< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"


  26 #include "ci/ciUtilities.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "asm/register.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/graphKit.hpp"
  39 #include "opto/idealKit.hpp"

  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/locknode.hpp"
  42 #include "opto/machnode.hpp"

  43 #include "opto/opaquenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subtypenode.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/bitMap.inline.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 #include "utilities/growableArray.hpp"
  53 
  54 //----------------------------GraphKit-----------------------------------------
  55 // Main utility constructor.
  56 GraphKit::GraphKit(JVMState* jvms)
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn()),
  60     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  61 {

  62   _exceptions = jvms->map()->next_exception();
  63   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  64   set_jvms(jvms);







  65 }
  66 
  67 // Private constructor for parser.
  68 GraphKit::GraphKit()
  69   : Phase(Phase::Parser),
  70     _env(C->env()),
  71     _gvn(*C->initial_gvn()),
  72     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  73 {
  74   _exceptions = nullptr;
  75   set_map(nullptr);
  76   debug_only(_sp = -99);
  77   debug_only(set_bci(-99));
  78 }
  79 
  80 
  81 
  82 //---------------------------clean_stack---------------------------------------
  83 // Clear away rubbish from the stack area of the JVM state.
  84 // This destroys any arguments that may be waiting on the stack.

 842         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 843           tty->print_cr("Zombie local %d: ", local);
 844           jvms->dump();
 845         }
 846         return false;
 847       }
 848     }
 849   }
 850   return true;
 851 }
 852 
 853 #endif //ASSERT
 854 
 855 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 856 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 857   ciMethod* cur_method = jvms->method();
 858   int       cur_bci   = jvms->bci();
 859   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 860     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 861     return Interpreter::bytecode_should_reexecute(code) ||
 862            (is_anewarray && code == Bytecodes::_multianewarray);
 863     // Reexecute _multianewarray bytecode which was replaced with
 864     // sequence of [a]newarray. See Parse::do_multianewarray().
 865     //
 866     // Note: interpreter should not have it set since this optimization
 867     // is limited by dimensions and guarded by flag so in some cases
 868     // multianewarray() runtime calls will be generated and
 869     // the bytecode should not be reexecutes (stack will not be reset).
 870   } else {
 871     return false;
 872   }
 873 }
 874 
 875 // Helper function for adding JVMState and debug information to node
 876 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 877   // Add the safepoint edges to the call (or other safepoint).
 878 
 879   // Make sure dead locals are set to top.  This
 880   // should help register allocation time and cut down on the size
 881   // of the deoptimization information.
 882   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 933   }
 934 
 935   // Presize the call:
 936   DEBUG_ONLY(uint non_debug_edges = call->req());
 937   call->add_req_batch(top(), youngest_jvms->debug_depth());
 938   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 939 
 940   // Set up edges so that the call looks like this:
 941   //  Call [state:] ctl io mem fptr retadr
 942   //       [parms:] parm0 ... parmN
 943   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 944   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 945   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 946   // Note that caller debug info precedes callee debug info.
 947 
 948   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 949   uint debug_ptr = call->req();
 950 
 951   // Loop over the map input edges associated with jvms, add them
 952   // to the call node, & reset all offsets to match call node array.


 953   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 954     uint debug_end   = debug_ptr;
 955     uint debug_start = debug_ptr - in_jvms->debug_size();
 956     debug_ptr = debug_start;  // back up the ptr
 957 
 958     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 959     uint j, k, l;
 960     SafePointNode* in_map = in_jvms->map();
 961     out_jvms->set_map(call);
 962 
 963     if (can_prune_locals) {
 964       assert(in_jvms->method() == out_jvms->method(), "sanity");
 965       // If the current throw can reach an exception handler in this JVMS,
 966       // then we must keep everything live that can reach that handler.
 967       // As a quick and dirty approximation, we look for any handlers at all.
 968       if (in_jvms->method()->has_exception_handlers()) {
 969         can_prune_locals = false;
 970       }
 971     }
 972 
 973     // Add the Locals
 974     k = in_jvms->locoff();
 975     l = in_jvms->loc_size();
 976     out_jvms->set_locoff(p);
 977     if (!can_prune_locals) {
 978       for (j = 0; j < l; j++)
 979         call->set_req(p++, in_map->in(k+j));








 980     } else {
 981       p += l;  // already set to top above by add_req_batch
 982     }
 983 
 984     // Add the Expression Stack
 985     k = in_jvms->stkoff();
 986     l = in_jvms->sp();
 987     out_jvms->set_stkoff(p);
 988     if (!can_prune_locals) {
 989       for (j = 0; j < l; j++)
 990         call->set_req(p++, in_map->in(k+j));








 991     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 992       // Divide stack into {S0,...,S1}, where S0 is set to top.
 993       uint s1 = stack_slots_not_pruned;
 994       stack_slots_not_pruned = 0;  // for next iteration
 995       if (s1 > l)  s1 = l;
 996       uint s0 = l - s1;
 997       p += s0;  // skip the tops preinstalled by add_req_batch
 998       for (j = s0; j < l; j++)
 999         call->set_req(p++, in_map->in(k+j));
1000     } else {
1001       p += l;  // already set to top above by add_req_batch
1002     }
1003 
1004     // Add the Monitors
1005     k = in_jvms->monoff();
1006     l = in_jvms->mon_size();
1007     out_jvms->set_monoff(p);
1008     for (j = 0; j < l; j++)
1009       call->set_req(p++, in_map->in(k+j));
1010 
1011     // Copy any scalar object fields.
1012     k = in_jvms->scloff();
1013     l = in_jvms->scl_size();
1014     out_jvms->set_scloff(p);
1015     for (j = 0; j < l; j++)
1016       call->set_req(p++, in_map->in(k+j));
1017 
1018     // Finish the new jvms.
1019     out_jvms->set_endoff(p);
1020 
1021     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1022     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1023     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1024     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1025     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1026     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1027 
1028     // Update the two tail pointers in parallel.

1029     out_jvms = out_jvms->caller();
1030     in_jvms  = in_jvms->caller();
1031   }
1032 
1033   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1034 
1035   // Test the correctness of JVMState::debug_xxx accessors:
1036   assert(call->jvms()->debug_start() == non_debug_edges, "");
1037   assert(call->jvms()->debug_end()   == call->req(), "");
1038   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1039 }
1040 
1041 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1042   Bytecodes::Code code = java_bc();
1043   if (code == Bytecodes::_wide) {
1044     code = method()->java_code_at_bci(bci() + 1);
1045   }
1046 
1047   if (code != Bytecodes::_illegal) {
1048     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1184   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1185   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1186   return _gvn.transform( new AndLNode(conv, mask) );
1187 }
1188 
1189 Node* GraphKit::ConvL2I(Node* offset) {
1190   // short-circuit a common case
1191   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1192   if (offset_con != (jlong)Type::OffsetBot) {
1193     return intcon((int) offset_con);
1194   }
1195   return _gvn.transform( new ConvL2INode(offset));
1196 }
1197 
1198 //-------------------------load_object_klass-----------------------------------
1199 Node* GraphKit::load_object_klass(Node* obj) {
1200   // Special-case a fresh allocation to avoid building nodes:
1201   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1202   if (akls != nullptr)  return akls;
1203   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1204   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1205 }
1206 
1207 //-------------------------load_array_length-----------------------------------
1208 Node* GraphKit::load_array_length(Node* array) {
1209   // Special-case a fresh allocation to avoid building nodes:
1210   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1211   Node *alen;
1212   if (alloc == nullptr) {
1213     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1214     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1215   } else {
1216     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1217   }
1218   return alen;
1219 }
1220 
1221 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1222                                    const TypeOopPtr* oop_type,
1223                                    bool replace_length_in_map) {
1224   Node* length = alloc->Ideal_length();

1233         replace_in_map(length, ccast);
1234       }
1235       return ccast;
1236     }
1237   }
1238   return length;
1239 }
1240 
1241 //------------------------------do_null_check----------------------------------
1242 // Helper function to do a null pointer check.  Returned value is
1243 // the incoming address with null casted away.  You are allowed to use the
1244 // not-null value only if you are control dependent on the test.
1245 #ifndef PRODUCT
1246 extern uint explicit_null_checks_inserted,
1247             explicit_null_checks_elided;
1248 #endif
1249 Node* GraphKit::null_check_common(Node* value, BasicType type,
1250                                   // optional arguments for variations:
1251                                   bool assert_null,
1252                                   Node* *null_control,
1253                                   bool speculative) {

1254   assert(!assert_null || null_control == nullptr, "not both at once");
1255   if (stopped())  return top();
1256   NOT_PRODUCT(explicit_null_checks_inserted++);
1257 























1258   // Construct null check
1259   Node *chk = nullptr;
1260   switch(type) {
1261     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1262     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1263     case T_ARRAY  : // fall through
1264       type = T_OBJECT;  // simplify further tests
1265     case T_OBJECT : {
1266       const Type *t = _gvn.type( value );
1267 
1268       const TypeOopPtr* tp = t->isa_oopptr();
1269       if (tp != nullptr && !tp->is_loaded()
1270           // Only for do_null_check, not any of its siblings:
1271           && !assert_null && null_control == nullptr) {
1272         // Usually, any field access or invocation on an unloaded oop type
1273         // will simply fail to link, since the statically linked class is
1274         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1275         // the static class is loaded but the sharper oop type is not.
1276         // Rather than checking for this obscure case in lots of places,
1277         // we simply observe that a null check on an unloaded class

1341         }
1342         Node *oldcontrol = control();
1343         set_control(cfg);
1344         Node *res = cast_not_null(value);
1345         set_control(oldcontrol);
1346         NOT_PRODUCT(explicit_null_checks_elided++);
1347         return res;
1348       }
1349       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1350       if (cfg == nullptr)  break;  // Quit at region nodes
1351       depth++;
1352     }
1353   }
1354 
1355   //-----------
1356   // Branch to failure if null
1357   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1358   Deoptimization::DeoptReason reason;
1359   if (assert_null) {
1360     reason = Deoptimization::reason_null_assert(speculative);
1361   } else if (type == T_OBJECT) {
1362     reason = Deoptimization::reason_null_check(speculative);
1363   } else {
1364     reason = Deoptimization::Reason_div0_check;
1365   }
1366   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1367   // ciMethodData::has_trap_at will return a conservative -1 if any
1368   // must-be-null assertion has failed.  This could cause performance
1369   // problems for a method after its first do_null_assert failure.
1370   // Consider using 'Reason_class_check' instead?
1371 
1372   // To cause an implicit null check, we set the not-null probability
1373   // to the maximum (PROB_MAX).  For an explicit check the probability
1374   // is set to a smaller value.
1375   if (null_control != nullptr || too_many_traps(reason)) {
1376     // probability is less likely
1377     ok_prob =  PROB_LIKELY_MAG(3);
1378   } else if (!assert_null &&
1379              (ImplicitNullCheckThreshold > 0) &&
1380              method() != nullptr &&
1381              (method()->method_data()->trap_count(reason)

1415   }
1416 
1417   if (assert_null) {
1418     // Cast obj to null on this path.
1419     replace_in_map(value, zerocon(type));
1420     return zerocon(type);
1421   }
1422 
1423   // Cast obj to not-null on this path, if there is no null_control.
1424   // (If there is a null_control, a non-null value may come back to haunt us.)
1425   if (type == T_OBJECT) {
1426     Node* cast = cast_not_null(value, false);
1427     if (null_control == nullptr || (*null_control) == top())
1428       replace_in_map(value, cast);
1429     value = cast;
1430   }
1431 
1432   return value;
1433 }
1434 
1435 
1436 //------------------------------cast_not_null----------------------------------
1437 // Cast obj to not-null on this path
1438 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1439   const Type *t = _gvn.type(obj);
1440   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1441   // Object is already not-null?
1442   if( t == t_not_null ) return obj;
1443 
1444   Node* cast = new CastPPNode(control(), obj,t_not_null);
1445   cast = _gvn.transform( cast );
1446 
1447   // Scan for instances of 'obj' in the current JVM mapping.
1448   // These instances are known to be not-null after the test.
1449   if (do_replace_in_map)
1450     replace_in_map(obj, cast);
1451 
1452   return cast;                  // Return casted value
1453 }
1454 
1455 // Sometimes in intrinsics, we implicitly know an object is not null
1456 // (there's no actual null check) so we can cast it to not null. In
1457 // the course of optimizations, the input to the cast can become null.
1458 // In that case that data path will die and we need the control path

1541 }
1542 
1543 //=============================================================================
1544 //
1545 // parser factory methods for MemNodes
1546 //
1547 // These are layered on top of the factory methods in LoadNode and StoreNode,
1548 // and integrate with the parser's memory state and _gvn engine.
1549 //
1550 
1551 // factory methods in "int adr_idx"
1552 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1553                           int adr_idx,
1554                           MemNode::MemOrd mo,
1555                           LoadNode::ControlDependency control_dependency,
1556                           bool require_atomic_access,
1557                           bool unaligned,
1558                           bool mismatched,
1559                           bool unsafe,
1560                           uint8_t barrier_data) {
1561   assert(adr_idx == C->get_alias_index(_gvn.type(adr)->isa_ptr()), "slice of address and input slice don't match");

1562   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1563   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1564   debug_only(adr_type = C->get_adr_type(adr_idx));
1565   Node* mem = memory(adr_idx);
1566   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1567   ld = _gvn.transform(ld);

1568   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1569     // Improve graph before escape analysis and boxing elimination.
1570     record_for_igvn(ld);
1571     if (ld->is_DecodeN()) {
1572       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1573       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1574       // a Phi). Recording such cases is still perfectly sound, but may be
1575       // unnecessary and result in some minor IGVN overhead.
1576       record_for_igvn(ld->in(1));
1577     }
1578   }
1579   return ld;
1580 }
1581 
1582 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1583                                 int adr_idx,
1584                                 MemNode::MemOrd mo,
1585                                 bool require_atomic_access,
1586                                 bool unaligned,
1587                                 bool mismatched,
1588                                 bool unsafe,
1589                                 int barrier_data) {
1590   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1591   assert(adr_idx == C->get_alias_index(_gvn.type(adr)->isa_ptr()), "slice of address and input slice don't match");

1592   const TypePtr* adr_type = nullptr;
1593   debug_only(adr_type = C->get_adr_type(adr_idx));
1594   Node *mem = memory(adr_idx);
1595   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1596   if (unaligned) {
1597     st->as_Store()->set_unaligned_access();
1598   }
1599   if (mismatched) {
1600     st->as_Store()->set_mismatched_access();
1601   }
1602   if (unsafe) {
1603     st->as_Store()->set_unsafe_access();
1604   }
1605   st->as_Store()->set_barrier_data(barrier_data);
1606   st = _gvn.transform(st);
1607   set_memory(st, adr_idx);
1608   // Back-to-back stores can only remove intermediate store with DU info
1609   // so push on worklist for optimizer.
1610   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1611     record_for_igvn(st);
1612 
1613   return st;
1614 }
1615 
1616 Node* GraphKit::access_store_at(Node* obj,
1617                                 Node* adr,
1618                                 const TypePtr* adr_type,
1619                                 Node* val,
1620                                 const Type* val_type,
1621                                 BasicType bt,
1622                                 DecoratorSet decorators) {

1623   // Transformation of a value which could be null pointer (CastPP #null)
1624   // could be delayed during Parse (for example, in adjust_map_after_if()).
1625   // Execute transformation here to avoid barrier generation in such case.
1626   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1627     val = _gvn.makecon(TypePtr::NULL_PTR);
1628   }
1629 
1630   if (stopped()) {
1631     return top(); // Dead path ?
1632   }
1633 
1634   assert(val != nullptr, "not dead path");







1635 
1636   C2AccessValuePtr addr(adr, adr_type);
1637   C2AccessValue value(val, val_type);
1638   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1639   if (access.is_raw()) {
1640     return _barrier_set->BarrierSetC2::store_at(access, value);
1641   } else {
1642     return _barrier_set->store_at(access, value);
1643   }
1644 }
1645 
1646 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1647                                Node* adr,   // actual address to store val at
1648                                const TypePtr* adr_type,
1649                                const Type* val_type,
1650                                BasicType bt,
1651                                DecoratorSet decorators) {

1652   if (stopped()) {
1653     return top(); // Dead path ?
1654   }
1655 
1656   C2AccessValuePtr addr(adr, adr_type);
1657   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1658   if (access.is_raw()) {
1659     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1660   } else {
1661     return _barrier_set->load_at(access, val_type);
1662   }
1663 }
1664 
1665 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1666                             const Type* val_type,
1667                             BasicType bt,
1668                             DecoratorSet decorators) {
1669   if (stopped()) {
1670     return top(); // Dead path ?
1671   }
1672 
1673   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1674   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1675   if (access.is_raw()) {
1676     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1677   } else {

1742                                      Node* new_val,
1743                                      const Type* value_type,
1744                                      BasicType bt,
1745                                      DecoratorSet decorators) {
1746   C2AccessValuePtr addr(adr, adr_type);
1747   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1748   if (access.is_raw()) {
1749     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1750   } else {
1751     return _barrier_set->atomic_add_at(access, new_val, value_type);
1752   }
1753 }
1754 
1755 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1756   return _barrier_set->clone(this, src, dst, size, is_array);
1757 }
1758 
1759 //-------------------------array_element_address-------------------------
1760 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1761                                       const TypeInt* sizetype, Node* ctrl) {
1762   uint shift  = exact_log2(type2aelembytes(elembt));












1763   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1764 
1765   // short-circuit a common case (saves lots of confusing waste motion)
1766   jint idx_con = find_int_con(idx, -1);
1767   if (idx_con >= 0) {
1768     intptr_t offset = header + ((intptr_t)idx_con << shift);
1769     return basic_plus_adr(ary, offset);
1770   }
1771 
1772   // must be correct type for alignment purposes
1773   Node* base  = basic_plus_adr(ary, header);
1774   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1775   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1776   return basic_plus_adr(ary, base, scale);
1777 }
1778 
1779 //-------------------------load_array_element-------------------------
1780 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1781   const Type* elemtype = arytype->elem();
1782   BasicType elembt = elemtype->array_element_basic_type();
1783   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1784   if (elembt == T_NARROWOOP) {
1785     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1786   }
1787   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1788                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1789   return ld;
1790 }
1791 
1792 //-------------------------set_arguments_for_java_call-------------------------
1793 // Arguments (pre-popped from the stack) are taken from the JVMS.
1794 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1795   // Add the call arguments:
1796   uint nargs = call->method()->arg_size();
1797   for (uint i = 0; i < nargs; i++) {
1798     Node* arg = argument(i);
1799     call->init_req(i + TypeFunc::Parms, arg);

























































1800   }
1801 }
1802 
1803 //---------------------------set_edges_for_java_call---------------------------
1804 // Connect a newly created call into the current JVMS.
1805 // A return value node (if any) is returned from set_edges_for_java_call.
1806 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1807 
1808   // Add the predefined inputs:
1809   call->init_req( TypeFunc::Control, control() );
1810   call->init_req( TypeFunc::I_O    , i_o() );
1811   call->init_req( TypeFunc::Memory , reset_memory() );
1812   call->init_req( TypeFunc::FramePtr, frameptr() );
1813   call->init_req( TypeFunc::ReturnAdr, top() );
1814 
1815   add_safepoint_edges(call, must_throw);
1816 
1817   Node* xcall = _gvn.transform(call);
1818 
1819   if (xcall == top()) {
1820     set_control(top());
1821     return;
1822   }
1823   assert(xcall == call, "call identity is stable");
1824 
1825   // Re-use the current map to produce the result.
1826 
1827   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1828   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1829   set_all_memory_call(xcall, separate_io_proj);
1830 
1831   //return xcall;   // no need, caller already has it
1832 }
1833 
1834 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1835   if (stopped())  return top();  // maybe the call folded up?
1836 
1837   // Capture the return value, if any.
1838   Node* ret;
1839   if (call->method() == nullptr ||
1840       call->method()->return_type()->basic_type() == T_VOID)
1841         ret = top();
1842   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1843 
1844   // Note:  Since any out-of-line call can produce an exception,
1845   // we always insert an I_O projection from the call into the result.
1846 
1847   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1848 
1849   if (separate_io_proj) {
1850     // The caller requested separate projections be used by the fall
1851     // through and exceptional paths, so replace the projections for
1852     // the fall through path.
1853     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1854     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1855   }




































1856   return ret;
1857 }
1858 
1859 //--------------------set_predefined_input_for_runtime_call--------------------
1860 // Reading and setting the memory state is way conservative here.
1861 // The real problem is that I am not doing real Type analysis on memory,
1862 // so I cannot distinguish card mark stores from other stores.  Across a GC
1863 // point the Store Barrier and the card mark memory has to agree.  I cannot
1864 // have a card mark store and its barrier split across the GC point from
1865 // either above or below.  Here I get that to happen by reading ALL of memory.
1866 // A better answer would be to separate out card marks from other memory.
1867 // For now, return the input memory state, so that it can be reused
1868 // after the call, if this call has restricted memory effects.
1869 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1870   // Set fixed predefined input arguments
1871   Node* memory = reset_memory();
1872   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1873   call->init_req( TypeFunc::Control,   control()  );
1874   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1875   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

1926     if (use->is_MergeMem()) {
1927       wl.push(use);
1928     }
1929   }
1930 }
1931 
1932 // Replace the call with the current state of the kit.
1933 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
1934   JVMState* ejvms = nullptr;
1935   if (has_exceptions()) {
1936     ejvms = transfer_exceptions_into_jvms();
1937   }
1938 
1939   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1940   ReplacedNodes replaced_nodes_exception;
1941   Node* ex_ctl = top();
1942 
1943   SafePointNode* final_state = stop();
1944 
1945   // Find all the needed outputs of this call
1946   CallProjections callprojs;
1947   call->extract_projections(&callprojs, true, do_asserts);
1948 
1949   Unique_Node_List wl;
1950   Node* init_mem = call->in(TypeFunc::Memory);
1951   Node* final_mem = final_state->in(TypeFunc::Memory);
1952   Node* final_ctl = final_state->in(TypeFunc::Control);
1953   Node* final_io = final_state->in(TypeFunc::I_O);
1954 
1955   // Replace all the old call edges with the edges from the inlining result
1956   if (callprojs.fallthrough_catchproj != nullptr) {
1957     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1958   }
1959   if (callprojs.fallthrough_memproj != nullptr) {
1960     if (final_mem->is_MergeMem()) {
1961       // Parser's exits MergeMem was not transformed but may be optimized
1962       final_mem = _gvn.transform(final_mem);
1963     }
1964     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1965     add_mergemem_users_to_worklist(wl, final_mem);
1966   }
1967   if (callprojs.fallthrough_ioproj != nullptr) {
1968     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1969   }
1970 
1971   // Replace the result with the new result if it exists and is used
1972   if (callprojs.resproj != nullptr && result != nullptr) {
1973     C->gvn_replace_by(callprojs.resproj, result);




1974   }
1975 
1976   if (ejvms == nullptr) {
1977     // No exception edges to simply kill off those paths
1978     if (callprojs.catchall_catchproj != nullptr) {
1979       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1980     }
1981     if (callprojs.catchall_memproj != nullptr) {
1982       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1983     }
1984     if (callprojs.catchall_ioproj != nullptr) {
1985       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1986     }
1987     // Replace the old exception object with top
1988     if (callprojs.exobj != nullptr) {
1989       C->gvn_replace_by(callprojs.exobj, C->top());
1990     }
1991   } else {
1992     GraphKit ekit(ejvms);
1993 
1994     // Load my combined exception state into the kit, with all phis transformed:
1995     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1996     replaced_nodes_exception = ex_map->replaced_nodes();
1997 
1998     Node* ex_oop = ekit.use_exception_state(ex_map);
1999 
2000     if (callprojs.catchall_catchproj != nullptr) {
2001       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
2002       ex_ctl = ekit.control();
2003     }
2004     if (callprojs.catchall_memproj != nullptr) {
2005       Node* ex_mem = ekit.reset_memory();
2006       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2007       add_mergemem_users_to_worklist(wl, ex_mem);
2008     }
2009     if (callprojs.catchall_ioproj != nullptr) {
2010       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2011     }
2012 
2013     // Replace the old exception object with the newly created one
2014     if (callprojs.exobj != nullptr) {
2015       C->gvn_replace_by(callprojs.exobj, ex_oop);
2016     }
2017   }
2018 
2019   // Disconnect the call from the graph
2020   call->disconnect_inputs(C);
2021   C->gvn_replace_by(call, C->top());
2022 
2023   // Clean up any MergeMems that feed other MergeMems since the
2024   // optimizer doesn't like that.
2025   while (wl.size() > 0) {
2026     _gvn.transform(wl.pop());
2027   }
2028 
2029   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2030     replaced_nodes.apply(C, final_ctl);
2031   }
2032   if (!ex_ctl->is_top() && do_replaced_nodes) {
2033     replaced_nodes_exception.apply(C, ex_ctl);
2034   }
2035 }
2036 
2037 
2038 //------------------------------increment_counter------------------------------
2039 // for statistics: increment a VM counter by 1
2040 
2041 void GraphKit::increment_counter(address counter_addr) {
2042   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2043   increment_counter(adr1);
2044 }
2045 
2046 void GraphKit::increment_counter(Node* counter_addr) {
2047   int adr_type = Compile::AliasIdxRaw;
2048   Node* ctrl = control();
2049   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);

2210  *
2211  * @param n          node that the type applies to
2212  * @param exact_kls  type from profiling
2213  * @param maybe_null did profiling see null?
2214  *
2215  * @return           node with improved type
2216  */
2217 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2218   const Type* current_type = _gvn.type(n);
2219   assert(UseTypeSpeculation, "type speculation must be on");
2220 
2221   const TypePtr* speculative = current_type->speculative();
2222 
2223   // Should the klass from the profile be recorded in the speculative type?
2224   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2225     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2226     const TypeOopPtr* xtype = tklass->as_instance_type();
2227     assert(xtype->klass_is_exact(), "Should be exact");
2228     // Any reason to believe n is not null (from this profiling or a previous one)?
2229     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2230     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2231     // record the new speculative type's depth
2232     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2233     speculative = speculative->with_inline_depth(jvms()->depth());
2234   } else if (current_type->would_improve_ptr(ptr_kind)) {
2235     // Profiling report that null was never seen so we can change the
2236     // speculative type to non null ptr.
2237     if (ptr_kind == ProfileAlwaysNull) {
2238       speculative = TypePtr::NULL_PTR;
2239     } else {
2240       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2241       const TypePtr* ptr = TypePtr::NOTNULL;
2242       if (speculative != nullptr) {
2243         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2244       } else {
2245         speculative = ptr;
2246       }
2247     }
2248   }
2249 
2250   if (speculative != current_type->speculative()) {
2251     // Build a type with a speculative type (what we think we know
2252     // about the type but will need a guard when we use it)
2253     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2254     // We're changing the type, we need a new CheckCast node to carry
2255     // the new type. The new type depends on the control: what
2256     // profiling tells us is only valid from here as far as we can
2257     // tell.
2258     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2259     cast = _gvn.transform(cast);
2260     replace_in_map(n, cast);
2261     n = cast;
2262   }
2263 
2264   return n;
2265 }
2266 
2267 /**
2268  * Record profiling data from receiver profiling at an invoke with the
2269  * type system so that it can propagate it (speculation)
2270  *
2271  * @param n  receiver node
2272  *
2273  * @return   node with improved type
2274  */
2275 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2276   if (!UseTypeSpeculation) {
2277     return n;
2278   }
2279   ciKlass* exact_kls = profile_has_unique_klass();
2280   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2281   if ((java_bc() == Bytecodes::_checkcast ||
2282        java_bc() == Bytecodes::_instanceof ||
2283        java_bc() == Bytecodes::_aastore) &&
2284       method()->method_data()->is_mature()) {
2285     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2286     if (data != nullptr) {
2287       if (!data->as_BitData()->null_seen()) {
2288         ptr_kind = ProfileNeverNull;







2289       } else {
2290         assert(data->is_ReceiverTypeData(), "bad profile data type");
2291         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2292         uint i = 0;
2293         for (; i < call->row_limit(); i++) {
2294           ciKlass* receiver = call->receiver(i);
2295           if (receiver != nullptr) {
2296             break;




2297           }

2298         }
2299         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2300       }
2301     }
2302   }
2303   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2304 }
2305 
2306 /**
2307  * Record profiling data from argument profiling at an invoke with the
2308  * type system so that it can propagate it (speculation)
2309  *
2310  * @param dest_method  target method for the call
2311  * @param bc           what invoke bytecode is this?
2312  */
2313 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2314   if (!UseTypeSpeculation) {
2315     return;
2316   }
2317   const TypeFunc* tf    = TypeFunc::make(dest_method);
2318   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2319   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2320   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2321     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2322     if (is_reference_type(targ->basic_type())) {
2323       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2324       ciKlass* better_type = nullptr;
2325       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2326         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2327       }
2328       i++;
2329     }
2330   }
2331 }
2332 
2333 /**
2334  * Record profiling data from parameter profiling at an invoke with
2335  * the type system so that it can propagate it (speculation)
2336  */
2337 void GraphKit::record_profiled_parameters_for_speculation() {
2338   if (!UseTypeSpeculation) {
2339     return;
2340   }
2341   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2355  * the type system so that it can propagate it (speculation)
2356  */
2357 void GraphKit::record_profiled_return_for_speculation() {
2358   if (!UseTypeSpeculation) {
2359     return;
2360   }
2361   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2362   ciKlass* better_type = nullptr;
2363   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2364     // If profiling reports a single type for the return value,
2365     // feed it to the type system so it can propagate it as a
2366     // speculative type
2367     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2368   }
2369 }
2370 
2371 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2372   if (Matcher::strict_fp_requires_explicit_rounding) {
2373     // (Note:  TypeFunc::make has a cache that makes this fast.)
2374     const TypeFunc* tf    = TypeFunc::make(dest_method);
2375     int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2376     for (int j = 0; j < nargs; j++) {
2377       const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2378       if (targ->basic_type() == T_DOUBLE) {
2379         // If any parameters are doubles, they must be rounded before
2380         // the call, dprecision_rounding does gvn.transform
2381         Node *arg = argument(j);
2382         arg = dprecision_rounding(arg);
2383         set_argument(j, arg);
2384       }
2385     }
2386   }
2387 }
2388 
2389 // rounding for strict float precision conformance
2390 Node* GraphKit::precision_rounding(Node* n) {
2391   if (Matcher::strict_fp_requires_explicit_rounding) {
2392 #ifdef IA32
2393     if (UseSSE == 0) {
2394       return _gvn.transform(new RoundFloatNode(nullptr, n));
2395     }
2396 #else
2397     Unimplemented();

2506                                   // The first null ends the list.
2507                                   Node* parm0, Node* parm1,
2508                                   Node* parm2, Node* parm3,
2509                                   Node* parm4, Node* parm5,
2510                                   Node* parm6, Node* parm7) {
2511   assert(call_addr != nullptr, "must not call null targets");
2512 
2513   // Slow-path call
2514   bool is_leaf = !(flags & RC_NO_LEAF);
2515   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2516   if (call_name == nullptr) {
2517     assert(!is_leaf, "must supply name for leaf");
2518     call_name = OptoRuntime::stub_name(call_addr);
2519   }
2520   CallNode* call;
2521   if (!is_leaf) {
2522     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2523   } else if (flags & RC_NO_FP) {
2524     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2525   } else  if (flags & RC_VECTOR){
2526     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2527     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2528   } else {
2529     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2530   }
2531 
2532   // The following is similar to set_edges_for_java_call,
2533   // except that the memory effects of the call are restricted to AliasIdxRaw.
2534 
2535   // Slow path call has no side-effects, uses few values
2536   bool wide_in  = !(flags & RC_NARROW_MEM);
2537   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2538 
2539   Node* prev_mem = nullptr;
2540   if (wide_in) {
2541     prev_mem = set_predefined_input_for_runtime_call(call);
2542   } else {
2543     assert(!wide_out, "narrow in => narrow out");
2544     Node* narrow_mem = memory(adr_type);
2545     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2546   }

2586 
2587   if (has_io) {
2588     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2589   }
2590   return call;
2591 
2592 }
2593 
2594 // i2b
2595 Node* GraphKit::sign_extend_byte(Node* in) {
2596   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2597   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2598 }
2599 
2600 // i2s
2601 Node* GraphKit::sign_extend_short(Node* in) {
2602   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2603   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2604 }
2605 

2606 //------------------------------merge_memory-----------------------------------
2607 // Merge memory from one path into the current memory state.
2608 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2609   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2610     Node* old_slice = mms.force_memory();
2611     Node* new_slice = mms.memory2();
2612     if (old_slice != new_slice) {
2613       PhiNode* phi;
2614       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2615         if (mms.is_empty()) {
2616           // clone base memory Phi's inputs for this memory slice
2617           assert(old_slice == mms.base_memory(), "sanity");
2618           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2619           _gvn.set_type(phi, Type::MEMORY);
2620           for (uint i = 1; i < phi->req(); i++) {
2621             phi->init_req(i, old_slice->in(i));
2622           }
2623         } else {
2624           phi = old_slice->as_Phi(); // Phi was generated already
2625         }

2888 
2889   // Now do a linear scan of the secondary super-klass array.  Again, no real
2890   // performance impact (too rare) but it's gotta be done.
2891   // Since the code is rarely used, there is no penalty for moving it
2892   // out of line, and it can only improve I-cache density.
2893   // The decision to inline or out-of-line this final check is platform
2894   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2895   Node* psc = gvn.transform(
2896     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2897 
2898   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2899   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2900   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2901 
2902   // Return false path; set default control to true path.
2903   *ctrl = gvn.transform(r_ok_subtype);
2904   return gvn.transform(r_not_subtype);
2905 }
2906 
2907 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2908   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2909   if (expand_subtype_check) {
2910     MergeMemNode* mem = merged_memory();
2911     Node* ctrl = control();
2912     Node* subklass = obj_or_subklass;
2913     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2914       subklass = load_object_klass(obj_or_subklass);
2915     }
2916 
2917     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2918     set_control(ctrl);
2919     return n;
2920   }
2921 
2922   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2923   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2924   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2925   set_control(_gvn.transform(new IfTrueNode(iff)));
2926   return _gvn.transform(new IfFalseNode(iff));
2927 }
2928 
2929 // Profile-driven exact type check:
2930 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2931                                     float prob,
2932                                     Node* *casted_receiver) {
2933   assert(!klass->is_interface(), "no exact type check on interfaces");
2934 











2935   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
2936   Node* recv_klass = load_object_klass(receiver);
2937   Node* want_klass = makecon(tklass);
2938   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2939   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2940   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2941   set_control( _gvn.transform(new IfTrueNode (iff)));
2942   Node* fail = _gvn.transform(new IfFalseNode(iff));
2943 
2944   if (!stopped()) {
2945     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2946     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2947     assert(recvx_type->klass_is_exact(), "");
2948 
2949     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2950       // Subsume downstream occurrences of receiver with a cast to
2951       // recv_xtype, since now we know what the type will be.
2952       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2953       (*casted_receiver) = _gvn.transform(cast);





2954       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2955       // (User must make the replace_in_map call.)
2956     }
2957   }
2958 
2959   return fail;
2960 }
2961 











2962 //------------------------------subtype_check_receiver-------------------------
2963 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2964                                        Node** casted_receiver) {
2965   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2966   Node* want_klass = makecon(tklass);
2967 
2968   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2969 
2970   // Ignore interface type information until interface types are properly tracked.
2971   if (!stopped() && !klass->is_interface()) {
2972     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2973     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2974     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2975       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2976       (*casted_receiver) = _gvn.transform(cast);



2977     }
2978   }
2979 
2980   return slow_ctl;
2981 }
2982 
2983 //------------------------------seems_never_null-------------------------------
2984 // Use null_seen information if it is available from the profile.
2985 // If we see an unexpected null at a type check we record it and force a
2986 // recompile; the offending check will be recompiled to handle nulls.
2987 // If we see several offending BCIs, then all checks in the
2988 // method will be recompiled.
2989 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2990   speculating = !_gvn.type(obj)->speculative_maybe_null();
2991   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2992   if (UncommonNullCast               // Cutout for this technique
2993       && obj != null()               // And not the -Xcomp stupid case?
2994       && !too_many_traps(reason)
2995       ) {
2996     if (speculating) {

3065 
3066 //------------------------maybe_cast_profiled_receiver-------------------------
3067 // If the profile has seen exactly one type, narrow to exactly that type.
3068 // Subsequent type checks will always fold up.
3069 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3070                                              const TypeKlassPtr* require_klass,
3071                                              ciKlass* spec_klass,
3072                                              bool safe_for_replace) {
3073   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3074 
3075   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3076 
3077   // Make sure we haven't already deoptimized from this tactic.
3078   if (too_many_traps_or_recompiles(reason))
3079     return nullptr;
3080 
3081   // (No, this isn't a call, but it's enough like a virtual call
3082   // to use the same ciMethod accessor to get the profile info...)
3083   // If we have a speculative type use it instead of profiling (which
3084   // may not help us)
3085   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3086   if (exact_kls != nullptr) {// no cast failures here
3087     if (require_klass == nullptr ||
3088         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3089       // If we narrow the type to match what the type profile sees or
3090       // the speculative type, we can then remove the rest of the
3091       // cast.
3092       // This is a win, even if the exact_kls is very specific,
3093       // because downstream operations, such as method calls,
3094       // will often benefit from the sharper type.
3095       Node* exact_obj = not_null_obj; // will get updated in place...
3096       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3097                                             &exact_obj);
3098       { PreserveJVMState pjvms(this);
3099         set_control(slow_ctl);
3100         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3101       }
3102       if (safe_for_replace) {
3103         replace_in_map(not_null_obj, exact_obj);
3104       }
3105       return exact_obj;

3195   // If not_null_obj is dead, only null-path is taken
3196   if (stopped()) {              // Doing instance-of on a null?
3197     set_control(null_ctl);
3198     return intcon(0);
3199   }
3200   region->init_req(_null_path, null_ctl);
3201   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3202   if (null_ctl == top()) {
3203     // Do this eagerly, so that pattern matches like is_diamond_phi
3204     // will work even during parsing.
3205     assert(_null_path == PATH_LIMIT-1, "delete last");
3206     region->del_req(_null_path);
3207     phi   ->del_req(_null_path);
3208   }
3209 
3210   // Do we know the type check always succeed?
3211   bool known_statically = false;
3212   if (_gvn.type(superklass)->singleton()) {
3213     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3214     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3215     if (subk->is_loaded()) {
3216       int static_res = C->static_subtype_check(superk, subk);
3217       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3218     }
3219   }
3220 
3221   if (!known_statically) {
3222     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3223     // We may not have profiling here or it may not help us. If we
3224     // have a speculative type use it to perform an exact cast.
3225     ciKlass* spec_obj_type = obj_type->speculative_type();
3226     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3227       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3228       if (stopped()) {            // Profile disagrees with this path.
3229         set_control(null_ctl);    // Null is the only remaining possibility.
3230         return intcon(0);
3231       }
3232       if (cast_obj != nullptr) {
3233         not_null_obj = cast_obj;
3234       }
3235     }

3251   record_for_igvn(region);
3252 
3253   // If we know the type check always succeeds then we don't use the
3254   // profiling data at this bytecode. Don't lose it, feed it to the
3255   // type system as a speculative type.
3256   if (safe_for_replace) {
3257     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3258     replace_in_map(obj, casted_obj);
3259   }
3260 
3261   return _gvn.transform(phi);
3262 }
3263 
3264 //-------------------------------gen_checkcast---------------------------------
3265 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3266 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3267 // uncommon-trap paths work.  Adjust stack after this call.
3268 // If failure_control is supplied and not null, it is filled in with
3269 // the control edge for the cast failure.  Otherwise, an appropriate
3270 // uncommon trap or exception is thrown.
3271 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3272                               Node* *failure_control) {
3273   kill_dead_locals();           // Benefit all the uncommon traps
3274   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3275   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3276   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();


3277 
3278   // Fast cutout:  Check the case that the cast is vacuously true.
3279   // This detects the common cases where the test will short-circuit
3280   // away completely.  We do this before we perform the null check,
3281   // because if the test is going to turn into zero code, we don't
3282   // want a residual null check left around.  (Causes a slowdown,
3283   // for example, in some objArray manipulations, such as a[i]=a[j].)
3284   if (improved_klass_ptr_type->singleton()) {
3285     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3286     if (objtp != nullptr) {
3287       switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {







3288       case Compile::SSC_always_true:
3289         // If we know the type check always succeed then we don't use
3290         // the profiling data at this bytecode. Don't lose it, feed it
3291         // to the type system as a speculative type.
3292         return record_profiled_receiver_for_speculation(obj);






3293       case Compile::SSC_always_false:




3294         // It needs a null check because a null will *pass* the cast check.
3295         // A non-null value will always produce an exception.
3296         if (!objtp->maybe_null()) {
3297           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3298           Deoptimization::DeoptReason reason = is_aastore ?
3299             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3300           builtin_throw(reason);
3301           return top();
3302         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3303           return null_assert(obj);
3304         }
3305         break; // Fall through to full check
3306       default:
3307         break;
3308       }
3309     }
3310   }
3311 
3312   ciProfileData* data = nullptr;
3313   bool safe_for_replace = false;
3314   if (failure_control == nullptr) {        // use MDO in regular case only
3315     assert(java_bc() == Bytecodes::_aastore ||
3316            java_bc() == Bytecodes::_checkcast,
3317            "interpreter profiles type checks only for these BCs");
3318     data = method()->method_data()->bci_to_data(bci());
3319     safe_for_replace = true;

3320   }
3321 
3322   // Make the merge point
3323   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3324   RegionNode* region = new RegionNode(PATH_LIMIT);
3325   Node*       phi    = new PhiNode(region, toop);



3326   C->set_has_split_ifs(true); // Has chance for split-if optimization
3327 
3328   // Use null-cast information if it is available
3329   bool speculative_not_null = false;
3330   bool never_see_null = ((failure_control == nullptr)  // regular case only
3331                          && seems_never_null(obj, data, speculative_not_null));
3332 







3333   // Null check; get casted pointer; set region slot 3
3334   Node* null_ctl = top();
3335   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3336 
3337   // If not_null_obj is dead, only null-path is taken
3338   if (stopped()) {              // Doing instance-of on a null?
3339     set_control(null_ctl);



3340     return null();
3341   }
3342   region->init_req(_null_path, null_ctl);
3343   phi   ->init_req(_null_path, null());  // Set null path value
3344   if (null_ctl == top()) {
3345     // Do this eagerly, so that pattern matches like is_diamond_phi
3346     // will work even during parsing.
3347     assert(_null_path == PATH_LIMIT-1, "delete last");
3348     region->del_req(_null_path);
3349     phi   ->del_req(_null_path);
3350   }
3351 
3352   Node* cast_obj = nullptr;
3353   if (improved_klass_ptr_type->klass_is_exact()) {
3354     // The following optimization tries to statically cast the speculative type of the object
3355     // (for example obtained during profiling) to the type of the superklass and then do a
3356     // dynamic check that the type of the object is what we expect. To work correctly
3357     // for checkcast and aastore the type of superklass should be exact.
3358     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3359     // We may not have profiling here or it may not help us. If we have
3360     // a speculative type use it to perform an exact cast.
3361     ciKlass* spec_obj_type = obj_type->speculative_type();
3362     if (spec_obj_type != nullptr || data != nullptr) {
3363       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3364       if (cast_obj != nullptr) {
3365         if (failure_control != nullptr) // failure is now impossible
3366           (*failure_control) = top();
3367         // adjust the type of the phi to the exact klass:
3368         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3369       }
3370     }
3371   }
3372 
3373   if (cast_obj == nullptr) {
3374     // Generate the subtype check
3375     Node* improved_superklass = superklass;
3376     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {



3377       improved_superklass = makecon(improved_klass_ptr_type);
3378     }
3379     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3380 
3381     // Plug in success path into the merge
3382     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3383     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3384     if (failure_control == nullptr) {
3385       if (not_subtype_ctrl != top()) { // If failure is possible
3386         PreserveJVMState pjvms(this);
3387         set_control(not_subtype_ctrl);






3388         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3389         Deoptimization::DeoptReason reason = is_aastore ?
3390           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3391         builtin_throw(reason);
3392       }
3393     } else {
3394       (*failure_control) = not_subtype_ctrl;
3395     }
3396   }
3397 
3398   region->init_req(_obj_path, control());
3399   phi   ->init_req(_obj_path, cast_obj);
3400 
3401   // A merge of null or Casted-NotNull obj
3402   Node* res = _gvn.transform(phi);
3403 
3404   // Note I do NOT always 'replace_in_map(obj,result)' here.
3405   //  if( tk->klass()->can_be_primary_super()  )
3406     // This means that if I successfully store an Object into an array-of-String
3407     // I 'forget' that the Object is really now known to be a String.  I have to
3408     // do this because we don't have true union types for interfaces - if I store
3409     // a Baz into an array-of-Interface and then tell the optimizer it's an
3410     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3411     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3412   //  replace_in_map( obj, res );
3413 
3414   // Return final merged results
3415   set_control( _gvn.transform(region) );
3416   record_for_igvn(region);
3417 
3418   return record_profiled_receiver_for_speculation(res);














































































































































3419 }
3420 
3421 //------------------------------next_monitor-----------------------------------
3422 // What number should be given to the next monitor?
3423 int GraphKit::next_monitor() {
3424   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3425   int next = current + C->sync_stack_slots();
3426   // Keep the toplevel high water mark current:
3427   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3428   return current;
3429 }
3430 
3431 //------------------------------insert_mem_bar---------------------------------
3432 // Memory barrier to avoid floating things around
3433 // The membar serves as a pinch point between both control and all memory slices.
3434 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3435   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3436   mb->init_req(TypeFunc::Control, control());
3437   mb->init_req(TypeFunc::Memory,  reset_memory());
3438   Node* membar = _gvn.transform(mb);

3466   }
3467   Node* membar = _gvn.transform(mb);
3468   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3469   if (alias_idx == Compile::AliasIdxBot) {
3470     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3471   } else {
3472     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3473   }
3474   return membar;
3475 }
3476 
3477 //------------------------------shared_lock------------------------------------
3478 // Emit locking code.
3479 FastLockNode* GraphKit::shared_lock(Node* obj) {
3480   // bci is either a monitorenter bc or InvocationEntryBci
3481   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3482   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3483 
3484   if( !GenerateSynchronizationCode )
3485     return nullptr;                // Not locking things?

3486   if (stopped())                // Dead monitor?
3487     return nullptr;
3488 
3489   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3490 
3491   // Box the stack location
3492   Node* box = new BoxLockNode(next_monitor());
3493   // Check for bailout after new BoxLockNode
3494   if (failing()) { return nullptr; }
3495   box = _gvn.transform(box);
3496   Node* mem = reset_memory();
3497 
3498   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3499 
3500   // Add monitor to debug info for the slow path.  If we block inside the
3501   // slow path and de-opt, we need the monitor hanging around
3502   map()->push_monitor( flock );
3503 
3504   const TypeFunc *tf = LockNode::lock_type();
3505   LockNode *lock = new LockNode(C, tf);

3534   }
3535 #endif
3536 
3537   return flock;
3538 }
3539 
3540 
3541 //------------------------------shared_unlock----------------------------------
3542 // Emit unlocking code.
3543 void GraphKit::shared_unlock(Node* box, Node* obj) {
3544   // bci is either a monitorenter bc or InvocationEntryBci
3545   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3546   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3547 
3548   if( !GenerateSynchronizationCode )
3549     return;
3550   if (stopped()) {               // Dead monitor?
3551     map()->pop_monitor();        // Kill monitor from debug info
3552     return;
3553   }

3554 
3555   // Memory barrier to avoid floating things down past the locked region
3556   insert_mem_bar(Op_MemBarReleaseLock);
3557 
3558   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3559   UnlockNode *unlock = new UnlockNode(C, tf);
3560 #ifdef ASSERT
3561   unlock->set_dbg_jvms(sync_jvms());
3562 #endif
3563   uint raw_idx = Compile::AliasIdxRaw;
3564   unlock->init_req( TypeFunc::Control, control() );
3565   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3566   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3567   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3568   unlock->init_req( TypeFunc::ReturnAdr, top() );
3569 
3570   unlock->init_req(TypeFunc::Parms + 0, obj);
3571   unlock->init_req(TypeFunc::Parms + 1, box);
3572   unlock = _gvn.transform(unlock)->as_Unlock();
3573 
3574   Node* mem = reset_memory();
3575 
3576   // unlock has no side-effects, sets few values
3577   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3578 
3579   // Kill monitor from debug info
3580   map()->pop_monitor( );
3581 }
3582 
3583 //-------------------------------get_layout_helper-----------------------------
3584 // If the given klass is a constant or known to be an array,
3585 // fetch the constant layout helper value into constant_value
3586 // and return null.  Otherwise, load the non-constant
3587 // layout helper value, and return the node which represents it.
3588 // This two-faced routine is useful because allocation sites
3589 // almost always feature constant types.
3590 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3591   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3592   if (!StressReflectiveCode && klass_t != nullptr) {
3593     bool xklass = klass_t->klass_is_exact();
3594     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {







3595       jint lhelper;
3596       if (klass_t->isa_aryklassptr()) {
3597         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3598         if (is_reference_type(elem, true)) {
3599           elem = T_OBJECT;
3600         }
3601         lhelper = Klass::array_layout_helper(elem);
3602       } else {
3603         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3604       }
3605       if (lhelper != Klass::_lh_neutral_value) {
3606         constant_value = lhelper;
3607         return (Node*) nullptr;
3608       }
3609     }
3610   }
3611   constant_value = Klass::_lh_neutral_value;  // put in a known value
3612   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3613   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3614 }
3615 
3616 // We just put in an allocate/initialize with a big raw-memory effect.
3617 // Hook selected additional alias categories on the initialization.
3618 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3619                                 MergeMemNode* init_in_merge,
3620                                 Node* init_out_raw) {
3621   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3622   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3623 
3624   Node* prevmem = kit.memory(alias_idx);
3625   init_in_merge->set_memory_at(alias_idx, prevmem);
3626   kit.set_memory(init_out_raw, alias_idx);


3627 }
3628 
3629 //---------------------------set_output_for_allocation-------------------------
3630 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3631                                           const TypeOopPtr* oop_type,
3632                                           bool deoptimize_on_exception) {
3633   int rawidx = Compile::AliasIdxRaw;
3634   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3635   add_safepoint_edges(alloc);
3636   Node* allocx = _gvn.transform(alloc);
3637   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3638   // create memory projection for i_o
3639   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3640   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3641 
3642   // create a memory projection as for the normal control path
3643   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3644   set_memory(malloc, rawidx);
3645 
3646   // a normal slow-call doesn't change i_o, but an allocation does
3647   // we create a separate i_o projection for the normal control path
3648   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3649   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3650 
3651   // put in an initialization barrier
3652   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3653                                                  rawoop)->as_Initialize();
3654   assert(alloc->initialization() == init,  "2-way macro link must work");
3655   assert(init ->allocation()     == alloc, "2-way macro link must work");
3656   {
3657     // Extract memory strands which may participate in the new object's
3658     // initialization, and source them from the new InitializeNode.
3659     // This will allow us to observe initializations when they occur,
3660     // and link them properly (as a group) to the InitializeNode.
3661     assert(init->in(InitializeNode::Memory) == malloc, "");
3662     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3663     init->set_req(InitializeNode::Memory, minit_in);
3664     record_for_igvn(minit_in); // fold it up later, if possible

3665     Node* minit_out = memory(rawidx);
3666     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3667     // Add an edge in the MergeMem for the header fields so an access
3668     // to one of those has correct memory state
3669     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3670     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3671     if (oop_type->isa_aryptr()) {
3672       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3673       int            elemidx  = C->get_alias_index(telemref);
3674       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

























3675     } else if (oop_type->isa_instptr()) {

3676       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3677       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3678         ciField* field = ik->nonstatic_field_at(i);
3679         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3680           continue;  // do not bother to track really large numbers of fields
3681         // Find (or create) the alias category for this field:
3682         int fieldidx = C->alias_type(field)->index();
3683         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3684       }
3685     }
3686   }
3687 
3688   // Cast raw oop to the real thing...
3689   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3690   javaoop = _gvn.transform(javaoop);
3691   C->set_recent_alloc(control(), javaoop);
3692   assert(just_allocated_object(control()) == javaoop, "just allocated");
3693 
3694 #ifdef ASSERT
3695   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

3706       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3707     }
3708   }
3709 #endif //ASSERT
3710 
3711   return javaoop;
3712 }
3713 
3714 //---------------------------new_instance--------------------------------------
3715 // This routine takes a klass_node which may be constant (for a static type)
3716 // or may be non-constant (for reflective code).  It will work equally well
3717 // for either, and the graph will fold nicely if the optimizer later reduces
3718 // the type to a constant.
3719 // The optional arguments are for specialized use by intrinsics:
3720 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3721 //  - If 'return_size_val', report the total object size to the caller.
3722 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3723 Node* GraphKit::new_instance(Node* klass_node,
3724                              Node* extra_slow_test,
3725                              Node* *return_size_val,
3726                              bool deoptimize_on_exception) {

3727   // Compute size in doublewords
3728   // The size is always an integral number of doublewords, represented
3729   // as a positive bytewise size stored in the klass's layout_helper.
3730   // The layout_helper also encodes (in a low bit) the need for a slow path.
3731   jint  layout_con = Klass::_lh_neutral_value;
3732   Node* layout_val = get_layout_helper(klass_node, layout_con);
3733   int   layout_is_con = (layout_val == nullptr);
3734 
3735   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3736   // Generate the initial go-slow test.  It's either ALWAYS (return a
3737   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3738   // case) a computed value derived from the layout_helper.
3739   Node* initial_slow_test = nullptr;
3740   if (layout_is_con) {
3741     assert(!StressReflectiveCode, "stress mode does not use these paths");
3742     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3743     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3744   } else {   // reflective case
3745     // This reflective path is used by Unsafe.allocateInstance.
3746     // (It may be stress-tested by specifying StressReflectiveCode.)
3747     // Basically, we want to get into the VM is there's an illegal argument.
3748     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3749     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3750     if (extra_slow_test != intcon(0)) {
3751       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3752     }
3753     // (Macro-expander will further convert this to a Bool, if necessary.)

3764 
3765     // Clear the low bits to extract layout_helper_size_in_bytes:
3766     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3767     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3768     size = _gvn.transform( new AndXNode(size, mask) );
3769   }
3770   if (return_size_val != nullptr) {
3771     (*return_size_val) = size;
3772   }
3773 
3774   // This is a precise notnull oop of the klass.
3775   // (Actually, it need not be precise if this is a reflective allocation.)
3776   // It's what we cast the result to.
3777   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3778   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3779   const TypeOopPtr* oop_type = tklass->as_instance_type();
3780 
3781   // Now generate allocation code
3782 
3783   // The entire memory state is needed for slow path of the allocation
3784   // since GC and deoptimization can happened.
3785   Node *mem = reset_memory();
3786   set_all_memory(mem); // Create new memory state
3787 
3788   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3789                                          control(), mem, i_o(),
3790                                          size, klass_node,
3791                                          initial_slow_test);
3792 
3793   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3794 }
3795 
3796 //-------------------------------new_array-------------------------------------
3797 // helper for both newarray and anewarray
3798 // The 'length' parameter is (obviously) the length of the array.
3799 // The optional arguments are for specialized use by intrinsics:
3800 //  - If 'return_size_val', report the non-padded array size (sum of header size
3801 //    and array body) to the caller.
3802 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3803 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3804                           Node* length,         // number of array elements
3805                           int   nargs,          // number of arguments to push back for uncommon trap
3806                           Node* *return_size_val,
3807                           bool deoptimize_on_exception) {
3808   jint  layout_con = Klass::_lh_neutral_value;
3809   Node* layout_val = get_layout_helper(klass_node, layout_con);
3810   int   layout_is_con = (layout_val == nullptr);
3811 
3812   if (!layout_is_con && !StressReflectiveCode &&
3813       !too_many_traps(Deoptimization::Reason_class_check)) {
3814     // This is a reflective array creation site.
3815     // Optimistically assume that it is a subtype of Object[],
3816     // so that we can fold up all the address arithmetic.
3817     layout_con = Klass::array_layout_helper(T_OBJECT);
3818     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3819     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3820     { BuildCutout unless(this, bol_lh, PROB_MAX);
3821       inc_sp(nargs);
3822       uncommon_trap(Deoptimization::Reason_class_check,
3823                     Deoptimization::Action_maybe_recompile);
3824     }
3825     layout_val = nullptr;
3826     layout_is_con = true;
3827   }
3828 
3829   // Generate the initial go-slow test.  Make sure we do not overflow
3830   // if length is huge (near 2Gig) or negative!  We do not need
3831   // exact double-words here, just a close approximation of needed
3832   // double-words.  We can't add any offset or rounding bits, lest we
3833   // take a size -1 of bytes and make it positive.  Use an unsigned
3834   // compare, so negative sizes look hugely positive.
3835   int fast_size_limit = FastAllocateSizeLimit;
3836   if (layout_is_con) {
3837     assert(!StressReflectiveCode, "stress mode does not use these paths");
3838     // Increase the size limit if we have exact knowledge of array type.
3839     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3840     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3841   }
3842 
3843   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3844   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3845 
3846   // --- Size Computation ---
3847   // array_size = round_to_heap(array_header + (length << elem_shift));
3848   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3849   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3850   // The rounding mask is strength-reduced, if possible.
3851   int round_mask = MinObjAlignmentInBytes - 1;
3852   Node* header_size = nullptr;
3853   // (T_BYTE has the weakest alignment and size restrictions...)
3854   if (layout_is_con) {
3855     int       hsize  = Klass::layout_helper_header_size(layout_con);
3856     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3857     if ((round_mask & ~right_n_bits(eshift)) == 0)
3858       round_mask = 0;  // strength-reduce it if it goes away completely
3859     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3860     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3861     assert(header_size_min <= hsize, "generic minimum is smallest");
3862     header_size = intcon(hsize);
3863   } else {
3864     Node* hss   = intcon(Klass::_lh_header_size_shift);
3865     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3866     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3867     header_size = _gvn.transform(new AndINode(header_size, hsm));
3868   }
3869 
3870   Node* elem_shift = nullptr;
3871   if (layout_is_con) {
3872     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3873     if (eshift != 0)
3874       elem_shift = intcon(eshift);
3875   } else {
3876     // There is no need to mask or shift this value.
3877     // The semantics of LShiftINode include an implicit mask to 0x1F.
3878     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3879     elem_shift = layout_val;

3926   }
3927   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3928 
3929   if (return_size_val != nullptr) {
3930     // This is the size
3931     (*return_size_val) = non_rounded_size;
3932   }
3933 
3934   Node* size = non_rounded_size;
3935   if (round_mask != 0) {
3936     Node* mask1 = MakeConX(round_mask);
3937     size = _gvn.transform(new AddXNode(size, mask1));
3938     Node* mask2 = MakeConX(~round_mask);
3939     size = _gvn.transform(new AndXNode(size, mask2));
3940   }
3941   // else if round_mask == 0, the size computation is self-rounding
3942 
3943   // Now generate allocation code
3944 
3945   // The entire memory state is needed for slow path of the allocation
3946   // since GC and deoptimization can happened.
3947   Node *mem = reset_memory();
3948   set_all_memory(mem); // Create new memory state
3949 
3950   if (initial_slow_test->is_Bool()) {
3951     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3952     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3953   }
3954 
3955   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();




























3956   Node* valid_length_test = _gvn.intcon(1);
3957   if (ary_type->isa_aryptr()) {
3958     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3959     jint max = TypeAryPtr::max_array_length(bt);
3960     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3961     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3962   }
3963 
3964   // Create the AllocateArrayNode and its result projections
3965   AllocateArrayNode* alloc
3966     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3967                             control(), mem, i_o(),
3968                             size, klass_node,
3969                             initial_slow_test,
3970                             length, valid_length_test);
3971 
3972   // Cast to correct type.  Note that the klass_node may be constant or not,
3973   // and in the latter case the actual array type will be inexact also.
3974   // (This happens via a non-constant argument to inline_native_newArray.)
3975   // In any case, the value of klass_node provides the desired array type.
3976   const TypeInt* length_type = _gvn.find_int_type(length);
3977   if (ary_type->isa_aryptr() && length_type != nullptr) {
3978     // Try to get a better type than POS for the size
3979     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3980   }
3981 
3982   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3983 
3984   array_ideal_length(alloc, ary_type, true);
3985   return javaoop;
3986 }
3987 
3988 // The following "Ideal_foo" functions are placed here because they recognize
3989 // the graph shapes created by the functions immediately above.
3990 
3991 //---------------------------Ideal_allocation----------------------------------

4098   set_all_memory(ideal.merged_memory());
4099   set_i_o(ideal.i_o());
4100   set_control(ideal.ctrl());
4101 }
4102 
4103 void GraphKit::final_sync(IdealKit& ideal) {
4104   // Final sync IdealKit and graphKit.
4105   sync_kit(ideal);
4106 }
4107 
4108 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4109   Node* len = load_array_length(load_String_value(str, set_ctrl));
4110   Node* coder = load_String_coder(str, set_ctrl);
4111   // Divide length by 2 if coder is UTF16
4112   return _gvn.transform(new RShiftINode(len, coder));
4113 }
4114 
4115 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4116   int value_offset = java_lang_String::value_offset();
4117   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4118                                                      false, nullptr, 0);
4119   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4120   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4121                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4122                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4123   Node* p = basic_plus_adr(str, str, value_offset);
4124   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4125                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4126   return load;
4127 }
4128 
4129 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4130   if (!CompactStrings) {
4131     return intcon(java_lang_String::CODER_UTF16);
4132   }
4133   int coder_offset = java_lang_String::coder_offset();
4134   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4135                                                      false, nullptr, 0);
4136   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4137 
4138   Node* p = basic_plus_adr(str, str, coder_offset);
4139   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4140                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4141   return load;
4142 }
4143 
4144 void GraphKit::store_String_value(Node* str, Node* value) {
4145   int value_offset = java_lang_String::value_offset();
4146   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4147                                                      false, nullptr, 0);
4148   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4149 
4150   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4151                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4152 }
4153 
4154 void GraphKit::store_String_coder(Node* str, Node* value) {
4155   int coder_offset = java_lang_String::coder_offset();
4156   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4157                                                      false, nullptr, 0);
4158   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4159 
4160   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4161                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4162 }
4163 
4164 // Capture src and dst memory state with a MergeMemNode
4165 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4166   if (src_type == dst_type) {
4167     // Types are equal, we don't need a MergeMemNode
4168     return memory(src_type);
4169   }
4170   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4171   record_for_igvn(merge); // fold it up later, if possible
4172   int src_idx = C->get_alias_index(src_type);
4173   int dst_idx = C->get_alias_index(dst_type);
4174   merge->set_memory_at(src_idx, memory(src_idx));
4175   merge->set_memory_at(dst_idx, memory(dst_idx));
4176   return merge;
4177 }

4250   i_char->init_req(2, AddI(i_char, intcon(2)));
4251 
4252   set_control(IfFalse(iff));
4253   set_memory(st, TypeAryPtr::BYTES);
4254 }
4255 
4256 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4257   if (!field->is_constant()) {
4258     return nullptr; // Field not marked as constant.
4259   }
4260   ciInstance* holder = nullptr;
4261   if (!field->is_static()) {
4262     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4263     if (const_oop != nullptr && const_oop->is_instance()) {
4264       holder = const_oop->as_instance();
4265     }
4266   }
4267   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4268                                                         /*is_unsigned_load=*/false);
4269   if (con_type != nullptr) {
4270     return makecon(con_type);






4271   }
4272   return nullptr;
4273 }
4274 









4275 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4276   const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4277   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4278   if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4279     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4280     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4281     return casted_obj;



4282   }
4283   return obj;
4284 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciUtilities.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "ci/ciObjArray.hpp"
  31 #include "asm/register.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.

 854         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 855           tty->print_cr("Zombie local %d: ", local);
 856           jvms->dump();
 857         }
 858         return false;
 859       }
 860     }
 861   }
 862   return true;
 863 }
 864 
 865 #endif //ASSERT
 866 
 867 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 868 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 869   ciMethod* cur_method = jvms->method();
 870   int       cur_bci   = jvms->bci();
 871   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 872     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 873     return Interpreter::bytecode_should_reexecute(code) ||
 874            (is_anewarray && (code == Bytecodes::_multianewarray));
 875     // Reexecute _multianewarray bytecode which was replaced with
 876     // sequence of [a]newarray. See Parse::do_multianewarray().
 877     //
 878     // Note: interpreter should not have it set since this optimization
 879     // is limited by dimensions and guarded by flag so in some cases
 880     // multianewarray() runtime calls will be generated and
 881     // the bytecode should not be reexecutes (stack will not be reset).
 882   } else {
 883     return false;
 884   }
 885 }
 886 
 887 // Helper function for adding JVMState and debug information to node
 888 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 889   // Add the safepoint edges to the call (or other safepoint).
 890 
 891   // Make sure dead locals are set to top.  This
 892   // should help register allocation time and cut down on the size
 893   // of the deoptimization information.
 894   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 945   }
 946 
 947   // Presize the call:
 948   DEBUG_ONLY(uint non_debug_edges = call->req());
 949   call->add_req_batch(top(), youngest_jvms->debug_depth());
 950   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 951 
 952   // Set up edges so that the call looks like this:
 953   //  Call [state:] ctl io mem fptr retadr
 954   //       [parms:] parm0 ... parmN
 955   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 956   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 957   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 958   // Note that caller debug info precedes callee debug info.
 959 
 960   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 961   uint debug_ptr = call->req();
 962 
 963   // Loop over the map input edges associated with jvms, add them
 964   // to the call node, & reset all offsets to match call node array.
 965 
 966   JVMState* callee_jvms = nullptr;
 967   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 968     uint debug_end   = debug_ptr;
 969     uint debug_start = debug_ptr - in_jvms->debug_size();
 970     debug_ptr = debug_start;  // back up the ptr
 971 
 972     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 973     uint j, k, l;
 974     SafePointNode* in_map = in_jvms->map();
 975     out_jvms->set_map(call);
 976 
 977     if (can_prune_locals) {
 978       assert(in_jvms->method() == out_jvms->method(), "sanity");
 979       // If the current throw can reach an exception handler in this JVMS,
 980       // then we must keep everything live that can reach that handler.
 981       // As a quick and dirty approximation, we look for any handlers at all.
 982       if (in_jvms->method()->has_exception_handlers()) {
 983         can_prune_locals = false;
 984       }
 985     }
 986 
 987     // Add the Locals
 988     k = in_jvms->locoff();
 989     l = in_jvms->loc_size();
 990     out_jvms->set_locoff(p);
 991     if (!can_prune_locals) {
 992       for (j = 0; j < l; j++) {
 993         Node* val = in_map->in(k + j);
 994         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
 995         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
 996             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
 997             val->bottom_type()->is_inlinetypeptr()) {
 998           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
 999         }
1000         call->set_req(p++, val);
1001       }
1002     } else {
1003       p += l;  // already set to top above by add_req_batch
1004     }
1005 
1006     // Add the Expression Stack
1007     k = in_jvms->stkoff();
1008     l = in_jvms->sp();
1009     out_jvms->set_stkoff(p);
1010     if (!can_prune_locals) {
1011       for (j = 0; j < l; j++) {
1012         Node* val = in_map->in(k + j);
1013         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
1014         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
1015             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
1016             val->bottom_type()->is_inlinetypeptr()) {
1017           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
1018         }
1019         call->set_req(p++, val);
1020       }
1021     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1022       // Divide stack into {S0,...,S1}, where S0 is set to top.
1023       uint s1 = stack_slots_not_pruned;
1024       stack_slots_not_pruned = 0;  // for next iteration
1025       if (s1 > l)  s1 = l;
1026       uint s0 = l - s1;
1027       p += s0;  // skip the tops preinstalled by add_req_batch
1028       for (j = s0; j < l; j++)
1029         call->set_req(p++, in_map->in(k+j));
1030     } else {
1031       p += l;  // already set to top above by add_req_batch
1032     }
1033 
1034     // Add the Monitors
1035     k = in_jvms->monoff();
1036     l = in_jvms->mon_size();
1037     out_jvms->set_monoff(p);
1038     for (j = 0; j < l; j++)
1039       call->set_req(p++, in_map->in(k+j));
1040 
1041     // Copy any scalar object fields.
1042     k = in_jvms->scloff();
1043     l = in_jvms->scl_size();
1044     out_jvms->set_scloff(p);
1045     for (j = 0; j < l; j++)
1046       call->set_req(p++, in_map->in(k+j));
1047 
1048     // Finish the new jvms.
1049     out_jvms->set_endoff(p);
1050 
1051     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1052     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1053     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1054     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1055     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1056     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1057 
1058     // Update the two tail pointers in parallel.
1059     callee_jvms = out_jvms;
1060     out_jvms = out_jvms->caller();
1061     in_jvms  = in_jvms->caller();
1062   }
1063 
1064   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1065 
1066   // Test the correctness of JVMState::debug_xxx accessors:
1067   assert(call->jvms()->debug_start() == non_debug_edges, "");
1068   assert(call->jvms()->debug_end()   == call->req(), "");
1069   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1070 }
1071 
1072 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1073   Bytecodes::Code code = java_bc();
1074   if (code == Bytecodes::_wide) {
1075     code = method()->java_code_at_bci(bci() + 1);
1076   }
1077 
1078   if (code != Bytecodes::_illegal) {
1079     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1215   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1216   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1217   return _gvn.transform( new AndLNode(conv, mask) );
1218 }
1219 
1220 Node* GraphKit::ConvL2I(Node* offset) {
1221   // short-circuit a common case
1222   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1223   if (offset_con != (jlong)Type::OffsetBot) {
1224     return intcon((int) offset_con);
1225   }
1226   return _gvn.transform( new ConvL2INode(offset));
1227 }
1228 
1229 //-------------------------load_object_klass-----------------------------------
1230 Node* GraphKit::load_object_klass(Node* obj) {
1231   // Special-case a fresh allocation to avoid building nodes:
1232   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1233   if (akls != nullptr)  return akls;
1234   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1235   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1236 }
1237 
1238 //-------------------------load_array_length-----------------------------------
1239 Node* GraphKit::load_array_length(Node* array) {
1240   // Special-case a fresh allocation to avoid building nodes:
1241   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1242   Node *alen;
1243   if (alloc == nullptr) {
1244     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1245     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1246   } else {
1247     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1248   }
1249   return alen;
1250 }
1251 
1252 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1253                                    const TypeOopPtr* oop_type,
1254                                    bool replace_length_in_map) {
1255   Node* length = alloc->Ideal_length();

1264         replace_in_map(length, ccast);
1265       }
1266       return ccast;
1267     }
1268   }
1269   return length;
1270 }
1271 
1272 //------------------------------do_null_check----------------------------------
1273 // Helper function to do a null pointer check.  Returned value is
1274 // the incoming address with null casted away.  You are allowed to use the
1275 // not-null value only if you are control dependent on the test.
1276 #ifndef PRODUCT
1277 extern uint explicit_null_checks_inserted,
1278             explicit_null_checks_elided;
1279 #endif
1280 Node* GraphKit::null_check_common(Node* value, BasicType type,
1281                                   // optional arguments for variations:
1282                                   bool assert_null,
1283                                   Node* *null_control,
1284                                   bool speculative,
1285                                   bool is_init_check) {
1286   assert(!assert_null || null_control == nullptr, "not both at once");
1287   if (stopped())  return top();
1288   NOT_PRODUCT(explicit_null_checks_inserted++);
1289 
1290   if (value->is_InlineType()) {
1291     // Null checking a scalarized but nullable inline type. Check the IsInit
1292     // input instead of the oop input to avoid keeping buffer allocations alive.
1293     InlineTypeNode* vtptr = value->as_InlineType();
1294     while (vtptr->get_oop()->is_InlineType()) {
1295       vtptr = vtptr->get_oop()->as_InlineType();
1296     }
1297     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1298     if (stopped()) {
1299       return top();
1300     }
1301     if (assert_null) {
1302       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1303       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1304       // replace_in_map(value, vtptr);
1305       // return vtptr;
1306       replace_in_map(value, null());
1307       return null();
1308     }
1309     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1310     return cast_not_null(value, do_replace_in_map);
1311   }
1312 
1313   // Construct null check
1314   Node *chk = nullptr;
1315   switch(type) {
1316     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1317     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1318     case T_ARRAY  : // fall through
1319       type = T_OBJECT;  // simplify further tests
1320     case T_OBJECT : {
1321       const Type *t = _gvn.type( value );
1322 
1323       const TypeOopPtr* tp = t->isa_oopptr();
1324       if (tp != nullptr && !tp->is_loaded()
1325           // Only for do_null_check, not any of its siblings:
1326           && !assert_null && null_control == nullptr) {
1327         // Usually, any field access or invocation on an unloaded oop type
1328         // will simply fail to link, since the statically linked class is
1329         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1330         // the static class is loaded but the sharper oop type is not.
1331         // Rather than checking for this obscure case in lots of places,
1332         // we simply observe that a null check on an unloaded class

1396         }
1397         Node *oldcontrol = control();
1398         set_control(cfg);
1399         Node *res = cast_not_null(value);
1400         set_control(oldcontrol);
1401         NOT_PRODUCT(explicit_null_checks_elided++);
1402         return res;
1403       }
1404       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1405       if (cfg == nullptr)  break;  // Quit at region nodes
1406       depth++;
1407     }
1408   }
1409 
1410   //-----------
1411   // Branch to failure if null
1412   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1413   Deoptimization::DeoptReason reason;
1414   if (assert_null) {
1415     reason = Deoptimization::reason_null_assert(speculative);
1416   } else if (type == T_OBJECT || is_init_check) {
1417     reason = Deoptimization::reason_null_check(speculative);
1418   } else {
1419     reason = Deoptimization::Reason_div0_check;
1420   }
1421   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1422   // ciMethodData::has_trap_at will return a conservative -1 if any
1423   // must-be-null assertion has failed.  This could cause performance
1424   // problems for a method after its first do_null_assert failure.
1425   // Consider using 'Reason_class_check' instead?
1426 
1427   // To cause an implicit null check, we set the not-null probability
1428   // to the maximum (PROB_MAX).  For an explicit check the probability
1429   // is set to a smaller value.
1430   if (null_control != nullptr || too_many_traps(reason)) {
1431     // probability is less likely
1432     ok_prob =  PROB_LIKELY_MAG(3);
1433   } else if (!assert_null &&
1434              (ImplicitNullCheckThreshold > 0) &&
1435              method() != nullptr &&
1436              (method()->method_data()->trap_count(reason)

1470   }
1471 
1472   if (assert_null) {
1473     // Cast obj to null on this path.
1474     replace_in_map(value, zerocon(type));
1475     return zerocon(type);
1476   }
1477 
1478   // Cast obj to not-null on this path, if there is no null_control.
1479   // (If there is a null_control, a non-null value may come back to haunt us.)
1480   if (type == T_OBJECT) {
1481     Node* cast = cast_not_null(value, false);
1482     if (null_control == nullptr || (*null_control) == top())
1483       replace_in_map(value, cast);
1484     value = cast;
1485   }
1486 
1487   return value;
1488 }
1489 

1490 //------------------------------cast_not_null----------------------------------
1491 // Cast obj to not-null on this path
1492 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1493   if (obj->is_InlineType()) {
1494     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1495     vt->as_InlineType()->set_is_init(_gvn);
1496     vt = _gvn.transform(vt);
1497     if (do_replace_in_map) {
1498       replace_in_map(obj, vt);
1499     }
1500     return vt;
1501   }
1502   const Type *t = _gvn.type(obj);
1503   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1504   // Object is already not-null?
1505   if( t == t_not_null ) return obj;
1506 
1507   Node* cast = new CastPPNode(control(), obj,t_not_null);
1508   cast = _gvn.transform( cast );
1509 
1510   // Scan for instances of 'obj' in the current JVM mapping.
1511   // These instances are known to be not-null after the test.
1512   if (do_replace_in_map)
1513     replace_in_map(obj, cast);
1514 
1515   return cast;                  // Return casted value
1516 }
1517 
1518 // Sometimes in intrinsics, we implicitly know an object is not null
1519 // (there's no actual null check) so we can cast it to not null. In
1520 // the course of optimizations, the input to the cast can become null.
1521 // In that case that data path will die and we need the control path

1604 }
1605 
1606 //=============================================================================
1607 //
1608 // parser factory methods for MemNodes
1609 //
1610 // These are layered on top of the factory methods in LoadNode and StoreNode,
1611 // and integrate with the parser's memory state and _gvn engine.
1612 //
1613 
1614 // factory methods in "int adr_idx"
1615 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1616                           int adr_idx,
1617                           MemNode::MemOrd mo,
1618                           LoadNode::ControlDependency control_dependency,
1619                           bool require_atomic_access,
1620                           bool unaligned,
1621                           bool mismatched,
1622                           bool unsafe,
1623                           uint8_t barrier_data) {
1624   // Fix 8344108 and renable the commented assert
1625   //assert(adr_idx == C->get_alias_index(_gvn.type(adr)->isa_ptr()), "slice of address and input slice don't match");
1626   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1627   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1628   debug_only(adr_type = C->get_adr_type(adr_idx));
1629   Node* mem = memory(adr_idx);
1630   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1631   ld = _gvn.transform(ld);
1632 
1633   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1634     // Improve graph before escape analysis and boxing elimination.
1635     record_for_igvn(ld);
1636     if (ld->is_DecodeN()) {
1637       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1638       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1639       // a Phi). Recording such cases is still perfectly sound, but may be
1640       // unnecessary and result in some minor IGVN overhead.
1641       record_for_igvn(ld->in(1));
1642     }
1643   }
1644   return ld;
1645 }
1646 
1647 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1648                                 int adr_idx,
1649                                 MemNode::MemOrd mo,
1650                                 bool require_atomic_access,
1651                                 bool unaligned,
1652                                 bool mismatched,
1653                                 bool unsafe,
1654                                 int barrier_data) {
1655   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1656   // Fix 8344108 and renable the commented assert
1657   //assert(adr_idx == C->get_alias_index(_gvn.type(adr)->isa_ptr()), "slice of address and input slice don't match");
1658   const TypePtr* adr_type = nullptr;
1659   debug_only(adr_type = C->get_adr_type(adr_idx));
1660   Node *mem = memory(adr_idx);
1661   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1662   if (unaligned) {
1663     st->as_Store()->set_unaligned_access();
1664   }
1665   if (mismatched) {
1666     st->as_Store()->set_mismatched_access();
1667   }
1668   if (unsafe) {
1669     st->as_Store()->set_unsafe_access();
1670   }
1671   st->as_Store()->set_barrier_data(barrier_data);
1672   st = _gvn.transform(st);
1673   set_memory(st, adr_idx);
1674   // Back-to-back stores can only remove intermediate store with DU info
1675   // so push on worklist for optimizer.
1676   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1677     record_for_igvn(st);
1678 
1679   return st;
1680 }
1681 
1682 Node* GraphKit::access_store_at(Node* obj,
1683                                 Node* adr,
1684                                 const TypePtr* adr_type,
1685                                 Node* val,
1686                                 const Type* val_type,
1687                                 BasicType bt,
1688                                 DecoratorSet decorators,
1689                                 bool safe_for_replace) {
1690   // Transformation of a value which could be null pointer (CastPP #null)
1691   // could be delayed during Parse (for example, in adjust_map_after_if()).
1692   // Execute transformation here to avoid barrier generation in such case.
1693   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1694     val = _gvn.makecon(TypePtr::NULL_PTR);
1695   }
1696 
1697   if (stopped()) {
1698     return top(); // Dead path ?
1699   }
1700 
1701   assert(val != nullptr, "not dead path");
1702   if (val->is_InlineType()) {
1703     // Store to non-flat field. Buffer the inline type and make sure
1704     // the store is re-executed if the allocation triggers deoptimization.
1705     PreserveReexecuteState preexecs(this);
1706     jvms()->set_should_reexecute(true);
1707     val = val->as_InlineType()->buffer(this, safe_for_replace);
1708   }
1709 
1710   C2AccessValuePtr addr(adr, adr_type);
1711   C2AccessValue value(val, val_type);
1712   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1713   if (access.is_raw()) {
1714     return _barrier_set->BarrierSetC2::store_at(access, value);
1715   } else {
1716     return _barrier_set->store_at(access, value);
1717   }
1718 }
1719 
1720 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1721                                Node* adr,   // actual address to store val at
1722                                const TypePtr* adr_type,
1723                                const Type* val_type,
1724                                BasicType bt,
1725                                DecoratorSet decorators,
1726                                Node* ctl) {
1727   if (stopped()) {
1728     return top(); // Dead path ?
1729   }
1730 
1731   C2AccessValuePtr addr(adr, adr_type);
1732   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1733   if (access.is_raw()) {
1734     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1735   } else {
1736     return _barrier_set->load_at(access, val_type);
1737   }
1738 }
1739 
1740 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1741                             const Type* val_type,
1742                             BasicType bt,
1743                             DecoratorSet decorators) {
1744   if (stopped()) {
1745     return top(); // Dead path ?
1746   }
1747 
1748   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1749   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1750   if (access.is_raw()) {
1751     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1752   } else {

1817                                      Node* new_val,
1818                                      const Type* value_type,
1819                                      BasicType bt,
1820                                      DecoratorSet decorators) {
1821   C2AccessValuePtr addr(adr, adr_type);
1822   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1823   if (access.is_raw()) {
1824     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1825   } else {
1826     return _barrier_set->atomic_add_at(access, new_val, value_type);
1827   }
1828 }
1829 
1830 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1831   return _barrier_set->clone(this, src, dst, size, is_array);
1832 }
1833 
1834 //-------------------------array_element_address-------------------------
1835 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1836                                       const TypeInt* sizetype, Node* ctrl) {
1837   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1838   assert(!arytype->is_flat() || elembt == T_OBJECT, "element type of flat arrays are T_OBJECT");
1839   uint shift;
1840   if (arytype->is_flat() && arytype->klass_is_exact()) {
1841     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1842     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1843     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1844     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1845     // though we don't need the address node in this case and throw it away again.
1846     shift = arytype->flat_log_elem_size();
1847   } else {
1848     shift = exact_log2(type2aelembytes(elembt));
1849   }
1850   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1851 
1852   // short-circuit a common case (saves lots of confusing waste motion)
1853   jint idx_con = find_int_con(idx, -1);
1854   if (idx_con >= 0) {
1855     intptr_t offset = header + ((intptr_t)idx_con << shift);
1856     return basic_plus_adr(ary, offset);
1857   }
1858 
1859   // must be correct type for alignment purposes
1860   Node* base  = basic_plus_adr(ary, header);
1861   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1862   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1863   return basic_plus_adr(ary, base, scale);
1864 }
1865 
1866 //-------------------------load_array_element-------------------------
1867 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1868   const Type* elemtype = arytype->elem();
1869   BasicType elembt = elemtype->array_element_basic_type();
1870   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1871   if (elembt == T_NARROWOOP) {
1872     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1873   }
1874   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1875                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1876   return ld;
1877 }
1878 
1879 //-------------------------set_arguments_for_java_call-------------------------
1880 // Arguments (pre-popped from the stack) are taken from the JVMS.
1881 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1882   PreserveReexecuteState preexecs(this);
1883   if (EnableValhalla) {
1884     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1885     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1886     jvms()->set_should_reexecute(true);
1887     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1888     inc_sp(arg_size);
1889   }
1890   // Add the call arguments
1891   const TypeTuple* domain = call->tf()->domain_sig();
1892   uint nargs = domain->cnt();
1893   int arg_num = 0;
1894   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1895     Node* arg = argument(i-TypeFunc::Parms);
1896     const Type* t = domain->field_at(i);
1897     // TODO 8284443 A static call to a mismatched method should still be scalarized
1898     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1899       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1900       if (!arg->is_InlineType()) {
1901         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1902         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1903       }
1904       InlineTypeNode* vt = arg->as_InlineType();
1905       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1906       // If an inline type argument is passed as fields, attach the Method* to the call site
1907       // to be able to access the extended signature later via attached_method_before_pc().
1908       // For example, see CompiledMethod::preserve_callee_argument_oops().
1909       call->set_override_symbolic_info(true);
1910       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1911       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1912       C->dependencies()->assert_evol_method(call->method());
1913       arg_num++;
1914       continue;
1915     } else if (arg->is_InlineType()) {
1916       // Pass inline type argument via oop to callee
1917       InlineTypeNode* inline_type = arg->as_InlineType();
1918       const ciMethod* method = call->method();
1919       ciInstanceKlass* holder = method->holder();
1920       const bool is_receiver = (i == TypeFunc::Parms);
1921       const bool is_abstract_or_object_klass_constructor = method->is_object_constructor() &&
1922                                                            (holder->is_abstract() || holder->is_java_lang_Object());
1923       const bool is_larval_receiver_on_super_constructor = is_receiver && is_abstract_or_object_klass_constructor;
1924       bool must_init_buffer = true;
1925       // We always need to buffer inline types when they are escaping. However, we can skip the actual initialization
1926       // of the buffer if the inline type is a larval because we are going to update the buffer anyway which requires
1927       // us to create a new one. But there is one special case where we are still required to initialize the buffer:
1928       // When we have a larval receiver invoked on an abstract (value class) constructor or the Object constructor (that
1929       // is not going to be inlined). After this call, the larval is completely initialized and thus not a larval anymore.
1930       // We therefore need to force an initialization of the buffer to not lose all the field writes so far in case the
1931       // buffer needs to be used (e.g. to read from when deoptimizing at runtime) or further updated in abstract super
1932       // value class constructors which could have more fields to be initialized. Note that we do not need to
1933       // initialize the buffer when invoking another constructor in the same class on a larval receiver because we
1934       // have not initialized any fields, yet (this is done completely by the other constructor call).
1935       if (inline_type->is_larval() && !is_larval_receiver_on_super_constructor) {
1936         must_init_buffer = false;
1937       }
1938       arg = inline_type->buffer(this, true, must_init_buffer);
1939     }
1940     if (t != Type::HALF) {
1941       arg_num++;
1942     }
1943     call->init_req(idx++, arg);
1944   }
1945 }
1946 
1947 //---------------------------set_edges_for_java_call---------------------------
1948 // Connect a newly created call into the current JVMS.
1949 // A return value node (if any) is returned from set_edges_for_java_call.
1950 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1951 
1952   // Add the predefined inputs:
1953   call->init_req( TypeFunc::Control, control() );
1954   call->init_req( TypeFunc::I_O    , i_o() );
1955   call->init_req( TypeFunc::Memory , reset_memory() );
1956   call->init_req( TypeFunc::FramePtr, frameptr() );
1957   call->init_req( TypeFunc::ReturnAdr, top() );
1958 
1959   add_safepoint_edges(call, must_throw);
1960 
1961   Node* xcall = _gvn.transform(call);
1962 
1963   if (xcall == top()) {
1964     set_control(top());
1965     return;
1966   }
1967   assert(xcall == call, "call identity is stable");
1968 
1969   // Re-use the current map to produce the result.
1970 
1971   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1972   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1973   set_all_memory_call(xcall, separate_io_proj);
1974 
1975   //return xcall;   // no need, caller already has it
1976 }
1977 
1978 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1979   if (stopped())  return top();  // maybe the call folded up?
1980 







1981   // Note:  Since any out-of-line call can produce an exception,
1982   // we always insert an I_O projection from the call into the result.
1983 
1984   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1985 
1986   if (separate_io_proj) {
1987     // The caller requested separate projections be used by the fall
1988     // through and exceptional paths, so replace the projections for
1989     // the fall through path.
1990     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1991     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1992   }
1993 
1994   // Capture the return value, if any.
1995   Node* ret;
1996   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1997     ret = top();
1998   } else if (call->tf()->returns_inline_type_as_fields()) {
1999     // Return of multiple values (inline type fields): we create a
2000     // InlineType node, each field is a projection from the call.
2001     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2002     uint base_input = TypeFunc::Parms;
2003     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2004   } else {
2005     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2006     ciType* t = call->method()->return_type();
2007     if (t->is_klass()) {
2008       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2009       if (type->is_inlinetypeptr()) {
2010         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
2011       }
2012     }
2013   }
2014 
2015   // We just called the constructor on a value type receiver. Reload it from the buffer
2016   ciMethod* method = call->method();
2017   if (method->is_object_constructor() && !method->holder()->is_java_lang_Object()) {
2018     InlineTypeNode* inline_type_receiver = call->in(TypeFunc::Parms)->isa_InlineType();
2019     if (inline_type_receiver != nullptr) {
2020       assert(inline_type_receiver->is_larval(), "must be larval");
2021       assert(inline_type_receiver->is_allocated(&gvn()), "larval must be buffered");
2022       InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, inline_type_receiver->get_oop(),
2023                                                                inline_type_receiver->bottom_type()->inline_klass(), true);
2024       assert(!reloaded->is_larval(), "should not be larval anymore");
2025       replace_in_map(inline_type_receiver, reloaded);
2026     }
2027   }
2028 
2029   return ret;
2030 }
2031 
2032 //--------------------set_predefined_input_for_runtime_call--------------------
2033 // Reading and setting the memory state is way conservative here.
2034 // The real problem is that I am not doing real Type analysis on memory,
2035 // so I cannot distinguish card mark stores from other stores.  Across a GC
2036 // point the Store Barrier and the card mark memory has to agree.  I cannot
2037 // have a card mark store and its barrier split across the GC point from
2038 // either above or below.  Here I get that to happen by reading ALL of memory.
2039 // A better answer would be to separate out card marks from other memory.
2040 // For now, return the input memory state, so that it can be reused
2041 // after the call, if this call has restricted memory effects.
2042 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2043   // Set fixed predefined input arguments
2044   Node* memory = reset_memory();
2045   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2046   call->init_req( TypeFunc::Control,   control()  );
2047   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2048   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

2099     if (use->is_MergeMem()) {
2100       wl.push(use);
2101     }
2102   }
2103 }
2104 
2105 // Replace the call with the current state of the kit.
2106 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2107   JVMState* ejvms = nullptr;
2108   if (has_exceptions()) {
2109     ejvms = transfer_exceptions_into_jvms();
2110   }
2111 
2112   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2113   ReplacedNodes replaced_nodes_exception;
2114   Node* ex_ctl = top();
2115 
2116   SafePointNode* final_state = stop();
2117 
2118   // Find all the needed outputs of this call
2119   CallProjections* callprojs = call->extract_projections(true, do_asserts);

2120 
2121   Unique_Node_List wl;
2122   Node* init_mem = call->in(TypeFunc::Memory);
2123   Node* final_mem = final_state->in(TypeFunc::Memory);
2124   Node* final_ctl = final_state->in(TypeFunc::Control);
2125   Node* final_io = final_state->in(TypeFunc::I_O);
2126 
2127   // Replace all the old call edges with the edges from the inlining result
2128   if (callprojs->fallthrough_catchproj != nullptr) {
2129     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2130   }
2131   if (callprojs->fallthrough_memproj != nullptr) {
2132     if (final_mem->is_MergeMem()) {
2133       // Parser's exits MergeMem was not transformed but may be optimized
2134       final_mem = _gvn.transform(final_mem);
2135     }
2136     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2137     add_mergemem_users_to_worklist(wl, final_mem);
2138   }
2139   if (callprojs->fallthrough_ioproj != nullptr) {
2140     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2141   }
2142 
2143   // Replace the result with the new result if it exists and is used
2144   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2145     // If the inlined code is dead, the result projections for an inline type returned as
2146     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2147     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2148            "unexpected number of results");
2149     C->gvn_replace_by(callprojs->resproj[0], result);
2150   }
2151 
2152   if (ejvms == nullptr) {
2153     // No exception edges to simply kill off those paths
2154     if (callprojs->catchall_catchproj != nullptr) {
2155       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2156     }
2157     if (callprojs->catchall_memproj != nullptr) {
2158       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2159     }
2160     if (callprojs->catchall_ioproj != nullptr) {
2161       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2162     }
2163     // Replace the old exception object with top
2164     if (callprojs->exobj != nullptr) {
2165       C->gvn_replace_by(callprojs->exobj, C->top());
2166     }
2167   } else {
2168     GraphKit ekit(ejvms);
2169 
2170     // Load my combined exception state into the kit, with all phis transformed:
2171     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2172     replaced_nodes_exception = ex_map->replaced_nodes();
2173 
2174     Node* ex_oop = ekit.use_exception_state(ex_map);
2175 
2176     if (callprojs->catchall_catchproj != nullptr) {
2177       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2178       ex_ctl = ekit.control();
2179     }
2180     if (callprojs->catchall_memproj != nullptr) {
2181       Node* ex_mem = ekit.reset_memory();
2182       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2183       add_mergemem_users_to_worklist(wl, ex_mem);
2184     }
2185     if (callprojs->catchall_ioproj != nullptr) {
2186       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2187     }
2188 
2189     // Replace the old exception object with the newly created one
2190     if (callprojs->exobj != nullptr) {
2191       C->gvn_replace_by(callprojs->exobj, ex_oop);
2192     }
2193   }
2194 
2195   // Disconnect the call from the graph
2196   call->disconnect_inputs(C);
2197   C->gvn_replace_by(call, C->top());
2198 
2199   // Clean up any MergeMems that feed other MergeMems since the
2200   // optimizer doesn't like that.
2201   while (wl.size() > 0) {
2202     _gvn.transform(wl.pop());
2203   }
2204 
2205   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2206     replaced_nodes.apply(C, final_ctl);
2207   }
2208   if (!ex_ctl->is_top() && do_replaced_nodes) {
2209     replaced_nodes_exception.apply(C, ex_ctl);
2210   }
2211 }
2212 
2213 
2214 //------------------------------increment_counter------------------------------
2215 // for statistics: increment a VM counter by 1
2216 
2217 void GraphKit::increment_counter(address counter_addr) {
2218   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2219   increment_counter(adr1);
2220 }
2221 
2222 void GraphKit::increment_counter(Node* counter_addr) {
2223   int adr_type = Compile::AliasIdxRaw;
2224   Node* ctrl = control();
2225   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);

2386  *
2387  * @param n          node that the type applies to
2388  * @param exact_kls  type from profiling
2389  * @param maybe_null did profiling see null?
2390  *
2391  * @return           node with improved type
2392  */
2393 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2394   const Type* current_type = _gvn.type(n);
2395   assert(UseTypeSpeculation, "type speculation must be on");
2396 
2397   const TypePtr* speculative = current_type->speculative();
2398 
2399   // Should the klass from the profile be recorded in the speculative type?
2400   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2401     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2402     const TypeOopPtr* xtype = tklass->as_instance_type();
2403     assert(xtype->klass_is_exact(), "Should be exact");
2404     // Any reason to believe n is not null (from this profiling or a previous one)?
2405     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2406     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2407     // record the new speculative type's depth
2408     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2409     speculative = speculative->with_inline_depth(jvms()->depth());
2410   } else if (current_type->would_improve_ptr(ptr_kind)) {
2411     // Profiling report that null was never seen so we can change the
2412     // speculative type to non null ptr.
2413     if (ptr_kind == ProfileAlwaysNull) {
2414       speculative = TypePtr::NULL_PTR;
2415     } else {
2416       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2417       const TypePtr* ptr = TypePtr::NOTNULL;
2418       if (speculative != nullptr) {
2419         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2420       } else {
2421         speculative = ptr;
2422       }
2423     }
2424   }
2425 
2426   if (speculative != current_type->speculative()) {
2427     // Build a type with a speculative type (what we think we know
2428     // about the type but will need a guard when we use it)
2429     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2430     // We're changing the type, we need a new CheckCast node to carry
2431     // the new type. The new type depends on the control: what
2432     // profiling tells us is only valid from here as far as we can
2433     // tell.
2434     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2435     cast = _gvn.transform(cast);
2436     replace_in_map(n, cast);
2437     n = cast;
2438   }
2439 
2440   return n;
2441 }
2442 
2443 /**
2444  * Record profiling data from receiver profiling at an invoke with the
2445  * type system so that it can propagate it (speculation)
2446  *
2447  * @param n  receiver node
2448  *
2449  * @return   node with improved type
2450  */
2451 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2452   if (!UseTypeSpeculation) {
2453     return n;
2454   }
2455   ciKlass* exact_kls = profile_has_unique_klass();
2456   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2457   if ((java_bc() == Bytecodes::_checkcast ||
2458        java_bc() == Bytecodes::_instanceof ||
2459        java_bc() == Bytecodes::_aastore) &&
2460       method()->method_data()->is_mature()) {
2461     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2462     if (data != nullptr) {
2463       if (java_bc() == Bytecodes::_aastore) {
2464         ciKlass* array_type = nullptr;
2465         ciKlass* element_type = nullptr;
2466         ProfilePtrKind element_ptr = ProfileMaybeNull;
2467         bool flat_array = true;
2468         bool null_free_array = true;
2469         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2470         exact_kls = element_type;
2471         ptr_kind = element_ptr;
2472       } else {
2473         if (!data->as_BitData()->null_seen()) {
2474           ptr_kind = ProfileNeverNull;
2475         } else {
2476           assert(data->is_ReceiverTypeData(), "bad profile data type");
2477           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2478           uint i = 0;
2479           for (; i < call->row_limit(); i++) {
2480             ciKlass* receiver = call->receiver(i);
2481             if (receiver != nullptr) {
2482               break;
2483             }
2484           }
2485           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2486         }

2487       }
2488     }
2489   }
2490   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2491 }
2492 
2493 /**
2494  * Record profiling data from argument profiling at an invoke with the
2495  * type system so that it can propagate it (speculation)
2496  *
2497  * @param dest_method  target method for the call
2498  * @param bc           what invoke bytecode is this?
2499  */
2500 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2501   if (!UseTypeSpeculation) {
2502     return;
2503   }
2504   const TypeFunc* tf    = TypeFunc::make(dest_method);
2505   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2506   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2507   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2508     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2509     if (is_reference_type(targ->basic_type())) {
2510       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2511       ciKlass* better_type = nullptr;
2512       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2513         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2514       }
2515       i++;
2516     }
2517   }
2518 }
2519 
2520 /**
2521  * Record profiling data from parameter profiling at an invoke with
2522  * the type system so that it can propagate it (speculation)
2523  */
2524 void GraphKit::record_profiled_parameters_for_speculation() {
2525   if (!UseTypeSpeculation) {
2526     return;
2527   }
2528   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2542  * the type system so that it can propagate it (speculation)
2543  */
2544 void GraphKit::record_profiled_return_for_speculation() {
2545   if (!UseTypeSpeculation) {
2546     return;
2547   }
2548   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2549   ciKlass* better_type = nullptr;
2550   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2551     // If profiling reports a single type for the return value,
2552     // feed it to the type system so it can propagate it as a
2553     // speculative type
2554     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2555   }
2556 }
2557 
2558 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2559   if (Matcher::strict_fp_requires_explicit_rounding) {
2560     // (Note:  TypeFunc::make has a cache that makes this fast.)
2561     const TypeFunc* tf    = TypeFunc::make(dest_method);
2562     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2563     for (int j = 0; j < nargs; j++) {
2564       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2565       if (targ->basic_type() == T_DOUBLE) {
2566         // If any parameters are doubles, they must be rounded before
2567         // the call, dprecision_rounding does gvn.transform
2568         Node *arg = argument(j);
2569         arg = dprecision_rounding(arg);
2570         set_argument(j, arg);
2571       }
2572     }
2573   }
2574 }
2575 
2576 // rounding for strict float precision conformance
2577 Node* GraphKit::precision_rounding(Node* n) {
2578   if (Matcher::strict_fp_requires_explicit_rounding) {
2579 #ifdef IA32
2580     if (UseSSE == 0) {
2581       return _gvn.transform(new RoundFloatNode(nullptr, n));
2582     }
2583 #else
2584     Unimplemented();

2693                                   // The first null ends the list.
2694                                   Node* parm0, Node* parm1,
2695                                   Node* parm2, Node* parm3,
2696                                   Node* parm4, Node* parm5,
2697                                   Node* parm6, Node* parm7) {
2698   assert(call_addr != nullptr, "must not call null targets");
2699 
2700   // Slow-path call
2701   bool is_leaf = !(flags & RC_NO_LEAF);
2702   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2703   if (call_name == nullptr) {
2704     assert(!is_leaf, "must supply name for leaf");
2705     call_name = OptoRuntime::stub_name(call_addr);
2706   }
2707   CallNode* call;
2708   if (!is_leaf) {
2709     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2710   } else if (flags & RC_NO_FP) {
2711     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2712   } else  if (flags & RC_VECTOR){
2713     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2714     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2715   } else {
2716     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2717   }
2718 
2719   // The following is similar to set_edges_for_java_call,
2720   // except that the memory effects of the call are restricted to AliasIdxRaw.
2721 
2722   // Slow path call has no side-effects, uses few values
2723   bool wide_in  = !(flags & RC_NARROW_MEM);
2724   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2725 
2726   Node* prev_mem = nullptr;
2727   if (wide_in) {
2728     prev_mem = set_predefined_input_for_runtime_call(call);
2729   } else {
2730     assert(!wide_out, "narrow in => narrow out");
2731     Node* narrow_mem = memory(adr_type);
2732     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2733   }

2773 
2774   if (has_io) {
2775     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2776   }
2777   return call;
2778 
2779 }
2780 
2781 // i2b
2782 Node* GraphKit::sign_extend_byte(Node* in) {
2783   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2784   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2785 }
2786 
2787 // i2s
2788 Node* GraphKit::sign_extend_short(Node* in) {
2789   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2790   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2791 }
2792 
2793 
2794 //------------------------------merge_memory-----------------------------------
2795 // Merge memory from one path into the current memory state.
2796 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2797   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2798     Node* old_slice = mms.force_memory();
2799     Node* new_slice = mms.memory2();
2800     if (old_slice != new_slice) {
2801       PhiNode* phi;
2802       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2803         if (mms.is_empty()) {
2804           // clone base memory Phi's inputs for this memory slice
2805           assert(old_slice == mms.base_memory(), "sanity");
2806           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2807           _gvn.set_type(phi, Type::MEMORY);
2808           for (uint i = 1; i < phi->req(); i++) {
2809             phi->init_req(i, old_slice->in(i));
2810           }
2811         } else {
2812           phi = old_slice->as_Phi(); // Phi was generated already
2813         }

3076 
3077   // Now do a linear scan of the secondary super-klass array.  Again, no real
3078   // performance impact (too rare) but it's gotta be done.
3079   // Since the code is rarely used, there is no penalty for moving it
3080   // out of line, and it can only improve I-cache density.
3081   // The decision to inline or out-of-line this final check is platform
3082   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3083   Node* psc = gvn.transform(
3084     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3085 
3086   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3087   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3088   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3089 
3090   // Return false path; set default control to true path.
3091   *ctrl = gvn.transform(r_ok_subtype);
3092   return gvn.transform(r_not_subtype);
3093 }
3094 
3095 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3096   const Type* sub_t = _gvn.type(obj_or_subklass);
3097   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3098     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3099     obj_or_subklass = makecon(sub_t);
3100   }
3101   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3102   if (expand_subtype_check) {
3103     MergeMemNode* mem = merged_memory();
3104     Node* ctrl = control();
3105     Node* subklass = obj_or_subklass;
3106     if (!sub_t->isa_klassptr()) {
3107       subklass = load_object_klass(obj_or_subklass);
3108     }
3109 
3110     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3111     set_control(ctrl);
3112     return n;
3113   }
3114 
3115   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3116   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3117   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3118   set_control(_gvn.transform(new IfTrueNode(iff)));
3119   return _gvn.transform(new IfFalseNode(iff));
3120 }
3121 
3122 // Profile-driven exact type check:
3123 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3124                                     float prob, Node* *casted_receiver) {

3125   assert(!klass->is_interface(), "no exact type check on interfaces");
3126   Node* fail = top();
3127   const Type* rec_t = _gvn.type(receiver);
3128   if (rec_t->is_inlinetypeptr()) {
3129     if (klass->equals(rec_t->inline_klass())) {
3130       (*casted_receiver) = receiver; // Always passes
3131     } else {
3132       (*casted_receiver) = top();    // Always fails
3133       fail = control();
3134       set_control(top());
3135     }
3136     return fail;
3137   }
3138   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3139   Node* recv_klass = load_object_klass(receiver);
3140   fail = type_check(recv_klass, tklass, prob);





3141 
3142   if (!stopped()) {
3143     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3144     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3145     assert(recv_xtype->klass_is_exact(), "");
3146 
3147     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3148       // Subsume downstream occurrences of receiver with a cast to
3149       // recv_xtype, since now we know what the type will be.
3150       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3151       Node* res = _gvn.transform(cast);
3152       if (recv_xtype->is_inlinetypeptr()) {
3153         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3154         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3155       }
3156       (*casted_receiver) = res;
3157       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3158       // (User must make the replace_in_map call.)
3159     }
3160   }
3161 
3162   return fail;
3163 }
3164 
3165 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3166                            float prob) {
3167   Node* want_klass = makecon(tklass);
3168   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3169   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3170   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3171   set_control(_gvn.transform(new IfTrueNode (iff)));
3172   Node* fail = _gvn.transform(new IfFalseNode(iff));
3173   return fail;
3174 }
3175 
3176 //------------------------------subtype_check_receiver-------------------------
3177 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3178                                        Node** casted_receiver) {
3179   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3180   Node* want_klass = makecon(tklass);
3181 
3182   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3183 
3184   // Ignore interface type information until interface types are properly tracked.
3185   if (!stopped() && !klass->is_interface()) {
3186     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3187     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3188     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3189       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3190       if (recv_type->is_inlinetypeptr()) {
3191         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3192       }
3193       (*casted_receiver) = cast;
3194     }
3195   }
3196 
3197   return slow_ctl;
3198 }
3199 
3200 //------------------------------seems_never_null-------------------------------
3201 // Use null_seen information if it is available from the profile.
3202 // If we see an unexpected null at a type check we record it and force a
3203 // recompile; the offending check will be recompiled to handle nulls.
3204 // If we see several offending BCIs, then all checks in the
3205 // method will be recompiled.
3206 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3207   speculating = !_gvn.type(obj)->speculative_maybe_null();
3208   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3209   if (UncommonNullCast               // Cutout for this technique
3210       && obj != null()               // And not the -Xcomp stupid case?
3211       && !too_many_traps(reason)
3212       ) {
3213     if (speculating) {

3282 
3283 //------------------------maybe_cast_profiled_receiver-------------------------
3284 // If the profile has seen exactly one type, narrow to exactly that type.
3285 // Subsequent type checks will always fold up.
3286 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3287                                              const TypeKlassPtr* require_klass,
3288                                              ciKlass* spec_klass,
3289                                              bool safe_for_replace) {
3290   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3291 
3292   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3293 
3294   // Make sure we haven't already deoptimized from this tactic.
3295   if (too_many_traps_or_recompiles(reason))
3296     return nullptr;
3297 
3298   // (No, this isn't a call, but it's enough like a virtual call
3299   // to use the same ciMethod accessor to get the profile info...)
3300   // If we have a speculative type use it instead of profiling (which
3301   // may not help us)
3302   ciKlass* exact_kls = spec_klass;
3303   if (exact_kls == nullptr) {
3304     if (java_bc() == Bytecodes::_aastore) {
3305       ciKlass* array_type = nullptr;
3306       ciKlass* element_type = nullptr;
3307       ProfilePtrKind element_ptr = ProfileMaybeNull;
3308       bool flat_array = true;
3309       bool null_free_array = true;
3310       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3311       exact_kls = element_type;
3312     } else {
3313       exact_kls = profile_has_unique_klass();
3314     }
3315   }
3316   if (exact_kls != nullptr) {// no cast failures here
3317     if (require_klass == nullptr ||
3318         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3319       // If we narrow the type to match what the type profile sees or
3320       // the speculative type, we can then remove the rest of the
3321       // cast.
3322       // This is a win, even if the exact_kls is very specific,
3323       // because downstream operations, such as method calls,
3324       // will often benefit from the sharper type.
3325       Node* exact_obj = not_null_obj; // will get updated in place...
3326       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3327                                             &exact_obj);
3328       { PreserveJVMState pjvms(this);
3329         set_control(slow_ctl);
3330         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3331       }
3332       if (safe_for_replace) {
3333         replace_in_map(not_null_obj, exact_obj);
3334       }
3335       return exact_obj;

3425   // If not_null_obj is dead, only null-path is taken
3426   if (stopped()) {              // Doing instance-of on a null?
3427     set_control(null_ctl);
3428     return intcon(0);
3429   }
3430   region->init_req(_null_path, null_ctl);
3431   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3432   if (null_ctl == top()) {
3433     // Do this eagerly, so that pattern matches like is_diamond_phi
3434     // will work even during parsing.
3435     assert(_null_path == PATH_LIMIT-1, "delete last");
3436     region->del_req(_null_path);
3437     phi   ->del_req(_null_path);
3438   }
3439 
3440   // Do we know the type check always succeed?
3441   bool known_statically = false;
3442   if (_gvn.type(superklass)->singleton()) {
3443     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3444     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3445     if (subk != nullptr && subk->is_loaded()) {
3446       int static_res = C->static_subtype_check(superk, subk);
3447       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3448     }
3449   }
3450 
3451   if (!known_statically) {
3452     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3453     // We may not have profiling here or it may not help us. If we
3454     // have a speculative type use it to perform an exact cast.
3455     ciKlass* spec_obj_type = obj_type->speculative_type();
3456     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3457       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3458       if (stopped()) {            // Profile disagrees with this path.
3459         set_control(null_ctl);    // Null is the only remaining possibility.
3460         return intcon(0);
3461       }
3462       if (cast_obj != nullptr) {
3463         not_null_obj = cast_obj;
3464       }
3465     }

3481   record_for_igvn(region);
3482 
3483   // If we know the type check always succeeds then we don't use the
3484   // profiling data at this bytecode. Don't lose it, feed it to the
3485   // type system as a speculative type.
3486   if (safe_for_replace) {
3487     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3488     replace_in_map(obj, casted_obj);
3489   }
3490 
3491   return _gvn.transform(phi);
3492 }
3493 
3494 //-------------------------------gen_checkcast---------------------------------
3495 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3496 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3497 // uncommon-trap paths work.  Adjust stack after this call.
3498 // If failure_control is supplied and not null, it is filled in with
3499 // the control edge for the cast failure.  Otherwise, an appropriate
3500 // uncommon trap or exception is thrown.
3501 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {

3502   kill_dead_locals();           // Benefit all the uncommon traps
3503   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3504   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3505   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3506   bool safe_for_replace = (failure_control == nullptr);
3507   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3508 
3509   // Fast cutout:  Check the case that the cast is vacuously true.
3510   // This detects the common cases where the test will short-circuit
3511   // away completely.  We do this before we perform the null check,
3512   // because if the test is going to turn into zero code, we don't
3513   // want a residual null check left around.  (Causes a slowdown,
3514   // for example, in some objArray manipulations, such as a[i]=a[j].)
3515   if (improved_klass_ptr_type->singleton()) {
3516     const TypeKlassPtr* kptr = nullptr;
3517     const Type* t = _gvn.type(obj);
3518     if (t->isa_oop_ptr()) {
3519       kptr = t->is_oopptr()->as_klass_type();
3520     } else if (obj->is_InlineType()) {
3521       ciInlineKlass* vk = t->inline_klass();
3522       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3523     }
3524     if (kptr != nullptr) {
3525       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3526       case Compile::SSC_always_true:
3527         // If we know the type check always succeed then we don't use
3528         // the profiling data at this bytecode. Don't lose it, feed it
3529         // to the type system as a speculative type.
3530         obj = record_profiled_receiver_for_speculation(obj);
3531         if (null_free) {
3532           assert(safe_for_replace, "must be");
3533           obj = null_check(obj);
3534         }
3535         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3536         return obj;
3537       case Compile::SSC_always_false:
3538         if (null_free) {
3539           assert(safe_for_replace, "must be");
3540           obj = null_check(obj);
3541         }
3542         // It needs a null check because a null will *pass* the cast check.
3543         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {

3544           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3545           Deoptimization::DeoptReason reason = is_aastore ?
3546             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3547           builtin_throw(reason);
3548           return top();
3549         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3550           return null_assert(obj);
3551         }
3552         break; // Fall through to full check
3553       default:
3554         break;
3555       }
3556     }
3557   }
3558 
3559   ciProfileData* data = nullptr;

3560   if (failure_control == nullptr) {        // use MDO in regular case only
3561     assert(java_bc() == Bytecodes::_aastore ||
3562            java_bc() == Bytecodes::_checkcast,
3563            "interpreter profiles type checks only for these BCs");
3564     if (method()->method_data()->is_mature()) {
3565       data = method()->method_data()->bci_to_data(bci());
3566     }
3567   }
3568 
3569   // Make the merge point
3570   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3571   RegionNode* region = new RegionNode(PATH_LIMIT);
3572   Node*       phi    = new PhiNode(region, toop);
3573   _gvn.set_type(region, Type::CONTROL);
3574   _gvn.set_type(phi, toop);
3575 
3576   C->set_has_split_ifs(true); // Has chance for split-if optimization
3577 
3578   // Use null-cast information if it is available
3579   bool speculative_not_null = false;
3580   bool never_see_null = ((failure_control == nullptr)  // regular case only
3581                          && seems_never_null(obj, data, speculative_not_null));
3582 
3583   if (obj->is_InlineType()) {
3584     // Re-execute if buffering during triggers deoptimization
3585     PreserveReexecuteState preexecs(this);
3586     jvms()->set_should_reexecute(true);
3587     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3588   }
3589 
3590   // Null check; get casted pointer; set region slot 3
3591   Node* null_ctl = top();
3592   Node* not_null_obj = nullptr;
3593   if (null_free) {
3594     assert(safe_for_replace, "must be");
3595     not_null_obj = null_check(obj);
3596   } else {
3597     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3598   }
3599 
3600   // If not_null_obj is dead, only null-path is taken
3601   if (stopped()) {              // Doing instance-of on a null?
3602     set_control(null_ctl);
3603     if (toop->is_inlinetypeptr()) {
3604       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3605     }
3606     return null();
3607   }
3608   region->init_req(_null_path, null_ctl);
3609   phi   ->init_req(_null_path, null());  // Set null path value
3610   if (null_ctl == top()) {
3611     // Do this eagerly, so that pattern matches like is_diamond_phi
3612     // will work even during parsing.
3613     assert(_null_path == PATH_LIMIT-1, "delete last");
3614     region->del_req(_null_path);
3615     phi   ->del_req(_null_path);
3616   }
3617 
3618   Node* cast_obj = nullptr;
3619   if (improved_klass_ptr_type->klass_is_exact()) {
3620     // The following optimization tries to statically cast the speculative type of the object
3621     // (for example obtained during profiling) to the type of the superklass and then do a
3622     // dynamic check that the type of the object is what we expect. To work correctly
3623     // for checkcast and aastore the type of superklass should be exact.
3624     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3625     // We may not have profiling here or it may not help us. If we have
3626     // a speculative type use it to perform an exact cast.
3627     ciKlass* spec_obj_type = obj_type->speculative_type();
3628     if (spec_obj_type != nullptr || data != nullptr) {
3629       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3630       if (cast_obj != nullptr) {
3631         if (failure_control != nullptr) // failure is now impossible
3632           (*failure_control) = top();
3633         // adjust the type of the phi to the exact klass:
3634         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3635       }
3636     }
3637   }
3638 
3639   if (cast_obj == nullptr) {
3640     // Generate the subtype check
3641     Node* improved_superklass = superklass;
3642     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3643       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3644       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3645       // Additionally, the benefit would only be minor in non-constant cases.
3646       improved_superklass = makecon(improved_klass_ptr_type);
3647     }
3648     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);

3649     // Plug in success path into the merge
3650     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3651     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3652     if (failure_control == nullptr) {
3653       if (not_subtype_ctrl != top()) { // If failure is possible
3654         PreserveJVMState pjvms(this);
3655         set_control(not_subtype_ctrl);
3656         Node* obj_klass = nullptr;
3657         if (not_null_obj->is_InlineType()) {
3658           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3659         } else {
3660           obj_klass = load_object_klass(not_null_obj);
3661         }
3662         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3663         Deoptimization::DeoptReason reason = is_aastore ?
3664           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3665         builtin_throw(reason);
3666       }
3667     } else {
3668       (*failure_control) = not_subtype_ctrl;
3669     }
3670   }
3671 
3672   region->init_req(_obj_path, control());
3673   phi   ->init_req(_obj_path, cast_obj);
3674 
3675   // A merge of null or Casted-NotNull obj
3676   Node* res = _gvn.transform(phi);
3677 
3678   // Note I do NOT always 'replace_in_map(obj,result)' here.
3679   //  if( tk->klass()->can_be_primary_super()  )
3680     // This means that if I successfully store an Object into an array-of-String
3681     // I 'forget' that the Object is really now known to be a String.  I have to
3682     // do this because we don't have true union types for interfaces - if I store
3683     // a Baz into an array-of-Interface and then tell the optimizer it's an
3684     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3685     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3686   //  replace_in_map( obj, res );
3687 
3688   // Return final merged results
3689   set_control( _gvn.transform(region) );
3690   record_for_igvn(region);
3691 
3692   bool not_inline = !toop->can_be_inline_type();
3693   bool not_flat_in_array = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3694   if (EnableValhalla && not_flat_in_array) {
3695     // Check if obj has been loaded from an array
3696     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3697     Node* array = nullptr;
3698     if (obj->isa_Load()) {
3699       Node* address = obj->in(MemNode::Address);
3700       if (address->isa_AddP()) {
3701         array = address->as_AddP()->in(AddPNode::Base);
3702       }
3703     } else if (obj->is_Phi()) {
3704       Node* region = obj->in(0);
3705       // TODO make this more robust (see JDK-8231346)
3706       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3707         IfNode* iff = region->in(2)->in(0)->isa_If();
3708         if (iff != nullptr) {
3709           iff->is_flat_array_check(&_gvn, &array);
3710         }
3711       }
3712     }
3713     if (array != nullptr) {
3714       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3715       if (ary_t != nullptr && !ary_t->is_flat()) {
3716         if (!ary_t->is_not_null_free() && not_inline) {
3717           // Casting array element to a non-inline-type, mark array as not null-free.
3718           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3719           replace_in_map(array, cast);
3720         } else if (!ary_t->is_not_flat()) {
3721           // Casting array element to a non-flat type, mark array as not flat.
3722           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3723           replace_in_map(array, cast);
3724         }
3725       }
3726     }
3727   }
3728 
3729   if (!stopped() && !res->is_InlineType()) {
3730     res = record_profiled_receiver_for_speculation(res);
3731     if (toop->is_inlinetypeptr()) {
3732       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3733       res = vt;
3734       if (safe_for_replace) {
3735         replace_in_map(obj, vt);
3736         replace_in_map(not_null_obj, vt);
3737         replace_in_map(res, vt);
3738       }
3739     }
3740   }
3741   return res;
3742 }
3743 
3744 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3745   // Load markword
3746   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3747   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3748   if (check_lock) {
3749     // Check if obj is locked
3750     Node* locked_bit = MakeConX(markWord::unlocked_value);
3751     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3752     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3753     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3754     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3755     _gvn.transform(iff);
3756     Node* locked_region = new RegionNode(3);
3757     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3758 
3759     // Unlocked: Use bits from mark word
3760     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3761     mark_phi->init_req(1, mark);
3762 
3763     // Locked: Load prototype header from klass
3764     set_control(_gvn.transform(new IfFalseNode(iff)));
3765     // Make loads control dependent to make sure they are only executed if array is locked
3766     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3767     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, control(), C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3768     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3769     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3770 
3771     locked_region->init_req(2, control());
3772     mark_phi->init_req(2, proto);
3773     set_control(_gvn.transform(locked_region));
3774     record_for_igvn(locked_region);
3775 
3776     mark = mark_phi;
3777   }
3778 
3779   // Now check if mark word bits are set
3780   Node* mask = MakeConX(mask_val);
3781   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3782   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3783   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3784   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3785 }
3786 
3787 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3788   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3789 }
3790 
3791 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3792   // We can't use immutable memory here because the mark word is mutable.
3793   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3794   // check is moved out of loops (mainly to enable loop unswitching).
3795   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3796   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3797   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3798 }
3799 
3800 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3801   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3802 }
3803 
3804 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3805 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3806   RegionNode* region = new RegionNode(3);
3807   Node* null_ctl = top();
3808   null_check_oop(val, &null_ctl);
3809   if (null_ctl != top()) {
3810     PreserveJVMState pjvms(this);
3811     set_control(null_ctl);
3812     {
3813       // Deoptimize if null-free array
3814       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3815       inc_sp(nargs);
3816       uncommon_trap(Deoptimization::Reason_null_check,
3817                     Deoptimization::Action_none);
3818     }
3819     region->init_req(1, control());
3820   }
3821   region->init_req(2, control());
3822   set_control(_gvn.transform(region));
3823   record_for_igvn(region);
3824   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3825     // Since we were just successfully storing null, the array can't be null free.
3826     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3827     ary_t = ary_t->cast_to_not_null_free();
3828     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3829     if (safe_for_replace) {
3830       replace_in_map(ary, cast);
3831     }
3832     ary = cast;
3833   }
3834   return ary;
3835 }
3836 
3837 //------------------------------next_monitor-----------------------------------
3838 // What number should be given to the next monitor?
3839 int GraphKit::next_monitor() {
3840   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3841   int next = current + C->sync_stack_slots();
3842   // Keep the toplevel high water mark current:
3843   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3844   return current;
3845 }
3846 
3847 //------------------------------insert_mem_bar---------------------------------
3848 // Memory barrier to avoid floating things around
3849 // The membar serves as a pinch point between both control and all memory slices.
3850 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3851   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3852   mb->init_req(TypeFunc::Control, control());
3853   mb->init_req(TypeFunc::Memory,  reset_memory());
3854   Node* membar = _gvn.transform(mb);

3882   }
3883   Node* membar = _gvn.transform(mb);
3884   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3885   if (alias_idx == Compile::AliasIdxBot) {
3886     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3887   } else {
3888     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3889   }
3890   return membar;
3891 }
3892 
3893 //------------------------------shared_lock------------------------------------
3894 // Emit locking code.
3895 FastLockNode* GraphKit::shared_lock(Node* obj) {
3896   // bci is either a monitorenter bc or InvocationEntryBci
3897   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3898   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3899 
3900   if( !GenerateSynchronizationCode )
3901     return nullptr;                // Not locking things?
3902 
3903   if (stopped())                // Dead monitor?
3904     return nullptr;
3905 
3906   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3907 
3908   // Box the stack location
3909   Node* box = new BoxLockNode(next_monitor());
3910   // Check for bailout after new BoxLockNode
3911   if (failing()) { return nullptr; }
3912   box = _gvn.transform(box);
3913   Node* mem = reset_memory();
3914 
3915   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3916 
3917   // Add monitor to debug info for the slow path.  If we block inside the
3918   // slow path and de-opt, we need the monitor hanging around
3919   map()->push_monitor( flock );
3920 
3921   const TypeFunc *tf = LockNode::lock_type();
3922   LockNode *lock = new LockNode(C, tf);

3951   }
3952 #endif
3953 
3954   return flock;
3955 }
3956 
3957 
3958 //------------------------------shared_unlock----------------------------------
3959 // Emit unlocking code.
3960 void GraphKit::shared_unlock(Node* box, Node* obj) {
3961   // bci is either a monitorenter bc or InvocationEntryBci
3962   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3963   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3964 
3965   if( !GenerateSynchronizationCode )
3966     return;
3967   if (stopped()) {               // Dead monitor?
3968     map()->pop_monitor();        // Kill monitor from debug info
3969     return;
3970   }
3971   assert(!obj->is_InlineType(), "should not unlock on inline type");
3972 
3973   // Memory barrier to avoid floating things down past the locked region
3974   insert_mem_bar(Op_MemBarReleaseLock);
3975 
3976   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3977   UnlockNode *unlock = new UnlockNode(C, tf);
3978 #ifdef ASSERT
3979   unlock->set_dbg_jvms(sync_jvms());
3980 #endif
3981   uint raw_idx = Compile::AliasIdxRaw;
3982   unlock->init_req( TypeFunc::Control, control() );
3983   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3984   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3985   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3986   unlock->init_req( TypeFunc::ReturnAdr, top() );
3987 
3988   unlock->init_req(TypeFunc::Parms + 0, obj);
3989   unlock->init_req(TypeFunc::Parms + 1, box);
3990   unlock = _gvn.transform(unlock)->as_Unlock();
3991 
3992   Node* mem = reset_memory();
3993 
3994   // unlock has no side-effects, sets few values
3995   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3996 
3997   // Kill monitor from debug info
3998   map()->pop_monitor( );
3999 }
4000 
4001 //-------------------------------get_layout_helper-----------------------------
4002 // If the given klass is a constant or known to be an array,
4003 // fetch the constant layout helper value into constant_value
4004 // and return null.  Otherwise, load the non-constant
4005 // layout helper value, and return the node which represents it.
4006 // This two-faced routine is useful because allocation sites
4007 // almost always feature constant types.
4008 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4009   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4010   if (!StressReflectiveCode && klass_t != nullptr) {
4011     bool xklass = klass_t->klass_is_exact();
4012     bool can_be_flat = false;
4013     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4014     if (UseFlatArray && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4015       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4016       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4017       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
4018     }
4019     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4020       jint lhelper;
4021       if (klass_t->is_flat()) {
4022         lhelper = ary_type->flat_layout_helper();
4023       } else if (klass_t->isa_aryklassptr()) {
4024         BasicType elem = ary_type->elem()->array_element_basic_type();
4025         if (is_reference_type(elem, true)) {
4026           elem = T_OBJECT;
4027         }
4028         lhelper = Klass::array_layout_helper(elem);
4029       } else {
4030         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4031       }
4032       if (lhelper != Klass::_lh_neutral_value) {
4033         constant_value = lhelper;
4034         return (Node*) nullptr;
4035       }
4036     }
4037   }
4038   constant_value = Klass::_lh_neutral_value;  // put in a known value
4039   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4040   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4041 }
4042 
4043 // We just put in an allocate/initialize with a big raw-memory effect.
4044 // Hook selected additional alias categories on the initialization.
4045 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4046                                 MergeMemNode* init_in_merge,
4047                                 Node* init_out_raw) {
4048   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4049   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4050 
4051   Node* prevmem = kit.memory(alias_idx);
4052   init_in_merge->set_memory_at(alias_idx, prevmem);
4053   if (init_out_raw != nullptr) {
4054     kit.set_memory(init_out_raw, alias_idx);
4055   }
4056 }
4057 
4058 //---------------------------set_output_for_allocation-------------------------
4059 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4060                                           const TypeOopPtr* oop_type,
4061                                           bool deoptimize_on_exception) {
4062   int rawidx = Compile::AliasIdxRaw;
4063   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4064   add_safepoint_edges(alloc);
4065   Node* allocx = _gvn.transform(alloc);
4066   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4067   // create memory projection for i_o
4068   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4069   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4070 
4071   // create a memory projection as for the normal control path
4072   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4073   set_memory(malloc, rawidx);
4074 
4075   // a normal slow-call doesn't change i_o, but an allocation does
4076   // we create a separate i_o projection for the normal control path
4077   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4078   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4079 
4080   // put in an initialization barrier
4081   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4082                                                  rawoop)->as_Initialize();
4083   assert(alloc->initialization() == init,  "2-way macro link must work");
4084   assert(init ->allocation()     == alloc, "2-way macro link must work");
4085   {
4086     // Extract memory strands which may participate in the new object's
4087     // initialization, and source them from the new InitializeNode.
4088     // This will allow us to observe initializations when they occur,
4089     // and link them properly (as a group) to the InitializeNode.
4090     assert(init->in(InitializeNode::Memory) == malloc, "");
4091     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4092     init->set_req(InitializeNode::Memory, minit_in);
4093     record_for_igvn(minit_in); // fold it up later, if possible
4094     _gvn.set_type(minit_in, Type::MEMORY);
4095     Node* minit_out = memory(rawidx);
4096     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4097     // Add an edge in the MergeMem for the header fields so an access
4098     // to one of those has correct memory state
4099     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4100     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4101     if (oop_type->isa_aryptr()) {
4102       const TypeAryPtr* arytype = oop_type->is_aryptr();
4103       if (arytype->is_flat()) {
4104         // Initially all flat array accesses share a single slice
4105         // but that changes after parsing. Prepare the memory graph so
4106         // it can optimize flat array accesses properly once they
4107         // don't share a single slice.
4108         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4109         C->set_flat_accesses_share_alias(false);
4110         ciInlineKlass* vk = arytype->elem()->inline_klass();
4111         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4112           ciField* field = vk->nonstatic_field_at(i);
4113           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4114             continue;  // do not bother to track really large numbers of fields
4115           int off_in_vt = field->offset_in_bytes() - vk->first_field_offset();
4116           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4117           int fieldidx = C->get_alias_index(adr_type, true);
4118           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4119           // can result in per flat array field Phis to be created which confuses the logic of
4120           // Compile::adjust_flat_array_access_aliases().
4121           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4122         }
4123         C->set_flat_accesses_share_alias(true);
4124         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4125       } else {
4126         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4127         int            elemidx  = C->get_alias_index(telemref);
4128         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4129       }
4130     } else if (oop_type->isa_instptr()) {
4131       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4132       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4133       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4134         ciField* field = ik->nonstatic_field_at(i);
4135         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4136           continue;  // do not bother to track really large numbers of fields
4137         // Find (or create) the alias category for this field:
4138         int fieldidx = C->alias_type(field)->index();
4139         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4140       }
4141     }
4142   }
4143 
4144   // Cast raw oop to the real thing...
4145   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4146   javaoop = _gvn.transform(javaoop);
4147   C->set_recent_alloc(control(), javaoop);
4148   assert(just_allocated_object(control()) == javaoop, "just allocated");
4149 
4150 #ifdef ASSERT
4151   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

4162       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4163     }
4164   }
4165 #endif //ASSERT
4166 
4167   return javaoop;
4168 }
4169 
4170 //---------------------------new_instance--------------------------------------
4171 // This routine takes a klass_node which may be constant (for a static type)
4172 // or may be non-constant (for reflective code).  It will work equally well
4173 // for either, and the graph will fold nicely if the optimizer later reduces
4174 // the type to a constant.
4175 // The optional arguments are for specialized use by intrinsics:
4176 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4177 //  - If 'return_size_val', report the total object size to the caller.
4178 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4179 Node* GraphKit::new_instance(Node* klass_node,
4180                              Node* extra_slow_test,
4181                              Node* *return_size_val,
4182                              bool deoptimize_on_exception,
4183                              InlineTypeNode* inline_type_node) {
4184   // Compute size in doublewords
4185   // The size is always an integral number of doublewords, represented
4186   // as a positive bytewise size stored in the klass's layout_helper.
4187   // The layout_helper also encodes (in a low bit) the need for a slow path.
4188   jint  layout_con = Klass::_lh_neutral_value;
4189   Node* layout_val = get_layout_helper(klass_node, layout_con);
4190   bool  layout_is_con = (layout_val == nullptr);
4191 
4192   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4193   // Generate the initial go-slow test.  It's either ALWAYS (return a
4194   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4195   // case) a computed value derived from the layout_helper.
4196   Node* initial_slow_test = nullptr;
4197   if (layout_is_con) {
4198     assert(!StressReflectiveCode, "stress mode does not use these paths");
4199     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4200     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4201   } else {   // reflective case
4202     // This reflective path is used by Unsafe.allocateInstance.
4203     // (It may be stress-tested by specifying StressReflectiveCode.)
4204     // Basically, we want to get into the VM is there's an illegal argument.
4205     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4206     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4207     if (extra_slow_test != intcon(0)) {
4208       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4209     }
4210     // (Macro-expander will further convert this to a Bool, if necessary.)

4221 
4222     // Clear the low bits to extract layout_helper_size_in_bytes:
4223     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4224     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4225     size = _gvn.transform( new AndXNode(size, mask) );
4226   }
4227   if (return_size_val != nullptr) {
4228     (*return_size_val) = size;
4229   }
4230 
4231   // This is a precise notnull oop of the klass.
4232   // (Actually, it need not be precise if this is a reflective allocation.)
4233   // It's what we cast the result to.
4234   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4235   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4236   const TypeOopPtr* oop_type = tklass->as_instance_type();
4237 
4238   // Now generate allocation code
4239 
4240   // The entire memory state is needed for slow path of the allocation
4241   // since GC and deoptimization can happen.
4242   Node *mem = reset_memory();
4243   set_all_memory(mem); // Create new memory state
4244 
4245   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4246                                          control(), mem, i_o(),
4247                                          size, klass_node,
4248                                          initial_slow_test, inline_type_node);
4249 
4250   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4251 }
4252 
4253 //-------------------------------new_array-------------------------------------
4254 // helper for newarray and anewarray
4255 // The 'length' parameter is (obviously) the length of the array.
4256 // The optional arguments are for specialized use by intrinsics:
4257 //  - If 'return_size_val', report the non-padded array size (sum of header size
4258 //    and array body) to the caller.
4259 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4260 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4261                           Node* length,         // number of array elements
4262                           int   nargs,          // number of arguments to push back for uncommon trap
4263                           Node* *return_size_val,
4264                           bool deoptimize_on_exception) {
4265   jint  layout_con = Klass::_lh_neutral_value;
4266   Node* layout_val = get_layout_helper(klass_node, layout_con);
4267   bool  layout_is_con = (layout_val == nullptr);
4268 
4269   if (!layout_is_con && !StressReflectiveCode &&
4270       !too_many_traps(Deoptimization::Reason_class_check)) {
4271     // This is a reflective array creation site.
4272     // Optimistically assume that it is a subtype of Object[],
4273     // so that we can fold up all the address arithmetic.
4274     layout_con = Klass::array_layout_helper(T_OBJECT);
4275     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4276     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4277     { BuildCutout unless(this, bol_lh, PROB_MAX);
4278       inc_sp(nargs);
4279       uncommon_trap(Deoptimization::Reason_class_check,
4280                     Deoptimization::Action_maybe_recompile);
4281     }
4282     layout_val = nullptr;
4283     layout_is_con = true;
4284   }
4285 
4286   // Generate the initial go-slow test.  Make sure we do not overflow
4287   // if length is huge (near 2Gig) or negative!  We do not need
4288   // exact double-words here, just a close approximation of needed
4289   // double-words.  We can't add any offset or rounding bits, lest we
4290   // take a size -1 of bytes and make it positive.  Use an unsigned
4291   // compare, so negative sizes look hugely positive.
4292   int fast_size_limit = FastAllocateSizeLimit;
4293   if (layout_is_con) {
4294     assert(!StressReflectiveCode, "stress mode does not use these paths");
4295     // Increase the size limit if we have exact knowledge of array type.
4296     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4297     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4298   }
4299 
4300   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4301   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4302 
4303   // --- Size Computation ---
4304   // array_size = round_to_heap(array_header + (length << elem_shift));
4305   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4306   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4307   // The rounding mask is strength-reduced, if possible.
4308   int round_mask = MinObjAlignmentInBytes - 1;
4309   Node* header_size = nullptr;
4310   // (T_BYTE has the weakest alignment and size restrictions...)
4311   if (layout_is_con) {
4312     int       hsize  = Klass::layout_helper_header_size(layout_con);
4313     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4314     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4315     if ((round_mask & ~right_n_bits(eshift)) == 0)
4316       round_mask = 0;  // strength-reduce it if it goes away completely
4317     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4318     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4319     assert(header_size_min <= hsize, "generic minimum is smallest");
4320     header_size = intcon(hsize);
4321   } else {
4322     Node* hss   = intcon(Klass::_lh_header_size_shift);
4323     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4324     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4325     header_size = _gvn.transform(new AndINode(header_size, hsm));
4326   }
4327 
4328   Node* elem_shift = nullptr;
4329   if (layout_is_con) {
4330     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4331     if (eshift != 0)
4332       elem_shift = intcon(eshift);
4333   } else {
4334     // There is no need to mask or shift this value.
4335     // The semantics of LShiftINode include an implicit mask to 0x1F.
4336     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4337     elem_shift = layout_val;

4384   }
4385   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4386 
4387   if (return_size_val != nullptr) {
4388     // This is the size
4389     (*return_size_val) = non_rounded_size;
4390   }
4391 
4392   Node* size = non_rounded_size;
4393   if (round_mask != 0) {
4394     Node* mask1 = MakeConX(round_mask);
4395     size = _gvn.transform(new AddXNode(size, mask1));
4396     Node* mask2 = MakeConX(~round_mask);
4397     size = _gvn.transform(new AndXNode(size, mask2));
4398   }
4399   // else if round_mask == 0, the size computation is self-rounding
4400 
4401   // Now generate allocation code
4402 
4403   // The entire memory state is needed for slow path of the allocation
4404   // since GC and deoptimization can happen.
4405   Node *mem = reset_memory();
4406   set_all_memory(mem); // Create new memory state
4407 
4408   if (initial_slow_test->is_Bool()) {
4409     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4410     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4411   }
4412 
4413   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4414   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4415   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4416 
4417   // Inline type array variants:
4418   // - null-ok:         ciObjArrayKlass  with is_elem_null_free() = false
4419   // - null-free:       ciObjArrayKlass  with is_elem_null_free() = true
4420   // - null-free, flat: ciFlatArrayKlass with is_elem_null_free() = true
4421   // Check if array is a null-free, non-flat inline type array
4422   // that needs to be initialized with the default inline type.
4423   Node* default_value = nullptr;
4424   Node* raw_default_value = nullptr;
4425   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4426     // Array type is known
4427     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4428       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4429       default_value = InlineTypeNode::default_oop(gvn(), vk);
4430       if (UseCompressedOops) {
4431         // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4432         default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4433         Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4434         Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4435         raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4436       } else {
4437         raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4438       }
4439     }
4440   }
4441 
4442   Node* valid_length_test = _gvn.intcon(1);
4443   if (ary_type->isa_aryptr()) {
4444     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4445     jint max = TypeAryPtr::max_array_length(bt);
4446     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4447     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4448   }
4449 
4450   // Create the AllocateArrayNode and its result projections
4451   AllocateArrayNode* alloc
4452     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4453                             control(), mem, i_o(),
4454                             size, klass_node,
4455                             initial_slow_test,
4456                             length, valid_length_test,
4457                             default_value, raw_default_value);
4458   // Cast to correct type.  Note that the klass_node may be constant or not,
4459   // and in the latter case the actual array type will be inexact also.
4460   // (This happens via a non-constant argument to inline_native_newArray.)
4461   // In any case, the value of klass_node provides the desired array type.
4462   const TypeInt* length_type = _gvn.find_int_type(length);
4463   if (ary_type->isa_aryptr() && length_type != nullptr) {
4464     // Try to get a better type than POS for the size
4465     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4466   }
4467 
4468   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4469 
4470   array_ideal_length(alloc, ary_type, true);
4471   return javaoop;
4472 }
4473 
4474 // The following "Ideal_foo" functions are placed here because they recognize
4475 // the graph shapes created by the functions immediately above.
4476 
4477 //---------------------------Ideal_allocation----------------------------------

4584   set_all_memory(ideal.merged_memory());
4585   set_i_o(ideal.i_o());
4586   set_control(ideal.ctrl());
4587 }
4588 
4589 void GraphKit::final_sync(IdealKit& ideal) {
4590   // Final sync IdealKit and graphKit.
4591   sync_kit(ideal);
4592 }
4593 
4594 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4595   Node* len = load_array_length(load_String_value(str, set_ctrl));
4596   Node* coder = load_String_coder(str, set_ctrl);
4597   // Divide length by 2 if coder is UTF16
4598   return _gvn.transform(new RShiftINode(len, coder));
4599 }
4600 
4601 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4602   int value_offset = java_lang_String::value_offset();
4603   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4604                                                      false, nullptr, Type::Offset(0));
4605   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4606   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4607                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4608                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4609   Node* p = basic_plus_adr(str, str, value_offset);
4610   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4611                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4612   return load;
4613 }
4614 
4615 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4616   if (!CompactStrings) {
4617     return intcon(java_lang_String::CODER_UTF16);
4618   }
4619   int coder_offset = java_lang_String::coder_offset();
4620   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4621                                                      false, nullptr, Type::Offset(0));
4622   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4623 
4624   Node* p = basic_plus_adr(str, str, coder_offset);
4625   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4626                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4627   return load;
4628 }
4629 
4630 void GraphKit::store_String_value(Node* str, Node* value) {
4631   int value_offset = java_lang_String::value_offset();
4632   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4633                                                      false, nullptr, Type::Offset(0));
4634   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4635 
4636   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4637                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4638 }
4639 
4640 void GraphKit::store_String_coder(Node* str, Node* value) {
4641   int coder_offset = java_lang_String::coder_offset();
4642   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4643                                                      false, nullptr, Type::Offset(0));
4644   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4645 
4646   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4647                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4648 }
4649 
4650 // Capture src and dst memory state with a MergeMemNode
4651 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4652   if (src_type == dst_type) {
4653     // Types are equal, we don't need a MergeMemNode
4654     return memory(src_type);
4655   }
4656   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4657   record_for_igvn(merge); // fold it up later, if possible
4658   int src_idx = C->get_alias_index(src_type);
4659   int dst_idx = C->get_alias_index(dst_type);
4660   merge->set_memory_at(src_idx, memory(src_idx));
4661   merge->set_memory_at(dst_idx, memory(dst_idx));
4662   return merge;
4663 }

4736   i_char->init_req(2, AddI(i_char, intcon(2)));
4737 
4738   set_control(IfFalse(iff));
4739   set_memory(st, TypeAryPtr::BYTES);
4740 }
4741 
4742 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4743   if (!field->is_constant()) {
4744     return nullptr; // Field not marked as constant.
4745   }
4746   ciInstance* holder = nullptr;
4747   if (!field->is_static()) {
4748     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4749     if (const_oop != nullptr && const_oop->is_instance()) {
4750       holder = const_oop->as_instance();
4751     }
4752   }
4753   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4754                                                         /*is_unsigned_load=*/false);
4755   if (con_type != nullptr) {
4756     Node* con = makecon(con_type);
4757     if (field->type()->is_inlinetype()) {
4758       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4759     } else if (con_type->is_inlinetypeptr()) {
4760       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4761     }
4762     return con;
4763   }
4764   return nullptr;
4765 }
4766 
4767 //---------------------------load_mirror_from_klass----------------------------
4768 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4769 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4770   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4771   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4772   // mirror = ((OopHandle)mirror)->resolve();
4773   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4774 }
4775 
4776 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4777   const Type* obj_type = obj->bottom_type();
4778   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4779   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4780     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4781     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4782     obj = casted_obj;
4783   }
4784   if (sig_type->is_inlinetypeptr()) {
4785     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass(), !gvn().type(obj)->maybe_null());
4786   }
4787   return obj;
4788 }
< prev index next >