1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.inline.hpp"
  26 #include "gc/shared/gc_globals.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "oops/compressedOops.hpp"
  29 #include "opto/ad.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/machnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "opto/chaitin.hpp"
  37 #include "runtime/os.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 // Optimization - Graph Style
  41 
  42 // Check whether val is not-null-decoded compressed oop,
  43 // i.e. will grab into the base of the heap if it represents null.
  44 static bool accesses_heap_base_zone(Node *val) {
  45   if (CompressedOops::base() != nullptr) { // Implies UseCompressedOops.
  46     if (val && val->is_Mach()) {
  47       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  48         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  49         // decode null to point to the heap base (Decode_NN).
  50         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  51           return true;
  52         }
  53       }
  54       // Must recognize load operation with Decode matched in memory operand.
  55       // We should not reach here except for PPC/AIX, as os::zero_page_read_protected()
  56       // returns true everywhere else. On PPC, no such memory operands
  57       // exist, therefore we did not yet implement a check for such operands.
  58       NOT_AIX(Unimplemented());
  59     }
  60   }
  61   return false;
  62 }
  63 
  64 static bool needs_explicit_null_check_for_read(Node *val) {
  65   // On some OSes (AIX) the page at address 0 is only write protected.
  66   // If so, only Store operations will trap.
  67   if (os::zero_page_read_protected()) {
  68     return false;  // Implicit null check will work.
  69   }
  70   // Also a read accessing the base of a heap-based compressed heap will trap.
  71   if (accesses_heap_base_zone(val) &&         // Hits the base zone page.
  72       CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
  73     return false;
  74   }
  75 
  76   return true;
  77 }
  78 
  79 //------------------------------implicit_null_check----------------------------
  80 // Detect implicit-null-check opportunities.  Basically, find null checks
  81 // with suitable memory ops nearby.  Use the memory op to do the null check.
  82 // I can generate a memory op if there is not one nearby.
  83 // The proj is the control projection for the not-null case.
  84 // The val is the pointer being checked for nullness or
  85 // decodeHeapOop_not_null node if it did not fold into address.
  86 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  87   // Assume if null check need for 0 offset then always needed
  88   // Intel solaris doesn't support any null checks yet and no
  89   // mechanism exists (yet) to set the switches at an os_cpu level
  90   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  91 
  92   // Make sure the ptr-is-null path appears to be uncommon!
  93   float f = block->end()->as_MachIf()->_prob;
  94   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  95   if( f > PROB_UNLIKELY_MAG(4) ) return;
  96 
  97   uint bidx = 0;                // Capture index of value into memop
  98   bool was_store;               // Memory op is a store op
  99 
 100   // Get the successor block for if the test ptr is non-null
 101   Block* not_null_block;  // this one goes with the proj
 102   Block* null_block;
 103   if (block->get_node(block->number_of_nodes()-1) == proj) {
 104     null_block     = block->_succs[0];
 105     not_null_block = block->_succs[1];
 106   } else {
 107     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 108     not_null_block = block->_succs[0];
 109     null_block     = block->_succs[1];
 110   }
 111   while (null_block->is_Empty() == Block::empty_with_goto) {
 112     null_block     = null_block->_succs[0];
 113   }
 114 
 115   // Search the exception block for an uncommon trap.
 116   // (See Parse::do_if and Parse::do_ifnull for the reason
 117   // we need an uncommon trap.  Briefly, we need a way to
 118   // detect failure of this optimization, as in 6366351.)
 119   {
 120     bool found_trap = false;
 121     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 122       Node* nn = null_block->get_node(i1);
 123       if (nn->is_MachCall() &&
 124           nn->as_MachCall()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) {
 125         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 126         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 127           jint tr_con = trtype->is_int()->get_con();
 128           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 129           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 130           assert((int)reason < (int)BitsPerInt, "recode bit map");
 131           if (is_set_nth_bit(allowed_reasons, (int) reason)
 132               && action != Deoptimization::Action_none) {
 133             // This uncommon trap is sure to recompile, eventually.
 134             // When that happens, C->too_many_traps will prevent
 135             // this transformation from happening again.
 136             found_trap = true;
 137           }
 138         }
 139         break;
 140       }
 141     }
 142     if (!found_trap) {
 143       // We did not find an uncommon trap.
 144       return;
 145     }
 146   }
 147 
 148   // Check for decodeHeapOop_not_null node which did not fold into address
 149   bool is_decoden = ((intptr_t)val) & 1;
 150   val = (Node*)(((intptr_t)val) & ~1);
 151 
 152   assert(!is_decoden ||
 153          ((val->in(0) == nullptr) && val->is_Mach() &&
 154           (val->as_Mach()->ideal_Opcode() == Op_DecodeN)), "sanity");
 155 
 156   // Search the successor block for a load or store who's base value is also
 157   // the tested value.  There may be several.
 158   MachNode *best = nullptr;        // Best found so far
 159   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 160     Node *m = val->out(i);
 161     if( !m->is_Mach() ) continue;
 162     MachNode *mach = m->as_Mach();
 163     if (mach->barrier_data() != 0) {
 164       // Using memory accesses with barriers to perform implicit null checks is
 165       // not supported. These operations might expand into multiple assembly
 166       // instructions during code emission, including new memory accesses (e.g.
 167       // in G1's pre-barrier), which would invalidate the implicit null
 168       // exception table.
 169       continue;
 170     }
 171     was_store = false;
 172     int iop = mach->ideal_Opcode();
 173     switch( iop ) {
 174     case Op_LoadB:
 175     case Op_LoadUB:
 176     case Op_LoadUS:
 177     case Op_LoadD:
 178     case Op_LoadF:
 179     case Op_LoadI:
 180     case Op_LoadL:
 181     case Op_LoadP:
 182     case Op_LoadN:
 183     case Op_LoadS:
 184     case Op_LoadKlass:
 185     case Op_LoadNKlass:
 186     case Op_LoadRange:
 187     case Op_LoadD_unaligned:
 188     case Op_LoadL_unaligned:
 189       assert(mach->in(2) == val, "should be address");
 190       break;
 191     case Op_StoreB:
 192     case Op_StoreC:
 193     case Op_StoreD:
 194     case Op_StoreF:
 195     case Op_StoreI:
 196     case Op_StoreL:
 197     case Op_StoreP:
 198     case Op_StoreN:
 199     case Op_StoreNKlass:
 200       was_store = true;         // Memory op is a store op
 201       // Stores will have their address in slot 2 (memory in slot 1).
 202       // If the value being nul-checked is in another slot, it means we
 203       // are storing the checked value, which does NOT check the value!
 204       if( mach->in(2) != val ) continue;
 205       break;                    // Found a memory op?
 206     case Op_StrComp:
 207     case Op_StrEquals:
 208     case Op_StrIndexOf:
 209     case Op_StrIndexOfChar:
 210     case Op_AryEq:
 211     case Op_VectorizedHashCode:
 212     case Op_StrInflatedCopy:
 213     case Op_StrCompressedCopy:
 214     case Op_EncodeISOArray:
 215     case Op_CountPositives:
 216       // Not a legit memory op for implicit null check regardless of
 217       // embedded loads
 218       continue;
 219     default:                    // Also check for embedded loads
 220       if( !mach->needs_anti_dependence_check() )
 221         continue;               // Not an memory op; skip it
 222       if( must_clone[iop] ) {
 223         // Do not move nodes which produce flags because
 224         // RA will try to clone it to place near branch and
 225         // it will cause recompilation, see clone_node().
 226         continue;
 227       }
 228       {
 229         // Check that value is used in memory address in
 230         // instructions with embedded load (CmpP val1,(val2+off)).
 231         Node* base;
 232         Node* index;
 233         const MachOper* oper = mach->memory_inputs(base, index);
 234         if (oper == nullptr || oper == (MachOper*)-1) {
 235           continue;             // Not an memory op; skip it
 236         }
 237         if (val == base ||
 238             (val == index && val->bottom_type()->isa_narrowoop())) {
 239           break;                // Found it
 240         } else {
 241           continue;             // Skip it
 242         }
 243       }
 244       break;
 245     }
 246 
 247     // On some OSes (AIX) the page at address 0 is only write protected.
 248     // If so, only Store operations will trap.
 249     // But a read accessing the base of a heap-based compressed heap will trap.
 250     if (!was_store && needs_explicit_null_check_for_read(val)) {
 251       continue;
 252     }
 253 
 254     // Check that node's control edge is not-null block's head or dominates it,
 255     // otherwise we can't hoist it because there are other control dependencies.
 256     Node* ctrl = mach->in(0);
 257     if (ctrl != nullptr && !(ctrl == not_null_block->head() ||
 258         get_block_for_node(ctrl)->dominates(not_null_block))) {
 259       continue;
 260     }
 261 
 262     // check if the offset is not too high for implicit exception
 263     {
 264       intptr_t offset = 0;
 265       const TypePtr *adr_type = nullptr;  // Do not need this return value here
 266       const Node* base = mach->get_base_and_disp(offset, adr_type);
 267       if (base == nullptr || base == NodeSentinel) {
 268         // Narrow oop address doesn't have base, only index.
 269         // Give up if offset is beyond page size or if heap base is not protected.
 270         if (val->bottom_type()->isa_narrowoop() &&
 271             (MacroAssembler::needs_explicit_null_check(offset) ||
 272              !CompressedOops::use_implicit_null_checks()))
 273           continue;
 274         // cannot reason about it; is probably not implicit null exception
 275       } else {
 276         const TypePtr* tptr;
 277         if ((UseCompressedOops && CompressedOops::shift() == 0) ||
 278             (UseCompressedClassPointers && CompressedKlassPointers::shift() == 0)) {
 279           // 32-bits narrow oop can be the base of address expressions
 280           tptr = base->get_ptr_type();
 281         } else {
 282           // only regular oops are expected here
 283           tptr = base->bottom_type()->is_ptr();
 284         }
 285         // Give up if offset is not a compile-time constant.
 286         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 287           continue;
 288         offset += tptr->_offset; // correct if base is offsetted
 289         // Give up if reference is beyond page size.
 290         if (MacroAssembler::needs_explicit_null_check(offset))
 291           continue;
 292         // Give up if base is a decode node and the heap base is not protected.
 293         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 294             !CompressedOops::use_implicit_null_checks())
 295           continue;
 296       }
 297     }
 298 
 299     // Check ctrl input to see if the null-check dominates the memory op
 300     Block *cb = get_block_for_node(mach);
 301     cb = cb->_idom;             // Always hoist at least 1 block
 302     if( !was_store ) {          // Stores can be hoisted only one block
 303       while( cb->_dom_depth > (block->_dom_depth + 1))
 304         cb = cb->_idom;         // Hoist loads as far as we want
 305       // The non-null-block should dominate the memory op, too. Live
 306       // range spilling will insert a spill in the non-null-block if it is
 307       // needs to spill the memory op for an implicit null check.
 308       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 309         if (cb != not_null_block) continue;
 310         cb = cb->_idom;
 311       }
 312     }
 313     if( cb != block ) continue;
 314 
 315     // Found a memory user; see if it can be hoisted to check-block
 316     uint vidx = 0;              // Capture index of value into memop
 317     uint j;
 318     for( j = mach->req()-1; j > 0; j-- ) {
 319       if( mach->in(j) == val ) {
 320         vidx = j;
 321         // Ignore DecodeN val which could be hoisted to where needed.
 322         if( is_decoden ) continue;
 323       }
 324       // Block of memory-op input
 325       Block *inb = get_block_for_node(mach->in(j));
 326       Block *b = block;          // Start from nul check
 327       while( b != inb && b->_dom_depth > inb->_dom_depth )
 328         b = b->_idom;           // search upwards for input
 329       // See if input dominates null check
 330       if( b != inb )
 331         break;
 332     }
 333     if( j > 0 )
 334       continue;
 335     Block *mb = get_block_for_node(mach);
 336     // Hoisting stores requires more checks for the anti-dependence case.
 337     // Give up hoisting if we have to move the store past any load.
 338     if (was_store) {
 339        // Make sure control does not do a merge (would have to check allpaths)
 340        if (mb->num_preds() != 2) {
 341          continue;
 342        }
 343        // mach is a store, hence block is the immediate dominator of mb.
 344        // Due to the null-check shape of block (where its successors cannot re-join),
 345        // block must be the direct predecessor of mb.
 346        assert(get_block_for_node(mb->pred(1)) == block, "Unexpected predecessor block");
 347        uint k;
 348        uint num_nodes = mb->number_of_nodes();
 349        for (k = 1; k < num_nodes; k++) {
 350          Node *n = mb->get_node(k);
 351          if (n->needs_anti_dependence_check() &&
 352              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory)) {
 353            break;              // Found anti-dependent load
 354          }
 355        }
 356        if (k < num_nodes) {
 357          continue;             // Found anti-dependent load
 358        }
 359     }
 360 
 361     // Make sure this memory op is not already being used for a NullCheck
 362     Node *e = mb->end();
 363     if( e->is_MachNullCheck() && e->in(1) == mach )
 364       continue;                 // Already being used as a null check
 365 
 366     // Found a candidate!  Pick one with least dom depth - the highest
 367     // in the dom tree should be closest to the null check.
 368     if (best == nullptr || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 369       best = mach;
 370       bidx = vidx;
 371     }
 372   }
 373   // No candidate!
 374   if (best == nullptr) {
 375     return;
 376   }
 377 
 378   // ---- Found an implicit null check
 379 #ifndef PRODUCT
 380   extern uint implicit_null_checks;
 381   implicit_null_checks++;
 382 #endif
 383 
 384   if( is_decoden ) {
 385     // Check if we need to hoist decodeHeapOop_not_null first.
 386     Block *valb = get_block_for_node(val);
 387     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 388       // Hoist it up to the end of the test block together with its inputs if they exist.
 389       for (uint i = 2; i < val->req(); i++) {
 390         // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs.
 391         Node *temp = val->in(i);
 392         Block *tempb = get_block_for_node(temp);
 393         if (!tempb->dominates(block)) {
 394           assert(block->dominates(tempb), "sanity check: temp node placement");
 395           // We only expect nodes without further inputs, like MachTemp or load Base.
 396           assert(temp->req() == 0 || (temp->req() == 1 && temp->in(0) == (Node*)C->root()),
 397                  "need for recursive hoisting not expected");
 398           tempb->find_remove(temp);
 399           block->add_inst(temp);
 400           map_node_to_block(temp, block);
 401         }
 402       }
 403       valb->find_remove(val);
 404       block->add_inst(val);
 405       map_node_to_block(val, block);
 406       // DecodeN on x86 may kill flags. Check for flag-killing projections
 407       // that also need to be hoisted.
 408       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 409         Node* n = val->fast_out(j);
 410         if( n->is_MachProj() ) {
 411           get_block_for_node(n)->find_remove(n);
 412           block->add_inst(n);
 413           map_node_to_block(n, block);
 414         }
 415       }
 416     }
 417   }
 418   // Hoist the memory candidate up to the end of the test block.
 419   Block *old_block = get_block_for_node(best);
 420   old_block->find_remove(best);
 421   block->add_inst(best);
 422   map_node_to_block(best, block);
 423 
 424   // Move the control dependence if it is pinned to not-null block.
 425   // Don't change it in other cases: null or dominating control.
 426   Node* ctrl = best->in(0);
 427   if (ctrl != nullptr && get_block_for_node(ctrl) == not_null_block) {
 428     // Set it to control edge of null check.
 429     best->set_req(0, proj->in(0)->in(0));
 430   }
 431 
 432   // Check for flag-killing projections that also need to be hoisted
 433   // Should be DU safe because no edge updates.
 434   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 435     Node* n = best->fast_out(j);
 436     if( n->is_MachProj() ) {
 437       get_block_for_node(n)->find_remove(n);
 438       block->add_inst(n);
 439       map_node_to_block(n, block);
 440     }
 441   }
 442 
 443   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 444   // One of two graph shapes got matched:
 445   //   (IfTrue  (If (Bool NE (CmpP ptr null))))
 446   //   (IfFalse (If (Bool EQ (CmpP ptr null))))
 447   // null checks are always branch-if-eq.  If we see a IfTrue projection
 448   // then we are replacing a 'ne' test with a 'eq' null check test.
 449   // We need to flip the projections to keep the same semantics.
 450   if( proj->Opcode() == Op_IfTrue ) {
 451     // Swap order of projections in basic block to swap branch targets
 452     Node *tmp1 = block->get_node(block->end_idx()+1);
 453     Node *tmp2 = block->get_node(block->end_idx()+2);
 454     block->map_node(tmp2, block->end_idx()+1);
 455     block->map_node(tmp1, block->end_idx()+2);
 456     Node *tmp = new Node(C->top()); // Use not null input
 457     tmp1->replace_by(tmp);
 458     tmp2->replace_by(tmp1);
 459     tmp->replace_by(tmp2);
 460     tmp->destruct(nullptr);
 461   }
 462 
 463   // Remove the existing null check; use a new implicit null check instead.
 464   // Since schedule-local needs precise def-use info, we need to correct
 465   // it as well.
 466   Node *old_tst = proj->in(0);
 467   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 468   block->map_node(nul_chk, block->end_idx());
 469   map_node_to_block(nul_chk, block);
 470   // Redirect users of old_test to nul_chk
 471   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 472     old_tst->last_out(i2)->set_req(0, nul_chk);
 473   // Clean-up any dead code
 474   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 475     Node* in = old_tst->in(i3);
 476     old_tst->set_req(i3, nullptr);
 477     if (in->outcnt() == 0) {
 478       // Remove dead input node
 479       in->disconnect_inputs(C);
 480       block->find_remove(in);
 481     }
 482   }
 483 
 484   latency_from_uses(nul_chk);
 485   latency_from_uses(best);
 486 
 487   // insert anti-dependences to defs in this block
 488   if (! best->needs_anti_dependence_check()) {
 489     for (uint k = 1; k < block->number_of_nodes(); k++) {
 490       Node *n = block->get_node(k);
 491       if (n->needs_anti_dependence_check() &&
 492           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 493         // Found anti-dependent load
 494         insert_anti_dependences(block, n);
 495         if (C->failing()) {
 496           return;
 497         }
 498       }
 499     }
 500   }
 501 }
 502 
 503 
 504 //------------------------------select-----------------------------------------
 505 // Select a nice fellow from the worklist to schedule next. If there is only one
 506 // choice, then use it. CreateEx nodes that are initially ready must start their
 507 // blocks and are given the highest priority, by being placed at the beginning
 508 // of the worklist. Next after initially-ready CreateEx nodes are projections,
 509 // which must follow their parents, and CreateEx nodes with local input
 510 // dependencies. Next are constants and CheckCastPP nodes. There are a number of
 511 // other special cases, for instructions that consume condition codes, et al.
 512 // These are chosen immediately. Some instructions are required to immediately
 513 // precede the last instruction in the block, and these are taken last. Of the
 514 // remaining cases (most), choose the instruction with the greatest latency
 515 // (that is, the most number of pseudo-cycles required to the end of the
 516 // routine). If there is a tie, choose the instruction with the most inputs.
 517 Node* PhaseCFG::select(
 518   Block* block,
 519   Node_List &worklist,
 520   GrowableArray<int> &ready_cnt,
 521   VectorSet &next_call,
 522   uint sched_slot,
 523   intptr_t* recalc_pressure_nodes) {
 524 
 525   // If only a single entry on the stack, use it
 526   uint cnt = worklist.size();
 527   if (cnt == 1) {
 528     Node *n = worklist[0];
 529     worklist.map(0,worklist.pop());
 530     return n;
 531   }
 532 
 533   uint choice  = 0; // Bigger is most important
 534   uint latency = 0; // Bigger is scheduled first
 535   uint score   = 0; // Bigger is better
 536   int idx = -1;     // Index in worklist
 537   int cand_cnt = 0; // Candidate count
 538   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 539 
 540   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 541     // Order in worklist is used to break ties.
 542     // See caller for how this is used to delay scheduling
 543     // of induction variable increments to after the other
 544     // uses of the phi are scheduled.
 545     Node *n = worklist[i];      // Get Node on worklist
 546 
 547     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 548     if (iop == Op_CreateEx || n->is_Proj()) {
 549       // CreateEx nodes that are initially ready must start the block (after Phi
 550       // and Parm nodes which are pre-scheduled) and get top priority. This is
 551       // currently enforced by placing them at the beginning of the initial
 552       // worklist and selecting them eagerly here. After these, projections and
 553       // other CreateEx nodes are selected with equal priority.
 554       worklist.map(i,worklist.pop());
 555       return n;
 556     }
 557 
 558     if (n->Opcode() == Op_Con || iop == Op_CheckCastPP) {
 559       // Constants and CheckCastPP nodes have higher priority than the rest of
 560       // the nodes tested below. Record as current winner, but keep looking for
 561       // higher-priority nodes in the worklist.
 562       choice  = 4;
 563       // Latency and score are only used to break ties among low-priority nodes.
 564       latency = 0;
 565       score   = 0;
 566       idx     = i;
 567       continue;
 568     }
 569 
 570     // Final call in a block must be adjacent to 'catch'
 571     Node *e = block->end();
 572     if( e->is_Catch() && e->in(0)->in(0) == n )
 573       continue;
 574 
 575     // Memory op for an implicit null check has to be at the end of the block
 576     if( e->is_MachNullCheck() && e->in(1) == n )
 577       continue;
 578 
 579     // Schedule IV increment last.
 580     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 581       // Cmp might be matched into CountedLoopEnd node.
 582       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 583       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 584         continue;
 585       }
 586     }
 587 
 588     uint n_choice = 2;
 589 
 590     // See if this instruction is consumed by a branch. If so, then (as the
 591     // branch is the last instruction in the basic block) force it to the
 592     // end of the basic block
 593     if ( must_clone[iop] ) {
 594       // See if any use is a branch
 595       bool found_machif = false;
 596 
 597       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 598         Node* use = n->fast_out(j);
 599 
 600         // The use is a conditional branch, make them adjacent
 601         if (use->is_MachIf() && get_block_for_node(use) == block) {
 602           found_machif = true;
 603           break;
 604         }
 605 
 606         // More than this instruction pending for successor to be ready,
 607         // don't choose this if other opportunities are ready
 608         if (ready_cnt.at(use->_idx) > 1)
 609           n_choice = 1;
 610       }
 611 
 612       // loop terminated, prefer not to use this instruction
 613       if (found_machif)
 614         continue;
 615     }
 616 
 617     // See if this has a predecessor that is "must_clone", i.e. sets the
 618     // condition code. If so, choose this first
 619     for (uint j = 0; j < n->req() ; j++) {
 620       Node *inn = n->in(j);
 621       if (inn) {
 622         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 623           n_choice = 3;
 624           break;
 625         }
 626       }
 627     }
 628 
 629     // MachTemps should be scheduled last so they are near their uses
 630     if (n->is_MachTemp()) {
 631       n_choice = 1;
 632     }
 633 
 634     uint n_latency = get_latency_for_node(n);
 635     uint n_score = n->req();   // Many inputs get high score to break ties
 636 
 637     if (OptoRegScheduling && block_size_threshold_ok) {
 638       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 639         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 640         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 641         // simulate the notion that we just picked this node to schedule
 642         n->add_flag(Node::Flag_is_scheduled);
 643         // now calculate its effect upon the graph if we did
 644         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 645         // return its state for finalize in case somebody else wins
 646         n->remove_flag(Node::Flag_is_scheduled);
 647         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 648         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 649         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 650         recalc_pressure_nodes[n->_idx] = int_pressure;
 651         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 652       }
 653 
 654       if (_scheduling_for_pressure) {
 655         latency = n_latency;
 656         if (n_choice != 3) {
 657           // Now evaluate each register pressure component based on threshold in the score.
 658           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 659           // on a single instruction, but we might see it shrink on both banks.
 660           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 661           // live ranges that terminate on this instruction.
 662           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 663             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 664             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 665           }
 666           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 667             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 668             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 669           }
 670         } else {
 671           // make sure we choose these candidates
 672           score = 0;
 673         }
 674       }
 675     }
 676 
 677     // Keep best latency found
 678     cand_cnt++;
 679     if (choice < n_choice ||
 680         (choice == n_choice &&
 681          ((StressLCM && C->randomized_select(cand_cnt)) ||
 682           (!StressLCM &&
 683            (latency < n_latency ||
 684             (latency == n_latency &&
 685              (score < n_score))))))) {
 686       choice  = n_choice;
 687       latency = n_latency;
 688       score   = n_score;
 689       idx     = i;               // Also keep index in worklist
 690     }
 691   } // End of for all ready nodes in worklist
 692 
 693   guarantee(idx >= 0, "index should be set");
 694   Node *n = worklist[(uint)idx];      // Get the winner
 695 
 696   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 697   return n;
 698 }
 699 
 700 //-------------------------adjust_register_pressure----------------------------
 701 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 702   PhaseLive* liveinfo = _regalloc->get_live();
 703   IndexSet* liveout = liveinfo->live(block);
 704   // first adjust the register pressure for the sources
 705   for (uint i = 1; i < n->req(); i++) {
 706     bool lrg_ends = false;
 707     Node *src_n = n->in(i);
 708     if (src_n == nullptr) continue;
 709     if (!src_n->is_Mach()) continue;
 710     uint src = _regalloc->_lrg_map.find(src_n);
 711     if (src == 0) continue;
 712     LRG& lrg_src = _regalloc->lrgs(src);
 713     // detect if the live range ends or not
 714     if (liveout->member(src) == false) {
 715       lrg_ends = true;
 716       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 717         Node* m = src_n->fast_out(j); // Get user
 718         if (m == n) continue;
 719         if (!m->is_Mach()) continue;
 720         MachNode *mach = m->as_Mach();
 721         bool src_matches = false;
 722         int iop = mach->ideal_Opcode();
 723 
 724         switch (iop) {
 725         case Op_StoreB:
 726         case Op_StoreC:
 727         case Op_StoreD:
 728         case Op_StoreF:
 729         case Op_StoreI:
 730         case Op_StoreL:
 731         case Op_StoreP:
 732         case Op_StoreN:
 733         case Op_StoreVector:
 734         case Op_StoreVectorMasked:
 735         case Op_StoreVectorScatter:
 736         case Op_StoreVectorScatterMasked:
 737         case Op_StoreNKlass:
 738           for (uint k = 1; k < m->req(); k++) {
 739             Node *in = m->in(k);
 740             if (in == src_n) {
 741               src_matches = true;
 742               break;
 743             }
 744           }
 745           break;
 746 
 747         default:
 748           src_matches = true;
 749           break;
 750         }
 751 
 752         // If we have a store as our use, ignore the non source operands
 753         if (src_matches == false) continue;
 754 
 755         // Mark every unscheduled use which is not n with a recalculation
 756         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 757           if (finalize_mode && !m->is_Phi()) {
 758             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 759           }
 760           lrg_ends = false;
 761         }
 762       }
 763     }
 764     // if none, this live range ends and we can adjust register pressure
 765     if (lrg_ends) {
 766       if (finalize_mode) {
 767         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 768       } else {
 769         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 770       }
 771     }
 772   }
 773 
 774   // now add the register pressure from the dest and evaluate which heuristic we should use:
 775   // 1.) The default, latency scheduling
 776   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 777   uint dst = _regalloc->_lrg_map.find(n);
 778   if (dst != 0) {
 779     LRG& lrg_dst = _regalloc->lrgs(dst);
 780     if (finalize_mode) {
 781       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 782       // check to see if we fall over the register pressure cliff here
 783       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 784         _scheduling_for_pressure = true;
 785       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 786         _scheduling_for_pressure = true;
 787       } else {
 788         // restore latency scheduling mode
 789         _scheduling_for_pressure = false;
 790       }
 791     } else {
 792       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 793     }
 794   }
 795 }
 796 
 797 //------------------------------set_next_call----------------------------------
 798 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 799   if( next_call.test_set(n->_idx) ) return;
 800   for( uint i=0; i<n->len(); i++ ) {
 801     Node *m = n->in(i);
 802     if( !m ) continue;  // must see all nodes in block that precede call
 803     if (get_block_for_node(m) == block) {
 804       set_next_call(block, m, next_call);
 805     }
 806   }
 807 }
 808 
 809 //------------------------------needed_for_next_call---------------------------
 810 // Set the flag 'next_call' for each Node that is needed for the next call to
 811 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 812 // next subroutine call get priority - basically it moves things NOT needed
 813 // for the next call till after the call.  This prevents me from trying to
 814 // carry lots of stuff live across a call.
 815 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 816   // Find the next control-defining Node in this block
 817   Node* call = nullptr;
 818   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 819     Node* m = this_call->fast_out(i);
 820     if (get_block_for_node(m) == block && // Local-block user
 821         m != this_call &&       // Not self-start node
 822         m->is_MachCall()) {
 823       call = m;
 824       break;
 825     }
 826   }
 827   if (call == nullptr)  return;    // No next call (e.g., block end is near)
 828   // Set next-call for all inputs to this call
 829   set_next_call(block, call, next_call);
 830 }
 831 
 832 //------------------------------add_call_kills-------------------------------------
 833 // helper function that adds caller save registers to MachProjNode
 834 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 835   // Fill in the kill mask for the call
 836   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 837     if( !regs.Member(r) ) {     // Not already defined by the call
 838       // Save-on-call register?
 839       if ((save_policy[r] == 'C') ||
 840           (save_policy[r] == 'A') ||
 841           ((save_policy[r] == 'E') && exclude_soe)) {
 842         proj->_rout.Insert(r);
 843       }
 844     }
 845   }
 846 }
 847 
 848 
 849 //------------------------------sched_call-------------------------------------
 850 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 851   RegMask regs;
 852 
 853   // Schedule all the users of the call right now.  All the users are
 854   // projection Nodes, so they must be scheduled next to the call.
 855   // Collect all the defined registers.
 856   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 857     Node* n = mcall->fast_out(i);
 858     assert( n->is_MachProj(), "" );
 859     int n_cnt = ready_cnt.at(n->_idx)-1;
 860     ready_cnt.at_put(n->_idx, n_cnt);
 861     assert( n_cnt == 0, "" );
 862     // Schedule next to call
 863     block->map_node(n, node_cnt++);
 864     // Collect defined registers
 865     regs.OR(n->out_RegMask());
 866     // Check for scheduling the next control-definer
 867     if( n->bottom_type() == Type::CONTROL )
 868       // Warm up next pile of heuristic bits
 869       needed_for_next_call(block, n, next_call);
 870 
 871     // Children of projections are now all ready
 872     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 873       Node* m = n->fast_out(j); // Get user
 874       if(get_block_for_node(m) != block) {
 875         continue;
 876       }
 877       if( m->is_Phi() ) continue;
 878       int m_cnt = ready_cnt.at(m->_idx) - 1;
 879       ready_cnt.at_put(m->_idx, m_cnt);
 880       if( m_cnt == 0 )
 881         worklist.push(m);
 882     }
 883 
 884   }
 885 
 886   // Act as if the call defines the Frame Pointer.
 887   // Certainly the FP is alive and well after the call.
 888   regs.Insert(_matcher.c_frame_pointer());
 889 
 890   // Set all registers killed and not already defined by the call.
 891   uint r_cnt = mcall->tf()->range()->cnt();
 892   int op = mcall->ideal_Opcode();
 893   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 894   map_node_to_block(proj, block);
 895   block->insert_node(proj, node_cnt++);
 896 
 897   // Select the right register save policy.
 898   const char *save_policy = nullptr;
 899   switch (op) {
 900     case Op_CallRuntime:
 901     case Op_CallLeaf:
 902     case Op_CallLeafNoFP:
 903     case Op_CallLeafVector:
 904       // Calling C code so use C calling convention
 905       save_policy = _matcher._c_reg_save_policy;
 906       break;
 907 
 908     case Op_CallStaticJava:
 909     case Op_CallDynamicJava:
 910       // Calling Java code so use Java calling convention
 911       save_policy = _matcher._register_save_policy;
 912       break;
 913 
 914     default:
 915       ShouldNotReachHere();
 916   }
 917 
 918   // When using CallRuntime mark SOE registers as killed by the call
 919   // so values that could show up in the RegisterMap aren't live in a
 920   // callee saved register since the register wouldn't know where to
 921   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 922   // have debug info on them.  Strictly speaking this only needs to be
 923   // done for oops since idealreg2debugmask takes care of debug info
 924   // references but there no way to handle oops differently than other
 925   // pointers as far as the kill mask goes.
 926   bool exclude_soe = op == Op_CallRuntime;
 927 
 928   // If the call is a MethodHandle invoke, we need to exclude the
 929   // register which is used to save the SP value over MH invokes from
 930   // the mask.  Otherwise this register could be used for
 931   // deoptimization information.
 932   if (op == Op_CallStaticJava) {
 933     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 934     if (mcallstaticjava->_method_handle_invoke)
 935       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 936   }
 937 
 938   add_call_kills(proj, regs, save_policy, exclude_soe);
 939 
 940   return node_cnt;
 941 }
 942 
 943 
 944 //------------------------------schedule_local---------------------------------
 945 // Topological sort within a block.  Someday become a real scheduler.
 946 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 947   // Already "sorted" are the block start Node (as the first entry), and
 948   // the block-ending Node and any trailing control projections.  We leave
 949   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 950   // Node.  Everything else gets topo-sorted.
 951 
 952 #ifndef PRODUCT
 953     if (trace_opto_pipelining()) {
 954       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 955       for (uint i = 0;i < block->number_of_nodes(); i++) {
 956         tty->print("# ");
 957         block->get_node(i)->dump();
 958       }
 959       tty->print_cr("#");
 960     }
 961 #endif
 962 
 963   // RootNode is already sorted
 964   if (block->number_of_nodes() == 1) {
 965     return true;
 966   }
 967 
 968   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 969 
 970   // We track the uses of local definitions as input dependences so that
 971   // we know when a given instruction is available to be scheduled.
 972   uint i;
 973   if (OptoRegScheduling && block_size_threshold_ok) {
 974     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 975       Node *n = block->get_node(i);
 976       n->remove_flag(Node::Flag_is_scheduled);
 977       if (!n->is_Phi()) {
 978         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 979       }
 980     }
 981   }
 982 
 983   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 984   uint node_cnt = block->end_idx();
 985   uint phi_cnt = 1;
 986   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 987     Node *n = block->get_node(i);
 988     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 989         (n->is_Proj()  && n->in(0) == block->head()) ) {
 990       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 991       block->map_node(block->get_node(phi_cnt), i);
 992       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 993       if (OptoRegScheduling && block_size_threshold_ok) {
 994         // mark n as scheduled
 995         n->add_flag(Node::Flag_is_scheduled);
 996       }
 997     } else {                    // All others
 998       // Count block-local inputs to 'n'
 999       uint cnt = n->len();      // Input count
1000       uint local = 0;
1001       for( uint j=0; j<cnt; j++ ) {
1002         Node *m = n->in(j);
1003         if( m && get_block_for_node(m) == block && !m->is_top() )
1004           local++;              // One more block-local input
1005       }
1006       ready_cnt.at_put(n->_idx, local); // Count em up
1007       // A few node types require changing a required edge to a precedence edge
1008       // before allocation.
1009       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
1010           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
1011            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
1012         // MemBarAcquire could be created without Precedent edge.
1013         // del_req() replaces the specified edge with the last input edge
1014         // and then removes the last edge. If the specified edge > number of
1015         // edges the last edge will be moved outside of the input edges array
1016         // and the edge will be lost. This is why this code should be
1017         // executed only when Precedent (== TypeFunc::Parms) edge is present.
1018         Node *x = n->in(TypeFunc::Parms);
1019         if (x != nullptr && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1020           // Old edge to node within same block will get removed, but no precedence
1021           // edge will get added because it already exists. Update ready count.
1022           int cnt = ready_cnt.at(n->_idx);
1023           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1024           ready_cnt.at_put(n->_idx, cnt-1);
1025         }
1026         n->del_req(TypeFunc::Parms);
1027         n->add_prec(x);
1028       }
1029     }
1030   }
1031   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1032     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1033 
1034   // All the prescheduled guys do not hold back internal nodes
1035   uint i3;
1036   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1037     Node *n = block->get_node(i3);       // Get pre-scheduled
1038     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1039       Node* m = n->fast_out(j);
1040       if (get_block_for_node(m) == block) { // Local-block user
1041         int m_cnt = ready_cnt.at(m->_idx)-1;
1042         if (OptoRegScheduling && block_size_threshold_ok) {
1043           // mark m as scheduled
1044           if (m_cnt < 0) {
1045             m->add_flag(Node::Flag_is_scheduled);
1046           }
1047         }
1048         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1049       }
1050     }
1051   }
1052 
1053   Node_List delay;
1054   // Make a worklist
1055   Node_List worklist;
1056   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1057     Node *m = block->get_node(i4);
1058     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1059       if (m->is_iteratively_computed()) {
1060         // Push induction variable increments last to allow other uses
1061         // of the phi to be scheduled first. The select() method breaks
1062         // ties in scheduling by worklist order.
1063         delay.push(m);
1064       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1065         // Place CreateEx nodes that are initially ready at the beginning of the
1066         // worklist so they are selected first and scheduled at the block start.
1067         worklist.insert(0, m);
1068       } else {
1069         worklist.push(m);         // Then on to worklist!
1070       }
1071     }
1072   }
1073   while (delay.size()) {
1074     Node* d = delay.pop();
1075     worklist.push(d);
1076   }
1077 
1078   if (OptoRegScheduling && block_size_threshold_ok) {
1079     // To stage register pressure calculations we need to examine the live set variables
1080     // breaking them up by register class to compartmentalize the calculations.
1081     _regalloc->_sched_int_pressure.init(Matcher::int_pressure_limit());
1082     _regalloc->_sched_float_pressure.init(Matcher::float_pressure_limit());
1083     _regalloc->_scratch_int_pressure.init(Matcher::int_pressure_limit());
1084     _regalloc->_scratch_float_pressure.init(Matcher::float_pressure_limit());
1085 
1086     _regalloc->compute_entry_block_pressure(block);
1087   }
1088 
1089   // Warm up the 'next_call' heuristic bits
1090   needed_for_next_call(block, block->head(), next_call);
1091 
1092 #ifndef PRODUCT
1093     if (trace_opto_pipelining()) {
1094       for (uint j=0; j< block->number_of_nodes(); j++) {
1095         Node     *n = block->get_node(j);
1096         int     idx = n->_idx;
1097         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1098         tty->print("latency:%3d  ", get_latency_for_node(n));
1099         tty->print("%4d: %s\n", idx, n->Name());
1100       }
1101     }
1102 #endif
1103 
1104   uint max_idx = (uint)ready_cnt.length();
1105   // Pull from worklist and schedule
1106   while( worklist.size() ) {    // Worklist is not ready
1107 
1108 #ifndef PRODUCT
1109     if (trace_opto_pipelining()) {
1110       tty->print("#   ready list:");
1111       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1112         Node *n = worklist[i];      // Get Node on worklist
1113         tty->print(" %d", n->_idx);
1114       }
1115       tty->cr();
1116     }
1117 #endif
1118 
1119     // Select and pop a ready guy from worklist
1120     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1121     block->map_node(n, phi_cnt++);    // Schedule him next
1122 
1123     if (OptoRegScheduling && block_size_threshold_ok) {
1124       n->add_flag(Node::Flag_is_scheduled);
1125 
1126       // Now adjust the resister pressure with the node we selected
1127       if (!n->is_Phi()) {
1128         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1129       }
1130     }
1131 
1132 #ifndef PRODUCT
1133     if (trace_opto_pipelining()) {
1134       tty->print("#    select %d: %s", n->_idx, n->Name());
1135       tty->print(", latency:%d", get_latency_for_node(n));
1136       n->dump();
1137       if (Verbose) {
1138         tty->print("#   ready list:");
1139         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1140           Node *n = worklist[i];      // Get Node on worklist
1141           tty->print(" %d", n->_idx);
1142         }
1143         tty->cr();
1144       }
1145     }
1146 
1147 #endif
1148     if( n->is_MachCall() ) {
1149       MachCallNode *mcall = n->as_MachCall();
1150       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1151       continue;
1152     }
1153 
1154     if (n->is_Mach() && n->as_Mach()->has_call()) {
1155       RegMask regs;
1156       regs.Insert(_matcher.c_frame_pointer());
1157       regs.OR(n->out_RegMask());
1158 
1159       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1160       map_node_to_block(proj, block);
1161       block->insert_node(proj, phi_cnt++);
1162 
1163       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1164     }
1165 
1166     // Children are now all ready
1167     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1168       Node* m = n->fast_out(i5); // Get user
1169       if (get_block_for_node(m) != block) {
1170         continue;
1171       }
1172       if( m->is_Phi() ) continue;
1173       if (m->_idx >= max_idx) { // new node, skip it
1174         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1175         continue;
1176       }
1177       int m_cnt = ready_cnt.at(m->_idx) - 1;
1178       ready_cnt.at_put(m->_idx, m_cnt);
1179       if( m_cnt == 0 )
1180         worklist.push(m);
1181     }
1182   }
1183 
1184   if( phi_cnt != block->end_idx() ) {
1185     // did not schedule all.  Retry, Bailout, or Die
1186     if (C->subsume_loads() == true && !C->failing()) {
1187       // Retry with subsume_loads == false
1188       // If this is the first failure, the sentinel string will "stick"
1189       // to the Compile object, and the C2Compiler will see it and retry.
1190       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1191     } else {
1192       assert(C->failure_is_artificial(), "graph should be schedulable");
1193     }
1194     // assert( phi_cnt == end_idx(), "did not schedule all" );
1195     return false;
1196   }
1197 
1198   if (OptoRegScheduling && block_size_threshold_ok) {
1199     _regalloc->compute_exit_block_pressure(block);
1200     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1201     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1202   }
1203 
1204 #ifndef PRODUCT
1205   if (trace_opto_pipelining()) {
1206     tty->print_cr("#");
1207     tty->print_cr("# after schedule_local");
1208     for (uint i = 0;i < block->number_of_nodes();i++) {
1209       tty->print("# ");
1210       block->get_node(i)->dump();
1211     }
1212     tty->print_cr("# ");
1213 
1214     if (OptoRegScheduling && block_size_threshold_ok) {
1215       tty->print_cr("# pressure info : %d", block->_pre_order);
1216       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1217       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1218     }
1219     tty->cr();
1220   }
1221 #endif
1222 
1223   return true;
1224 }
1225 
1226 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1227 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1228   for (uint l = 0; l < use->len(); l++) {
1229     if (use->in(l) == old_def) {
1230       if (l < use->req()) {
1231         use->set_req(l, new_def);
1232       } else {
1233         use->rm_prec(l);
1234         use->add_prec(new_def);
1235         l--;
1236       }
1237     }
1238   }
1239 }
1240 
1241 //------------------------------catch_cleanup_find_cloned_def------------------
1242 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1243   assert( use_blk != def_blk, "Inter-block cleanup only");
1244 
1245   // The use is some block below the Catch.  Find and return the clone of the def
1246   // that dominates the use. If there is no clone in a dominating block, then
1247   // create a phi for the def in a dominating block.
1248 
1249   // Find which successor block dominates this use.  The successor
1250   // blocks must all be single-entry (from the Catch only; I will have
1251   // split blocks to make this so), hence they all dominate.
1252   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1253     use_blk = use_blk->_idom;
1254 
1255   // Find the successor
1256   Node *fixup = nullptr;
1257 
1258   uint j;
1259   for( j = 0; j < def_blk->_num_succs; j++ )
1260     if( use_blk == def_blk->_succs[j] )
1261       break;
1262 
1263   if( j == def_blk->_num_succs ) {
1264     // Block at same level in dom-tree is not a successor.  It needs a
1265     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1266     Node_Array inputs;
1267     for(uint k = 1; k < use_blk->num_preds(); k++) {
1268       Block* block = get_block_for_node(use_blk->pred(k));
1269       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1270     }
1271 
1272     // Check to see if the use_blk already has an identical phi inserted.
1273     // If it exists, it will be at the first position since all uses of a
1274     // def are processed together.
1275     Node *phi = use_blk->get_node(1);
1276     if( phi->is_Phi() ) {
1277       fixup = phi;
1278       for (uint k = 1; k < use_blk->num_preds(); k++) {
1279         if (phi->in(k) != inputs[k]) {
1280           // Not a match
1281           fixup = nullptr;
1282           break;
1283         }
1284       }
1285     }
1286 
1287     // If an existing PhiNode was not found, make a new one.
1288     if (fixup == nullptr) {
1289       Node *new_phi = PhiNode::make(use_blk->head(), def);
1290       use_blk->insert_node(new_phi, 1);
1291       map_node_to_block(new_phi, use_blk);
1292       for (uint k = 1; k < use_blk->num_preds(); k++) {
1293         new_phi->set_req(k, inputs[k]);
1294       }
1295       fixup = new_phi;
1296     }
1297 
1298   } else {
1299     // Found the use just below the Catch.  Make it use the clone.
1300     fixup = use_blk->get_node(n_clone_idx);
1301   }
1302 
1303   return fixup;
1304 }
1305 
1306 //--------------------------catch_cleanup_intra_block--------------------------
1307 // Fix all input edges in use that reference "def".  The use is in the same
1308 // block as the def and both have been cloned in each successor block.
1309 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1310 
1311   // Both the use and def have been cloned. For each successor block,
1312   // get the clone of the use, and make its input the clone of the def
1313   // found in that block.
1314 
1315   uint use_idx = blk->find_node(use);
1316   uint offset_idx = use_idx - beg;
1317   for( uint k = 0; k < blk->_num_succs; k++ ) {
1318     // Get clone in each successor block
1319     Block *sb = blk->_succs[k];
1320     Node *clone = sb->get_node(offset_idx+1);
1321     assert( clone->Opcode() == use->Opcode(), "" );
1322 
1323     // Make use-clone reference the def-clone
1324     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1325   }
1326 }
1327 
1328 //------------------------------catch_cleanup_inter_block---------------------
1329 // Fix all input edges in use that reference "def".  The use is in a different
1330 // block than the def.
1331 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1332   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1333 
1334   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1335   catch_cleanup_fix_all_inputs(use, def, new_def);
1336 }
1337 
1338 //------------------------------call_catch_cleanup-----------------------------
1339 // If we inserted any instructions between a Call and his CatchNode,
1340 // clone the instructions on all paths below the Catch.
1341 void PhaseCFG::call_catch_cleanup(Block* block) {
1342 
1343   // End of region to clone
1344   uint end = block->end_idx();
1345   if( !block->get_node(end)->is_Catch() ) return;
1346   // Start of region to clone
1347   uint beg = end;
1348   while(!block->get_node(beg-1)->is_MachProj() ||
1349         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1350     beg--;
1351     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1352   }
1353   // Range of inserted instructions is [beg, end)
1354   if( beg == end ) return;
1355 
1356   // Clone along all Catch output paths.  Clone area between the 'beg' and
1357   // 'end' indices.
1358   for( uint i = 0; i < block->_num_succs; i++ ) {
1359     Block *sb = block->_succs[i];
1360     // Clone the entire area; ignoring the edge fixup for now.
1361     for( uint j = end; j > beg; j-- ) {
1362       Node *clone = block->get_node(j-1)->clone();
1363       sb->insert_node(clone, 1);
1364       map_node_to_block(clone, sb);
1365       if (clone->needs_anti_dependence_check()) {
1366         insert_anti_dependences(sb, clone);
1367         if (C->failing()) {
1368           return;
1369         }
1370       }
1371     }
1372   }
1373 
1374 
1375   // Fixup edges.  Check the def-use info per cloned Node
1376   for(uint i2 = beg; i2 < end; i2++ ) {
1377     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1378     Node *n = block->get_node(i2);        // Node that got cloned
1379     // Need DU safe iterator because of edge manipulation in calls.
1380     Unique_Node_List* out = new Unique_Node_List();
1381     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1382       out->push(n->fast_out(j1));
1383     }
1384     uint max = out->size();
1385     for (uint j = 0; j < max; j++) {// For all users
1386       Node *use = out->pop();
1387       Block *buse = get_block_for_node(use);
1388       if( use->is_Phi() ) {
1389         for( uint k = 1; k < use->req(); k++ )
1390           if( use->in(k) == n ) {
1391             Block* b = get_block_for_node(buse->pred(k));
1392             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1393             use->set_req(k, fixup);
1394           }
1395       } else {
1396         if (block == buse) {
1397           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1398         } else {
1399           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1400         }
1401       }
1402     } // End for all users
1403 
1404   } // End of for all Nodes in cloned area
1405 
1406   // Remove the now-dead cloned ops
1407   for(uint i3 = beg; i3 < end; i3++ ) {
1408     block->get_node(beg)->disconnect_inputs(C);
1409     block->remove_node(beg);
1410   }
1411 
1412   // If the successor blocks have a CreateEx node, move it back to the top
1413   for (uint i4 = 0; i4 < block->_num_succs; i4++) {
1414     Block *sb = block->_succs[i4];
1415     uint new_cnt = end - beg;
1416     // Remove any newly created, but dead, nodes by traversing their schedule
1417     // backwards. Here, a dead node is a node whose only outputs (if any) are
1418     // unused projections.
1419     for (uint j = new_cnt; j > 0; j--) {
1420       Node *n = sb->get_node(j);
1421       // Individual projections are examined together with all siblings when
1422       // their parent is visited.
1423       if (n->is_Proj()) {
1424         continue;
1425       }
1426       bool dead = true;
1427       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1428         Node* out = n->fast_out(i);
1429         // n is live if it has a non-projection output or a used projection.
1430         if (!out->is_Proj() || out->outcnt() > 0) {
1431           dead = false;
1432           break;
1433         }
1434       }
1435       if (dead) {
1436         // n's only outputs (if any) are unused projections scheduled next to n
1437         // (see PhaseCFG::select()). Remove these projections backwards.
1438         for (uint k = j + n->outcnt(); k > j; k--) {
1439           Node* proj = sb->get_node(k);
1440           assert(proj->is_Proj() && proj->in(0) == n,
1441                  "projection should correspond to dead node");
1442           proj->disconnect_inputs(C);
1443           sb->remove_node(k);
1444           new_cnt--;
1445         }
1446         // Now remove the node itself.
1447         n->disconnect_inputs(C);
1448         sb->remove_node(j);
1449         new_cnt--;
1450       }
1451     }
1452     // If any newly created nodes remain, move the CreateEx node to the top
1453     if (new_cnt > 0) {
1454       Node *cex = sb->get_node(1+new_cnt);
1455       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1456         sb->remove_node(1+new_cnt);
1457         sb->insert_node(cex, 1);
1458       }
1459     }
1460   }
1461 }