1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciFlatArrayKlass.hpp" 28 #include "ci/ciUtilities.inline.hpp" 29 #include "classfile/vmIntrinsics.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/castnode.hpp" 41 #include "opto/cfgnode.hpp" 42 #include "opto/convertnode.hpp" 43 #include "opto/countbitsnode.hpp" 44 #include "opto/idealKit.hpp" 45 #include "opto/library_call.hpp" 46 #include "opto/mathexactnode.hpp" 47 #include "opto/mulnode.hpp" 48 #include "opto/narrowptrnode.hpp" 49 #include "opto/opaquenode.hpp" 50 #include "opto/parse.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/rootnode.hpp" 53 #include "opto/subnode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 if (C->print_intrinsics() || C->print_inlining()) { 124 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 125 } 126 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 127 if (C->log()) { 128 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 129 vmIntrinsics::name_at(intrinsic_id()), 130 (is_virtual() ? " virtual='1'" : ""), 131 C->unique() - nodes); 132 } 133 // Push the result from the inlined method onto the stack. 134 kit.push_result(); 135 C->print_inlining_update(this); 136 return kit.transfer_exceptions_into_jvms(); 137 } 138 139 // The intrinsic bailed out 140 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 141 if (jvms->has_method()) { 142 // Not a root compile. 143 const char* msg; 144 if (callee->intrinsic_candidate()) { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 146 } else { 147 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 148 : "failed to inline (intrinsic), method not annotated"; 149 } 150 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 151 if (C->print_intrinsics() || C->print_inlining()) { 152 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 153 } 154 } else { 155 // Root compile 156 ResourceMark rm; 157 stringStream msg_stream; 158 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 159 vmIntrinsics::name_at(intrinsic_id()), 160 is_virtual() ? " (virtual)" : "", bci); 161 const char *msg = msg_stream.freeze(); 162 log_debug(jit, inlining)("%s", msg); 163 if (C->print_intrinsics() || C->print_inlining()) { 164 tty->print("%s", msg); 165 } 166 } 167 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 168 C->print_inlining_update(this); 169 170 return nullptr; 171 } 172 173 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 174 LibraryCallKit kit(jvms, this); 175 Compile* C = kit.C; 176 int nodes = C->unique(); 177 _last_predicate = predicate; 178 #ifndef PRODUCT 179 assert(is_predicated() && predicate < predicates_count(), "sanity"); 180 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 181 char buf[1000]; 182 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 183 tty->print_cr("Predicate for intrinsic %s", str); 184 } 185 #endif 186 ciMethod* callee = kit.callee(); 187 const int bci = kit.bci(); 188 189 Node* slow_ctl = kit.try_to_predicate(predicate); 190 if (!kit.failing()) { 191 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 192 : "(intrinsic, predicate)"; 193 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 194 if (C->print_intrinsics() || C->print_inlining()) { 195 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 196 } 197 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 198 if (C->log()) { 199 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 200 vmIntrinsics::name_at(intrinsic_id()), 201 (is_virtual() ? " virtual='1'" : ""), 202 C->unique() - nodes); 203 } 204 return slow_ctl; // Could be null if the check folds. 205 } 206 207 // The intrinsic bailed out 208 if (jvms->has_method()) { 209 // Not a root compile. 210 const char* msg = "failed to generate predicate for intrinsic"; 211 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 212 if (C->print_intrinsics() || C->print_inlining()) { 213 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 214 } 215 } else { 216 // Root compile 217 ResourceMark rm; 218 stringStream msg_stream; 219 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 220 vmIntrinsics::name_at(intrinsic_id()), 221 is_virtual() ? " (virtual)" : "", bci); 222 const char *msg = msg_stream.freeze(); 223 log_debug(jit, inlining)("%s", msg); 224 if (C->print_intrinsics() || C->print_inlining()) { 225 C->print_inlining_stream()->print("%s", msg); 226 } 227 } 228 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 229 return nullptr; 230 } 231 232 bool LibraryCallKit::try_to_inline(int predicate) { 233 // Handle symbolic names for otherwise undistinguished boolean switches: 234 const bool is_store = true; 235 const bool is_compress = true; 236 const bool is_static = true; 237 const bool is_volatile = true; 238 239 if (!jvms()->has_method()) { 240 // Root JVMState has a null method. 241 assert(map()->memory()->Opcode() == Op_Parm, ""); 242 // Insert the memory aliasing node 243 set_all_memory(reset_memory()); 244 } 245 assert(merged_memory(), ""); 246 247 switch (intrinsic_id()) { 248 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 249 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 250 case vmIntrinsics::_getClass: return inline_native_getClass(); 251 252 case vmIntrinsics::_ceil: 253 case vmIntrinsics::_floor: 254 case vmIntrinsics::_rint: 255 case vmIntrinsics::_dsin: 256 case vmIntrinsics::_dcos: 257 case vmIntrinsics::_dtan: 258 case vmIntrinsics::_dtanh: 259 case vmIntrinsics::_dabs: 260 case vmIntrinsics::_fabs: 261 case vmIntrinsics::_iabs: 262 case vmIntrinsics::_labs: 263 case vmIntrinsics::_datan2: 264 case vmIntrinsics::_dsqrt: 265 case vmIntrinsics::_dsqrt_strict: 266 case vmIntrinsics::_dexp: 267 case vmIntrinsics::_dlog: 268 case vmIntrinsics::_dlog10: 269 case vmIntrinsics::_dpow: 270 case vmIntrinsics::_dcopySign: 271 case vmIntrinsics::_fcopySign: 272 case vmIntrinsics::_dsignum: 273 case vmIntrinsics::_roundF: 274 case vmIntrinsics::_roundD: 275 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 276 277 case vmIntrinsics::_notify: 278 case vmIntrinsics::_notifyAll: 279 return inline_notify(intrinsic_id()); 280 281 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 282 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 283 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 284 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 285 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 286 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 287 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 288 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 289 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 290 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 291 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 292 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 293 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 294 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 295 296 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 297 298 case vmIntrinsics::_arraySort: return inline_array_sort(); 299 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 300 301 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 302 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 303 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 304 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 305 306 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 307 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 308 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 309 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 310 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 311 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 312 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 313 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 314 315 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 316 317 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 318 319 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 320 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 321 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 322 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 323 324 case vmIntrinsics::_compressStringC: 325 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 326 case vmIntrinsics::_inflateStringC: 327 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 328 329 case vmIntrinsics::_makePrivateBuffer: return inline_unsafe_make_private_buffer(); 330 case vmIntrinsics::_finishPrivateBuffer: return inline_unsafe_finish_private_buffer(); 331 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 332 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 333 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 334 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 335 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 336 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 337 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 338 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 339 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 340 case vmIntrinsics::_getValue: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false, true); 341 342 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 343 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 344 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 345 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 346 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 347 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 348 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 349 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 350 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 351 case vmIntrinsics::_putValue: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false, true); 352 353 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 354 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 355 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 356 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 357 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 358 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 359 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 360 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 361 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 362 363 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 364 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 365 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 366 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 367 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 368 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 369 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 370 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 371 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 372 373 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 374 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 375 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 376 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 377 378 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 379 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 380 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 381 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 382 383 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 384 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 385 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 386 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 387 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 388 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 389 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 390 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 391 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 392 393 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 394 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 395 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 396 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 397 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 398 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 399 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 400 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 401 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 402 403 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 404 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 405 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 406 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 407 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 408 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 409 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 410 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 411 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 412 413 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 414 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 415 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 416 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 417 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 418 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 419 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 420 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 421 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 422 423 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 424 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 425 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 426 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 427 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 428 429 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 430 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 431 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 432 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 433 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 434 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 435 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 436 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 437 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 438 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 439 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 440 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 441 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 442 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 443 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 444 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 445 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 446 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 447 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 448 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 449 450 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 451 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 452 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 453 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 454 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 455 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 456 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 457 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 458 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 459 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 460 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 461 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 462 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 463 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 464 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 465 466 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 467 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 468 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 469 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 470 471 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 472 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 473 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 474 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 475 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 476 477 case vmIntrinsics::_loadFence: 478 case vmIntrinsics::_storeFence: 479 case vmIntrinsics::_storeStoreFence: 480 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 481 482 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 483 484 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 485 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 486 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 487 488 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 489 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 490 491 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 492 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 493 494 #if INCLUDE_JVMTI 495 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 496 "notifyJvmtiStart", true, false); 497 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 498 "notifyJvmtiEnd", false, true); 499 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 500 "notifyJvmtiMount", false, false); 501 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 502 "notifyJvmtiUnmount", false, false); 503 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 504 #endif 505 506 #ifdef JFR_HAVE_INTRINSICS 507 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 508 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 509 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 510 #endif 511 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 512 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 513 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 514 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 515 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 516 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 517 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 518 case vmIntrinsics::_isFlatArray: return inline_unsafe_isFlatArray(); 519 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 520 case vmIntrinsics::_getLength: return inline_native_getLength(); 521 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 522 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 523 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 524 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 525 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 526 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 527 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 528 529 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 530 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 531 case vmIntrinsics::_newNullRestrictedArray: return inline_newNullRestrictedArray(); 532 533 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 534 535 case vmIntrinsics::_isInstance: 536 case vmIntrinsics::_getModifiers: 537 case vmIntrinsics::_isInterface: 538 case vmIntrinsics::_isArray: 539 case vmIntrinsics::_isPrimitive: 540 case vmIntrinsics::_isHidden: 541 case vmIntrinsics::_getSuperclass: 542 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 543 544 case vmIntrinsics::_floatToRawIntBits: 545 case vmIntrinsics::_floatToIntBits: 546 case vmIntrinsics::_intBitsToFloat: 547 case vmIntrinsics::_doubleToRawLongBits: 548 case vmIntrinsics::_doubleToLongBits: 549 case vmIntrinsics::_longBitsToDouble: 550 case vmIntrinsics::_floatToFloat16: 551 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 552 553 case vmIntrinsics::_floatIsFinite: 554 case vmIntrinsics::_floatIsInfinite: 555 case vmIntrinsics::_doubleIsFinite: 556 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 557 558 case vmIntrinsics::_numberOfLeadingZeros_i: 559 case vmIntrinsics::_numberOfLeadingZeros_l: 560 case vmIntrinsics::_numberOfTrailingZeros_i: 561 case vmIntrinsics::_numberOfTrailingZeros_l: 562 case vmIntrinsics::_bitCount_i: 563 case vmIntrinsics::_bitCount_l: 564 case vmIntrinsics::_reverse_i: 565 case vmIntrinsics::_reverse_l: 566 case vmIntrinsics::_reverseBytes_i: 567 case vmIntrinsics::_reverseBytes_l: 568 case vmIntrinsics::_reverseBytes_s: 569 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 570 571 case vmIntrinsics::_compress_i: 572 case vmIntrinsics::_compress_l: 573 case vmIntrinsics::_expand_i: 574 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 575 576 case vmIntrinsics::_compareUnsigned_i: 577 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 578 579 case vmIntrinsics::_divideUnsigned_i: 580 case vmIntrinsics::_divideUnsigned_l: 581 case vmIntrinsics::_remainderUnsigned_i: 582 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 583 584 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 585 586 case vmIntrinsics::_Reference_get: return inline_reference_get(); 587 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 588 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 589 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 590 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 591 592 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 593 594 case vmIntrinsics::_aescrypt_encryptBlock: 595 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 596 597 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 598 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 599 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 600 601 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 602 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 603 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 604 605 case vmIntrinsics::_counterMode_AESCrypt: 606 return inline_counterMode_AESCrypt(intrinsic_id()); 607 608 case vmIntrinsics::_galoisCounterMode_AESCrypt: 609 return inline_galoisCounterMode_AESCrypt(); 610 611 case vmIntrinsics::_md5_implCompress: 612 case vmIntrinsics::_sha_implCompress: 613 case vmIntrinsics::_sha2_implCompress: 614 case vmIntrinsics::_sha5_implCompress: 615 case vmIntrinsics::_sha3_implCompress: 616 return inline_digestBase_implCompress(intrinsic_id()); 617 618 case vmIntrinsics::_digestBase_implCompressMB: 619 return inline_digestBase_implCompressMB(predicate); 620 621 case vmIntrinsics::_multiplyToLen: 622 return inline_multiplyToLen(); 623 624 case vmIntrinsics::_squareToLen: 625 return inline_squareToLen(); 626 627 case vmIntrinsics::_mulAdd: 628 return inline_mulAdd(); 629 630 case vmIntrinsics::_montgomeryMultiply: 631 return inline_montgomeryMultiply(); 632 case vmIntrinsics::_montgomerySquare: 633 return inline_montgomerySquare(); 634 635 case vmIntrinsics::_bigIntegerRightShiftWorker: 636 return inline_bigIntegerShift(true); 637 case vmIntrinsics::_bigIntegerLeftShiftWorker: 638 return inline_bigIntegerShift(false); 639 640 case vmIntrinsics::_vectorizedMismatch: 641 return inline_vectorizedMismatch(); 642 643 case vmIntrinsics::_ghash_processBlocks: 644 return inline_ghash_processBlocks(); 645 case vmIntrinsics::_chacha20Block: 646 return inline_chacha20Block(); 647 case vmIntrinsics::_base64_encodeBlock: 648 return inline_base64_encodeBlock(); 649 case vmIntrinsics::_base64_decodeBlock: 650 return inline_base64_decodeBlock(); 651 case vmIntrinsics::_poly1305_processBlocks: 652 return inline_poly1305_processBlocks(); 653 case vmIntrinsics::_intpoly_montgomeryMult_P256: 654 return inline_intpoly_montgomeryMult_P256(); 655 case vmIntrinsics::_intpoly_assign: 656 return inline_intpoly_assign(); 657 case vmIntrinsics::_encodeISOArray: 658 case vmIntrinsics::_encodeByteISOArray: 659 return inline_encodeISOArray(false); 660 case vmIntrinsics::_encodeAsciiArray: 661 return inline_encodeISOArray(true); 662 663 case vmIntrinsics::_updateCRC32: 664 return inline_updateCRC32(); 665 case vmIntrinsics::_updateBytesCRC32: 666 return inline_updateBytesCRC32(); 667 case vmIntrinsics::_updateByteBufferCRC32: 668 return inline_updateByteBufferCRC32(); 669 670 case vmIntrinsics::_updateBytesCRC32C: 671 return inline_updateBytesCRC32C(); 672 case vmIntrinsics::_updateDirectByteBufferCRC32C: 673 return inline_updateDirectByteBufferCRC32C(); 674 675 case vmIntrinsics::_updateBytesAdler32: 676 return inline_updateBytesAdler32(); 677 case vmIntrinsics::_updateByteBufferAdler32: 678 return inline_updateByteBufferAdler32(); 679 680 case vmIntrinsics::_profileBoolean: 681 return inline_profileBoolean(); 682 case vmIntrinsics::_isCompileConstant: 683 return inline_isCompileConstant(); 684 685 case vmIntrinsics::_countPositives: 686 return inline_countPositives(); 687 688 case vmIntrinsics::_fmaD: 689 case vmIntrinsics::_fmaF: 690 return inline_fma(intrinsic_id()); 691 692 case vmIntrinsics::_isDigit: 693 case vmIntrinsics::_isLowerCase: 694 case vmIntrinsics::_isUpperCase: 695 case vmIntrinsics::_isWhitespace: 696 return inline_character_compare(intrinsic_id()); 697 698 case vmIntrinsics::_min: 699 case vmIntrinsics::_max: 700 case vmIntrinsics::_min_strict: 701 case vmIntrinsics::_max_strict: 702 return inline_min_max(intrinsic_id()); 703 704 case vmIntrinsics::_maxF: 705 case vmIntrinsics::_minF: 706 case vmIntrinsics::_maxD: 707 case vmIntrinsics::_minD: 708 case vmIntrinsics::_maxF_strict: 709 case vmIntrinsics::_minF_strict: 710 case vmIntrinsics::_maxD_strict: 711 case vmIntrinsics::_minD_strict: 712 return inline_fp_min_max(intrinsic_id()); 713 714 case vmIntrinsics::_VectorUnaryOp: 715 return inline_vector_nary_operation(1); 716 case vmIntrinsics::_VectorBinaryOp: 717 return inline_vector_nary_operation(2); 718 case vmIntrinsics::_VectorTernaryOp: 719 return inline_vector_nary_operation(3); 720 case vmIntrinsics::_VectorFromBitsCoerced: 721 return inline_vector_frombits_coerced(); 722 case vmIntrinsics::_VectorShuffleIota: 723 return inline_vector_shuffle_iota(); 724 case vmIntrinsics::_VectorMaskOp: 725 return inline_vector_mask_operation(); 726 case vmIntrinsics::_VectorShuffleToVector: 727 return inline_vector_shuffle_to_vector(); 728 case vmIntrinsics::_VectorWrapShuffleIndexes: 729 return inline_vector_wrap_shuffle_indexes(); 730 case vmIntrinsics::_VectorLoadOp: 731 return inline_vector_mem_operation(/*is_store=*/false); 732 case vmIntrinsics::_VectorLoadMaskedOp: 733 return inline_vector_mem_masked_operation(/*is_store*/false); 734 case vmIntrinsics::_VectorStoreOp: 735 return inline_vector_mem_operation(/*is_store=*/true); 736 case vmIntrinsics::_VectorStoreMaskedOp: 737 return inline_vector_mem_masked_operation(/*is_store=*/true); 738 case vmIntrinsics::_VectorGatherOp: 739 return inline_vector_gather_scatter(/*is_scatter*/ false); 740 case vmIntrinsics::_VectorScatterOp: 741 return inline_vector_gather_scatter(/*is_scatter*/ true); 742 case vmIntrinsics::_VectorReductionCoerced: 743 return inline_vector_reduction(); 744 case vmIntrinsics::_VectorTest: 745 return inline_vector_test(); 746 case vmIntrinsics::_VectorBlend: 747 return inline_vector_blend(); 748 case vmIntrinsics::_VectorRearrange: 749 return inline_vector_rearrange(); 750 case vmIntrinsics::_VectorSelectFrom: 751 return inline_vector_select_from(); 752 case vmIntrinsics::_VectorCompare: 753 return inline_vector_compare(); 754 case vmIntrinsics::_VectorBroadcastInt: 755 return inline_vector_broadcast_int(); 756 case vmIntrinsics::_VectorConvert: 757 return inline_vector_convert(); 758 case vmIntrinsics::_VectorInsert: 759 return inline_vector_insert(); 760 case vmIntrinsics::_VectorExtract: 761 return inline_vector_extract(); 762 case vmIntrinsics::_VectorCompressExpand: 763 return inline_vector_compress_expand(); 764 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 765 return inline_vector_select_from_two_vectors(); 766 case vmIntrinsics::_IndexVector: 767 return inline_index_vector(); 768 case vmIntrinsics::_IndexPartiallyInUpperRange: 769 return inline_index_partially_in_upper_range(); 770 771 case vmIntrinsics::_getObjectSize: 772 return inline_getObjectSize(); 773 774 case vmIntrinsics::_blackhole: 775 return inline_blackhole(); 776 777 default: 778 // If you get here, it may be that someone has added a new intrinsic 779 // to the list in vmIntrinsics.hpp without implementing it here. 780 #ifndef PRODUCT 781 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 782 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 783 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 784 } 785 #endif 786 return false; 787 } 788 } 789 790 Node* LibraryCallKit::try_to_predicate(int predicate) { 791 if (!jvms()->has_method()) { 792 // Root JVMState has a null method. 793 assert(map()->memory()->Opcode() == Op_Parm, ""); 794 // Insert the memory aliasing node 795 set_all_memory(reset_memory()); 796 } 797 assert(merged_memory(), ""); 798 799 switch (intrinsic_id()) { 800 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 801 return inline_cipherBlockChaining_AESCrypt_predicate(false); 802 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 803 return inline_cipherBlockChaining_AESCrypt_predicate(true); 804 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 805 return inline_electronicCodeBook_AESCrypt_predicate(false); 806 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 807 return inline_electronicCodeBook_AESCrypt_predicate(true); 808 case vmIntrinsics::_counterMode_AESCrypt: 809 return inline_counterMode_AESCrypt_predicate(); 810 case vmIntrinsics::_digestBase_implCompressMB: 811 return inline_digestBase_implCompressMB_predicate(predicate); 812 case vmIntrinsics::_galoisCounterMode_AESCrypt: 813 return inline_galoisCounterMode_AESCrypt_predicate(); 814 815 default: 816 // If you get here, it may be that someone has added a new intrinsic 817 // to the list in vmIntrinsics.hpp without implementing it here. 818 #ifndef PRODUCT 819 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 820 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 821 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 822 } 823 #endif 824 Node* slow_ctl = control(); 825 set_control(top()); // No fast path intrinsic 826 return slow_ctl; 827 } 828 } 829 830 //------------------------------set_result------------------------------- 831 // Helper function for finishing intrinsics. 832 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 833 record_for_igvn(region); 834 set_control(_gvn.transform(region)); 835 set_result( _gvn.transform(value)); 836 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 837 } 838 839 //------------------------------generate_guard--------------------------- 840 // Helper function for generating guarded fast-slow graph structures. 841 // The given 'test', if true, guards a slow path. If the test fails 842 // then a fast path can be taken. (We generally hope it fails.) 843 // In all cases, GraphKit::control() is updated to the fast path. 844 // The returned value represents the control for the slow path. 845 // The return value is never 'top'; it is either a valid control 846 // or null if it is obvious that the slow path can never be taken. 847 // Also, if region and the slow control are not null, the slow edge 848 // is appended to the region. 849 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 850 if (stopped()) { 851 // Already short circuited. 852 return nullptr; 853 } 854 855 // Build an if node and its projections. 856 // If test is true we take the slow path, which we assume is uncommon. 857 if (_gvn.type(test) == TypeInt::ZERO) { 858 // The slow branch is never taken. No need to build this guard. 859 return nullptr; 860 } 861 862 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 863 864 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 865 if (if_slow == top()) { 866 // The slow branch is never taken. No need to build this guard. 867 return nullptr; 868 } 869 870 if (region != nullptr) 871 region->add_req(if_slow); 872 873 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 874 set_control(if_fast); 875 876 return if_slow; 877 } 878 879 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 880 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 881 } 882 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 883 return generate_guard(test, region, PROB_FAIR); 884 } 885 886 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 887 Node* *pos_index) { 888 if (stopped()) 889 return nullptr; // already stopped 890 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 891 return nullptr; // index is already adequately typed 892 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 893 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 894 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 895 if (is_neg != nullptr && pos_index != nullptr) { 896 // Emulate effect of Parse::adjust_map_after_if. 897 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 898 (*pos_index) = _gvn.transform(ccast); 899 } 900 return is_neg; 901 } 902 903 // Make sure that 'position' is a valid limit index, in [0..length]. 904 // There are two equivalent plans for checking this: 905 // A. (offset + copyLength) unsigned<= arrayLength 906 // B. offset <= (arrayLength - copyLength) 907 // We require that all of the values above, except for the sum and 908 // difference, are already known to be non-negative. 909 // Plan A is robust in the face of overflow, if offset and copyLength 910 // are both hugely positive. 911 // 912 // Plan B is less direct and intuitive, but it does not overflow at 913 // all, since the difference of two non-negatives is always 914 // representable. Whenever Java methods must perform the equivalent 915 // check they generally use Plan B instead of Plan A. 916 // For the moment we use Plan A. 917 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 918 Node* subseq_length, 919 Node* array_length, 920 RegionNode* region) { 921 if (stopped()) 922 return nullptr; // already stopped 923 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 924 if (zero_offset && subseq_length->eqv_uncast(array_length)) 925 return nullptr; // common case of whole-array copy 926 Node* last = subseq_length; 927 if (!zero_offset) // last += offset 928 last = _gvn.transform(new AddINode(last, offset)); 929 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 930 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 931 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 932 return is_over; 933 } 934 935 // Emit range checks for the given String.value byte array 936 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 937 if (stopped()) { 938 return; // already stopped 939 } 940 RegionNode* bailout = new RegionNode(1); 941 record_for_igvn(bailout); 942 if (char_count) { 943 // Convert char count to byte count 944 count = _gvn.transform(new LShiftINode(count, intcon(1))); 945 } 946 947 // Offset and count must not be negative 948 generate_negative_guard(offset, bailout); 949 generate_negative_guard(count, bailout); 950 // Offset + count must not exceed length of array 951 generate_limit_guard(offset, count, load_array_length(array), bailout); 952 953 if (bailout->req() > 1) { 954 PreserveJVMState pjvms(this); 955 set_control(_gvn.transform(bailout)); 956 uncommon_trap(Deoptimization::Reason_intrinsic, 957 Deoptimization::Action_maybe_recompile); 958 } 959 } 960 961 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 962 bool is_immutable) { 963 ciKlass* thread_klass = env()->Thread_klass(); 964 const Type* thread_type 965 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 966 967 Node* thread = _gvn.transform(new ThreadLocalNode()); 968 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 969 tls_output = thread; 970 971 Node* thread_obj_handle 972 = (is_immutable 973 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 974 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 975 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 976 thread_obj_handle = _gvn.transform(thread_obj_handle); 977 978 DecoratorSet decorators = IN_NATIVE; 979 if (is_immutable) { 980 decorators |= C2_IMMUTABLE_MEMORY; 981 } 982 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 983 } 984 985 //--------------------------generate_current_thread-------------------- 986 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 987 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 988 /*is_immutable*/false); 989 } 990 991 //--------------------------generate_virtual_thread-------------------- 992 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 993 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 994 !C->method()->changes_current_thread()); 995 } 996 997 //------------------------------make_string_method_node------------------------ 998 // Helper method for String intrinsic functions. This version is called with 999 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1000 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1001 // containing the lengths of str1 and str2. 1002 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1003 Node* result = nullptr; 1004 switch (opcode) { 1005 case Op_StrIndexOf: 1006 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1007 str1_start, cnt1, str2_start, cnt2, ae); 1008 break; 1009 case Op_StrComp: 1010 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1011 str1_start, cnt1, str2_start, cnt2, ae); 1012 break; 1013 case Op_StrEquals: 1014 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1015 // Use the constant length if there is one because optimized match rule may exist. 1016 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1017 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1018 break; 1019 default: 1020 ShouldNotReachHere(); 1021 return nullptr; 1022 } 1023 1024 // All these intrinsics have checks. 1025 C->set_has_split_ifs(true); // Has chance for split-if optimization 1026 clear_upper_avx(); 1027 1028 return _gvn.transform(result); 1029 } 1030 1031 //------------------------------inline_string_compareTo------------------------ 1032 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1033 Node* arg1 = argument(0); 1034 Node* arg2 = argument(1); 1035 1036 arg1 = must_be_not_null(arg1, true); 1037 arg2 = must_be_not_null(arg2, true); 1038 1039 // Get start addr and length of first argument 1040 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1041 Node* arg1_cnt = load_array_length(arg1); 1042 1043 // Get start addr and length of second argument 1044 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1045 Node* arg2_cnt = load_array_length(arg2); 1046 1047 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1048 set_result(result); 1049 return true; 1050 } 1051 1052 //------------------------------inline_string_equals------------------------ 1053 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1054 Node* arg1 = argument(0); 1055 Node* arg2 = argument(1); 1056 1057 // paths (plus control) merge 1058 RegionNode* region = new RegionNode(3); 1059 Node* phi = new PhiNode(region, TypeInt::BOOL); 1060 1061 if (!stopped()) { 1062 1063 arg1 = must_be_not_null(arg1, true); 1064 arg2 = must_be_not_null(arg2, true); 1065 1066 // Get start addr and length of first argument 1067 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1068 Node* arg1_cnt = load_array_length(arg1); 1069 1070 // Get start addr and length of second argument 1071 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1072 Node* arg2_cnt = load_array_length(arg2); 1073 1074 // Check for arg1_cnt != arg2_cnt 1075 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1076 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1077 Node* if_ne = generate_slow_guard(bol, nullptr); 1078 if (if_ne != nullptr) { 1079 phi->init_req(2, intcon(0)); 1080 region->init_req(2, if_ne); 1081 } 1082 1083 // Check for count == 0 is done by assembler code for StrEquals. 1084 1085 if (!stopped()) { 1086 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1087 phi->init_req(1, equals); 1088 region->init_req(1, control()); 1089 } 1090 } 1091 1092 // post merge 1093 set_control(_gvn.transform(region)); 1094 record_for_igvn(region); 1095 1096 set_result(_gvn.transform(phi)); 1097 return true; 1098 } 1099 1100 //------------------------------inline_array_equals---------------------------- 1101 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1102 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1103 Node* arg1 = argument(0); 1104 Node* arg2 = argument(1); 1105 1106 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1107 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1108 clear_upper_avx(); 1109 1110 return true; 1111 } 1112 1113 1114 //------------------------------inline_countPositives------------------------------ 1115 bool LibraryCallKit::inline_countPositives() { 1116 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1117 return false; 1118 } 1119 1120 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1121 // no receiver since it is static method 1122 Node* ba = argument(0); 1123 Node* offset = argument(1); 1124 Node* len = argument(2); 1125 1126 ba = must_be_not_null(ba, true); 1127 1128 // Range checks 1129 generate_string_range_check(ba, offset, len, false); 1130 if (stopped()) { 1131 return true; 1132 } 1133 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1134 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1135 set_result(_gvn.transform(result)); 1136 clear_upper_avx(); 1137 return true; 1138 } 1139 1140 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1141 Node* index = argument(0); 1142 Node* length = bt == T_INT ? argument(1) : argument(2); 1143 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1144 return false; 1145 } 1146 1147 // check that length is positive 1148 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1149 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1150 1151 { 1152 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1153 uncommon_trap(Deoptimization::Reason_intrinsic, 1154 Deoptimization::Action_make_not_entrant); 1155 } 1156 1157 if (stopped()) { 1158 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1159 return true; 1160 } 1161 1162 // length is now known positive, add a cast node to make this explicit 1163 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1164 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1165 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1166 ConstraintCastNode::RegularDependency, bt); 1167 casted_length = _gvn.transform(casted_length); 1168 replace_in_map(length, casted_length); 1169 length = casted_length; 1170 1171 // Use an unsigned comparison for the range check itself 1172 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1173 BoolTest::mask btest = BoolTest::lt; 1174 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1175 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1176 _gvn.set_type(rc, rc->Value(&_gvn)); 1177 if (!rc_bool->is_Con()) { 1178 record_for_igvn(rc); 1179 } 1180 set_control(_gvn.transform(new IfTrueNode(rc))); 1181 { 1182 PreserveJVMState pjvms(this); 1183 set_control(_gvn.transform(new IfFalseNode(rc))); 1184 uncommon_trap(Deoptimization::Reason_range_check, 1185 Deoptimization::Action_make_not_entrant); 1186 } 1187 1188 if (stopped()) { 1189 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1190 return true; 1191 } 1192 1193 // index is now known to be >= 0 and < length, cast it 1194 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1195 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1196 ConstraintCastNode::RegularDependency, bt); 1197 result = _gvn.transform(result); 1198 set_result(result); 1199 replace_in_map(index, result); 1200 return true; 1201 } 1202 1203 //------------------------------inline_string_indexOf------------------------ 1204 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1205 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1206 return false; 1207 } 1208 Node* src = argument(0); 1209 Node* tgt = argument(1); 1210 1211 // Make the merge point 1212 RegionNode* result_rgn = new RegionNode(4); 1213 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1214 1215 src = must_be_not_null(src, true); 1216 tgt = must_be_not_null(tgt, true); 1217 1218 // Get start addr and length of source string 1219 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1220 Node* src_count = load_array_length(src); 1221 1222 // Get start addr and length of substring 1223 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1224 Node* tgt_count = load_array_length(tgt); 1225 1226 Node* result = nullptr; 1227 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1228 1229 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1230 // Divide src size by 2 if String is UTF16 encoded 1231 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1232 } 1233 if (ae == StrIntrinsicNode::UU) { 1234 // Divide substring size by 2 if String is UTF16 encoded 1235 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1236 } 1237 1238 if (call_opt_stub) { 1239 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1240 StubRoutines::_string_indexof_array[ae], 1241 "stringIndexOf", TypePtr::BOTTOM, src_start, 1242 src_count, tgt_start, tgt_count); 1243 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1244 } else { 1245 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1246 result_rgn, result_phi, ae); 1247 } 1248 if (result != nullptr) { 1249 result_phi->init_req(3, result); 1250 result_rgn->init_req(3, control()); 1251 } 1252 set_control(_gvn.transform(result_rgn)); 1253 record_for_igvn(result_rgn); 1254 set_result(_gvn.transform(result_phi)); 1255 1256 return true; 1257 } 1258 1259 //-----------------------------inline_string_indexOfI----------------------- 1260 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1261 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1262 return false; 1263 } 1264 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1265 return false; 1266 } 1267 1268 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1269 Node* src = argument(0); // byte[] 1270 Node* src_count = argument(1); // char count 1271 Node* tgt = argument(2); // byte[] 1272 Node* tgt_count = argument(3); // char count 1273 Node* from_index = argument(4); // char index 1274 1275 src = must_be_not_null(src, true); 1276 tgt = must_be_not_null(tgt, true); 1277 1278 // Multiply byte array index by 2 if String is UTF16 encoded 1279 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1280 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1281 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1282 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1283 1284 // Range checks 1285 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1286 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1287 if (stopped()) { 1288 return true; 1289 } 1290 1291 RegionNode* region = new RegionNode(5); 1292 Node* phi = new PhiNode(region, TypeInt::INT); 1293 Node* result = nullptr; 1294 1295 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1296 1297 if (call_opt_stub) { 1298 assert(arrayOopDesc::base_offset_in_bytes(T_BYTE) >= 16, "Needed for indexOf"); 1299 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1300 StubRoutines::_string_indexof_array[ae], 1301 "stringIndexOf", TypePtr::BOTTOM, src_start, 1302 src_count, tgt_start, tgt_count); 1303 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1304 } else { 1305 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1306 region, phi, ae); 1307 } 1308 if (result != nullptr) { 1309 // The result is index relative to from_index if substring was found, -1 otherwise. 1310 // Generate code which will fold into cmove. 1311 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1312 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1313 1314 Node* if_lt = generate_slow_guard(bol, nullptr); 1315 if (if_lt != nullptr) { 1316 // result == -1 1317 phi->init_req(3, result); 1318 region->init_req(3, if_lt); 1319 } 1320 if (!stopped()) { 1321 result = _gvn.transform(new AddINode(result, from_index)); 1322 phi->init_req(4, result); 1323 region->init_req(4, control()); 1324 } 1325 } 1326 1327 set_control(_gvn.transform(region)); 1328 record_for_igvn(region); 1329 set_result(_gvn.transform(phi)); 1330 clear_upper_avx(); 1331 1332 return true; 1333 } 1334 1335 // Create StrIndexOfNode with fast path checks 1336 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1337 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1338 // Check for substr count > string count 1339 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1340 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1341 Node* if_gt = generate_slow_guard(bol, nullptr); 1342 if (if_gt != nullptr) { 1343 phi->init_req(1, intcon(-1)); 1344 region->init_req(1, if_gt); 1345 } 1346 if (!stopped()) { 1347 // Check for substr count == 0 1348 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1349 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1350 Node* if_zero = generate_slow_guard(bol, nullptr); 1351 if (if_zero != nullptr) { 1352 phi->init_req(2, intcon(0)); 1353 region->init_req(2, if_zero); 1354 } 1355 } 1356 if (!stopped()) { 1357 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1358 } 1359 return nullptr; 1360 } 1361 1362 //-----------------------------inline_string_indexOfChar----------------------- 1363 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1364 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1365 return false; 1366 } 1367 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1368 return false; 1369 } 1370 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1371 Node* src = argument(0); // byte[] 1372 Node* int_ch = argument(1); 1373 Node* from_index = argument(2); 1374 Node* max = argument(3); 1375 1376 src = must_be_not_null(src, true); 1377 1378 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1379 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1380 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1381 1382 // Range checks 1383 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1384 1385 // Check for int_ch >= 0 1386 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1387 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1388 { 1389 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1390 uncommon_trap(Deoptimization::Reason_intrinsic, 1391 Deoptimization::Action_maybe_recompile); 1392 } 1393 if (stopped()) { 1394 return true; 1395 } 1396 1397 RegionNode* region = new RegionNode(3); 1398 Node* phi = new PhiNode(region, TypeInt::INT); 1399 1400 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1401 C->set_has_split_ifs(true); // Has chance for split-if optimization 1402 _gvn.transform(result); 1403 1404 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1405 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1406 1407 Node* if_lt = generate_slow_guard(bol, nullptr); 1408 if (if_lt != nullptr) { 1409 // result == -1 1410 phi->init_req(2, result); 1411 region->init_req(2, if_lt); 1412 } 1413 if (!stopped()) { 1414 result = _gvn.transform(new AddINode(result, from_index)); 1415 phi->init_req(1, result); 1416 region->init_req(1, control()); 1417 } 1418 set_control(_gvn.transform(region)); 1419 record_for_igvn(region); 1420 set_result(_gvn.transform(phi)); 1421 clear_upper_avx(); 1422 1423 return true; 1424 } 1425 //---------------------------inline_string_copy--------------------- 1426 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1427 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1428 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1429 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1430 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1431 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1432 bool LibraryCallKit::inline_string_copy(bool compress) { 1433 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1434 return false; 1435 } 1436 int nargs = 5; // 2 oops, 3 ints 1437 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1438 1439 Node* src = argument(0); 1440 Node* src_offset = argument(1); 1441 Node* dst = argument(2); 1442 Node* dst_offset = argument(3); 1443 Node* length = argument(4); 1444 1445 // Check for allocation before we add nodes that would confuse 1446 // tightly_coupled_allocation() 1447 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1448 1449 // Figure out the size and type of the elements we will be copying. 1450 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1451 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1452 if (src_type == nullptr || dst_type == nullptr) { 1453 return false; 1454 } 1455 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1456 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1457 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1458 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1459 "Unsupported array types for inline_string_copy"); 1460 1461 src = must_be_not_null(src, true); 1462 dst = must_be_not_null(dst, true); 1463 1464 // Convert char[] offsets to byte[] offsets 1465 bool convert_src = (compress && src_elem == T_BYTE); 1466 bool convert_dst = (!compress && dst_elem == T_BYTE); 1467 if (convert_src) { 1468 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1469 } else if (convert_dst) { 1470 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1471 } 1472 1473 // Range checks 1474 generate_string_range_check(src, src_offset, length, convert_src); 1475 generate_string_range_check(dst, dst_offset, length, convert_dst); 1476 if (stopped()) { 1477 return true; 1478 } 1479 1480 Node* src_start = array_element_address(src, src_offset, src_elem); 1481 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1482 // 'src_start' points to src array + scaled offset 1483 // 'dst_start' points to dst array + scaled offset 1484 Node* count = nullptr; 1485 if (compress) { 1486 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1487 } else { 1488 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1489 } 1490 1491 if (alloc != nullptr) { 1492 if (alloc->maybe_set_complete(&_gvn)) { 1493 // "You break it, you buy it." 1494 InitializeNode* init = alloc->initialization(); 1495 assert(init->is_complete(), "we just did this"); 1496 init->set_complete_with_arraycopy(); 1497 assert(dst->is_CheckCastPP(), "sanity"); 1498 assert(dst->in(0)->in(0) == init, "dest pinned"); 1499 } 1500 // Do not let stores that initialize this object be reordered with 1501 // a subsequent store that would make this object accessible by 1502 // other threads. 1503 // Record what AllocateNode this StoreStore protects so that 1504 // escape analysis can go from the MemBarStoreStoreNode to the 1505 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1506 // based on the escape status of the AllocateNode. 1507 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1508 } 1509 if (compress) { 1510 set_result(_gvn.transform(count)); 1511 } 1512 clear_upper_avx(); 1513 1514 return true; 1515 } 1516 1517 #ifdef _LP64 1518 #define XTOP ,top() /*additional argument*/ 1519 #else //_LP64 1520 #define XTOP /*no additional argument*/ 1521 #endif //_LP64 1522 1523 //------------------------inline_string_toBytesU-------------------------- 1524 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1525 bool LibraryCallKit::inline_string_toBytesU() { 1526 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1527 return false; 1528 } 1529 // Get the arguments. 1530 Node* value = argument(0); 1531 Node* offset = argument(1); 1532 Node* length = argument(2); 1533 1534 Node* newcopy = nullptr; 1535 1536 // Set the original stack and the reexecute bit for the interpreter to reexecute 1537 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1538 { PreserveReexecuteState preexecs(this); 1539 jvms()->set_should_reexecute(true); 1540 1541 // Check if a null path was taken unconditionally. 1542 value = null_check(value); 1543 1544 RegionNode* bailout = new RegionNode(1); 1545 record_for_igvn(bailout); 1546 1547 // Range checks 1548 generate_negative_guard(offset, bailout); 1549 generate_negative_guard(length, bailout); 1550 generate_limit_guard(offset, length, load_array_length(value), bailout); 1551 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1552 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1553 1554 if (bailout->req() > 1) { 1555 PreserveJVMState pjvms(this); 1556 set_control(_gvn.transform(bailout)); 1557 uncommon_trap(Deoptimization::Reason_intrinsic, 1558 Deoptimization::Action_maybe_recompile); 1559 } 1560 if (stopped()) { 1561 return true; 1562 } 1563 1564 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1565 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1566 newcopy = new_array(klass_node, size, 0); // no arguments to push 1567 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1568 guarantee(alloc != nullptr, "created above"); 1569 1570 // Calculate starting addresses. 1571 Node* src_start = array_element_address(value, offset, T_CHAR); 1572 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1573 1574 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1575 const TypeInt* toffset = gvn().type(offset)->is_int(); 1576 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1577 1578 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1579 const char* copyfunc_name = "arraycopy"; 1580 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1581 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1582 OptoRuntime::fast_arraycopy_Type(), 1583 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1584 src_start, dst_start, ConvI2X(length) XTOP); 1585 // Do not let reads from the cloned object float above the arraycopy. 1586 if (alloc->maybe_set_complete(&_gvn)) { 1587 // "You break it, you buy it." 1588 InitializeNode* init = alloc->initialization(); 1589 assert(init->is_complete(), "we just did this"); 1590 init->set_complete_with_arraycopy(); 1591 assert(newcopy->is_CheckCastPP(), "sanity"); 1592 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1593 } 1594 // Do not let stores that initialize this object be reordered with 1595 // a subsequent store that would make this object accessible by 1596 // other threads. 1597 // Record what AllocateNode this StoreStore protects so that 1598 // escape analysis can go from the MemBarStoreStoreNode to the 1599 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1600 // based on the escape status of the AllocateNode. 1601 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1602 } // original reexecute is set back here 1603 1604 C->set_has_split_ifs(true); // Has chance for split-if optimization 1605 if (!stopped()) { 1606 set_result(newcopy); 1607 } 1608 clear_upper_avx(); 1609 1610 return true; 1611 } 1612 1613 //------------------------inline_string_getCharsU-------------------------- 1614 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1615 bool LibraryCallKit::inline_string_getCharsU() { 1616 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1617 return false; 1618 } 1619 1620 // Get the arguments. 1621 Node* src = argument(0); 1622 Node* src_begin = argument(1); 1623 Node* src_end = argument(2); // exclusive offset (i < src_end) 1624 Node* dst = argument(3); 1625 Node* dst_begin = argument(4); 1626 1627 // Check for allocation before we add nodes that would confuse 1628 // tightly_coupled_allocation() 1629 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1630 1631 // Check if a null path was taken unconditionally. 1632 src = null_check(src); 1633 dst = null_check(dst); 1634 if (stopped()) { 1635 return true; 1636 } 1637 1638 // Get length and convert char[] offset to byte[] offset 1639 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1640 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1641 1642 // Range checks 1643 generate_string_range_check(src, src_begin, length, true); 1644 generate_string_range_check(dst, dst_begin, length, false); 1645 if (stopped()) { 1646 return true; 1647 } 1648 1649 if (!stopped()) { 1650 // Calculate starting addresses. 1651 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1652 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1653 1654 // Check if array addresses are aligned to HeapWordSize 1655 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1656 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1657 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1658 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1659 1660 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1661 const char* copyfunc_name = "arraycopy"; 1662 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1663 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1664 OptoRuntime::fast_arraycopy_Type(), 1665 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1666 src_start, dst_start, ConvI2X(length) XTOP); 1667 // Do not let reads from the cloned object float above the arraycopy. 1668 if (alloc != nullptr) { 1669 if (alloc->maybe_set_complete(&_gvn)) { 1670 // "You break it, you buy it." 1671 InitializeNode* init = alloc->initialization(); 1672 assert(init->is_complete(), "we just did this"); 1673 init->set_complete_with_arraycopy(); 1674 assert(dst->is_CheckCastPP(), "sanity"); 1675 assert(dst->in(0)->in(0) == init, "dest pinned"); 1676 } 1677 // Do not let stores that initialize this object be reordered with 1678 // a subsequent store that would make this object accessible by 1679 // other threads. 1680 // Record what AllocateNode this StoreStore protects so that 1681 // escape analysis can go from the MemBarStoreStoreNode to the 1682 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1683 // based on the escape status of the AllocateNode. 1684 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1685 } else { 1686 insert_mem_bar(Op_MemBarCPUOrder); 1687 } 1688 } 1689 1690 C->set_has_split_ifs(true); // Has chance for split-if optimization 1691 return true; 1692 } 1693 1694 //----------------------inline_string_char_access---------------------------- 1695 // Store/Load char to/from byte[] array. 1696 // static void StringUTF16.putChar(byte[] val, int index, int c) 1697 // static char StringUTF16.getChar(byte[] val, int index) 1698 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1699 Node* value = argument(0); 1700 Node* index = argument(1); 1701 Node* ch = is_store ? argument(2) : nullptr; 1702 1703 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1704 // correctly requires matched array shapes. 1705 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1706 "sanity: byte[] and char[] bases agree"); 1707 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1708 "sanity: byte[] and char[] scales agree"); 1709 1710 // Bail when getChar over constants is requested: constant folding would 1711 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1712 // Java method would constant fold nicely instead. 1713 if (!is_store && value->is_Con() && index->is_Con()) { 1714 return false; 1715 } 1716 1717 // Save state and restore on bailout 1718 uint old_sp = sp(); 1719 SafePointNode* old_map = clone_map(); 1720 1721 value = must_be_not_null(value, true); 1722 1723 Node* adr = array_element_address(value, index, T_CHAR); 1724 if (adr->is_top()) { 1725 set_map(old_map); 1726 set_sp(old_sp); 1727 return false; 1728 } 1729 destruct_map_clone(old_map); 1730 if (is_store) { 1731 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1732 } else { 1733 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1734 set_result(ch); 1735 } 1736 return true; 1737 } 1738 1739 //--------------------------round_double_node-------------------------------- 1740 // Round a double node if necessary. 1741 Node* LibraryCallKit::round_double_node(Node* n) { 1742 if (Matcher::strict_fp_requires_explicit_rounding) { 1743 #ifdef IA32 1744 if (UseSSE < 2) { 1745 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1746 } 1747 #else 1748 Unimplemented(); 1749 #endif // IA32 1750 } 1751 return n; 1752 } 1753 1754 //------------------------------inline_math----------------------------------- 1755 // public static double Math.abs(double) 1756 // public static double Math.sqrt(double) 1757 // public static double Math.log(double) 1758 // public static double Math.log10(double) 1759 // public static double Math.round(double) 1760 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1761 Node* arg = round_double_node(argument(0)); 1762 Node* n = nullptr; 1763 switch (id) { 1764 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1765 case vmIntrinsics::_dsqrt: 1766 case vmIntrinsics::_dsqrt_strict: 1767 n = new SqrtDNode(C, control(), arg); break; 1768 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1769 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1770 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1771 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1772 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1773 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1774 default: fatal_unexpected_iid(id); break; 1775 } 1776 set_result(_gvn.transform(n)); 1777 return true; 1778 } 1779 1780 //------------------------------inline_math----------------------------------- 1781 // public static float Math.abs(float) 1782 // public static int Math.abs(int) 1783 // public static long Math.abs(long) 1784 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1785 Node* arg = argument(0); 1786 Node* n = nullptr; 1787 switch (id) { 1788 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1789 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1790 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1791 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1792 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1793 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1794 default: fatal_unexpected_iid(id); break; 1795 } 1796 set_result(_gvn.transform(n)); 1797 return true; 1798 } 1799 1800 //------------------------------runtime_math----------------------------- 1801 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1802 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1803 "must be (DD)D or (D)D type"); 1804 1805 // Inputs 1806 Node* a = round_double_node(argument(0)); 1807 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1808 1809 const TypePtr* no_memory_effects = nullptr; 1810 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1811 no_memory_effects, 1812 a, top(), b, b ? top() : nullptr); 1813 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1814 #ifdef ASSERT 1815 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1816 assert(value_top == top(), "second value must be top"); 1817 #endif 1818 1819 set_result(value); 1820 return true; 1821 } 1822 1823 //------------------------------inline_math_pow----------------------------- 1824 bool LibraryCallKit::inline_math_pow() { 1825 Node* exp = round_double_node(argument(2)); 1826 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1827 if (d != nullptr) { 1828 if (d->getd() == 2.0) { 1829 // Special case: pow(x, 2.0) => x * x 1830 Node* base = round_double_node(argument(0)); 1831 set_result(_gvn.transform(new MulDNode(base, base))); 1832 return true; 1833 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1834 // Special case: pow(x, 0.5) => sqrt(x) 1835 Node* base = round_double_node(argument(0)); 1836 Node* zero = _gvn.zerocon(T_DOUBLE); 1837 1838 RegionNode* region = new RegionNode(3); 1839 Node* phi = new PhiNode(region, Type::DOUBLE); 1840 1841 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1842 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1843 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1844 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1845 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1846 1847 Node* if_pow = generate_slow_guard(test, nullptr); 1848 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1849 phi->init_req(1, value_sqrt); 1850 region->init_req(1, control()); 1851 1852 if (if_pow != nullptr) { 1853 set_control(if_pow); 1854 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1855 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1856 const TypePtr* no_memory_effects = nullptr; 1857 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1858 no_memory_effects, base, top(), exp, top()); 1859 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1860 #ifdef ASSERT 1861 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1862 assert(value_top == top(), "second value must be top"); 1863 #endif 1864 phi->init_req(2, value_pow); 1865 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1866 } 1867 1868 C->set_has_split_ifs(true); // Has chance for split-if optimization 1869 set_control(_gvn.transform(region)); 1870 record_for_igvn(region); 1871 set_result(_gvn.transform(phi)); 1872 1873 return true; 1874 } 1875 } 1876 1877 return StubRoutines::dpow() != nullptr ? 1878 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1879 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1880 } 1881 1882 //------------------------------inline_math_native----------------------------- 1883 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1884 switch (id) { 1885 case vmIntrinsics::_dsin: 1886 return StubRoutines::dsin() != nullptr ? 1887 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1888 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1889 case vmIntrinsics::_dcos: 1890 return StubRoutines::dcos() != nullptr ? 1891 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1892 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1893 case vmIntrinsics::_dtan: 1894 return StubRoutines::dtan() != nullptr ? 1895 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1896 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1897 case vmIntrinsics::_dtanh: 1898 return StubRoutines::dtanh() != nullptr ? 1899 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1900 case vmIntrinsics::_dexp: 1901 return StubRoutines::dexp() != nullptr ? 1902 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1903 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1904 case vmIntrinsics::_dlog: 1905 return StubRoutines::dlog() != nullptr ? 1906 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1907 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1908 case vmIntrinsics::_dlog10: 1909 return StubRoutines::dlog10() != nullptr ? 1910 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1911 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1912 1913 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1914 case vmIntrinsics::_ceil: 1915 case vmIntrinsics::_floor: 1916 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1917 1918 case vmIntrinsics::_dsqrt: 1919 case vmIntrinsics::_dsqrt_strict: 1920 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1921 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1922 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1923 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1924 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1925 1926 case vmIntrinsics::_dpow: return inline_math_pow(); 1927 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1928 case vmIntrinsics::_fcopySign: return inline_math(id); 1929 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1930 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1931 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1932 1933 // These intrinsics are not yet correctly implemented 1934 case vmIntrinsics::_datan2: 1935 return false; 1936 1937 default: 1938 fatal_unexpected_iid(id); 1939 return false; 1940 } 1941 } 1942 1943 //----------------------------inline_notify-----------------------------------* 1944 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1945 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1946 address func; 1947 if (id == vmIntrinsics::_notify) { 1948 func = OptoRuntime::monitor_notify_Java(); 1949 } else { 1950 func = OptoRuntime::monitor_notifyAll_Java(); 1951 } 1952 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1953 make_slow_call_ex(call, env()->Throwable_klass(), false); 1954 return true; 1955 } 1956 1957 1958 //----------------------------inline_min_max----------------------------------- 1959 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1960 set_result(generate_min_max(id, argument(0), argument(1))); 1961 return true; 1962 } 1963 1964 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1965 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1966 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1967 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1968 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1969 1970 { 1971 PreserveJVMState pjvms(this); 1972 PreserveReexecuteState preexecs(this); 1973 jvms()->set_should_reexecute(true); 1974 1975 set_control(slow_path); 1976 set_i_o(i_o()); 1977 1978 uncommon_trap(Deoptimization::Reason_intrinsic, 1979 Deoptimization::Action_none); 1980 } 1981 1982 set_control(fast_path); 1983 set_result(math); 1984 } 1985 1986 template <typename OverflowOp> 1987 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1988 typedef typename OverflowOp::MathOp MathOp; 1989 1990 MathOp* mathOp = new MathOp(arg1, arg2); 1991 Node* operation = _gvn.transform( mathOp ); 1992 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1993 inline_math_mathExact(operation, ofcheck); 1994 return true; 1995 } 1996 1997 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1998 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1999 } 2000 2001 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2002 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2003 } 2004 2005 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2006 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2007 } 2008 2009 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2010 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2011 } 2012 2013 bool LibraryCallKit::inline_math_negateExactI() { 2014 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2015 } 2016 2017 bool LibraryCallKit::inline_math_negateExactL() { 2018 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2019 } 2020 2021 bool LibraryCallKit::inline_math_multiplyExactI() { 2022 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2023 } 2024 2025 bool LibraryCallKit::inline_math_multiplyExactL() { 2026 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2027 } 2028 2029 bool LibraryCallKit::inline_math_multiplyHigh() { 2030 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2031 return true; 2032 } 2033 2034 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2035 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2036 return true; 2037 } 2038 2039 Node* 2040 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2041 Node* result_val = nullptr; 2042 switch (id) { 2043 case vmIntrinsics::_min: 2044 case vmIntrinsics::_min_strict: 2045 result_val = _gvn.transform(new MinINode(x0, y0)); 2046 break; 2047 case vmIntrinsics::_max: 2048 case vmIntrinsics::_max_strict: 2049 result_val = _gvn.transform(new MaxINode(x0, y0)); 2050 break; 2051 default: 2052 fatal_unexpected_iid(id); 2053 break; 2054 } 2055 return result_val; 2056 } 2057 2058 inline int 2059 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2060 const TypePtr* base_type = TypePtr::NULL_PTR; 2061 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2062 if (base_type == nullptr) { 2063 // Unknown type. 2064 return Type::AnyPtr; 2065 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2066 // Since this is a null+long form, we have to switch to a rawptr. 2067 base = _gvn.transform(new CastX2PNode(offset)); 2068 offset = MakeConX(0); 2069 return Type::RawPtr; 2070 } else if (base_type->base() == Type::RawPtr) { 2071 return Type::RawPtr; 2072 } else if (base_type->isa_oopptr()) { 2073 // Base is never null => always a heap address. 2074 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2075 return Type::OopPtr; 2076 } 2077 // Offset is small => always a heap address. 2078 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2079 if (offset_type != nullptr && 2080 base_type->offset() == 0 && // (should always be?) 2081 offset_type->_lo >= 0 && 2082 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2083 return Type::OopPtr; 2084 } else if (type == T_OBJECT) { 2085 // off heap access to an oop doesn't make any sense. Has to be on 2086 // heap. 2087 return Type::OopPtr; 2088 } 2089 // Otherwise, it might either be oop+off or null+addr. 2090 return Type::AnyPtr; 2091 } else { 2092 // No information: 2093 return Type::AnyPtr; 2094 } 2095 } 2096 2097 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2098 Node* uncasted_base = base; 2099 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2100 if (kind == Type::RawPtr) { 2101 return basic_plus_adr(top(), uncasted_base, offset); 2102 } else if (kind == Type::AnyPtr) { 2103 assert(base == uncasted_base, "unexpected base change"); 2104 if (can_cast) { 2105 if (!_gvn.type(base)->speculative_maybe_null() && 2106 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2107 // According to profiling, this access is always on 2108 // heap. Casting the base to not null and thus avoiding membars 2109 // around the access should allow better optimizations 2110 Node* null_ctl = top(); 2111 base = null_check_oop(base, &null_ctl, true, true, true); 2112 assert(null_ctl->is_top(), "no null control here"); 2113 return basic_plus_adr(base, offset); 2114 } else if (_gvn.type(base)->speculative_always_null() && 2115 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2116 // According to profiling, this access is always off 2117 // heap. 2118 base = null_assert(base); 2119 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2120 offset = MakeConX(0); 2121 return basic_plus_adr(top(), raw_base, offset); 2122 } 2123 } 2124 // We don't know if it's an on heap or off heap access. Fall back 2125 // to raw memory access. 2126 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2127 return basic_plus_adr(top(), raw, offset); 2128 } else { 2129 assert(base == uncasted_base, "unexpected base change"); 2130 // We know it's an on heap access so base can't be null 2131 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2132 base = must_be_not_null(base, true); 2133 } 2134 return basic_plus_adr(base, offset); 2135 } 2136 } 2137 2138 //--------------------------inline_number_methods----------------------------- 2139 // inline int Integer.numberOfLeadingZeros(int) 2140 // inline int Long.numberOfLeadingZeros(long) 2141 // 2142 // inline int Integer.numberOfTrailingZeros(int) 2143 // inline int Long.numberOfTrailingZeros(long) 2144 // 2145 // inline int Integer.bitCount(int) 2146 // inline int Long.bitCount(long) 2147 // 2148 // inline char Character.reverseBytes(char) 2149 // inline short Short.reverseBytes(short) 2150 // inline int Integer.reverseBytes(int) 2151 // inline long Long.reverseBytes(long) 2152 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2153 Node* arg = argument(0); 2154 Node* n = nullptr; 2155 switch (id) { 2156 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2157 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2158 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2159 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2160 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2161 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2162 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(nullptr, arg); break; 2163 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( nullptr, arg); break; 2164 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( nullptr, arg); break; 2165 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( nullptr, arg); break; 2166 case vmIntrinsics::_reverse_i: n = new ReverseINode(nullptr, arg); break; 2167 case vmIntrinsics::_reverse_l: n = new ReverseLNode(nullptr, arg); break; 2168 default: fatal_unexpected_iid(id); break; 2169 } 2170 set_result(_gvn.transform(n)); 2171 return true; 2172 } 2173 2174 //--------------------------inline_bitshuffle_methods----------------------------- 2175 // inline int Integer.compress(int, int) 2176 // inline int Integer.expand(int, int) 2177 // inline long Long.compress(long, long) 2178 // inline long Long.expand(long, long) 2179 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2180 Node* n = nullptr; 2181 switch (id) { 2182 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2183 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2184 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2185 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2186 default: fatal_unexpected_iid(id); break; 2187 } 2188 set_result(_gvn.transform(n)); 2189 return true; 2190 } 2191 2192 //--------------------------inline_number_methods----------------------------- 2193 // inline int Integer.compareUnsigned(int, int) 2194 // inline int Long.compareUnsigned(long, long) 2195 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2196 Node* arg1 = argument(0); 2197 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2198 Node* n = nullptr; 2199 switch (id) { 2200 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2201 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2202 default: fatal_unexpected_iid(id); break; 2203 } 2204 set_result(_gvn.transform(n)); 2205 return true; 2206 } 2207 2208 //--------------------------inline_unsigned_divmod_methods----------------------------- 2209 // inline int Integer.divideUnsigned(int, int) 2210 // inline int Integer.remainderUnsigned(int, int) 2211 // inline long Long.divideUnsigned(long, long) 2212 // inline long Long.remainderUnsigned(long, long) 2213 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2214 Node* n = nullptr; 2215 switch (id) { 2216 case vmIntrinsics::_divideUnsigned_i: { 2217 zero_check_int(argument(1)); 2218 // Compile-time detect of null-exception 2219 if (stopped()) { 2220 return true; // keep the graph constructed so far 2221 } 2222 n = new UDivINode(control(), argument(0), argument(1)); 2223 break; 2224 } 2225 case vmIntrinsics::_divideUnsigned_l: { 2226 zero_check_long(argument(2)); 2227 // Compile-time detect of null-exception 2228 if (stopped()) { 2229 return true; // keep the graph constructed so far 2230 } 2231 n = new UDivLNode(control(), argument(0), argument(2)); 2232 break; 2233 } 2234 case vmIntrinsics::_remainderUnsigned_i: { 2235 zero_check_int(argument(1)); 2236 // Compile-time detect of null-exception 2237 if (stopped()) { 2238 return true; // keep the graph constructed so far 2239 } 2240 n = new UModINode(control(), argument(0), argument(1)); 2241 break; 2242 } 2243 case vmIntrinsics::_remainderUnsigned_l: { 2244 zero_check_long(argument(2)); 2245 // Compile-time detect of null-exception 2246 if (stopped()) { 2247 return true; // keep the graph constructed so far 2248 } 2249 n = new UModLNode(control(), argument(0), argument(2)); 2250 break; 2251 } 2252 default: fatal_unexpected_iid(id); break; 2253 } 2254 set_result(_gvn.transform(n)); 2255 return true; 2256 } 2257 2258 //----------------------------inline_unsafe_access---------------------------- 2259 2260 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2261 // Attempt to infer a sharper value type from the offset and base type. 2262 ciKlass* sharpened_klass = nullptr; 2263 bool null_free = false; 2264 2265 // See if it is an instance field, with an object type. 2266 if (alias_type->field() != nullptr) { 2267 if (alias_type->field()->type()->is_klass()) { 2268 sharpened_klass = alias_type->field()->type()->as_klass(); 2269 null_free = alias_type->field()->is_null_free(); 2270 } 2271 } 2272 2273 const TypeOopPtr* result = nullptr; 2274 // See if it is a narrow oop array. 2275 if (adr_type->isa_aryptr()) { 2276 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2277 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2278 null_free = adr_type->is_aryptr()->is_null_free(); 2279 if (elem_type != nullptr && elem_type->is_loaded()) { 2280 // Sharpen the value type. 2281 result = elem_type; 2282 } 2283 } 2284 } 2285 2286 // The sharpened class might be unloaded if there is no class loader 2287 // contraint in place. 2288 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2289 // Sharpen the value type. 2290 result = TypeOopPtr::make_from_klass(sharpened_klass); 2291 if (null_free) { 2292 result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 2293 } 2294 } 2295 if (result != nullptr) { 2296 #ifndef PRODUCT 2297 if (C->print_intrinsics() || C->print_inlining()) { 2298 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2299 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2300 } 2301 #endif 2302 } 2303 return result; 2304 } 2305 2306 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2307 switch (kind) { 2308 case Relaxed: 2309 return MO_UNORDERED; 2310 case Opaque: 2311 return MO_RELAXED; 2312 case Acquire: 2313 return MO_ACQUIRE; 2314 case Release: 2315 return MO_RELEASE; 2316 case Volatile: 2317 return MO_SEQ_CST; 2318 default: 2319 ShouldNotReachHere(); 2320 return 0; 2321 } 2322 } 2323 2324 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) { 2325 if (callee()->is_static()) return false; // caller must have the capability! 2326 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2327 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2328 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2329 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2330 2331 if (is_reference_type(type)) { 2332 decorators |= ON_UNKNOWN_OOP_REF; 2333 } 2334 2335 if (unaligned) { 2336 decorators |= C2_UNALIGNED; 2337 } 2338 2339 #ifndef PRODUCT 2340 { 2341 ResourceMark rm; 2342 // Check the signatures. 2343 ciSignature* sig = callee()->signature(); 2344 #ifdef ASSERT 2345 if (!is_store) { 2346 // Object getReference(Object base, int/long offset), etc. 2347 BasicType rtype = sig->return_type()->basic_type(); 2348 assert(rtype == type, "getter must return the expected value"); 2349 assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments"); 2350 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2351 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2352 } else { 2353 // void putReference(Object base, int/long offset, Object x), etc. 2354 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2355 assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments"); 2356 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2357 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2358 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2359 assert(vtype == type, "putter must accept the expected value"); 2360 } 2361 #endif // ASSERT 2362 } 2363 #endif //PRODUCT 2364 2365 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2366 2367 Node* receiver = argument(0); // type: oop 2368 2369 // Build address expression. 2370 Node* heap_base_oop = top(); 2371 2372 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2373 Node* base = argument(1); // type: oop 2374 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2375 Node* offset = argument(2); // type: long 2376 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2377 // to be plain byte offsets, which are also the same as those accepted 2378 // by oopDesc::field_addr. 2379 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2380 "fieldOffset must be byte-scaled"); 2381 2382 ciInlineKlass* inline_klass = nullptr; 2383 if (is_flat) { 2384 const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr(); 2385 if (cls == nullptr || cls->const_oop() == nullptr) { 2386 return false; 2387 } 2388 ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type(); 2389 if (!mirror_type->is_inlinetype()) { 2390 return false; 2391 } 2392 inline_klass = mirror_type->as_inline_klass(); 2393 } 2394 2395 if (base->is_InlineType()) { 2396 InlineTypeNode* vt = base->as_InlineType(); 2397 if (is_store) { 2398 if (!vt->is_allocated(&_gvn)) { 2399 return false; 2400 } 2401 base = vt->get_oop(); 2402 } else { 2403 if (offset->is_Con()) { 2404 long off = find_long_con(offset, 0); 2405 ciInlineKlass* vk = vt->type()->inline_klass(); 2406 if ((long)(int)off != off || !vk->contains_field_offset(off)) { 2407 return false; 2408 } 2409 2410 ciField* field = vk->get_non_flat_field_by_offset(off); 2411 if (field != nullptr) { 2412 BasicType bt = type2field[field->type()->basic_type()]; 2413 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2414 bt = T_OBJECT; 2415 } 2416 if (bt == type && (!field->is_flat() || field->type() == inline_klass)) { 2417 Node* value = vt->field_value_by_offset(off, false); 2418 if (value->is_InlineType()) { 2419 value = value->as_InlineType()->adjust_scalarization_depth(this); 2420 } 2421 set_result(value); 2422 return true; 2423 } 2424 } 2425 } 2426 { 2427 // Re-execute the unsafe access if allocation triggers deoptimization. 2428 PreserveReexecuteState preexecs(this); 2429 jvms()->set_should_reexecute(true); 2430 vt = vt->buffer(this); 2431 } 2432 base = vt->get_oop(); 2433 } 2434 } 2435 2436 // 32-bit machines ignore the high half! 2437 offset = ConvL2X(offset); 2438 2439 // Save state and restore on bailout 2440 uint old_sp = sp(); 2441 SafePointNode* old_map = clone_map(); 2442 2443 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2444 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2445 2446 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2447 if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) { 2448 decorators |= IN_NATIVE; // off-heap primitive access 2449 } else { 2450 set_map(old_map); 2451 set_sp(old_sp); 2452 return false; // off-heap oop accesses are not supported 2453 } 2454 } else { 2455 heap_base_oop = base; // on-heap or mixed access 2456 } 2457 2458 // Can base be null? Otherwise, always on-heap access. 2459 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2460 2461 if (!can_access_non_heap) { 2462 decorators |= IN_HEAP; 2463 } 2464 2465 Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr; 2466 2467 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2468 if (adr_type == TypePtr::NULL_PTR) { 2469 set_map(old_map); 2470 set_sp(old_sp); 2471 return false; // off-heap access with zero address 2472 } 2473 2474 // Try to categorize the address. 2475 Compile::AliasType* alias_type = C->alias_type(adr_type); 2476 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2477 2478 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2479 alias_type->adr_type() == TypeAryPtr::RANGE) { 2480 set_map(old_map); 2481 set_sp(old_sp); 2482 return false; // not supported 2483 } 2484 2485 bool mismatched = false; 2486 BasicType bt = T_ILLEGAL; 2487 ciField* field = nullptr; 2488 if (adr_type->isa_instptr()) { 2489 const TypeInstPtr* instptr = adr_type->is_instptr(); 2490 ciInstanceKlass* k = instptr->instance_klass(); 2491 int off = instptr->offset(); 2492 if (instptr->const_oop() != nullptr && 2493 k == ciEnv::current()->Class_klass() && 2494 instptr->offset() >= (k->size_helper() * wordSize)) { 2495 k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2496 field = k->get_field_by_offset(off, true); 2497 } else { 2498 field = k->get_non_flat_field_by_offset(off); 2499 } 2500 if (field != nullptr) { 2501 bt = type2field[field->type()->basic_type()]; 2502 } 2503 assert(bt == alias_type->basic_type() || is_flat, "should match"); 2504 } else { 2505 bt = alias_type->basic_type(); 2506 } 2507 2508 if (bt != T_ILLEGAL) { 2509 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2510 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2511 // Alias type doesn't differentiate between byte[] and boolean[]). 2512 // Use address type to get the element type. 2513 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2514 } 2515 if (is_reference_type(bt, true)) { 2516 // accessing an array field with getReference is not a mismatch 2517 bt = T_OBJECT; 2518 } 2519 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2520 // Don't intrinsify mismatched object accesses 2521 set_map(old_map); 2522 set_sp(old_sp); 2523 return false; 2524 } 2525 mismatched = (bt != type); 2526 } else if (alias_type->adr_type()->isa_oopptr()) { 2527 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2528 } 2529 2530 if (is_flat) { 2531 if (adr_type->isa_instptr()) { 2532 if (field == nullptr || field->type() != inline_klass) { 2533 mismatched = true; 2534 } 2535 } else if (adr_type->isa_aryptr()) { 2536 const Type* elem = adr_type->is_aryptr()->elem(); 2537 if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) { 2538 mismatched = true; 2539 } 2540 } else { 2541 mismatched = true; 2542 } 2543 if (is_store) { 2544 const Type* val_t = _gvn.type(val); 2545 if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) { 2546 set_map(old_map); 2547 set_sp(old_sp); 2548 return false; 2549 } 2550 } 2551 } 2552 2553 destruct_map_clone(old_map); 2554 assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2555 2556 if (mismatched) { 2557 decorators |= C2_MISMATCHED; 2558 } 2559 2560 // First guess at the value type. 2561 const Type *value_type = Type::get_const_basic_type(type); 2562 2563 // Figure out the memory ordering. 2564 decorators |= mo_decorator_for_access_kind(kind); 2565 2566 if (!is_store) { 2567 if (type == T_OBJECT && !is_flat) { 2568 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2569 if (tjp != nullptr) { 2570 value_type = tjp; 2571 } 2572 } 2573 } 2574 2575 receiver = null_check(receiver); 2576 if (stopped()) { 2577 return true; 2578 } 2579 // Heap pointers get a null-check from the interpreter, 2580 // as a courtesy. However, this is not guaranteed by Unsafe, 2581 // and it is not possible to fully distinguish unintended nulls 2582 // from intended ones in this API. 2583 2584 if (!is_store) { 2585 Node* p = nullptr; 2586 // Try to constant fold a load from a constant field 2587 2588 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) { 2589 // final or stable field 2590 p = make_constant_from_field(field, heap_base_oop); 2591 } 2592 2593 if (p == nullptr) { // Could not constant fold the load 2594 if (is_flat) { 2595 if (adr_type->isa_instptr() && !mismatched) { 2596 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2597 int offset = adr_type->is_instptr()->offset(); 2598 p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, holder, offset, decorators); 2599 } else { 2600 p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, 0, decorators); 2601 } 2602 } else { 2603 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2604 const TypeOopPtr* ptr = value_type->make_oopptr(); 2605 if (ptr != nullptr && ptr->is_inlinetypeptr()) { 2606 // Load a non-flattened inline type from memory 2607 p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass(), !ptr->maybe_null()); 2608 } 2609 } 2610 // Normalize the value returned by getBoolean in the following cases 2611 if (type == T_BOOLEAN && 2612 (mismatched || 2613 heap_base_oop == top() || // - heap_base_oop is null or 2614 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2615 // and the unsafe access is made to large offset 2616 // (i.e., larger than the maximum offset necessary for any 2617 // field access) 2618 ) { 2619 IdealKit ideal = IdealKit(this); 2620 #define __ ideal. 2621 IdealVariable normalized_result(ideal); 2622 __ declarations_done(); 2623 __ set(normalized_result, p); 2624 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2625 __ set(normalized_result, ideal.ConI(1)); 2626 ideal.end_if(); 2627 final_sync(ideal); 2628 p = __ value(normalized_result); 2629 #undef __ 2630 } 2631 } 2632 if (type == T_ADDRESS) { 2633 p = gvn().transform(new CastP2XNode(nullptr, p)); 2634 p = ConvX2UL(p); 2635 } 2636 // The load node has the control of the preceding MemBarCPUOrder. All 2637 // following nodes will have the control of the MemBarCPUOrder inserted at 2638 // the end of this method. So, pushing the load onto the stack at a later 2639 // point is fine. 2640 set_result(p); 2641 } else { 2642 if (bt == T_ADDRESS) { 2643 // Repackage the long as a pointer. 2644 val = ConvL2X(val); 2645 val = gvn().transform(new CastX2PNode(val)); 2646 } 2647 if (is_flat) { 2648 if (adr_type->isa_instptr() && !mismatched) { 2649 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2650 int offset = adr_type->is_instptr()->offset(); 2651 val->as_InlineType()->store_flat(this, base, base, holder, offset, decorators); 2652 } else { 2653 val->as_InlineType()->store_flat(this, base, adr, nullptr, 0, decorators); 2654 } 2655 } else { 2656 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2657 } 2658 } 2659 2660 if (argument(1)->is_InlineType() && is_store) { 2661 InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass()); 2662 value = value->make_larval(this, false); 2663 replace_in_map(argument(1), value); 2664 } 2665 2666 return true; 2667 } 2668 2669 bool LibraryCallKit::inline_unsafe_make_private_buffer() { 2670 Node* receiver = argument(0); 2671 Node* value = argument(1); 2672 if (!value->is_InlineType()) { 2673 return false; 2674 } 2675 2676 receiver = null_check(receiver); 2677 if (stopped()) { 2678 return true; 2679 } 2680 2681 set_result(value->as_InlineType()->make_larval(this, true)); 2682 return true; 2683 } 2684 2685 bool LibraryCallKit::inline_unsafe_finish_private_buffer() { 2686 Node* receiver = argument(0); 2687 Node* buffer = argument(1); 2688 if (!buffer->is_InlineType()) { 2689 return false; 2690 } 2691 InlineTypeNode* vt = buffer->as_InlineType(); 2692 if (!vt->is_allocated(&_gvn)) { 2693 return false; 2694 } 2695 // TODO 8239003 Why is this needed? 2696 if (AllocateNode::Ideal_allocation(vt->get_oop()) == nullptr) { 2697 return false; 2698 } 2699 2700 receiver = null_check(receiver); 2701 if (stopped()) { 2702 return true; 2703 } 2704 2705 set_result(vt->finish_larval(this)); 2706 return true; 2707 } 2708 2709 //----------------------------inline_unsafe_load_store---------------------------- 2710 // This method serves a couple of different customers (depending on LoadStoreKind): 2711 // 2712 // LS_cmp_swap: 2713 // 2714 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2715 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2716 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2717 // 2718 // LS_cmp_swap_weak: 2719 // 2720 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2721 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2722 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2723 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2724 // 2725 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2726 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2727 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2728 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2729 // 2730 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2731 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2732 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2733 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2734 // 2735 // LS_cmp_exchange: 2736 // 2737 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2738 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2739 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2740 // 2741 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2742 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2743 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2744 // 2745 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2746 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2747 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2748 // 2749 // LS_get_add: 2750 // 2751 // int getAndAddInt( Object o, long offset, int delta) 2752 // long getAndAddLong(Object o, long offset, long delta) 2753 // 2754 // LS_get_set: 2755 // 2756 // int getAndSet(Object o, long offset, int newValue) 2757 // long getAndSet(Object o, long offset, long newValue) 2758 // Object getAndSet(Object o, long offset, Object newValue) 2759 // 2760 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2761 // This basic scheme here is the same as inline_unsafe_access, but 2762 // differs in enough details that combining them would make the code 2763 // overly confusing. (This is a true fact! I originally combined 2764 // them, but even I was confused by it!) As much code/comments as 2765 // possible are retained from inline_unsafe_access though to make 2766 // the correspondences clearer. - dl 2767 2768 if (callee()->is_static()) return false; // caller must have the capability! 2769 2770 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2771 decorators |= mo_decorator_for_access_kind(access_kind); 2772 2773 #ifndef PRODUCT 2774 BasicType rtype; 2775 { 2776 ResourceMark rm; 2777 // Check the signatures. 2778 ciSignature* sig = callee()->signature(); 2779 rtype = sig->return_type()->basic_type(); 2780 switch(kind) { 2781 case LS_get_add: 2782 case LS_get_set: { 2783 // Check the signatures. 2784 #ifdef ASSERT 2785 assert(rtype == type, "get and set must return the expected type"); 2786 assert(sig->count() == 3, "get and set has 3 arguments"); 2787 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2788 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2789 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2790 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2791 #endif // ASSERT 2792 break; 2793 } 2794 case LS_cmp_swap: 2795 case LS_cmp_swap_weak: { 2796 // Check the signatures. 2797 #ifdef ASSERT 2798 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2799 assert(sig->count() == 4, "CAS has 4 arguments"); 2800 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2801 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2802 #endif // ASSERT 2803 break; 2804 } 2805 case LS_cmp_exchange: { 2806 // Check the signatures. 2807 #ifdef ASSERT 2808 assert(rtype == type, "CAS must return the expected type"); 2809 assert(sig->count() == 4, "CAS has 4 arguments"); 2810 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2811 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2812 #endif // ASSERT 2813 break; 2814 } 2815 default: 2816 ShouldNotReachHere(); 2817 } 2818 } 2819 #endif //PRODUCT 2820 2821 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2822 2823 // Get arguments: 2824 Node* receiver = nullptr; 2825 Node* base = nullptr; 2826 Node* offset = nullptr; 2827 Node* oldval = nullptr; 2828 Node* newval = nullptr; 2829 switch(kind) { 2830 case LS_cmp_swap: 2831 case LS_cmp_swap_weak: 2832 case LS_cmp_exchange: { 2833 const bool two_slot_type = type2size[type] == 2; 2834 receiver = argument(0); // type: oop 2835 base = argument(1); // type: oop 2836 offset = argument(2); // type: long 2837 oldval = argument(4); // type: oop, int, or long 2838 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2839 break; 2840 } 2841 case LS_get_add: 2842 case LS_get_set: { 2843 receiver = argument(0); // type: oop 2844 base = argument(1); // type: oop 2845 offset = argument(2); // type: long 2846 oldval = nullptr; 2847 newval = argument(4); // type: oop, int, or long 2848 break; 2849 } 2850 default: 2851 ShouldNotReachHere(); 2852 } 2853 2854 // Build field offset expression. 2855 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2856 // to be plain byte offsets, which are also the same as those accepted 2857 // by oopDesc::field_addr. 2858 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2859 // 32-bit machines ignore the high half of long offsets 2860 offset = ConvL2X(offset); 2861 // Save state and restore on bailout 2862 uint old_sp = sp(); 2863 SafePointNode* old_map = clone_map(); 2864 Node* adr = make_unsafe_address(base, offset,type, false); 2865 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2866 2867 Compile::AliasType* alias_type = C->alias_type(adr_type); 2868 BasicType bt = alias_type->basic_type(); 2869 if (bt != T_ILLEGAL && 2870 (is_reference_type(bt) != (type == T_OBJECT))) { 2871 // Don't intrinsify mismatched object accesses. 2872 set_map(old_map); 2873 set_sp(old_sp); 2874 return false; 2875 } 2876 2877 destruct_map_clone(old_map); 2878 2879 // For CAS, unlike inline_unsafe_access, there seems no point in 2880 // trying to refine types. Just use the coarse types here. 2881 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2882 const Type *value_type = Type::get_const_basic_type(type); 2883 2884 switch (kind) { 2885 case LS_get_set: 2886 case LS_cmp_exchange: { 2887 if (type == T_OBJECT) { 2888 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2889 if (tjp != nullptr) { 2890 value_type = tjp; 2891 } 2892 } 2893 break; 2894 } 2895 case LS_cmp_swap: 2896 case LS_cmp_swap_weak: 2897 case LS_get_add: 2898 break; 2899 default: 2900 ShouldNotReachHere(); 2901 } 2902 2903 // Null check receiver. 2904 receiver = null_check(receiver); 2905 if (stopped()) { 2906 return true; 2907 } 2908 2909 int alias_idx = C->get_alias_index(adr_type); 2910 2911 if (is_reference_type(type)) { 2912 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2913 2914 if (oldval != nullptr && oldval->is_InlineType()) { 2915 // Re-execute the unsafe access if allocation triggers deoptimization. 2916 PreserveReexecuteState preexecs(this); 2917 jvms()->set_should_reexecute(true); 2918 oldval = oldval->as_InlineType()->buffer(this)->get_oop(); 2919 } 2920 if (newval != nullptr && newval->is_InlineType()) { 2921 // Re-execute the unsafe access if allocation triggers deoptimization. 2922 PreserveReexecuteState preexecs(this); 2923 jvms()->set_should_reexecute(true); 2924 newval = newval->as_InlineType()->buffer(this)->get_oop(); 2925 } 2926 2927 // Transformation of a value which could be null pointer (CastPP #null) 2928 // could be delayed during Parse (for example, in adjust_map_after_if()). 2929 // Execute transformation here to avoid barrier generation in such case. 2930 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2931 newval = _gvn.makecon(TypePtr::NULL_PTR); 2932 2933 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2934 // Refine the value to a null constant, when it is known to be null 2935 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2936 } 2937 } 2938 2939 Node* result = nullptr; 2940 switch (kind) { 2941 case LS_cmp_exchange: { 2942 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2943 oldval, newval, value_type, type, decorators); 2944 break; 2945 } 2946 case LS_cmp_swap_weak: 2947 decorators |= C2_WEAK_CMPXCHG; 2948 case LS_cmp_swap: { 2949 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2950 oldval, newval, value_type, type, decorators); 2951 break; 2952 } 2953 case LS_get_set: { 2954 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2955 newval, value_type, type, decorators); 2956 break; 2957 } 2958 case LS_get_add: { 2959 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2960 newval, value_type, type, decorators); 2961 break; 2962 } 2963 default: 2964 ShouldNotReachHere(); 2965 } 2966 2967 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2968 set_result(result); 2969 return true; 2970 } 2971 2972 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2973 // Regardless of form, don't allow previous ld/st to move down, 2974 // then issue acquire, release, or volatile mem_bar. 2975 insert_mem_bar(Op_MemBarCPUOrder); 2976 switch(id) { 2977 case vmIntrinsics::_loadFence: 2978 insert_mem_bar(Op_LoadFence); 2979 return true; 2980 case vmIntrinsics::_storeFence: 2981 insert_mem_bar(Op_StoreFence); 2982 return true; 2983 case vmIntrinsics::_storeStoreFence: 2984 insert_mem_bar(Op_StoreStoreFence); 2985 return true; 2986 case vmIntrinsics::_fullFence: 2987 insert_mem_bar(Op_MemBarVolatile); 2988 return true; 2989 default: 2990 fatal_unexpected_iid(id); 2991 return false; 2992 } 2993 } 2994 2995 bool LibraryCallKit::inline_onspinwait() { 2996 insert_mem_bar(Op_OnSpinWait); 2997 return true; 2998 } 2999 3000 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 3001 if (!kls->is_Con()) { 3002 return true; 3003 } 3004 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 3005 if (klsptr == nullptr) { 3006 return true; 3007 } 3008 ciInstanceKlass* ik = klsptr->instance_klass(); 3009 // don't need a guard for a klass that is already initialized 3010 return !ik->is_initialized(); 3011 } 3012 3013 //----------------------------inline_unsafe_writeback0------------------------- 3014 // public native void Unsafe.writeback0(long address) 3015 bool LibraryCallKit::inline_unsafe_writeback0() { 3016 if (!Matcher::has_match_rule(Op_CacheWB)) { 3017 return false; 3018 } 3019 #ifndef PRODUCT 3020 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 3021 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 3022 ciSignature* sig = callee()->signature(); 3023 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 3024 #endif 3025 null_check_receiver(); // null-check, then ignore 3026 Node *addr = argument(1); 3027 addr = new CastX2PNode(addr); 3028 addr = _gvn.transform(addr); 3029 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 3030 flush = _gvn.transform(flush); 3031 set_memory(flush, TypeRawPtr::BOTTOM); 3032 return true; 3033 } 3034 3035 //----------------------------inline_unsafe_writeback0------------------------- 3036 // public native void Unsafe.writeback0(long address) 3037 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 3038 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 3039 return false; 3040 } 3041 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 3042 return false; 3043 } 3044 #ifndef PRODUCT 3045 assert(Matcher::has_match_rule(Op_CacheWB), 3046 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 3047 : "found match rule for CacheWBPostSync but not CacheWB")); 3048 3049 #endif 3050 null_check_receiver(); // null-check, then ignore 3051 Node *sync; 3052 if (is_pre) { 3053 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3054 } else { 3055 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3056 } 3057 sync = _gvn.transform(sync); 3058 set_memory(sync, TypeRawPtr::BOTTOM); 3059 return true; 3060 } 3061 3062 //----------------------------inline_unsafe_allocate--------------------------- 3063 // public native Object Unsafe.allocateInstance(Class<?> cls); 3064 bool LibraryCallKit::inline_unsafe_allocate() { 3065 3066 #if INCLUDE_JVMTI 3067 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3068 return false; 3069 } 3070 #endif //INCLUDE_JVMTI 3071 3072 if (callee()->is_static()) return false; // caller must have the capability! 3073 3074 null_check_receiver(); // null-check, then ignore 3075 Node* cls = null_check(argument(1)); 3076 if (stopped()) return true; 3077 3078 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 3079 kls = null_check(kls); 3080 if (stopped()) return true; // argument was like int.class 3081 3082 #if INCLUDE_JVMTI 3083 // Don't try to access new allocated obj in the intrinsic. 3084 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 3085 // Deoptimize and allocate in interpreter instead. 3086 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 3087 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 3088 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 3089 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3090 { 3091 BuildCutout unless(this, tst, PROB_MAX); 3092 uncommon_trap(Deoptimization::Reason_intrinsic, 3093 Deoptimization::Action_make_not_entrant); 3094 } 3095 if (stopped()) { 3096 return true; 3097 } 3098 #endif //INCLUDE_JVMTI 3099 3100 Node* test = nullptr; 3101 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3102 // Note: The argument might still be an illegal value like 3103 // Serializable.class or Object[].class. The runtime will handle it. 3104 // But we must make an explicit check for initialization. 3105 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3106 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3107 // can generate code to load it as unsigned byte. 3108 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 3109 Node* bits = intcon(InstanceKlass::fully_initialized); 3110 test = _gvn.transform(new SubINode(inst, bits)); 3111 // The 'test' is non-zero if we need to take a slow path. 3112 } 3113 Node* obj = nullptr; 3114 const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr(); 3115 if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) { 3116 obj = InlineTypeNode::make_default(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this); 3117 } else { 3118 obj = new_instance(kls, test); 3119 } 3120 set_result(obj); 3121 return true; 3122 } 3123 3124 //------------------------inline_native_time_funcs-------------- 3125 // inline code for System.currentTimeMillis() and System.nanoTime() 3126 // these have the same type and signature 3127 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3128 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3129 const TypePtr* no_memory_effects = nullptr; 3130 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3131 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3132 #ifdef ASSERT 3133 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3134 assert(value_top == top(), "second value must be top"); 3135 #endif 3136 set_result(value); 3137 return true; 3138 } 3139 3140 3141 #if INCLUDE_JVMTI 3142 3143 // When notifications are disabled then just update the VTMS transition bit and return. 3144 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3145 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3146 if (!DoJVMTIVirtualThreadTransitions) { 3147 return true; 3148 } 3149 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3150 IdealKit ideal(this); 3151 3152 Node* ONE = ideal.ConI(1); 3153 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3154 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3155 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3156 3157 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3158 sync_kit(ideal); 3159 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3160 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3161 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3162 ideal.sync_kit(this); 3163 } ideal.else_(); { 3164 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3165 Node* thread = ideal.thread(); 3166 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3167 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3168 3169 sync_kit(ideal); 3170 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3171 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3172 3173 ideal.sync_kit(this); 3174 } ideal.end_if(); 3175 final_sync(ideal); 3176 3177 return true; 3178 } 3179 3180 // Always update the is_disable_suspend bit. 3181 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3182 if (!DoJVMTIVirtualThreadTransitions) { 3183 return true; 3184 } 3185 IdealKit ideal(this); 3186 3187 { 3188 // unconditionally update the is_disable_suspend bit in current JavaThread 3189 Node* thread = ideal.thread(); 3190 Node* arg = _gvn.transform(argument(0)); // argument for notification 3191 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3192 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3193 3194 sync_kit(ideal); 3195 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3196 ideal.sync_kit(this); 3197 } 3198 final_sync(ideal); 3199 3200 return true; 3201 } 3202 3203 #endif // INCLUDE_JVMTI 3204 3205 #ifdef JFR_HAVE_INTRINSICS 3206 3207 /** 3208 * if oop->klass != null 3209 * // normal class 3210 * epoch = _epoch_state ? 2 : 1 3211 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3212 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3213 * } 3214 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3215 * else 3216 * // primitive class 3217 * if oop->array_klass != null 3218 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3219 * else 3220 * id = LAST_TYPE_ID + 1 // void class path 3221 * if (!signaled) 3222 * signaled = true 3223 */ 3224 bool LibraryCallKit::inline_native_classID() { 3225 Node* cls = argument(0); 3226 3227 IdealKit ideal(this); 3228 #define __ ideal. 3229 IdealVariable result(ideal); __ declarations_done(); 3230 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3231 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3232 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3233 3234 3235 __ if_then(kls, BoolTest::ne, null()); { 3236 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3237 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3238 3239 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3240 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3241 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3242 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3243 mask = _gvn.transform(new OrLNode(mask, epoch)); 3244 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3245 3246 float unlikely = PROB_UNLIKELY(0.999); 3247 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3248 sync_kit(ideal); 3249 make_runtime_call(RC_LEAF, 3250 OptoRuntime::class_id_load_barrier_Type(), 3251 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3252 "class id load barrier", 3253 TypePtr::BOTTOM, 3254 kls); 3255 ideal.sync_kit(this); 3256 } __ end_if(); 3257 3258 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3259 } __ else_(); { 3260 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3261 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3262 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3263 __ if_then(array_kls, BoolTest::ne, null()); { 3264 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3265 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3266 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3267 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3268 } __ else_(); { 3269 // void class case 3270 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3271 } __ end_if(); 3272 3273 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3274 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3275 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3276 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3277 } __ end_if(); 3278 } __ end_if(); 3279 3280 final_sync(ideal); 3281 set_result(ideal.value(result)); 3282 #undef __ 3283 return true; 3284 } 3285 3286 //------------------------inline_native_jvm_commit------------------ 3287 bool LibraryCallKit::inline_native_jvm_commit() { 3288 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3289 3290 // Save input memory and i_o state. 3291 Node* input_memory_state = reset_memory(); 3292 set_all_memory(input_memory_state); 3293 Node* input_io_state = i_o(); 3294 3295 // TLS. 3296 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3297 // Jfr java buffer. 3298 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3299 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3300 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3301 3302 // Load the current value of the notified field in the JfrThreadLocal. 3303 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3304 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3305 3306 // Test for notification. 3307 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3308 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3309 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3310 3311 // True branch, is notified. 3312 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3313 set_control(is_notified); 3314 3315 // Reset notified state. 3316 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); 3317 3318 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3319 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3320 // Convert the machine-word to a long. 3321 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3322 3323 // False branch, not notified. 3324 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3325 set_control(not_notified); 3326 set_all_memory(input_memory_state); 3327 3328 // Arg is the next position as a long. 3329 Node* arg = argument(0); 3330 // Convert long to machine-word. 3331 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3332 3333 // Store the next_position to the underlying jfr java buffer. 3334 Node* commit_memory; 3335 #ifdef _LP64 3336 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); 3337 #else 3338 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); 3339 #endif 3340 3341 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3342 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3343 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3344 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3345 3346 // And flags with lease constant. 3347 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3348 3349 // Branch on lease to conditionalize returning the leased java buffer. 3350 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3351 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3352 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3353 3354 // False branch, not a lease. 3355 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3356 3357 // True branch, is lease. 3358 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3359 set_control(is_lease); 3360 3361 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3362 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3363 OptoRuntime::void_void_Type(), 3364 SharedRuntime::jfr_return_lease(), 3365 "return_lease", TypePtr::BOTTOM); 3366 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3367 3368 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3369 record_for_igvn(lease_compare_rgn); 3370 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3371 record_for_igvn(lease_compare_mem); 3372 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3373 record_for_igvn(lease_compare_io); 3374 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3375 record_for_igvn(lease_result_value); 3376 3377 // Update control and phi nodes. 3378 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3379 lease_compare_rgn->init_req(_false_path, not_lease); 3380 3381 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3382 lease_compare_mem->init_req(_false_path, commit_memory); 3383 3384 lease_compare_io->init_req(_true_path, i_o()); 3385 lease_compare_io->init_req(_false_path, input_io_state); 3386 3387 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3388 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3389 3390 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3391 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3392 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3393 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3394 3395 // Update control and phi nodes. 3396 result_rgn->init_req(_true_path, is_notified); 3397 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3398 3399 result_mem->init_req(_true_path, notified_reset_memory); 3400 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3401 3402 result_io->init_req(_true_path, input_io_state); 3403 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3404 3405 result_value->init_req(_true_path, current_pos); 3406 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3407 3408 // Set output state. 3409 set_control(_gvn.transform(result_rgn)); 3410 set_all_memory(_gvn.transform(result_mem)); 3411 set_i_o(_gvn.transform(result_io)); 3412 set_result(result_rgn, result_value); 3413 return true; 3414 } 3415 3416 /* 3417 * The intrinsic is a model of this pseudo-code: 3418 * 3419 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3420 * jobject h_event_writer = tl->java_event_writer(); 3421 * if (h_event_writer == nullptr) { 3422 * return nullptr; 3423 * } 3424 * oop threadObj = Thread::threadObj(); 3425 * oop vthread = java_lang_Thread::vthread(threadObj); 3426 * traceid tid; 3427 * bool pinVirtualThread; 3428 * bool excluded; 3429 * if (vthread != threadObj) { // i.e. current thread is virtual 3430 * tid = java_lang_Thread::tid(vthread); 3431 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3432 * pinVirtualThread = VMContinuations; 3433 * excluded = vthread_epoch_raw & excluded_mask; 3434 * if (!excluded) { 3435 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3436 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3437 * if (vthread_epoch != current_epoch) { 3438 * write_checkpoint(); 3439 * } 3440 * } 3441 * } else { 3442 * tid = java_lang_Thread::tid(threadObj); 3443 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3444 * pinVirtualThread = false; 3445 * excluded = thread_epoch_raw & excluded_mask; 3446 * } 3447 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3448 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3449 * if (tid_in_event_writer != tid) { 3450 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3451 * setField(event_writer, "excluded", excluded); 3452 * setField(event_writer, "threadID", tid); 3453 * } 3454 * return event_writer 3455 */ 3456 bool LibraryCallKit::inline_native_getEventWriter() { 3457 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3458 3459 // Save input memory and i_o state. 3460 Node* input_memory_state = reset_memory(); 3461 set_all_memory(input_memory_state); 3462 Node* input_io_state = i_o(); 3463 3464 Node* excluded_mask = _gvn.intcon(32768); 3465 Node* epoch_mask = _gvn.intcon(32767); 3466 3467 // TLS 3468 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3469 3470 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3471 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3472 3473 // Load the eventwriter jobject handle. 3474 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3475 3476 // Null check the jobject handle. 3477 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3478 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3479 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3480 3481 // False path, jobj is null. 3482 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3483 3484 // True path, jobj is not null. 3485 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3486 3487 set_control(jobj_is_not_null); 3488 3489 // Load the threadObj for the CarrierThread. 3490 Node* threadObj = generate_current_thread(tls_ptr); 3491 3492 // Load the vthread. 3493 Node* vthread = generate_virtual_thread(tls_ptr); 3494 3495 // If vthread != threadObj, this is a virtual thread. 3496 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3497 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3498 IfNode* iff_vthread_not_equal_threadObj = 3499 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3500 3501 // False branch, fallback to threadObj. 3502 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3503 set_control(vthread_equal_threadObj); 3504 3505 // Load the tid field from the vthread object. 3506 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3507 3508 // Load the raw epoch value from the threadObj. 3509 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3510 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3511 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3512 TypeInt::CHAR, T_CHAR, 3513 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3514 3515 // Mask off the excluded information from the epoch. 3516 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3517 3518 // True branch, this is a virtual thread. 3519 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3520 set_control(vthread_not_equal_threadObj); 3521 3522 // Load the tid field from the vthread object. 3523 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3524 3525 // Continuation support determines if a virtual thread should be pinned. 3526 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3527 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3528 3529 // Load the raw epoch value from the vthread. 3530 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3531 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3532 TypeInt::CHAR, T_CHAR, 3533 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3534 3535 // Mask off the excluded information from the epoch. 3536 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3537 3538 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3539 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3540 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3541 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3542 3543 // False branch, vthread is excluded, no need to write epoch info. 3544 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3545 3546 // True branch, vthread is included, update epoch info. 3547 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3548 set_control(included); 3549 3550 // Get epoch value. 3551 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3552 3553 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3554 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3555 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3556 3557 // Compare the epoch in the vthread to the current epoch generation. 3558 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3559 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3560 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3561 3562 // False path, epoch is equal, checkpoint information is valid. 3563 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3564 3565 // True path, epoch is not equal, write a checkpoint for the vthread. 3566 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3567 3568 set_control(epoch_is_not_equal); 3569 3570 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3571 // The call also updates the native thread local thread id and the vthread with the current epoch. 3572 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3573 OptoRuntime::jfr_write_checkpoint_Type(), 3574 SharedRuntime::jfr_write_checkpoint(), 3575 "write_checkpoint", TypePtr::BOTTOM); 3576 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3577 3578 // vthread epoch != current epoch 3579 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3580 record_for_igvn(epoch_compare_rgn); 3581 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3582 record_for_igvn(epoch_compare_mem); 3583 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3584 record_for_igvn(epoch_compare_io); 3585 3586 // Update control and phi nodes. 3587 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3588 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3589 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3590 epoch_compare_mem->init_req(_false_path, input_memory_state); 3591 epoch_compare_io->init_req(_true_path, i_o()); 3592 epoch_compare_io->init_req(_false_path, input_io_state); 3593 3594 // excluded != true 3595 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3596 record_for_igvn(exclude_compare_rgn); 3597 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3598 record_for_igvn(exclude_compare_mem); 3599 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3600 record_for_igvn(exclude_compare_io); 3601 3602 // Update control and phi nodes. 3603 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3604 exclude_compare_rgn->init_req(_false_path, excluded); 3605 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3606 exclude_compare_mem->init_req(_false_path, input_memory_state); 3607 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3608 exclude_compare_io->init_req(_false_path, input_io_state); 3609 3610 // vthread != threadObj 3611 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3612 record_for_igvn(vthread_compare_rgn); 3613 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3614 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3615 record_for_igvn(vthread_compare_io); 3616 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3617 record_for_igvn(tid); 3618 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3619 record_for_igvn(exclusion); 3620 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3621 record_for_igvn(pinVirtualThread); 3622 3623 // Update control and phi nodes. 3624 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3625 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3626 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3627 vthread_compare_mem->init_req(_false_path, input_memory_state); 3628 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3629 vthread_compare_io->init_req(_false_path, input_io_state); 3630 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3631 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3632 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3633 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3634 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3635 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3636 3637 // Update branch state. 3638 set_control(_gvn.transform(vthread_compare_rgn)); 3639 set_all_memory(_gvn.transform(vthread_compare_mem)); 3640 set_i_o(_gvn.transform(vthread_compare_io)); 3641 3642 // Load the event writer oop by dereferencing the jobject handle. 3643 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3644 assert(klass_EventWriter->is_loaded(), "invariant"); 3645 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3646 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3647 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3648 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3649 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3650 3651 // Load the current thread id from the event writer object. 3652 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3653 // Get the field offset to, conditionally, store an updated tid value later. 3654 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3655 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3656 // Get the field offset to, conditionally, store an updated exclusion value later. 3657 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3658 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3659 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3660 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3661 const TypePtr* event_writer_pin_field_type = _gvn.type(event_writer_pin_field)->isa_ptr(); 3662 3663 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3664 record_for_igvn(event_writer_tid_compare_rgn); 3665 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3666 record_for_igvn(event_writer_tid_compare_mem); 3667 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3668 record_for_igvn(event_writer_tid_compare_io); 3669 3670 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3671 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3672 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3673 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3674 3675 // False path, tids are the same. 3676 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3677 3678 // True path, tid is not equal, need to update the tid in the event writer. 3679 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3680 record_for_igvn(tid_is_not_equal); 3681 3682 // Store the pin state to the event writer. 3683 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, event_writer_pin_field_type, MemNode::unordered); 3684 3685 // Store the exclusion state to the event writer. 3686 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3687 3688 // Store the tid to the event writer. 3689 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3690 3691 // Update control and phi nodes. 3692 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3693 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3694 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3695 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3696 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3697 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3698 3699 // Result of top level CFG, Memory, IO and Value. 3700 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3701 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3702 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3703 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3704 3705 // Result control. 3706 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3707 result_rgn->init_req(_false_path, jobj_is_null); 3708 3709 // Result memory. 3710 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3711 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3712 3713 // Result IO. 3714 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3715 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3716 3717 // Result value. 3718 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3719 result_value->init_req(_false_path, null()); // return null 3720 3721 // Set output state. 3722 set_control(_gvn.transform(result_rgn)); 3723 set_all_memory(_gvn.transform(result_mem)); 3724 set_i_o(_gvn.transform(result_io)); 3725 set_result(result_rgn, result_value); 3726 return true; 3727 } 3728 3729 /* 3730 * The intrinsic is a model of this pseudo-code: 3731 * 3732 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3733 * if (carrierThread != thread) { // is virtual thread 3734 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3735 * bool excluded = vthread_epoch_raw & excluded_mask; 3736 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3737 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3738 * if (!excluded) { 3739 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3740 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3741 * } 3742 * Atomic::release_store(&tl->_vthread, true); 3743 * return; 3744 * } 3745 * Atomic::release_store(&tl->_vthread, false); 3746 */ 3747 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3748 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3749 3750 Node* input_memory_state = reset_memory(); 3751 set_all_memory(input_memory_state); 3752 3753 Node* excluded_mask = _gvn.intcon(32768); 3754 Node* epoch_mask = _gvn.intcon(32767); 3755 3756 Node* const carrierThread = generate_current_thread(jt); 3757 // If thread != carrierThread, this is a virtual thread. 3758 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3759 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3760 IfNode* iff_thread_not_equal_carrierThread = 3761 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3762 3763 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3764 3765 // False branch, is carrierThread. 3766 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3767 // Store release 3768 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3769 3770 set_all_memory(input_memory_state); 3771 3772 // True branch, is virtual thread. 3773 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3774 set_control(thread_not_equal_carrierThread); 3775 3776 // Load the raw epoch value from the vthread. 3777 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3778 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3779 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3780 3781 // Mask off the excluded information from the epoch. 3782 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3783 3784 // Load the tid field from the thread. 3785 Node* tid = load_field_from_object(thread, "tid", "J"); 3786 3787 // Store the vthread tid to the jfr thread local. 3788 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3789 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3790 3791 // Branch is_excluded to conditionalize updating the epoch . 3792 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3793 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3794 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3795 3796 // True branch, vthread is excluded, no need to write epoch info. 3797 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3798 set_control(excluded); 3799 Node* vthread_is_excluded = _gvn.intcon(1); 3800 3801 // False branch, vthread is included, update epoch info. 3802 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3803 set_control(included); 3804 Node* vthread_is_included = _gvn.intcon(0); 3805 3806 // Get epoch value. 3807 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3808 3809 // Store the vthread epoch to the jfr thread local. 3810 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3811 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3812 3813 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3814 record_for_igvn(excluded_rgn); 3815 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3816 record_for_igvn(excluded_mem); 3817 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3818 record_for_igvn(exclusion); 3819 3820 // Merge the excluded control and memory. 3821 excluded_rgn->init_req(_true_path, excluded); 3822 excluded_rgn->init_req(_false_path, included); 3823 excluded_mem->init_req(_true_path, tid_memory); 3824 excluded_mem->init_req(_false_path, included_memory); 3825 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3826 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3827 3828 // Set intermediate state. 3829 set_control(_gvn.transform(excluded_rgn)); 3830 set_all_memory(excluded_mem); 3831 3832 // Store the vthread exclusion state to the jfr thread local. 3833 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3834 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3835 3836 // Store release 3837 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3838 3839 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3840 record_for_igvn(thread_compare_rgn); 3841 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3842 record_for_igvn(thread_compare_mem); 3843 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3844 record_for_igvn(vthread); 3845 3846 // Merge the thread_compare control and memory. 3847 thread_compare_rgn->init_req(_true_path, control()); 3848 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3849 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3850 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3851 3852 // Set output state. 3853 set_control(_gvn.transform(thread_compare_rgn)); 3854 set_all_memory(_gvn.transform(thread_compare_mem)); 3855 } 3856 3857 #endif // JFR_HAVE_INTRINSICS 3858 3859 //------------------------inline_native_currentCarrierThread------------------ 3860 bool LibraryCallKit::inline_native_currentCarrierThread() { 3861 Node* junk = nullptr; 3862 set_result(generate_current_thread(junk)); 3863 return true; 3864 } 3865 3866 //------------------------inline_native_currentThread------------------ 3867 bool LibraryCallKit::inline_native_currentThread() { 3868 Node* junk = nullptr; 3869 set_result(generate_virtual_thread(junk)); 3870 return true; 3871 } 3872 3873 //------------------------inline_native_setVthread------------------ 3874 bool LibraryCallKit::inline_native_setCurrentThread() { 3875 assert(C->method()->changes_current_thread(), 3876 "method changes current Thread but is not annotated ChangesCurrentThread"); 3877 Node* arr = argument(1); 3878 Node* thread = _gvn.transform(new ThreadLocalNode()); 3879 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3880 Node* thread_obj_handle 3881 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3882 thread_obj_handle = _gvn.transform(thread_obj_handle); 3883 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3884 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3885 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3886 return true; 3887 } 3888 3889 const Type* LibraryCallKit::scopedValueCache_type() { 3890 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3891 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3892 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 3893 3894 // Because we create the scopedValue cache lazily we have to make the 3895 // type of the result BotPTR. 3896 bool xk = etype->klass_is_exact(); 3897 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0)); 3898 return objects_type; 3899 } 3900 3901 Node* LibraryCallKit::scopedValueCache_helper() { 3902 Node* thread = _gvn.transform(new ThreadLocalNode()); 3903 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3904 // We cannot use immutable_memory() because we might flip onto a 3905 // different carrier thread, at which point we'll need to use that 3906 // carrier thread's cache. 3907 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3908 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3909 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3910 } 3911 3912 //------------------------inline_native_scopedValueCache------------------ 3913 bool LibraryCallKit::inline_native_scopedValueCache() { 3914 Node* cache_obj_handle = scopedValueCache_helper(); 3915 const Type* objects_type = scopedValueCache_type(); 3916 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3917 3918 return true; 3919 } 3920 3921 //------------------------inline_native_setScopedValueCache------------------ 3922 bool LibraryCallKit::inline_native_setScopedValueCache() { 3923 Node* arr = argument(0); 3924 Node* cache_obj_handle = scopedValueCache_helper(); 3925 const Type* objects_type = scopedValueCache_type(); 3926 3927 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3928 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3929 3930 return true; 3931 } 3932 3933 //------------------------inline_native_Continuation_pin and unpin----------- 3934 3935 // Shared implementation routine for both pin and unpin. 3936 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3937 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3938 3939 // Save input memory. 3940 Node* input_memory_state = reset_memory(); 3941 set_all_memory(input_memory_state); 3942 3943 // TLS 3944 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3945 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3946 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3947 3948 // Null check the last continuation object. 3949 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3950 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3951 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3952 3953 // False path, last continuation is null. 3954 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3955 3956 // True path, last continuation is not null. 3957 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3958 3959 set_control(continuation_is_not_null); 3960 3961 // Load the pin count from the last continuation. 3962 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3963 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3964 3965 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3966 Node* pin_count_rhs; 3967 if (unpin) { 3968 pin_count_rhs = _gvn.intcon(0); 3969 } else { 3970 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3971 } 3972 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3973 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3974 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3975 3976 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3977 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3978 set_control(valid_pin_count); 3979 3980 Node* next_pin_count; 3981 if (unpin) { 3982 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3983 } else { 3984 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3985 } 3986 3987 Node* updated_pin_count_memory = store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 3988 3989 // True branch, pin count over/underflow. 3990 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3991 { 3992 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3993 // which will throw IllegalStateException for pin count over/underflow. 3994 PreserveJVMState pjvms(this); 3995 set_control(pin_count_over_underflow); 3996 set_all_memory(input_memory_state); 3997 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 3998 Deoptimization::Action_none); 3999 assert(stopped(), "invariant"); 4000 } 4001 4002 // Result of top level CFG and Memory. 4003 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 4004 record_for_igvn(result_rgn); 4005 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 4006 record_for_igvn(result_mem); 4007 4008 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 4009 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 4010 result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory)); 4011 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 4012 4013 // Set output state. 4014 set_control(_gvn.transform(result_rgn)); 4015 set_all_memory(_gvn.transform(result_mem)); 4016 4017 return true; 4018 } 4019 4020 //-----------------------load_klass_from_mirror_common------------------------- 4021 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 4022 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 4023 // and branch to the given path on the region. 4024 // If never_see_null, take an uncommon trap on null, so we can optimistically 4025 // compile for the non-null case. 4026 // If the region is null, force never_see_null = true. 4027 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 4028 bool never_see_null, 4029 RegionNode* region, 4030 int null_path, 4031 int offset) { 4032 if (region == nullptr) never_see_null = true; 4033 Node* p = basic_plus_adr(mirror, offset); 4034 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4035 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 4036 Node* null_ctl = top(); 4037 kls = null_check_oop(kls, &null_ctl, never_see_null); 4038 if (region != nullptr) { 4039 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 4040 region->init_req(null_path, null_ctl); 4041 } else { 4042 assert(null_ctl == top(), "no loose ends"); 4043 } 4044 return kls; 4045 } 4046 4047 //--------------------(inline_native_Class_query helpers)--------------------- 4048 // Use this for JVM_ACC_INTERFACE. 4049 // Fall through if (mods & mask) == bits, take the guard otherwise. 4050 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 4051 ByteSize offset, const Type* type, BasicType bt) { 4052 // Branch around if the given klass has the given modifier bit set. 4053 // Like generate_guard, adds a new path onto the region. 4054 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 4055 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 4056 Node* mask = intcon(modifier_mask); 4057 Node* bits = intcon(modifier_bits); 4058 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 4059 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 4060 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 4061 return generate_fair_guard(bol, region); 4062 } 4063 4064 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 4065 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 4066 Klass::access_flags_offset(), TypeInt::INT, T_INT); 4067 } 4068 4069 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 4070 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 4071 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 4072 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 4073 } 4074 4075 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 4076 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 4077 } 4078 4079 //-------------------------inline_native_Class_query------------------- 4080 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 4081 const Type* return_type = TypeInt::BOOL; 4082 Node* prim_return_value = top(); // what happens if it's a primitive class? 4083 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4084 bool expect_prim = false; // most of these guys expect to work on refs 4085 4086 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 4087 4088 Node* mirror = argument(0); 4089 Node* obj = top(); 4090 4091 switch (id) { 4092 case vmIntrinsics::_isInstance: 4093 // nothing is an instance of a primitive type 4094 prim_return_value = intcon(0); 4095 obj = argument(1); 4096 break; 4097 case vmIntrinsics::_getModifiers: 4098 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 4099 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 4100 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 4101 break; 4102 case vmIntrinsics::_isInterface: 4103 prim_return_value = intcon(0); 4104 break; 4105 case vmIntrinsics::_isArray: 4106 prim_return_value = intcon(0); 4107 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 4108 break; 4109 case vmIntrinsics::_isPrimitive: 4110 prim_return_value = intcon(1); 4111 expect_prim = true; // obviously 4112 break; 4113 case vmIntrinsics::_isHidden: 4114 prim_return_value = intcon(0); 4115 break; 4116 case vmIntrinsics::_getSuperclass: 4117 prim_return_value = null(); 4118 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 4119 break; 4120 case vmIntrinsics::_getClassAccessFlags: 4121 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 4122 return_type = TypeInt::INT; // not bool! 6297094 4123 break; 4124 default: 4125 fatal_unexpected_iid(id); 4126 break; 4127 } 4128 4129 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4130 if (mirror_con == nullptr) return false; // cannot happen? 4131 4132 #ifndef PRODUCT 4133 if (C->print_intrinsics() || C->print_inlining()) { 4134 ciType* k = mirror_con->java_mirror_type(); 4135 if (k) { 4136 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 4137 k->print_name(); 4138 tty->cr(); 4139 } 4140 } 4141 #endif 4142 4143 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4144 RegionNode* region = new RegionNode(PATH_LIMIT); 4145 record_for_igvn(region); 4146 PhiNode* phi = new PhiNode(region, return_type); 4147 4148 // The mirror will never be null of Reflection.getClassAccessFlags, however 4149 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4150 // if it is. See bug 4774291. 4151 4152 // For Reflection.getClassAccessFlags(), the null check occurs in 4153 // the wrong place; see inline_unsafe_access(), above, for a similar 4154 // situation. 4155 mirror = null_check(mirror); 4156 // If mirror or obj is dead, only null-path is taken. 4157 if (stopped()) return true; 4158 4159 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4160 4161 // Now load the mirror's klass metaobject, and null-check it. 4162 // Side-effects region with the control path if the klass is null. 4163 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4164 // If kls is null, we have a primitive mirror. 4165 phi->init_req(_prim_path, prim_return_value); 4166 if (stopped()) { set_result(region, phi); return true; } 4167 bool safe_for_replace = (region->in(_prim_path) == top()); 4168 4169 Node* p; // handy temp 4170 Node* null_ctl; 4171 4172 // Now that we have the non-null klass, we can perform the real query. 4173 // For constant classes, the query will constant-fold in LoadNode::Value. 4174 Node* query_value = top(); 4175 switch (id) { 4176 case vmIntrinsics::_isInstance: 4177 // nothing is an instance of a primitive type 4178 query_value = gen_instanceof(obj, kls, safe_for_replace); 4179 break; 4180 4181 case vmIntrinsics::_getModifiers: 4182 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 4183 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 4184 break; 4185 4186 case vmIntrinsics::_isInterface: 4187 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4188 if (generate_interface_guard(kls, region) != nullptr) 4189 // A guard was added. If the guard is taken, it was an interface. 4190 phi->add_req(intcon(1)); 4191 // If we fall through, it's a plain class. 4192 query_value = intcon(0); 4193 break; 4194 4195 case vmIntrinsics::_isArray: 4196 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 4197 if (generate_array_guard(kls, region) != nullptr) 4198 // A guard was added. If the guard is taken, it was an array. 4199 phi->add_req(intcon(1)); 4200 // If we fall through, it's a plain class. 4201 query_value = intcon(0); 4202 break; 4203 4204 case vmIntrinsics::_isPrimitive: 4205 query_value = intcon(0); // "normal" path produces false 4206 break; 4207 4208 case vmIntrinsics::_isHidden: 4209 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4210 if (generate_hidden_class_guard(kls, region) != nullptr) 4211 // A guard was added. If the guard is taken, it was an hidden class. 4212 phi->add_req(intcon(1)); 4213 // If we fall through, it's a plain class. 4214 query_value = intcon(0); 4215 break; 4216 4217 4218 case vmIntrinsics::_getSuperclass: 4219 // The rules here are somewhat unfortunate, but we can still do better 4220 // with random logic than with a JNI call. 4221 // Interfaces store null or Object as _super, but must report null. 4222 // Arrays store an intermediate super as _super, but must report Object. 4223 // Other types can report the actual _super. 4224 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4225 if (generate_interface_guard(kls, region) != nullptr) 4226 // A guard was added. If the guard is taken, it was an interface. 4227 phi->add_req(null()); 4228 if (generate_array_guard(kls, region) != nullptr) 4229 // A guard was added. If the guard is taken, it was an array. 4230 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4231 // If we fall through, it's a plain class. Get its _super. 4232 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4233 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4234 null_ctl = top(); 4235 kls = null_check_oop(kls, &null_ctl); 4236 if (null_ctl != top()) { 4237 // If the guard is taken, Object.superClass is null (both klass and mirror). 4238 region->add_req(null_ctl); 4239 phi ->add_req(null()); 4240 } 4241 if (!stopped()) { 4242 query_value = load_mirror_from_klass(kls); 4243 } 4244 break; 4245 4246 case vmIntrinsics::_getClassAccessFlags: 4247 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4248 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 4249 break; 4250 4251 default: 4252 fatal_unexpected_iid(id); 4253 break; 4254 } 4255 4256 // Fall-through is the normal case of a query to a real class. 4257 phi->init_req(1, query_value); 4258 region->init_req(1, control()); 4259 4260 C->set_has_split_ifs(true); // Has chance for split-if optimization 4261 set_result(region, phi); 4262 return true; 4263 } 4264 4265 4266 //-------------------------inline_Class_cast------------------- 4267 bool LibraryCallKit::inline_Class_cast() { 4268 Node* mirror = argument(0); // Class 4269 Node* obj = argument(1); 4270 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4271 if (mirror_con == nullptr) { 4272 return false; // dead path (mirror->is_top()). 4273 } 4274 if (obj == nullptr || obj->is_top()) { 4275 return false; // dead path 4276 } 4277 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4278 4279 // First, see if Class.cast() can be folded statically. 4280 // java_mirror_type() returns non-null for compile-time Class constants. 4281 bool is_null_free_array = false; 4282 ciType* tm = mirror_con->java_mirror_type(&is_null_free_array); 4283 if (tm != nullptr && tm->is_klass() && 4284 tp != nullptr) { 4285 if (!tp->is_loaded()) { 4286 // Don't use intrinsic when class is not loaded. 4287 return false; 4288 } else { 4289 const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces); 4290 if (is_null_free_array) { 4291 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 4292 } 4293 int static_res = C->static_subtype_check(tklass, tp->as_klass_type()); 4294 if (static_res == Compile::SSC_always_true) { 4295 // isInstance() is true - fold the code. 4296 set_result(obj); 4297 return true; 4298 } else if (static_res == Compile::SSC_always_false) { 4299 // Don't use intrinsic, have to throw ClassCastException. 4300 // If the reference is null, the non-intrinsic bytecode will 4301 // be optimized appropriately. 4302 return false; 4303 } 4304 } 4305 } 4306 4307 // Bailout intrinsic and do normal inlining if exception path is frequent. 4308 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4309 return false; 4310 } 4311 4312 // Generate dynamic checks. 4313 // Class.cast() is java implementation of _checkcast bytecode. 4314 // Do checkcast (Parse::do_checkcast()) optimizations here. 4315 4316 mirror = null_check(mirror); 4317 // If mirror is dead, only null-path is taken. 4318 if (stopped()) { 4319 return true; 4320 } 4321 4322 // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive). 4323 enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT }; 4324 RegionNode* region = new RegionNode(PATH_LIMIT); 4325 record_for_igvn(region); 4326 4327 // Now load the mirror's klass metaobject, and null-check it. 4328 // If kls is null, we have a primitive mirror and 4329 // nothing is an instance of a primitive type. 4330 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4331 4332 Node* res = top(); 4333 Node* io = i_o(); 4334 Node* mem = merged_memory(); 4335 if (!stopped()) { 4336 4337 Node* bad_type_ctrl = top(); 4338 // Do checkcast optimizations. 4339 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4340 region->init_req(_bad_type_path, bad_type_ctrl); 4341 } 4342 if (region->in(_prim_path) != top() || 4343 region->in(_bad_type_path) != top() || 4344 region->in(_npe_path) != top()) { 4345 // Let Interpreter throw ClassCastException. 4346 PreserveJVMState pjvms(this); 4347 set_control(_gvn.transform(region)); 4348 // Set IO and memory because gen_checkcast may override them when buffering inline types 4349 set_i_o(io); 4350 set_all_memory(mem); 4351 uncommon_trap(Deoptimization::Reason_intrinsic, 4352 Deoptimization::Action_maybe_recompile); 4353 } 4354 if (!stopped()) { 4355 set_result(res); 4356 } 4357 return true; 4358 } 4359 4360 4361 //--------------------------inline_native_subtype_check------------------------ 4362 // This intrinsic takes the JNI calls out of the heart of 4363 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4364 bool LibraryCallKit::inline_native_subtype_check() { 4365 // Pull both arguments off the stack. 4366 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4367 args[0] = argument(0); 4368 args[1] = argument(1); 4369 Node* klasses[2]; // corresponding Klasses: superk, subk 4370 klasses[0] = klasses[1] = top(); 4371 4372 enum { 4373 // A full decision tree on {superc is prim, subc is prim}: 4374 _prim_0_path = 1, // {P,N} => false 4375 // {P,P} & superc!=subc => false 4376 _prim_same_path, // {P,P} & superc==subc => true 4377 _prim_1_path, // {N,P} => false 4378 _ref_subtype_path, // {N,N} & subtype check wins => true 4379 _both_ref_path, // {N,N} & subtype check loses => false 4380 PATH_LIMIT 4381 }; 4382 4383 RegionNode* region = new RegionNode(PATH_LIMIT); 4384 RegionNode* prim_region = new RegionNode(2); 4385 Node* phi = new PhiNode(region, TypeInt::BOOL); 4386 record_for_igvn(region); 4387 record_for_igvn(prim_region); 4388 4389 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4390 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4391 int class_klass_offset = java_lang_Class::klass_offset(); 4392 4393 // First null-check both mirrors and load each mirror's klass metaobject. 4394 int which_arg; 4395 for (which_arg = 0; which_arg <= 1; which_arg++) { 4396 Node* arg = args[which_arg]; 4397 arg = null_check(arg); 4398 if (stopped()) break; 4399 args[which_arg] = arg; 4400 4401 Node* p = basic_plus_adr(arg, class_klass_offset); 4402 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4403 klasses[which_arg] = _gvn.transform(kls); 4404 } 4405 4406 // Having loaded both klasses, test each for null. 4407 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4408 for (which_arg = 0; which_arg <= 1; which_arg++) { 4409 Node* kls = klasses[which_arg]; 4410 Node* null_ctl = top(); 4411 kls = null_check_oop(kls, &null_ctl, never_see_null); 4412 if (which_arg == 0) { 4413 prim_region->init_req(1, null_ctl); 4414 } else { 4415 region->init_req(_prim_1_path, null_ctl); 4416 } 4417 if (stopped()) break; 4418 klasses[which_arg] = kls; 4419 } 4420 4421 if (!stopped()) { 4422 // now we have two reference types, in klasses[0..1] 4423 Node* subk = klasses[1]; // the argument to isAssignableFrom 4424 Node* superk = klasses[0]; // the receiver 4425 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4426 region->set_req(_ref_subtype_path, control()); 4427 } 4428 4429 // If both operands are primitive (both klasses null), then 4430 // we must return true when they are identical primitives. 4431 // It is convenient to test this after the first null klass check. 4432 // This path is also used if superc is a value mirror. 4433 set_control(_gvn.transform(prim_region)); 4434 if (!stopped()) { 4435 // Since superc is primitive, make a guard for the superc==subc case. 4436 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4437 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4438 generate_fair_guard(bol_eq, region); 4439 if (region->req() == PATH_LIMIT+1) { 4440 // A guard was added. If the added guard is taken, superc==subc. 4441 region->swap_edges(PATH_LIMIT, _prim_same_path); 4442 region->del_req(PATH_LIMIT); 4443 } 4444 region->set_req(_prim_0_path, control()); // Not equal after all. 4445 } 4446 4447 // these are the only paths that produce 'true': 4448 phi->set_req(_prim_same_path, intcon(1)); 4449 phi->set_req(_ref_subtype_path, intcon(1)); 4450 4451 // pull together the cases: 4452 assert(region->req() == PATH_LIMIT, "sane region"); 4453 for (uint i = 1; i < region->req(); i++) { 4454 Node* ctl = region->in(i); 4455 if (ctl == nullptr || ctl == top()) { 4456 region->set_req(i, top()); 4457 phi ->set_req(i, top()); 4458 } else if (phi->in(i) == nullptr) { 4459 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4460 } 4461 } 4462 4463 set_control(_gvn.transform(region)); 4464 set_result(_gvn.transform(phi)); 4465 return true; 4466 } 4467 4468 //---------------------generate_array_guard_common------------------------ 4469 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind) { 4470 4471 if (stopped()) { 4472 return nullptr; 4473 } 4474 4475 // Like generate_guard, adds a new path onto the region. 4476 jint layout_con = 0; 4477 Node* layout_val = get_layout_helper(kls, layout_con); 4478 if (layout_val == nullptr) { 4479 bool query = 0; 4480 switch(kind) { 4481 case ObjectArray: query = Klass::layout_helper_is_objArray(layout_con); break; 4482 case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break; 4483 case TypeArray: query = Klass::layout_helper_is_typeArray(layout_con); break; 4484 case AnyArray: query = Klass::layout_helper_is_array(layout_con); break; 4485 case NonArray: query = !Klass::layout_helper_is_array(layout_con); break; 4486 default: 4487 ShouldNotReachHere(); 4488 } 4489 if (!query) { 4490 return nullptr; // never a branch 4491 } else { // always a branch 4492 Node* always_branch = control(); 4493 if (region != nullptr) 4494 region->add_req(always_branch); 4495 set_control(top()); 4496 return always_branch; 4497 } 4498 } 4499 unsigned int value = 0; 4500 BoolTest::mask btest = BoolTest::illegal; 4501 switch(kind) { 4502 case ObjectArray: 4503 case NonObjectArray: { 4504 value = Klass::_lh_array_tag_obj_value; 4505 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4506 btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne; 4507 break; 4508 } 4509 case TypeArray: { 4510 value = Klass::_lh_array_tag_type_value; 4511 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4512 btest = BoolTest::eq; 4513 break; 4514 } 4515 case AnyArray: value = Klass::_lh_neutral_value; btest = BoolTest::lt; break; 4516 case NonArray: value = Klass::_lh_neutral_value; btest = BoolTest::gt; break; 4517 default: 4518 ShouldNotReachHere(); 4519 } 4520 // Now test the correct condition. 4521 jint nval = (jint)value; 4522 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4523 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4524 return generate_fair_guard(bol, region); 4525 } 4526 4527 //-----------------------inline_newNullRestrictedArray-------------------------- 4528 // public static native Object[] newNullRestrictedArray(Class<?> componentType, int length); 4529 bool LibraryCallKit::inline_newNullRestrictedArray() { 4530 Node* componentType = argument(0); 4531 Node* length = argument(1); 4532 4533 const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr(); 4534 if (tp != nullptr) { 4535 ciInstanceKlass* ik = tp->instance_klass(); 4536 if (ik == C->env()->Class_klass()) { 4537 ciType* t = tp->java_mirror_type(); 4538 if (t != nullptr && t->is_inlinetype()) { 4539 ciArrayKlass* array_klass = ciArrayKlass::make(t, true); 4540 if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) { 4541 const TypeAryKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces)->is_aryklassptr(); 4542 array_klass_type = array_klass_type->cast_to_null_free(); 4543 Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false); // no arguments to push 4544 set_result(obj); 4545 assert(gvn().type(obj)->is_aryptr()->is_null_free(), "must be null-free"); 4546 return true; 4547 } 4548 } 4549 } 4550 } 4551 return false; 4552 } 4553 4554 //-----------------------inline_native_newArray-------------------------- 4555 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length); 4556 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4557 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4558 Node* mirror; 4559 Node* count_val; 4560 if (uninitialized) { 4561 null_check_receiver(); 4562 mirror = argument(1); 4563 count_val = argument(2); 4564 } else { 4565 mirror = argument(0); 4566 count_val = argument(1); 4567 } 4568 4569 mirror = null_check(mirror); 4570 // If mirror or obj is dead, only null-path is taken. 4571 if (stopped()) return true; 4572 4573 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4574 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4575 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4576 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4577 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4578 4579 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4580 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4581 result_reg, _slow_path); 4582 Node* normal_ctl = control(); 4583 Node* no_array_ctl = result_reg->in(_slow_path); 4584 4585 // Generate code for the slow case. We make a call to newArray(). 4586 set_control(no_array_ctl); 4587 if (!stopped()) { 4588 // Either the input type is void.class, or else the 4589 // array klass has not yet been cached. Either the 4590 // ensuing call will throw an exception, or else it 4591 // will cache the array klass for next time. 4592 PreserveJVMState pjvms(this); 4593 CallJavaNode* slow_call = nullptr; 4594 if (uninitialized) { 4595 // Generate optimized virtual call (holder class 'Unsafe' is final) 4596 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4597 } else { 4598 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4599 } 4600 Node* slow_result = set_results_for_java_call(slow_call); 4601 // this->control() comes from set_results_for_java_call 4602 result_reg->set_req(_slow_path, control()); 4603 result_val->set_req(_slow_path, slow_result); 4604 result_io ->set_req(_slow_path, i_o()); 4605 result_mem->set_req(_slow_path, reset_memory()); 4606 } 4607 4608 set_control(normal_ctl); 4609 if (!stopped()) { 4610 // Normal case: The array type has been cached in the java.lang.Class. 4611 // The following call works fine even if the array type is polymorphic. 4612 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4613 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4614 result_reg->init_req(_normal_path, control()); 4615 result_val->init_req(_normal_path, obj); 4616 result_io ->init_req(_normal_path, i_o()); 4617 result_mem->init_req(_normal_path, reset_memory()); 4618 4619 if (uninitialized) { 4620 // Mark the allocation so that zeroing is skipped 4621 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4622 alloc->maybe_set_complete(&_gvn); 4623 } 4624 } 4625 4626 // Return the combined state. 4627 set_i_o( _gvn.transform(result_io) ); 4628 set_all_memory( _gvn.transform(result_mem)); 4629 4630 C->set_has_split_ifs(true); // Has chance for split-if optimization 4631 set_result(result_reg, result_val); 4632 return true; 4633 } 4634 4635 //----------------------inline_native_getLength-------------------------- 4636 // public static native int java.lang.reflect.Array.getLength(Object array); 4637 bool LibraryCallKit::inline_native_getLength() { 4638 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4639 4640 Node* array = null_check(argument(0)); 4641 // If array is dead, only null-path is taken. 4642 if (stopped()) return true; 4643 4644 // Deoptimize if it is a non-array. 4645 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4646 4647 if (non_array != nullptr) { 4648 PreserveJVMState pjvms(this); 4649 set_control(non_array); 4650 uncommon_trap(Deoptimization::Reason_intrinsic, 4651 Deoptimization::Action_maybe_recompile); 4652 } 4653 4654 // If control is dead, only non-array-path is taken. 4655 if (stopped()) return true; 4656 4657 // The works fine even if the array type is polymorphic. 4658 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4659 Node* result = load_array_length(array); 4660 4661 C->set_has_split_ifs(true); // Has chance for split-if optimization 4662 set_result(result); 4663 return true; 4664 } 4665 4666 //------------------------inline_array_copyOf---------------------------- 4667 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4668 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4669 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4670 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4671 4672 // Get the arguments. 4673 Node* original = argument(0); 4674 Node* start = is_copyOfRange? argument(1): intcon(0); 4675 Node* end = is_copyOfRange? argument(2): argument(1); 4676 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4677 4678 Node* newcopy = nullptr; 4679 4680 // Set the original stack and the reexecute bit for the interpreter to reexecute 4681 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4682 { PreserveReexecuteState preexecs(this); 4683 jvms()->set_should_reexecute(true); 4684 4685 array_type_mirror = null_check(array_type_mirror); 4686 original = null_check(original); 4687 4688 // Check if a null path was taken unconditionally. 4689 if (stopped()) return true; 4690 4691 Node* orig_length = load_array_length(original); 4692 4693 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4694 klass_node = null_check(klass_node); 4695 4696 RegionNode* bailout = new RegionNode(1); 4697 record_for_igvn(bailout); 4698 4699 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4700 // Bail out if that is so. 4701 // Inline type array may have object field that would require a 4702 // write barrier. Conservatively, go to slow path. 4703 // TODO 8251971: Optimize for the case when flat src/dst are later found 4704 // to not contain oops (i.e., move this check to the macro expansion phase). 4705 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4706 const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr(); 4707 const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr(); 4708 bool exclude_flat = UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) && 4709 // Can src array be flat and contain oops? 4710 (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) && 4711 // Can dest array be flat and contain oops? 4712 tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops()); 4713 Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout); 4714 if (not_objArray != nullptr) { 4715 // Improve the klass node's type from the new optimistic assumption: 4716 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4717 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0)); 4718 Node* cast = new CastPPNode(control(), klass_node, akls); 4719 klass_node = _gvn.transform(cast); 4720 } 4721 4722 // Bail out if either start or end is negative. 4723 generate_negative_guard(start, bailout, &start); 4724 generate_negative_guard(end, bailout, &end); 4725 4726 Node* length = end; 4727 if (_gvn.type(start) != TypeInt::ZERO) { 4728 length = _gvn.transform(new SubINode(end, start)); 4729 } 4730 4731 // Bail out if length is negative (i.e., if start > end). 4732 // Without this the new_array would throw 4733 // NegativeArraySizeException but IllegalArgumentException is what 4734 // should be thrown 4735 generate_negative_guard(length, bailout, &length); 4736 4737 // Handle inline type arrays 4738 bool can_validate = !too_many_traps(Deoptimization::Reason_class_check); 4739 if (!stopped()) { 4740 // TODO JDK-8329224 4741 if (!orig_t->is_null_free()) { 4742 // Not statically known to be null free, add a check 4743 generate_fair_guard(null_free_array_test(original), bailout); 4744 } 4745 orig_t = _gvn.type(original)->isa_aryptr(); 4746 if (orig_t != nullptr && orig_t->is_flat()) { 4747 // Src is flat, check that dest is flat as well 4748 if (exclude_flat) { 4749 // Dest can't be flat, bail out 4750 bailout->add_req(control()); 4751 set_control(top()); 4752 } else { 4753 generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout); 4754 } 4755 } else if (UseFlatArray && (orig_t == nullptr || !orig_t->is_not_flat()) && 4756 // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated). 4757 ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) { 4758 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 4759 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 4760 generate_fair_guard(flat_array_test(load_object_klass(original)), bailout); 4761 if (orig_t != nullptr) { 4762 orig_t = orig_t->cast_to_not_flat(); 4763 original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t)); 4764 } 4765 } 4766 if (!can_validate) { 4767 // No validation. The subtype check emitted at macro expansion time will not go to the slow 4768 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 4769 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free. 4770 generate_fair_guard(flat_array_test(klass_node), bailout); 4771 generate_fair_guard(null_free_array_test(original), bailout); 4772 } 4773 } 4774 4775 // Bail out if start is larger than the original length 4776 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4777 generate_negative_guard(orig_tail, bailout, &orig_tail); 4778 4779 if (bailout->req() > 1) { 4780 PreserveJVMState pjvms(this); 4781 set_control(_gvn.transform(bailout)); 4782 uncommon_trap(Deoptimization::Reason_intrinsic, 4783 Deoptimization::Action_maybe_recompile); 4784 } 4785 4786 if (!stopped()) { 4787 // How many elements will we copy from the original? 4788 // The answer is MinI(orig_tail, length). 4789 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4790 4791 // Generate a direct call to the right arraycopy function(s). 4792 // We know the copy is disjoint but we might not know if the 4793 // oop stores need checking. 4794 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4795 // This will fail a store-check if x contains any non-nulls. 4796 4797 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4798 // loads/stores but it is legal only if we're sure the 4799 // Arrays.copyOf would succeed. So we need all input arguments 4800 // to the copyOf to be validated, including that the copy to the 4801 // new array won't trigger an ArrayStoreException. That subtype 4802 // check can be optimized if we know something on the type of 4803 // the input array from type speculation. 4804 if (_gvn.type(klass_node)->singleton()) { 4805 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4806 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4807 4808 int test = C->static_subtype_check(superk, subk); 4809 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4810 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4811 if (t_original->speculative_type() != nullptr) { 4812 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4813 } 4814 } 4815 } 4816 4817 bool validated = false; 4818 // Reason_class_check rather than Reason_intrinsic because we 4819 // want to intrinsify even if this traps. 4820 if (can_validate) { 4821 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4822 4823 if (not_subtype_ctrl != top()) { 4824 PreserveJVMState pjvms(this); 4825 set_control(not_subtype_ctrl); 4826 uncommon_trap(Deoptimization::Reason_class_check, 4827 Deoptimization::Action_make_not_entrant); 4828 assert(stopped(), "Should be stopped"); 4829 } 4830 validated = true; 4831 } 4832 4833 if (!stopped()) { 4834 newcopy = new_array(klass_node, length, 0); // no arguments to push 4835 4836 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4837 load_object_klass(original), klass_node); 4838 if (!is_copyOfRange) { 4839 ac->set_copyof(validated); 4840 } else { 4841 ac->set_copyofrange(validated); 4842 } 4843 Node* n = _gvn.transform(ac); 4844 if (n == ac) { 4845 ac->connect_outputs(this); 4846 } else { 4847 assert(validated, "shouldn't transform if all arguments not validated"); 4848 set_all_memory(n); 4849 } 4850 } 4851 } 4852 } // original reexecute is set back here 4853 4854 C->set_has_split_ifs(true); // Has chance for split-if optimization 4855 if (!stopped()) { 4856 set_result(newcopy); 4857 } 4858 return true; 4859 } 4860 4861 4862 //----------------------generate_virtual_guard--------------------------- 4863 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4864 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4865 RegionNode* slow_region) { 4866 ciMethod* method = callee(); 4867 int vtable_index = method->vtable_index(); 4868 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4869 "bad index %d", vtable_index); 4870 // Get the Method* out of the appropriate vtable entry. 4871 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4872 vtable_index*vtableEntry::size_in_bytes() + 4873 in_bytes(vtableEntry::method_offset()); 4874 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4875 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4876 4877 // Compare the target method with the expected method (e.g., Object.hashCode). 4878 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4879 4880 Node* native_call = makecon(native_call_addr); 4881 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4882 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4883 4884 return generate_slow_guard(test_native, slow_region); 4885 } 4886 4887 //-----------------------generate_method_call---------------------------- 4888 // Use generate_method_call to make a slow-call to the real 4889 // method if the fast path fails. An alternative would be to 4890 // use a stub like OptoRuntime::slow_arraycopy_Java. 4891 // This only works for expanding the current library call, 4892 // not another intrinsic. (E.g., don't use this for making an 4893 // arraycopy call inside of the copyOf intrinsic.) 4894 CallJavaNode* 4895 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4896 // When compiling the intrinsic method itself, do not use this technique. 4897 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4898 4899 ciMethod* method = callee(); 4900 // ensure the JVMS we have will be correct for this call 4901 guarantee(method_id == method->intrinsic_id(), "must match"); 4902 4903 const TypeFunc* tf = TypeFunc::make(method); 4904 if (res_not_null) { 4905 assert(tf->return_type() == T_OBJECT, ""); 4906 const TypeTuple* range = tf->range_cc(); 4907 const Type** fields = TypeTuple::fields(range->cnt()); 4908 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4909 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4910 tf = TypeFunc::make(tf->domain_cc(), new_range); 4911 } 4912 CallJavaNode* slow_call; 4913 if (is_static) { 4914 assert(!is_virtual, ""); 4915 slow_call = new CallStaticJavaNode(C, tf, 4916 SharedRuntime::get_resolve_static_call_stub(), method); 4917 } else if (is_virtual) { 4918 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4919 int vtable_index = Method::invalid_vtable_index; 4920 if (UseInlineCaches) { 4921 // Suppress the vtable call 4922 } else { 4923 // hashCode and clone are not a miranda methods, 4924 // so the vtable index is fixed. 4925 // No need to use the linkResolver to get it. 4926 vtable_index = method->vtable_index(); 4927 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4928 "bad index %d", vtable_index); 4929 } 4930 slow_call = new CallDynamicJavaNode(tf, 4931 SharedRuntime::get_resolve_virtual_call_stub(), 4932 method, vtable_index); 4933 } else { // neither virtual nor static: opt_virtual 4934 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4935 slow_call = new CallStaticJavaNode(C, tf, 4936 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4937 slow_call->set_optimized_virtual(true); 4938 } 4939 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4940 // To be able to issue a direct call (optimized virtual or virtual) 4941 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4942 // about the method being invoked should be attached to the call site to 4943 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4944 slow_call->set_override_symbolic_info(true); 4945 } 4946 set_arguments_for_java_call(slow_call); 4947 set_edges_for_java_call(slow_call); 4948 return slow_call; 4949 } 4950 4951 4952 /** 4953 * Build special case code for calls to hashCode on an object. This call may 4954 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4955 * slightly different code. 4956 */ 4957 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4958 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4959 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4960 4961 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4962 4963 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4964 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4965 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4966 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4967 Node* obj = argument(0); 4968 4969 // Don't intrinsify hashcode on inline types for now. 4970 // The "is locked" runtime check below also serves as inline type check and goes to the slow path. 4971 if (gvn().type(obj)->is_inlinetypeptr()) { 4972 return false; 4973 } 4974 4975 if (!is_static) { 4976 // Check for hashing null object 4977 obj = null_check_receiver(); 4978 if (stopped()) return true; // unconditionally null 4979 result_reg->init_req(_null_path, top()); 4980 result_val->init_req(_null_path, top()); 4981 } else { 4982 // Do a null check, and return zero if null. 4983 // System.identityHashCode(null) == 0 4984 Node* null_ctl = top(); 4985 obj = null_check_oop(obj, &null_ctl); 4986 result_reg->init_req(_null_path, null_ctl); 4987 result_val->init_req(_null_path, _gvn.intcon(0)); 4988 } 4989 4990 // Unconditionally null? Then return right away. 4991 if (stopped()) { 4992 set_control( result_reg->in(_null_path)); 4993 if (!stopped()) 4994 set_result(result_val->in(_null_path)); 4995 return true; 4996 } 4997 4998 // We only go to the fast case code if we pass a number of guards. The 4999 // paths which do not pass are accumulated in the slow_region. 5000 RegionNode* slow_region = new RegionNode(1); 5001 record_for_igvn(slow_region); 5002 5003 // If this is a virtual call, we generate a funny guard. We pull out 5004 // the vtable entry corresponding to hashCode() from the target object. 5005 // If the target method which we are calling happens to be the native 5006 // Object hashCode() method, we pass the guard. We do not need this 5007 // guard for non-virtual calls -- the caller is known to be the native 5008 // Object hashCode(). 5009 if (is_virtual) { 5010 // After null check, get the object's klass. 5011 Node* obj_klass = load_object_klass(obj); 5012 generate_virtual_guard(obj_klass, slow_region); 5013 } 5014 5015 // Get the header out of the object, use LoadMarkNode when available 5016 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 5017 // The control of the load must be null. Otherwise, the load can move before 5018 // the null check after castPP removal. 5019 Node* no_ctrl = nullptr; 5020 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 5021 5022 if (!UseObjectMonitorTable) { 5023 // Test the header to see if it is safe to read w.r.t. locking. 5024 // This also serves as guard against inline types 5025 Node *lock_mask = _gvn.MakeConX(markWord::inline_type_mask_in_place); 5026 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 5027 if (LockingMode == LM_LIGHTWEIGHT) { 5028 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 5029 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 5030 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 5031 5032 generate_slow_guard(test_monitor, slow_region); 5033 } else { 5034 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 5035 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 5036 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 5037 5038 generate_slow_guard(test_not_unlocked, slow_region); 5039 } 5040 } 5041 5042 // Get the hash value and check to see that it has been properly assigned. 5043 // We depend on hash_mask being at most 32 bits and avoid the use of 5044 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 5045 // vm: see markWord.hpp. 5046 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 5047 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 5048 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 5049 // This hack lets the hash bits live anywhere in the mark object now, as long 5050 // as the shift drops the relevant bits into the low 32 bits. Note that 5051 // Java spec says that HashCode is an int so there's no point in capturing 5052 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 5053 hshifted_header = ConvX2I(hshifted_header); 5054 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 5055 5056 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 5057 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 5058 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 5059 5060 generate_slow_guard(test_assigned, slow_region); 5061 5062 Node* init_mem = reset_memory(); 5063 // fill in the rest of the null path: 5064 result_io ->init_req(_null_path, i_o()); 5065 result_mem->init_req(_null_path, init_mem); 5066 5067 result_val->init_req(_fast_path, hash_val); 5068 result_reg->init_req(_fast_path, control()); 5069 result_io ->init_req(_fast_path, i_o()); 5070 result_mem->init_req(_fast_path, init_mem); 5071 5072 // Generate code for the slow case. We make a call to hashCode(). 5073 set_control(_gvn.transform(slow_region)); 5074 if (!stopped()) { 5075 // No need for PreserveJVMState, because we're using up the present state. 5076 set_all_memory(init_mem); 5077 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 5078 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 5079 Node* slow_result = set_results_for_java_call(slow_call); 5080 // this->control() comes from set_results_for_java_call 5081 result_reg->init_req(_slow_path, control()); 5082 result_val->init_req(_slow_path, slow_result); 5083 result_io ->set_req(_slow_path, i_o()); 5084 result_mem ->set_req(_slow_path, reset_memory()); 5085 } 5086 5087 // Return the combined state. 5088 set_i_o( _gvn.transform(result_io) ); 5089 set_all_memory( _gvn.transform(result_mem)); 5090 5091 set_result(result_reg, result_val); 5092 return true; 5093 } 5094 5095 //---------------------------inline_native_getClass---------------------------- 5096 // public final native Class<?> java.lang.Object.getClass(); 5097 // 5098 // Build special case code for calls to getClass on an object. 5099 bool LibraryCallKit::inline_native_getClass() { 5100 Node* obj = argument(0); 5101 if (obj->is_InlineType()) { 5102 const Type* t = _gvn.type(obj); 5103 if (t->maybe_null()) { 5104 null_check(obj); 5105 } 5106 set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror()))); 5107 return true; 5108 } 5109 obj = null_check_receiver(); 5110 if (stopped()) return true; 5111 set_result(load_mirror_from_klass(load_object_klass(obj))); 5112 return true; 5113 } 5114 5115 //-----------------inline_native_Reflection_getCallerClass--------------------- 5116 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 5117 // 5118 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 5119 // 5120 // NOTE: This code must perform the same logic as JVM_GetCallerClass 5121 // in that it must skip particular security frames and checks for 5122 // caller sensitive methods. 5123 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 5124 #ifndef PRODUCT 5125 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5126 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 5127 } 5128 #endif 5129 5130 if (!jvms()->has_method()) { 5131 #ifndef PRODUCT 5132 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5133 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 5134 } 5135 #endif 5136 return false; 5137 } 5138 5139 // Walk back up the JVM state to find the caller at the required 5140 // depth. 5141 JVMState* caller_jvms = jvms(); 5142 5143 // Cf. JVM_GetCallerClass 5144 // NOTE: Start the loop at depth 1 because the current JVM state does 5145 // not include the Reflection.getCallerClass() frame. 5146 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 5147 ciMethod* m = caller_jvms->method(); 5148 switch (n) { 5149 case 0: 5150 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 5151 break; 5152 case 1: 5153 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 5154 if (!m->caller_sensitive()) { 5155 #ifndef PRODUCT 5156 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5157 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 5158 } 5159 #endif 5160 return false; // bail-out; let JVM_GetCallerClass do the work 5161 } 5162 break; 5163 default: 5164 if (!m->is_ignored_by_security_stack_walk()) { 5165 // We have reached the desired frame; return the holder class. 5166 // Acquire method holder as java.lang.Class and push as constant. 5167 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 5168 ciInstance* caller_mirror = caller_klass->java_mirror(); 5169 set_result(makecon(TypeInstPtr::make(caller_mirror))); 5170 5171 #ifndef PRODUCT 5172 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5173 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 5174 tty->print_cr(" JVM state at this point:"); 5175 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5176 ciMethod* m = jvms()->of_depth(i)->method(); 5177 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5178 } 5179 } 5180 #endif 5181 return true; 5182 } 5183 break; 5184 } 5185 } 5186 5187 #ifndef PRODUCT 5188 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5189 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 5190 tty->print_cr(" JVM state at this point:"); 5191 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5192 ciMethod* m = jvms()->of_depth(i)->method(); 5193 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5194 } 5195 } 5196 #endif 5197 5198 return false; // bail-out; let JVM_GetCallerClass do the work 5199 } 5200 5201 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 5202 Node* arg = argument(0); 5203 Node* result = nullptr; 5204 5205 switch (id) { 5206 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 5207 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 5208 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 5209 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 5210 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 5211 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 5212 5213 case vmIntrinsics::_doubleToLongBits: { 5214 // two paths (plus control) merge in a wood 5215 RegionNode *r = new RegionNode(3); 5216 Node *phi = new PhiNode(r, TypeLong::LONG); 5217 5218 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 5219 // Build the boolean node 5220 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5221 5222 // Branch either way. 5223 // NaN case is less traveled, which makes all the difference. 5224 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5225 Node *opt_isnan = _gvn.transform(ifisnan); 5226 assert( opt_isnan->is_If(), "Expect an IfNode"); 5227 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5228 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5229 5230 set_control(iftrue); 5231 5232 static const jlong nan_bits = CONST64(0x7ff8000000000000); 5233 Node *slow_result = longcon(nan_bits); // return NaN 5234 phi->init_req(1, _gvn.transform( slow_result )); 5235 r->init_req(1, iftrue); 5236 5237 // Else fall through 5238 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5239 set_control(iffalse); 5240 5241 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 5242 r->init_req(2, iffalse); 5243 5244 // Post merge 5245 set_control(_gvn.transform(r)); 5246 record_for_igvn(r); 5247 5248 C->set_has_split_ifs(true); // Has chance for split-if optimization 5249 result = phi; 5250 assert(result->bottom_type()->isa_long(), "must be"); 5251 break; 5252 } 5253 5254 case vmIntrinsics::_floatToIntBits: { 5255 // two paths (plus control) merge in a wood 5256 RegionNode *r = new RegionNode(3); 5257 Node *phi = new PhiNode(r, TypeInt::INT); 5258 5259 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5260 // Build the boolean node 5261 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5262 5263 // Branch either way. 5264 // NaN case is less traveled, which makes all the difference. 5265 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5266 Node *opt_isnan = _gvn.transform(ifisnan); 5267 assert( opt_isnan->is_If(), "Expect an IfNode"); 5268 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5269 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5270 5271 set_control(iftrue); 5272 5273 static const jint nan_bits = 0x7fc00000; 5274 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5275 phi->init_req(1, _gvn.transform( slow_result )); 5276 r->init_req(1, iftrue); 5277 5278 // Else fall through 5279 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5280 set_control(iffalse); 5281 5282 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5283 r->init_req(2, iffalse); 5284 5285 // Post merge 5286 set_control(_gvn.transform(r)); 5287 record_for_igvn(r); 5288 5289 C->set_has_split_ifs(true); // Has chance for split-if optimization 5290 result = phi; 5291 assert(result->bottom_type()->isa_int(), "must be"); 5292 break; 5293 } 5294 5295 default: 5296 fatal_unexpected_iid(id); 5297 break; 5298 } 5299 set_result(_gvn.transform(result)); 5300 return true; 5301 } 5302 5303 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5304 Node* arg = argument(0); 5305 Node* result = nullptr; 5306 5307 switch (id) { 5308 case vmIntrinsics::_floatIsInfinite: 5309 result = new IsInfiniteFNode(arg); 5310 break; 5311 case vmIntrinsics::_floatIsFinite: 5312 result = new IsFiniteFNode(arg); 5313 break; 5314 case vmIntrinsics::_doubleIsInfinite: 5315 result = new IsInfiniteDNode(arg); 5316 break; 5317 case vmIntrinsics::_doubleIsFinite: 5318 result = new IsFiniteDNode(arg); 5319 break; 5320 default: 5321 fatal_unexpected_iid(id); 5322 break; 5323 } 5324 set_result(_gvn.transform(result)); 5325 return true; 5326 } 5327 5328 //----------------------inline_unsafe_copyMemory------------------------- 5329 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5330 5331 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5332 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5333 const Type* base_t = gvn.type(base); 5334 5335 bool in_native = (base_t == TypePtr::NULL_PTR); 5336 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5337 bool is_mixed = !in_heap && !in_native; 5338 5339 if (is_mixed) { 5340 return true; // mixed accesses can touch both on-heap and off-heap memory 5341 } 5342 if (in_heap) { 5343 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5344 if (!is_prim_array) { 5345 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5346 // there's not enough type information available to determine proper memory slice for it. 5347 return true; 5348 } 5349 } 5350 return false; 5351 } 5352 5353 bool LibraryCallKit::inline_unsafe_copyMemory() { 5354 if (callee()->is_static()) return false; // caller must have the capability! 5355 null_check_receiver(); // null-check receiver 5356 if (stopped()) return true; 5357 5358 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5359 5360 Node* src_base = argument(1); // type: oop 5361 Node* src_off = ConvL2X(argument(2)); // type: long 5362 Node* dst_base = argument(4); // type: oop 5363 Node* dst_off = ConvL2X(argument(5)); // type: long 5364 Node* size = ConvL2X(argument(7)); // type: long 5365 5366 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5367 "fieldOffset must be byte-scaled"); 5368 5369 Node* src_addr = make_unsafe_address(src_base, src_off); 5370 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5371 5372 Node* thread = _gvn.transform(new ThreadLocalNode()); 5373 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5374 BasicType doing_unsafe_access_bt = T_BYTE; 5375 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5376 5377 // update volatile field 5378 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5379 5380 int flags = RC_LEAF | RC_NO_FP; 5381 5382 const TypePtr* dst_type = TypePtr::BOTTOM; 5383 5384 // Adjust memory effects of the runtime call based on input values. 5385 if (!has_wide_mem(_gvn, src_addr, src_base) && 5386 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5387 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5388 5389 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5390 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5391 flags |= RC_NARROW_MEM; // narrow in memory 5392 } 5393 } 5394 5395 // Call it. Note that the length argument is not scaled. 5396 make_runtime_call(flags, 5397 OptoRuntime::fast_arraycopy_Type(), 5398 StubRoutines::unsafe_arraycopy(), 5399 "unsafe_arraycopy", 5400 dst_type, 5401 src_addr, dst_addr, size XTOP); 5402 5403 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5404 5405 return true; 5406 } 5407 5408 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5409 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5410 bool LibraryCallKit::inline_unsafe_setMemory() { 5411 if (callee()->is_static()) return false; // caller must have the capability! 5412 null_check_receiver(); // null-check receiver 5413 if (stopped()) return true; 5414 5415 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5416 5417 Node* dst_base = argument(1); // type: oop 5418 Node* dst_off = ConvL2X(argument(2)); // type: long 5419 Node* size = ConvL2X(argument(4)); // type: long 5420 Node* byte = argument(6); // type: byte 5421 5422 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5423 "fieldOffset must be byte-scaled"); 5424 5425 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5426 5427 Node* thread = _gvn.transform(new ThreadLocalNode()); 5428 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5429 BasicType doing_unsafe_access_bt = T_BYTE; 5430 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5431 5432 // update volatile field 5433 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5434 5435 int flags = RC_LEAF | RC_NO_FP; 5436 5437 const TypePtr* dst_type = TypePtr::BOTTOM; 5438 5439 // Adjust memory effects of the runtime call based on input values. 5440 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5441 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5442 5443 flags |= RC_NARROW_MEM; // narrow in memory 5444 } 5445 5446 // Call it. Note that the length argument is not scaled. 5447 make_runtime_call(flags, 5448 OptoRuntime::make_setmemory_Type(), 5449 StubRoutines::unsafe_setmemory(), 5450 "unsafe_setmemory", 5451 dst_type, 5452 dst_addr, size XTOP, byte); 5453 5454 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5455 5456 return true; 5457 } 5458 5459 #undef XTOP 5460 5461 //----------------------inline_unsafe_isFlatArray------------------------ 5462 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass); 5463 // This intrinsic exploits assumptions made by the native implementation 5464 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks. 5465 bool LibraryCallKit::inline_unsafe_isFlatArray() { 5466 Node* cls = argument(1); 5467 Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset()); 5468 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, 5469 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT)); 5470 Node* result = flat_array_test(kls); 5471 set_result(result); 5472 return true; 5473 } 5474 5475 //------------------------clone_coping----------------------------------- 5476 // Helper function for inline_native_clone. 5477 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5478 assert(obj_size != nullptr, ""); 5479 Node* raw_obj = alloc_obj->in(1); 5480 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5481 5482 AllocateNode* alloc = nullptr; 5483 if (ReduceBulkZeroing && 5484 // If we are implementing an array clone without knowing its source type 5485 // (can happen when compiling the array-guarded branch of a reflective 5486 // Object.clone() invocation), initialize the array within the allocation. 5487 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5488 // to a runtime clone call that assumes fully initialized source arrays. 5489 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5490 // We will be completely responsible for initializing this object - 5491 // mark Initialize node as complete. 5492 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5493 // The object was just allocated - there should be no any stores! 5494 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5495 // Mark as complete_with_arraycopy so that on AllocateNode 5496 // expansion, we know this AllocateNode is initialized by an array 5497 // copy and a StoreStore barrier exists after the array copy. 5498 alloc->initialization()->set_complete_with_arraycopy(); 5499 } 5500 5501 Node* size = _gvn.transform(obj_size); 5502 access_clone(obj, alloc_obj, size, is_array); 5503 5504 // Do not let reads from the cloned object float above the arraycopy. 5505 if (alloc != nullptr) { 5506 // Do not let stores that initialize this object be reordered with 5507 // a subsequent store that would make this object accessible by 5508 // other threads. 5509 // Record what AllocateNode this StoreStore protects so that 5510 // escape analysis can go from the MemBarStoreStoreNode to the 5511 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5512 // based on the escape status of the AllocateNode. 5513 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5514 } else { 5515 insert_mem_bar(Op_MemBarCPUOrder); 5516 } 5517 } 5518 5519 //------------------------inline_native_clone---------------------------- 5520 // protected native Object java.lang.Object.clone(); 5521 // 5522 // Here are the simple edge cases: 5523 // null receiver => normal trap 5524 // virtual and clone was overridden => slow path to out-of-line clone 5525 // not cloneable or finalizer => slow path to out-of-line Object.clone 5526 // 5527 // The general case has two steps, allocation and copying. 5528 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5529 // 5530 // Copying also has two cases, oop arrays and everything else. 5531 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5532 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5533 // 5534 // These steps fold up nicely if and when the cloned object's klass 5535 // can be sharply typed as an object array, a type array, or an instance. 5536 // 5537 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5538 PhiNode* result_val; 5539 5540 // Set the reexecute bit for the interpreter to reexecute 5541 // the bytecode that invokes Object.clone if deoptimization happens. 5542 { PreserveReexecuteState preexecs(this); 5543 jvms()->set_should_reexecute(true); 5544 5545 Node* obj = argument(0); 5546 obj = null_check_receiver(); 5547 if (stopped()) return true; 5548 5549 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5550 if (obj_type->is_inlinetypeptr()) { 5551 // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have 5552 // no identity. 5553 set_result(obj); 5554 return true; 5555 } 5556 5557 // If we are going to clone an instance, we need its exact type to 5558 // know the number and types of fields to convert the clone to 5559 // loads/stores. Maybe a speculative type can help us. 5560 if (!obj_type->klass_is_exact() && 5561 obj_type->speculative_type() != nullptr && 5562 obj_type->speculative_type()->is_instance_klass() && 5563 !obj_type->speculative_type()->is_inlinetype()) { 5564 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5565 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5566 !spec_ik->has_injected_fields()) { 5567 if (!obj_type->isa_instptr() || 5568 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5569 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5570 } 5571 } 5572 } 5573 5574 // Conservatively insert a memory barrier on all memory slices. 5575 // Do not let writes into the original float below the clone. 5576 insert_mem_bar(Op_MemBarCPUOrder); 5577 5578 // paths into result_reg: 5579 enum { 5580 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5581 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5582 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5583 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5584 PATH_LIMIT 5585 }; 5586 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5587 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5588 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5589 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5590 record_for_igvn(result_reg); 5591 5592 Node* obj_klass = load_object_klass(obj); 5593 // We only go to the fast case code if we pass a number of guards. 5594 // The paths which do not pass are accumulated in the slow_region. 5595 RegionNode* slow_region = new RegionNode(1); 5596 record_for_igvn(slow_region); 5597 5598 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 5599 if (array_ctl != nullptr) { 5600 // It's an array. 5601 PreserveJVMState pjvms(this); 5602 set_control(array_ctl); 5603 5604 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5605 const TypeAryPtr* ary_ptr = obj_type->isa_aryptr(); 5606 if (UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) && 5607 obj_type->can_be_inline_array() && 5608 (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) { 5609 // Flat inline type array may have object field that would require a 5610 // write barrier. Conservatively, go to slow path. 5611 generate_fair_guard(flat_array_test(obj_klass), slow_region); 5612 } 5613 5614 if (!stopped()) { 5615 Node* obj_length = load_array_length(obj); 5616 Node* array_size = nullptr; // Size of the array without object alignment padding. 5617 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5618 5619 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5620 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5621 // If it is an oop array, it requires very special treatment, 5622 // because gc barriers are required when accessing the array. 5623 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5624 if (is_obja != nullptr) { 5625 PreserveJVMState pjvms2(this); 5626 set_control(is_obja); 5627 // Generate a direct call to the right arraycopy function(s). 5628 // Clones are always tightly coupled. 5629 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5630 ac->set_clone_oop_array(); 5631 Node* n = _gvn.transform(ac); 5632 assert(n == ac, "cannot disappear"); 5633 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5634 5635 result_reg->init_req(_objArray_path, control()); 5636 result_val->init_req(_objArray_path, alloc_obj); 5637 result_i_o ->set_req(_objArray_path, i_o()); 5638 result_mem ->set_req(_objArray_path, reset_memory()); 5639 } 5640 } 5641 // Otherwise, there are no barriers to worry about. 5642 // (We can dispense with card marks if we know the allocation 5643 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5644 // causes the non-eden paths to take compensating steps to 5645 // simulate a fresh allocation, so that no further 5646 // card marks are required in compiled code to initialize 5647 // the object.) 5648 5649 if (!stopped()) { 5650 copy_to_clone(obj, alloc_obj, array_size, true); 5651 5652 // Present the results of the copy. 5653 result_reg->init_req(_array_path, control()); 5654 result_val->init_req(_array_path, alloc_obj); 5655 result_i_o ->set_req(_array_path, i_o()); 5656 result_mem ->set_req(_array_path, reset_memory()); 5657 } 5658 } 5659 } 5660 5661 if (!stopped()) { 5662 // It's an instance (we did array above). Make the slow-path tests. 5663 // If this is a virtual call, we generate a funny guard. We grab 5664 // the vtable entry corresponding to clone() from the target object. 5665 // If the target method which we are calling happens to be the 5666 // Object clone() method, we pass the guard. We do not need this 5667 // guard for non-virtual calls; the caller is known to be the native 5668 // Object clone(). 5669 if (is_virtual) { 5670 generate_virtual_guard(obj_klass, slow_region); 5671 } 5672 5673 // The object must be easily cloneable and must not have a finalizer. 5674 // Both of these conditions may be checked in a single test. 5675 // We could optimize the test further, but we don't care. 5676 generate_misc_flags_guard(obj_klass, 5677 // Test both conditions: 5678 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5679 // Must be cloneable but not finalizer: 5680 KlassFlags::_misc_is_cloneable_fast, 5681 slow_region); 5682 } 5683 5684 if (!stopped()) { 5685 // It's an instance, and it passed the slow-path tests. 5686 PreserveJVMState pjvms(this); 5687 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5688 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5689 // is reexecuted if deoptimization occurs and there could be problems when merging 5690 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5691 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5692 5693 copy_to_clone(obj, alloc_obj, obj_size, false); 5694 5695 // Present the results of the slow call. 5696 result_reg->init_req(_instance_path, control()); 5697 result_val->init_req(_instance_path, alloc_obj); 5698 result_i_o ->set_req(_instance_path, i_o()); 5699 result_mem ->set_req(_instance_path, reset_memory()); 5700 } 5701 5702 // Generate code for the slow case. We make a call to clone(). 5703 set_control(_gvn.transform(slow_region)); 5704 if (!stopped()) { 5705 PreserveJVMState pjvms(this); 5706 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5707 // We need to deoptimize on exception (see comment above) 5708 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5709 // this->control() comes from set_results_for_java_call 5710 result_reg->init_req(_slow_path, control()); 5711 result_val->init_req(_slow_path, slow_result); 5712 result_i_o ->set_req(_slow_path, i_o()); 5713 result_mem ->set_req(_slow_path, reset_memory()); 5714 } 5715 5716 // Return the combined state. 5717 set_control( _gvn.transform(result_reg)); 5718 set_i_o( _gvn.transform(result_i_o)); 5719 set_all_memory( _gvn.transform(result_mem)); 5720 } // original reexecute is set back here 5721 5722 set_result(_gvn.transform(result_val)); 5723 return true; 5724 } 5725 5726 // If we have a tightly coupled allocation, the arraycopy may take care 5727 // of the array initialization. If one of the guards we insert between 5728 // the allocation and the arraycopy causes a deoptimization, an 5729 // uninitialized array will escape the compiled method. To prevent that 5730 // we set the JVM state for uncommon traps between the allocation and 5731 // the arraycopy to the state before the allocation so, in case of 5732 // deoptimization, we'll reexecute the allocation and the 5733 // initialization. 5734 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5735 if (alloc != nullptr) { 5736 ciMethod* trap_method = alloc->jvms()->method(); 5737 int trap_bci = alloc->jvms()->bci(); 5738 5739 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5740 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5741 // Make sure there's no store between the allocation and the 5742 // arraycopy otherwise visible side effects could be rexecuted 5743 // in case of deoptimization and cause incorrect execution. 5744 bool no_interfering_store = true; 5745 Node* mem = alloc->in(TypeFunc::Memory); 5746 if (mem->is_MergeMem()) { 5747 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5748 Node* n = mms.memory(); 5749 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5750 assert(n->is_Store(), "what else?"); 5751 no_interfering_store = false; 5752 break; 5753 } 5754 } 5755 } else { 5756 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5757 Node* n = mms.memory(); 5758 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5759 assert(n->is_Store(), "what else?"); 5760 no_interfering_store = false; 5761 break; 5762 } 5763 } 5764 } 5765 5766 if (no_interfering_store) { 5767 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5768 5769 JVMState* saved_jvms = jvms(); 5770 saved_reexecute_sp = _reexecute_sp; 5771 5772 set_jvms(sfpt->jvms()); 5773 _reexecute_sp = jvms()->sp(); 5774 5775 return saved_jvms; 5776 } 5777 } 5778 } 5779 return nullptr; 5780 } 5781 5782 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5783 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5784 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5785 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5786 uint size = alloc->req(); 5787 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5788 old_jvms->set_map(sfpt); 5789 for (uint i = 0; i < size; i++) { 5790 sfpt->init_req(i, alloc->in(i)); 5791 } 5792 int adjustment = 1; 5793 const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr(); 5794 if (ary_klass_ptr->is_null_free()) { 5795 // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newNullRestrictedArray 5796 // which requires both the component type and the array length on stack for re-execution. Re-create and push 5797 // the component type. 5798 ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass(); 5799 ciInstance* instance = klass->component_mirror_instance(); 5800 const TypeInstPtr* t_instance = TypeInstPtr::make(instance); 5801 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance)); 5802 adjustment++; 5803 } 5804 // re-push array length for deoptimization 5805 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength)); 5806 old_jvms->set_sp(old_jvms->sp() + adjustment); 5807 old_jvms->set_monoff(old_jvms->monoff() + adjustment); 5808 old_jvms->set_scloff(old_jvms->scloff() + adjustment); 5809 old_jvms->set_endoff(old_jvms->endoff() + adjustment); 5810 old_jvms->set_should_reexecute(true); 5811 5812 sfpt->set_i_o(map()->i_o()); 5813 sfpt->set_memory(map()->memory()); 5814 sfpt->set_control(map()->control()); 5815 return sfpt; 5816 } 5817 5818 // In case of a deoptimization, we restart execution at the 5819 // allocation, allocating a new array. We would leave an uninitialized 5820 // array in the heap that GCs wouldn't expect. Move the allocation 5821 // after the traps so we don't allocate the array if we 5822 // deoptimize. This is possible because tightly_coupled_allocation() 5823 // guarantees there's no observer of the allocated array at this point 5824 // and the control flow is simple enough. 5825 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5826 int saved_reexecute_sp, uint new_idx) { 5827 if (saved_jvms_before_guards != nullptr && !stopped()) { 5828 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5829 5830 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5831 // restore JVM state to the state at the arraycopy 5832 saved_jvms_before_guards->map()->set_control(map()->control()); 5833 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5834 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5835 // If we've improved the types of some nodes (null check) while 5836 // emitting the guards, propagate them to the current state 5837 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5838 set_jvms(saved_jvms_before_guards); 5839 _reexecute_sp = saved_reexecute_sp; 5840 5841 // Remove the allocation from above the guards 5842 CallProjections* callprojs = alloc->extract_projections(true); 5843 InitializeNode* init = alloc->initialization(); 5844 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5845 C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5846 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5847 5848 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5849 // the allocation (i.e. is only valid if the allocation succeeds): 5850 // 1) replace CastIINode with AllocateArrayNode's length here 5851 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5852 // 5853 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5854 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5855 Node* init_control = init->proj_out(TypeFunc::Control); 5856 Node* alloc_length = alloc->Ideal_length(); 5857 #ifdef ASSERT 5858 Node* prev_cast = nullptr; 5859 #endif 5860 for (uint i = 0; i < init_control->outcnt(); i++) { 5861 Node* init_out = init_control->raw_out(i); 5862 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5863 #ifdef ASSERT 5864 if (prev_cast == nullptr) { 5865 prev_cast = init_out; 5866 } else { 5867 if (prev_cast->cmp(*init_out) == false) { 5868 prev_cast->dump(); 5869 init_out->dump(); 5870 assert(false, "not equal CastIINode"); 5871 } 5872 } 5873 #endif 5874 C->gvn_replace_by(init_out, alloc_length); 5875 } 5876 } 5877 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5878 5879 // move the allocation here (after the guards) 5880 _gvn.hash_delete(alloc); 5881 alloc->set_req(TypeFunc::Control, control()); 5882 alloc->set_req(TypeFunc::I_O, i_o()); 5883 Node *mem = reset_memory(); 5884 set_all_memory(mem); 5885 alloc->set_req(TypeFunc::Memory, mem); 5886 set_control(init->proj_out_or_null(TypeFunc::Control)); 5887 set_i_o(callprojs->fallthrough_ioproj); 5888 5889 // Update memory as done in GraphKit::set_output_for_allocation() 5890 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5891 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5892 if (ary_type->isa_aryptr() && length_type != nullptr) { 5893 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5894 } 5895 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5896 int elemidx = C->get_alias_index(telemref); 5897 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5898 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5899 5900 Node* allocx = _gvn.transform(alloc); 5901 assert(allocx == alloc, "where has the allocation gone?"); 5902 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5903 5904 _gvn.hash_delete(dest); 5905 dest->set_req(0, control()); 5906 Node* destx = _gvn.transform(dest); 5907 assert(destx == dest, "where has the allocation result gone?"); 5908 5909 array_ideal_length(alloc, ary_type, true); 5910 } 5911 } 5912 5913 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5914 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5915 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5916 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5917 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5918 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5919 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5920 JVMState* saved_jvms_before_guards) { 5921 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5922 // There is at least one unrelated uncommon trap which needs to be replaced. 5923 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5924 5925 JVMState* saved_jvms = jvms(); 5926 const int saved_reexecute_sp = _reexecute_sp; 5927 set_jvms(sfpt->jvms()); 5928 _reexecute_sp = jvms()->sp(); 5929 5930 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5931 5932 // Restore state 5933 set_jvms(saved_jvms); 5934 _reexecute_sp = saved_reexecute_sp; 5935 } 5936 } 5937 5938 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5939 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5940 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5941 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5942 while (if_proj->is_IfProj()) { 5943 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5944 if (uncommon_trap != nullptr) { 5945 create_new_uncommon_trap(uncommon_trap); 5946 } 5947 assert(if_proj->in(0)->is_If(), "must be If"); 5948 if_proj = if_proj->in(0)->in(0); 5949 } 5950 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5951 "must have reached control projection of init node"); 5952 } 5953 5954 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5955 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5956 assert(trap_request != 0, "no valid UCT trap request"); 5957 PreserveJVMState pjvms(this); 5958 set_control(uncommon_trap_call->in(0)); 5959 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5960 Deoptimization::trap_request_action(trap_request)); 5961 assert(stopped(), "Should be stopped"); 5962 _gvn.hash_delete(uncommon_trap_call); 5963 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5964 } 5965 5966 // Common checks for array sorting intrinsics arguments. 5967 // Returns `true` if checks passed. 5968 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5969 // check address of the class 5970 if (elementType == nullptr || elementType->is_top()) { 5971 return false; // dead path 5972 } 5973 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5974 if (elem_klass == nullptr) { 5975 return false; // dead path 5976 } 5977 // java_mirror_type() returns non-null for compile-time Class constants only 5978 ciType* elem_type = elem_klass->java_mirror_type(); 5979 if (elem_type == nullptr) { 5980 return false; 5981 } 5982 bt = elem_type->basic_type(); 5983 // Disable the intrinsic if the CPU does not support SIMD sort 5984 if (!Matcher::supports_simd_sort(bt)) { 5985 return false; 5986 } 5987 // check address of the array 5988 if (obj == nullptr || obj->is_top()) { 5989 return false; // dead path 5990 } 5991 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5992 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5993 return false; // failed input validation 5994 } 5995 return true; 5996 } 5997 5998 //------------------------------inline_array_partition----------------------- 5999 bool LibraryCallKit::inline_array_partition() { 6000 address stubAddr = StubRoutines::select_array_partition_function(); 6001 if (stubAddr == nullptr) { 6002 return false; // Intrinsic's stub is not implemented on this platform 6003 } 6004 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 6005 6006 // no receiver because it is a static method 6007 Node* elementType = argument(0); 6008 Node* obj = argument(1); 6009 Node* offset = argument(2); // long 6010 Node* fromIndex = argument(4); 6011 Node* toIndex = argument(5); 6012 Node* indexPivot1 = argument(6); 6013 Node* indexPivot2 = argument(7); 6014 // PartitionOperation: argument(8) is ignored 6015 6016 Node* pivotIndices = nullptr; 6017 BasicType bt = T_ILLEGAL; 6018 6019 if (!check_array_sort_arguments(elementType, obj, bt)) { 6020 return false; 6021 } 6022 null_check(obj); 6023 // If obj is dead, only null-path is taken. 6024 if (stopped()) { 6025 return true; 6026 } 6027 // Set the original stack and the reexecute bit for the interpreter to reexecute 6028 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 6029 { PreserveReexecuteState preexecs(this); 6030 jvms()->set_should_reexecute(true); 6031 6032 Node* obj_adr = make_unsafe_address(obj, offset); 6033 6034 // create the pivotIndices array of type int and size = 2 6035 Node* size = intcon(2); 6036 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 6037 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 6038 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 6039 guarantee(alloc != nullptr, "created above"); 6040 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 6041 6042 // pass the basic type enum to the stub 6043 Node* elemType = intcon(bt); 6044 6045 // Call the stub 6046 const char *stubName = "array_partition_stub"; 6047 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 6048 stubAddr, stubName, TypePtr::BOTTOM, 6049 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 6050 indexPivot1, indexPivot2); 6051 6052 } // original reexecute is set back here 6053 6054 if (!stopped()) { 6055 set_result(pivotIndices); 6056 } 6057 6058 return true; 6059 } 6060 6061 6062 //------------------------------inline_array_sort----------------------- 6063 bool LibraryCallKit::inline_array_sort() { 6064 address stubAddr = StubRoutines::select_arraysort_function(); 6065 if (stubAddr == nullptr) { 6066 return false; // Intrinsic's stub is not implemented on this platform 6067 } 6068 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 6069 6070 // no receiver because it is a static method 6071 Node* elementType = argument(0); 6072 Node* obj = argument(1); 6073 Node* offset = argument(2); // long 6074 Node* fromIndex = argument(4); 6075 Node* toIndex = argument(5); 6076 // SortOperation: argument(6) is ignored 6077 6078 BasicType bt = T_ILLEGAL; 6079 6080 if (!check_array_sort_arguments(elementType, obj, bt)) { 6081 return false; 6082 } 6083 null_check(obj); 6084 // If obj is dead, only null-path is taken. 6085 if (stopped()) { 6086 return true; 6087 } 6088 Node* obj_adr = make_unsafe_address(obj, offset); 6089 6090 // pass the basic type enum to the stub 6091 Node* elemType = intcon(bt); 6092 6093 // Call the stub. 6094 const char *stubName = "arraysort_stub"; 6095 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 6096 stubAddr, stubName, TypePtr::BOTTOM, 6097 obj_adr, elemType, fromIndex, toIndex); 6098 6099 return true; 6100 } 6101 6102 6103 //------------------------------inline_arraycopy----------------------- 6104 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 6105 // Object dest, int destPos, 6106 // int length); 6107 bool LibraryCallKit::inline_arraycopy() { 6108 // Get the arguments. 6109 Node* src = argument(0); // type: oop 6110 Node* src_offset = argument(1); // type: int 6111 Node* dest = argument(2); // type: oop 6112 Node* dest_offset = argument(3); // type: int 6113 Node* length = argument(4); // type: int 6114 6115 uint new_idx = C->unique(); 6116 6117 // Check for allocation before we add nodes that would confuse 6118 // tightly_coupled_allocation() 6119 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 6120 6121 int saved_reexecute_sp = -1; 6122 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 6123 // See arraycopy_restore_alloc_state() comment 6124 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 6125 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 6126 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 6127 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 6128 6129 // The following tests must be performed 6130 // (1) src and dest are arrays. 6131 // (2) src and dest arrays must have elements of the same BasicType 6132 // (3) src and dest must not be null. 6133 // (4) src_offset must not be negative. 6134 // (5) dest_offset must not be negative. 6135 // (6) length must not be negative. 6136 // (7) src_offset + length must not exceed length of src. 6137 // (8) dest_offset + length must not exceed length of dest. 6138 // (9) each element of an oop array must be assignable 6139 6140 // (3) src and dest must not be null. 6141 // always do this here because we need the JVM state for uncommon traps 6142 Node* null_ctl = top(); 6143 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 6144 assert(null_ctl->is_top(), "no null control here"); 6145 dest = null_check(dest, T_ARRAY); 6146 6147 if (!can_emit_guards) { 6148 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 6149 // guards but the arraycopy node could still take advantage of a 6150 // tightly allocated allocation. tightly_coupled_allocation() is 6151 // called again to make sure it takes the null check above into 6152 // account: the null check is mandatory and if it caused an 6153 // uncommon trap to be emitted then the allocation can't be 6154 // considered tightly coupled in this context. 6155 alloc = tightly_coupled_allocation(dest); 6156 } 6157 6158 bool validated = false; 6159 6160 const Type* src_type = _gvn.type(src); 6161 const Type* dest_type = _gvn.type(dest); 6162 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6163 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6164 6165 // Do we have the type of src? 6166 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6167 // Do we have the type of dest? 6168 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6169 // Is the type for src from speculation? 6170 bool src_spec = false; 6171 // Is the type for dest from speculation? 6172 bool dest_spec = false; 6173 6174 if ((!has_src || !has_dest) && can_emit_guards) { 6175 // We don't have sufficient type information, let's see if 6176 // speculative types can help. We need to have types for both src 6177 // and dest so that it pays off. 6178 6179 // Do we already have or could we have type information for src 6180 bool could_have_src = has_src; 6181 // Do we already have or could we have type information for dest 6182 bool could_have_dest = has_dest; 6183 6184 ciKlass* src_k = nullptr; 6185 if (!has_src) { 6186 src_k = src_type->speculative_type_not_null(); 6187 if (src_k != nullptr && src_k->is_array_klass()) { 6188 could_have_src = true; 6189 } 6190 } 6191 6192 ciKlass* dest_k = nullptr; 6193 if (!has_dest) { 6194 dest_k = dest_type->speculative_type_not_null(); 6195 if (dest_k != nullptr && dest_k->is_array_klass()) { 6196 could_have_dest = true; 6197 } 6198 } 6199 6200 if (could_have_src && could_have_dest) { 6201 // This is going to pay off so emit the required guards 6202 if (!has_src) { 6203 src = maybe_cast_profiled_obj(src, src_k, true); 6204 src_type = _gvn.type(src); 6205 top_src = src_type->isa_aryptr(); 6206 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6207 src_spec = true; 6208 } 6209 if (!has_dest) { 6210 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6211 dest_type = _gvn.type(dest); 6212 top_dest = dest_type->isa_aryptr(); 6213 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6214 dest_spec = true; 6215 } 6216 } 6217 } 6218 6219 if (has_src && has_dest && can_emit_guards) { 6220 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 6221 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 6222 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 6223 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 6224 6225 if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) { 6226 // If both arrays are object arrays then having the exact types 6227 // for both will remove the need for a subtype check at runtime 6228 // before the call and may make it possible to pick a faster copy 6229 // routine (without a subtype check on every element) 6230 // Do we have the exact type of src? 6231 bool could_have_src = src_spec; 6232 // Do we have the exact type of dest? 6233 bool could_have_dest = dest_spec; 6234 ciKlass* src_k = nullptr; 6235 ciKlass* dest_k = nullptr; 6236 if (!src_spec) { 6237 src_k = src_type->speculative_type_not_null(); 6238 if (src_k != nullptr && src_k->is_array_klass()) { 6239 could_have_src = true; 6240 } 6241 } 6242 if (!dest_spec) { 6243 dest_k = dest_type->speculative_type_not_null(); 6244 if (dest_k != nullptr && dest_k->is_array_klass()) { 6245 could_have_dest = true; 6246 } 6247 } 6248 if (could_have_src && could_have_dest) { 6249 // If we can have both exact types, emit the missing guards 6250 if (could_have_src && !src_spec) { 6251 src = maybe_cast_profiled_obj(src, src_k, true); 6252 src_type = _gvn.type(src); 6253 top_src = src_type->isa_aryptr(); 6254 } 6255 if (could_have_dest && !dest_spec) { 6256 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6257 dest_type = _gvn.type(dest); 6258 top_dest = dest_type->isa_aryptr(); 6259 } 6260 } 6261 } 6262 } 6263 6264 ciMethod* trap_method = method(); 6265 int trap_bci = bci(); 6266 if (saved_jvms_before_guards != nullptr) { 6267 trap_method = alloc->jvms()->method(); 6268 trap_bci = alloc->jvms()->bci(); 6269 } 6270 6271 bool negative_length_guard_generated = false; 6272 6273 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 6274 can_emit_guards && !src->is_top() && !dest->is_top()) { 6275 // validate arguments: enables transformation the ArrayCopyNode 6276 validated = true; 6277 6278 RegionNode* slow_region = new RegionNode(1); 6279 record_for_igvn(slow_region); 6280 6281 // (1) src and dest are arrays. 6282 generate_non_array_guard(load_object_klass(src), slow_region); 6283 generate_non_array_guard(load_object_klass(dest), slow_region); 6284 6285 // (2) src and dest arrays must have elements of the same BasicType 6286 // done at macro expansion or at Ideal transformation time 6287 6288 // (4) src_offset must not be negative. 6289 generate_negative_guard(src_offset, slow_region); 6290 6291 // (5) dest_offset must not be negative. 6292 generate_negative_guard(dest_offset, slow_region); 6293 6294 // (7) src_offset + length must not exceed length of src. 6295 generate_limit_guard(src_offset, length, 6296 load_array_length(src), 6297 slow_region); 6298 6299 // (8) dest_offset + length must not exceed length of dest. 6300 generate_limit_guard(dest_offset, length, 6301 load_array_length(dest), 6302 slow_region); 6303 6304 // (6) length must not be negative. 6305 // This is also checked in generate_arraycopy() during macro expansion, but 6306 // we also have to check it here for the case where the ArrayCopyNode will 6307 // be eliminated by Escape Analysis. 6308 if (EliminateAllocations) { 6309 generate_negative_guard(length, slow_region); 6310 negative_length_guard_generated = true; 6311 } 6312 6313 // (9) each element of an oop array must be assignable 6314 Node* dest_klass = load_object_klass(dest); 6315 if (src != dest) { 6316 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 6317 slow_region->add_req(not_subtype_ctrl); 6318 } 6319 6320 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6321 const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6322 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6323 src_type = _gvn.type(src); 6324 top_src = src_type->isa_aryptr(); 6325 6326 // Handle flat inline type arrays (null-free arrays are handled by the subtype check above) 6327 if (!stopped() && UseFlatArray) { 6328 // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here. 6329 assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat"); 6330 if (top_src != nullptr && top_src->is_flat()) { 6331 // Src is flat, check that dest is flat as well 6332 if (top_dest != nullptr && !top_dest->is_flat()) { 6333 generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region); 6334 // Since dest is flat and src <: dest, dest must have the same type as src. 6335 top_dest = top_src->cast_to_exactness(false); 6336 assert(top_dest->is_flat(), "dest must be flat"); 6337 dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest)); 6338 } 6339 } else if (top_src == nullptr || !top_src->is_not_flat()) { 6340 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 6341 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 6342 assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat"); 6343 generate_fair_guard(flat_array_test(src), slow_region); 6344 if (top_src != nullptr) { 6345 top_src = top_src->cast_to_not_flat(); 6346 src = _gvn.transform(new CheckCastPPNode(control(), src, top_src)); 6347 } 6348 } 6349 } 6350 6351 { 6352 PreserveJVMState pjvms(this); 6353 set_control(_gvn.transform(slow_region)); 6354 uncommon_trap(Deoptimization::Reason_intrinsic, 6355 Deoptimization::Action_make_not_entrant); 6356 assert(stopped(), "Should be stopped"); 6357 } 6358 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6359 } 6360 6361 if (stopped()) { 6362 return true; 6363 } 6364 6365 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6366 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6367 // so the compiler has a chance to eliminate them: during macro expansion, 6368 // we have to set their control (CastPP nodes are eliminated). 6369 load_object_klass(src), load_object_klass(dest), 6370 load_array_length(src), load_array_length(dest)); 6371 6372 ac->set_arraycopy(validated); 6373 6374 Node* n = _gvn.transform(ac); 6375 if (n == ac) { 6376 ac->connect_outputs(this); 6377 } else { 6378 assert(validated, "shouldn't transform if all arguments not validated"); 6379 set_all_memory(n); 6380 } 6381 clear_upper_avx(); 6382 6383 6384 return true; 6385 } 6386 6387 6388 // Helper function which determines if an arraycopy immediately follows 6389 // an allocation, with no intervening tests or other escapes for the object. 6390 AllocateArrayNode* 6391 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6392 if (stopped()) return nullptr; // no fast path 6393 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6394 6395 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6396 if (alloc == nullptr) return nullptr; 6397 6398 Node* rawmem = memory(Compile::AliasIdxRaw); 6399 // Is the allocation's memory state untouched? 6400 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6401 // Bail out if there have been raw-memory effects since the allocation. 6402 // (Example: There might have been a call or safepoint.) 6403 return nullptr; 6404 } 6405 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6406 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6407 return nullptr; 6408 } 6409 6410 // There must be no unexpected observers of this allocation. 6411 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6412 Node* obs = ptr->fast_out(i); 6413 if (obs != this->map()) { 6414 return nullptr; 6415 } 6416 } 6417 6418 // This arraycopy must unconditionally follow the allocation of the ptr. 6419 Node* alloc_ctl = ptr->in(0); 6420 Node* ctl = control(); 6421 while (ctl != alloc_ctl) { 6422 // There may be guards which feed into the slow_region. 6423 // Any other control flow means that we might not get a chance 6424 // to finish initializing the allocated object. 6425 // Various low-level checks bottom out in uncommon traps. These 6426 // are considered safe since we've already checked above that 6427 // there is no unexpected observer of this allocation. 6428 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6429 assert(ctl->in(0)->is_If(), "must be If"); 6430 ctl = ctl->in(0)->in(0); 6431 } else { 6432 return nullptr; 6433 } 6434 } 6435 6436 // If we get this far, we have an allocation which immediately 6437 // precedes the arraycopy, and we can take over zeroing the new object. 6438 // The arraycopy will finish the initialization, and provide 6439 // a new control state to which we will anchor the destination pointer. 6440 6441 return alloc; 6442 } 6443 6444 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6445 if (node->is_IfProj()) { 6446 Node* other_proj = node->as_IfProj()->other_if_proj(); 6447 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6448 Node* obs = other_proj->fast_out(j); 6449 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6450 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6451 return obs->as_CallStaticJava(); 6452 } 6453 } 6454 } 6455 return nullptr; 6456 } 6457 6458 //-------------inline_encodeISOArray----------------------------------- 6459 // encode char[] to byte[] in ISO_8859_1 or ASCII 6460 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6461 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6462 // no receiver since it is static method 6463 Node *src = argument(0); 6464 Node *src_offset = argument(1); 6465 Node *dst = argument(2); 6466 Node *dst_offset = argument(3); 6467 Node *length = argument(4); 6468 6469 src = must_be_not_null(src, true); 6470 dst = must_be_not_null(dst, true); 6471 6472 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6473 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6474 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6475 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6476 // failed array check 6477 return false; 6478 } 6479 6480 // Figure out the size and type of the elements we will be copying. 6481 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6482 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6483 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6484 return false; 6485 } 6486 6487 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6488 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6489 // 'src_start' points to src array + scaled offset 6490 // 'dst_start' points to dst array + scaled offset 6491 6492 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6493 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6494 enc = _gvn.transform(enc); 6495 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6496 set_memory(res_mem, mtype); 6497 set_result(enc); 6498 clear_upper_avx(); 6499 6500 return true; 6501 } 6502 6503 //-------------inline_multiplyToLen----------------------------------- 6504 bool LibraryCallKit::inline_multiplyToLen() { 6505 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6506 6507 address stubAddr = StubRoutines::multiplyToLen(); 6508 if (stubAddr == nullptr) { 6509 return false; // Intrinsic's stub is not implemented on this platform 6510 } 6511 const char* stubName = "multiplyToLen"; 6512 6513 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6514 6515 // no receiver because it is a static method 6516 Node* x = argument(0); 6517 Node* xlen = argument(1); 6518 Node* y = argument(2); 6519 Node* ylen = argument(3); 6520 Node* z = argument(4); 6521 6522 x = must_be_not_null(x, true); 6523 y = must_be_not_null(y, true); 6524 6525 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6526 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6527 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6528 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6529 // failed array check 6530 return false; 6531 } 6532 6533 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6534 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6535 if (x_elem != T_INT || y_elem != T_INT) { 6536 return false; 6537 } 6538 6539 Node* x_start = array_element_address(x, intcon(0), x_elem); 6540 Node* y_start = array_element_address(y, intcon(0), y_elem); 6541 // 'x_start' points to x array + scaled xlen 6542 // 'y_start' points to y array + scaled ylen 6543 6544 Node* z_start = array_element_address(z, intcon(0), T_INT); 6545 6546 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6547 OptoRuntime::multiplyToLen_Type(), 6548 stubAddr, stubName, TypePtr::BOTTOM, 6549 x_start, xlen, y_start, ylen, z_start); 6550 6551 C->set_has_split_ifs(true); // Has chance for split-if optimization 6552 set_result(z); 6553 return true; 6554 } 6555 6556 //-------------inline_squareToLen------------------------------------ 6557 bool LibraryCallKit::inline_squareToLen() { 6558 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6559 6560 address stubAddr = StubRoutines::squareToLen(); 6561 if (stubAddr == nullptr) { 6562 return false; // Intrinsic's stub is not implemented on this platform 6563 } 6564 const char* stubName = "squareToLen"; 6565 6566 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6567 6568 Node* x = argument(0); 6569 Node* len = argument(1); 6570 Node* z = argument(2); 6571 Node* zlen = argument(3); 6572 6573 x = must_be_not_null(x, true); 6574 z = must_be_not_null(z, true); 6575 6576 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6577 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6578 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6579 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6580 // failed array check 6581 return false; 6582 } 6583 6584 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6585 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6586 if (x_elem != T_INT || z_elem != T_INT) { 6587 return false; 6588 } 6589 6590 6591 Node* x_start = array_element_address(x, intcon(0), x_elem); 6592 Node* z_start = array_element_address(z, intcon(0), z_elem); 6593 6594 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6595 OptoRuntime::squareToLen_Type(), 6596 stubAddr, stubName, TypePtr::BOTTOM, 6597 x_start, len, z_start, zlen); 6598 6599 set_result(z); 6600 return true; 6601 } 6602 6603 //-------------inline_mulAdd------------------------------------------ 6604 bool LibraryCallKit::inline_mulAdd() { 6605 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6606 6607 address stubAddr = StubRoutines::mulAdd(); 6608 if (stubAddr == nullptr) { 6609 return false; // Intrinsic's stub is not implemented on this platform 6610 } 6611 const char* stubName = "mulAdd"; 6612 6613 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6614 6615 Node* out = argument(0); 6616 Node* in = argument(1); 6617 Node* offset = argument(2); 6618 Node* len = argument(3); 6619 Node* k = argument(4); 6620 6621 in = must_be_not_null(in, true); 6622 out = must_be_not_null(out, true); 6623 6624 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6625 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6626 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6627 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6628 // failed array check 6629 return false; 6630 } 6631 6632 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6633 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6634 if (out_elem != T_INT || in_elem != T_INT) { 6635 return false; 6636 } 6637 6638 Node* outlen = load_array_length(out); 6639 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6640 Node* out_start = array_element_address(out, intcon(0), out_elem); 6641 Node* in_start = array_element_address(in, intcon(0), in_elem); 6642 6643 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6644 OptoRuntime::mulAdd_Type(), 6645 stubAddr, stubName, TypePtr::BOTTOM, 6646 out_start,in_start, new_offset, len, k); 6647 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6648 set_result(result); 6649 return true; 6650 } 6651 6652 //-------------inline_montgomeryMultiply----------------------------------- 6653 bool LibraryCallKit::inline_montgomeryMultiply() { 6654 address stubAddr = StubRoutines::montgomeryMultiply(); 6655 if (stubAddr == nullptr) { 6656 return false; // Intrinsic's stub is not implemented on this platform 6657 } 6658 6659 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6660 const char* stubName = "montgomery_multiply"; 6661 6662 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6663 6664 Node* a = argument(0); 6665 Node* b = argument(1); 6666 Node* n = argument(2); 6667 Node* len = argument(3); 6668 Node* inv = argument(4); 6669 Node* m = argument(6); 6670 6671 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6672 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6673 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6674 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6675 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6676 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6677 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6678 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6679 // failed array check 6680 return false; 6681 } 6682 6683 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6684 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6685 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6686 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6687 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6688 return false; 6689 } 6690 6691 // Make the call 6692 { 6693 Node* a_start = array_element_address(a, intcon(0), a_elem); 6694 Node* b_start = array_element_address(b, intcon(0), b_elem); 6695 Node* n_start = array_element_address(n, intcon(0), n_elem); 6696 Node* m_start = array_element_address(m, intcon(0), m_elem); 6697 6698 Node* call = make_runtime_call(RC_LEAF, 6699 OptoRuntime::montgomeryMultiply_Type(), 6700 stubAddr, stubName, TypePtr::BOTTOM, 6701 a_start, b_start, n_start, len, inv, top(), 6702 m_start); 6703 set_result(m); 6704 } 6705 6706 return true; 6707 } 6708 6709 bool LibraryCallKit::inline_montgomerySquare() { 6710 address stubAddr = StubRoutines::montgomerySquare(); 6711 if (stubAddr == nullptr) { 6712 return false; // Intrinsic's stub is not implemented on this platform 6713 } 6714 6715 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6716 const char* stubName = "montgomery_square"; 6717 6718 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6719 6720 Node* a = argument(0); 6721 Node* n = argument(1); 6722 Node* len = argument(2); 6723 Node* inv = argument(3); 6724 Node* m = argument(5); 6725 6726 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6727 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6728 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6729 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6730 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6731 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6732 // failed array check 6733 return false; 6734 } 6735 6736 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6737 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6738 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6739 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6740 return false; 6741 } 6742 6743 // Make the call 6744 { 6745 Node* a_start = array_element_address(a, intcon(0), a_elem); 6746 Node* n_start = array_element_address(n, intcon(0), n_elem); 6747 Node* m_start = array_element_address(m, intcon(0), m_elem); 6748 6749 Node* call = make_runtime_call(RC_LEAF, 6750 OptoRuntime::montgomerySquare_Type(), 6751 stubAddr, stubName, TypePtr::BOTTOM, 6752 a_start, n_start, len, inv, top(), 6753 m_start); 6754 set_result(m); 6755 } 6756 6757 return true; 6758 } 6759 6760 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6761 address stubAddr = nullptr; 6762 const char* stubName = nullptr; 6763 6764 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6765 if (stubAddr == nullptr) { 6766 return false; // Intrinsic's stub is not implemented on this platform 6767 } 6768 6769 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6770 6771 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6772 6773 Node* newArr = argument(0); 6774 Node* oldArr = argument(1); 6775 Node* newIdx = argument(2); 6776 Node* shiftCount = argument(3); 6777 Node* numIter = argument(4); 6778 6779 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6780 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6781 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6782 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6783 return false; 6784 } 6785 6786 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6787 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6788 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6789 return false; 6790 } 6791 6792 // Make the call 6793 { 6794 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6795 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6796 6797 Node* call = make_runtime_call(RC_LEAF, 6798 OptoRuntime::bigIntegerShift_Type(), 6799 stubAddr, 6800 stubName, 6801 TypePtr::BOTTOM, 6802 newArr_start, 6803 oldArr_start, 6804 newIdx, 6805 shiftCount, 6806 numIter); 6807 } 6808 6809 return true; 6810 } 6811 6812 //-------------inline_vectorizedMismatch------------------------------ 6813 bool LibraryCallKit::inline_vectorizedMismatch() { 6814 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6815 6816 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6817 Node* obja = argument(0); // Object 6818 Node* aoffset = argument(1); // long 6819 Node* objb = argument(3); // Object 6820 Node* boffset = argument(4); // long 6821 Node* length = argument(6); // int 6822 Node* scale = argument(7); // int 6823 6824 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6825 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6826 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6827 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6828 scale == top()) { 6829 return false; // failed input validation 6830 } 6831 6832 Node* obja_adr = make_unsafe_address(obja, aoffset); 6833 Node* objb_adr = make_unsafe_address(objb, boffset); 6834 6835 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6836 // 6837 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6838 // if (length <= inline_limit) { 6839 // inline_path: 6840 // vmask = VectorMaskGen length 6841 // vload1 = LoadVectorMasked obja, vmask 6842 // vload2 = LoadVectorMasked objb, vmask 6843 // result1 = VectorCmpMasked vload1, vload2, vmask 6844 // } else { 6845 // call_stub_path: 6846 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6847 // } 6848 // exit_block: 6849 // return Phi(result1, result2); 6850 // 6851 enum { inline_path = 1, // input is small enough to process it all at once 6852 stub_path = 2, // input is too large; call into the VM 6853 PATH_LIMIT = 3 6854 }; 6855 6856 Node* exit_block = new RegionNode(PATH_LIMIT); 6857 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6858 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6859 6860 Node* call_stub_path = control(); 6861 6862 BasicType elem_bt = T_ILLEGAL; 6863 6864 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6865 if (scale_t->is_con()) { 6866 switch (scale_t->get_con()) { 6867 case 0: elem_bt = T_BYTE; break; 6868 case 1: elem_bt = T_SHORT; break; 6869 case 2: elem_bt = T_INT; break; 6870 case 3: elem_bt = T_LONG; break; 6871 6872 default: elem_bt = T_ILLEGAL; break; // not supported 6873 } 6874 } 6875 6876 int inline_limit = 0; 6877 bool do_partial_inline = false; 6878 6879 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6880 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6881 do_partial_inline = inline_limit >= 16; 6882 } 6883 6884 if (do_partial_inline) { 6885 assert(elem_bt != T_ILLEGAL, "sanity"); 6886 6887 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6888 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6889 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6890 6891 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6892 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6893 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6894 6895 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6896 6897 if (!stopped()) { 6898 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6899 6900 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6901 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6902 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6903 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6904 6905 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6906 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6907 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6908 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6909 6910 exit_block->init_req(inline_path, control()); 6911 memory_phi->init_req(inline_path, map()->memory()); 6912 result_phi->init_req(inline_path, result); 6913 6914 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6915 clear_upper_avx(); 6916 } 6917 } 6918 } 6919 6920 if (call_stub_path != nullptr) { 6921 set_control(call_stub_path); 6922 6923 Node* call = make_runtime_call(RC_LEAF, 6924 OptoRuntime::vectorizedMismatch_Type(), 6925 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6926 obja_adr, objb_adr, length, scale); 6927 6928 exit_block->init_req(stub_path, control()); 6929 memory_phi->init_req(stub_path, map()->memory()); 6930 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6931 } 6932 6933 exit_block = _gvn.transform(exit_block); 6934 memory_phi = _gvn.transform(memory_phi); 6935 result_phi = _gvn.transform(result_phi); 6936 6937 set_control(exit_block); 6938 set_all_memory(memory_phi); 6939 set_result(result_phi); 6940 6941 return true; 6942 } 6943 6944 //------------------------------inline_vectorizedHashcode---------------------------- 6945 bool LibraryCallKit::inline_vectorizedHashCode() { 6946 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6947 6948 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6949 Node* array = argument(0); 6950 Node* offset = argument(1); 6951 Node* length = argument(2); 6952 Node* initialValue = argument(3); 6953 Node* basic_type = argument(4); 6954 6955 if (basic_type == top()) { 6956 return false; // failed input validation 6957 } 6958 6959 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6960 if (!basic_type_t->is_con()) { 6961 return false; // Only intrinsify if mode argument is constant 6962 } 6963 6964 array = must_be_not_null(array, true); 6965 6966 BasicType bt = (BasicType)basic_type_t->get_con(); 6967 6968 // Resolve address of first element 6969 Node* array_start = array_element_address(array, offset, bt); 6970 6971 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6972 array_start, length, initialValue, basic_type))); 6973 clear_upper_avx(); 6974 6975 return true; 6976 } 6977 6978 /** 6979 * Calculate CRC32 for byte. 6980 * int java.util.zip.CRC32.update(int crc, int b) 6981 */ 6982 bool LibraryCallKit::inline_updateCRC32() { 6983 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6984 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6985 // no receiver since it is static method 6986 Node* crc = argument(0); // type: int 6987 Node* b = argument(1); // type: int 6988 6989 /* 6990 * int c = ~ crc; 6991 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6992 * b = b ^ (c >>> 8); 6993 * crc = ~b; 6994 */ 6995 6996 Node* M1 = intcon(-1); 6997 crc = _gvn.transform(new XorINode(crc, M1)); 6998 Node* result = _gvn.transform(new XorINode(crc, b)); 6999 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 7000 7001 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 7002 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 7003 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 7004 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 7005 7006 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 7007 result = _gvn.transform(new XorINode(crc, result)); 7008 result = _gvn.transform(new XorINode(result, M1)); 7009 set_result(result); 7010 return true; 7011 } 7012 7013 /** 7014 * Calculate CRC32 for byte[] array. 7015 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 7016 */ 7017 bool LibraryCallKit::inline_updateBytesCRC32() { 7018 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 7019 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7020 // no receiver since it is static method 7021 Node* crc = argument(0); // type: int 7022 Node* src = argument(1); // type: oop 7023 Node* offset = argument(2); // type: int 7024 Node* length = argument(3); // type: int 7025 7026 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7027 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7028 // failed array check 7029 return false; 7030 } 7031 7032 // Figure out the size and type of the elements we will be copying. 7033 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7034 if (src_elem != T_BYTE) { 7035 return false; 7036 } 7037 7038 // 'src_start' points to src array + scaled offset 7039 src = must_be_not_null(src, true); 7040 Node* src_start = array_element_address(src, offset, src_elem); 7041 7042 // We assume that range check is done by caller. 7043 // TODO: generate range check (offset+length < src.length) in debug VM. 7044 7045 // Call the stub. 7046 address stubAddr = StubRoutines::updateBytesCRC32(); 7047 const char *stubName = "updateBytesCRC32"; 7048 7049 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7050 stubAddr, stubName, TypePtr::BOTTOM, 7051 crc, src_start, length); 7052 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7053 set_result(result); 7054 return true; 7055 } 7056 7057 /** 7058 * Calculate CRC32 for ByteBuffer. 7059 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 7060 */ 7061 bool LibraryCallKit::inline_updateByteBufferCRC32() { 7062 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 7063 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7064 // no receiver since it is static method 7065 Node* crc = argument(0); // type: int 7066 Node* src = argument(1); // type: long 7067 Node* offset = argument(3); // type: int 7068 Node* length = argument(4); // type: int 7069 7070 src = ConvL2X(src); // adjust Java long to machine word 7071 Node* base = _gvn.transform(new CastX2PNode(src)); 7072 offset = ConvI2X(offset); 7073 7074 // 'src_start' points to src array + scaled offset 7075 Node* src_start = basic_plus_adr(top(), base, offset); 7076 7077 // Call the stub. 7078 address stubAddr = StubRoutines::updateBytesCRC32(); 7079 const char *stubName = "updateBytesCRC32"; 7080 7081 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7082 stubAddr, stubName, TypePtr::BOTTOM, 7083 crc, src_start, length); 7084 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7085 set_result(result); 7086 return true; 7087 } 7088 7089 //------------------------------get_table_from_crc32c_class----------------------- 7090 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 7091 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 7092 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 7093 7094 return table; 7095 } 7096 7097 //------------------------------inline_updateBytesCRC32C----------------------- 7098 // 7099 // Calculate CRC32C for byte[] array. 7100 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 7101 // 7102 bool LibraryCallKit::inline_updateBytesCRC32C() { 7103 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7104 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7105 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7106 // no receiver since it is a static method 7107 Node* crc = argument(0); // type: int 7108 Node* src = argument(1); // type: oop 7109 Node* offset = argument(2); // type: int 7110 Node* end = argument(3); // type: int 7111 7112 Node* length = _gvn.transform(new SubINode(end, offset)); 7113 7114 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7115 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7116 // failed array check 7117 return false; 7118 } 7119 7120 // Figure out the size and type of the elements we will be copying. 7121 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7122 if (src_elem != T_BYTE) { 7123 return false; 7124 } 7125 7126 // 'src_start' points to src array + scaled offset 7127 src = must_be_not_null(src, true); 7128 Node* src_start = array_element_address(src, offset, src_elem); 7129 7130 // static final int[] byteTable in class CRC32C 7131 Node* table = get_table_from_crc32c_class(callee()->holder()); 7132 table = must_be_not_null(table, true); 7133 Node* table_start = array_element_address(table, intcon(0), T_INT); 7134 7135 // We assume that range check is done by caller. 7136 // TODO: generate range check (offset+length < src.length) in debug VM. 7137 7138 // Call the stub. 7139 address stubAddr = StubRoutines::updateBytesCRC32C(); 7140 const char *stubName = "updateBytesCRC32C"; 7141 7142 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7143 stubAddr, stubName, TypePtr::BOTTOM, 7144 crc, src_start, length, table_start); 7145 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7146 set_result(result); 7147 return true; 7148 } 7149 7150 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 7151 // 7152 // Calculate CRC32C for DirectByteBuffer. 7153 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 7154 // 7155 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 7156 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7157 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 7158 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7159 // no receiver since it is a static method 7160 Node* crc = argument(0); // type: int 7161 Node* src = argument(1); // type: long 7162 Node* offset = argument(3); // type: int 7163 Node* end = argument(4); // type: int 7164 7165 Node* length = _gvn.transform(new SubINode(end, offset)); 7166 7167 src = ConvL2X(src); // adjust Java long to machine word 7168 Node* base = _gvn.transform(new CastX2PNode(src)); 7169 offset = ConvI2X(offset); 7170 7171 // 'src_start' points to src array + scaled offset 7172 Node* src_start = basic_plus_adr(top(), base, offset); 7173 7174 // static final int[] byteTable in class CRC32C 7175 Node* table = get_table_from_crc32c_class(callee()->holder()); 7176 table = must_be_not_null(table, true); 7177 Node* table_start = array_element_address(table, intcon(0), T_INT); 7178 7179 // Call the stub. 7180 address stubAddr = StubRoutines::updateBytesCRC32C(); 7181 const char *stubName = "updateBytesCRC32C"; 7182 7183 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7184 stubAddr, stubName, TypePtr::BOTTOM, 7185 crc, src_start, length, table_start); 7186 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7187 set_result(result); 7188 return true; 7189 } 7190 7191 //------------------------------inline_updateBytesAdler32---------------------- 7192 // 7193 // Calculate Adler32 checksum for byte[] array. 7194 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 7195 // 7196 bool LibraryCallKit::inline_updateBytesAdler32() { 7197 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7198 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7199 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7200 // no receiver since it is static method 7201 Node* crc = argument(0); // type: int 7202 Node* src = argument(1); // type: oop 7203 Node* offset = argument(2); // type: int 7204 Node* length = argument(3); // type: int 7205 7206 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7207 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7208 // failed array check 7209 return false; 7210 } 7211 7212 // Figure out the size and type of the elements we will be copying. 7213 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7214 if (src_elem != T_BYTE) { 7215 return false; 7216 } 7217 7218 // 'src_start' points to src array + scaled offset 7219 Node* src_start = array_element_address(src, offset, src_elem); 7220 7221 // We assume that range check is done by caller. 7222 // TODO: generate range check (offset+length < src.length) in debug VM. 7223 7224 // Call the stub. 7225 address stubAddr = StubRoutines::updateBytesAdler32(); 7226 const char *stubName = "updateBytesAdler32"; 7227 7228 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7229 stubAddr, stubName, TypePtr::BOTTOM, 7230 crc, src_start, length); 7231 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7232 set_result(result); 7233 return true; 7234 } 7235 7236 //------------------------------inline_updateByteBufferAdler32--------------- 7237 // 7238 // Calculate Adler32 checksum for DirectByteBuffer. 7239 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 7240 // 7241 bool LibraryCallKit::inline_updateByteBufferAdler32() { 7242 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7243 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7244 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7245 // no receiver since it is static method 7246 Node* crc = argument(0); // type: int 7247 Node* src = argument(1); // type: long 7248 Node* offset = argument(3); // type: int 7249 Node* length = argument(4); // type: int 7250 7251 src = ConvL2X(src); // adjust Java long to machine word 7252 Node* base = _gvn.transform(new CastX2PNode(src)); 7253 offset = ConvI2X(offset); 7254 7255 // 'src_start' points to src array + scaled offset 7256 Node* src_start = basic_plus_adr(top(), base, offset); 7257 7258 // Call the stub. 7259 address stubAddr = StubRoutines::updateBytesAdler32(); 7260 const char *stubName = "updateBytesAdler32"; 7261 7262 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7263 stubAddr, stubName, TypePtr::BOTTOM, 7264 crc, src_start, length); 7265 7266 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7267 set_result(result); 7268 return true; 7269 } 7270 7271 //----------------------------inline_reference_get---------------------------- 7272 // public T java.lang.ref.Reference.get(); 7273 bool LibraryCallKit::inline_reference_get() { 7274 const int referent_offset = java_lang_ref_Reference::referent_offset(); 7275 7276 // Get the argument: 7277 Node* reference_obj = null_check_receiver(); 7278 if (stopped()) return true; 7279 7280 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 7281 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7282 decorators, /*is_static*/ false, nullptr); 7283 if (result == nullptr) return false; 7284 7285 // Add memory barrier to prevent commoning reads from this field 7286 // across safepoint since GC can change its value. 7287 insert_mem_bar(Op_MemBarCPUOrder); 7288 7289 set_result(result); 7290 return true; 7291 } 7292 7293 //----------------------------inline_reference_refersTo0---------------------------- 7294 // bool java.lang.ref.Reference.refersTo0(); 7295 // bool java.lang.ref.PhantomReference.refersTo0(); 7296 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 7297 // Get arguments: 7298 Node* reference_obj = null_check_receiver(); 7299 Node* other_obj = argument(1); 7300 if (stopped()) return true; 7301 7302 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7303 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7304 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7305 decorators, /*is_static*/ false, nullptr); 7306 if (referent == nullptr) return false; 7307 7308 // Add memory barrier to prevent commoning reads from this field 7309 // across safepoint since GC can change its value. 7310 insert_mem_bar(Op_MemBarCPUOrder); 7311 7312 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7313 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7314 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7315 7316 RegionNode* region = new RegionNode(3); 7317 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7318 7319 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7320 region->init_req(1, if_true); 7321 phi->init_req(1, intcon(1)); 7322 7323 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7324 region->init_req(2, if_false); 7325 phi->init_req(2, intcon(0)); 7326 7327 set_control(_gvn.transform(region)); 7328 record_for_igvn(region); 7329 set_result(_gvn.transform(phi)); 7330 return true; 7331 } 7332 7333 //----------------------------inline_reference_clear0---------------------------- 7334 // void java.lang.ref.Reference.clear0(); 7335 // void java.lang.ref.PhantomReference.clear0(); 7336 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 7337 // This matches the implementation in JVM_ReferenceClear, see the comments there. 7338 7339 // Get arguments 7340 Node* reference_obj = null_check_receiver(); 7341 if (stopped()) return true; 7342 7343 // Common access parameters 7344 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7345 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7346 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7347 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7348 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7349 7350 Node* referent = access_load_at(reference_obj, 7351 referent_field_addr, 7352 referent_field_addr_type, 7353 val_type, 7354 T_OBJECT, 7355 decorators); 7356 7357 IdealKit ideal(this); 7358 #define __ ideal. 7359 __ if_then(referent, BoolTest::ne, null()); 7360 sync_kit(ideal); 7361 access_store_at(reference_obj, 7362 referent_field_addr, 7363 referent_field_addr_type, 7364 null(), 7365 val_type, 7366 T_OBJECT, 7367 decorators); 7368 __ sync_kit(this); 7369 __ end_if(); 7370 final_sync(ideal); 7371 #undef __ 7372 7373 return true; 7374 } 7375 7376 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7377 DecoratorSet decorators, bool is_static, 7378 ciInstanceKlass* fromKls) { 7379 if (fromKls == nullptr) { 7380 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7381 assert(tinst != nullptr, "obj is null"); 7382 assert(tinst->is_loaded(), "obj is not loaded"); 7383 fromKls = tinst->instance_klass(); 7384 } else { 7385 assert(is_static, "only for static field access"); 7386 } 7387 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7388 ciSymbol::make(fieldTypeString), 7389 is_static); 7390 7391 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7392 if (field == nullptr) return (Node *) nullptr; 7393 7394 if (is_static) { 7395 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7396 fromObj = makecon(tip); 7397 } 7398 7399 // Next code copied from Parse::do_get_xxx(): 7400 7401 // Compute address and memory type. 7402 int offset = field->offset_in_bytes(); 7403 bool is_vol = field->is_volatile(); 7404 ciType* field_klass = field->type(); 7405 assert(field_klass->is_loaded(), "should be loaded"); 7406 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7407 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7408 BasicType bt = field->layout_type(); 7409 7410 // Build the resultant type of the load 7411 const Type *type; 7412 if (bt == T_OBJECT) { 7413 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7414 } else { 7415 type = Type::get_const_basic_type(bt); 7416 } 7417 7418 if (is_vol) { 7419 decorators |= MO_SEQ_CST; 7420 } 7421 7422 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7423 } 7424 7425 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7426 bool is_exact /* true */, bool is_static /* false */, 7427 ciInstanceKlass * fromKls /* nullptr */) { 7428 if (fromKls == nullptr) { 7429 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7430 assert(tinst != nullptr, "obj is null"); 7431 assert(tinst->is_loaded(), "obj is not loaded"); 7432 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7433 fromKls = tinst->instance_klass(); 7434 } 7435 else { 7436 assert(is_static, "only for static field access"); 7437 } 7438 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7439 ciSymbol::make(fieldTypeString), 7440 is_static); 7441 7442 assert(field != nullptr, "undefined field"); 7443 assert(!field->is_volatile(), "not defined for volatile fields"); 7444 7445 if (is_static) { 7446 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7447 fromObj = makecon(tip); 7448 } 7449 7450 // Next code copied from Parse::do_get_xxx(): 7451 7452 // Compute address and memory type. 7453 int offset = field->offset_in_bytes(); 7454 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7455 7456 return adr; 7457 } 7458 7459 //------------------------------inline_aescrypt_Block----------------------- 7460 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7461 address stubAddr = nullptr; 7462 const char *stubName; 7463 assert(UseAES, "need AES instruction support"); 7464 7465 switch(id) { 7466 case vmIntrinsics::_aescrypt_encryptBlock: 7467 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7468 stubName = "aescrypt_encryptBlock"; 7469 break; 7470 case vmIntrinsics::_aescrypt_decryptBlock: 7471 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7472 stubName = "aescrypt_decryptBlock"; 7473 break; 7474 default: 7475 break; 7476 } 7477 if (stubAddr == nullptr) return false; 7478 7479 Node* aescrypt_object = argument(0); 7480 Node* src = argument(1); 7481 Node* src_offset = argument(2); 7482 Node* dest = argument(3); 7483 Node* dest_offset = argument(4); 7484 7485 src = must_be_not_null(src, true); 7486 dest = must_be_not_null(dest, true); 7487 7488 // (1) src and dest are arrays. 7489 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7490 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7491 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7492 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7493 7494 // for the quick and dirty code we will skip all the checks. 7495 // we are just trying to get the call to be generated. 7496 Node* src_start = src; 7497 Node* dest_start = dest; 7498 if (src_offset != nullptr || dest_offset != nullptr) { 7499 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7500 src_start = array_element_address(src, src_offset, T_BYTE); 7501 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7502 } 7503 7504 // now need to get the start of its expanded key array 7505 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7506 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7507 if (k_start == nullptr) return false; 7508 7509 // Call the stub. 7510 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7511 stubAddr, stubName, TypePtr::BOTTOM, 7512 src_start, dest_start, k_start); 7513 7514 return true; 7515 } 7516 7517 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7518 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7519 address stubAddr = nullptr; 7520 const char *stubName = nullptr; 7521 7522 assert(UseAES, "need AES instruction support"); 7523 7524 switch(id) { 7525 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7526 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7527 stubName = "cipherBlockChaining_encryptAESCrypt"; 7528 break; 7529 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7530 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7531 stubName = "cipherBlockChaining_decryptAESCrypt"; 7532 break; 7533 default: 7534 break; 7535 } 7536 if (stubAddr == nullptr) return false; 7537 7538 Node* cipherBlockChaining_object = argument(0); 7539 Node* src = argument(1); 7540 Node* src_offset = argument(2); 7541 Node* len = argument(3); 7542 Node* dest = argument(4); 7543 Node* dest_offset = argument(5); 7544 7545 src = must_be_not_null(src, false); 7546 dest = must_be_not_null(dest, false); 7547 7548 // (1) src and dest are arrays. 7549 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7550 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7551 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7552 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7553 7554 // checks are the responsibility of the caller 7555 Node* src_start = src; 7556 Node* dest_start = dest; 7557 if (src_offset != nullptr || dest_offset != nullptr) { 7558 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7559 src_start = array_element_address(src, src_offset, T_BYTE); 7560 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7561 } 7562 7563 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7564 // (because of the predicated logic executed earlier). 7565 // so we cast it here safely. 7566 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7567 7568 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7569 if (embeddedCipherObj == nullptr) return false; 7570 7571 // cast it to what we know it will be at runtime 7572 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7573 assert(tinst != nullptr, "CBC obj is null"); 7574 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7575 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7576 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7577 7578 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7579 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7580 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7581 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7582 aescrypt_object = _gvn.transform(aescrypt_object); 7583 7584 // we need to get the start of the aescrypt_object's expanded key array 7585 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7586 if (k_start == nullptr) return false; 7587 7588 // similarly, get the start address of the r vector 7589 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7590 if (objRvec == nullptr) return false; 7591 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7592 7593 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7594 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7595 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7596 stubAddr, stubName, TypePtr::BOTTOM, 7597 src_start, dest_start, k_start, r_start, len); 7598 7599 // return cipher length (int) 7600 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7601 set_result(retvalue); 7602 return true; 7603 } 7604 7605 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7606 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7607 address stubAddr = nullptr; 7608 const char *stubName = nullptr; 7609 7610 assert(UseAES, "need AES instruction support"); 7611 7612 switch (id) { 7613 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7614 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7615 stubName = "electronicCodeBook_encryptAESCrypt"; 7616 break; 7617 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7618 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7619 stubName = "electronicCodeBook_decryptAESCrypt"; 7620 break; 7621 default: 7622 break; 7623 } 7624 7625 if (stubAddr == nullptr) return false; 7626 7627 Node* electronicCodeBook_object = argument(0); 7628 Node* src = argument(1); 7629 Node* src_offset = argument(2); 7630 Node* len = argument(3); 7631 Node* dest = argument(4); 7632 Node* dest_offset = argument(5); 7633 7634 // (1) src and dest are arrays. 7635 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7636 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7637 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7638 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7639 7640 // checks are the responsibility of the caller 7641 Node* src_start = src; 7642 Node* dest_start = dest; 7643 if (src_offset != nullptr || dest_offset != nullptr) { 7644 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7645 src_start = array_element_address(src, src_offset, T_BYTE); 7646 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7647 } 7648 7649 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7650 // (because of the predicated logic executed earlier). 7651 // so we cast it here safely. 7652 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7653 7654 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7655 if (embeddedCipherObj == nullptr) return false; 7656 7657 // cast it to what we know it will be at runtime 7658 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7659 assert(tinst != nullptr, "ECB obj is null"); 7660 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7661 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7662 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7663 7664 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7665 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7666 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7667 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7668 aescrypt_object = _gvn.transform(aescrypt_object); 7669 7670 // we need to get the start of the aescrypt_object's expanded key array 7671 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7672 if (k_start == nullptr) return false; 7673 7674 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7675 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7676 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7677 stubAddr, stubName, TypePtr::BOTTOM, 7678 src_start, dest_start, k_start, len); 7679 7680 // return cipher length (int) 7681 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7682 set_result(retvalue); 7683 return true; 7684 } 7685 7686 //------------------------------inline_counterMode_AESCrypt----------------------- 7687 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7688 assert(UseAES, "need AES instruction support"); 7689 if (!UseAESCTRIntrinsics) return false; 7690 7691 address stubAddr = nullptr; 7692 const char *stubName = nullptr; 7693 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7694 stubAddr = StubRoutines::counterMode_AESCrypt(); 7695 stubName = "counterMode_AESCrypt"; 7696 } 7697 if (stubAddr == nullptr) return false; 7698 7699 Node* counterMode_object = argument(0); 7700 Node* src = argument(1); 7701 Node* src_offset = argument(2); 7702 Node* len = argument(3); 7703 Node* dest = argument(4); 7704 Node* dest_offset = argument(5); 7705 7706 // (1) src and dest are arrays. 7707 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7708 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7709 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7710 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7711 7712 // checks are the responsibility of the caller 7713 Node* src_start = src; 7714 Node* dest_start = dest; 7715 if (src_offset != nullptr || dest_offset != nullptr) { 7716 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7717 src_start = array_element_address(src, src_offset, T_BYTE); 7718 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7719 } 7720 7721 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7722 // (because of the predicated logic executed earlier). 7723 // so we cast it here safely. 7724 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7725 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7726 if (embeddedCipherObj == nullptr) return false; 7727 // cast it to what we know it will be at runtime 7728 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7729 assert(tinst != nullptr, "CTR obj is null"); 7730 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7731 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7732 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7733 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7734 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7735 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7736 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7737 aescrypt_object = _gvn.transform(aescrypt_object); 7738 // we need to get the start of the aescrypt_object's expanded key array 7739 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7740 if (k_start == nullptr) return false; 7741 // similarly, get the start address of the r vector 7742 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7743 if (obj_counter == nullptr) return false; 7744 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7745 7746 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7747 if (saved_encCounter == nullptr) return false; 7748 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7749 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7750 7751 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7752 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7753 OptoRuntime::counterMode_aescrypt_Type(), 7754 stubAddr, stubName, TypePtr::BOTTOM, 7755 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7756 7757 // return cipher length (int) 7758 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7759 set_result(retvalue); 7760 return true; 7761 } 7762 7763 //------------------------------get_key_start_from_aescrypt_object----------------------- 7764 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7765 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7766 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7767 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7768 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7769 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7770 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7771 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7772 if (objSessionK == nullptr) { 7773 return (Node *) nullptr; 7774 } 7775 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7776 #else 7777 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7778 #endif // PPC64 7779 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7780 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7781 7782 // now have the array, need to get the start address of the K array 7783 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7784 return k_start; 7785 } 7786 7787 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7788 // Return node representing slow path of predicate check. 7789 // the pseudo code we want to emulate with this predicate is: 7790 // for encryption: 7791 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7792 // for decryption: 7793 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7794 // note cipher==plain is more conservative than the original java code but that's OK 7795 // 7796 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7797 // The receiver was checked for null already. 7798 Node* objCBC = argument(0); 7799 7800 Node* src = argument(1); 7801 Node* dest = argument(4); 7802 7803 // Load embeddedCipher field of CipherBlockChaining object. 7804 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7805 7806 // get AESCrypt klass for instanceOf check 7807 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7808 // will have same classloader as CipherBlockChaining object 7809 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7810 assert(tinst != nullptr, "CBCobj is null"); 7811 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7812 7813 // we want to do an instanceof comparison against the AESCrypt class 7814 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7815 if (!klass_AESCrypt->is_loaded()) { 7816 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7817 Node* ctrl = control(); 7818 set_control(top()); // no regular fast path 7819 return ctrl; 7820 } 7821 7822 src = must_be_not_null(src, true); 7823 dest = must_be_not_null(dest, true); 7824 7825 // Resolve oops to stable for CmpP below. 7826 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7827 7828 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7829 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7830 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7831 7832 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7833 7834 // for encryption, we are done 7835 if (!decrypting) 7836 return instof_false; // even if it is null 7837 7838 // for decryption, we need to add a further check to avoid 7839 // taking the intrinsic path when cipher and plain are the same 7840 // see the original java code for why. 7841 RegionNode* region = new RegionNode(3); 7842 region->init_req(1, instof_false); 7843 7844 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7845 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7846 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7847 region->init_req(2, src_dest_conjoint); 7848 7849 record_for_igvn(region); 7850 return _gvn.transform(region); 7851 } 7852 7853 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7854 // Return node representing slow path of predicate check. 7855 // the pseudo code we want to emulate with this predicate is: 7856 // for encryption: 7857 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7858 // for decryption: 7859 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7860 // note cipher==plain is more conservative than the original java code but that's OK 7861 // 7862 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7863 // The receiver was checked for null already. 7864 Node* objECB = argument(0); 7865 7866 // Load embeddedCipher field of ElectronicCodeBook object. 7867 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7868 7869 // get AESCrypt klass for instanceOf check 7870 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7871 // will have same classloader as ElectronicCodeBook object 7872 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7873 assert(tinst != nullptr, "ECBobj is null"); 7874 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7875 7876 // we want to do an instanceof comparison against the AESCrypt class 7877 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7878 if (!klass_AESCrypt->is_loaded()) { 7879 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7880 Node* ctrl = control(); 7881 set_control(top()); // no regular fast path 7882 return ctrl; 7883 } 7884 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7885 7886 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7887 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7888 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7889 7890 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7891 7892 // for encryption, we are done 7893 if (!decrypting) 7894 return instof_false; // even if it is null 7895 7896 // for decryption, we need to add a further check to avoid 7897 // taking the intrinsic path when cipher and plain are the same 7898 // see the original java code for why. 7899 RegionNode* region = new RegionNode(3); 7900 region->init_req(1, instof_false); 7901 Node* src = argument(1); 7902 Node* dest = argument(4); 7903 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7904 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7905 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7906 region->init_req(2, src_dest_conjoint); 7907 7908 record_for_igvn(region); 7909 return _gvn.transform(region); 7910 } 7911 7912 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7913 // Return node representing slow path of predicate check. 7914 // the pseudo code we want to emulate with this predicate is: 7915 // for encryption: 7916 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7917 // for decryption: 7918 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7919 // note cipher==plain is more conservative than the original java code but that's OK 7920 // 7921 7922 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7923 // The receiver was checked for null already. 7924 Node* objCTR = argument(0); 7925 7926 // Load embeddedCipher field of CipherBlockChaining object. 7927 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7928 7929 // get AESCrypt klass for instanceOf check 7930 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7931 // will have same classloader as CipherBlockChaining object 7932 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7933 assert(tinst != nullptr, "CTRobj is null"); 7934 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7935 7936 // we want to do an instanceof comparison against the AESCrypt class 7937 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7938 if (!klass_AESCrypt->is_loaded()) { 7939 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7940 Node* ctrl = control(); 7941 set_control(top()); // no regular fast path 7942 return ctrl; 7943 } 7944 7945 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7946 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7947 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7948 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7949 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7950 7951 return instof_false; // even if it is null 7952 } 7953 7954 //------------------------------inline_ghash_processBlocks 7955 bool LibraryCallKit::inline_ghash_processBlocks() { 7956 address stubAddr; 7957 const char *stubName; 7958 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7959 7960 stubAddr = StubRoutines::ghash_processBlocks(); 7961 stubName = "ghash_processBlocks"; 7962 7963 Node* data = argument(0); 7964 Node* offset = argument(1); 7965 Node* len = argument(2); 7966 Node* state = argument(3); 7967 Node* subkeyH = argument(4); 7968 7969 state = must_be_not_null(state, true); 7970 subkeyH = must_be_not_null(subkeyH, true); 7971 data = must_be_not_null(data, true); 7972 7973 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7974 assert(state_start, "state is null"); 7975 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7976 assert(subkeyH_start, "subkeyH is null"); 7977 Node* data_start = array_element_address(data, offset, T_BYTE); 7978 assert(data_start, "data is null"); 7979 7980 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7981 OptoRuntime::ghash_processBlocks_Type(), 7982 stubAddr, stubName, TypePtr::BOTTOM, 7983 state_start, subkeyH_start, data_start, len); 7984 return true; 7985 } 7986 7987 //------------------------------inline_chacha20Block 7988 bool LibraryCallKit::inline_chacha20Block() { 7989 address stubAddr; 7990 const char *stubName; 7991 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7992 7993 stubAddr = StubRoutines::chacha20Block(); 7994 stubName = "chacha20Block"; 7995 7996 Node* state = argument(0); 7997 Node* result = argument(1); 7998 7999 state = must_be_not_null(state, true); 8000 result = must_be_not_null(result, true); 8001 8002 Node* state_start = array_element_address(state, intcon(0), T_INT); 8003 assert(state_start, "state is null"); 8004 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 8005 assert(result_start, "result is null"); 8006 8007 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 8008 OptoRuntime::chacha20Block_Type(), 8009 stubAddr, stubName, TypePtr::BOTTOM, 8010 state_start, result_start); 8011 // return key stream length (int) 8012 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 8013 set_result(retvalue); 8014 return true; 8015 } 8016 8017 bool LibraryCallKit::inline_base64_encodeBlock() { 8018 address stubAddr; 8019 const char *stubName; 8020 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8021 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8022 stubAddr = StubRoutines::base64_encodeBlock(); 8023 stubName = "encodeBlock"; 8024 8025 if (!stubAddr) return false; 8026 Node* base64obj = argument(0); 8027 Node* src = argument(1); 8028 Node* offset = argument(2); 8029 Node* len = argument(3); 8030 Node* dest = argument(4); 8031 Node* dp = argument(5); 8032 Node* isURL = argument(6); 8033 8034 src = must_be_not_null(src, true); 8035 dest = must_be_not_null(dest, true); 8036 8037 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8038 assert(src_start, "source array is null"); 8039 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8040 assert(dest_start, "destination array is null"); 8041 8042 Node* base64 = make_runtime_call(RC_LEAF, 8043 OptoRuntime::base64_encodeBlock_Type(), 8044 stubAddr, stubName, TypePtr::BOTTOM, 8045 src_start, offset, len, dest_start, dp, isURL); 8046 return true; 8047 } 8048 8049 bool LibraryCallKit::inline_base64_decodeBlock() { 8050 address stubAddr; 8051 const char *stubName; 8052 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8053 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8054 stubAddr = StubRoutines::base64_decodeBlock(); 8055 stubName = "decodeBlock"; 8056 8057 if (!stubAddr) return false; 8058 Node* base64obj = argument(0); 8059 Node* src = argument(1); 8060 Node* src_offset = argument(2); 8061 Node* len = argument(3); 8062 Node* dest = argument(4); 8063 Node* dest_offset = argument(5); 8064 Node* isURL = argument(6); 8065 Node* isMIME = argument(7); 8066 8067 src = must_be_not_null(src, true); 8068 dest = must_be_not_null(dest, true); 8069 8070 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8071 assert(src_start, "source array is null"); 8072 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8073 assert(dest_start, "destination array is null"); 8074 8075 Node* call = make_runtime_call(RC_LEAF, 8076 OptoRuntime::base64_decodeBlock_Type(), 8077 stubAddr, stubName, TypePtr::BOTTOM, 8078 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8079 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8080 set_result(result); 8081 return true; 8082 } 8083 8084 bool LibraryCallKit::inline_poly1305_processBlocks() { 8085 address stubAddr; 8086 const char *stubName; 8087 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8088 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8089 stubAddr = StubRoutines::poly1305_processBlocks(); 8090 stubName = "poly1305_processBlocks"; 8091 8092 if (!stubAddr) return false; 8093 null_check_receiver(); // null-check receiver 8094 if (stopped()) return true; 8095 8096 Node* input = argument(1); 8097 Node* input_offset = argument(2); 8098 Node* len = argument(3); 8099 Node* alimbs = argument(4); 8100 Node* rlimbs = argument(5); 8101 8102 input = must_be_not_null(input, true); 8103 alimbs = must_be_not_null(alimbs, true); 8104 rlimbs = must_be_not_null(rlimbs, true); 8105 8106 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8107 assert(input_start, "input array is null"); 8108 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8109 assert(acc_start, "acc array is null"); 8110 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8111 assert(r_start, "r array is null"); 8112 8113 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8114 OptoRuntime::poly1305_processBlocks_Type(), 8115 stubAddr, stubName, TypePtr::BOTTOM, 8116 input_start, len, acc_start, r_start); 8117 return true; 8118 } 8119 8120 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8121 address stubAddr; 8122 const char *stubName; 8123 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8124 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8125 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8126 stubName = "intpoly_montgomeryMult_P256"; 8127 8128 if (!stubAddr) return false; 8129 null_check_receiver(); // null-check receiver 8130 if (stopped()) return true; 8131 8132 Node* a = argument(1); 8133 Node* b = argument(2); 8134 Node* r = argument(3); 8135 8136 a = must_be_not_null(a, true); 8137 b = must_be_not_null(b, true); 8138 r = must_be_not_null(r, true); 8139 8140 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8141 assert(a_start, "a array is NULL"); 8142 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8143 assert(b_start, "b array is NULL"); 8144 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8145 assert(r_start, "r array is NULL"); 8146 8147 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8148 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8149 stubAddr, stubName, TypePtr::BOTTOM, 8150 a_start, b_start, r_start); 8151 return true; 8152 } 8153 8154 bool LibraryCallKit::inline_intpoly_assign() { 8155 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8156 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8157 const char *stubName = "intpoly_assign"; 8158 address stubAddr = StubRoutines::intpoly_assign(); 8159 if (!stubAddr) return false; 8160 8161 Node* set = argument(0); 8162 Node* a = argument(1); 8163 Node* b = argument(2); 8164 Node* arr_length = load_array_length(a); 8165 8166 a = must_be_not_null(a, true); 8167 b = must_be_not_null(b, true); 8168 8169 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8170 assert(a_start, "a array is NULL"); 8171 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8172 assert(b_start, "b array is NULL"); 8173 8174 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8175 OptoRuntime::intpoly_assign_Type(), 8176 stubAddr, stubName, TypePtr::BOTTOM, 8177 set, a_start, b_start, arr_length); 8178 return true; 8179 } 8180 8181 //------------------------------inline_digestBase_implCompress----------------------- 8182 // 8183 // Calculate MD5 for single-block byte[] array. 8184 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8185 // 8186 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8187 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8188 // 8189 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8190 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8191 // 8192 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8193 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8194 // 8195 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8196 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8197 // 8198 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8199 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8200 8201 Node* digestBase_obj = argument(0); 8202 Node* src = argument(1); // type oop 8203 Node* ofs = argument(2); // type int 8204 8205 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8206 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8207 // failed array check 8208 return false; 8209 } 8210 // Figure out the size and type of the elements we will be copying. 8211 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8212 if (src_elem != T_BYTE) { 8213 return false; 8214 } 8215 // 'src_start' points to src array + offset 8216 src = must_be_not_null(src, true); 8217 Node* src_start = array_element_address(src, ofs, src_elem); 8218 Node* state = nullptr; 8219 Node* block_size = nullptr; 8220 address stubAddr; 8221 const char *stubName; 8222 8223 switch(id) { 8224 case vmIntrinsics::_md5_implCompress: 8225 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8226 state = get_state_from_digest_object(digestBase_obj, T_INT); 8227 stubAddr = StubRoutines::md5_implCompress(); 8228 stubName = "md5_implCompress"; 8229 break; 8230 case vmIntrinsics::_sha_implCompress: 8231 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8232 state = get_state_from_digest_object(digestBase_obj, T_INT); 8233 stubAddr = StubRoutines::sha1_implCompress(); 8234 stubName = "sha1_implCompress"; 8235 break; 8236 case vmIntrinsics::_sha2_implCompress: 8237 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8238 state = get_state_from_digest_object(digestBase_obj, T_INT); 8239 stubAddr = StubRoutines::sha256_implCompress(); 8240 stubName = "sha256_implCompress"; 8241 break; 8242 case vmIntrinsics::_sha5_implCompress: 8243 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8244 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8245 stubAddr = StubRoutines::sha512_implCompress(); 8246 stubName = "sha512_implCompress"; 8247 break; 8248 case vmIntrinsics::_sha3_implCompress: 8249 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8250 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8251 stubAddr = StubRoutines::sha3_implCompress(); 8252 stubName = "sha3_implCompress"; 8253 block_size = get_block_size_from_digest_object(digestBase_obj); 8254 if (block_size == nullptr) return false; 8255 break; 8256 default: 8257 fatal_unexpected_iid(id); 8258 return false; 8259 } 8260 if (state == nullptr) return false; 8261 8262 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8263 if (stubAddr == nullptr) return false; 8264 8265 // Call the stub. 8266 Node* call; 8267 if (block_size == nullptr) { 8268 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8269 stubAddr, stubName, TypePtr::BOTTOM, 8270 src_start, state); 8271 } else { 8272 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8273 stubAddr, stubName, TypePtr::BOTTOM, 8274 src_start, state, block_size); 8275 } 8276 8277 return true; 8278 } 8279 8280 //------------------------------inline_digestBase_implCompressMB----------------------- 8281 // 8282 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8283 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8284 // 8285 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8286 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8287 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8288 assert((uint)predicate < 5, "sanity"); 8289 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8290 8291 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8292 Node* src = argument(1); // byte[] array 8293 Node* ofs = argument(2); // type int 8294 Node* limit = argument(3); // type int 8295 8296 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8297 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8298 // failed array check 8299 return false; 8300 } 8301 // Figure out the size and type of the elements we will be copying. 8302 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8303 if (src_elem != T_BYTE) { 8304 return false; 8305 } 8306 // 'src_start' points to src array + offset 8307 src = must_be_not_null(src, false); 8308 Node* src_start = array_element_address(src, ofs, src_elem); 8309 8310 const char* klass_digestBase_name = nullptr; 8311 const char* stub_name = nullptr; 8312 address stub_addr = nullptr; 8313 BasicType elem_type = T_INT; 8314 8315 switch (predicate) { 8316 case 0: 8317 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8318 klass_digestBase_name = "sun/security/provider/MD5"; 8319 stub_name = "md5_implCompressMB"; 8320 stub_addr = StubRoutines::md5_implCompressMB(); 8321 } 8322 break; 8323 case 1: 8324 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8325 klass_digestBase_name = "sun/security/provider/SHA"; 8326 stub_name = "sha1_implCompressMB"; 8327 stub_addr = StubRoutines::sha1_implCompressMB(); 8328 } 8329 break; 8330 case 2: 8331 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8332 klass_digestBase_name = "sun/security/provider/SHA2"; 8333 stub_name = "sha256_implCompressMB"; 8334 stub_addr = StubRoutines::sha256_implCompressMB(); 8335 } 8336 break; 8337 case 3: 8338 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8339 klass_digestBase_name = "sun/security/provider/SHA5"; 8340 stub_name = "sha512_implCompressMB"; 8341 stub_addr = StubRoutines::sha512_implCompressMB(); 8342 elem_type = T_LONG; 8343 } 8344 break; 8345 case 4: 8346 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8347 klass_digestBase_name = "sun/security/provider/SHA3"; 8348 stub_name = "sha3_implCompressMB"; 8349 stub_addr = StubRoutines::sha3_implCompressMB(); 8350 elem_type = T_LONG; 8351 } 8352 break; 8353 default: 8354 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8355 } 8356 if (klass_digestBase_name != nullptr) { 8357 assert(stub_addr != nullptr, "Stub is generated"); 8358 if (stub_addr == nullptr) return false; 8359 8360 // get DigestBase klass to lookup for SHA klass 8361 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8362 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8363 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8364 8365 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8366 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8367 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8368 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8369 } 8370 return false; 8371 } 8372 8373 //------------------------------inline_digestBase_implCompressMB----------------------- 8374 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8375 BasicType elem_type, address stubAddr, const char *stubName, 8376 Node* src_start, Node* ofs, Node* limit) { 8377 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8378 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8379 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8380 digest_obj = _gvn.transform(digest_obj); 8381 8382 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8383 if (state == nullptr) return false; 8384 8385 Node* block_size = nullptr; 8386 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8387 block_size = get_block_size_from_digest_object(digest_obj); 8388 if (block_size == nullptr) return false; 8389 } 8390 8391 // Call the stub. 8392 Node* call; 8393 if (block_size == nullptr) { 8394 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8395 OptoRuntime::digestBase_implCompressMB_Type(false), 8396 stubAddr, stubName, TypePtr::BOTTOM, 8397 src_start, state, ofs, limit); 8398 } else { 8399 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8400 OptoRuntime::digestBase_implCompressMB_Type(true), 8401 stubAddr, stubName, TypePtr::BOTTOM, 8402 src_start, state, block_size, ofs, limit); 8403 } 8404 8405 // return ofs (int) 8406 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8407 set_result(result); 8408 8409 return true; 8410 } 8411 8412 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8413 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8414 assert(UseAES, "need AES instruction support"); 8415 address stubAddr = nullptr; 8416 const char *stubName = nullptr; 8417 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8418 stubName = "galoisCounterMode_AESCrypt"; 8419 8420 if (stubAddr == nullptr) return false; 8421 8422 Node* in = argument(0); 8423 Node* inOfs = argument(1); 8424 Node* len = argument(2); 8425 Node* ct = argument(3); 8426 Node* ctOfs = argument(4); 8427 Node* out = argument(5); 8428 Node* outOfs = argument(6); 8429 Node* gctr_object = argument(7); 8430 Node* ghash_object = argument(8); 8431 8432 // (1) in, ct and out are arrays. 8433 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8434 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8435 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8436 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8437 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8438 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8439 8440 // checks are the responsibility of the caller 8441 Node* in_start = in; 8442 Node* ct_start = ct; 8443 Node* out_start = out; 8444 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8445 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8446 in_start = array_element_address(in, inOfs, T_BYTE); 8447 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8448 out_start = array_element_address(out, outOfs, T_BYTE); 8449 } 8450 8451 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8452 // (because of the predicated logic executed earlier). 8453 // so we cast it here safely. 8454 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8455 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8456 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8457 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8458 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8459 8460 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8461 return false; 8462 } 8463 // cast it to what we know it will be at runtime 8464 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8465 assert(tinst != nullptr, "GCTR obj is null"); 8466 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8467 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8468 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8469 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8470 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8471 const TypeOopPtr* xtype = aklass->as_instance_type(); 8472 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8473 aescrypt_object = _gvn.transform(aescrypt_object); 8474 // we need to get the start of the aescrypt_object's expanded key array 8475 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8476 if (k_start == nullptr) return false; 8477 // similarly, get the start address of the r vector 8478 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8479 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8480 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8481 8482 8483 // Call the stub, passing params 8484 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8485 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8486 stubAddr, stubName, TypePtr::BOTTOM, 8487 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8488 8489 // return cipher length (int) 8490 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8491 set_result(retvalue); 8492 8493 return true; 8494 } 8495 8496 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8497 // Return node representing slow path of predicate check. 8498 // the pseudo code we want to emulate with this predicate is: 8499 // for encryption: 8500 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8501 // for decryption: 8502 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8503 // note cipher==plain is more conservative than the original java code but that's OK 8504 // 8505 8506 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8507 // The receiver was checked for null already. 8508 Node* objGCTR = argument(7); 8509 // Load embeddedCipher field of GCTR object. 8510 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8511 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8512 8513 // get AESCrypt klass for instanceOf check 8514 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8515 // will have same classloader as CipherBlockChaining object 8516 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8517 assert(tinst != nullptr, "GCTR obj is null"); 8518 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8519 8520 // we want to do an instanceof comparison against the AESCrypt class 8521 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8522 if (!klass_AESCrypt->is_loaded()) { 8523 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8524 Node* ctrl = control(); 8525 set_control(top()); // no regular fast path 8526 return ctrl; 8527 } 8528 8529 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8530 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8531 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8532 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8533 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8534 8535 return instof_false; // even if it is null 8536 } 8537 8538 //------------------------------get_state_from_digest_object----------------------- 8539 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8540 const char* state_type; 8541 switch (elem_type) { 8542 case T_BYTE: state_type = "[B"; break; 8543 case T_INT: state_type = "[I"; break; 8544 case T_LONG: state_type = "[J"; break; 8545 default: ShouldNotReachHere(); 8546 } 8547 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8548 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8549 if (digest_state == nullptr) return (Node *) nullptr; 8550 8551 // now have the array, need to get the start address of the state array 8552 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8553 return state; 8554 } 8555 8556 //------------------------------get_block_size_from_sha3_object---------------------------------- 8557 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8558 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8559 assert (block_size != nullptr, "sanity"); 8560 return block_size; 8561 } 8562 8563 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8564 // Return node representing slow path of predicate check. 8565 // the pseudo code we want to emulate with this predicate is: 8566 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8567 // 8568 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8569 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8570 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8571 assert((uint)predicate < 5, "sanity"); 8572 8573 // The receiver was checked for null already. 8574 Node* digestBaseObj = argument(0); 8575 8576 // get DigestBase klass for instanceOf check 8577 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8578 assert(tinst != nullptr, "digestBaseObj is null"); 8579 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8580 8581 const char* klass_name = nullptr; 8582 switch (predicate) { 8583 case 0: 8584 if (UseMD5Intrinsics) { 8585 // we want to do an instanceof comparison against the MD5 class 8586 klass_name = "sun/security/provider/MD5"; 8587 } 8588 break; 8589 case 1: 8590 if (UseSHA1Intrinsics) { 8591 // we want to do an instanceof comparison against the SHA class 8592 klass_name = "sun/security/provider/SHA"; 8593 } 8594 break; 8595 case 2: 8596 if (UseSHA256Intrinsics) { 8597 // we want to do an instanceof comparison against the SHA2 class 8598 klass_name = "sun/security/provider/SHA2"; 8599 } 8600 break; 8601 case 3: 8602 if (UseSHA512Intrinsics) { 8603 // we want to do an instanceof comparison against the SHA5 class 8604 klass_name = "sun/security/provider/SHA5"; 8605 } 8606 break; 8607 case 4: 8608 if (UseSHA3Intrinsics) { 8609 // we want to do an instanceof comparison against the SHA3 class 8610 klass_name = "sun/security/provider/SHA3"; 8611 } 8612 break; 8613 default: 8614 fatal("unknown SHA intrinsic predicate: %d", predicate); 8615 } 8616 8617 ciKlass* klass = nullptr; 8618 if (klass_name != nullptr) { 8619 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8620 } 8621 if ((klass == nullptr) || !klass->is_loaded()) { 8622 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8623 Node* ctrl = control(); 8624 set_control(top()); // no intrinsic path 8625 return ctrl; 8626 } 8627 ciInstanceKlass* instklass = klass->as_instance_klass(); 8628 8629 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8630 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8631 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8632 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8633 8634 return instof_false; // even if it is null 8635 } 8636 8637 //-------------inline_fma----------------------------------- 8638 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8639 Node *a = nullptr; 8640 Node *b = nullptr; 8641 Node *c = nullptr; 8642 Node* result = nullptr; 8643 switch (id) { 8644 case vmIntrinsics::_fmaD: 8645 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8646 // no receiver since it is static method 8647 a = round_double_node(argument(0)); 8648 b = round_double_node(argument(2)); 8649 c = round_double_node(argument(4)); 8650 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 8651 break; 8652 case vmIntrinsics::_fmaF: 8653 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8654 a = argument(0); 8655 b = argument(1); 8656 c = argument(2); 8657 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 8658 break; 8659 default: 8660 fatal_unexpected_iid(id); break; 8661 } 8662 set_result(result); 8663 return true; 8664 } 8665 8666 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8667 // argument(0) is receiver 8668 Node* codePoint = argument(1); 8669 Node* n = nullptr; 8670 8671 switch (id) { 8672 case vmIntrinsics::_isDigit : 8673 n = new DigitNode(control(), codePoint); 8674 break; 8675 case vmIntrinsics::_isLowerCase : 8676 n = new LowerCaseNode(control(), codePoint); 8677 break; 8678 case vmIntrinsics::_isUpperCase : 8679 n = new UpperCaseNode(control(), codePoint); 8680 break; 8681 case vmIntrinsics::_isWhitespace : 8682 n = new WhitespaceNode(control(), codePoint); 8683 break; 8684 default: 8685 fatal_unexpected_iid(id); 8686 } 8687 8688 set_result(_gvn.transform(n)); 8689 return true; 8690 } 8691 8692 //------------------------------inline_fp_min_max------------------------------ 8693 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 8694 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 8695 8696 // The intrinsic should be used only when the API branches aren't predictable, 8697 // the last one performing the most important comparison. The following heuristic 8698 // uses the branch statistics to eventually bail out if necessary. 8699 8700 ciMethodData *md = callee()->method_data(); 8701 8702 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 8703 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 8704 8705 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 8706 // Bail out if the call-site didn't contribute enough to the statistics. 8707 return false; 8708 } 8709 8710 uint taken = 0, not_taken = 0; 8711 8712 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 8713 if (p->is_BranchData()) { 8714 taken = ((ciBranchData*)p)->taken(); 8715 not_taken = ((ciBranchData*)p)->not_taken(); 8716 } 8717 } 8718 8719 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 8720 balance = balance < 0 ? -balance : balance; 8721 if ( balance > 0.2 ) { 8722 // Bail out if the most important branch is predictable enough. 8723 return false; 8724 } 8725 } 8726 */ 8727 8728 Node *a = nullptr; 8729 Node *b = nullptr; 8730 Node *n = nullptr; 8731 switch (id) { 8732 case vmIntrinsics::_maxF: 8733 case vmIntrinsics::_minF: 8734 case vmIntrinsics::_maxF_strict: 8735 case vmIntrinsics::_minF_strict: 8736 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 8737 a = argument(0); 8738 b = argument(1); 8739 break; 8740 case vmIntrinsics::_maxD: 8741 case vmIntrinsics::_minD: 8742 case vmIntrinsics::_maxD_strict: 8743 case vmIntrinsics::_minD_strict: 8744 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 8745 a = round_double_node(argument(0)); 8746 b = round_double_node(argument(2)); 8747 break; 8748 default: 8749 fatal_unexpected_iid(id); 8750 break; 8751 } 8752 switch (id) { 8753 case vmIntrinsics::_maxF: 8754 case vmIntrinsics::_maxF_strict: 8755 n = new MaxFNode(a, b); 8756 break; 8757 case vmIntrinsics::_minF: 8758 case vmIntrinsics::_minF_strict: 8759 n = new MinFNode(a, b); 8760 break; 8761 case vmIntrinsics::_maxD: 8762 case vmIntrinsics::_maxD_strict: 8763 n = new MaxDNode(a, b); 8764 break; 8765 case vmIntrinsics::_minD: 8766 case vmIntrinsics::_minD_strict: 8767 n = new MinDNode(a, b); 8768 break; 8769 default: 8770 fatal_unexpected_iid(id); 8771 break; 8772 } 8773 set_result(_gvn.transform(n)); 8774 return true; 8775 } 8776 8777 bool LibraryCallKit::inline_profileBoolean() { 8778 Node* counts = argument(1); 8779 const TypeAryPtr* ary = nullptr; 8780 ciArray* aobj = nullptr; 8781 if (counts->is_Con() 8782 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8783 && (aobj = ary->const_oop()->as_array()) != nullptr 8784 && (aobj->length() == 2)) { 8785 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8786 jint false_cnt = aobj->element_value(0).as_int(); 8787 jint true_cnt = aobj->element_value(1).as_int(); 8788 8789 if (C->log() != nullptr) { 8790 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8791 false_cnt, true_cnt); 8792 } 8793 8794 if (false_cnt + true_cnt == 0) { 8795 // According to profile, never executed. 8796 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8797 Deoptimization::Action_reinterpret); 8798 return true; 8799 } 8800 8801 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8802 // is a number of each value occurrences. 8803 Node* result = argument(0); 8804 if (false_cnt == 0 || true_cnt == 0) { 8805 // According to profile, one value has been never seen. 8806 int expected_val = (false_cnt == 0) ? 1 : 0; 8807 8808 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8809 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8810 8811 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8812 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8813 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8814 8815 { // Slow path: uncommon trap for never seen value and then reexecute 8816 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8817 // the value has been seen at least once. 8818 PreserveJVMState pjvms(this); 8819 PreserveReexecuteState preexecs(this); 8820 jvms()->set_should_reexecute(true); 8821 8822 set_control(slow_path); 8823 set_i_o(i_o()); 8824 8825 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8826 Deoptimization::Action_reinterpret); 8827 } 8828 // The guard for never seen value enables sharpening of the result and 8829 // returning a constant. It allows to eliminate branches on the same value 8830 // later on. 8831 set_control(fast_path); 8832 result = intcon(expected_val); 8833 } 8834 // Stop profiling. 8835 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8836 // By replacing method body with profile data (represented as ProfileBooleanNode 8837 // on IR level) we effectively disable profiling. 8838 // It enables full speed execution once optimized code is generated. 8839 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8840 C->record_for_igvn(profile); 8841 set_result(profile); 8842 return true; 8843 } else { 8844 // Continue profiling. 8845 // Profile data isn't available at the moment. So, execute method's bytecode version. 8846 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8847 // is compiled and counters aren't available since corresponding MethodHandle 8848 // isn't a compile-time constant. 8849 return false; 8850 } 8851 } 8852 8853 bool LibraryCallKit::inline_isCompileConstant() { 8854 Node* n = argument(0); 8855 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8856 return true; 8857 } 8858 8859 //------------------------------- inline_getObjectSize -------------------------------------- 8860 // 8861 // Calculate the runtime size of the object/array. 8862 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8863 // 8864 bool LibraryCallKit::inline_getObjectSize() { 8865 Node* obj = argument(3); 8866 Node* klass_node = load_object_klass(obj); 8867 8868 jint layout_con = Klass::_lh_neutral_value; 8869 Node* layout_val = get_layout_helper(klass_node, layout_con); 8870 int layout_is_con = (layout_val == nullptr); 8871 8872 if (layout_is_con) { 8873 // Layout helper is constant, can figure out things at compile time. 8874 8875 if (Klass::layout_helper_is_instance(layout_con)) { 8876 // Instance case: layout_con contains the size itself. 8877 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8878 set_result(size); 8879 } else { 8880 // Array case: size is round(header + element_size*arraylength). 8881 // Since arraylength is different for every array instance, we have to 8882 // compute the whole thing at runtime. 8883 8884 Node* arr_length = load_array_length(obj); 8885 8886 int round_mask = MinObjAlignmentInBytes - 1; 8887 int hsize = Klass::layout_helper_header_size(layout_con); 8888 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8889 8890 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8891 round_mask = 0; // strength-reduce it if it goes away completely 8892 } 8893 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8894 Node* header_size = intcon(hsize + round_mask); 8895 8896 Node* lengthx = ConvI2X(arr_length); 8897 Node* headerx = ConvI2X(header_size); 8898 8899 Node* abody = lengthx; 8900 if (eshift != 0) { 8901 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8902 } 8903 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8904 if (round_mask != 0) { 8905 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8906 } 8907 size = ConvX2L(size); 8908 set_result(size); 8909 } 8910 } else { 8911 // Layout helper is not constant, need to test for array-ness at runtime. 8912 8913 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8914 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8915 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8916 record_for_igvn(result_reg); 8917 8918 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8919 if (array_ctl != nullptr) { 8920 // Array case: size is round(header + element_size*arraylength). 8921 // Since arraylength is different for every array instance, we have to 8922 // compute the whole thing at runtime. 8923 8924 PreserveJVMState pjvms(this); 8925 set_control(array_ctl); 8926 Node* arr_length = load_array_length(obj); 8927 8928 int round_mask = MinObjAlignmentInBytes - 1; 8929 Node* mask = intcon(round_mask); 8930 8931 Node* hss = intcon(Klass::_lh_header_size_shift); 8932 Node* hsm = intcon(Klass::_lh_header_size_mask); 8933 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8934 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8935 header_size = _gvn.transform(new AddINode(header_size, mask)); 8936 8937 // There is no need to mask or shift this value. 8938 // The semantics of LShiftINode include an implicit mask to 0x1F. 8939 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8940 Node* elem_shift = layout_val; 8941 8942 Node* lengthx = ConvI2X(arr_length); 8943 Node* headerx = ConvI2X(header_size); 8944 8945 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8946 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8947 if (round_mask != 0) { 8948 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8949 } 8950 size = ConvX2L(size); 8951 8952 result_reg->init_req(_array_path, control()); 8953 result_val->init_req(_array_path, size); 8954 } 8955 8956 if (!stopped()) { 8957 // Instance case: the layout helper gives us instance size almost directly, 8958 // but we need to mask out the _lh_instance_slow_path_bit. 8959 Node* size = ConvI2X(layout_val); 8960 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8961 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8962 size = _gvn.transform(new AndXNode(size, mask)); 8963 size = ConvX2L(size); 8964 8965 result_reg->init_req(_instance_path, control()); 8966 result_val->init_req(_instance_path, size); 8967 } 8968 8969 set_result(result_reg, result_val); 8970 } 8971 8972 return true; 8973 } 8974 8975 //------------------------------- inline_blackhole -------------------------------------- 8976 // 8977 // Make sure all arguments to this node are alive. 8978 // This matches methods that were requested to be blackholed through compile commands. 8979 // 8980 bool LibraryCallKit::inline_blackhole() { 8981 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8982 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8983 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8984 8985 // Blackhole node pinches only the control, not memory. This allows 8986 // the blackhole to be pinned in the loop that computes blackholed 8987 // values, but have no other side effects, like breaking the optimizations 8988 // across the blackhole. 8989 8990 Node* bh = _gvn.transform(new BlackholeNode(control())); 8991 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8992 8993 // Bind call arguments as blackhole arguments to keep them alive 8994 uint nargs = callee()->arg_size(); 8995 for (uint i = 0; i < nargs; i++) { 8996 bh->add_req(argument(i)); 8997 } 8998 8999 return true; 9000 }