs->resproj[0] != nullptr && result != nullptr) { 2145 // If the inlined code is dead, the result projections for an inline type returned as 2146 // fields have not been replaced. They will go away once the call is replaced by TOP below. 2147 assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()), 2148 "unexpected number of results"); 2149 C->gvn_replace_by(callprojs->resproj[0], result); 2150 } 2151 2152 if (ejvms == nullptr) { 2153 // No exception edges to simply kill off those paths 2154 if (callprojs->catchall_catchproj != nullptr) { 2155 C->gvn_replace_by(callprojs->catchall_catchproj, C->top()); 2156 } 2157 if (callprojs->catchall_memproj != nullptr) { 2158 C->gvn_replace_by(callprojs->catchall_memproj, C->top()); 2159 } 2160 if (callprojs->catchall_ioproj != nullptr) { 2161 C->gvn_replace_by(callprojs->catchall_ioproj, C->top()); 2162 } 2163 // Replace the old exception object with top 2164 if (callprojs->exobj != nullptr) { 2165 C->gvn_replace_by(callprojs->exobj, C->top()); 2166 } 2167 } else { 2168 GraphKit ekit(ejvms); 2169 2170 // Load my combined exception state into the kit, with all phis transformed: 2171 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 2172 replaced_nodes_exception = ex_map->replaced_nodes(); 2173 2174 Node* ex_oop = ekit.use_exception_state(ex_map); 2175 2176 if (callprojs->catchall_catchproj != nullptr) { 2177 C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control()); 2178 ex_ctl = ekit.control(); 2179 } 2180 if (callprojs->catchall_memproj != nullptr) { 2181 Node* ex_mem = ekit.reset_memory(); 2182 C->gvn_replace_by(callprojs->catchall_memproj, ex_mem); 2183 add_mergemem_users_to_worklist(wl, ex_mem); 2184 } 2185 if (callprojs->catchall_ioproj != nullptr) { 2186 C->gvn_replace_by(callprojs->catchall_ioproj, ekit.i_o()); 2187 } 2188 2189 // Replace the old exception object with the newly created one 2190 if (callprojs->exobj != nullptr) { 2191 C->gvn_replace_by(callprojs->exobj, ex_oop); 2192 } 2193 } 2194 2195 // Disconnect the call from the graph 2196 call->disconnect_inputs(C); 2197 C->gvn_replace_by(call, C->top()); 2198 2199 // Clean up any MergeMems that feed other MergeMems since the 2200 // optimizer doesn't like that. 2201 while (wl.size() > 0) { 2202 _gvn.transform(wl.pop()); 2203 } 2204 2205 if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) { 2206 replaced_nodes.apply(C, final_ctl); 2207 } 2208 if (!ex_ctl->is_top() && do_replaced_nodes) { 2209 replaced_nodes_exception.apply(C, ex_ctl); 2210 } 2211 } 2212 2213 2214 //------------------------------increment_counter------------------------------ 2215 // for statistics: increment a VM counter by 1 2216 2217 void GraphKit::increment_counter(address counter_addr) { 2218 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 2219 increment_counter(adr1); 2220 } 2221 2222 void GraphKit::increment_counter(Node* counter_addr) { 2223 int adr_type = Compile::AliasIdxRaw; 2224 Node* ctrl = control(); 2225 Node* cnt = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered); 2226 Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1))); 2227 store_to_memory(ctrl, counter_addr, incr, T_LONG, adr_type, MemNode::unordered); 2228 } 2229 2230 2231 //------------------------------uncommon_trap---------------------------------- 2232 // Bail out to the interpreter in mid-method. Implemented by calling the 2233 // uncommon_trap blob. This helper function inserts a runtime call with the 2234 // right debug info. 2235 Node* GraphKit::uncommon_trap(int trap_request, 2236 ciKlass* klass, const char* comment, 2237 bool must_throw, 2238 bool keep_exact_action) { 2239 if (failing_internal()) { 2240 stop(); 2241 } 2242 if (stopped()) return nullptr; // trap reachable? 2243 2244 // Note: If ProfileTraps is true, and if a deopt. actually 2245 // occurs here, the runtime will make sure an MDO exists. There is 2246 // no need to call method()->ensure_method_data() at this point. 2247 2248 // Set the stack pointer to the right value for reexecution: 2249 set_sp(reexecute_sp()); 2250 2251 #ifdef ASSERT 2252 if (!must_throw) { 2253 // Make sure the stack has at least enough depth to execute 2254 // the current bytecode. 2255 int inputs, ignored_depth; 2256 if (compute_stack_effects(inputs, ignored_depth)) { 2257 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2258 Bytecodes::name(java_bc()), sp(), inputs); 2259 } 2260 } 2261 #endif 2262 2263 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2264 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2265 2266 switch (action) { 2267 case Deoptimization::Action_maybe_recompile: 2268 case Deoptimization::Action_reinterpret: 2269 // Temporary fix for 6529811 to allow virtual calls to be sure they 2270 // get the chance to go from mono->bi->mega 2271 if (!keep_exact_action && 2272 Deoptimization::trap_request_index(trap_request) < 0 && 2273 too_many_recompiles(reason)) { 2274 // This BCI is causing too many recompilations. 2275 if (C->log() != nullptr) { 2276 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2277 Deoptimization::trap_reason_name(reason), 2278 Deoptimization::trap_action_name(action)); 2279 } 2280 action = Deoptimization::Action_none; 2281 trap_request = Deoptimization::make_trap_request(reason, action); 2282 } else { 2283 C->set_trap_can_recompile(true); 2284 } 2285 break; 2286 case Deoptimization::Action_make_not_entrant: 2287 C->set_trap_can_recompile(true); 2288 break; 2289 case Deoptimization::Action_none: 2290 case Deoptimization::Action_make_not_compilable: 2291 break; 2292 default: 2293 #ifdef ASSERT 2294 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2295 #endif 2296 break; 2297 } 2298 2299 if (TraceOptoParse) { 2300 char buf[100]; 2301 tty->print_cr("Uncommon trap %s at bci:%d", 2302 Deoptimization::format_trap_request(buf, sizeof(buf), 2303 trap_request), bci()); 2304 } 2305 2306 CompileLog* log = C->log(); 2307 if (log != nullptr) { 2308 int kid = (klass == nullptr)? -1: log->identify(klass); 2309 log->begin_elem("uncommon_trap bci='%d'", bci()); 2310 char buf[100]; 2311 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2312 trap_request)); 2313 if (kid >= 0) log->print(" klass='%d'", kid); 2314 if (comment != nullptr) log->print(" comment='%s'", comment); 2315 log->end_elem(); 2316 } 2317 2318 // Make sure any guarding test views this path as very unlikely 2319 Node *i0 = control()->in(0); 2320 if (i0 != nullptr && i0->is_If()) { // Found a guarding if test? 2321 IfNode *iff = i0->as_If(); 2322 float f = iff->_prob; // Get prob 2323 if (control()->Opcode() == Op_IfTrue) { 2324 if (f > PROB_UNLIKELY_MAG(4)) 2325 iff->_prob = PROB_MIN; 2326 } else { 2327 if (f < PROB_LIKELY_MAG(4)) 2328 iff->_prob = PROB_MAX; 2329 } 2330 } 2331 2332 // Clear out dead values from the debug info. 2333 kill_dead_locals(); 2334 2335 // Now insert the uncommon trap subroutine call 2336 address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point(); 2337 const TypePtr* no_memory_effects = nullptr; 2338 // Pass the index of the class to be loaded 2339 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2340 (must_throw ? RC_MUST_THROW : 0), 2341 OptoRuntime::uncommon_trap_Type(), 2342 call_addr, "uncommon_trap", no_memory_effects, 2343 intcon(trap_request)); 2344 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2345 "must extract request correctly from the graph"); 2346 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2347 2348 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2349 // The debug info is the only real input to this call. 2350 2351 // Halt-and-catch fire here. The above call should never return! 2352 HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen" 2353 PRODUCT_ONLY(COMMA /*reachable*/false)); 2354 _gvn.set_type_bottom(halt); 2355 root()->add_req(halt); 2356 2357 stop_and_kill_map(); 2358 return call; 2359 } 2360 2361 2362 //--------------------------just_allocated_object------------------------------ 2363 // Report the object that was just allocated. 2364 // It must be the case that there are no intervening safepoints. 2365 // We use this to determine if an object is so "fresh" that 2366 // it does not require card marks. 2367 Node* GraphKit::just_allocated_object(Node* current_control) { 2368 Node* ctrl = current_control; 2369 // Object::<init> is invoked after allocation, most of invoke nodes 2370 // will be reduced, but a region node is kept in parse time, we check 2371 // the pattern and skip the region node if it degraded to a copy. 2372 if (ctrl != nullptr && ctrl->is_Region() && ctrl->req() == 2 && 2373 ctrl->as_Region()->is_copy()) { 2374 ctrl = ctrl->as_Region()->is_copy(); 2375 } 2376 if (C->recent_alloc_ctl() == ctrl) { 2377 return C->recent_alloc_obj(); 2378 } 2379 return nullptr; 2380 } 2381 2382 2383 /** 2384 * Record profiling data exact_kls for Node n with the type system so 2385 * that it can propagate it (speculation) 2386 * 2387 * @param n node that the type applies to 2388 * @param exact_kls type from profiling 2389 * @param maybe_null did profiling see null? 2390 * 2391 * @return node with improved type 2392 */ 2393 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) { 2394 const Type* current_type = _gvn.type(n); 2395 assert(UseTypeSpeculation, "type speculation must be on"); 2396 2397 const TypePtr* speculative = current_type->speculative(); 2398 2399 // Should the klass from the profile be recorded in the speculative type? 2400 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2401 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces); 2402 const TypeOopPtr* xtype = tklass->as_instance_type(); 2403 assert(xtype->klass_is_exact(), "Should be exact"); 2404 // Any reason to believe n is not null (from this profiling or a previous one)? 2405 assert(ptr_kind != ProfileAlwaysNull, "impossible here"); 2406 const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2407 // record the new speculative type's depth 2408 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2409 speculative = speculative->with_inline_depth(jvms()->depth()); 2410 } else if (current_type->would_improve_ptr(ptr_kind)) { 2411 // Profiling report that null was never seen so we can change the 2412 // speculative type to non null ptr. 2413 if (ptr_kind == ProfileAlwaysNull) { 2414 speculative = TypePtr::NULL_PTR; 2415 } else { 2416 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement"); 2417 const TypePtr* ptr = TypePtr::NOTNULL; 2418 if (speculative != nullptr) { 2419 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2420 } else { 2421 speculative = ptr; 2422 } 2423 } 2424 } 2425 2426 if (speculative != current_type->speculative()) { 2427 // Build a type with a speculative type (what we think we know 2428 // about the type but will need a guard when we use it) 2429 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative); 2430 // We're changing the type, we need a new CheckCast node to carry 2431 // the new type. The new type depends on the control: what 2432 // profiling tells us is only valid from here as far as we can 2433 // tell. 2434 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2435 cast = _gvn.transform(cast); 2436 replace_in_map(n, cast); 2437 n = cast; 2438 } 2439 2440 return n; 2441 } 2442 2443 /** 2444 * Record profiling data from receiver profiling at an invoke with the 2445 * type system so that it can propagate it (speculation) 2446 * 2447 * @param n receiver node 2448 * 2449 * @return node with improved type 2450 */ 2451 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2452 if (!UseTypeSpeculation) { 2453 return n; 2454 } 2455 ciKlass* exact_kls = profile_has_unique_klass(); 2456 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2457 if ((java_bc() == Bytecodes::_checkcast || 2458 java_bc() == Bytecodes::_instanceof || 2459 java_bc() == Bytecodes::_aastore) && 2460 method()->method_data()->is_mature()) { 2461 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2462 if (data != nullptr) { 2463 if (java_bc() == Bytecodes::_aastore) { 2464 ciKlass* array_type = nullptr; 2465 ciKlass* element_type = nullptr; 2466 ProfilePtrKind element_ptr = ProfileMaybeNull; 2467 bool flat_array = true; 2468 bool null_free_array = true; 2469 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 2470 exact_kls = element_type; 2471 ptr_kind = element_ptr; 2472 } else { 2473 if (!data->as_BitData()->null_seen()) { 2474 ptr_kind = ProfileNeverNull; 2475 } else { 2476 assert(data->is_ReceiverTypeData(), "bad profile data type"); 2477 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData(); 2478 uint i = 0; 2479 for (; i < call->row_limit(); i++) { 2480 ciKlass* receiver = call->receiver(i); 2481 if (receiver != nullptr) { 2482 break; 2483 } 2484 } 2485 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull; 2486 } 2487 } 2488 } 2489 } 2490 return record_profile_for_speculation(n, exact_kls, ptr_kind); 2491 } 2492 2493 /** 2494 * Record profiling data from argument profiling at an invoke with the 2495 * type system so that it can propagate it (speculation) 2496 * 2497 * @param dest_method target method for the call 2498 * @param bc what invoke bytecode is this? 2499 */ 2500 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2501 if (!UseTypeSpeculation) { 2502 return; 2503 } 2504 const TypeFunc* tf = TypeFunc::make(dest_method); 2505 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; 2506 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2507 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2508 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); 2509 if (is_reference_type(targ->basic_type())) { 2510 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2511 ciKlass* better_type = nullptr; 2512 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) { 2513 record_profile_for_speculation(argument(j), better_type, ptr_kind); 2514 } 2515 i++; 2516 } 2517 } 2518 } 2519 2520 /** 2521 * Record profiling data from parameter profiling at an invoke with 2522 * the type system so that it can propagate it (speculation) 2523 */ 2524 void GraphKit::record_profiled_parameters_for_speculation() { 2525 if (!UseTypeSpeculation) { 2526 return; 2527 } 2528 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2529 if (_gvn.type(local(i))->isa_oopptr()) { 2530 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2531 ciKlass* better_type = nullptr; 2532 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) { 2533 record_profile_for_speculation(local(i), better_type, ptr_kind); 2534 } 2535 j++; 2536 } 2537 } 2538 } 2539 2540 /** 2541 * Record profiling data from return value profiling at an invoke with 2542 * the type system so that it can propagate it (speculation) 2543 */ 2544 void GraphKit::record_profiled_return_for_speculation() { 2545 if (!UseTypeSpeculation) { 2546 return; 2547 } 2548 ProfilePtrKind ptr_kind = ProfileMaybeNull; 2549 ciKlass* better_type = nullptr; 2550 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) { 2551 // If profiling reports a single type for the return value, 2552 // feed it to the type system so it can propagate it as a 2553 // speculative type 2554 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind); 2555 } 2556 } 2557 2558 void GraphKit::round_double_arguments(ciMethod* dest_method) { 2559 if (Matcher::strict_fp_requires_explicit_rounding) { 2560 // (Note: TypeFunc::make has a cache that makes this fast.) 2561 const TypeFunc* tf = TypeFunc::make(dest_method); 2562 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; 2563 for (int j = 0; j < nargs; j++) { 2564 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); 2565 if (targ->basic_type() == T_DOUBLE) { 2566 // If any parameters are doubles, they must be rounded before 2567 // the call, dprecision_rounding does gvn.transform 2568 Node *arg = argument(j); 2569 arg = dprecision_rounding(arg); 2570 set_argument(j, arg); 2571 } 2572 } 2573 } 2574 } 2575 2576 // rounding for strict float precision conformance 2577 Node* GraphKit::precision_rounding(Node* n) { 2578 if (Matcher::strict_fp_requires_explicit_rounding) { 2579 #ifdef IA32 2580 if (UseSSE == 0) { 2581 return _gvn.transform(new RoundFloatNode(nullptr, n)); 2582 } 2583 #else 2584 Unimplemented(); 2585 #endif // IA32 2586 } 2587 return n; 2588 } 2589 2590 // rounding for strict double precision conformance 2591 Node* GraphKit::dprecision_rounding(Node *n) { 2592 if (Matcher::strict_fp_requires_explicit_rounding) { 2593 #ifdef IA32 2594 if (UseSSE < 2) { 2595 return _gvn.transform(new RoundDoubleNode(nullptr, n)); 2596 } 2597 #else 2598 Unimplemented(); 2599 #endif // IA32 2600 } 2601 return n; 2602 } 2603 2604 //============================================================================= 2605 // Generate a fast path/slow path idiom. Graph looks like: 2606 // [foo] indicates that 'foo' is a parameter 2607 // 2608 // [in] null 2609 // \ / 2610 // CmpP 2611 // Bool ne 2612 // If 2613 // / \ 2614 // True False-<2> 2615 // / | 2616 // / cast_not_null 2617 // Load | | ^ 2618 // [fast_test] | | 2619 // gvn to opt_test | | 2620 // / \ | <1> 2621 // True False | 2622 // | \\ | 2623 // [slow_call] \[fast_result] 2624 // Ctl Val \ \ 2625 // | \ \ 2626 // Catch <1> \ \ 2627 // / \ ^ \ \ 2628 // Ex No_Ex | \ \ 2629 // | \ \ | \ <2> \ 2630 // ... \ [slow_res] | | \ [null_result] 2631 // \ \--+--+--- | | 2632 // \ | / \ | / 2633 // --------Region Phi 2634 // 2635 //============================================================================= 2636 // Code is structured as a series of driver functions all called 'do_XXX' that 2637 // call a set of helper functions. Helper functions first, then drivers. 2638 2639 //------------------------------null_check_oop--------------------------------- 2640 // Null check oop. Set null-path control into Region in slot 3. 2641 // Make a cast-not-nullness use the other not-null control. Return cast. 2642 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2643 bool never_see_null, 2644 bool safe_for_replace, 2645 bool speculative) { 2646 // Initial null check taken path 2647 (*null_control) = top(); 2648 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2649 2650 // Generate uncommon_trap: 2651 if (never_see_null && (*null_control) != top()) { 2652 // If we see an unexpected null at a check-cast we record it and force a 2653 // recompile; the offending check-cast will be compiled to handle nulls. 2654 // If we see more than one offending BCI, then all checkcasts in the 2655 // method will be compiled to handle nulls. 2656 PreserveJVMState pjvms(this); 2657 set_control(*null_control); 2658 replace_in_map(value, null()); 2659 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2660 uncommon_trap(reason, 2661 Deoptimization::Action_make_not_entrant); 2662 (*null_control) = top(); // null path is dead 2663 } 2664 if ((*null_control) == top() && safe_for_replace) { 2665 replace_in_map(value, cast); 2666 } 2667 2668 // Cast away null-ness on the result 2669 return cast; 2670 } 2671 2672 //------------------------------opt_iff---------------------------------------- 2673 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2674 // Return slow-path control. 2675 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2676 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2677 2678 // Fast path taken; set region slot 2 2679 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2680 region->init_req(2,fast_taken); // Capture fast-control 2681 2682 // Fast path not-taken, i.e. slow path 2683 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2684 return slow_taken; 2685 } 2686 2687 //-----------------------------make_runtime_call------------------------------- 2688 Node* GraphKit::make_runtime_call(int flags, 2689 const TypeFunc* call_type, address call_addr, 2690 const char* call_name, 2691 const TypePtr* adr_type, 2692 // The following parms are all optional. 2693 // The first null ends the list. 2694 Node* parm0, Node* parm1, 2695 Node* parm2, Node* parm3, 2696 Node* parm4, Node* parm5, 2697 Node* parm6, Node* parm7) { 2698 assert(call_addr != nullptr, "must not call null targets"); 2699 2700 // Slow-path call 2701 bool is_leaf = !(flags & RC_NO_LEAF); 2702 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2703 if (call_name == nullptr) { 2704 assert(!is_leaf, "must supply name for leaf"); 2705 call_name = OptoRuntime::stub_name(call_addr); 2706 } 2707 CallNode* call; 2708 if (!is_leaf) { 2709 call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type); 2710 } else if (flags & RC_NO_FP) { 2711 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2712 } else if (flags & RC_VECTOR){ 2713 uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte; 2714 call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits); 2715 } else { 2716 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2717 } 2718 2719 // The following is similar to set_edges_for_java_call, 2720 // except that the memory effects of the call are restricted to AliasIdxRaw. 2721 2722 // Slow path call has no side-effects, uses few values 2723 bool wide_in = !(flags & RC_NARROW_MEM); 2724 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2725 2726 Node* prev_mem = nullptr; 2727 if (wide_in) { 2728 prev_mem = set_predefined_input_for_runtime_call(call); 2729 } else { 2730 assert(!wide_out, "narrow in => narrow out"); 2731 Node* narrow_mem = memory(adr_type); 2732 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem); 2733 } 2734 2735 // Hook each parm in order. Stop looking at the first null. 2736 if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0); 2737 if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1); 2738 if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2); 2739 if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3); 2740 if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4); 2741 if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5); 2742 if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6); 2743 if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7); 2744 /* close each nested if ===> */ } } } } } } } } 2745 assert(call->in(call->req()-1) != nullptr, "must initialize all parms"); 2746 2747 if (!is_leaf) { 2748 // Non-leaves can block and take safepoints: 2749 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2750 } 2751 // Non-leaves can throw exceptions: 2752 if (has_io) { 2753 call->set_req(TypeFunc::I_O, i_o()); 2754 } 2755 2756 if (flags & RC_UNCOMMON) { 2757 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2758 // (An "if" probability corresponds roughly to an unconditional count. 2759 // Sort of.) 2760 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2761 } 2762 2763 Node* c = _gvn.transform(call); 2764 assert(c == call, "cannot disappear"); 2765 2766 if (wide_out) { 2767 // Slow path call has full side-effects. 2768 set_predefined_output_for_runtime_call(call); 2769 } else { 2770 // Slow path call has few side-effects, and/or sets few values. 2771 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2772 } 2773 2774 if (has_io) { 2775 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2776 } 2777 return call; 2778 2779 } 2780 2781 // i2b 2782 Node* GraphKit::sign_extend_byte(Node* in) { 2783 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24))); 2784 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24))); 2785 } 2786 2787 // i2s 2788 Node* GraphKit::sign_extend_short(Node* in) { 2789 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16))); 2790 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16))); 2791 } 2792 2793 2794 //------------------------------merge_memory----------------------------------- 2795 // Merge memory from one path into the current memory state. 2796 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2797 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2798 Node* old_slice = mms.force_memory(); 2799 Node* new_slice = mms.memory2(); 2800 if (old_slice != new_slice) { 2801 PhiNode* phi; 2802 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2803 if (mms.is_empty()) { 2804 // clone base memory Phi's inputs for this memory slice 2805 assert(old_slice == mms.base_memory(), "sanity"); 2806 phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C)); 2807 _gvn.set_type(phi, Type::MEMORY); 2808 for (uint i = 1; i < phi->req(); i++) { 2809 phi->init_req(i, old_slice->in(i)); 2810 } 2811 } else { 2812 phi = old_slice->as_Phi(); // Phi was generated already 2813 } 2814 } else { 2815 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2816 _gvn.set_type(phi, Type::MEMORY); 2817 } 2818 phi->set_req(new_path, new_slice); 2819 mms.set_memory(phi); 2820 } 2821 } 2822 } 2823 2824 //------------------------------make_slow_call_ex------------------------------ 2825 // Make the exception handler hookups for the slow call 2826 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2827 if (stopped()) return; 2828 2829 // Make a catch node with just two handlers: fall-through and catch-all 2830 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2831 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2832 Node* norm = new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci); 2833 _gvn.set_type_bottom(norm); 2834 C->record_for_igvn(norm); 2835 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2836 2837 { PreserveJVMState pjvms(this); 2838 set_control(excp); 2839 set_i_o(i_o); 2840 2841 if (excp != top()) { 2842 if (deoptimize) { 2843 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2844 uncommon_trap(Deoptimization::Reason_unhandled, 2845 Deoptimization::Action_none); 2846 } else { 2847 // Create an exception state also. 2848 // Use an exact type if the caller has a specific exception. 2849 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2850 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2851 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2852 } 2853 } 2854 } 2855 2856 // Get the no-exception control from the CatchNode. 2857 set_control(norm); 2858 } 2859 2860 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN& gvn, BasicType bt) { 2861 Node* cmp = nullptr; 2862 switch(bt) { 2863 case T_INT: cmp = new CmpINode(in1, in2); break; 2864 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2865 default: fatal("unexpected comparison type %s", type2name(bt)); 2866 } 2867 cmp = gvn.transform(cmp); 2868 Node* bol = gvn.transform(new BoolNode(cmp, test)); 2869 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2870 gvn.transform(iff); 2871 if (!bol->is_Con()) gvn.record_for_igvn(iff); 2872 return iff; 2873 } 2874 2875 //-------------------------------gen_subtype_check----------------------------- 2876 // Generate a subtyping check. Takes as input the subtype and supertype. 2877 // Returns 2 values: sets the default control() to the true path and returns 2878 // the false path. Only reads invariant memory; sets no (visible) memory. 2879 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2880 // but that's not exposed to the optimizer. This call also doesn't take in an 2881 // Object; if you wish to check an Object you need to load the Object's class 2882 // prior to coming here. 2883 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn, 2884 ciMethod* method, int bci) { 2885 Compile* C = gvn.C; 2886 if ((*ctrl)->is_top()) { 2887 return C->top(); 2888 } 2889 2890 // Fast check for identical types, perhaps identical constants. 2891 // The types can even be identical non-constants, in cases 2892 // involving Array.newInstance, Object.clone, etc. 2893 if (subklass == superklass) 2894 return C->top(); // false path is dead; no test needed. 2895 2896 if (gvn.type(superklass)->singleton()) { 2897 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2898 const TypeKlassPtr* subk = gvn.type(subklass)->is_klassptr(); 2899 2900 // In the common case of an exact superklass, try to fold up the 2901 // test before generating code. You may ask, why not just generate 2902 // the code and then let it fold up? The answer is that the generated 2903 // code will necessarily include null checks, which do not always 2904 // completely fold away. If they are also needless, then they turn 2905 // into a performance loss. Example: 2906 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2907 // Here, the type of 'fa' is often exact, so the store check 2908 // of fa[1]=x will fold up, without testing the nullness of x. 2909 // 2910 // At macro expansion, we would have already folded the SubTypeCheckNode 2911 // being expanded here because we always perform the static sub type 2912 // check in SubTypeCheckNode::sub() regardless of whether 2913 // StressReflectiveCode is set or not. We can therefore skip this 2914 // static check when StressReflectiveCode is on. 2915 switch (C->static_subtype_check(superk, subk)) { 2916 case Compile::SSC_always_false: 2917 { 2918 Node* always_fail = *ctrl; 2919 *ctrl = gvn.C->top(); 2920 return always_fail; 2921 } 2922 case Compile::SSC_always_true: 2923 return C->top(); 2924 case Compile::SSC_easy_test: 2925 { 2926 // Just do a direct pointer compare and be done. 2927 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2928 *ctrl = gvn.transform(new IfTrueNode(iff)); 2929 return gvn.transform(new IfFalseNode(iff)); 2930 } 2931 case Compile::SSC_full_test: 2932 break; 2933 default: 2934 ShouldNotReachHere(); 2935 } 2936 } 2937 2938 // %%% Possible further optimization: Even if the superklass is not exact, 2939 // if the subklass is the unique subtype of the superklass, the check 2940 // will always succeed. We could leave a dependency behind to ensure this. 2941 2942 // First load the super-klass's check-offset 2943 Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2944 Node* m = C->immutable_memory(); 2945 Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2946 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2947 const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int(); 2948 int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con; 2949 bool might_be_cache = (chk_off_con == cacheoff_con); 2950 2951 // Load from the sub-klass's super-class display list, or a 1-word cache of 2952 // the secondary superclass list, or a failing value with a sentinel offset 2953 // if the super-klass is an interface or exceptionally deep in the Java 2954 // hierarchy and we have to scan the secondary superclass list the hard way. 2955 // Worst-case type is a little odd: null is allowed as a result (usually 2956 // klass loads can never produce a null). 2957 Node *chk_off_X = chk_off; 2958 #ifdef _LP64 2959 chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X)); 2960 #endif 2961 Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X)); 2962 // For some types like interfaces the following loadKlass is from a 1-word 2963 // cache which is mutable so can't use immutable memory. Other 2964 // types load from the super-class display table which is immutable. 2965 Node *kmem = C->immutable_memory(); 2966 // secondary_super_cache is not immutable but can be treated as such because: 2967 // - no ideal node writes to it in a way that could cause an 2968 // incorrect/missed optimization of the following Load. 2969 // - it's a cache so, worse case, not reading the latest value 2970 // wouldn't cause incorrect execution 2971 if (might_be_cache && mem != nullptr) { 2972 kmem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(C->get_alias_index(gvn.type(p2)->is_ptr())) : mem; 2973 } 2974 Node *nkls = gvn.transform(LoadKlassNode::make(gvn, nullptr, kmem, p2, gvn.type(p2)->is_ptr(), TypeInstKlassPtr::OBJECT_OR_NULL)); 2975 2976 // Compile speed common case: ARE a subtype and we canNOT fail 2977 if (superklass == nkls) { 2978 return C->top(); // false path is dead; no test needed. 2979 } 2980 2981 // Gather the various success & failures here 2982 RegionNode* r_not_subtype = new RegionNode(3); 2983 gvn.record_for_igvn(r_not_subtype); 2984 RegionNode* r_ok_subtype = new RegionNode(4); 2985 gvn.record_for_igvn(r_ok_subtype); 2986 2987 // If we might perform an expensive check, first try to take advantage of profile data that was attached to the 2988 // SubTypeCheck node 2989 if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) { 2990 ciCallProfile profile = method->call_profile_at_bci(bci); 2991 float total_prob = 0; 2992 for (int i = 0; profile.has_receiver(i); ++i) { 2993 float prob = profile.receiver_prob(i); 2994 total_prob += prob; 2995 } 2996 if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) { 2997 const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr(); 2998 for (int i = 0; profile.has_receiver(i); ++i) { 2999 ciKlass* klass = profile.receiver(i); 3000 const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass); 3001 Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t); 3002 if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) { 3003 continue; 3004 } 3005 float prob = profile.receiver_prob(i); 3006 ConNode* klass_node = gvn.makecon(klass_t); 3007 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS); 3008 Node* iftrue = gvn.transform(new IfTrueNode(iff)); 3009 3010 if (result == Compile::SSC_always_true) { 3011 r_ok_subtype->add_req(iftrue); 3012 } else { 3013 assert(result == Compile::SSC_always_false, ""); 3014 r_not_subtype->add_req(iftrue); 3015 } 3016 *ctrl = gvn.transform(new IfFalseNode(iff)); 3017 } 3018 } 3019 } 3020 3021 // See if we get an immediate positive hit. Happens roughly 83% of the 3022 // time. Test to see if the value loaded just previously from the subklass 3023 // is exactly the superklass. 3024 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 3025 Node *iftrue1 = gvn.transform( new IfTrueNode (iff1)); 3026 *ctrl = gvn.transform(new IfFalseNode(iff1)); 3027 3028 // Compile speed common case: Check for being deterministic right now. If 3029 // chk_off is a constant and not equal to cacheoff then we are NOT a 3030 // subklass. In this case we need exactly the 1 test above and we can 3031 // return those results immediately. 3032 if (!might_be_cache) { 3033 Node* not_subtype_ctrl = *ctrl; 3034 *ctrl = iftrue1; // We need exactly the 1 test above 3035 PhaseIterGVN* igvn = gvn.is_IterGVN(); 3036 if (igvn != nullptr) { 3037 igvn->remove_globally_dead_node(r_ok_subtype); 3038 igvn->remove_globally_dead_node(r_not_subtype); 3039 } 3040 return not_subtype_ctrl; 3041 } 3042 3043 r_ok_subtype->init_req(1, iftrue1); 3044 3045 // Check for immediate negative hit. Happens roughly 11% of the time (which 3046 // is roughly 63% of the remaining cases). Test to see if the loaded 3047 // check-offset points into the subklass display list or the 1-element 3048 // cache. If it points to the display (and NOT the cache) and the display 3049 // missed then it's not a subtype. 3050 Node *cacheoff = gvn.intcon(cacheoff_con); 3051 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 3052 r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2))); 3053 *ctrl = gvn.transform(new IfFalseNode(iff2)); 3054 3055 // Check for self. Very rare to get here, but it is taken 1/3 the time. 3056 // No performance impact (too rare) but allows sharing of secondary arrays 3057 // which has some footprint reduction. 3058 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 3059 r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3))); 3060 *ctrl = gvn.transform(new IfFalseNode(iff3)); 3061 3062 // -- Roads not taken here: -- 3063 // We could also have chosen to perform the self-check at the beginning 3064 // of this code sequence, as the assembler does. This would not pay off 3065 // the same way, since the optimizer, unlike the assembler, can perform 3066 // static type analysis to fold away many successful self-checks. 3067 // Non-foldable self checks work better here in second position, because 3068 // the initial primary superclass check subsumes a self-check for most 3069 // types. An exception would be a secondary type like array-of-interface, 3070 // which does not appear in its own primary supertype display. 3071 // Finally, we could have chosen to move the self-check into the 3072 // PartialSubtypeCheckNode, and from there out-of-line in a platform 3073 // dependent manner. But it is worthwhile to have the check here, 3074 // where it can be perhaps be optimized. The cost in code space is 3075 // small (register compare, branch). 3076 3077 // Now do a linear scan of the secondary super-klass array. Again, no real 3078 // performance impact (too rare) but it's gotta be done. 3079 // Since the code is rarely used, there is no penalty for moving it 3080 // out of line, and it can only improve I-cache density. 3081 // The decision to inline or out-of-line this final check is platform 3082 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 3083 Node* psc = gvn.transform( 3084 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 3085 3086 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 3087 r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4))); 3088 r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4))); 3089 3090 // Return false path; set default control to true path. 3091 *ctrl = gvn.transform(r_ok_subtype); 3092 return gvn.transform(r_not_subtype); 3093 } 3094 3095 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) { 3096 const Type* sub_t = _gvn.type(obj_or_subklass); 3097 if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) { 3098 sub_t = TypeKlassPtr::make(sub_t->inline_klass()); 3099 obj_or_subklass = makecon(sub_t); 3100 } 3101 bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over 3102 if (expand_subtype_check) { 3103 MergeMemNode* mem = merged_memory(); 3104 Node* ctrl = control(); 3105 Node* subklass = obj_or_subklass; 3106 if (!sub_t->isa_klassptr()) { 3107 subklass = load_object_klass(obj_or_subklass); 3108 } 3109 3110 Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci()); 3111 set_control(ctrl); 3112 return n; 3113 } 3114 3115 Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci())); 3116 Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq)); 3117 IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 3118 set_control(_gvn.transform(new IfTrueNode(iff))); 3119 return _gvn.transform(new IfFalseNode(iff)); 3120 } 3121 3122 // Profile-driven exact type check: 3123 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 3124 float prob, Node* *casted_receiver) { 3125 assert(!klass->is_interface(), "no exact type check on interfaces"); 3126 Node* fail = top(); 3127 const Type* rec_t = _gvn.type(receiver); 3128 if (rec_t->is_inlinetypeptr()) { 3129 if (klass->equals(rec_t->inline_klass())) { 3130 (*casted_receiver) = receiver; // Always passes 3131 } else { 3132 (*casted_receiver) = top(); // Always fails 3133 fail = control(); 3134 set_control(top()); 3135 } 3136 return fail; 3137 } 3138 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces); 3139 Node* recv_klass = load_object_klass(receiver); 3140 fail = type_check(recv_klass, tklass, prob); 3141 3142 if (!stopped()) { 3143 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 3144 const TypeOopPtr* recv_xtype = tklass->as_instance_type(); 3145 assert(recv_xtype->klass_is_exact(), ""); 3146 3147 if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts 3148 // Subsume downstream occurrences of receiver with a cast to 3149 // recv_xtype, since now we know what the type will be. 3150 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype); 3151 Node* res = _gvn.transform(cast); 3152 if (recv_xtype->is_inlinetypeptr()) { 3153 assert(!gvn().type(res)->maybe_null(), "receiver should never be null"); 3154 res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass()); 3155 } 3156 (*casted_receiver) = res; 3157 assert(!(*casted_receiver)->is_top(), "that path should be unreachable"); 3158 // (User must make the replace_in_map call.) 3159 } 3160 } 3161 3162 return fail; 3163 } 3164 3165 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass, 3166 float prob) { 3167 Node* want_klass = makecon(tklass); 3168 Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass)); 3169 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 3170 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 3171 set_control(_gvn.transform(new IfTrueNode (iff))); 3172 Node* fail = _gvn.transform(new IfFalseNode(iff)); 3173 return fail; 3174 } 3175 3176 //------------------------------subtype_check_receiver------------------------- 3177 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass, 3178 Node** casted_receiver) { 3179 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve(); 3180 Node* want_klass = makecon(tklass); 3181 3182 Node* slow_ctl = gen_subtype_check(receiver, want_klass); 3183 3184 // Ignore interface type information until interface types are properly tracked. 3185 if (!stopped() && !klass->is_interface()) { 3186 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr(); 3187 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type(); 3188 if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts 3189 Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type)); 3190 if (recv_type->is_inlinetypeptr()) { 3191 cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass()); 3192 } 3193 (*casted_receiver) = cast; 3194 } 3195 } 3196 3197 return slow_ctl; 3198 } 3199 3200 //------------------------------seems_never_null------------------------------- 3201 // Use null_seen information if it is available from the profile. 3202 // If we see an unexpected null at a type check we record it and force a 3203 // recompile; the offending check will be recompiled to handle nulls. 3204 // If we see several offending BCIs, then all checks in the 3205 // method will be recompiled. 3206 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 3207 speculating = !_gvn.type(obj)->speculative_maybe_null(); 3208 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 3209 if (UncommonNullCast // Cutout for this technique 3210 && obj != null() // And not the -Xcomp stupid case? 3211 && !too_many_traps(reason) 3212 ) { 3213 if (speculating) { 3214 return true; 3215 } 3216 if (data == nullptr) 3217 // Edge case: no mature data. Be optimistic here. 3218 return true; 3219 // If the profile has not seen a null, assume it won't happen. 3220 assert(java_bc() == Bytecodes::_checkcast || 3221 java_bc() == Bytecodes::_instanceof || 3222 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 3223 return !data->as_BitData()->null_seen(); 3224 } 3225 speculating = false; 3226 return false; 3227 } 3228 3229 void GraphKit::guard_klass_being_initialized(Node* klass) { 3230 int init_state_off = in_bytes(InstanceKlass::init_state_offset()); 3231 Node* adr = basic_plus_adr(top(), klass, init_state_off); 3232 Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3233 adr->bottom_type()->is_ptr(), TypeInt::BYTE, 3234 T_BYTE, MemNode::acquire); 3235 init_state = _gvn.transform(init_state); 3236 3237 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized)); 3238 3239 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state)); 3240 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3241 3242 { BuildCutout unless(this, tst, PROB_MAX); 3243 uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret); 3244 } 3245 } 3246 3247 void GraphKit::guard_init_thread(Node* klass) { 3248 int init_thread_off = in_bytes(InstanceKlass::init_thread_offset()); 3249 Node* adr = basic_plus_adr(top(), klass, init_thread_off); 3250 3251 Node* init_thread = LoadNode::make(_gvn, nullptr, immutable_memory(), adr, 3252 adr->bottom_type()->is_ptr(), TypePtr::NOTNULL, 3253 T_ADDRESS, MemNode::unordered); 3254 init_thread = _gvn.transform(init_thread); 3255 3256 Node* cur_thread = _gvn.transform(new ThreadLocalNode()); 3257 3258 Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread)); 3259 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3260 3261 { BuildCutout unless(this, tst, PROB_MAX); 3262 uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none); 3263 } 3264 } 3265 3266 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) { 3267 if (ik->is_being_initialized()) { 3268 if (C->needs_clinit_barrier(ik, context)) { 3269 Node* klass = makecon(TypeKlassPtr::make(ik)); 3270 guard_klass_being_initialized(klass); 3271 guard_init_thread(klass); 3272 insert_mem_bar(Op_MemBarCPUOrder); 3273 } 3274 } else if (ik->is_initialized()) { 3275 return; // no barrier needed 3276 } else { 3277 uncommon_trap(Deoptimization::Reason_uninitialized, 3278 Deoptimization::Action_reinterpret, 3279 nullptr); 3280 } 3281 } 3282 3283 //------------------------maybe_cast_profiled_receiver------------------------- 3284 // If the profile has seen exactly one type, narrow to exactly that type. 3285 // Subsequent type checks will always fold up. 3286 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 3287 const TypeKlassPtr* require_klass, 3288 ciKlass* spec_klass, 3289 bool safe_for_replace) { 3290 if (!UseTypeProfile || !TypeProfileCasts) return nullptr; 3291 3292 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr); 3293 3294 // Make sure we haven't already deoptimized from this tactic. 3295 if (too_many_traps_or_recompiles(reason)) 3296 return nullptr; 3297 3298 // (No, this isn't a call, but it's enough like a virtual call 3299 // to use the same ciMethod accessor to get the profile info...) 3300 // If we have a speculative type use it instead of profiling (which 3301 // may not help us) 3302 ciKlass* exact_kls = spec_klass; 3303 if (exact_kls == nullptr) { 3304 if (java_bc() == Bytecodes::_aastore) { 3305 ciKlass* array_type = nullptr; 3306 ciKlass* element_type = nullptr; 3307 ProfilePtrKind element_ptr = ProfileMaybeNull; 3308 bool flat_array = true; 3309 bool null_free_array = true; 3310 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 3311 exact_kls = element_type; 3312 } else { 3313 exact_kls = profile_has_unique_klass(); 3314 } 3315 } 3316 if (exact_kls != nullptr) {// no cast failures here 3317 if (require_klass == nullptr || 3318 C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) { 3319 // If we narrow the type to match what the type profile sees or 3320 // the speculative type, we can then remove the rest of the 3321 // cast. 3322 // This is a win, even if the exact_kls is very specific, 3323 // because downstream operations, such as method calls, 3324 // will often benefit from the sharper type. 3325 Node* exact_obj = not_null_obj; // will get updated in place... 3326 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3327 &exact_obj); 3328 { PreserveJVMState pjvms(this); 3329 set_control(slow_ctl); 3330 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 3331 } 3332 if (safe_for_replace) { 3333 replace_in_map(not_null_obj, exact_obj); 3334 } 3335 return exact_obj; 3336 } 3337 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 3338 } 3339 3340 return nullptr; 3341 } 3342 3343 /** 3344 * Cast obj to type and emit guard unless we had too many traps here 3345 * already 3346 * 3347 * @param obj node being casted 3348 * @param type type to cast the node to 3349 * @param not_null true if we know node cannot be null 3350 */ 3351 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 3352 ciKlass* type, 3353 bool not_null) { 3354 if (stopped()) { 3355 return obj; 3356 } 3357 3358 // type is null if profiling tells us this object is always null 3359 if (type != nullptr) { 3360 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 3361 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 3362 3363 if (!too_many_traps_or_recompiles(null_reason) && 3364 !too_many_traps_or_recompiles(class_reason)) { 3365 Node* not_null_obj = nullptr; 3366 // not_null is true if we know the object is not null and 3367 // there's no need for a null check 3368 if (!not_null) { 3369 Node* null_ctl = top(); 3370 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 3371 assert(null_ctl->is_top(), "no null control here"); 3372 } else { 3373 not_null_obj = obj; 3374 } 3375 3376 Node* exact_obj = not_null_obj; 3377 ciKlass* exact_kls = type; 3378 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 3379 &exact_obj); 3380 { 3381 PreserveJVMState pjvms(this); 3382 set_control(slow_ctl); 3383 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 3384 } 3385 replace_in_map(not_null_obj, exact_obj); 3386 obj = exact_obj; 3387 } 3388 } else { 3389 if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3390 Node* exact_obj = null_assert(obj); 3391 replace_in_map(obj, exact_obj); 3392 obj = exact_obj; 3393 } 3394 } 3395 return obj; 3396 } 3397 3398 //-------------------------------gen_instanceof-------------------------------- 3399 // Generate an instance-of idiom. Used by both the instance-of bytecode 3400 // and the reflective instance-of call. 3401 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 3402 kill_dead_locals(); // Benefit all the uncommon traps 3403 assert( !stopped(), "dead parse path should be checked in callers" ); 3404 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 3405 "must check for not-null not-dead klass in callers"); 3406 3407 // Make the merge point 3408 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 3409 RegionNode* region = new RegionNode(PATH_LIMIT); 3410 Node* phi = new PhiNode(region, TypeInt::BOOL); 3411 C->set_has_split_ifs(true); // Has chance for split-if optimization 3412 3413 ciProfileData* data = nullptr; 3414 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 3415 data = method()->method_data()->bci_to_data(bci()); 3416 } 3417 bool speculative_not_null = false; 3418 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 3419 && seems_never_null(obj, data, speculative_not_null)); 3420 3421 // Null check; get casted pointer; set region slot 3 3422 Node* null_ctl = top(); 3423 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3424 3425 // If not_null_obj is dead, only null-path is taken 3426 if (stopped()) { // Doing instance-of on a null? 3427 set_control(null_ctl); 3428 return intcon(0); 3429 } 3430 region->init_req(_null_path, null_ctl); 3431 phi ->init_req(_null_path, intcon(0)); // Set null path value 3432 if (null_ctl == top()) { 3433 // Do this eagerly, so that pattern matches like is_diamond_phi 3434 // will work even during parsing. 3435 assert(_null_path == PATH_LIMIT-1, "delete last"); 3436 region->del_req(_null_path); 3437 phi ->del_req(_null_path); 3438 } 3439 3440 // Do we know the type check always succeed? 3441 bool known_statically = false; 3442 if (_gvn.type(superklass)->singleton()) { 3443 const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr(); 3444 const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type(); 3445 if (subk != nullptr && subk->is_loaded()) { 3446 int static_res = C->static_subtype_check(superk, subk); 3447 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 3448 } 3449 } 3450 3451 if (!known_statically) { 3452 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3453 // We may not have profiling here or it may not help us. If we 3454 // have a speculative type use it to perform an exact cast. 3455 ciKlass* spec_obj_type = obj_type->speculative_type(); 3456 if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) { 3457 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace); 3458 if (stopped()) { // Profile disagrees with this path. 3459 set_control(null_ctl); // Null is the only remaining possibility. 3460 return intcon(0); 3461 } 3462 if (cast_obj != nullptr) { 3463 not_null_obj = cast_obj; 3464 } 3465 } 3466 } 3467 3468 // Generate the subtype check 3469 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass); 3470 3471 // Plug in the success path to the general merge in slot 1. 3472 region->init_req(_obj_path, control()); 3473 phi ->init_req(_obj_path, intcon(1)); 3474 3475 // Plug in the failing path to the general merge in slot 2. 3476 region->init_req(_fail_path, not_subtype_ctrl); 3477 phi ->init_req(_fail_path, intcon(0)); 3478 3479 // Return final merged results 3480 set_control( _gvn.transform(region) ); 3481 record_for_igvn(region); 3482 3483 // If we know the type check always succeeds then we don't use the 3484 // profiling data at this bytecode. Don't lose it, feed it to the 3485 // type system as a speculative type. 3486 if (safe_for_replace) { 3487 Node* casted_obj = record_profiled_receiver_for_speculation(obj); 3488 replace_in_map(obj, casted_obj); 3489 } 3490 3491 return _gvn.transform(phi); 3492 } 3493 3494 //-------------------------------gen_checkcast--------------------------------- 3495 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3496 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3497 // uncommon-trap paths work. Adjust stack after this call. 3498 // If failure_control is supplied and not null, it is filled in with 3499 // the control edge for the cast failure. Otherwise, an appropriate 3500 // uncommon trap or exception is thrown. 3501 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) { 3502 kill_dead_locals(); // Benefit all the uncommon traps 3503 const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr(); 3504 const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve(); 3505 const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type(); 3506 bool safe_for_replace = (failure_control == nullptr); 3507 assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer"); 3508 3509 // Fast cutout: Check the case that the cast is vacuously true. 3510 // This detects the common cases where the test will short-circuit 3511 // away completely. We do this before we perform the null check, 3512 // because if the test is going to turn into zero code, we don't 3513 // want a residual null check left around. (Causes a slowdown, 3514 // for example, in some objArray manipulations, such as a[i]=a[j].) 3515 if (improved_klass_ptr_type->singleton()) { 3516 const TypeKlassPtr* kptr = nullptr; 3517 const Type* t = _gvn.type(obj); 3518 if (t->isa_oop_ptr()) { 3519 kptr = t->is_oopptr()->as_klass_type(); 3520 } else if (obj->is_InlineType()) { 3521 ciInlineKlass* vk = t->inline_klass(); 3522 kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0)); 3523 } 3524 if (kptr != nullptr) { 3525 switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) { 3526 case Compile::SSC_always_true: 3527 // If we know the type check always succeed then we don't use 3528 // the profiling data at this bytecode. Don't lose it, feed it 3529 // to the type system as a speculative type. 3530 obj = record_profiled_receiver_for_speculation(obj); 3531 if (null_free) { 3532 assert(safe_for_replace, "must be"); 3533 obj = null_check(obj); 3534 } 3535 assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized"); 3536 return obj; 3537 case Compile::SSC_always_false: 3538 if (null_free) { 3539 assert(safe_for_replace, "must be"); 3540 obj = null_check(obj); 3541 } 3542 // It needs a null check because a null will *pass* the cast check. 3543 if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) { 3544 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3545 Deoptimization::DeoptReason reason = is_aastore ? 3546 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3547 builtin_throw(reason); 3548 return top(); 3549 } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) { 3550 return null_assert(obj); 3551 } 3552 break; // Fall through to full check 3553 default: 3554 break; 3555 } 3556 } 3557 } 3558 3559 ciProfileData* data = nullptr; 3560 if (failure_control == nullptr) { // use MDO in regular case only 3561 assert(java_bc() == Bytecodes::_aastore || 3562 java_bc() == Bytecodes::_checkcast, 3563 "interpreter profiles type checks only for these BCs"); 3564 if (method()->method_data()->is_mature()) { 3565 data = method()->method_data()->bci_to_data(bci()); 3566 } 3567 } 3568 3569 // Make the merge point 3570 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3571 RegionNode* region = new RegionNode(PATH_LIMIT); 3572 Node* phi = new PhiNode(region, toop); 3573 _gvn.set_type(region, Type::CONTROL); 3574 _gvn.set_type(phi, toop); 3575 3576 C->set_has_split_ifs(true); // Has chance for split-if optimization 3577 3578 // Use null-cast information if it is available 3579 bool speculative_not_null = false; 3580 bool never_see_null = ((failure_control == nullptr) // regular case only 3581 && seems_never_null(obj, data, speculative_not_null)); 3582 3583 if (obj->is_InlineType()) { 3584 // Re-execute if buffering during triggers deoptimization 3585 PreserveReexecuteState preexecs(this); 3586 jvms()->set_should_reexecute(true); 3587 obj = obj->as_InlineType()->buffer(this, safe_for_replace); 3588 } 3589 3590 // Null check; get casted pointer; set region slot 3 3591 Node* null_ctl = top(); 3592 Node* not_null_obj = nullptr; 3593 if (null_free) { 3594 assert(safe_for_replace, "must be"); 3595 not_null_obj = null_check(obj); 3596 } else { 3597 not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3598 } 3599 3600 // If not_null_obj is dead, only null-path is taken 3601 if (stopped()) { // Doing instance-of on a null? 3602 set_control(null_ctl); 3603 if (toop->is_inlinetypeptr()) { 3604 return InlineTypeNode::make_null(_gvn, toop->inline_klass()); 3605 } 3606 return null(); 3607 } 3608 region->init_req(_null_path, null_ctl); 3609 phi ->init_req(_null_path, null()); // Set null path value 3610 if (null_ctl == top()) { 3611 // Do this eagerly, so that pattern matches like is_diamond_phi 3612 // will work even during parsing. 3613 assert(_null_path == PATH_LIMIT-1, "delete last"); 3614 region->del_req(_null_path); 3615 phi ->del_req(_null_path); 3616 } 3617 3618 Node* cast_obj = nullptr; 3619 if (improved_klass_ptr_type->klass_is_exact()) { 3620 // The following optimization tries to statically cast the speculative type of the object 3621 // (for example obtained during profiling) to the type of the superklass and then do a 3622 // dynamic check that the type of the object is what we expect. To work correctly 3623 // for checkcast and aastore the type of superklass should be exact. 3624 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3625 // We may not have profiling here or it may not help us. If we have 3626 // a speculative type use it to perform an exact cast. 3627 ciKlass* spec_obj_type = obj_type->speculative_type(); 3628 if (spec_obj_type != nullptr || data != nullptr) { 3629 cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace); 3630 if (cast_obj != nullptr) { 3631 if (failure_control != nullptr) // failure is now impossible 3632 (*failure_control) = top(); 3633 // adjust the type of the phi to the exact klass: 3634 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3635 } 3636 } 3637 } 3638 3639 if (cast_obj == nullptr) { 3640 // Generate the subtype check 3641 Node* improved_superklass = superklass; 3642 if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) { 3643 // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up. 3644 // The other non-constant cases cannot be improved with a cast node here since they could be folded to top. 3645 // Additionally, the benefit would only be minor in non-constant cases. 3646 improved_superklass = makecon(improved_klass_ptr_type); 3647 } 3648 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass); 3649 // Plug in success path into the merge 3650 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3651 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3652 if (failure_control == nullptr) { 3653 if (not_subtype_ctrl != top()) { // If failure is possible 3654 PreserveJVMState pjvms(this); 3655 set_control(not_subtype_ctrl); 3656 Node* obj_klass = nullptr; 3657 if (not_null_obj->is_InlineType()) { 3658 obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass())); 3659 } else { 3660 obj_klass = load_object_klass(not_null_obj); 3661 } 3662 bool is_aastore = (java_bc() == Bytecodes::_aastore); 3663 Deoptimization::DeoptReason reason = is_aastore ? 3664 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check; 3665 builtin_throw(reason); 3666 } 3667 } else { 3668 (*failure_control) = not_subtype_ctrl; 3669 } 3670 } 3671 3672 region->init_req(_obj_path, control()); 3673 phi ->init_req(_obj_path, cast_obj); 3674 3675 // A merge of null or Casted-NotNull obj 3676 Node* res = _gvn.transform(phi); 3677 3678 // Note I do NOT always 'replace_in_map(obj,result)' here. 3679 // if( tk->klass()->can_be_primary_super() ) 3680 // This means that if I successfully store an Object into an array-of-String 3681 // I 'forget' that the Object is really now known to be a String. I have to 3682 // do this because we don't have true union types for interfaces - if I store 3683 // a Baz into an array-of-Interface and then tell the optimizer it's an 3684 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3685 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3686 // replace_in_map( obj, res ); 3687 3688 // Return final merged results 3689 set_control( _gvn.transform(region) ); 3690 record_for_igvn(region); 3691 3692 bool not_inline = !toop->can_be_inline_type(); 3693 bool not_flat_in_array = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array()); 3694 if (EnableValhalla && not_flat_in_array) { 3695 // Check if obj has been loaded from an array 3696 obj = obj->isa_DecodeN() ? obj->in(1) : obj; 3697 Node* array = nullptr; 3698 if (obj->isa_Load()) { 3699 Node* address = obj->in(MemNode::Address); 3700 if (address->isa_AddP()) { 3701 array = address->as_AddP()->in(AddPNode::Base); 3702 } 3703 } else if (obj->is_Phi()) { 3704 Node* region = obj->in(0); 3705 // TODO make this more robust (see JDK-8231346) 3706 if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) { 3707 IfNode* iff = region->in(2)->in(0)->isa_If(); 3708 if (iff != nullptr) { 3709 iff->is_flat_array_check(&_gvn, &array); 3710 } 3711 } 3712 } 3713 if (array != nullptr) { 3714 const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr(); 3715 if (ary_t != nullptr && !ary_t->is_flat()) { 3716 if (!ary_t->is_not_null_free() && not_inline) { 3717 // Casting array element to a non-inline-type, mark array as not null-free. 3718 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free())); 3719 replace_in_map(array, cast); 3720 } else if (!ary_t->is_not_flat()) { 3721 // Casting array element to a non-flat type, mark array as not flat. 3722 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat())); 3723 replace_in_map(array, cast); 3724 } 3725 } 3726 } 3727 } 3728 3729 if (!stopped() && !res->is_InlineType()) { 3730 res = record_profiled_receiver_for_speculation(res); 3731 if (toop->is_inlinetypeptr()) { 3732 Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null()); 3733 res = vt; 3734 if (safe_for_replace) { 3735 replace_in_map(obj, vt); 3736 replace_in_map(not_null_obj, vt); 3737 replace_in_map(res, vt); 3738 } 3739 } 3740 } 3741 return res; 3742 } 3743 3744 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) { 3745 // Load markword 3746 Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3747 Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3748 if (check_lock) { 3749 // Check if obj is locked 3750 Node* locked_bit = MakeConX(markWord::unlocked_value); 3751 locked_bit = _gvn.transform(new AndXNode(locked_bit, mark)); 3752 Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 3753 Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3754 IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN); 3755 _gvn.transform(iff); 3756 Node* locked_region = new RegionNode(3); 3757 Node* mark_phi = new PhiNode(locked_region, TypeX_X); 3758 3759 // Unlocked: Use bits from mark word 3760 locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff))); 3761 mark_phi->init_req(1, mark); 3762 3763 // Locked: Load prototype header from klass 3764 set_control(_gvn.transform(new IfFalseNode(iff))); 3765 // Make loads control dependent to make sure they are only executed if array is locked 3766 Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 3767 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, control(), C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 3768 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 3769 Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 3770 3771 locked_region->init_req(2, control()); 3772 mark_phi->init_req(2, proto); 3773 set_control(_gvn.transform(locked_region)); 3774 record_for_igvn(locked_region); 3775 3776 mark = mark_phi; 3777 } 3778 3779 // Now check if mark word bits are set 3780 Node* mask = MakeConX(mask_val); 3781 Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask)); 3782 record_for_igvn(masked); // Give it a chance to be optimized out by IGVN 3783 Node* cmp = _gvn.transform(new CmpXNode(masked, mask)); 3784 return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne)); 3785 } 3786 3787 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) { 3788 return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false); 3789 } 3790 3791 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) { 3792 // We can't use immutable memory here because the mark word is mutable. 3793 // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the 3794 // check is moved out of loops (mainly to enable loop unswitching). 3795 Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass)); 3796 record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN 3797 return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne)); 3798 } 3799 3800 Node* GraphKit::null_free_array_test(Node* array, bool null_free) { 3801 return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free); 3802 } 3803 3804 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null 3805 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) { 3806 RegionNode* region = new RegionNode(3); 3807 Node* null_ctl = top(); 3808 null_check_oop(val, &null_ctl); 3809 if (null_ctl != top()) { 3810 PreserveJVMState pjvms(this); 3811 set_control(null_ctl); 3812 { 3813 // Deoptimize if null-free array 3814 BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX); 3815 inc_sp(nargs); 3816 uncommon_trap(Deoptimization::Reason_null_check, 3817 Deoptimization::Action_none); 3818 } 3819 region->init_req(1, control()); 3820 } 3821 region->init_req(2, control()); 3822 set_control(_gvn.transform(region)); 3823 record_for_igvn(region); 3824 if (_gvn.type(val) == TypePtr::NULL_PTR) { 3825 // Since we were just successfully storing null, the array can't be null free. 3826 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); 3827 ary_t = ary_t->cast_to_not_null_free(); 3828 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); 3829 if (safe_for_replace) { 3830 replace_in_map(ary, cast); 3831 } 3832 ary = cast; 3833 } 3834 return ary; 3835 } 3836 3837 //------------------------------next_monitor----------------------------------- 3838 // What number should be given to the next monitor? 3839 int GraphKit::next_monitor() { 3840 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3841 int next = current + C->sync_stack_slots(); 3842 // Keep the toplevel high water mark current: 3843 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3844 return current; 3845 } 3846 3847 //------------------------------insert_mem_bar--------------------------------- 3848 // Memory barrier to avoid floating things around 3849 // The membar serves as a pinch point between both control and all memory slices. 3850 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3851 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3852 mb->init_req(TypeFunc::Control, control()); 3853 mb->init_req(TypeFunc::Memory, reset_memory()); 3854 Node* membar = _gvn.transform(mb); 3855 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3856 set_all_memory_call(membar); 3857 return membar; 3858 } 3859 3860 //-------------------------insert_mem_bar_volatile---------------------------- 3861 // Memory barrier to avoid floating things around 3862 // The membar serves as a pinch point between both control and memory(alias_idx). 3863 // If you want to make a pinch point on all memory slices, do not use this 3864 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3865 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3866 // When Parse::do_put_xxx updates a volatile field, it appends a series 3867 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3868 // The first membar is on the same memory slice as the field store opcode. 3869 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3870 // All the other membars (for other volatile slices, including AliasIdxBot, 3871 // which stands for all unknown volatile slices) are control-dependent 3872 // on the first membar. This prevents later volatile loads or stores 3873 // from sliding up past the just-emitted store. 3874 3875 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3876 mb->set_req(TypeFunc::Control,control()); 3877 if (alias_idx == Compile::AliasIdxBot) { 3878 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3879 } else { 3880 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3881 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3882 } 3883 Node* membar = _gvn.transform(mb); 3884 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3885 if (alias_idx == Compile::AliasIdxBot) { 3886 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3887 } else { 3888 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3889 } 3890 return membar; 3891 } 3892 3893 //------------------------------shared_lock------------------------------------ 3894 // Emit locking code. 3895 FastLockNode* GraphKit::shared_lock(Node* obj) { 3896 // bci is either a monitorenter bc or InvocationEntryBci 3897 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3898 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3899 3900 if( !GenerateSynchronizationCode ) 3901 return nullptr; // Not locking things? 3902 3903 if (stopped()) // Dead monitor? 3904 return nullptr; 3905 3906 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3907 3908 // Box the stack location 3909 Node* box = new BoxLockNode(next_monitor()); 3910 // Check for bailout after new BoxLockNode 3911 if (failing()) { return nullptr; } 3912 box = _gvn.transform(box); 3913 Node* mem = reset_memory(); 3914 3915 FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock(); 3916 3917 // Add monitor to debug info for the slow path. If we block inside the 3918 // slow path and de-opt, we need the monitor hanging around 3919 map()->push_monitor( flock ); 3920 3921 const TypeFunc *tf = LockNode::lock_type(); 3922 LockNode *lock = new LockNode(C, tf); 3923 3924 lock->init_req( TypeFunc::Control, control() ); 3925 lock->init_req( TypeFunc::Memory , mem ); 3926 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3927 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3928 lock->init_req( TypeFunc::ReturnAdr, top() ); 3929 3930 lock->init_req(TypeFunc::Parms + 0, obj); 3931 lock->init_req(TypeFunc::Parms + 1, box); 3932 lock->init_req(TypeFunc::Parms + 2, flock); 3933 add_safepoint_edges(lock); 3934 3935 lock = _gvn.transform( lock )->as_Lock(); 3936 3937 // lock has no side-effects, sets few values 3938 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3939 3940 insert_mem_bar(Op_MemBarAcquireLock); 3941 3942 // Add this to the worklist so that the lock can be eliminated 3943 record_for_igvn(lock); 3944 3945 #ifndef PRODUCT 3946 if (PrintLockStatistics) { 3947 // Update the counter for this lock. Don't bother using an atomic 3948 // operation since we don't require absolute accuracy. 3949 lock->create_lock_counter(map()->jvms()); 3950 increment_counter(lock->counter()->addr()); 3951 } 3952 #endif 3953 3954 return flock; 3955 } 3956 3957 3958 //------------------------------shared_unlock---------------------------------- 3959 // Emit unlocking code. 3960 void GraphKit::shared_unlock(Node* box, Node* obj) { 3961 // bci is either a monitorenter bc or InvocationEntryBci 3962 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3963 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3964 3965 if( !GenerateSynchronizationCode ) 3966 return; 3967 if (stopped()) { // Dead monitor? 3968 map()->pop_monitor(); // Kill monitor from debug info 3969 return; 3970 } 3971 assert(!obj->is_InlineType(), "should not unlock on inline type"); 3972 3973 // Memory barrier to avoid floating things down past the locked region 3974 insert_mem_bar(Op_MemBarReleaseLock); 3975 3976 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 3977 UnlockNode *unlock = new UnlockNode(C, tf); 3978 #ifdef ASSERT 3979 unlock->set_dbg_jvms(sync_jvms()); 3980 #endif 3981 uint raw_idx = Compile::AliasIdxRaw; 3982 unlock->init_req( TypeFunc::Control, control() ); 3983 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 3984 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3985 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 3986 unlock->init_req( TypeFunc::ReturnAdr, top() ); 3987 3988 unlock->init_req(TypeFunc::Parms + 0, obj); 3989 unlock->init_req(TypeFunc::Parms + 1, box); 3990 unlock = _gvn.transform(unlock)->as_Unlock(); 3991 3992 Node* mem = reset_memory(); 3993 3994 // unlock has no side-effects, sets few values 3995 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 3996 3997 // Kill monitor from debug info 3998 map()->pop_monitor( ); 3999 } 4000 4001 //-------------------------------get_layout_helper----------------------------- 4002 // If the given klass is a constant or known to be an array, 4003 // fetch the constant layout helper value into constant_value 4004 // and return null. Otherwise, load the non-constant 4005 // layout helper value, and return the node which represents it. 4006 // This two-faced routine is useful because allocation sites 4007 // almost always feature constant types. 4008 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 4009 const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr(); 4010 if (!StressReflectiveCode && klass_t != nullptr) { 4011 bool xklass = klass_t->klass_is_exact(); 4012 bool can_be_flat = false; 4013 const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr(); 4014 if (UseFlatArray && !xklass && ary_type != nullptr && !ary_type->is_null_free()) { 4015 // Don't constant fold if the runtime type might be a flat array but the static type is not. 4016 const TypeOopPtr* elem = ary_type->elem()->make_oopptr(); 4017 can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array()); 4018 } 4019 if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) { 4020 jint lhelper; 4021 if (klass_t->is_flat()) { 4022 lhelper = ary_type->flat_layout_helper(); 4023 } else if (klass_t->isa_aryklassptr()) { 4024 BasicType elem = ary_type->elem()->array_element_basic_type(); 4025 if (is_reference_type(elem, true)) { 4026 elem = T_OBJECT; 4027 } 4028 lhelper = Klass::array_layout_helper(elem); 4029 } else { 4030 lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper(); 4031 } 4032 if (lhelper != Klass::_lh_neutral_value) { 4033 constant_value = lhelper; 4034 return (Node*) nullptr; 4035 } 4036 } 4037 } 4038 constant_value = Klass::_lh_neutral_value; // put in a known value 4039 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 4040 return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered); 4041 } 4042 4043 // We just put in an allocate/initialize with a big raw-memory effect. 4044 // Hook selected additional alias categories on the initialization. 4045 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 4046 MergeMemNode* init_in_merge, 4047 Node* init_out_raw) { 4048 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 4049 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 4050 4051 Node* prevmem = kit.memory(alias_idx); 4052 init_in_merge->set_memory_at(alias_idx, prevmem); 4053 if (init_out_raw != nullptr) { 4054 kit.set_memory(init_out_raw, alias_idx); 4055 } 4056 } 4057 4058 //---------------------------set_output_for_allocation------------------------- 4059 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 4060 const TypeOopPtr* oop_type, 4061 bool deoptimize_on_exception) { 4062 int rawidx = Compile::AliasIdxRaw; 4063 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 4064 add_safepoint_edges(alloc); 4065 Node* allocx = _gvn.transform(alloc); 4066 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 4067 // create memory projection for i_o 4068 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 4069 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 4070 4071 // create a memory projection as for the normal control path 4072 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 4073 set_memory(malloc, rawidx); 4074 4075 // a normal slow-call doesn't change i_o, but an allocation does 4076 // we create a separate i_o projection for the normal control path 4077 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 4078 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 4079 4080 // put in an initialization barrier 4081 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 4082 rawoop)->as_Initialize(); 4083 assert(alloc->initialization() == init, "2-way macro link must work"); 4084 assert(init ->allocation() == alloc, "2-way macro link must work"); 4085 { 4086 // Extract memory strands which may participate in the new object's 4087 // initialization, and source them from the new InitializeNode. 4088 // This will allow us to observe initializations when they occur, 4089 // and link them properly (as a group) to the InitializeNode. 4090 assert(init->in(InitializeNode::Memory) == malloc, ""); 4091 MergeMemNode* minit_in = MergeMemNode::make(malloc); 4092 init->set_req(InitializeNode::Memory, minit_in); 4093 record_for_igvn(minit_in); // fold it up later, if possible 4094 _gvn.set_type(minit_in, Type::MEMORY); 4095 Node* minit_out = memory(rawidx); 4096 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 4097 // Add an edge in the MergeMem for the header fields so an access 4098 // to one of those has correct memory state 4099 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()))); 4100 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()))); 4101 if (oop_type->isa_aryptr()) { 4102 const TypeAryPtr* arytype = oop_type->is_aryptr(); 4103 if (arytype->is_flat()) { 4104 // Initially all flat array accesses share a single slice 4105 // but that changes after parsing. Prepare the memory graph so 4106 // it can optimize flat array accesses properly once they 4107 // don't share a single slice. 4108 assert(C->flat_accesses_share_alias(), "should be set at parse time"); 4109 C->set_flat_accesses_share_alias(false); 4110 ciInlineKlass* vk = arytype->elem()->inline_klass(); 4111 for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) { 4112 ciField* field = vk->nonstatic_field_at(i); 4113 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 4114 continue; // do not bother to track really large numbers of fields 4115 int off_in_vt = field->offset_in_bytes() - vk->first_field_offset(); 4116 const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot); 4117 int fieldidx = C->get_alias_index(adr_type, true); 4118 // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node 4119 // can result in per flat array field Phis to be created which confuses the logic of 4120 // Compile::adjust_flat_array_access_aliases(). 4121 hook_memory_on_init(*this, fieldidx, minit_in, nullptr); 4122 } 4123 C->set_flat_accesses_share_alias(true); 4124 hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out); 4125 } else { 4126 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 4127 int elemidx = C->get_alias_index(telemref); 4128 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 4129 } 4130 } else if (oop_type->isa_instptr()) { 4131 set_memory(minit_out, C->get_alias_index(oop_type)); // mark word 4132 ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass(); 4133 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 4134 ciField* field = ik->nonstatic_field_at(i); 4135 if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize) 4136 continue; // do not bother to track really large numbers of fields 4137 // Find (or create) the alias category for this field: 4138 int fieldidx = C->alias_type(field)->index(); 4139 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 4140 } 4141 } 4142 } 4143 4144 // Cast raw oop to the real thing... 4145 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 4146 javaoop = _gvn.transform(javaoop); 4147 C->set_recent_alloc(control(), javaoop); 4148 assert(just_allocated_object(control()) == javaoop, "just allocated"); 4149 4150 #ifdef ASSERT 4151 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 4152 assert(AllocateNode::Ideal_allocation(rawoop) == alloc, 4153 "Ideal_allocation works"); 4154 assert(AllocateNode::Ideal_allocation(javaoop) == alloc, 4155 "Ideal_allocation works"); 4156 if (alloc->is_AllocateArray()) { 4157 assert(AllocateArrayNode::Ideal_array_allocation(rawoop) == alloc->as_AllocateArray(), 4158 "Ideal_allocation works"); 4159 assert(AllocateArrayNode::Ideal_array_allocation(javaoop) == alloc->as_AllocateArray(), 4160 "Ideal_allocation works"); 4161 } else { 4162 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 4163 } 4164 } 4165 #endif //ASSERT 4166 4167 return javaoop; 4168 } 4169 4170 //---------------------------new_instance-------------------------------------- 4171 // This routine takes a klass_node which may be constant (for a static type) 4172 // or may be non-constant (for reflective code). It will work equally well 4173 // for either, and the graph will fold nicely if the optimizer later reduces 4174 // the type to a constant. 4175 // The optional arguments are for specialized use by intrinsics: 4176 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 4177 // - If 'return_size_val', report the total object size to the caller. 4178 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 4179 Node* GraphKit::new_instance(Node* klass_node, 4180 Node* extra_slow_test, 4181 Node* *return_size_val, 4182 bool deoptimize_on_exception, 4183 InlineTypeNode* inline_type_node) { 4184 // Compute size in doublewords 4185 // The size is always an integral number of doublewords, represented 4186 // as a positive bytewise size stored in the klass's layout_helper. 4187 // The layout_helper also encodes (in a low bit) the need for a slow path. 4188 jint layout_con = Klass::_lh_neutral_value; 4189 Node* layout_val = get_layout_helper(klass_node, layout_con); 4190 bool layout_is_con = (layout_val == nullptr); 4191 4192 if (extra_slow_test == nullptr) extra_slow_test = intcon(0); 4193 // Generate the initial go-slow test. It's either ALWAYS (return a 4194 // Node for 1) or NEVER (return a null) or perhaps (in the reflective 4195 // case) a computed value derived from the layout_helper. 4196 Node* initial_slow_test = nullptr; 4197 if (layout_is_con) { 4198 assert(!StressReflectiveCode, "stress mode does not use these paths"); 4199 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 4200 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 4201 } else { // reflective case 4202 // This reflective path is used by Unsafe.allocateInstance. 4203 // (It may be stress-tested by specifying StressReflectiveCode.) 4204 // Basically, we want to get into the VM is there's an illegal argument. 4205 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 4206 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 4207 if (extra_slow_test != intcon(0)) { 4208 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 4209 } 4210 // (Macro-expander will further convert this to a Bool, if necessary.) 4211 } 4212 4213 // Find the size in bytes. This is easy; it's the layout_helper. 4214 // The size value must be valid even if the slow path is taken. 4215 Node* size = nullptr; 4216 if (layout_is_con) { 4217 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 4218 } else { // reflective case 4219 // This reflective path is used by clone and Unsafe.allocateInstance. 4220 size = ConvI2X(layout_val); 4221 4222 // Clear the low bits to extract layout_helper_size_in_bytes: 4223 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 4224 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 4225 size = _gvn.transform( new AndXNode(size, mask) ); 4226 } 4227 if (return_size_val != nullptr) { 4228 (*return_size_val) = size; 4229 } 4230 4231 // This is a precise notnull oop of the klass. 4232 // (Actually, it need not be precise if this is a reflective allocation.) 4233 // It's what we cast the result to. 4234 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 4235 if (!tklass) tklass = TypeInstKlassPtr::OBJECT; 4236 const TypeOopPtr* oop_type = tklass->as_instance_type(); 4237 4238 // Now generate allocation code 4239 4240 // The entire memory state is needed for slow path of the allocation 4241 // since GC and deoptimization can happen. 4242 Node *mem = reset_memory(); 4243 set_all_memory(mem); // Create new memory state 4244 4245 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 4246 control(), mem, i_o(), 4247 size, klass_node, 4248 initial_slow_test, inline_type_node); 4249 4250 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 4251 } 4252 4253 //-------------------------------new_array------------------------------------- 4254 // helper for newarray and anewarray 4255 // The 'length' parameter is (obviously) the length of the array. 4256 // The optional arguments are for specialized use by intrinsics: 4257 // - If 'return_size_val', report the non-padded array size (sum of header size 4258 // and array body) to the caller. 4259 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 4260 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 4261 Node* length, // number of array elements 4262 int nargs, // number of arguments to push back for uncommon trap 4263 Node* *return_size_val, 4264 bool deoptimize_on_exception) { 4265 jint layout_con = Klass::_lh_neutral_value; 4266 Node* layout_val = get_layout_helper(klass_node, layout_con); 4267 bool layout_is_con = (layout_val == nullptr); 4268 4269 if (!layout_is_con && !StressReflectiveCode && 4270 !too_many_traps(Deoptimization::Reason_class_check)) { 4271 // This is a reflective array creation site. 4272 // Optimistically assume that it is a subtype of Object[], 4273 // so that we can fold up all the address arithmetic. 4274 layout_con = Klass::array_layout_helper(T_OBJECT); 4275 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 4276 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 4277 { BuildCutout unless(this, bol_lh, PROB_MAX); 4278 inc_sp(nargs); 4279 uncommon_trap(Deoptimization::Reason_class_check, 4280 Deoptimization::Action_maybe_recompile); 4281 } 4282 layout_val = nullptr; 4283 layout_is_con = true; 4284 } 4285 4286 // Generate the initial go-slow test. Make sure we do not overflow 4287 // if length is huge (near 2Gig) or negative! We do not need 4288 // exact double-words here, just a close approximation of needed 4289 // double-words. We can't add any offset or rounding bits, lest we 4290 // take a size -1 of bytes and make it positive. Use an unsigned 4291 // compare, so negative sizes look hugely positive. 4292 int fast_size_limit = FastAllocateSizeLimit; 4293 if (layout_is_con) { 4294 assert(!StressReflectiveCode, "stress mode does not use these paths"); 4295 // Increase the size limit if we have exact knowledge of array type. 4296 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 4297 fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0); 4298 } 4299 4300 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 4301 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 4302 4303 // --- Size Computation --- 4304 // array_size = round_to_heap(array_header + (length << elem_shift)); 4305 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes) 4306 // and align_to(x, y) == ((x + y-1) & ~(y-1)) 4307 // The rounding mask is strength-reduced, if possible. 4308 int round_mask = MinObjAlignmentInBytes - 1; 4309 Node* header_size = nullptr; 4310 // (T_BYTE has the weakest alignment and size restrictions...) 4311 if (layout_is_con) { 4312 int hsize = Klass::layout_helper_header_size(layout_con); 4313 int eshift = Klass::layout_helper_log2_element_size(layout_con); 4314 bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con); 4315 if ((round_mask & ~right_n_bits(eshift)) == 0) 4316 round_mask = 0; // strength-reduce it if it goes away completely 4317 assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 4318 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 4319 assert(header_size_min <= hsize, "generic minimum is smallest"); 4320 header_size = intcon(hsize); 4321 } else { 4322 Node* hss = intcon(Klass::_lh_header_size_shift); 4323 Node* hsm = intcon(Klass::_lh_header_size_mask); 4324 header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 4325 header_size = _gvn.transform(new AndINode(header_size, hsm)); 4326 } 4327 4328 Node* elem_shift = nullptr; 4329 if (layout_is_con) { 4330 int eshift = Klass::layout_helper_log2_element_size(layout_con); 4331 if (eshift != 0) 4332 elem_shift = intcon(eshift); 4333 } else { 4334 // There is no need to mask or shift this value. 4335 // The semantics of LShiftINode include an implicit mask to 0x1F. 4336 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 4337 elem_shift = layout_val; 4338 } 4339 4340 // Transition to native address size for all offset calculations: 4341 Node* lengthx = ConvI2X(length); 4342 Node* headerx = ConvI2X(header_size); 4343 #ifdef _LP64 4344 { const TypeInt* tilen = _gvn.find_int_type(length); 4345 if (tilen != nullptr && tilen->_lo < 0) { 4346 // Add a manual constraint to a positive range. Cf. array_element_address. 4347 jint size_max = fast_size_limit; 4348 if (size_max > tilen->_hi) size_max = tilen->_hi; 4349 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 4350 4351 // Only do a narrow I2L conversion if the range check passed. 4352 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 4353 _gvn.transform(iff); 4354 RegionNode* region = new RegionNode(3); 4355 _gvn.set_type(region, Type::CONTROL); 4356 lengthx = new PhiNode(region, TypeLong::LONG); 4357 _gvn.set_type(lengthx, TypeLong::LONG); 4358 4359 // Range check passed. Use ConvI2L node with narrow type. 4360 Node* passed = IfFalse(iff); 4361 region->init_req(1, passed); 4362 // Make I2L conversion control dependent to prevent it from 4363 // floating above the range check during loop optimizations. 4364 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 4365 4366 // Range check failed. Use ConvI2L with wide type because length may be invalid. 4367 region->init_req(2, IfTrue(iff)); 4368 lengthx->init_req(2, ConvI2X(length)); 4369 4370 set_control(region); 4371 record_for_igvn(region); 4372 record_for_igvn(lengthx); 4373 } 4374 } 4375 #endif 4376 4377 // Combine header size and body size for the array copy part, then align (if 4378 // necessary) for the allocation part. This computation cannot overflow, 4379 // because it is used only in two places, one where the length is sharply 4380 // limited, and the other after a successful allocation. 4381 Node* abody = lengthx; 4382 if (elem_shift != nullptr) { 4383 abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 4384 } 4385 Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody)); 4386 4387 if (return_size_val != nullptr) { 4388 // This is the size 4389 (*return_size_val) = non_rounded_size; 4390 } 4391 4392 Node* size = non_rounded_size; 4393 if (round_mask != 0) { 4394 Node* mask1 = MakeConX(round_mask); 4395 size = _gvn.transform(new AddXNode(size, mask1)); 4396 Node* mask2 = MakeConX(~round_mask); 4397 size = _gvn.transform(new AndXNode(size, mask2)); 4398 } 4399 // else if round_mask == 0, the size computation is self-rounding 4400 4401 // Now generate allocation code 4402 4403 // The entire memory state is needed for slow path of the allocation 4404 // since GC and deoptimization can happen. 4405 Node *mem = reset_memory(); 4406 set_all_memory(mem); // Create new memory state 4407 4408 if (initial_slow_test->is_Bool()) { 4409 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 4410 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 4411 } 4412 4413 const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr(); 4414 const TypeOopPtr* ary_type = ary_klass->as_instance_type(); 4415 const TypeAryPtr* ary_ptr = ary_type->isa_aryptr(); 4416 4417 // Inline type array variants: 4418 // - null-ok: ciObjArrayKlass with is_elem_null_free() = false 4419 // - null-free: ciObjArrayKlass with is_elem_null_free() = true 4420 // - null-free, flat: ciFlatArrayKlass with is_elem_null_free() = true 4421 // Check if array is a null-free, non-flat inline type array 4422 // that needs to be initialized with the default inline type. 4423 Node* default_value = nullptr; 4424 Node* raw_default_value = nullptr; 4425 if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) { 4426 // Array type is known 4427 if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) { 4428 ciInlineKlass* vk = ary_ptr->elem()->inline_klass(); 4429 default_value = InlineTypeNode::default_oop(gvn(), vk); 4430 if (UseCompressedOops) { 4431 // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops 4432 default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop())); 4433 Node* lower = _gvn.transform(new CastP2XNode(control(), default_value)); 4434 Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32))); 4435 raw_default_value = _gvn.transform(new OrLNode(lower, upper)); 4436 } else { 4437 raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value)); 4438 } 4439 } 4440 } 4441 4442 Node* valid_length_test = _gvn.intcon(1); 4443 if (ary_type->isa_aryptr()) { 4444 BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type(); 4445 jint max = TypeAryPtr::max_array_length(bt); 4446 Node* valid_length_cmp = _gvn.transform(new CmpUNode(length, intcon(max))); 4447 valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le)); 4448 } 4449 4450 // Create the AllocateArrayNode and its result projections 4451 AllocateArrayNode* alloc 4452 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 4453 control(), mem, i_o(), 4454 size, klass_node, 4455 initial_slow_test, 4456 length, valid_length_test, 4457 default_value, raw_default_value); 4458 // Cast to correct type. Note that the klass_node may be constant or not, 4459 // and in the latter case the actual array type will be inexact also. 4460 // (This happens via a non-constant argument to inline_native_newArray.) 4461 // In any case, the value of klass_node provides the desired array type. 4462 const TypeInt* length_type = _gvn.find_int_type(length); 4463 if (ary_type->isa_aryptr() && length_type != nullptr) { 4464 // Try to get a better type than POS for the size 4465 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4466 } 4467 4468 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 4469 4470 array_ideal_length(alloc, ary_type, true); 4471 return javaoop; 4472 } 4473 4474 // The following "Ideal_foo" functions are placed here because they recognize 4475 // the graph shapes created by the functions immediately above. 4476 4477 //---------------------------Ideal_allocation---------------------------------- 4478 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 4479 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr) { 4480 if (ptr == nullptr) { // reduce dumb test in callers 4481 return nullptr; 4482 } 4483 4484 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4485 ptr = bs->step_over_gc_barrier(ptr); 4486 4487 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 4488 ptr = ptr->in(1); 4489 if (ptr == nullptr) return nullptr; 4490 } 4491 // Return null for allocations with several casts: 4492 // j.l.reflect.Array.newInstance(jobject, jint) 4493 // Object.clone() 4494 // to keep more precise type from last cast. 4495 if (ptr->is_Proj()) { 4496 Node* allo = ptr->in(0); 4497 if (allo != nullptr && allo->is_Allocate()) { 4498 return allo->as_Allocate(); 4499 } 4500 } 4501 // Report failure to match. 4502 return nullptr; 4503 } 4504 4505 // Fancy version which also strips off an offset (and reports it to caller). 4506 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseValues* phase, 4507 intptr_t& offset) { 4508 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 4509 if (base == nullptr) return nullptr; 4510 return Ideal_allocation(base); 4511 } 4512 4513 // Trace Initialize <- Proj[Parm] <- Allocate 4514 AllocateNode* InitializeNode::allocation() { 4515 Node* rawoop = in(InitializeNode::RawAddress); 4516 if (rawoop->is_Proj()) { 4517 Node* alloc = rawoop->in(0); 4518 if (alloc->is_Allocate()) { 4519 return alloc->as_Allocate(); 4520 } 4521 } 4522 return nullptr; 4523 } 4524 4525 // Trace Allocate -> Proj[Parm] -> Initialize 4526 InitializeNode* AllocateNode::initialization() { 4527 ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress); 4528 if (rawoop == nullptr) return nullptr; 4529 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 4530 Node* init = rawoop->fast_out(i); 4531 if (init->is_Initialize()) { 4532 assert(init->as_Initialize()->allocation() == this, "2-way link"); 4533 return init->as_Initialize(); 4534 } 4535 } 4536 return nullptr; 4537 } 4538 4539 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. 4540 void GraphKit::add_parse_predicate(Deoptimization::DeoptReason reason, const int nargs) { 4541 // Too many traps seen? 4542 if (too_many_traps(reason)) { 4543 #ifdef ASSERT 4544 if (TraceLoopPredicate) { 4545 int tc = C->trap_count(reason); 4546 tty->print("too many traps=%s tcount=%d in ", 4547 Deoptimization::trap_reason_name(reason), tc); 4548 method()->print(); // which method has too many predicate traps 4549 tty->cr(); 4550 } 4551 #endif 4552 // We cannot afford to take more traps here, 4553 // do not generate Parse Predicate. 4554 return; 4555 } 4556 4557 ParsePredicateNode* parse_predicate = new ParsePredicateNode(control(), reason, &_gvn); 4558 _gvn.set_type(parse_predicate, parse_predicate->Value(&_gvn)); 4559 Node* if_false = _gvn.transform(new IfFalseNode(parse_predicate)); 4560 { 4561 PreserveJVMState pjvms(this); 4562 set_control(if_false); 4563 inc_sp(nargs); 4564 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 4565 } 4566 Node* if_true = _gvn.transform(new IfTrueNode(parse_predicate)); 4567 set_control(if_true); 4568 } 4569 4570 // Add Parse Predicates which serve as placeholders to create new Runtime Predicates above them. All 4571 // Runtime Predicates inside a Runtime Predicate block share the same uncommon trap as the Parse Predicate. 4572 void GraphKit::add_parse_predicates(int nargs) { 4573 if (UseLoopPredicate) { 4574 add_parse_predicate(Deoptimization::Reason_predicate, nargs); 4575 } 4576 if (UseProfiledLoopPredicate) { 4577 add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs); 4578 } 4579 // Loop Limit Check Predicate should be near the loop. 4580 add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs); 4581 } 4582 4583 void GraphKit::sync_kit(IdealKit& ideal) { 4584 set_all_memory(ideal.merged_memory()); 4585 set_i_o(ideal.i_o()); 4586 set_control(ideal.ctrl()); 4587 } 4588 4589 void GraphKit::final_sync(IdealKit& ideal) { 4590 // Final sync IdealKit and graphKit. 4591 sync_kit(ideal); 4592 } 4593 4594 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) { 4595 Node* len = load_array_length(load_String_value(str, set_ctrl)); 4596 Node* coder = load_String_coder(str, set_ctrl); 4597 // Divide length by 2 if coder is UTF16 4598 return _gvn.transform(new RShiftINode(len, coder)); 4599 } 4600 4601 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) { 4602 int value_offset = java_lang_String::value_offset(); 4603 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4604 false, nullptr, Type::Offset(0)); 4605 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4606 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4607 TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true), 4608 ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0)); 4609 Node* p = basic_plus_adr(str, str, value_offset); 4610 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT, 4611 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4612 return load; 4613 } 4614 4615 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) { 4616 if (!CompactStrings) { 4617 return intcon(java_lang_String::CODER_UTF16); 4618 } 4619 int coder_offset = java_lang_String::coder_offset(); 4620 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4621 false, nullptr, Type::Offset(0)); 4622 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4623 4624 Node* p = basic_plus_adr(str, str, coder_offset); 4625 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE, 4626 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED); 4627 return load; 4628 } 4629 4630 void GraphKit::store_String_value(Node* str, Node* value) { 4631 int value_offset = java_lang_String::value_offset(); 4632 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4633 false, nullptr, Type::Offset(0)); 4634 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4635 4636 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type, 4637 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED); 4638 } 4639 4640 void GraphKit::store_String_coder(Node* str, Node* value) { 4641 int coder_offset = java_lang_String::coder_offset(); 4642 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4643 false, nullptr, Type::Offset(0)); 4644 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4645 4646 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type, 4647 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED); 4648 } 4649 4650 // Capture src and dst memory state with a MergeMemNode 4651 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4652 if (src_type == dst_type) { 4653 // Types are equal, we don't need a MergeMemNode 4654 return memory(src_type); 4655 } 4656 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4657 record_for_igvn(merge); // fold it up later, if possible 4658 int src_idx = C->get_alias_index(src_type); 4659 int dst_idx = C->get_alias_index(dst_type); 4660 merge->set_memory_at(src_idx, memory(src_idx)); 4661 merge->set_memory_at(dst_idx, memory(dst_idx)); 4662 return merge; 4663 } 4664 4665 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4666 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4667 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4668 // If input and output memory types differ, capture both states to preserve 4669 // the dependency between preceding and subsequent loads/stores. 4670 // For example, the following program: 4671 // StoreB 4672 // compress_string 4673 // LoadB 4674 // has this memory graph (use->def): 4675 // LoadB -> compress_string -> CharMem 4676 // ... -> StoreB -> ByteMem 4677 // The intrinsic hides the dependency between LoadB and StoreB, causing 4678 // the load to read from memory not containing the result of the StoreB. 4679 // The correct memory graph should look like this: 4680 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4681 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4682 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4683 Node* res_mem = _gvn.transform(new SCMemProjNode(_gvn.transform(str))); 4684 set_memory(res_mem, TypeAryPtr::BYTES); 4685 return str; 4686 } 4687 4688 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4689 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4690 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4691 // Capture src and dst memory (see comment in 'compress_string'). 4692 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4693 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4694 set_memory(_gvn.transform(str), dst_type); 4695 } 4696 4697 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4698 /** 4699 * int i_char = start; 4700 * for (int i_byte = 0; i_byte < count; i_byte++) { 4701 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4702 * } 4703 */ 4704 add_parse_predicates(); 4705 C->set_has_loops(true); 4706 4707 RegionNode* head = new RegionNode(3); 4708 head->init_req(1, control()); 4709 gvn().set_type(head, Type::CONTROL); 4710 record_for_igvn(head); 4711 4712 Node* i_byte = new PhiNode(head, TypeInt::INT); 4713 i_byte->init_req(1, intcon(0)); 4714 gvn().set_type(i_byte, TypeInt::INT); 4715 record_for_igvn(i_byte); 4716 4717 Node* i_char = new PhiNode(head, TypeInt::INT); 4718 i_char->init_req(1, start); 4719 gvn().set_type(i_char, TypeInt::INT); 4720 record_for_igvn(i_char); 4721 4722 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4723 gvn().set_type(mem, Type::MEMORY); 4724 record_for_igvn(mem); 4725 set_control(head); 4726 set_memory(mem, TypeAryPtr::BYTES); 4727 Node* ch = load_array_element(src, i_byte, TypeAryPtr::BYTES, /* set_ctrl */ true); 4728 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4729 AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered, 4730 false, false, true /* mismatched */); 4731 4732 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4733 head->init_req(2, IfTrue(iff)); 4734 mem->init_req(2, st); 4735 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4736 i_char->init_req(2, AddI(i_char, intcon(2))); 4737 4738 set_control(IfFalse(iff)); 4739 set_memory(st, TypeAryPtr::BYTES); 4740 } 4741 4742 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) { 4743 if (!field->is_constant()) { 4744 return nullptr; // Field not marked as constant. 4745 } 4746 ciInstance* holder = nullptr; 4747 if (!field->is_static()) { 4748 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop(); 4749 if (const_oop != nullptr && const_oop->is_instance()) { 4750 holder = const_oop->as_instance(); 4751 } 4752 } 4753 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(), 4754 /*is_unsigned_load=*/false); 4755 if (con_type != nullptr) { 4756 Node* con = makecon(con_type); 4757 if (field->type()->is_inlinetype()) { 4758 con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free()); 4759 } else if (con_type->is_inlinetypeptr()) { 4760 con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free()); 4761 } 4762 return con; 4763 } 4764 return nullptr; 4765 } 4766 4767 //---------------------------load_mirror_from_klass---------------------------- 4768 // Given a klass oop, load its java mirror (a java.lang.Class oop). 4769 Node* GraphKit::load_mirror_from_klass(Node* klass) { 4770 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 4771 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4772 // mirror = ((OopHandle)mirror)->resolve(); 4773 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 4774 } 4775 4776 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) { 4777 const Type* obj_type = obj->bottom_type(); 4778 const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type); 4779 if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) { 4780 const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part 4781 Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type)); 4782 obj = casted_obj; 4783 } 4784 if (sig_type->is_inlinetypeptr()) { 4785 obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass(), !gvn().type(obj)->maybe_null()); 4786 } 4787 return obj; 4788 }