1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "ci/ciSymbols.hpp" 29 #include "classfile/vmIntrinsics.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/castnode.hpp" 41 #include "opto/cfgnode.hpp" 42 #include "opto/convertnode.hpp" 43 #include "opto/countbitsnode.hpp" 44 #include "opto/idealKit.hpp" 45 #include "opto/library_call.hpp" 46 #include "opto/mathexactnode.hpp" 47 #include "opto/mulnode.hpp" 48 #include "opto/narrowptrnode.hpp" 49 #include "opto/opaquenode.hpp" 50 #include "opto/parse.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/rootnode.hpp" 53 #include "opto/subnode.hpp" 54 #include "opto/vectornode.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/jvmtiThreadState.hpp" 57 #include "prims/unsafe.hpp" 58 #include "runtime/jniHandles.inline.hpp" 59 #include "runtime/objectMonitor.hpp" 60 #include "runtime/sharedRuntime.hpp" 61 #include "runtime/stubRoutines.hpp" 62 #include "utilities/macros.hpp" 63 #include "utilities/powerOfTwo.hpp" 64 65 //---------------------------make_vm_intrinsic---------------------------- 66 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 67 vmIntrinsicID id = m->intrinsic_id(); 68 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 69 70 if (!m->is_loaded()) { 71 // Do not attempt to inline unloaded methods. 72 return nullptr; 73 } 74 75 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 76 bool is_available = false; 77 78 { 79 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 80 // the compiler must transition to '_thread_in_vm' state because both 81 // methods access VM-internal data. 82 VM_ENTRY_MARK; 83 methodHandle mh(THREAD, m->get_Method()); 84 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 85 if (is_available && is_virtual) { 86 is_available = vmIntrinsics::does_virtual_dispatch(id); 87 } 88 } 89 90 if (is_available) { 91 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 92 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 93 return new LibraryIntrinsic(m, is_virtual, 94 vmIntrinsics::predicates_needed(id), 95 vmIntrinsics::does_virtual_dispatch(id), 96 id); 97 } else { 98 return nullptr; 99 } 100 } 101 102 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 103 LibraryCallKit kit(jvms, this); 104 Compile* C = kit.C; 105 int nodes = C->unique(); 106 #ifndef PRODUCT 107 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 108 char buf[1000]; 109 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 110 tty->print_cr("Intrinsic %s", str); 111 } 112 #endif 113 ciMethod* callee = kit.callee(); 114 const int bci = kit.bci(); 115 #ifdef ASSERT 116 Node* ctrl = kit.control(); 117 #endif 118 // Try to inline the intrinsic. 119 if (callee->check_intrinsic_candidate() && 120 kit.try_to_inline(_last_predicate)) { 121 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 122 : "(intrinsic)"; 123 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 124 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 125 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 126 if (C->log()) { 127 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 128 vmIntrinsics::name_at(intrinsic_id()), 129 (is_virtual() ? " virtual='1'" : ""), 130 C->unique() - nodes); 131 } 132 // Push the result from the inlined method onto the stack. 133 kit.push_result(); 134 return kit.transfer_exceptions_into_jvms(); 135 } 136 137 // The intrinsic bailed out 138 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 139 if (jvms->has_method()) { 140 // Not a root compile. 141 const char* msg; 142 if (callee->intrinsic_candidate()) { 143 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 144 } else { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 146 : "failed to inline (intrinsic), method not annotated"; 147 } 148 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 149 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 150 } else { 151 // Root compile 152 ResourceMark rm; 153 stringStream msg_stream; 154 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 155 vmIntrinsics::name_at(intrinsic_id()), 156 is_virtual() ? " (virtual)" : "", bci); 157 const char *msg = msg_stream.freeze(); 158 log_debug(jit, inlining)("%s", msg); 159 if (C->print_intrinsics() || C->print_inlining()) { 160 tty->print("%s", msg); 161 } 162 } 163 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 164 165 return nullptr; 166 } 167 168 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 169 LibraryCallKit kit(jvms, this); 170 Compile* C = kit.C; 171 int nodes = C->unique(); 172 _last_predicate = predicate; 173 #ifndef PRODUCT 174 assert(is_predicated() && predicate < predicates_count(), "sanity"); 175 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 176 char buf[1000]; 177 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 178 tty->print_cr("Predicate for intrinsic %s", str); 179 } 180 #endif 181 ciMethod* callee = kit.callee(); 182 const int bci = kit.bci(); 183 184 Node* slow_ctl = kit.try_to_predicate(predicate); 185 if (!kit.failing()) { 186 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 187 : "(intrinsic, predicate)"; 188 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 189 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 190 191 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 192 if (C->log()) { 193 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 194 vmIntrinsics::name_at(intrinsic_id()), 195 (is_virtual() ? " virtual='1'" : ""), 196 C->unique() - nodes); 197 } 198 return slow_ctl; // Could be null if the check folds. 199 } 200 201 // The intrinsic bailed out 202 if (jvms->has_method()) { 203 // Not a root compile. 204 const char* msg = "failed to generate predicate for intrinsic"; 205 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 206 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 207 } else { 208 // Root compile 209 ResourceMark rm; 210 stringStream msg_stream; 211 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 212 vmIntrinsics::name_at(intrinsic_id()), 213 is_virtual() ? " (virtual)" : "", bci); 214 const char *msg = msg_stream.freeze(); 215 log_debug(jit, inlining)("%s", msg); 216 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 217 } 218 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 219 return nullptr; 220 } 221 222 bool LibraryCallKit::try_to_inline(int predicate) { 223 // Handle symbolic names for otherwise undistinguished boolean switches: 224 const bool is_store = true; 225 const bool is_compress = true; 226 const bool is_static = true; 227 const bool is_volatile = true; 228 229 if (!jvms()->has_method()) { 230 // Root JVMState has a null method. 231 assert(map()->memory()->Opcode() == Op_Parm, ""); 232 // Insert the memory aliasing node 233 set_all_memory(reset_memory()); 234 } 235 assert(merged_memory(), ""); 236 237 switch (intrinsic_id()) { 238 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 239 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 240 case vmIntrinsics::_getClass: return inline_native_getClass(); 241 242 case vmIntrinsics::_ceil: 243 case vmIntrinsics::_floor: 244 case vmIntrinsics::_rint: 245 case vmIntrinsics::_dsin: 246 case vmIntrinsics::_dcos: 247 case vmIntrinsics::_dtan: 248 case vmIntrinsics::_dtanh: 249 case vmIntrinsics::_dabs: 250 case vmIntrinsics::_fabs: 251 case vmIntrinsics::_iabs: 252 case vmIntrinsics::_labs: 253 case vmIntrinsics::_datan2: 254 case vmIntrinsics::_dsqrt: 255 case vmIntrinsics::_dsqrt_strict: 256 case vmIntrinsics::_dexp: 257 case vmIntrinsics::_dlog: 258 case vmIntrinsics::_dlog10: 259 case vmIntrinsics::_dpow: 260 case vmIntrinsics::_dcopySign: 261 case vmIntrinsics::_fcopySign: 262 case vmIntrinsics::_dsignum: 263 case vmIntrinsics::_roundF: 264 case vmIntrinsics::_roundD: 265 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 266 267 case vmIntrinsics::_notify: 268 case vmIntrinsics::_notifyAll: 269 return inline_notify(intrinsic_id()); 270 271 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 272 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 273 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 274 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 275 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 276 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 277 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 278 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 279 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 280 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 281 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 282 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 283 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 284 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 285 286 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 287 288 case vmIntrinsics::_arraySort: return inline_array_sort(); 289 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 290 291 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 292 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 293 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 294 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 295 296 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 297 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 298 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 299 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 300 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 301 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 302 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 303 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 304 305 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 306 307 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 308 309 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 310 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 311 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 312 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 313 314 case vmIntrinsics::_compressStringC: 315 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 316 case vmIntrinsics::_inflateStringC: 317 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 318 319 case vmIntrinsics::_makePrivateBuffer: return inline_unsafe_make_private_buffer(); 320 case vmIntrinsics::_finishPrivateBuffer: return inline_unsafe_finish_private_buffer(); 321 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 322 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 323 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 324 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 325 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 326 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 327 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 328 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 329 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 330 case vmIntrinsics::_getValue: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false, true); 331 332 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 333 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 334 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 335 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 336 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 337 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 338 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 339 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 340 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 341 case vmIntrinsics::_putValue: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false, true); 342 343 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 344 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 345 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 346 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 347 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 348 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 349 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 350 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 351 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 352 353 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 354 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 355 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 356 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 357 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 358 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 359 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 360 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 361 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 362 363 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 369 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 370 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 371 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 372 373 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 374 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 375 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 376 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 377 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 378 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 379 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 380 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 381 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 382 383 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 384 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 385 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 386 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 387 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 388 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 389 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 390 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 391 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 392 393 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 394 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 395 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 396 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 397 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 398 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 399 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 400 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 401 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 402 403 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 404 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 405 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 406 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 407 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 408 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 409 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 410 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 411 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 412 413 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 414 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 415 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 418 419 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 420 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 421 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 422 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 423 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 424 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 425 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 426 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 427 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 428 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 429 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 430 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 431 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 432 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 433 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 434 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 435 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 436 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 437 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 438 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 439 440 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 441 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 442 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 443 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 444 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 445 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 446 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 447 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 448 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 449 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 450 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 451 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 452 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 453 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 454 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 455 456 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 457 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 458 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 460 461 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 462 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 463 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 466 467 case vmIntrinsics::_loadFence: 468 case vmIntrinsics::_storeFence: 469 case vmIntrinsics::_storeStoreFence: 470 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 471 472 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 473 474 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 475 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 476 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 477 478 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 479 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 480 481 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 482 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 483 484 #if INCLUDE_JVMTI 485 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 486 "notifyJvmtiStart", true, false); 487 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 488 "notifyJvmtiEnd", false, true); 489 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 490 "notifyJvmtiMount", false, false); 491 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 492 "notifyJvmtiUnmount", false, false); 493 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 494 #endif 495 496 #ifdef JFR_HAVE_INTRINSICS 497 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 498 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 499 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 500 #endif 501 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 502 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 503 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 504 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 505 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 506 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 507 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 508 case vmIntrinsics::_isFlatArray: return inline_unsafe_isFlatArray(); 509 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 510 case vmIntrinsics::_getLength: return inline_native_getLength(); 511 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 512 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 513 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 514 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 515 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 516 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 517 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 518 519 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 520 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 521 case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false); 522 case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true); 523 case vmIntrinsics::_newNullableAtomicArray: return inline_newArray(/* null_free */ false, /* atomic */ true); 524 525 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 526 527 case vmIntrinsics::_isInstance: 528 case vmIntrinsics::_isHidden: 529 case vmIntrinsics::_getSuperclass: 530 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 531 532 case vmIntrinsics::_floatToRawIntBits: 533 case vmIntrinsics::_floatToIntBits: 534 case vmIntrinsics::_intBitsToFloat: 535 case vmIntrinsics::_doubleToRawLongBits: 536 case vmIntrinsics::_doubleToLongBits: 537 case vmIntrinsics::_longBitsToDouble: 538 case vmIntrinsics::_floatToFloat16: 539 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 540 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 541 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 542 case vmIntrinsics::_floatIsFinite: 543 case vmIntrinsics::_floatIsInfinite: 544 case vmIntrinsics::_doubleIsFinite: 545 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 546 547 case vmIntrinsics::_numberOfLeadingZeros_i: 548 case vmIntrinsics::_numberOfLeadingZeros_l: 549 case vmIntrinsics::_numberOfTrailingZeros_i: 550 case vmIntrinsics::_numberOfTrailingZeros_l: 551 case vmIntrinsics::_bitCount_i: 552 case vmIntrinsics::_bitCount_l: 553 case vmIntrinsics::_reverse_i: 554 case vmIntrinsics::_reverse_l: 555 case vmIntrinsics::_reverseBytes_i: 556 case vmIntrinsics::_reverseBytes_l: 557 case vmIntrinsics::_reverseBytes_s: 558 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 559 560 case vmIntrinsics::_compress_i: 561 case vmIntrinsics::_compress_l: 562 case vmIntrinsics::_expand_i: 563 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 564 565 case vmIntrinsics::_compareUnsigned_i: 566 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 567 568 case vmIntrinsics::_divideUnsigned_i: 569 case vmIntrinsics::_divideUnsigned_l: 570 case vmIntrinsics::_remainderUnsigned_i: 571 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 572 573 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 574 575 case vmIntrinsics::_Reference_get: return inline_reference_get(); 576 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 577 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 578 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 579 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 580 581 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 582 583 case vmIntrinsics::_aescrypt_encryptBlock: 584 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 585 586 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 587 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 588 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 589 590 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 591 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 592 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 593 594 case vmIntrinsics::_counterMode_AESCrypt: 595 return inline_counterMode_AESCrypt(intrinsic_id()); 596 597 case vmIntrinsics::_galoisCounterMode_AESCrypt: 598 return inline_galoisCounterMode_AESCrypt(); 599 600 case vmIntrinsics::_md5_implCompress: 601 case vmIntrinsics::_sha_implCompress: 602 case vmIntrinsics::_sha2_implCompress: 603 case vmIntrinsics::_sha5_implCompress: 604 case vmIntrinsics::_sha3_implCompress: 605 return inline_digestBase_implCompress(intrinsic_id()); 606 case vmIntrinsics::_double_keccak: 607 return inline_double_keccak(); 608 609 case vmIntrinsics::_digestBase_implCompressMB: 610 return inline_digestBase_implCompressMB(predicate); 611 612 case vmIntrinsics::_multiplyToLen: 613 return inline_multiplyToLen(); 614 615 case vmIntrinsics::_squareToLen: 616 return inline_squareToLen(); 617 618 case vmIntrinsics::_mulAdd: 619 return inline_mulAdd(); 620 621 case vmIntrinsics::_montgomeryMultiply: 622 return inline_montgomeryMultiply(); 623 case vmIntrinsics::_montgomerySquare: 624 return inline_montgomerySquare(); 625 626 case vmIntrinsics::_bigIntegerRightShiftWorker: 627 return inline_bigIntegerShift(true); 628 case vmIntrinsics::_bigIntegerLeftShiftWorker: 629 return inline_bigIntegerShift(false); 630 631 case vmIntrinsics::_vectorizedMismatch: 632 return inline_vectorizedMismatch(); 633 634 case vmIntrinsics::_ghash_processBlocks: 635 return inline_ghash_processBlocks(); 636 case vmIntrinsics::_chacha20Block: 637 return inline_chacha20Block(); 638 case vmIntrinsics::_dilithiumAlmostNtt: 639 return inline_dilithiumAlmostNtt(); 640 case vmIntrinsics::_dilithiumAlmostInverseNtt: 641 return inline_dilithiumAlmostInverseNtt(); 642 case vmIntrinsics::_dilithiumNttMult: 643 return inline_dilithiumNttMult(); 644 case vmIntrinsics::_dilithiumMontMulByConstant: 645 return inline_dilithiumMontMulByConstant(); 646 case vmIntrinsics::_dilithiumDecomposePoly: 647 return inline_dilithiumDecomposePoly(); 648 case vmIntrinsics::_base64_encodeBlock: 649 return inline_base64_encodeBlock(); 650 case vmIntrinsics::_base64_decodeBlock: 651 return inline_base64_decodeBlock(); 652 case vmIntrinsics::_poly1305_processBlocks: 653 return inline_poly1305_processBlocks(); 654 case vmIntrinsics::_intpoly_montgomeryMult_P256: 655 return inline_intpoly_montgomeryMult_P256(); 656 case vmIntrinsics::_intpoly_assign: 657 return inline_intpoly_assign(); 658 case vmIntrinsics::_encodeISOArray: 659 case vmIntrinsics::_encodeByteISOArray: 660 return inline_encodeISOArray(false); 661 case vmIntrinsics::_encodeAsciiArray: 662 return inline_encodeISOArray(true); 663 664 case vmIntrinsics::_updateCRC32: 665 return inline_updateCRC32(); 666 case vmIntrinsics::_updateBytesCRC32: 667 return inline_updateBytesCRC32(); 668 case vmIntrinsics::_updateByteBufferCRC32: 669 return inline_updateByteBufferCRC32(); 670 671 case vmIntrinsics::_updateBytesCRC32C: 672 return inline_updateBytesCRC32C(); 673 case vmIntrinsics::_updateDirectByteBufferCRC32C: 674 return inline_updateDirectByteBufferCRC32C(); 675 676 case vmIntrinsics::_updateBytesAdler32: 677 return inline_updateBytesAdler32(); 678 case vmIntrinsics::_updateByteBufferAdler32: 679 return inline_updateByteBufferAdler32(); 680 681 case vmIntrinsics::_profileBoolean: 682 return inline_profileBoolean(); 683 case vmIntrinsics::_isCompileConstant: 684 return inline_isCompileConstant(); 685 686 case vmIntrinsics::_countPositives: 687 return inline_countPositives(); 688 689 case vmIntrinsics::_fmaD: 690 case vmIntrinsics::_fmaF: 691 return inline_fma(intrinsic_id()); 692 693 case vmIntrinsics::_isDigit: 694 case vmIntrinsics::_isLowerCase: 695 case vmIntrinsics::_isUpperCase: 696 case vmIntrinsics::_isWhitespace: 697 return inline_character_compare(intrinsic_id()); 698 699 case vmIntrinsics::_min: 700 case vmIntrinsics::_max: 701 case vmIntrinsics::_min_strict: 702 case vmIntrinsics::_max_strict: 703 case vmIntrinsics::_minL: 704 case vmIntrinsics::_maxL: 705 case vmIntrinsics::_minF: 706 case vmIntrinsics::_maxF: 707 case vmIntrinsics::_minD: 708 case vmIntrinsics::_maxD: 709 case vmIntrinsics::_minF_strict: 710 case vmIntrinsics::_maxF_strict: 711 case vmIntrinsics::_minD_strict: 712 case vmIntrinsics::_maxD_strict: 713 return inline_min_max(intrinsic_id()); 714 715 case vmIntrinsics::_VectorUnaryOp: 716 return inline_vector_nary_operation(1); 717 case vmIntrinsics::_VectorBinaryOp: 718 return inline_vector_nary_operation(2); 719 case vmIntrinsics::_VectorTernaryOp: 720 return inline_vector_nary_operation(3); 721 case vmIntrinsics::_VectorFromBitsCoerced: 722 return inline_vector_frombits_coerced(); 723 case vmIntrinsics::_VectorMaskOp: 724 return inline_vector_mask_operation(); 725 case vmIntrinsics::_VectorLoadOp: 726 return inline_vector_mem_operation(/*is_store=*/false); 727 case vmIntrinsics::_VectorLoadMaskedOp: 728 return inline_vector_mem_masked_operation(/*is_store*/false); 729 case vmIntrinsics::_VectorStoreOp: 730 return inline_vector_mem_operation(/*is_store=*/true); 731 case vmIntrinsics::_VectorStoreMaskedOp: 732 return inline_vector_mem_masked_operation(/*is_store=*/true); 733 case vmIntrinsics::_VectorGatherOp: 734 return inline_vector_gather_scatter(/*is_scatter*/ false); 735 case vmIntrinsics::_VectorScatterOp: 736 return inline_vector_gather_scatter(/*is_scatter*/ true); 737 case vmIntrinsics::_VectorReductionCoerced: 738 return inline_vector_reduction(); 739 case vmIntrinsics::_VectorTest: 740 return inline_vector_test(); 741 case vmIntrinsics::_VectorBlend: 742 return inline_vector_blend(); 743 case vmIntrinsics::_VectorRearrange: 744 return inline_vector_rearrange(); 745 case vmIntrinsics::_VectorSelectFrom: 746 return inline_vector_select_from(); 747 case vmIntrinsics::_VectorCompare: 748 return inline_vector_compare(); 749 case vmIntrinsics::_VectorBroadcastInt: 750 return inline_vector_broadcast_int(); 751 case vmIntrinsics::_VectorConvert: 752 return inline_vector_convert(); 753 case vmIntrinsics::_VectorInsert: 754 return inline_vector_insert(); 755 case vmIntrinsics::_VectorExtract: 756 return inline_vector_extract(); 757 case vmIntrinsics::_VectorCompressExpand: 758 return inline_vector_compress_expand(); 759 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 760 return inline_vector_select_from_two_vectors(); 761 case vmIntrinsics::_IndexVector: 762 return inline_index_vector(); 763 case vmIntrinsics::_IndexPartiallyInUpperRange: 764 return inline_index_partially_in_upper_range(); 765 766 case vmIntrinsics::_getObjectSize: 767 return inline_getObjectSize(); 768 769 case vmIntrinsics::_blackhole: 770 return inline_blackhole(); 771 772 default: 773 // If you get here, it may be that someone has added a new intrinsic 774 // to the list in vmIntrinsics.hpp without implementing it here. 775 #ifndef PRODUCT 776 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 777 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 778 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 779 } 780 #endif 781 return false; 782 } 783 } 784 785 Node* LibraryCallKit::try_to_predicate(int predicate) { 786 if (!jvms()->has_method()) { 787 // Root JVMState has a null method. 788 assert(map()->memory()->Opcode() == Op_Parm, ""); 789 // Insert the memory aliasing node 790 set_all_memory(reset_memory()); 791 } 792 assert(merged_memory(), ""); 793 794 switch (intrinsic_id()) { 795 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 796 return inline_cipherBlockChaining_AESCrypt_predicate(false); 797 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 798 return inline_cipherBlockChaining_AESCrypt_predicate(true); 799 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 800 return inline_electronicCodeBook_AESCrypt_predicate(false); 801 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 802 return inline_electronicCodeBook_AESCrypt_predicate(true); 803 case vmIntrinsics::_counterMode_AESCrypt: 804 return inline_counterMode_AESCrypt_predicate(); 805 case vmIntrinsics::_digestBase_implCompressMB: 806 return inline_digestBase_implCompressMB_predicate(predicate); 807 case vmIntrinsics::_galoisCounterMode_AESCrypt: 808 return inline_galoisCounterMode_AESCrypt_predicate(); 809 810 default: 811 // If you get here, it may be that someone has added a new intrinsic 812 // to the list in vmIntrinsics.hpp without implementing it here. 813 #ifndef PRODUCT 814 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 815 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 816 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 817 } 818 #endif 819 Node* slow_ctl = control(); 820 set_control(top()); // No fast path intrinsic 821 return slow_ctl; 822 } 823 } 824 825 //------------------------------set_result------------------------------- 826 // Helper function for finishing intrinsics. 827 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 828 record_for_igvn(region); 829 set_control(_gvn.transform(region)); 830 set_result( _gvn.transform(value)); 831 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 832 } 833 834 //------------------------------generate_guard--------------------------- 835 // Helper function for generating guarded fast-slow graph structures. 836 // The given 'test', if true, guards a slow path. If the test fails 837 // then a fast path can be taken. (We generally hope it fails.) 838 // In all cases, GraphKit::control() is updated to the fast path. 839 // The returned value represents the control for the slow path. 840 // The return value is never 'top'; it is either a valid control 841 // or null if it is obvious that the slow path can never be taken. 842 // Also, if region and the slow control are not null, the slow edge 843 // is appended to the region. 844 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 845 if (stopped()) { 846 // Already short circuited. 847 return nullptr; 848 } 849 850 // Build an if node and its projections. 851 // If test is true we take the slow path, which we assume is uncommon. 852 if (_gvn.type(test) == TypeInt::ZERO) { 853 // The slow branch is never taken. No need to build this guard. 854 return nullptr; 855 } 856 857 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 858 859 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 860 if (if_slow == top()) { 861 // The slow branch is never taken. No need to build this guard. 862 return nullptr; 863 } 864 865 if (region != nullptr) 866 region->add_req(if_slow); 867 868 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 869 set_control(if_fast); 870 871 return if_slow; 872 } 873 874 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 875 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 876 } 877 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 878 return generate_guard(test, region, PROB_FAIR); 879 } 880 881 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 882 Node* *pos_index) { 883 if (stopped()) 884 return nullptr; // already stopped 885 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 886 return nullptr; // index is already adequately typed 887 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 888 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 889 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 890 if (is_neg != nullptr && pos_index != nullptr) { 891 // Emulate effect of Parse::adjust_map_after_if. 892 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 893 (*pos_index) = _gvn.transform(ccast); 894 } 895 return is_neg; 896 } 897 898 // Make sure that 'position' is a valid limit index, in [0..length]. 899 // There are two equivalent plans for checking this: 900 // A. (offset + copyLength) unsigned<= arrayLength 901 // B. offset <= (arrayLength - copyLength) 902 // We require that all of the values above, except for the sum and 903 // difference, are already known to be non-negative. 904 // Plan A is robust in the face of overflow, if offset and copyLength 905 // are both hugely positive. 906 // 907 // Plan B is less direct and intuitive, but it does not overflow at 908 // all, since the difference of two non-negatives is always 909 // representable. Whenever Java methods must perform the equivalent 910 // check they generally use Plan B instead of Plan A. 911 // For the moment we use Plan A. 912 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 913 Node* subseq_length, 914 Node* array_length, 915 RegionNode* region) { 916 if (stopped()) 917 return nullptr; // already stopped 918 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 919 if (zero_offset && subseq_length->eqv_uncast(array_length)) 920 return nullptr; // common case of whole-array copy 921 Node* last = subseq_length; 922 if (!zero_offset) // last += offset 923 last = _gvn.transform(new AddINode(last, offset)); 924 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 925 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 926 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 927 return is_over; 928 } 929 930 // Emit range checks for the given String.value byte array 931 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 932 if (stopped()) { 933 return; // already stopped 934 } 935 RegionNode* bailout = new RegionNode(1); 936 record_for_igvn(bailout); 937 if (char_count) { 938 // Convert char count to byte count 939 count = _gvn.transform(new LShiftINode(count, intcon(1))); 940 } 941 942 // Offset and count must not be negative 943 generate_negative_guard(offset, bailout); 944 generate_negative_guard(count, bailout); 945 // Offset + count must not exceed length of array 946 generate_limit_guard(offset, count, load_array_length(array), bailout); 947 948 if (bailout->req() > 1) { 949 PreserveJVMState pjvms(this); 950 set_control(_gvn.transform(bailout)); 951 uncommon_trap(Deoptimization::Reason_intrinsic, 952 Deoptimization::Action_maybe_recompile); 953 } 954 } 955 956 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 957 bool is_immutable) { 958 ciKlass* thread_klass = env()->Thread_klass(); 959 const Type* thread_type 960 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 961 962 Node* thread = _gvn.transform(new ThreadLocalNode()); 963 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 964 tls_output = thread; 965 966 Node* thread_obj_handle 967 = (is_immutable 968 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 969 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 970 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 971 thread_obj_handle = _gvn.transform(thread_obj_handle); 972 973 DecoratorSet decorators = IN_NATIVE; 974 if (is_immutable) { 975 decorators |= C2_IMMUTABLE_MEMORY; 976 } 977 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 978 } 979 980 //--------------------------generate_current_thread-------------------- 981 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 982 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 983 /*is_immutable*/false); 984 } 985 986 //--------------------------generate_virtual_thread-------------------- 987 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 988 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 989 !C->method()->changes_current_thread()); 990 } 991 992 //------------------------------make_string_method_node------------------------ 993 // Helper method for String intrinsic functions. This version is called with 994 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 995 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 996 // containing the lengths of str1 and str2. 997 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 998 Node* result = nullptr; 999 switch (opcode) { 1000 case Op_StrIndexOf: 1001 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1002 str1_start, cnt1, str2_start, cnt2, ae); 1003 break; 1004 case Op_StrComp: 1005 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1006 str1_start, cnt1, str2_start, cnt2, ae); 1007 break; 1008 case Op_StrEquals: 1009 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1010 // Use the constant length if there is one because optimized match rule may exist. 1011 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1012 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1013 break; 1014 default: 1015 ShouldNotReachHere(); 1016 return nullptr; 1017 } 1018 1019 // All these intrinsics have checks. 1020 C->set_has_split_ifs(true); // Has chance for split-if optimization 1021 clear_upper_avx(); 1022 1023 return _gvn.transform(result); 1024 } 1025 1026 //------------------------------inline_string_compareTo------------------------ 1027 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1028 Node* arg1 = argument(0); 1029 Node* arg2 = argument(1); 1030 1031 arg1 = must_be_not_null(arg1, true); 1032 arg2 = must_be_not_null(arg2, true); 1033 1034 // Get start addr and length of first argument 1035 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1036 Node* arg1_cnt = load_array_length(arg1); 1037 1038 // Get start addr and length of second argument 1039 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1040 Node* arg2_cnt = load_array_length(arg2); 1041 1042 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1043 set_result(result); 1044 return true; 1045 } 1046 1047 //------------------------------inline_string_equals------------------------ 1048 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1049 Node* arg1 = argument(0); 1050 Node* arg2 = argument(1); 1051 1052 // paths (plus control) merge 1053 RegionNode* region = new RegionNode(3); 1054 Node* phi = new PhiNode(region, TypeInt::BOOL); 1055 1056 if (!stopped()) { 1057 1058 arg1 = must_be_not_null(arg1, true); 1059 arg2 = must_be_not_null(arg2, true); 1060 1061 // Get start addr and length of first argument 1062 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1063 Node* arg1_cnt = load_array_length(arg1); 1064 1065 // Get start addr and length of second argument 1066 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1067 Node* arg2_cnt = load_array_length(arg2); 1068 1069 // Check for arg1_cnt != arg2_cnt 1070 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1071 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1072 Node* if_ne = generate_slow_guard(bol, nullptr); 1073 if (if_ne != nullptr) { 1074 phi->init_req(2, intcon(0)); 1075 region->init_req(2, if_ne); 1076 } 1077 1078 // Check for count == 0 is done by assembler code for StrEquals. 1079 1080 if (!stopped()) { 1081 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1082 phi->init_req(1, equals); 1083 region->init_req(1, control()); 1084 } 1085 } 1086 1087 // post merge 1088 set_control(_gvn.transform(region)); 1089 record_for_igvn(region); 1090 1091 set_result(_gvn.transform(phi)); 1092 return true; 1093 } 1094 1095 //------------------------------inline_array_equals---------------------------- 1096 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1097 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1098 Node* arg1 = argument(0); 1099 Node* arg2 = argument(1); 1100 1101 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1102 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1103 clear_upper_avx(); 1104 1105 return true; 1106 } 1107 1108 1109 //------------------------------inline_countPositives------------------------------ 1110 bool LibraryCallKit::inline_countPositives() { 1111 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1112 return false; 1113 } 1114 1115 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1116 // no receiver since it is static method 1117 Node* ba = argument(0); 1118 Node* offset = argument(1); 1119 Node* len = argument(2); 1120 1121 ba = must_be_not_null(ba, true); 1122 1123 // Range checks 1124 generate_string_range_check(ba, offset, len, false); 1125 if (stopped()) { 1126 return true; 1127 } 1128 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1129 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1130 set_result(_gvn.transform(result)); 1131 clear_upper_avx(); 1132 return true; 1133 } 1134 1135 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1136 Node* index = argument(0); 1137 Node* length = bt == T_INT ? argument(1) : argument(2); 1138 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1139 return false; 1140 } 1141 1142 // check that length is positive 1143 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1144 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1145 1146 { 1147 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1148 uncommon_trap(Deoptimization::Reason_intrinsic, 1149 Deoptimization::Action_make_not_entrant); 1150 } 1151 1152 if (stopped()) { 1153 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1154 return true; 1155 } 1156 1157 // length is now known positive, add a cast node to make this explicit 1158 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1159 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1160 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1161 ConstraintCastNode::RegularDependency, bt); 1162 casted_length = _gvn.transform(casted_length); 1163 replace_in_map(length, casted_length); 1164 length = casted_length; 1165 1166 // Use an unsigned comparison for the range check itself 1167 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1168 BoolTest::mask btest = BoolTest::lt; 1169 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1170 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1171 _gvn.set_type(rc, rc->Value(&_gvn)); 1172 if (!rc_bool->is_Con()) { 1173 record_for_igvn(rc); 1174 } 1175 set_control(_gvn.transform(new IfTrueNode(rc))); 1176 { 1177 PreserveJVMState pjvms(this); 1178 set_control(_gvn.transform(new IfFalseNode(rc))); 1179 uncommon_trap(Deoptimization::Reason_range_check, 1180 Deoptimization::Action_make_not_entrant); 1181 } 1182 1183 if (stopped()) { 1184 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1185 return true; 1186 } 1187 1188 // index is now known to be >= 0 and < length, cast it 1189 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1190 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1191 ConstraintCastNode::RegularDependency, bt); 1192 result = _gvn.transform(result); 1193 set_result(result); 1194 replace_in_map(index, result); 1195 return true; 1196 } 1197 1198 //------------------------------inline_string_indexOf------------------------ 1199 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1200 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1201 return false; 1202 } 1203 Node* src = argument(0); 1204 Node* tgt = argument(1); 1205 1206 // Make the merge point 1207 RegionNode* result_rgn = new RegionNode(4); 1208 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1209 1210 src = must_be_not_null(src, true); 1211 tgt = must_be_not_null(tgt, true); 1212 1213 // Get start addr and length of source string 1214 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1215 Node* src_count = load_array_length(src); 1216 1217 // Get start addr and length of substring 1218 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1219 Node* tgt_count = load_array_length(tgt); 1220 1221 Node* result = nullptr; 1222 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1223 1224 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1225 // Divide src size by 2 if String is UTF16 encoded 1226 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1227 } 1228 if (ae == StrIntrinsicNode::UU) { 1229 // Divide substring size by 2 if String is UTF16 encoded 1230 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1231 } 1232 1233 if (call_opt_stub) { 1234 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1235 StubRoutines::_string_indexof_array[ae], 1236 "stringIndexOf", TypePtr::BOTTOM, src_start, 1237 src_count, tgt_start, tgt_count); 1238 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1239 } else { 1240 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1241 result_rgn, result_phi, ae); 1242 } 1243 if (result != nullptr) { 1244 result_phi->init_req(3, result); 1245 result_rgn->init_req(3, control()); 1246 } 1247 set_control(_gvn.transform(result_rgn)); 1248 record_for_igvn(result_rgn); 1249 set_result(_gvn.transform(result_phi)); 1250 1251 return true; 1252 } 1253 1254 //-----------------------------inline_string_indexOfI----------------------- 1255 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1256 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1257 return false; 1258 } 1259 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1260 return false; 1261 } 1262 1263 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1264 Node* src = argument(0); // byte[] 1265 Node* src_count = argument(1); // char count 1266 Node* tgt = argument(2); // byte[] 1267 Node* tgt_count = argument(3); // char count 1268 Node* from_index = argument(4); // char index 1269 1270 src = must_be_not_null(src, true); 1271 tgt = must_be_not_null(tgt, true); 1272 1273 // Multiply byte array index by 2 if String is UTF16 encoded 1274 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1275 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1276 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1277 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1278 1279 // Range checks 1280 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1281 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1282 if (stopped()) { 1283 return true; 1284 } 1285 1286 RegionNode* region = new RegionNode(5); 1287 Node* phi = new PhiNode(region, TypeInt::INT); 1288 Node* result = nullptr; 1289 1290 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1291 1292 if (call_opt_stub) { 1293 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1294 StubRoutines::_string_indexof_array[ae], 1295 "stringIndexOf", TypePtr::BOTTOM, src_start, 1296 src_count, tgt_start, tgt_count); 1297 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1298 } else { 1299 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1300 region, phi, ae); 1301 } 1302 if (result != nullptr) { 1303 // The result is index relative to from_index if substring was found, -1 otherwise. 1304 // Generate code which will fold into cmove. 1305 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1306 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1307 1308 Node* if_lt = generate_slow_guard(bol, nullptr); 1309 if (if_lt != nullptr) { 1310 // result == -1 1311 phi->init_req(3, result); 1312 region->init_req(3, if_lt); 1313 } 1314 if (!stopped()) { 1315 result = _gvn.transform(new AddINode(result, from_index)); 1316 phi->init_req(4, result); 1317 region->init_req(4, control()); 1318 } 1319 } 1320 1321 set_control(_gvn.transform(region)); 1322 record_for_igvn(region); 1323 set_result(_gvn.transform(phi)); 1324 clear_upper_avx(); 1325 1326 return true; 1327 } 1328 1329 // Create StrIndexOfNode with fast path checks 1330 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1331 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1332 // Check for substr count > string count 1333 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1334 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1335 Node* if_gt = generate_slow_guard(bol, nullptr); 1336 if (if_gt != nullptr) { 1337 phi->init_req(1, intcon(-1)); 1338 region->init_req(1, if_gt); 1339 } 1340 if (!stopped()) { 1341 // Check for substr count == 0 1342 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1343 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1344 Node* if_zero = generate_slow_guard(bol, nullptr); 1345 if (if_zero != nullptr) { 1346 phi->init_req(2, intcon(0)); 1347 region->init_req(2, if_zero); 1348 } 1349 } 1350 if (!stopped()) { 1351 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1352 } 1353 return nullptr; 1354 } 1355 1356 //-----------------------------inline_string_indexOfChar----------------------- 1357 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1358 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1359 return false; 1360 } 1361 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1362 return false; 1363 } 1364 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1365 Node* src = argument(0); // byte[] 1366 Node* int_ch = argument(1); 1367 Node* from_index = argument(2); 1368 Node* max = argument(3); 1369 1370 src = must_be_not_null(src, true); 1371 1372 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1373 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1374 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1375 1376 // Range checks 1377 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1378 1379 // Check for int_ch >= 0 1380 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1381 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1382 { 1383 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1384 uncommon_trap(Deoptimization::Reason_intrinsic, 1385 Deoptimization::Action_maybe_recompile); 1386 } 1387 if (stopped()) { 1388 return true; 1389 } 1390 1391 RegionNode* region = new RegionNode(3); 1392 Node* phi = new PhiNode(region, TypeInt::INT); 1393 1394 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1395 C->set_has_split_ifs(true); // Has chance for split-if optimization 1396 _gvn.transform(result); 1397 1398 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1399 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1400 1401 Node* if_lt = generate_slow_guard(bol, nullptr); 1402 if (if_lt != nullptr) { 1403 // result == -1 1404 phi->init_req(2, result); 1405 region->init_req(2, if_lt); 1406 } 1407 if (!stopped()) { 1408 result = _gvn.transform(new AddINode(result, from_index)); 1409 phi->init_req(1, result); 1410 region->init_req(1, control()); 1411 } 1412 set_control(_gvn.transform(region)); 1413 record_for_igvn(region); 1414 set_result(_gvn.transform(phi)); 1415 clear_upper_avx(); 1416 1417 return true; 1418 } 1419 //---------------------------inline_string_copy--------------------- 1420 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1421 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1422 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1423 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1424 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1425 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1426 bool LibraryCallKit::inline_string_copy(bool compress) { 1427 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1428 return false; 1429 } 1430 int nargs = 5; // 2 oops, 3 ints 1431 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1432 1433 Node* src = argument(0); 1434 Node* src_offset = argument(1); 1435 Node* dst = argument(2); 1436 Node* dst_offset = argument(3); 1437 Node* length = argument(4); 1438 1439 // Check for allocation before we add nodes that would confuse 1440 // tightly_coupled_allocation() 1441 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1442 1443 // Figure out the size and type of the elements we will be copying. 1444 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1445 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1446 if (src_type == nullptr || dst_type == nullptr) { 1447 return false; 1448 } 1449 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1450 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1451 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1452 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1453 "Unsupported array types for inline_string_copy"); 1454 1455 src = must_be_not_null(src, true); 1456 dst = must_be_not_null(dst, true); 1457 1458 // Convert char[] offsets to byte[] offsets 1459 bool convert_src = (compress && src_elem == T_BYTE); 1460 bool convert_dst = (!compress && dst_elem == T_BYTE); 1461 if (convert_src) { 1462 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1463 } else if (convert_dst) { 1464 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1465 } 1466 1467 // Range checks 1468 generate_string_range_check(src, src_offset, length, convert_src); 1469 generate_string_range_check(dst, dst_offset, length, convert_dst); 1470 if (stopped()) { 1471 return true; 1472 } 1473 1474 Node* src_start = array_element_address(src, src_offset, src_elem); 1475 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1476 // 'src_start' points to src array + scaled offset 1477 // 'dst_start' points to dst array + scaled offset 1478 Node* count = nullptr; 1479 if (compress) { 1480 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1481 } else { 1482 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1483 } 1484 1485 if (alloc != nullptr) { 1486 if (alloc->maybe_set_complete(&_gvn)) { 1487 // "You break it, you buy it." 1488 InitializeNode* init = alloc->initialization(); 1489 assert(init->is_complete(), "we just did this"); 1490 init->set_complete_with_arraycopy(); 1491 assert(dst->is_CheckCastPP(), "sanity"); 1492 assert(dst->in(0)->in(0) == init, "dest pinned"); 1493 } 1494 // Do not let stores that initialize this object be reordered with 1495 // a subsequent store that would make this object accessible by 1496 // other threads. 1497 // Record what AllocateNode this StoreStore protects so that 1498 // escape analysis can go from the MemBarStoreStoreNode to the 1499 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1500 // based on the escape status of the AllocateNode. 1501 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1502 } 1503 if (compress) { 1504 set_result(_gvn.transform(count)); 1505 } 1506 clear_upper_avx(); 1507 1508 return true; 1509 } 1510 1511 #ifdef _LP64 1512 #define XTOP ,top() /*additional argument*/ 1513 #else //_LP64 1514 #define XTOP /*no additional argument*/ 1515 #endif //_LP64 1516 1517 //------------------------inline_string_toBytesU-------------------------- 1518 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1519 bool LibraryCallKit::inline_string_toBytesU() { 1520 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1521 return false; 1522 } 1523 // Get the arguments. 1524 Node* value = argument(0); 1525 Node* offset = argument(1); 1526 Node* length = argument(2); 1527 1528 Node* newcopy = nullptr; 1529 1530 // Set the original stack and the reexecute bit for the interpreter to reexecute 1531 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1532 { PreserveReexecuteState preexecs(this); 1533 jvms()->set_should_reexecute(true); 1534 1535 // Check if a null path was taken unconditionally. 1536 value = null_check(value); 1537 1538 RegionNode* bailout = new RegionNode(1); 1539 record_for_igvn(bailout); 1540 1541 // Range checks 1542 generate_negative_guard(offset, bailout); 1543 generate_negative_guard(length, bailout); 1544 generate_limit_guard(offset, length, load_array_length(value), bailout); 1545 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1546 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1547 1548 if (bailout->req() > 1) { 1549 PreserveJVMState pjvms(this); 1550 set_control(_gvn.transform(bailout)); 1551 uncommon_trap(Deoptimization::Reason_intrinsic, 1552 Deoptimization::Action_maybe_recompile); 1553 } 1554 if (stopped()) { 1555 return true; 1556 } 1557 1558 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1559 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1560 newcopy = new_array(klass_node, size, 0); // no arguments to push 1561 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1562 guarantee(alloc != nullptr, "created above"); 1563 1564 // Calculate starting addresses. 1565 Node* src_start = array_element_address(value, offset, T_CHAR); 1566 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1567 1568 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1569 const TypeInt* toffset = gvn().type(offset)->is_int(); 1570 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1571 1572 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1573 const char* copyfunc_name = "arraycopy"; 1574 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1575 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1576 OptoRuntime::fast_arraycopy_Type(), 1577 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1578 src_start, dst_start, ConvI2X(length) XTOP); 1579 // Do not let reads from the cloned object float above the arraycopy. 1580 if (alloc->maybe_set_complete(&_gvn)) { 1581 // "You break it, you buy it." 1582 InitializeNode* init = alloc->initialization(); 1583 assert(init->is_complete(), "we just did this"); 1584 init->set_complete_with_arraycopy(); 1585 assert(newcopy->is_CheckCastPP(), "sanity"); 1586 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1587 } 1588 // Do not let stores that initialize this object be reordered with 1589 // a subsequent store that would make this object accessible by 1590 // other threads. 1591 // Record what AllocateNode this StoreStore protects so that 1592 // escape analysis can go from the MemBarStoreStoreNode to the 1593 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1594 // based on the escape status of the AllocateNode. 1595 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1596 } // original reexecute is set back here 1597 1598 C->set_has_split_ifs(true); // Has chance for split-if optimization 1599 if (!stopped()) { 1600 set_result(newcopy); 1601 } 1602 clear_upper_avx(); 1603 1604 return true; 1605 } 1606 1607 //------------------------inline_string_getCharsU-------------------------- 1608 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1609 bool LibraryCallKit::inline_string_getCharsU() { 1610 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1611 return false; 1612 } 1613 1614 // Get the arguments. 1615 Node* src = argument(0); 1616 Node* src_begin = argument(1); 1617 Node* src_end = argument(2); // exclusive offset (i < src_end) 1618 Node* dst = argument(3); 1619 Node* dst_begin = argument(4); 1620 1621 // Check for allocation before we add nodes that would confuse 1622 // tightly_coupled_allocation() 1623 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1624 1625 // Check if a null path was taken unconditionally. 1626 src = null_check(src); 1627 dst = null_check(dst); 1628 if (stopped()) { 1629 return true; 1630 } 1631 1632 // Get length and convert char[] offset to byte[] offset 1633 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1634 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1635 1636 // Range checks 1637 generate_string_range_check(src, src_begin, length, true); 1638 generate_string_range_check(dst, dst_begin, length, false); 1639 if (stopped()) { 1640 return true; 1641 } 1642 1643 if (!stopped()) { 1644 // Calculate starting addresses. 1645 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1646 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1647 1648 // Check if array addresses are aligned to HeapWordSize 1649 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1650 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1651 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1652 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1653 1654 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1655 const char* copyfunc_name = "arraycopy"; 1656 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1657 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1658 OptoRuntime::fast_arraycopy_Type(), 1659 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1660 src_start, dst_start, ConvI2X(length) XTOP); 1661 // Do not let reads from the cloned object float above the arraycopy. 1662 if (alloc != nullptr) { 1663 if (alloc->maybe_set_complete(&_gvn)) { 1664 // "You break it, you buy it." 1665 InitializeNode* init = alloc->initialization(); 1666 assert(init->is_complete(), "we just did this"); 1667 init->set_complete_with_arraycopy(); 1668 assert(dst->is_CheckCastPP(), "sanity"); 1669 assert(dst->in(0)->in(0) == init, "dest pinned"); 1670 } 1671 // Do not let stores that initialize this object be reordered with 1672 // a subsequent store that would make this object accessible by 1673 // other threads. 1674 // Record what AllocateNode this StoreStore protects so that 1675 // escape analysis can go from the MemBarStoreStoreNode to the 1676 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1677 // based on the escape status of the AllocateNode. 1678 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1679 } else { 1680 insert_mem_bar(Op_MemBarCPUOrder); 1681 } 1682 } 1683 1684 C->set_has_split_ifs(true); // Has chance for split-if optimization 1685 return true; 1686 } 1687 1688 //----------------------inline_string_char_access---------------------------- 1689 // Store/Load char to/from byte[] array. 1690 // static void StringUTF16.putChar(byte[] val, int index, int c) 1691 // static char StringUTF16.getChar(byte[] val, int index) 1692 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1693 Node* value = argument(0); 1694 Node* index = argument(1); 1695 Node* ch = is_store ? argument(2) : nullptr; 1696 1697 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1698 // correctly requires matched array shapes. 1699 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1700 "sanity: byte[] and char[] bases agree"); 1701 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1702 "sanity: byte[] and char[] scales agree"); 1703 1704 // Bail when getChar over constants is requested: constant folding would 1705 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1706 // Java method would constant fold nicely instead. 1707 if (!is_store && value->is_Con() && index->is_Con()) { 1708 return false; 1709 } 1710 1711 // Save state and restore on bailout 1712 uint old_sp = sp(); 1713 SafePointNode* old_map = clone_map(); 1714 1715 value = must_be_not_null(value, true); 1716 1717 Node* adr = array_element_address(value, index, T_CHAR); 1718 if (adr->is_top()) { 1719 set_map(old_map); 1720 set_sp(old_sp); 1721 return false; 1722 } 1723 destruct_map_clone(old_map); 1724 if (is_store) { 1725 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1726 } else { 1727 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1728 set_result(ch); 1729 } 1730 return true; 1731 } 1732 1733 1734 //------------------------------inline_math----------------------------------- 1735 // public static double Math.abs(double) 1736 // public static double Math.sqrt(double) 1737 // public static double Math.log(double) 1738 // public static double Math.log10(double) 1739 // public static double Math.round(double) 1740 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1741 Node* arg = argument(0); 1742 Node* n = nullptr; 1743 switch (id) { 1744 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1745 case vmIntrinsics::_dsqrt: 1746 case vmIntrinsics::_dsqrt_strict: 1747 n = new SqrtDNode(C, control(), arg); break; 1748 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1749 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1750 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1751 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1752 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1753 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1754 default: fatal_unexpected_iid(id); break; 1755 } 1756 set_result(_gvn.transform(n)); 1757 return true; 1758 } 1759 1760 //------------------------------inline_math----------------------------------- 1761 // public static float Math.abs(float) 1762 // public static int Math.abs(int) 1763 // public static long Math.abs(long) 1764 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1765 Node* arg = argument(0); 1766 Node* n = nullptr; 1767 switch (id) { 1768 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1769 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1770 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1771 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1772 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1773 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1774 default: fatal_unexpected_iid(id); break; 1775 } 1776 set_result(_gvn.transform(n)); 1777 return true; 1778 } 1779 1780 //------------------------------runtime_math----------------------------- 1781 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1782 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1783 "must be (DD)D or (D)D type"); 1784 1785 // Inputs 1786 Node* a = argument(0); 1787 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1788 1789 const TypePtr* no_memory_effects = nullptr; 1790 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1791 no_memory_effects, 1792 a, top(), b, b ? top() : nullptr); 1793 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1794 #ifdef ASSERT 1795 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1796 assert(value_top == top(), "second value must be top"); 1797 #endif 1798 1799 set_result(value); 1800 return true; 1801 } 1802 1803 //------------------------------inline_math_pow----------------------------- 1804 bool LibraryCallKit::inline_math_pow() { 1805 Node* exp = argument(2); 1806 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1807 if (d != nullptr) { 1808 if (d->getd() == 2.0) { 1809 // Special case: pow(x, 2.0) => x * x 1810 Node* base = argument(0); 1811 set_result(_gvn.transform(new MulDNode(base, base))); 1812 return true; 1813 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1814 // Special case: pow(x, 0.5) => sqrt(x) 1815 Node* base = argument(0); 1816 Node* zero = _gvn.zerocon(T_DOUBLE); 1817 1818 RegionNode* region = new RegionNode(3); 1819 Node* phi = new PhiNode(region, Type::DOUBLE); 1820 1821 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1822 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1823 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1824 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1825 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1826 1827 Node* if_pow = generate_slow_guard(test, nullptr); 1828 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1829 phi->init_req(1, value_sqrt); 1830 region->init_req(1, control()); 1831 1832 if (if_pow != nullptr) { 1833 set_control(if_pow); 1834 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1835 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1836 const TypePtr* no_memory_effects = nullptr; 1837 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1838 no_memory_effects, base, top(), exp, top()); 1839 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1840 #ifdef ASSERT 1841 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1842 assert(value_top == top(), "second value must be top"); 1843 #endif 1844 phi->init_req(2, value_pow); 1845 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1846 } 1847 1848 C->set_has_split_ifs(true); // Has chance for split-if optimization 1849 set_control(_gvn.transform(region)); 1850 record_for_igvn(region); 1851 set_result(_gvn.transform(phi)); 1852 1853 return true; 1854 } 1855 } 1856 1857 return StubRoutines::dpow() != nullptr ? 1858 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1859 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1860 } 1861 1862 //------------------------------inline_math_native----------------------------- 1863 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1864 switch (id) { 1865 case vmIntrinsics::_dsin: 1866 return StubRoutines::dsin() != nullptr ? 1867 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1868 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1869 case vmIntrinsics::_dcos: 1870 return StubRoutines::dcos() != nullptr ? 1871 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1872 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1873 case vmIntrinsics::_dtan: 1874 return StubRoutines::dtan() != nullptr ? 1875 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1876 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1877 case vmIntrinsics::_dtanh: 1878 return StubRoutines::dtanh() != nullptr ? 1879 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1880 case vmIntrinsics::_dexp: 1881 return StubRoutines::dexp() != nullptr ? 1882 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1883 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1884 case vmIntrinsics::_dlog: 1885 return StubRoutines::dlog() != nullptr ? 1886 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1887 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1888 case vmIntrinsics::_dlog10: 1889 return StubRoutines::dlog10() != nullptr ? 1890 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1891 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1892 1893 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1894 case vmIntrinsics::_ceil: 1895 case vmIntrinsics::_floor: 1896 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1897 1898 case vmIntrinsics::_dsqrt: 1899 case vmIntrinsics::_dsqrt_strict: 1900 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1901 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1902 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1903 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1904 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1905 1906 case vmIntrinsics::_dpow: return inline_math_pow(); 1907 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1908 case vmIntrinsics::_fcopySign: return inline_math(id); 1909 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1910 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1911 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1912 1913 // These intrinsics are not yet correctly implemented 1914 case vmIntrinsics::_datan2: 1915 return false; 1916 1917 default: 1918 fatal_unexpected_iid(id); 1919 return false; 1920 } 1921 } 1922 1923 //----------------------------inline_notify-----------------------------------* 1924 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1925 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1926 address func; 1927 if (id == vmIntrinsics::_notify) { 1928 func = OptoRuntime::monitor_notify_Java(); 1929 } else { 1930 func = OptoRuntime::monitor_notifyAll_Java(); 1931 } 1932 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1933 make_slow_call_ex(call, env()->Throwable_klass(), false); 1934 return true; 1935 } 1936 1937 1938 //----------------------------inline_min_max----------------------------------- 1939 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1940 Node* a = nullptr; 1941 Node* b = nullptr; 1942 Node* n = nullptr; 1943 switch (id) { 1944 case vmIntrinsics::_min: 1945 case vmIntrinsics::_max: 1946 case vmIntrinsics::_minF: 1947 case vmIntrinsics::_maxF: 1948 case vmIntrinsics::_minF_strict: 1949 case vmIntrinsics::_maxF_strict: 1950 case vmIntrinsics::_min_strict: 1951 case vmIntrinsics::_max_strict: 1952 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1953 a = argument(0); 1954 b = argument(1); 1955 break; 1956 case vmIntrinsics::_minD: 1957 case vmIntrinsics::_maxD: 1958 case vmIntrinsics::_minD_strict: 1959 case vmIntrinsics::_maxD_strict: 1960 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1961 a = argument(0); 1962 b = argument(2); 1963 break; 1964 case vmIntrinsics::_minL: 1965 case vmIntrinsics::_maxL: 1966 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1967 a = argument(0); 1968 b = argument(2); 1969 break; 1970 default: 1971 fatal_unexpected_iid(id); 1972 break; 1973 } 1974 1975 switch (id) { 1976 case vmIntrinsics::_min: 1977 case vmIntrinsics::_min_strict: 1978 n = new MinINode(a, b); 1979 break; 1980 case vmIntrinsics::_max: 1981 case vmIntrinsics::_max_strict: 1982 n = new MaxINode(a, b); 1983 break; 1984 case vmIntrinsics::_minF: 1985 case vmIntrinsics::_minF_strict: 1986 n = new MinFNode(a, b); 1987 break; 1988 case vmIntrinsics::_maxF: 1989 case vmIntrinsics::_maxF_strict: 1990 n = new MaxFNode(a, b); 1991 break; 1992 case vmIntrinsics::_minD: 1993 case vmIntrinsics::_minD_strict: 1994 n = new MinDNode(a, b); 1995 break; 1996 case vmIntrinsics::_maxD: 1997 case vmIntrinsics::_maxD_strict: 1998 n = new MaxDNode(a, b); 1999 break; 2000 case vmIntrinsics::_minL: 2001 n = new MinLNode(_gvn.C, a, b); 2002 break; 2003 case vmIntrinsics::_maxL: 2004 n = new MaxLNode(_gvn.C, a, b); 2005 break; 2006 default: 2007 fatal_unexpected_iid(id); 2008 break; 2009 } 2010 2011 set_result(_gvn.transform(n)); 2012 return true; 2013 } 2014 2015 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 2016 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2017 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2018 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2019 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2020 2021 { 2022 PreserveJVMState pjvms(this); 2023 PreserveReexecuteState preexecs(this); 2024 jvms()->set_should_reexecute(true); 2025 2026 set_control(slow_path); 2027 set_i_o(i_o()); 2028 2029 uncommon_trap(Deoptimization::Reason_intrinsic, 2030 Deoptimization::Action_none); 2031 } 2032 2033 set_control(fast_path); 2034 set_result(math); 2035 } 2036 2037 template <typename OverflowOp> 2038 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2039 typedef typename OverflowOp::MathOp MathOp; 2040 2041 MathOp* mathOp = new MathOp(arg1, arg2); 2042 Node* operation = _gvn.transform( mathOp ); 2043 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2044 inline_math_mathExact(operation, ofcheck); 2045 return true; 2046 } 2047 2048 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2049 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2050 } 2051 2052 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2053 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2054 } 2055 2056 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2057 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2058 } 2059 2060 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2061 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2062 } 2063 2064 bool LibraryCallKit::inline_math_negateExactI() { 2065 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2066 } 2067 2068 bool LibraryCallKit::inline_math_negateExactL() { 2069 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2070 } 2071 2072 bool LibraryCallKit::inline_math_multiplyExactI() { 2073 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2074 } 2075 2076 bool LibraryCallKit::inline_math_multiplyExactL() { 2077 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2078 } 2079 2080 bool LibraryCallKit::inline_math_multiplyHigh() { 2081 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2082 return true; 2083 } 2084 2085 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2086 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2087 return true; 2088 } 2089 2090 inline int 2091 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2092 const TypePtr* base_type = TypePtr::NULL_PTR; 2093 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2094 if (base_type == nullptr) { 2095 // Unknown type. 2096 return Type::AnyPtr; 2097 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2098 // Since this is a null+long form, we have to switch to a rawptr. 2099 base = _gvn.transform(new CastX2PNode(offset)); 2100 offset = MakeConX(0); 2101 return Type::RawPtr; 2102 } else if (base_type->base() == Type::RawPtr) { 2103 return Type::RawPtr; 2104 } else if (base_type->isa_oopptr()) { 2105 // Base is never null => always a heap address. 2106 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2107 return Type::OopPtr; 2108 } 2109 // Offset is small => always a heap address. 2110 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2111 if (offset_type != nullptr && 2112 base_type->offset() == 0 && // (should always be?) 2113 offset_type->_lo >= 0 && 2114 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2115 return Type::OopPtr; 2116 } else if (type == T_OBJECT) { 2117 // off heap access to an oop doesn't make any sense. Has to be on 2118 // heap. 2119 return Type::OopPtr; 2120 } 2121 // Otherwise, it might either be oop+off or null+addr. 2122 return Type::AnyPtr; 2123 } else { 2124 // No information: 2125 return Type::AnyPtr; 2126 } 2127 } 2128 2129 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2130 Node* uncasted_base = base; 2131 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2132 if (kind == Type::RawPtr) { 2133 return basic_plus_adr(top(), uncasted_base, offset); 2134 } else if (kind == Type::AnyPtr) { 2135 assert(base == uncasted_base, "unexpected base change"); 2136 if (can_cast) { 2137 if (!_gvn.type(base)->speculative_maybe_null() && 2138 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2139 // According to profiling, this access is always on 2140 // heap. Casting the base to not null and thus avoiding membars 2141 // around the access should allow better optimizations 2142 Node* null_ctl = top(); 2143 base = null_check_oop(base, &null_ctl, true, true, true); 2144 assert(null_ctl->is_top(), "no null control here"); 2145 return basic_plus_adr(base, offset); 2146 } else if (_gvn.type(base)->speculative_always_null() && 2147 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2148 // According to profiling, this access is always off 2149 // heap. 2150 base = null_assert(base); 2151 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2152 offset = MakeConX(0); 2153 return basic_plus_adr(top(), raw_base, offset); 2154 } 2155 } 2156 // We don't know if it's an on heap or off heap access. Fall back 2157 // to raw memory access. 2158 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2159 return basic_plus_adr(top(), raw, offset); 2160 } else { 2161 assert(base == uncasted_base, "unexpected base change"); 2162 // We know it's an on heap access so base can't be null 2163 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2164 base = must_be_not_null(base, true); 2165 } 2166 return basic_plus_adr(base, offset); 2167 } 2168 } 2169 2170 //--------------------------inline_number_methods----------------------------- 2171 // inline int Integer.numberOfLeadingZeros(int) 2172 // inline int Long.numberOfLeadingZeros(long) 2173 // 2174 // inline int Integer.numberOfTrailingZeros(int) 2175 // inline int Long.numberOfTrailingZeros(long) 2176 // 2177 // inline int Integer.bitCount(int) 2178 // inline int Long.bitCount(long) 2179 // 2180 // inline char Character.reverseBytes(char) 2181 // inline short Short.reverseBytes(short) 2182 // inline int Integer.reverseBytes(int) 2183 // inline long Long.reverseBytes(long) 2184 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2185 Node* arg = argument(0); 2186 Node* n = nullptr; 2187 switch (id) { 2188 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2189 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2190 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2191 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2192 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2193 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2194 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2195 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2196 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2197 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2198 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2199 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2200 default: fatal_unexpected_iid(id); break; 2201 } 2202 set_result(_gvn.transform(n)); 2203 return true; 2204 } 2205 2206 //--------------------------inline_bitshuffle_methods----------------------------- 2207 // inline int Integer.compress(int, int) 2208 // inline int Integer.expand(int, int) 2209 // inline long Long.compress(long, long) 2210 // inline long Long.expand(long, long) 2211 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2212 Node* n = nullptr; 2213 switch (id) { 2214 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2215 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2216 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2217 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2218 default: fatal_unexpected_iid(id); break; 2219 } 2220 set_result(_gvn.transform(n)); 2221 return true; 2222 } 2223 2224 //--------------------------inline_number_methods----------------------------- 2225 // inline int Integer.compareUnsigned(int, int) 2226 // inline int Long.compareUnsigned(long, long) 2227 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2228 Node* arg1 = argument(0); 2229 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2230 Node* n = nullptr; 2231 switch (id) { 2232 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2233 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2234 default: fatal_unexpected_iid(id); break; 2235 } 2236 set_result(_gvn.transform(n)); 2237 return true; 2238 } 2239 2240 //--------------------------inline_unsigned_divmod_methods----------------------------- 2241 // inline int Integer.divideUnsigned(int, int) 2242 // inline int Integer.remainderUnsigned(int, int) 2243 // inline long Long.divideUnsigned(long, long) 2244 // inline long Long.remainderUnsigned(long, long) 2245 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2246 Node* n = nullptr; 2247 switch (id) { 2248 case vmIntrinsics::_divideUnsigned_i: { 2249 zero_check_int(argument(1)); 2250 // Compile-time detect of null-exception 2251 if (stopped()) { 2252 return true; // keep the graph constructed so far 2253 } 2254 n = new UDivINode(control(), argument(0), argument(1)); 2255 break; 2256 } 2257 case vmIntrinsics::_divideUnsigned_l: { 2258 zero_check_long(argument(2)); 2259 // Compile-time detect of null-exception 2260 if (stopped()) { 2261 return true; // keep the graph constructed so far 2262 } 2263 n = new UDivLNode(control(), argument(0), argument(2)); 2264 break; 2265 } 2266 case vmIntrinsics::_remainderUnsigned_i: { 2267 zero_check_int(argument(1)); 2268 // Compile-time detect of null-exception 2269 if (stopped()) { 2270 return true; // keep the graph constructed so far 2271 } 2272 n = new UModINode(control(), argument(0), argument(1)); 2273 break; 2274 } 2275 case vmIntrinsics::_remainderUnsigned_l: { 2276 zero_check_long(argument(2)); 2277 // Compile-time detect of null-exception 2278 if (stopped()) { 2279 return true; // keep the graph constructed so far 2280 } 2281 n = new UModLNode(control(), argument(0), argument(2)); 2282 break; 2283 } 2284 default: fatal_unexpected_iid(id); break; 2285 } 2286 set_result(_gvn.transform(n)); 2287 return true; 2288 } 2289 2290 //----------------------------inline_unsafe_access---------------------------- 2291 2292 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2293 // Attempt to infer a sharper value type from the offset and base type. 2294 ciKlass* sharpened_klass = nullptr; 2295 bool null_free = false; 2296 2297 // See if it is an instance field, with an object type. 2298 if (alias_type->field() != nullptr) { 2299 if (alias_type->field()->type()->is_klass()) { 2300 sharpened_klass = alias_type->field()->type()->as_klass(); 2301 null_free = alias_type->field()->is_null_free(); 2302 } 2303 } 2304 2305 const TypeOopPtr* result = nullptr; 2306 // See if it is a narrow oop array. 2307 if (adr_type->isa_aryptr()) { 2308 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2309 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2310 null_free = adr_type->is_aryptr()->is_null_free(); 2311 if (elem_type != nullptr && elem_type->is_loaded()) { 2312 // Sharpen the value type. 2313 result = elem_type; 2314 } 2315 } 2316 } 2317 2318 // The sharpened class might be unloaded if there is no class loader 2319 // contraint in place. 2320 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2321 // Sharpen the value type. 2322 result = TypeOopPtr::make_from_klass(sharpened_klass); 2323 if (null_free) { 2324 result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 2325 } 2326 } 2327 if (result != nullptr) { 2328 #ifndef PRODUCT 2329 if (C->print_intrinsics() || C->print_inlining()) { 2330 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2331 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2332 } 2333 #endif 2334 } 2335 return result; 2336 } 2337 2338 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2339 switch (kind) { 2340 case Relaxed: 2341 return MO_UNORDERED; 2342 case Opaque: 2343 return MO_RELAXED; 2344 case Acquire: 2345 return MO_ACQUIRE; 2346 case Release: 2347 return MO_RELEASE; 2348 case Volatile: 2349 return MO_SEQ_CST; 2350 default: 2351 ShouldNotReachHere(); 2352 return 0; 2353 } 2354 } 2355 2356 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) { 2357 if (callee()->is_static()) return false; // caller must have the capability! 2358 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2359 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2360 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2361 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2362 2363 if (is_reference_type(type)) { 2364 decorators |= ON_UNKNOWN_OOP_REF; 2365 } 2366 2367 if (unaligned) { 2368 decorators |= C2_UNALIGNED; 2369 } 2370 2371 #ifndef PRODUCT 2372 { 2373 ResourceMark rm; 2374 // Check the signatures. 2375 ciSignature* sig = callee()->signature(); 2376 #ifdef ASSERT 2377 if (!is_store) { 2378 // Object getReference(Object base, int/long offset), etc. 2379 BasicType rtype = sig->return_type()->basic_type(); 2380 assert(rtype == type, "getter must return the expected value"); 2381 assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments"); 2382 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2383 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2384 } else { 2385 // void putReference(Object base, int/long offset, Object x), etc. 2386 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2387 assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments"); 2388 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2389 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2390 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2391 assert(vtype == type, "putter must accept the expected value"); 2392 } 2393 #endif // ASSERT 2394 } 2395 #endif //PRODUCT 2396 2397 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2398 2399 Node* receiver = argument(0); // type: oop 2400 2401 // Build address expression. 2402 Node* heap_base_oop = top(); 2403 2404 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2405 Node* base = argument(1); // type: oop 2406 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2407 Node* offset = argument(2); // type: long 2408 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2409 // to be plain byte offsets, which are also the same as those accepted 2410 // by oopDesc::field_addr. 2411 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2412 "fieldOffset must be byte-scaled"); 2413 2414 ciInlineKlass* inline_klass = nullptr; 2415 if (is_flat) { 2416 const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr(); 2417 if (cls == nullptr || cls->const_oop() == nullptr) { 2418 return false; 2419 } 2420 ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type(); 2421 if (!mirror_type->is_inlinetype()) { 2422 return false; 2423 } 2424 inline_klass = mirror_type->as_inline_klass(); 2425 } 2426 2427 if (base->is_InlineType()) { 2428 InlineTypeNode* vt = base->as_InlineType(); 2429 if (is_store) { 2430 if (!vt->is_allocated(&_gvn)) { 2431 return false; 2432 } 2433 base = vt->get_oop(); 2434 } else { 2435 if (offset->is_Con()) { 2436 long off = find_long_con(offset, 0); 2437 ciInlineKlass* vk = vt->type()->inline_klass(); 2438 if ((long)(int)off != off || !vk->contains_field_offset(off)) { 2439 return false; 2440 } 2441 2442 ciField* field = vk->get_non_flat_field_by_offset(off); 2443 if (field != nullptr) { 2444 BasicType bt = type2field[field->type()->basic_type()]; 2445 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2446 bt = T_OBJECT; 2447 } 2448 if (bt == type && (!field->is_flat() || field->type() == inline_klass)) { 2449 Node* value = vt->field_value_by_offset(off, false); 2450 if (value->is_InlineType()) { 2451 value = value->as_InlineType()->adjust_scalarization_depth(this); 2452 } 2453 set_result(value); 2454 return true; 2455 } 2456 } 2457 } 2458 { 2459 // Re-execute the unsafe access if allocation triggers deoptimization. 2460 PreserveReexecuteState preexecs(this); 2461 jvms()->set_should_reexecute(true); 2462 vt = vt->buffer(this); 2463 } 2464 base = vt->get_oop(); 2465 } 2466 } 2467 2468 // 32-bit machines ignore the high half! 2469 offset = ConvL2X(offset); 2470 2471 // Save state and restore on bailout 2472 uint old_sp = sp(); 2473 SafePointNode* old_map = clone_map(); 2474 2475 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2476 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2477 2478 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2479 if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) { 2480 decorators |= IN_NATIVE; // off-heap primitive access 2481 } else { 2482 set_map(old_map); 2483 set_sp(old_sp); 2484 return false; // off-heap oop accesses are not supported 2485 } 2486 } else { 2487 heap_base_oop = base; // on-heap or mixed access 2488 } 2489 2490 // Can base be null? Otherwise, always on-heap access. 2491 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2492 2493 if (!can_access_non_heap) { 2494 decorators |= IN_HEAP; 2495 } 2496 2497 Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr; 2498 2499 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2500 if (adr_type == TypePtr::NULL_PTR) { 2501 set_map(old_map); 2502 set_sp(old_sp); 2503 return false; // off-heap access with zero address 2504 } 2505 2506 // Try to categorize the address. 2507 Compile::AliasType* alias_type = C->alias_type(adr_type); 2508 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2509 2510 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2511 alias_type->adr_type() == TypeAryPtr::RANGE) { 2512 set_map(old_map); 2513 set_sp(old_sp); 2514 return false; // not supported 2515 } 2516 2517 bool mismatched = false; 2518 BasicType bt = T_ILLEGAL; 2519 ciField* field = nullptr; 2520 if (adr_type->isa_instptr()) { 2521 const TypeInstPtr* instptr = adr_type->is_instptr(); 2522 ciInstanceKlass* k = instptr->instance_klass(); 2523 int off = instptr->offset(); 2524 if (instptr->const_oop() != nullptr && 2525 k == ciEnv::current()->Class_klass() && 2526 instptr->offset() >= (k->size_helper() * wordSize)) { 2527 k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2528 field = k->get_field_by_offset(off, true); 2529 } else { 2530 field = k->get_non_flat_field_by_offset(off); 2531 } 2532 if (field != nullptr) { 2533 bt = type2field[field->type()->basic_type()]; 2534 } 2535 if (bt != alias_type->basic_type()) { 2536 // Type mismatch. Is it an access to a nested flat field? 2537 field = k->get_field_by_offset(off, false); 2538 if (field != nullptr) { 2539 bt = type2field[field->type()->basic_type()]; 2540 } 2541 } 2542 assert(bt == alias_type->basic_type() || is_flat, "should match"); 2543 } else { 2544 bt = alias_type->basic_type(); 2545 } 2546 2547 if (bt != T_ILLEGAL) { 2548 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2549 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2550 // Alias type doesn't differentiate between byte[] and boolean[]). 2551 // Use address type to get the element type. 2552 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2553 } 2554 if (is_reference_type(bt, true)) { 2555 // accessing an array field with getReference is not a mismatch 2556 bt = T_OBJECT; 2557 } 2558 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2559 // Don't intrinsify mismatched object accesses 2560 set_map(old_map); 2561 set_sp(old_sp); 2562 return false; 2563 } 2564 mismatched = (bt != type); 2565 } else if (alias_type->adr_type()->isa_oopptr()) { 2566 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2567 } 2568 2569 if (is_flat) { 2570 if (adr_type->isa_instptr()) { 2571 if (field == nullptr || field->type() != inline_klass) { 2572 mismatched = true; 2573 } 2574 } else if (adr_type->isa_aryptr()) { 2575 const Type* elem = adr_type->is_aryptr()->elem(); 2576 if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) { 2577 mismatched = true; 2578 } 2579 } else { 2580 mismatched = true; 2581 } 2582 if (is_store) { 2583 const Type* val_t = _gvn.type(val); 2584 if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) { 2585 set_map(old_map); 2586 set_sp(old_sp); 2587 return false; 2588 } 2589 } 2590 } 2591 2592 destruct_map_clone(old_map); 2593 assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2594 2595 if (mismatched) { 2596 decorators |= C2_MISMATCHED; 2597 } 2598 2599 // First guess at the value type. 2600 const Type *value_type = Type::get_const_basic_type(type); 2601 2602 // Figure out the memory ordering. 2603 decorators |= mo_decorator_for_access_kind(kind); 2604 2605 if (!is_store) { 2606 if (type == T_OBJECT && !is_flat) { 2607 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2608 if (tjp != nullptr) { 2609 value_type = tjp; 2610 } 2611 } 2612 } 2613 2614 receiver = null_check(receiver); 2615 if (stopped()) { 2616 return true; 2617 } 2618 // Heap pointers get a null-check from the interpreter, 2619 // as a courtesy. However, this is not guaranteed by Unsafe, 2620 // and it is not possible to fully distinguish unintended nulls 2621 // from intended ones in this API. 2622 2623 if (!is_store) { 2624 Node* p = nullptr; 2625 // Try to constant fold a load from a constant field 2626 2627 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) { 2628 // final or stable field 2629 p = make_constant_from_field(field, heap_base_oop); 2630 } 2631 2632 if (p == nullptr) { // Could not constant fold the load 2633 if (is_flat) { 2634 if (adr_type->isa_instptr() && !mismatched) { 2635 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2636 int offset = adr_type->is_instptr()->offset(); 2637 p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, nullptr, holder, offset, false, -1, decorators); 2638 } else { 2639 p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, nullptr, 0, false, -1, decorators); 2640 } 2641 } else { 2642 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2643 const TypeOopPtr* ptr = value_type->make_oopptr(); 2644 if (ptr != nullptr && ptr->is_inlinetypeptr()) { 2645 // Load a non-flattened inline type from memory 2646 p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass()); 2647 } 2648 } 2649 // Normalize the value returned by getBoolean in the following cases 2650 if (type == T_BOOLEAN && 2651 (mismatched || 2652 heap_base_oop == top() || // - heap_base_oop is null or 2653 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2654 // and the unsafe access is made to large offset 2655 // (i.e., larger than the maximum offset necessary for any 2656 // field access) 2657 ) { 2658 IdealKit ideal = IdealKit(this); 2659 #define __ ideal. 2660 IdealVariable normalized_result(ideal); 2661 __ declarations_done(); 2662 __ set(normalized_result, p); 2663 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2664 __ set(normalized_result, ideal.ConI(1)); 2665 ideal.end_if(); 2666 final_sync(ideal); 2667 p = __ value(normalized_result); 2668 #undef __ 2669 } 2670 } 2671 if (type == T_ADDRESS) { 2672 p = gvn().transform(new CastP2XNode(nullptr, p)); 2673 p = ConvX2UL(p); 2674 } 2675 // The load node has the control of the preceding MemBarCPUOrder. All 2676 // following nodes will have the control of the MemBarCPUOrder inserted at 2677 // the end of this method. So, pushing the load onto the stack at a later 2678 // point is fine. 2679 set_result(p); 2680 } else { 2681 if (bt == T_ADDRESS) { 2682 // Repackage the long as a pointer. 2683 val = ConvL2X(val); 2684 val = gvn().transform(new CastX2PNode(val)); 2685 } 2686 if (is_flat) { 2687 if (adr_type->isa_instptr() && !mismatched) { 2688 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2689 int offset = adr_type->is_instptr()->offset(); 2690 val->as_InlineType()->store_flat(this, base, base, nullptr, holder, offset, false, -1, decorators); 2691 } else { 2692 val->as_InlineType()->store_flat(this, base, adr, nullptr, val->bottom_type()->inline_klass(), 0, false, -1, decorators); 2693 } 2694 } else { 2695 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2696 } 2697 } 2698 2699 if (argument(1)->is_InlineType() && is_store) { 2700 InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass()); 2701 value = value->make_larval(this, false); 2702 replace_in_map(argument(1), value); 2703 } 2704 2705 return true; 2706 } 2707 2708 bool LibraryCallKit::inline_unsafe_make_private_buffer() { 2709 Node* receiver = argument(0); 2710 Node* value = argument(1); 2711 2712 const Type* type = gvn().type(value); 2713 if (!type->is_inlinetypeptr()) { 2714 C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type"); 2715 return false; 2716 } 2717 2718 null_check(receiver); 2719 if (stopped()) { 2720 return true; 2721 } 2722 2723 value = null_check(value); 2724 if (stopped()) { 2725 return true; 2726 } 2727 2728 ciInlineKlass* vk = type->inline_klass(); 2729 Node* klass = makecon(TypeKlassPtr::make(vk)); 2730 Node* obj = new_instance(klass); 2731 AllocateNode::Ideal_allocation(obj)->_larval = true; 2732 2733 assert(value->is_InlineType(), "must be an InlineTypeNode"); 2734 value->as_InlineType()->store(this, obj, obj, vk); 2735 2736 set_result(obj); 2737 return true; 2738 } 2739 2740 bool LibraryCallKit::inline_unsafe_finish_private_buffer() { 2741 Node* receiver = argument(0); 2742 Node* buffer = argument(1); 2743 2744 const Type* type = gvn().type(buffer); 2745 if (!type->is_inlinetypeptr()) { 2746 C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type"); 2747 return false; 2748 } 2749 2750 AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer); 2751 if (alloc == nullptr) { 2752 C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer"); 2753 return false; 2754 } 2755 2756 null_check(receiver); 2757 if (stopped()) { 2758 return true; 2759 } 2760 2761 // Unset the larval bit in the object header 2762 Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned); 2763 Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place))); 2764 access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP); 2765 2766 // We must ensure that the buffer is properly published 2767 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress)); 2768 assert(!type->maybe_null(), "result of an allocation should not be null"); 2769 set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass(), false)); 2770 return true; 2771 } 2772 2773 //----------------------------inline_unsafe_load_store---------------------------- 2774 // This method serves a couple of different customers (depending on LoadStoreKind): 2775 // 2776 // LS_cmp_swap: 2777 // 2778 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2779 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2780 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2781 // 2782 // LS_cmp_swap_weak: 2783 // 2784 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2785 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2786 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2787 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2788 // 2789 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2790 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2791 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2792 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2793 // 2794 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2795 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2796 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2797 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2798 // 2799 // LS_cmp_exchange: 2800 // 2801 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2802 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2803 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2804 // 2805 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2806 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2807 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2808 // 2809 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2810 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2811 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2812 // 2813 // LS_get_add: 2814 // 2815 // int getAndAddInt( Object o, long offset, int delta) 2816 // long getAndAddLong(Object o, long offset, long delta) 2817 // 2818 // LS_get_set: 2819 // 2820 // int getAndSet(Object o, long offset, int newValue) 2821 // long getAndSet(Object o, long offset, long newValue) 2822 // Object getAndSet(Object o, long offset, Object newValue) 2823 // 2824 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2825 // This basic scheme here is the same as inline_unsafe_access, but 2826 // differs in enough details that combining them would make the code 2827 // overly confusing. (This is a true fact! I originally combined 2828 // them, but even I was confused by it!) As much code/comments as 2829 // possible are retained from inline_unsafe_access though to make 2830 // the correspondences clearer. - dl 2831 2832 if (callee()->is_static()) return false; // caller must have the capability! 2833 2834 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2835 decorators |= mo_decorator_for_access_kind(access_kind); 2836 2837 #ifndef PRODUCT 2838 BasicType rtype; 2839 { 2840 ResourceMark rm; 2841 // Check the signatures. 2842 ciSignature* sig = callee()->signature(); 2843 rtype = sig->return_type()->basic_type(); 2844 switch(kind) { 2845 case LS_get_add: 2846 case LS_get_set: { 2847 // Check the signatures. 2848 #ifdef ASSERT 2849 assert(rtype == type, "get and set must return the expected type"); 2850 assert(sig->count() == 3, "get and set has 3 arguments"); 2851 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2852 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2853 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2854 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2855 #endif // ASSERT 2856 break; 2857 } 2858 case LS_cmp_swap: 2859 case LS_cmp_swap_weak: { 2860 // Check the signatures. 2861 #ifdef ASSERT 2862 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2863 assert(sig->count() == 4, "CAS has 4 arguments"); 2864 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2865 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2866 #endif // ASSERT 2867 break; 2868 } 2869 case LS_cmp_exchange: { 2870 // Check the signatures. 2871 #ifdef ASSERT 2872 assert(rtype == type, "CAS must return the expected type"); 2873 assert(sig->count() == 4, "CAS has 4 arguments"); 2874 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2875 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2876 #endif // ASSERT 2877 break; 2878 } 2879 default: 2880 ShouldNotReachHere(); 2881 } 2882 } 2883 #endif //PRODUCT 2884 2885 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2886 2887 // Get arguments: 2888 Node* receiver = nullptr; 2889 Node* base = nullptr; 2890 Node* offset = nullptr; 2891 Node* oldval = nullptr; 2892 Node* newval = nullptr; 2893 switch(kind) { 2894 case LS_cmp_swap: 2895 case LS_cmp_swap_weak: 2896 case LS_cmp_exchange: { 2897 const bool two_slot_type = type2size[type] == 2; 2898 receiver = argument(0); // type: oop 2899 base = argument(1); // type: oop 2900 offset = argument(2); // type: long 2901 oldval = argument(4); // type: oop, int, or long 2902 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2903 break; 2904 } 2905 case LS_get_add: 2906 case LS_get_set: { 2907 receiver = argument(0); // type: oop 2908 base = argument(1); // type: oop 2909 offset = argument(2); // type: long 2910 oldval = nullptr; 2911 newval = argument(4); // type: oop, int, or long 2912 break; 2913 } 2914 default: 2915 ShouldNotReachHere(); 2916 } 2917 2918 // Build field offset expression. 2919 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2920 // to be plain byte offsets, which are also the same as those accepted 2921 // by oopDesc::field_addr. 2922 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2923 // 32-bit machines ignore the high half of long offsets 2924 offset = ConvL2X(offset); 2925 // Save state and restore on bailout 2926 uint old_sp = sp(); 2927 SafePointNode* old_map = clone_map(); 2928 Node* adr = make_unsafe_address(base, offset,type, false); 2929 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2930 2931 Compile::AliasType* alias_type = C->alias_type(adr_type); 2932 BasicType bt = alias_type->basic_type(); 2933 if (bt != T_ILLEGAL && 2934 (is_reference_type(bt) != (type == T_OBJECT))) { 2935 // Don't intrinsify mismatched object accesses. 2936 set_map(old_map); 2937 set_sp(old_sp); 2938 return false; 2939 } 2940 2941 destruct_map_clone(old_map); 2942 2943 // For CAS, unlike inline_unsafe_access, there seems no point in 2944 // trying to refine types. Just use the coarse types here. 2945 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2946 const Type *value_type = Type::get_const_basic_type(type); 2947 2948 switch (kind) { 2949 case LS_get_set: 2950 case LS_cmp_exchange: { 2951 if (type == T_OBJECT) { 2952 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2953 if (tjp != nullptr) { 2954 value_type = tjp; 2955 } 2956 } 2957 break; 2958 } 2959 case LS_cmp_swap: 2960 case LS_cmp_swap_weak: 2961 case LS_get_add: 2962 break; 2963 default: 2964 ShouldNotReachHere(); 2965 } 2966 2967 // Null check receiver. 2968 receiver = null_check(receiver); 2969 if (stopped()) { 2970 return true; 2971 } 2972 2973 int alias_idx = C->get_alias_index(adr_type); 2974 2975 if (is_reference_type(type)) { 2976 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2977 2978 if (oldval != nullptr && oldval->is_InlineType()) { 2979 // Re-execute the unsafe access if allocation triggers deoptimization. 2980 PreserveReexecuteState preexecs(this); 2981 jvms()->set_should_reexecute(true); 2982 oldval = oldval->as_InlineType()->buffer(this)->get_oop(); 2983 } 2984 if (newval != nullptr && newval->is_InlineType()) { 2985 // Re-execute the unsafe access if allocation triggers deoptimization. 2986 PreserveReexecuteState preexecs(this); 2987 jvms()->set_should_reexecute(true); 2988 newval = newval->as_InlineType()->buffer(this)->get_oop(); 2989 } 2990 2991 // Transformation of a value which could be null pointer (CastPP #null) 2992 // could be delayed during Parse (for example, in adjust_map_after_if()). 2993 // Execute transformation here to avoid barrier generation in such case. 2994 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2995 newval = _gvn.makecon(TypePtr::NULL_PTR); 2996 2997 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2998 // Refine the value to a null constant, when it is known to be null 2999 oldval = _gvn.makecon(TypePtr::NULL_PTR); 3000 } 3001 } 3002 3003 Node* result = nullptr; 3004 switch (kind) { 3005 case LS_cmp_exchange: { 3006 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 3007 oldval, newval, value_type, type, decorators); 3008 break; 3009 } 3010 case LS_cmp_swap_weak: 3011 decorators |= C2_WEAK_CMPXCHG; 3012 case LS_cmp_swap: { 3013 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 3014 oldval, newval, value_type, type, decorators); 3015 break; 3016 } 3017 case LS_get_set: { 3018 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 3019 newval, value_type, type, decorators); 3020 break; 3021 } 3022 case LS_get_add: { 3023 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 3024 newval, value_type, type, decorators); 3025 break; 3026 } 3027 default: 3028 ShouldNotReachHere(); 3029 } 3030 3031 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 3032 set_result(result); 3033 return true; 3034 } 3035 3036 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 3037 // Regardless of form, don't allow previous ld/st to move down, 3038 // then issue acquire, release, or volatile mem_bar. 3039 insert_mem_bar(Op_MemBarCPUOrder); 3040 switch(id) { 3041 case vmIntrinsics::_loadFence: 3042 insert_mem_bar(Op_LoadFence); 3043 return true; 3044 case vmIntrinsics::_storeFence: 3045 insert_mem_bar(Op_StoreFence); 3046 return true; 3047 case vmIntrinsics::_storeStoreFence: 3048 insert_mem_bar(Op_StoreStoreFence); 3049 return true; 3050 case vmIntrinsics::_fullFence: 3051 insert_mem_bar(Op_MemBarVolatile); 3052 return true; 3053 default: 3054 fatal_unexpected_iid(id); 3055 return false; 3056 } 3057 } 3058 3059 bool LibraryCallKit::inline_onspinwait() { 3060 insert_mem_bar(Op_OnSpinWait); 3061 return true; 3062 } 3063 3064 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 3065 if (!kls->is_Con()) { 3066 return true; 3067 } 3068 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 3069 if (klsptr == nullptr) { 3070 return true; 3071 } 3072 ciInstanceKlass* ik = klsptr->instance_klass(); 3073 // don't need a guard for a klass that is already initialized 3074 return !ik->is_initialized(); 3075 } 3076 3077 //----------------------------inline_unsafe_writeback0------------------------- 3078 // public native void Unsafe.writeback0(long address) 3079 bool LibraryCallKit::inline_unsafe_writeback0() { 3080 if (!Matcher::has_match_rule(Op_CacheWB)) { 3081 return false; 3082 } 3083 #ifndef PRODUCT 3084 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 3085 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 3086 ciSignature* sig = callee()->signature(); 3087 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 3088 #endif 3089 null_check_receiver(); // null-check, then ignore 3090 Node *addr = argument(1); 3091 addr = new CastX2PNode(addr); 3092 addr = _gvn.transform(addr); 3093 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 3094 flush = _gvn.transform(flush); 3095 set_memory(flush, TypeRawPtr::BOTTOM); 3096 return true; 3097 } 3098 3099 //----------------------------inline_unsafe_writeback0------------------------- 3100 // public native void Unsafe.writeback0(long address) 3101 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 3102 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 3103 return false; 3104 } 3105 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 3106 return false; 3107 } 3108 #ifndef PRODUCT 3109 assert(Matcher::has_match_rule(Op_CacheWB), 3110 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 3111 : "found match rule for CacheWBPostSync but not CacheWB")); 3112 3113 #endif 3114 null_check_receiver(); // null-check, then ignore 3115 Node *sync; 3116 if (is_pre) { 3117 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3118 } else { 3119 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3120 } 3121 sync = _gvn.transform(sync); 3122 set_memory(sync, TypeRawPtr::BOTTOM); 3123 return true; 3124 } 3125 3126 //----------------------------inline_unsafe_allocate--------------------------- 3127 // public native Object Unsafe.allocateInstance(Class<?> cls); 3128 bool LibraryCallKit::inline_unsafe_allocate() { 3129 3130 #if INCLUDE_JVMTI 3131 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3132 return false; 3133 } 3134 #endif //INCLUDE_JVMTI 3135 3136 if (callee()->is_static()) return false; // caller must have the capability! 3137 3138 null_check_receiver(); // null-check, then ignore 3139 Node* cls = null_check(argument(1)); 3140 if (stopped()) return true; 3141 3142 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 3143 kls = null_check(kls); 3144 if (stopped()) return true; // argument was like int.class 3145 3146 #if INCLUDE_JVMTI 3147 // Don't try to access new allocated obj in the intrinsic. 3148 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 3149 // Deoptimize and allocate in interpreter instead. 3150 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 3151 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 3152 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 3153 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3154 { 3155 BuildCutout unless(this, tst, PROB_MAX); 3156 uncommon_trap(Deoptimization::Reason_intrinsic, 3157 Deoptimization::Action_make_not_entrant); 3158 } 3159 if (stopped()) { 3160 return true; 3161 } 3162 #endif //INCLUDE_JVMTI 3163 3164 Node* test = nullptr; 3165 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3166 // Note: The argument might still be an illegal value like 3167 // Serializable.class or Object[].class. The runtime will handle it. 3168 // But we must make an explicit check for initialization. 3169 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3170 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3171 // can generate code to load it as unsigned byte. 3172 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 3173 Node* bits = intcon(InstanceKlass::fully_initialized); 3174 test = _gvn.transform(new SubINode(inst, bits)); 3175 // The 'test' is non-zero if we need to take a slow path. 3176 } 3177 Node* obj = nullptr; 3178 const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr(); 3179 if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) { 3180 obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this); 3181 } else { 3182 obj = new_instance(kls, test); 3183 } 3184 set_result(obj); 3185 return true; 3186 } 3187 3188 //------------------------inline_native_time_funcs-------------- 3189 // inline code for System.currentTimeMillis() and System.nanoTime() 3190 // these have the same type and signature 3191 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3192 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3193 const TypePtr* no_memory_effects = nullptr; 3194 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3195 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3196 #ifdef ASSERT 3197 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3198 assert(value_top == top(), "second value must be top"); 3199 #endif 3200 set_result(value); 3201 return true; 3202 } 3203 3204 3205 #if INCLUDE_JVMTI 3206 3207 // When notifications are disabled then just update the VTMS transition bit and return. 3208 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3209 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3210 if (!DoJVMTIVirtualThreadTransitions) { 3211 return true; 3212 } 3213 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3214 IdealKit ideal(this); 3215 3216 Node* ONE = ideal.ConI(1); 3217 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3218 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3219 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3220 3221 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3222 sync_kit(ideal); 3223 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3224 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3225 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3226 ideal.sync_kit(this); 3227 } ideal.else_(); { 3228 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3229 Node* thread = ideal.thread(); 3230 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3231 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3232 3233 sync_kit(ideal); 3234 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3235 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3236 3237 ideal.sync_kit(this); 3238 } ideal.end_if(); 3239 final_sync(ideal); 3240 3241 return true; 3242 } 3243 3244 // Always update the is_disable_suspend bit. 3245 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3246 if (!DoJVMTIVirtualThreadTransitions) { 3247 return true; 3248 } 3249 IdealKit ideal(this); 3250 3251 { 3252 // unconditionally update the is_disable_suspend bit in current JavaThread 3253 Node* thread = ideal.thread(); 3254 Node* arg = _gvn.transform(argument(0)); // argument for notification 3255 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3256 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3257 3258 sync_kit(ideal); 3259 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3260 ideal.sync_kit(this); 3261 } 3262 final_sync(ideal); 3263 3264 return true; 3265 } 3266 3267 #endif // INCLUDE_JVMTI 3268 3269 #ifdef JFR_HAVE_INTRINSICS 3270 3271 /** 3272 * if oop->klass != null 3273 * // normal class 3274 * epoch = _epoch_state ? 2 : 1 3275 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3276 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3277 * } 3278 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3279 * else 3280 * // primitive class 3281 * if oop->array_klass != null 3282 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3283 * else 3284 * id = LAST_TYPE_ID + 1 // void class path 3285 * if (!signaled) 3286 * signaled = true 3287 */ 3288 bool LibraryCallKit::inline_native_classID() { 3289 Node* cls = argument(0); 3290 3291 IdealKit ideal(this); 3292 #define __ ideal. 3293 IdealVariable result(ideal); __ declarations_done(); 3294 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3295 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3296 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3297 3298 3299 __ if_then(kls, BoolTest::ne, null()); { 3300 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3301 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3302 3303 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3304 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3305 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3306 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3307 mask = _gvn.transform(new OrLNode(mask, epoch)); 3308 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3309 3310 float unlikely = PROB_UNLIKELY(0.999); 3311 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3312 sync_kit(ideal); 3313 make_runtime_call(RC_LEAF, 3314 OptoRuntime::class_id_load_barrier_Type(), 3315 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3316 "class id load barrier", 3317 TypePtr::BOTTOM, 3318 kls); 3319 ideal.sync_kit(this); 3320 } __ end_if(); 3321 3322 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3323 } __ else_(); { 3324 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3325 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3326 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3327 __ if_then(array_kls, BoolTest::ne, null()); { 3328 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3329 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3330 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3331 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3332 } __ else_(); { 3333 // void class case 3334 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3335 } __ end_if(); 3336 3337 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3338 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3339 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3340 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3341 } __ end_if(); 3342 } __ end_if(); 3343 3344 final_sync(ideal); 3345 set_result(ideal.value(result)); 3346 #undef __ 3347 return true; 3348 } 3349 3350 //------------------------inline_native_jvm_commit------------------ 3351 bool LibraryCallKit::inline_native_jvm_commit() { 3352 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3353 3354 // Save input memory and i_o state. 3355 Node* input_memory_state = reset_memory(); 3356 set_all_memory(input_memory_state); 3357 Node* input_io_state = i_o(); 3358 3359 // TLS. 3360 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3361 // Jfr java buffer. 3362 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3363 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3364 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3365 3366 // Load the current value of the notified field in the JfrThreadLocal. 3367 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3368 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3369 3370 // Test for notification. 3371 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3372 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3373 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3374 3375 // True branch, is notified. 3376 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3377 set_control(is_notified); 3378 3379 // Reset notified state. 3380 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3381 Node* notified_reset_memory = reset_memory(); 3382 3383 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3384 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3385 // Convert the machine-word to a long. 3386 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3387 3388 // False branch, not notified. 3389 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3390 set_control(not_notified); 3391 set_all_memory(input_memory_state); 3392 3393 // Arg is the next position as a long. 3394 Node* arg = argument(0); 3395 // Convert long to machine-word. 3396 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3397 3398 // Store the next_position to the underlying jfr java buffer. 3399 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3400 3401 Node* commit_memory = reset_memory(); 3402 set_all_memory(commit_memory); 3403 3404 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3405 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3406 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3407 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3408 3409 // And flags with lease constant. 3410 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3411 3412 // Branch on lease to conditionalize returning the leased java buffer. 3413 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3414 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3415 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3416 3417 // False branch, not a lease. 3418 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3419 3420 // True branch, is lease. 3421 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3422 set_control(is_lease); 3423 3424 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3425 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3426 OptoRuntime::void_void_Type(), 3427 SharedRuntime::jfr_return_lease(), 3428 "return_lease", TypePtr::BOTTOM); 3429 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3430 3431 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3432 record_for_igvn(lease_compare_rgn); 3433 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3434 record_for_igvn(lease_compare_mem); 3435 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3436 record_for_igvn(lease_compare_io); 3437 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3438 record_for_igvn(lease_result_value); 3439 3440 // Update control and phi nodes. 3441 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3442 lease_compare_rgn->init_req(_false_path, not_lease); 3443 3444 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3445 lease_compare_mem->init_req(_false_path, commit_memory); 3446 3447 lease_compare_io->init_req(_true_path, i_o()); 3448 lease_compare_io->init_req(_false_path, input_io_state); 3449 3450 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3451 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3452 3453 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3454 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3455 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3456 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3457 3458 // Update control and phi nodes. 3459 result_rgn->init_req(_true_path, is_notified); 3460 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3461 3462 result_mem->init_req(_true_path, notified_reset_memory); 3463 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3464 3465 result_io->init_req(_true_path, input_io_state); 3466 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3467 3468 result_value->init_req(_true_path, current_pos); 3469 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3470 3471 // Set output state. 3472 set_control(_gvn.transform(result_rgn)); 3473 set_all_memory(_gvn.transform(result_mem)); 3474 set_i_o(_gvn.transform(result_io)); 3475 set_result(result_rgn, result_value); 3476 return true; 3477 } 3478 3479 /* 3480 * The intrinsic is a model of this pseudo-code: 3481 * 3482 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3483 * jobject h_event_writer = tl->java_event_writer(); 3484 * if (h_event_writer == nullptr) { 3485 * return nullptr; 3486 * } 3487 * oop threadObj = Thread::threadObj(); 3488 * oop vthread = java_lang_Thread::vthread(threadObj); 3489 * traceid tid; 3490 * bool pinVirtualThread; 3491 * bool excluded; 3492 * if (vthread != threadObj) { // i.e. current thread is virtual 3493 * tid = java_lang_Thread::tid(vthread); 3494 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3495 * pinVirtualThread = VMContinuations; 3496 * excluded = vthread_epoch_raw & excluded_mask; 3497 * if (!excluded) { 3498 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3499 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3500 * if (vthread_epoch != current_epoch) { 3501 * write_checkpoint(); 3502 * } 3503 * } 3504 * } else { 3505 * tid = java_lang_Thread::tid(threadObj); 3506 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3507 * pinVirtualThread = false; 3508 * excluded = thread_epoch_raw & excluded_mask; 3509 * } 3510 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3511 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3512 * if (tid_in_event_writer != tid) { 3513 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3514 * setField(event_writer, "excluded", excluded); 3515 * setField(event_writer, "threadID", tid); 3516 * } 3517 * return event_writer 3518 */ 3519 bool LibraryCallKit::inline_native_getEventWriter() { 3520 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3521 3522 // Save input memory and i_o state. 3523 Node* input_memory_state = reset_memory(); 3524 set_all_memory(input_memory_state); 3525 Node* input_io_state = i_o(); 3526 3527 // The most significant bit of the u2 is used to denote thread exclusion 3528 Node* excluded_shift = _gvn.intcon(15); 3529 Node* excluded_mask = _gvn.intcon(1 << 15); 3530 // The epoch generation is the range [1-32767] 3531 Node* epoch_mask = _gvn.intcon(32767); 3532 3533 // TLS 3534 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3535 3536 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3537 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3538 3539 // Load the eventwriter jobject handle. 3540 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3541 3542 // Null check the jobject handle. 3543 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3544 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3545 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3546 3547 // False path, jobj is null. 3548 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3549 3550 // True path, jobj is not null. 3551 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3552 3553 set_control(jobj_is_not_null); 3554 3555 // Load the threadObj for the CarrierThread. 3556 Node* threadObj = generate_current_thread(tls_ptr); 3557 3558 // Load the vthread. 3559 Node* vthread = generate_virtual_thread(tls_ptr); 3560 3561 // If vthread != threadObj, this is a virtual thread. 3562 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3563 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3564 IfNode* iff_vthread_not_equal_threadObj = 3565 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3566 3567 // False branch, fallback to threadObj. 3568 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3569 set_control(vthread_equal_threadObj); 3570 3571 // Load the tid field from the vthread object. 3572 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3573 3574 // Load the raw epoch value from the threadObj. 3575 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3576 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3577 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3578 TypeInt::CHAR, T_CHAR, 3579 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3580 3581 // Mask off the excluded information from the epoch. 3582 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3583 3584 // True branch, this is a virtual thread. 3585 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3586 set_control(vthread_not_equal_threadObj); 3587 3588 // Load the tid field from the vthread object. 3589 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3590 3591 // Continuation support determines if a virtual thread should be pinned. 3592 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3593 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3594 3595 // Load the raw epoch value from the vthread. 3596 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3597 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3598 TypeInt::CHAR, T_CHAR, 3599 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3600 3601 // Mask off the excluded information from the epoch. 3602 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3603 3604 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3605 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3606 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3607 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3608 3609 // False branch, vthread is excluded, no need to write epoch info. 3610 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3611 3612 // True branch, vthread is included, update epoch info. 3613 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3614 set_control(included); 3615 3616 // Get epoch value. 3617 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3618 3619 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3620 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3621 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3622 3623 // Compare the epoch in the vthread to the current epoch generation. 3624 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3625 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3626 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3627 3628 // False path, epoch is equal, checkpoint information is valid. 3629 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3630 3631 // True path, epoch is not equal, write a checkpoint for the vthread. 3632 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3633 3634 set_control(epoch_is_not_equal); 3635 3636 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3637 // The call also updates the native thread local thread id and the vthread with the current epoch. 3638 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3639 OptoRuntime::jfr_write_checkpoint_Type(), 3640 SharedRuntime::jfr_write_checkpoint(), 3641 "write_checkpoint", TypePtr::BOTTOM); 3642 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3643 3644 // vthread epoch != current epoch 3645 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3646 record_for_igvn(epoch_compare_rgn); 3647 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3648 record_for_igvn(epoch_compare_mem); 3649 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3650 record_for_igvn(epoch_compare_io); 3651 3652 // Update control and phi nodes. 3653 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3654 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3655 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3656 epoch_compare_mem->init_req(_false_path, input_memory_state); 3657 epoch_compare_io->init_req(_true_path, i_o()); 3658 epoch_compare_io->init_req(_false_path, input_io_state); 3659 3660 // excluded != true 3661 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3662 record_for_igvn(exclude_compare_rgn); 3663 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3664 record_for_igvn(exclude_compare_mem); 3665 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3666 record_for_igvn(exclude_compare_io); 3667 3668 // Update control and phi nodes. 3669 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3670 exclude_compare_rgn->init_req(_false_path, excluded); 3671 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3672 exclude_compare_mem->init_req(_false_path, input_memory_state); 3673 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3674 exclude_compare_io->init_req(_false_path, input_io_state); 3675 3676 // vthread != threadObj 3677 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3678 record_for_igvn(vthread_compare_rgn); 3679 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3680 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3681 record_for_igvn(vthread_compare_io); 3682 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3683 record_for_igvn(tid); 3684 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3685 record_for_igvn(exclusion); 3686 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3687 record_for_igvn(pinVirtualThread); 3688 3689 // Update control and phi nodes. 3690 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3691 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3692 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3693 vthread_compare_mem->init_req(_false_path, input_memory_state); 3694 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3695 vthread_compare_io->init_req(_false_path, input_io_state); 3696 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3697 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3698 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3699 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3700 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3701 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3702 3703 // Update branch state. 3704 set_control(_gvn.transform(vthread_compare_rgn)); 3705 set_all_memory(_gvn.transform(vthread_compare_mem)); 3706 set_i_o(_gvn.transform(vthread_compare_io)); 3707 3708 // Load the event writer oop by dereferencing the jobject handle. 3709 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3710 assert(klass_EventWriter->is_loaded(), "invariant"); 3711 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3712 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3713 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3714 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3715 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3716 3717 // Load the current thread id from the event writer object. 3718 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3719 // Get the field offset to, conditionally, store an updated tid value later. 3720 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3721 // Get the field offset to, conditionally, store an updated exclusion value later. 3722 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3723 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3724 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3725 3726 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3727 record_for_igvn(event_writer_tid_compare_rgn); 3728 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3729 record_for_igvn(event_writer_tid_compare_mem); 3730 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3731 record_for_igvn(event_writer_tid_compare_io); 3732 3733 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3734 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3735 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3736 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3737 3738 // False path, tids are the same. 3739 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3740 3741 // True path, tid is not equal, need to update the tid in the event writer. 3742 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3743 record_for_igvn(tid_is_not_equal); 3744 3745 // Store the pin state to the event writer. 3746 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3747 3748 // Store the exclusion state to the event writer. 3749 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3750 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3751 3752 // Store the tid to the event writer. 3753 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3754 3755 // Update control and phi nodes. 3756 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3757 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3758 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3759 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3760 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3761 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3762 3763 // Result of top level CFG, Memory, IO and Value. 3764 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3765 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3766 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3767 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3768 3769 // Result control. 3770 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3771 result_rgn->init_req(_false_path, jobj_is_null); 3772 3773 // Result memory. 3774 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3775 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3776 3777 // Result IO. 3778 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3779 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3780 3781 // Result value. 3782 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3783 result_value->init_req(_false_path, null()); // return null 3784 3785 // Set output state. 3786 set_control(_gvn.transform(result_rgn)); 3787 set_all_memory(_gvn.transform(result_mem)); 3788 set_i_o(_gvn.transform(result_io)); 3789 set_result(result_rgn, result_value); 3790 return true; 3791 } 3792 3793 /* 3794 * The intrinsic is a model of this pseudo-code: 3795 * 3796 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3797 * if (carrierThread != thread) { // is virtual thread 3798 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3799 * bool excluded = vthread_epoch_raw & excluded_mask; 3800 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3801 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3802 * if (!excluded) { 3803 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3804 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3805 * } 3806 * Atomic::release_store(&tl->_vthread, true); 3807 * return; 3808 * } 3809 * Atomic::release_store(&tl->_vthread, false); 3810 */ 3811 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3812 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3813 3814 Node* input_memory_state = reset_memory(); 3815 set_all_memory(input_memory_state); 3816 3817 // The most significant bit of the u2 is used to denote thread exclusion 3818 Node* excluded_mask = _gvn.intcon(1 << 15); 3819 // The epoch generation is the range [1-32767] 3820 Node* epoch_mask = _gvn.intcon(32767); 3821 3822 Node* const carrierThread = generate_current_thread(jt); 3823 // If thread != carrierThread, this is a virtual thread. 3824 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3825 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3826 IfNode* iff_thread_not_equal_carrierThread = 3827 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3828 3829 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3830 3831 // False branch, is carrierThread. 3832 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3833 // Store release 3834 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3835 3836 set_all_memory(input_memory_state); 3837 3838 // True branch, is virtual thread. 3839 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3840 set_control(thread_not_equal_carrierThread); 3841 3842 // Load the raw epoch value from the vthread. 3843 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3844 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3845 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3846 3847 // Mask off the excluded information from the epoch. 3848 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3849 3850 // Load the tid field from the thread. 3851 Node* tid = load_field_from_object(thread, "tid", "J"); 3852 3853 // Store the vthread tid to the jfr thread local. 3854 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3855 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3856 3857 // Branch is_excluded to conditionalize updating the epoch . 3858 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3859 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3860 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3861 3862 // True branch, vthread is excluded, no need to write epoch info. 3863 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3864 set_control(excluded); 3865 Node* vthread_is_excluded = _gvn.intcon(1); 3866 3867 // False branch, vthread is included, update epoch info. 3868 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3869 set_control(included); 3870 Node* vthread_is_included = _gvn.intcon(0); 3871 3872 // Get epoch value. 3873 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3874 3875 // Store the vthread epoch to the jfr thread local. 3876 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3877 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3878 3879 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3880 record_for_igvn(excluded_rgn); 3881 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3882 record_for_igvn(excluded_mem); 3883 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3884 record_for_igvn(exclusion); 3885 3886 // Merge the excluded control and memory. 3887 excluded_rgn->init_req(_true_path, excluded); 3888 excluded_rgn->init_req(_false_path, included); 3889 excluded_mem->init_req(_true_path, tid_memory); 3890 excluded_mem->init_req(_false_path, included_memory); 3891 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3892 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3893 3894 // Set intermediate state. 3895 set_control(_gvn.transform(excluded_rgn)); 3896 set_all_memory(excluded_mem); 3897 3898 // Store the vthread exclusion state to the jfr thread local. 3899 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3900 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3901 3902 // Store release 3903 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3904 3905 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3906 record_for_igvn(thread_compare_rgn); 3907 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3908 record_for_igvn(thread_compare_mem); 3909 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3910 record_for_igvn(vthread); 3911 3912 // Merge the thread_compare control and memory. 3913 thread_compare_rgn->init_req(_true_path, control()); 3914 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3915 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3916 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3917 3918 // Set output state. 3919 set_control(_gvn.transform(thread_compare_rgn)); 3920 set_all_memory(_gvn.transform(thread_compare_mem)); 3921 } 3922 3923 #endif // JFR_HAVE_INTRINSICS 3924 3925 //------------------------inline_native_currentCarrierThread------------------ 3926 bool LibraryCallKit::inline_native_currentCarrierThread() { 3927 Node* junk = nullptr; 3928 set_result(generate_current_thread(junk)); 3929 return true; 3930 } 3931 3932 //------------------------inline_native_currentThread------------------ 3933 bool LibraryCallKit::inline_native_currentThread() { 3934 Node* junk = nullptr; 3935 set_result(generate_virtual_thread(junk)); 3936 return true; 3937 } 3938 3939 //------------------------inline_native_setVthread------------------ 3940 bool LibraryCallKit::inline_native_setCurrentThread() { 3941 assert(C->method()->changes_current_thread(), 3942 "method changes current Thread but is not annotated ChangesCurrentThread"); 3943 Node* arr = argument(1); 3944 Node* thread = _gvn.transform(new ThreadLocalNode()); 3945 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3946 Node* thread_obj_handle 3947 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3948 thread_obj_handle = _gvn.transform(thread_obj_handle); 3949 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3950 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3951 3952 // Change the _monitor_owner_id of the JavaThread 3953 Node* tid = load_field_from_object(arr, "tid", "J"); 3954 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3955 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3956 3957 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3958 return true; 3959 } 3960 3961 const Type* LibraryCallKit::scopedValueCache_type() { 3962 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3963 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3964 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 3965 3966 // Because we create the scopedValue cache lazily we have to make the 3967 // type of the result BotPTR. 3968 bool xk = etype->klass_is_exact(); 3969 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0)); 3970 return objects_type; 3971 } 3972 3973 Node* LibraryCallKit::scopedValueCache_helper() { 3974 Node* thread = _gvn.transform(new ThreadLocalNode()); 3975 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3976 // We cannot use immutable_memory() because we might flip onto a 3977 // different carrier thread, at which point we'll need to use that 3978 // carrier thread's cache. 3979 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3980 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3981 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3982 } 3983 3984 //------------------------inline_native_scopedValueCache------------------ 3985 bool LibraryCallKit::inline_native_scopedValueCache() { 3986 Node* cache_obj_handle = scopedValueCache_helper(); 3987 const Type* objects_type = scopedValueCache_type(); 3988 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3989 3990 return true; 3991 } 3992 3993 //------------------------inline_native_setScopedValueCache------------------ 3994 bool LibraryCallKit::inline_native_setScopedValueCache() { 3995 Node* arr = argument(0); 3996 Node* cache_obj_handle = scopedValueCache_helper(); 3997 const Type* objects_type = scopedValueCache_type(); 3998 3999 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 4000 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 4001 4002 return true; 4003 } 4004 4005 //------------------------inline_native_Continuation_pin and unpin----------- 4006 4007 // Shared implementation routine for both pin and unpin. 4008 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 4009 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 4010 4011 // Save input memory. 4012 Node* input_memory_state = reset_memory(); 4013 set_all_memory(input_memory_state); 4014 4015 // TLS 4016 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 4017 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 4018 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 4019 4020 // Null check the last continuation object. 4021 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 4022 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 4023 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 4024 4025 // False path, last continuation is null. 4026 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 4027 4028 // True path, last continuation is not null. 4029 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 4030 4031 set_control(continuation_is_not_null); 4032 4033 // Load the pin count from the last continuation. 4034 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 4035 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 4036 4037 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 4038 Node* pin_count_rhs; 4039 if (unpin) { 4040 pin_count_rhs = _gvn.intcon(0); 4041 } else { 4042 pin_count_rhs = _gvn.intcon(UINT32_MAX); 4043 } 4044 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 4045 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 4046 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 4047 4048 // True branch, pin count over/underflow. 4049 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 4050 { 4051 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 4052 // which will throw IllegalStateException for pin count over/underflow. 4053 // No memory changed so far - we can use memory create by reset_memory() 4054 // at the beginning of this intrinsic. No need to call reset_memory() again. 4055 PreserveJVMState pjvms(this); 4056 set_control(pin_count_over_underflow); 4057 uncommon_trap(Deoptimization::Reason_intrinsic, 4058 Deoptimization::Action_none); 4059 assert(stopped(), "invariant"); 4060 } 4061 4062 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 4063 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 4064 set_control(valid_pin_count); 4065 4066 Node* next_pin_count; 4067 if (unpin) { 4068 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 4069 } else { 4070 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 4071 } 4072 4073 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 4074 4075 // Result of top level CFG and Memory. 4076 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 4077 record_for_igvn(result_rgn); 4078 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 4079 record_for_igvn(result_mem); 4080 4081 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 4082 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 4083 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 4084 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 4085 4086 // Set output state. 4087 set_control(_gvn.transform(result_rgn)); 4088 set_all_memory(_gvn.transform(result_mem)); 4089 4090 return true; 4091 } 4092 4093 //-----------------------load_klass_from_mirror_common------------------------- 4094 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 4095 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 4096 // and branch to the given path on the region. 4097 // If never_see_null, take an uncommon trap on null, so we can optimistically 4098 // compile for the non-null case. 4099 // If the region is null, force never_see_null = true. 4100 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 4101 bool never_see_null, 4102 RegionNode* region, 4103 int null_path, 4104 int offset) { 4105 if (region == nullptr) never_see_null = true; 4106 Node* p = basic_plus_adr(mirror, offset); 4107 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4108 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 4109 Node* null_ctl = top(); 4110 kls = null_check_oop(kls, &null_ctl, never_see_null); 4111 if (region != nullptr) { 4112 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 4113 region->init_req(null_path, null_ctl); 4114 } else { 4115 assert(null_ctl == top(), "no loose ends"); 4116 } 4117 return kls; 4118 } 4119 4120 //--------------------(inline_native_Class_query helpers)--------------------- 4121 // Use this for JVM_ACC_INTERFACE. 4122 // Fall through if (mods & mask) == bits, take the guard otherwise. 4123 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 4124 ByteSize offset, const Type* type, BasicType bt) { 4125 // Branch around if the given klass has the given modifier bit set. 4126 // Like generate_guard, adds a new path onto the region. 4127 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 4128 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 4129 Node* mask = intcon(modifier_mask); 4130 Node* bits = intcon(modifier_bits); 4131 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 4132 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 4133 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 4134 return generate_fair_guard(bol, region); 4135 } 4136 4137 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 4138 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 4139 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 4140 } 4141 4142 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 4143 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 4144 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 4145 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 4146 } 4147 4148 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 4149 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 4150 } 4151 4152 //-------------------------inline_native_Class_query------------------- 4153 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 4154 const Type* return_type = TypeInt::BOOL; 4155 Node* prim_return_value = top(); // what happens if it's a primitive class? 4156 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4157 bool expect_prim = false; // most of these guys expect to work on refs 4158 4159 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 4160 4161 Node* mirror = argument(0); 4162 Node* obj = top(); 4163 4164 switch (id) { 4165 case vmIntrinsics::_isInstance: 4166 // nothing is an instance of a primitive type 4167 prim_return_value = intcon(0); 4168 obj = argument(1); 4169 break; 4170 case vmIntrinsics::_isHidden: 4171 prim_return_value = intcon(0); 4172 break; 4173 case vmIntrinsics::_getSuperclass: 4174 prim_return_value = null(); 4175 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 4176 break; 4177 case vmIntrinsics::_getClassAccessFlags: 4178 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 4179 return_type = TypeInt::CHAR; 4180 break; 4181 default: 4182 fatal_unexpected_iid(id); 4183 break; 4184 } 4185 4186 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4187 if (mirror_con == nullptr) return false; // cannot happen? 4188 4189 #ifndef PRODUCT 4190 if (C->print_intrinsics() || C->print_inlining()) { 4191 ciType* k = mirror_con->java_mirror_type(); 4192 if (k) { 4193 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 4194 k->print_name(); 4195 tty->cr(); 4196 } 4197 } 4198 #endif 4199 4200 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4201 RegionNode* region = new RegionNode(PATH_LIMIT); 4202 record_for_igvn(region); 4203 PhiNode* phi = new PhiNode(region, return_type); 4204 4205 // The mirror will never be null of Reflection.getClassAccessFlags, however 4206 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4207 // if it is. See bug 4774291. 4208 4209 // For Reflection.getClassAccessFlags(), the null check occurs in 4210 // the wrong place; see inline_unsafe_access(), above, for a similar 4211 // situation. 4212 mirror = null_check(mirror); 4213 // If mirror or obj is dead, only null-path is taken. 4214 if (stopped()) return true; 4215 4216 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4217 4218 // Now load the mirror's klass metaobject, and null-check it. 4219 // Side-effects region with the control path if the klass is null. 4220 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4221 // If kls is null, we have a primitive mirror. 4222 phi->init_req(_prim_path, prim_return_value); 4223 if (stopped()) { set_result(region, phi); return true; } 4224 bool safe_for_replace = (region->in(_prim_path) == top()); 4225 4226 Node* p; // handy temp 4227 Node* null_ctl; 4228 4229 // Now that we have the non-null klass, we can perform the real query. 4230 // For constant classes, the query will constant-fold in LoadNode::Value. 4231 Node* query_value = top(); 4232 switch (id) { 4233 case vmIntrinsics::_isInstance: 4234 // nothing is an instance of a primitive type 4235 query_value = gen_instanceof(obj, kls, safe_for_replace); 4236 break; 4237 4238 case vmIntrinsics::_isHidden: 4239 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4240 if (generate_hidden_class_guard(kls, region) != nullptr) 4241 // A guard was added. If the guard is taken, it was an hidden class. 4242 phi->add_req(intcon(1)); 4243 // If we fall through, it's a plain class. 4244 query_value = intcon(0); 4245 break; 4246 4247 4248 case vmIntrinsics::_getSuperclass: 4249 // The rules here are somewhat unfortunate, but we can still do better 4250 // with random logic than with a JNI call. 4251 // Interfaces store null or Object as _super, but must report null. 4252 // Arrays store an intermediate super as _super, but must report Object. 4253 // Other types can report the actual _super. 4254 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4255 if (generate_interface_guard(kls, region) != nullptr) 4256 // A guard was added. If the guard is taken, it was an interface. 4257 phi->add_req(null()); 4258 if (generate_array_guard(kls, region) != nullptr) 4259 // A guard was added. If the guard is taken, it was an array. 4260 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4261 // If we fall through, it's a plain class. Get its _super. 4262 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4263 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4264 null_ctl = top(); 4265 kls = null_check_oop(kls, &null_ctl); 4266 if (null_ctl != top()) { 4267 // If the guard is taken, Object.superClass is null (both klass and mirror). 4268 region->add_req(null_ctl); 4269 phi ->add_req(null()); 4270 } 4271 if (!stopped()) { 4272 query_value = load_mirror_from_klass(kls); 4273 } 4274 break; 4275 4276 case vmIntrinsics::_getClassAccessFlags: 4277 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4278 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4279 break; 4280 4281 default: 4282 fatal_unexpected_iid(id); 4283 break; 4284 } 4285 4286 // Fall-through is the normal case of a query to a real class. 4287 phi->init_req(1, query_value); 4288 region->init_req(1, control()); 4289 4290 C->set_has_split_ifs(true); // Has chance for split-if optimization 4291 set_result(region, phi); 4292 return true; 4293 } 4294 4295 4296 //-------------------------inline_Class_cast------------------- 4297 bool LibraryCallKit::inline_Class_cast() { 4298 Node* mirror = argument(0); // Class 4299 Node* obj = argument(1); 4300 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4301 if (mirror_con == nullptr) { 4302 return false; // dead path (mirror->is_top()). 4303 } 4304 if (obj == nullptr || obj->is_top()) { 4305 return false; // dead path 4306 } 4307 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4308 4309 // First, see if Class.cast() can be folded statically. 4310 // java_mirror_type() returns non-null for compile-time Class constants. 4311 bool is_null_free_array = false; 4312 ciType* tm = mirror_con->java_mirror_type(&is_null_free_array); 4313 if (tm != nullptr && tm->is_klass() && 4314 tp != nullptr) { 4315 if (!tp->is_loaded()) { 4316 // Don't use intrinsic when class is not loaded. 4317 return false; 4318 } else { 4319 const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces); 4320 if (is_null_free_array) { 4321 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 4322 } 4323 int static_res = C->static_subtype_check(tklass, tp->as_klass_type()); 4324 if (static_res == Compile::SSC_always_true) { 4325 // isInstance() is true - fold the code. 4326 set_result(obj); 4327 return true; 4328 } else if (static_res == Compile::SSC_always_false) { 4329 // Don't use intrinsic, have to throw ClassCastException. 4330 // If the reference is null, the non-intrinsic bytecode will 4331 // be optimized appropriately. 4332 return false; 4333 } 4334 } 4335 } 4336 4337 // Bailout intrinsic and do normal inlining if exception path is frequent. 4338 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4339 return false; 4340 } 4341 4342 // Generate dynamic checks. 4343 // Class.cast() is java implementation of _checkcast bytecode. 4344 // Do checkcast (Parse::do_checkcast()) optimizations here. 4345 4346 mirror = null_check(mirror); 4347 // If mirror is dead, only null-path is taken. 4348 if (stopped()) { 4349 return true; 4350 } 4351 4352 // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive). 4353 enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT }; 4354 RegionNode* region = new RegionNode(PATH_LIMIT); 4355 record_for_igvn(region); 4356 4357 // Now load the mirror's klass metaobject, and null-check it. 4358 // If kls is null, we have a primitive mirror and 4359 // nothing is an instance of a primitive type. 4360 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4361 4362 Node* res = top(); 4363 Node* io = i_o(); 4364 Node* mem = merged_memory(); 4365 if (!stopped()) { 4366 4367 Node* bad_type_ctrl = top(); 4368 // Do checkcast optimizations. 4369 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4370 region->init_req(_bad_type_path, bad_type_ctrl); 4371 } 4372 if (region->in(_prim_path) != top() || 4373 region->in(_bad_type_path) != top() || 4374 region->in(_npe_path) != top()) { 4375 // Let Interpreter throw ClassCastException. 4376 PreserveJVMState pjvms(this); 4377 set_control(_gvn.transform(region)); 4378 // Set IO and memory because gen_checkcast may override them when buffering inline types 4379 set_i_o(io); 4380 set_all_memory(mem); 4381 uncommon_trap(Deoptimization::Reason_intrinsic, 4382 Deoptimization::Action_maybe_recompile); 4383 } 4384 if (!stopped()) { 4385 set_result(res); 4386 } 4387 return true; 4388 } 4389 4390 4391 //--------------------------inline_native_subtype_check------------------------ 4392 // This intrinsic takes the JNI calls out of the heart of 4393 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4394 bool LibraryCallKit::inline_native_subtype_check() { 4395 // Pull both arguments off the stack. 4396 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4397 args[0] = argument(0); 4398 args[1] = argument(1); 4399 Node* klasses[2]; // corresponding Klasses: superk, subk 4400 klasses[0] = klasses[1] = top(); 4401 4402 enum { 4403 // A full decision tree on {superc is prim, subc is prim}: 4404 _prim_0_path = 1, // {P,N} => false 4405 // {P,P} & superc!=subc => false 4406 _prim_same_path, // {P,P} & superc==subc => true 4407 _prim_1_path, // {N,P} => false 4408 _ref_subtype_path, // {N,N} & subtype check wins => true 4409 _both_ref_path, // {N,N} & subtype check loses => false 4410 PATH_LIMIT 4411 }; 4412 4413 RegionNode* region = new RegionNode(PATH_LIMIT); 4414 RegionNode* prim_region = new RegionNode(2); 4415 Node* phi = new PhiNode(region, TypeInt::BOOL); 4416 record_for_igvn(region); 4417 record_for_igvn(prim_region); 4418 4419 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4420 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4421 int class_klass_offset = java_lang_Class::klass_offset(); 4422 4423 // First null-check both mirrors and load each mirror's klass metaobject. 4424 int which_arg; 4425 for (which_arg = 0; which_arg <= 1; which_arg++) { 4426 Node* arg = args[which_arg]; 4427 arg = null_check(arg); 4428 if (stopped()) break; 4429 args[which_arg] = arg; 4430 4431 Node* p = basic_plus_adr(arg, class_klass_offset); 4432 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4433 klasses[which_arg] = _gvn.transform(kls); 4434 } 4435 4436 // Having loaded both klasses, test each for null. 4437 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4438 for (which_arg = 0; which_arg <= 1; which_arg++) { 4439 Node* kls = klasses[which_arg]; 4440 Node* null_ctl = top(); 4441 kls = null_check_oop(kls, &null_ctl, never_see_null); 4442 if (which_arg == 0) { 4443 prim_region->init_req(1, null_ctl); 4444 } else { 4445 region->init_req(_prim_1_path, null_ctl); 4446 } 4447 if (stopped()) break; 4448 klasses[which_arg] = kls; 4449 } 4450 4451 if (!stopped()) { 4452 // now we have two reference types, in klasses[0..1] 4453 Node* subk = klasses[1]; // the argument to isAssignableFrom 4454 Node* superk = klasses[0]; // the receiver 4455 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4456 region->set_req(_ref_subtype_path, control()); 4457 } 4458 4459 // If both operands are primitive (both klasses null), then 4460 // we must return true when they are identical primitives. 4461 // It is convenient to test this after the first null klass check. 4462 // This path is also used if superc is a value mirror. 4463 set_control(_gvn.transform(prim_region)); 4464 if (!stopped()) { 4465 // Since superc is primitive, make a guard for the superc==subc case. 4466 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4467 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4468 generate_fair_guard(bol_eq, region); 4469 if (region->req() == PATH_LIMIT+1) { 4470 // A guard was added. If the added guard is taken, superc==subc. 4471 region->swap_edges(PATH_LIMIT, _prim_same_path); 4472 region->del_req(PATH_LIMIT); 4473 } 4474 region->set_req(_prim_0_path, control()); // Not equal after all. 4475 } 4476 4477 // these are the only paths that produce 'true': 4478 phi->set_req(_prim_same_path, intcon(1)); 4479 phi->set_req(_ref_subtype_path, intcon(1)); 4480 4481 // pull together the cases: 4482 assert(region->req() == PATH_LIMIT, "sane region"); 4483 for (uint i = 1; i < region->req(); i++) { 4484 Node* ctl = region->in(i); 4485 if (ctl == nullptr || ctl == top()) { 4486 region->set_req(i, top()); 4487 phi ->set_req(i, top()); 4488 } else if (phi->in(i) == nullptr) { 4489 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4490 } 4491 } 4492 4493 set_control(_gvn.transform(region)); 4494 set_result(_gvn.transform(phi)); 4495 return true; 4496 } 4497 4498 //---------------------generate_array_guard_common------------------------ 4499 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) { 4500 4501 if (stopped()) { 4502 return nullptr; 4503 } 4504 4505 // Like generate_guard, adds a new path onto the region. 4506 jint layout_con = 0; 4507 Node* layout_val = get_layout_helper(kls, layout_con); 4508 if (layout_val == nullptr) { 4509 bool query = 0; 4510 switch(kind) { 4511 case ObjectArray: query = Klass::layout_helper_is_objArray(layout_con); break; 4512 case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break; 4513 case TypeArray: query = Klass::layout_helper_is_typeArray(layout_con); break; 4514 case AnyArray: query = Klass::layout_helper_is_array(layout_con); break; 4515 case NonArray: query = !Klass::layout_helper_is_array(layout_con); break; 4516 default: 4517 ShouldNotReachHere(); 4518 } 4519 if (!query) { 4520 return nullptr; // never a branch 4521 } else { // always a branch 4522 Node* always_branch = control(); 4523 if (region != nullptr) 4524 region->add_req(always_branch); 4525 set_control(top()); 4526 return always_branch; 4527 } 4528 } 4529 unsigned int value = 0; 4530 BoolTest::mask btest = BoolTest::illegal; 4531 switch(kind) { 4532 case ObjectArray: 4533 case NonObjectArray: { 4534 value = Klass::_lh_array_tag_obj_value; 4535 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4536 btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne; 4537 break; 4538 } 4539 case TypeArray: { 4540 value = Klass::_lh_array_tag_type_value; 4541 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4542 btest = BoolTest::eq; 4543 break; 4544 } 4545 case AnyArray: value = Klass::_lh_neutral_value; btest = BoolTest::lt; break; 4546 case NonArray: value = Klass::_lh_neutral_value; btest = BoolTest::gt; break; 4547 default: 4548 ShouldNotReachHere(); 4549 } 4550 // Now test the correct condition. 4551 jint nval = (jint)value; 4552 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4553 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4554 Node* ctrl = generate_fair_guard(bol, region); 4555 Node* is_array_ctrl = kind == NonArray ? control() : ctrl; 4556 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4557 // Keep track of the fact that 'obj' is an array to prevent 4558 // array specific accesses from floating above the guard. 4559 Node* cast = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4560 // Check for top because in rare cases, the type system can determine that 4561 // the object can't be an array but the layout helper check is not folded. 4562 if (!cast->is_top()) { 4563 *obj = cast; 4564 } 4565 } 4566 return ctrl; 4567 } 4568 4569 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal); 4570 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal); 4571 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length); 4572 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) { 4573 assert(null_free || atomic, "nullable implies atomic"); 4574 Node* componentType = argument(0); 4575 Node* length = argument(1); 4576 Node* init_val = null_free ? argument(2) : nullptr; 4577 4578 const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr(); 4579 if (tp != nullptr) { 4580 ciInstanceKlass* ik = tp->instance_klass(); 4581 if (ik == C->env()->Class_klass()) { 4582 ciType* t = tp->java_mirror_type(); 4583 if (t != nullptr && t->is_inlinetype()) { 4584 ciInlineKlass* vk = t->as_inline_klass(); 4585 bool flat = vk->flat_in_array(); 4586 if (flat && atomic) { 4587 // Only flat if we have a corresponding atomic layout 4588 flat = null_free ? vk->has_atomic_layout() : vk->has_nullable_atomic_layout(); 4589 } 4590 // TODO 8350865 refactor 4591 if (flat && !atomic) { 4592 flat = vk->has_non_atomic_layout(); 4593 } 4594 4595 // TOOD 8350865 ZGC needs card marks on initializing oop stores 4596 if (UseZGC && null_free && !flat) { 4597 return false; 4598 } 4599 4600 ciArrayKlass* array_klass = ciArrayKlass::make(t, flat, null_free, atomic); 4601 if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) { 4602 const TypeAryKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces)->is_aryklassptr(); 4603 if (null_free) { 4604 if (init_val->is_InlineType()) { 4605 if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) { 4606 // Zeroing is enough because the init value is the all-zero value 4607 init_val = nullptr; 4608 } else { 4609 init_val = init_val->as_InlineType()->buffer(this); 4610 } 4611 } 4612 // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)? 4613 } 4614 Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val); 4615 const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr(); 4616 assert(arytype->is_null_free() == null_free, "inconsistency"); 4617 assert(arytype->is_not_null_free() == !null_free, "inconsistency"); 4618 assert(arytype->is_flat() == flat, "inconsistency"); 4619 assert(arytype->is_aryptr()->is_not_flat() == !flat, "inconsistency"); 4620 set_result(obj); 4621 return true; 4622 } 4623 } 4624 } 4625 } 4626 return false; 4627 } 4628 4629 //-----------------------inline_native_newArray-------------------------- 4630 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length); 4631 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4632 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4633 Node* mirror; 4634 Node* count_val; 4635 if (uninitialized) { 4636 null_check_receiver(); 4637 mirror = argument(1); 4638 count_val = argument(2); 4639 } else { 4640 mirror = argument(0); 4641 count_val = argument(1); 4642 } 4643 4644 mirror = null_check(mirror); 4645 // If mirror or obj is dead, only null-path is taken. 4646 if (stopped()) return true; 4647 4648 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4649 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4650 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4651 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4652 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4653 4654 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4655 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4656 result_reg, _slow_path); 4657 Node* normal_ctl = control(); 4658 Node* no_array_ctl = result_reg->in(_slow_path); 4659 4660 // Generate code for the slow case. We make a call to newArray(). 4661 set_control(no_array_ctl); 4662 if (!stopped()) { 4663 // Either the input type is void.class, or else the 4664 // array klass has not yet been cached. Either the 4665 // ensuing call will throw an exception, or else it 4666 // will cache the array klass for next time. 4667 PreserveJVMState pjvms(this); 4668 CallJavaNode* slow_call = nullptr; 4669 if (uninitialized) { 4670 // Generate optimized virtual call (holder class 'Unsafe' is final) 4671 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4672 } else { 4673 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4674 } 4675 Node* slow_result = set_results_for_java_call(slow_call); 4676 // this->control() comes from set_results_for_java_call 4677 result_reg->set_req(_slow_path, control()); 4678 result_val->set_req(_slow_path, slow_result); 4679 result_io ->set_req(_slow_path, i_o()); 4680 result_mem->set_req(_slow_path, reset_memory()); 4681 } 4682 4683 set_control(normal_ctl); 4684 if (!stopped()) { 4685 // Normal case: The array type has been cached in the java.lang.Class. 4686 // The following call works fine even if the array type is polymorphic. 4687 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4688 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4689 result_reg->init_req(_normal_path, control()); 4690 result_val->init_req(_normal_path, obj); 4691 result_io ->init_req(_normal_path, i_o()); 4692 result_mem->init_req(_normal_path, reset_memory()); 4693 4694 if (uninitialized) { 4695 // Mark the allocation so that zeroing is skipped 4696 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4697 alloc->maybe_set_complete(&_gvn); 4698 } 4699 } 4700 4701 // Return the combined state. 4702 set_i_o( _gvn.transform(result_io) ); 4703 set_all_memory( _gvn.transform(result_mem)); 4704 4705 C->set_has_split_ifs(true); // Has chance for split-if optimization 4706 set_result(result_reg, result_val); 4707 return true; 4708 } 4709 4710 //----------------------inline_native_getLength-------------------------- 4711 // public static native int java.lang.reflect.Array.getLength(Object array); 4712 bool LibraryCallKit::inline_native_getLength() { 4713 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4714 4715 Node* array = null_check(argument(0)); 4716 // If array is dead, only null-path is taken. 4717 if (stopped()) return true; 4718 4719 // Deoptimize if it is a non-array. 4720 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4721 4722 if (non_array != nullptr) { 4723 PreserveJVMState pjvms(this); 4724 set_control(non_array); 4725 uncommon_trap(Deoptimization::Reason_intrinsic, 4726 Deoptimization::Action_maybe_recompile); 4727 } 4728 4729 // If control is dead, only non-array-path is taken. 4730 if (stopped()) return true; 4731 4732 // The works fine even if the array type is polymorphic. 4733 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4734 Node* result = load_array_length(array); 4735 4736 C->set_has_split_ifs(true); // Has chance for split-if optimization 4737 set_result(result); 4738 return true; 4739 } 4740 4741 //------------------------inline_array_copyOf---------------------------- 4742 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4743 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4744 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4745 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4746 4747 // Get the arguments. 4748 Node* original = argument(0); 4749 Node* start = is_copyOfRange? argument(1): intcon(0); 4750 Node* end = is_copyOfRange? argument(2): argument(1); 4751 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4752 4753 Node* newcopy = nullptr; 4754 4755 // Set the original stack and the reexecute bit for the interpreter to reexecute 4756 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4757 { PreserveReexecuteState preexecs(this); 4758 jvms()->set_should_reexecute(true); 4759 4760 array_type_mirror = null_check(array_type_mirror); 4761 original = null_check(original); 4762 4763 // Check if a null path was taken unconditionally. 4764 if (stopped()) return true; 4765 4766 Node* orig_length = load_array_length(original); 4767 4768 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4769 klass_node = null_check(klass_node); 4770 4771 RegionNode* bailout = new RegionNode(1); 4772 record_for_igvn(bailout); 4773 4774 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4775 // Bail out if that is so. 4776 // Inline type array may have object field that would require a 4777 // write barrier. Conservatively, go to slow path. 4778 // TODO 8251971: Optimize for the case when flat src/dst are later found 4779 // to not contain oops (i.e., move this check to the macro expansion phase). 4780 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4781 const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr(); 4782 const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr(); 4783 bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) && 4784 // Can src array be flat and contain oops? 4785 (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) && 4786 // Can dest array be flat and contain oops? 4787 tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops()); 4788 Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout); 4789 if (not_objArray != nullptr) { 4790 // Improve the klass node's type from the new optimistic assumption: 4791 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4792 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0)); 4793 Node* cast = new CastPPNode(control(), klass_node, akls); 4794 klass_node = _gvn.transform(cast); 4795 } 4796 4797 // Bail out if either start or end is negative. 4798 generate_negative_guard(start, bailout, &start); 4799 generate_negative_guard(end, bailout, &end); 4800 4801 Node* length = end; 4802 if (_gvn.type(start) != TypeInt::ZERO) { 4803 length = _gvn.transform(new SubINode(end, start)); 4804 } 4805 4806 // Bail out if length is negative (i.e., if start > end). 4807 // Without this the new_array would throw 4808 // NegativeArraySizeException but IllegalArgumentException is what 4809 // should be thrown 4810 generate_negative_guard(length, bailout, &length); 4811 4812 // Handle inline type arrays 4813 bool can_validate = !too_many_traps(Deoptimization::Reason_class_check); 4814 if (!stopped()) { 4815 // TODO JDK-8329224 4816 if (!orig_t->is_null_free()) { 4817 // Not statically known to be null free, add a check 4818 generate_fair_guard(null_free_array_test(original), bailout); 4819 } 4820 orig_t = _gvn.type(original)->isa_aryptr(); 4821 if (orig_t != nullptr && orig_t->is_flat()) { 4822 // Src is flat, check that dest is flat as well 4823 if (exclude_flat) { 4824 // Dest can't be flat, bail out 4825 bailout->add_req(control()); 4826 set_control(top()); 4827 } else { 4828 generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout); 4829 } 4830 // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy. 4831 } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) && 4832 // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated). 4833 ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) { 4834 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 4835 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 4836 generate_fair_guard(flat_array_test(load_object_klass(original)), bailout); 4837 if (orig_t != nullptr) { 4838 orig_t = orig_t->cast_to_not_flat(); 4839 original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t)); 4840 } 4841 } 4842 if (!can_validate) { 4843 // No validation. The subtype check emitted at macro expansion time will not go to the slow 4844 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 4845 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free. 4846 generate_fair_guard(flat_array_test(klass_node), bailout); 4847 generate_fair_guard(null_free_array_test(original), bailout); 4848 } 4849 } 4850 4851 // Bail out if start is larger than the original length 4852 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4853 generate_negative_guard(orig_tail, bailout, &orig_tail); 4854 4855 if (bailout->req() > 1) { 4856 PreserveJVMState pjvms(this); 4857 set_control(_gvn.transform(bailout)); 4858 uncommon_trap(Deoptimization::Reason_intrinsic, 4859 Deoptimization::Action_maybe_recompile); 4860 } 4861 4862 if (!stopped()) { 4863 // How many elements will we copy from the original? 4864 // The answer is MinI(orig_tail, length). 4865 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4866 4867 // Generate a direct call to the right arraycopy function(s). 4868 // We know the copy is disjoint but we might not know if the 4869 // oop stores need checking. 4870 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4871 // This will fail a store-check if x contains any non-nulls. 4872 4873 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4874 // loads/stores but it is legal only if we're sure the 4875 // Arrays.copyOf would succeed. So we need all input arguments 4876 // to the copyOf to be validated, including that the copy to the 4877 // new array won't trigger an ArrayStoreException. That subtype 4878 // check can be optimized if we know something on the type of 4879 // the input array from type speculation. 4880 if (_gvn.type(klass_node)->singleton()) { 4881 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4882 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4883 4884 int test = C->static_subtype_check(superk, subk); 4885 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4886 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4887 if (t_original->speculative_type() != nullptr) { 4888 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4889 } 4890 } 4891 } 4892 4893 bool validated = false; 4894 // Reason_class_check rather than Reason_intrinsic because we 4895 // want to intrinsify even if this traps. 4896 if (can_validate) { 4897 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4898 4899 if (not_subtype_ctrl != top()) { 4900 PreserveJVMState pjvms(this); 4901 set_control(not_subtype_ctrl); 4902 uncommon_trap(Deoptimization::Reason_class_check, 4903 Deoptimization::Action_make_not_entrant); 4904 assert(stopped(), "Should be stopped"); 4905 } 4906 validated = true; 4907 } 4908 4909 if (!stopped()) { 4910 newcopy = new_array(klass_node, length, 0); // no arguments to push 4911 4912 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4913 load_object_klass(original), klass_node); 4914 if (!is_copyOfRange) { 4915 ac->set_copyof(validated); 4916 } else { 4917 ac->set_copyofrange(validated); 4918 } 4919 Node* n = _gvn.transform(ac); 4920 if (n == ac) { 4921 ac->connect_outputs(this); 4922 } else { 4923 assert(validated, "shouldn't transform if all arguments not validated"); 4924 set_all_memory(n); 4925 } 4926 } 4927 } 4928 } // original reexecute is set back here 4929 4930 C->set_has_split_ifs(true); // Has chance for split-if optimization 4931 if (!stopped()) { 4932 set_result(newcopy); 4933 } 4934 return true; 4935 } 4936 4937 4938 //----------------------generate_virtual_guard--------------------------- 4939 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4940 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4941 RegionNode* slow_region) { 4942 ciMethod* method = callee(); 4943 int vtable_index = method->vtable_index(); 4944 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4945 "bad index %d", vtable_index); 4946 // Get the Method* out of the appropriate vtable entry. 4947 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4948 vtable_index*vtableEntry::size_in_bytes() + 4949 in_bytes(vtableEntry::method_offset()); 4950 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4951 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4952 4953 // Compare the target method with the expected method (e.g., Object.hashCode). 4954 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4955 4956 Node* native_call = makecon(native_call_addr); 4957 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4958 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4959 4960 return generate_slow_guard(test_native, slow_region); 4961 } 4962 4963 //-----------------------generate_method_call---------------------------- 4964 // Use generate_method_call to make a slow-call to the real 4965 // method if the fast path fails. An alternative would be to 4966 // use a stub like OptoRuntime::slow_arraycopy_Java. 4967 // This only works for expanding the current library call, 4968 // not another intrinsic. (E.g., don't use this for making an 4969 // arraycopy call inside of the copyOf intrinsic.) 4970 CallJavaNode* 4971 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4972 // When compiling the intrinsic method itself, do not use this technique. 4973 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4974 4975 ciMethod* method = callee(); 4976 // ensure the JVMS we have will be correct for this call 4977 guarantee(method_id == method->intrinsic_id(), "must match"); 4978 4979 const TypeFunc* tf = TypeFunc::make(method); 4980 if (res_not_null) { 4981 assert(tf->return_type() == T_OBJECT, ""); 4982 const TypeTuple* range = tf->range_cc(); 4983 const Type** fields = TypeTuple::fields(range->cnt()); 4984 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4985 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4986 tf = TypeFunc::make(tf->domain_cc(), new_range); 4987 } 4988 CallJavaNode* slow_call; 4989 if (is_static) { 4990 assert(!is_virtual, ""); 4991 slow_call = new CallStaticJavaNode(C, tf, 4992 SharedRuntime::get_resolve_static_call_stub(), method); 4993 } else if (is_virtual) { 4994 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4995 int vtable_index = Method::invalid_vtable_index; 4996 if (UseInlineCaches) { 4997 // Suppress the vtable call 4998 } else { 4999 // hashCode and clone are not a miranda methods, 5000 // so the vtable index is fixed. 5001 // No need to use the linkResolver to get it. 5002 vtable_index = method->vtable_index(); 5003 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 5004 "bad index %d", vtable_index); 5005 } 5006 slow_call = new CallDynamicJavaNode(tf, 5007 SharedRuntime::get_resolve_virtual_call_stub(), 5008 method, vtable_index); 5009 } else { // neither virtual nor static: opt_virtual 5010 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 5011 slow_call = new CallStaticJavaNode(C, tf, 5012 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 5013 slow_call->set_optimized_virtual(true); 5014 } 5015 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 5016 // To be able to issue a direct call (optimized virtual or virtual) 5017 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 5018 // about the method being invoked should be attached to the call site to 5019 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 5020 slow_call->set_override_symbolic_info(true); 5021 } 5022 set_arguments_for_java_call(slow_call); 5023 set_edges_for_java_call(slow_call); 5024 return slow_call; 5025 } 5026 5027 5028 /** 5029 * Build special case code for calls to hashCode on an object. This call may 5030 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 5031 * slightly different code. 5032 */ 5033 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 5034 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 5035 assert(!(is_virtual && is_static), "either virtual, special, or static"); 5036 5037 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 5038 5039 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5040 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 5041 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 5042 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5043 Node* obj = argument(0); 5044 5045 // Don't intrinsify hashcode on inline types for now. 5046 // The "is locked" runtime check below also serves as inline type check and goes to the slow path. 5047 if (gvn().type(obj)->is_inlinetypeptr()) { 5048 return false; 5049 } 5050 5051 if (!is_static) { 5052 // Check for hashing null object 5053 obj = null_check_receiver(); 5054 if (stopped()) return true; // unconditionally null 5055 result_reg->init_req(_null_path, top()); 5056 result_val->init_req(_null_path, top()); 5057 } else { 5058 // Do a null check, and return zero if null. 5059 // System.identityHashCode(null) == 0 5060 Node* null_ctl = top(); 5061 obj = null_check_oop(obj, &null_ctl); 5062 result_reg->init_req(_null_path, null_ctl); 5063 result_val->init_req(_null_path, _gvn.intcon(0)); 5064 } 5065 5066 // Unconditionally null? Then return right away. 5067 if (stopped()) { 5068 set_control( result_reg->in(_null_path)); 5069 if (!stopped()) 5070 set_result(result_val->in(_null_path)); 5071 return true; 5072 } 5073 5074 // We only go to the fast case code if we pass a number of guards. The 5075 // paths which do not pass are accumulated in the slow_region. 5076 RegionNode* slow_region = new RegionNode(1); 5077 record_for_igvn(slow_region); 5078 5079 // If this is a virtual call, we generate a funny guard. We pull out 5080 // the vtable entry corresponding to hashCode() from the target object. 5081 // If the target method which we are calling happens to be the native 5082 // Object hashCode() method, we pass the guard. We do not need this 5083 // guard for non-virtual calls -- the caller is known to be the native 5084 // Object hashCode(). 5085 if (is_virtual) { 5086 // After null check, get the object's klass. 5087 Node* obj_klass = load_object_klass(obj); 5088 generate_virtual_guard(obj_klass, slow_region); 5089 } 5090 5091 // Get the header out of the object, use LoadMarkNode when available 5092 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 5093 // The control of the load must be null. Otherwise, the load can move before 5094 // the null check after castPP removal. 5095 Node* no_ctrl = nullptr; 5096 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 5097 5098 if (!UseObjectMonitorTable) { 5099 // Test the header to see if it is safe to read w.r.t. locking. 5100 // This also serves as guard against inline types 5101 Node *lock_mask = _gvn.MakeConX(markWord::inline_type_mask_in_place); 5102 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 5103 if (LockingMode == LM_LIGHTWEIGHT) { 5104 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 5105 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 5106 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 5107 5108 generate_slow_guard(test_monitor, slow_region); 5109 } else { 5110 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 5111 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 5112 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 5113 5114 generate_slow_guard(test_not_unlocked, slow_region); 5115 } 5116 } 5117 5118 // Get the hash value and check to see that it has been properly assigned. 5119 // We depend on hash_mask being at most 32 bits and avoid the use of 5120 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 5121 // vm: see markWord.hpp. 5122 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 5123 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 5124 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 5125 // This hack lets the hash bits live anywhere in the mark object now, as long 5126 // as the shift drops the relevant bits into the low 32 bits. Note that 5127 // Java spec says that HashCode is an int so there's no point in capturing 5128 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 5129 hshifted_header = ConvX2I(hshifted_header); 5130 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 5131 5132 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 5133 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 5134 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 5135 5136 generate_slow_guard(test_assigned, slow_region); 5137 5138 Node* init_mem = reset_memory(); 5139 // fill in the rest of the null path: 5140 result_io ->init_req(_null_path, i_o()); 5141 result_mem->init_req(_null_path, init_mem); 5142 5143 result_val->init_req(_fast_path, hash_val); 5144 result_reg->init_req(_fast_path, control()); 5145 result_io ->init_req(_fast_path, i_o()); 5146 result_mem->init_req(_fast_path, init_mem); 5147 5148 // Generate code for the slow case. We make a call to hashCode(). 5149 set_control(_gvn.transform(slow_region)); 5150 if (!stopped()) { 5151 // No need for PreserveJVMState, because we're using up the present state. 5152 set_all_memory(init_mem); 5153 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 5154 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 5155 Node* slow_result = set_results_for_java_call(slow_call); 5156 // this->control() comes from set_results_for_java_call 5157 result_reg->init_req(_slow_path, control()); 5158 result_val->init_req(_slow_path, slow_result); 5159 result_io ->set_req(_slow_path, i_o()); 5160 result_mem ->set_req(_slow_path, reset_memory()); 5161 } 5162 5163 // Return the combined state. 5164 set_i_o( _gvn.transform(result_io) ); 5165 set_all_memory( _gvn.transform(result_mem)); 5166 5167 set_result(result_reg, result_val); 5168 return true; 5169 } 5170 5171 //---------------------------inline_native_getClass---------------------------- 5172 // public final native Class<?> java.lang.Object.getClass(); 5173 // 5174 // Build special case code for calls to getClass on an object. 5175 bool LibraryCallKit::inline_native_getClass() { 5176 Node* obj = argument(0); 5177 if (obj->is_InlineType()) { 5178 const Type* t = _gvn.type(obj); 5179 if (t->maybe_null()) { 5180 null_check(obj); 5181 } 5182 set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror()))); 5183 return true; 5184 } 5185 obj = null_check_receiver(); 5186 if (stopped()) return true; 5187 set_result(load_mirror_from_klass(load_object_klass(obj))); 5188 return true; 5189 } 5190 5191 //-----------------inline_native_Reflection_getCallerClass--------------------- 5192 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 5193 // 5194 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 5195 // 5196 // NOTE: This code must perform the same logic as JVM_GetCallerClass 5197 // in that it must skip particular security frames and checks for 5198 // caller sensitive methods. 5199 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 5200 #ifndef PRODUCT 5201 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5202 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 5203 } 5204 #endif 5205 5206 if (!jvms()->has_method()) { 5207 #ifndef PRODUCT 5208 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5209 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 5210 } 5211 #endif 5212 return false; 5213 } 5214 5215 // Walk back up the JVM state to find the caller at the required 5216 // depth. 5217 JVMState* caller_jvms = jvms(); 5218 5219 // Cf. JVM_GetCallerClass 5220 // NOTE: Start the loop at depth 1 because the current JVM state does 5221 // not include the Reflection.getCallerClass() frame. 5222 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 5223 ciMethod* m = caller_jvms->method(); 5224 switch (n) { 5225 case 0: 5226 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 5227 break; 5228 case 1: 5229 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 5230 if (!m->caller_sensitive()) { 5231 #ifndef PRODUCT 5232 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5233 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 5234 } 5235 #endif 5236 return false; // bail-out; let JVM_GetCallerClass do the work 5237 } 5238 break; 5239 default: 5240 if (!m->is_ignored_by_security_stack_walk()) { 5241 // We have reached the desired frame; return the holder class. 5242 // Acquire method holder as java.lang.Class and push as constant. 5243 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 5244 ciInstance* caller_mirror = caller_klass->java_mirror(); 5245 set_result(makecon(TypeInstPtr::make(caller_mirror))); 5246 5247 #ifndef PRODUCT 5248 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5249 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 5250 tty->print_cr(" JVM state at this point:"); 5251 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5252 ciMethod* m = jvms()->of_depth(i)->method(); 5253 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5254 } 5255 } 5256 #endif 5257 return true; 5258 } 5259 break; 5260 } 5261 } 5262 5263 #ifndef PRODUCT 5264 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5265 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 5266 tty->print_cr(" JVM state at this point:"); 5267 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5268 ciMethod* m = jvms()->of_depth(i)->method(); 5269 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5270 } 5271 } 5272 #endif 5273 5274 return false; // bail-out; let JVM_GetCallerClass do the work 5275 } 5276 5277 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 5278 Node* arg = argument(0); 5279 Node* result = nullptr; 5280 5281 switch (id) { 5282 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 5283 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 5284 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 5285 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 5286 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 5287 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 5288 5289 case vmIntrinsics::_doubleToLongBits: { 5290 // two paths (plus control) merge in a wood 5291 RegionNode *r = new RegionNode(3); 5292 Node *phi = new PhiNode(r, TypeLong::LONG); 5293 5294 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 5295 // Build the boolean node 5296 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5297 5298 // Branch either way. 5299 // NaN case is less traveled, which makes all the difference. 5300 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5301 Node *opt_isnan = _gvn.transform(ifisnan); 5302 assert( opt_isnan->is_If(), "Expect an IfNode"); 5303 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5304 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5305 5306 set_control(iftrue); 5307 5308 static const jlong nan_bits = CONST64(0x7ff8000000000000); 5309 Node *slow_result = longcon(nan_bits); // return NaN 5310 phi->init_req(1, _gvn.transform( slow_result )); 5311 r->init_req(1, iftrue); 5312 5313 // Else fall through 5314 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5315 set_control(iffalse); 5316 5317 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 5318 r->init_req(2, iffalse); 5319 5320 // Post merge 5321 set_control(_gvn.transform(r)); 5322 record_for_igvn(r); 5323 5324 C->set_has_split_ifs(true); // Has chance for split-if optimization 5325 result = phi; 5326 assert(result->bottom_type()->isa_long(), "must be"); 5327 break; 5328 } 5329 5330 case vmIntrinsics::_floatToIntBits: { 5331 // two paths (plus control) merge in a wood 5332 RegionNode *r = new RegionNode(3); 5333 Node *phi = new PhiNode(r, TypeInt::INT); 5334 5335 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5336 // Build the boolean node 5337 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5338 5339 // Branch either way. 5340 // NaN case is less traveled, which makes all the difference. 5341 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5342 Node *opt_isnan = _gvn.transform(ifisnan); 5343 assert( opt_isnan->is_If(), "Expect an IfNode"); 5344 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5345 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5346 5347 set_control(iftrue); 5348 5349 static const jint nan_bits = 0x7fc00000; 5350 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5351 phi->init_req(1, _gvn.transform( slow_result )); 5352 r->init_req(1, iftrue); 5353 5354 // Else fall through 5355 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5356 set_control(iffalse); 5357 5358 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5359 r->init_req(2, iffalse); 5360 5361 // Post merge 5362 set_control(_gvn.transform(r)); 5363 record_for_igvn(r); 5364 5365 C->set_has_split_ifs(true); // Has chance for split-if optimization 5366 result = phi; 5367 assert(result->bottom_type()->isa_int(), "must be"); 5368 break; 5369 } 5370 5371 default: 5372 fatal_unexpected_iid(id); 5373 break; 5374 } 5375 set_result(_gvn.transform(result)); 5376 return true; 5377 } 5378 5379 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5380 Node* arg = argument(0); 5381 Node* result = nullptr; 5382 5383 switch (id) { 5384 case vmIntrinsics::_floatIsInfinite: 5385 result = new IsInfiniteFNode(arg); 5386 break; 5387 case vmIntrinsics::_floatIsFinite: 5388 result = new IsFiniteFNode(arg); 5389 break; 5390 case vmIntrinsics::_doubleIsInfinite: 5391 result = new IsInfiniteDNode(arg); 5392 break; 5393 case vmIntrinsics::_doubleIsFinite: 5394 result = new IsFiniteDNode(arg); 5395 break; 5396 default: 5397 fatal_unexpected_iid(id); 5398 break; 5399 } 5400 set_result(_gvn.transform(result)); 5401 return true; 5402 } 5403 5404 //----------------------inline_unsafe_copyMemory------------------------- 5405 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5406 5407 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5408 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5409 const Type* base_t = gvn.type(base); 5410 5411 bool in_native = (base_t == TypePtr::NULL_PTR); 5412 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5413 bool is_mixed = !in_heap && !in_native; 5414 5415 if (is_mixed) { 5416 return true; // mixed accesses can touch both on-heap and off-heap memory 5417 } 5418 if (in_heap) { 5419 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5420 if (!is_prim_array) { 5421 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5422 // there's not enough type information available to determine proper memory slice for it. 5423 return true; 5424 } 5425 } 5426 return false; 5427 } 5428 5429 bool LibraryCallKit::inline_unsafe_copyMemory() { 5430 if (callee()->is_static()) return false; // caller must have the capability! 5431 null_check_receiver(); // null-check receiver 5432 if (stopped()) return true; 5433 5434 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5435 5436 Node* src_base = argument(1); // type: oop 5437 Node* src_off = ConvL2X(argument(2)); // type: long 5438 Node* dst_base = argument(4); // type: oop 5439 Node* dst_off = ConvL2X(argument(5)); // type: long 5440 Node* size = ConvL2X(argument(7)); // type: long 5441 5442 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5443 "fieldOffset must be byte-scaled"); 5444 5445 Node* src_addr = make_unsafe_address(src_base, src_off); 5446 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5447 5448 Node* thread = _gvn.transform(new ThreadLocalNode()); 5449 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5450 BasicType doing_unsafe_access_bt = T_BYTE; 5451 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5452 5453 // update volatile field 5454 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5455 5456 int flags = RC_LEAF | RC_NO_FP; 5457 5458 const TypePtr* dst_type = TypePtr::BOTTOM; 5459 5460 // Adjust memory effects of the runtime call based on input values. 5461 if (!has_wide_mem(_gvn, src_addr, src_base) && 5462 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5463 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5464 5465 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5466 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5467 flags |= RC_NARROW_MEM; // narrow in memory 5468 } 5469 } 5470 5471 // Call it. Note that the length argument is not scaled. 5472 make_runtime_call(flags, 5473 OptoRuntime::fast_arraycopy_Type(), 5474 StubRoutines::unsafe_arraycopy(), 5475 "unsafe_arraycopy", 5476 dst_type, 5477 src_addr, dst_addr, size XTOP); 5478 5479 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5480 5481 return true; 5482 } 5483 5484 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5485 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5486 bool LibraryCallKit::inline_unsafe_setMemory() { 5487 if (callee()->is_static()) return false; // caller must have the capability! 5488 null_check_receiver(); // null-check receiver 5489 if (stopped()) return true; 5490 5491 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5492 5493 Node* dst_base = argument(1); // type: oop 5494 Node* dst_off = ConvL2X(argument(2)); // type: long 5495 Node* size = ConvL2X(argument(4)); // type: long 5496 Node* byte = argument(6); // type: byte 5497 5498 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5499 "fieldOffset must be byte-scaled"); 5500 5501 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5502 5503 Node* thread = _gvn.transform(new ThreadLocalNode()); 5504 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5505 BasicType doing_unsafe_access_bt = T_BYTE; 5506 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5507 5508 // update volatile field 5509 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5510 5511 int flags = RC_LEAF | RC_NO_FP; 5512 5513 const TypePtr* dst_type = TypePtr::BOTTOM; 5514 5515 // Adjust memory effects of the runtime call based on input values. 5516 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5517 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5518 5519 flags |= RC_NARROW_MEM; // narrow in memory 5520 } 5521 5522 // Call it. Note that the length argument is not scaled. 5523 make_runtime_call(flags, 5524 OptoRuntime::unsafe_setmemory_Type(), 5525 StubRoutines::unsafe_setmemory(), 5526 "unsafe_setmemory", 5527 dst_type, 5528 dst_addr, size XTOP, byte); 5529 5530 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5531 5532 return true; 5533 } 5534 5535 #undef XTOP 5536 5537 //----------------------inline_unsafe_isFlatArray------------------------ 5538 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass); 5539 // This intrinsic exploits assumptions made by the native implementation 5540 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks. 5541 bool LibraryCallKit::inline_unsafe_isFlatArray() { 5542 Node* cls = argument(1); 5543 Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset()); 5544 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, 5545 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT)); 5546 Node* result = flat_array_test(kls); 5547 set_result(result); 5548 return true; 5549 } 5550 5551 //------------------------clone_coping----------------------------------- 5552 // Helper function for inline_native_clone. 5553 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5554 assert(obj_size != nullptr, ""); 5555 Node* raw_obj = alloc_obj->in(1); 5556 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5557 5558 AllocateNode* alloc = nullptr; 5559 if (ReduceBulkZeroing && 5560 // If we are implementing an array clone without knowing its source type 5561 // (can happen when compiling the array-guarded branch of a reflective 5562 // Object.clone() invocation), initialize the array within the allocation. 5563 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5564 // to a runtime clone call that assumes fully initialized source arrays. 5565 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5566 // We will be completely responsible for initializing this object - 5567 // mark Initialize node as complete. 5568 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5569 // The object was just allocated - there should be no any stores! 5570 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5571 // Mark as complete_with_arraycopy so that on AllocateNode 5572 // expansion, we know this AllocateNode is initialized by an array 5573 // copy and a StoreStore barrier exists after the array copy. 5574 alloc->initialization()->set_complete_with_arraycopy(); 5575 } 5576 5577 Node* size = _gvn.transform(obj_size); 5578 access_clone(obj, alloc_obj, size, is_array); 5579 5580 // Do not let reads from the cloned object float above the arraycopy. 5581 if (alloc != nullptr) { 5582 // Do not let stores that initialize this object be reordered with 5583 // a subsequent store that would make this object accessible by 5584 // other threads. 5585 // Record what AllocateNode this StoreStore protects so that 5586 // escape analysis can go from the MemBarStoreStoreNode to the 5587 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5588 // based on the escape status of the AllocateNode. 5589 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5590 } else { 5591 insert_mem_bar(Op_MemBarCPUOrder); 5592 } 5593 } 5594 5595 //------------------------inline_native_clone---------------------------- 5596 // protected native Object java.lang.Object.clone(); 5597 // 5598 // Here are the simple edge cases: 5599 // null receiver => normal trap 5600 // virtual and clone was overridden => slow path to out-of-line clone 5601 // not cloneable or finalizer => slow path to out-of-line Object.clone 5602 // 5603 // The general case has two steps, allocation and copying. 5604 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5605 // 5606 // Copying also has two cases, oop arrays and everything else. 5607 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5608 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5609 // 5610 // These steps fold up nicely if and when the cloned object's klass 5611 // can be sharply typed as an object array, a type array, or an instance. 5612 // 5613 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5614 PhiNode* result_val; 5615 5616 // Set the reexecute bit for the interpreter to reexecute 5617 // the bytecode that invokes Object.clone if deoptimization happens. 5618 { PreserveReexecuteState preexecs(this); 5619 jvms()->set_should_reexecute(true); 5620 5621 Node* obj = argument(0); 5622 obj = null_check_receiver(); 5623 if (stopped()) return true; 5624 5625 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5626 if (obj_type->is_inlinetypeptr()) { 5627 // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have 5628 // no identity. 5629 set_result(obj); 5630 return true; 5631 } 5632 5633 // If we are going to clone an instance, we need its exact type to 5634 // know the number and types of fields to convert the clone to 5635 // loads/stores. Maybe a speculative type can help us. 5636 if (!obj_type->klass_is_exact() && 5637 obj_type->speculative_type() != nullptr && 5638 obj_type->speculative_type()->is_instance_klass() && 5639 !obj_type->speculative_type()->is_inlinetype()) { 5640 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5641 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5642 !spec_ik->has_injected_fields()) { 5643 if (!obj_type->isa_instptr() || 5644 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5645 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5646 } 5647 } 5648 } 5649 5650 // Conservatively insert a memory barrier on all memory slices. 5651 // Do not let writes into the original float below the clone. 5652 insert_mem_bar(Op_MemBarCPUOrder); 5653 5654 // paths into result_reg: 5655 enum { 5656 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5657 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5658 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5659 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5660 PATH_LIMIT 5661 }; 5662 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5663 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5664 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5665 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5666 record_for_igvn(result_reg); 5667 5668 Node* obj_klass = load_object_klass(obj); 5669 // We only go to the fast case code if we pass a number of guards. 5670 // The paths which do not pass are accumulated in the slow_region. 5671 RegionNode* slow_region = new RegionNode(1); 5672 record_for_igvn(slow_region); 5673 5674 Node* array_obj = obj; 5675 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5676 if (array_ctl != nullptr) { 5677 // It's an array. 5678 PreserveJVMState pjvms(this); 5679 set_control(array_ctl); 5680 5681 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5682 const TypeAryPtr* ary_ptr = obj_type->isa_aryptr(); 5683 if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) && 5684 obj_type->can_be_inline_array() && 5685 (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) { 5686 // Flat inline type array may have object field that would require a 5687 // write barrier. Conservatively, go to slow path. 5688 generate_fair_guard(flat_array_test(obj_klass), slow_region); 5689 } 5690 5691 if (!stopped()) { 5692 Node* obj_length = load_array_length(array_obj); 5693 Node* array_size = nullptr; // Size of the array without object alignment padding. 5694 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5695 5696 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5697 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5698 // If it is an oop array, it requires very special treatment, 5699 // because gc barriers are required when accessing the array. 5700 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5701 if (is_obja != nullptr) { 5702 PreserveJVMState pjvms2(this); 5703 set_control(is_obja); 5704 // Generate a direct call to the right arraycopy function(s). 5705 // Clones are always tightly coupled. 5706 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5707 ac->set_clone_oop_array(); 5708 Node* n = _gvn.transform(ac); 5709 assert(n == ac, "cannot disappear"); 5710 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5711 5712 result_reg->init_req(_objArray_path, control()); 5713 result_val->init_req(_objArray_path, alloc_obj); 5714 result_i_o ->set_req(_objArray_path, i_o()); 5715 result_mem ->set_req(_objArray_path, reset_memory()); 5716 } 5717 } 5718 // Otherwise, there are no barriers to worry about. 5719 // (We can dispense with card marks if we know the allocation 5720 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5721 // causes the non-eden paths to take compensating steps to 5722 // simulate a fresh allocation, so that no further 5723 // card marks are required in compiled code to initialize 5724 // the object.) 5725 5726 if (!stopped()) { 5727 copy_to_clone(obj, alloc_obj, array_size, true); 5728 5729 // Present the results of the copy. 5730 result_reg->init_req(_array_path, control()); 5731 result_val->init_req(_array_path, alloc_obj); 5732 result_i_o ->set_req(_array_path, i_o()); 5733 result_mem ->set_req(_array_path, reset_memory()); 5734 } 5735 } 5736 } 5737 5738 if (!stopped()) { 5739 // It's an instance (we did array above). Make the slow-path tests. 5740 // If this is a virtual call, we generate a funny guard. We grab 5741 // the vtable entry corresponding to clone() from the target object. 5742 // If the target method which we are calling happens to be the 5743 // Object clone() method, we pass the guard. We do not need this 5744 // guard for non-virtual calls; the caller is known to be the native 5745 // Object clone(). 5746 if (is_virtual) { 5747 generate_virtual_guard(obj_klass, slow_region); 5748 } 5749 5750 // The object must be easily cloneable and must not have a finalizer. 5751 // Both of these conditions may be checked in a single test. 5752 // We could optimize the test further, but we don't care. 5753 generate_misc_flags_guard(obj_klass, 5754 // Test both conditions: 5755 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5756 // Must be cloneable but not finalizer: 5757 KlassFlags::_misc_is_cloneable_fast, 5758 slow_region); 5759 } 5760 5761 if (!stopped()) { 5762 // It's an instance, and it passed the slow-path tests. 5763 PreserveJVMState pjvms(this); 5764 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5765 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5766 // is reexecuted if deoptimization occurs and there could be problems when merging 5767 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5768 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5769 5770 copy_to_clone(obj, alloc_obj, obj_size, false); 5771 5772 // Present the results of the slow call. 5773 result_reg->init_req(_instance_path, control()); 5774 result_val->init_req(_instance_path, alloc_obj); 5775 result_i_o ->set_req(_instance_path, i_o()); 5776 result_mem ->set_req(_instance_path, reset_memory()); 5777 } 5778 5779 // Generate code for the slow case. We make a call to clone(). 5780 set_control(_gvn.transform(slow_region)); 5781 if (!stopped()) { 5782 PreserveJVMState pjvms(this); 5783 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5784 // We need to deoptimize on exception (see comment above) 5785 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5786 // this->control() comes from set_results_for_java_call 5787 result_reg->init_req(_slow_path, control()); 5788 result_val->init_req(_slow_path, slow_result); 5789 result_i_o ->set_req(_slow_path, i_o()); 5790 result_mem ->set_req(_slow_path, reset_memory()); 5791 } 5792 5793 // Return the combined state. 5794 set_control( _gvn.transform(result_reg)); 5795 set_i_o( _gvn.transform(result_i_o)); 5796 set_all_memory( _gvn.transform(result_mem)); 5797 } // original reexecute is set back here 5798 5799 set_result(_gvn.transform(result_val)); 5800 return true; 5801 } 5802 5803 // If we have a tightly coupled allocation, the arraycopy may take care 5804 // of the array initialization. If one of the guards we insert between 5805 // the allocation and the arraycopy causes a deoptimization, an 5806 // uninitialized array will escape the compiled method. To prevent that 5807 // we set the JVM state for uncommon traps between the allocation and 5808 // the arraycopy to the state before the allocation so, in case of 5809 // deoptimization, we'll reexecute the allocation and the 5810 // initialization. 5811 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5812 if (alloc != nullptr) { 5813 ciMethod* trap_method = alloc->jvms()->method(); 5814 int trap_bci = alloc->jvms()->bci(); 5815 5816 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5817 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5818 // Make sure there's no store between the allocation and the 5819 // arraycopy otherwise visible side effects could be rexecuted 5820 // in case of deoptimization and cause incorrect execution. 5821 bool no_interfering_store = true; 5822 Node* mem = alloc->in(TypeFunc::Memory); 5823 if (mem->is_MergeMem()) { 5824 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5825 Node* n = mms.memory(); 5826 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5827 assert(n->is_Store(), "what else?"); 5828 no_interfering_store = false; 5829 break; 5830 } 5831 } 5832 } else { 5833 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5834 Node* n = mms.memory(); 5835 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5836 assert(n->is_Store(), "what else?"); 5837 no_interfering_store = false; 5838 break; 5839 } 5840 } 5841 } 5842 5843 if (no_interfering_store) { 5844 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5845 5846 JVMState* saved_jvms = jvms(); 5847 saved_reexecute_sp = _reexecute_sp; 5848 5849 set_jvms(sfpt->jvms()); 5850 _reexecute_sp = jvms()->sp(); 5851 5852 return saved_jvms; 5853 } 5854 } 5855 } 5856 return nullptr; 5857 } 5858 5859 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5860 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5861 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5862 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5863 uint size = alloc->req(); 5864 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5865 old_jvms->set_map(sfpt); 5866 for (uint i = 0; i < size; i++) { 5867 sfpt->init_req(i, alloc->in(i)); 5868 } 5869 int adjustment = 1; 5870 const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr(); 5871 if (ary_klass_ptr->is_null_free()) { 5872 // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which 5873 // also requires the componentType and initVal on stack for re-execution. 5874 // Re-create and push the componentType. 5875 ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass(); 5876 ciInstance* instance = klass->component_mirror_instance(); 5877 const TypeInstPtr* t_instance = TypeInstPtr::make(instance); 5878 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance)); 5879 adjustment++; 5880 } 5881 // re-push array length for deoptimization 5882 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength)); 5883 if (ary_klass_ptr->is_null_free()) { 5884 // Re-create and push the initVal. 5885 Node* init_val = alloc->in(AllocateNode::InitValue); 5886 if (init_val == nullptr) { 5887 init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass()); 5888 } else if (UseCompressedOops) { 5889 init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr())); 5890 } 5891 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val); 5892 adjustment++; 5893 } 5894 old_jvms->set_sp(old_jvms->sp() + adjustment); 5895 old_jvms->set_monoff(old_jvms->monoff() + adjustment); 5896 old_jvms->set_scloff(old_jvms->scloff() + adjustment); 5897 old_jvms->set_endoff(old_jvms->endoff() + adjustment); 5898 old_jvms->set_should_reexecute(true); 5899 5900 sfpt->set_i_o(map()->i_o()); 5901 sfpt->set_memory(map()->memory()); 5902 sfpt->set_control(map()->control()); 5903 return sfpt; 5904 } 5905 5906 // In case of a deoptimization, we restart execution at the 5907 // allocation, allocating a new array. We would leave an uninitialized 5908 // array in the heap that GCs wouldn't expect. Move the allocation 5909 // after the traps so we don't allocate the array if we 5910 // deoptimize. This is possible because tightly_coupled_allocation() 5911 // guarantees there's no observer of the allocated array at this point 5912 // and the control flow is simple enough. 5913 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5914 int saved_reexecute_sp, uint new_idx) { 5915 if (saved_jvms_before_guards != nullptr && !stopped()) { 5916 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5917 5918 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5919 // restore JVM state to the state at the arraycopy 5920 saved_jvms_before_guards->map()->set_control(map()->control()); 5921 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5922 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5923 // If we've improved the types of some nodes (null check) while 5924 // emitting the guards, propagate them to the current state 5925 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5926 set_jvms(saved_jvms_before_guards); 5927 _reexecute_sp = saved_reexecute_sp; 5928 5929 // Remove the allocation from above the guards 5930 CallProjections* callprojs = alloc->extract_projections(true); 5931 InitializeNode* init = alloc->initialization(); 5932 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5933 C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5934 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5935 5936 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5937 // the allocation (i.e. is only valid if the allocation succeeds): 5938 // 1) replace CastIINode with AllocateArrayNode's length here 5939 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5940 // 5941 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5942 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5943 Node* init_control = init->proj_out(TypeFunc::Control); 5944 Node* alloc_length = alloc->Ideal_length(); 5945 #ifdef ASSERT 5946 Node* prev_cast = nullptr; 5947 #endif 5948 for (uint i = 0; i < init_control->outcnt(); i++) { 5949 Node* init_out = init_control->raw_out(i); 5950 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5951 #ifdef ASSERT 5952 if (prev_cast == nullptr) { 5953 prev_cast = init_out; 5954 } else { 5955 if (prev_cast->cmp(*init_out) == false) { 5956 prev_cast->dump(); 5957 init_out->dump(); 5958 assert(false, "not equal CastIINode"); 5959 } 5960 } 5961 #endif 5962 C->gvn_replace_by(init_out, alloc_length); 5963 } 5964 } 5965 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5966 5967 // move the allocation here (after the guards) 5968 _gvn.hash_delete(alloc); 5969 alloc->set_req(TypeFunc::Control, control()); 5970 alloc->set_req(TypeFunc::I_O, i_o()); 5971 Node *mem = reset_memory(); 5972 set_all_memory(mem); 5973 alloc->set_req(TypeFunc::Memory, mem); 5974 set_control(init->proj_out_or_null(TypeFunc::Control)); 5975 set_i_o(callprojs->fallthrough_ioproj); 5976 5977 // Update memory as done in GraphKit::set_output_for_allocation() 5978 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5979 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5980 if (ary_type->isa_aryptr() && length_type != nullptr) { 5981 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5982 } 5983 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5984 int elemidx = C->get_alias_index(telemref); 5985 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5986 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5987 5988 Node* allocx = _gvn.transform(alloc); 5989 assert(allocx == alloc, "where has the allocation gone?"); 5990 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5991 5992 _gvn.hash_delete(dest); 5993 dest->set_req(0, control()); 5994 Node* destx = _gvn.transform(dest); 5995 assert(destx == dest, "where has the allocation result gone?"); 5996 5997 array_ideal_length(alloc, ary_type, true); 5998 } 5999 } 6000 6001 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 6002 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 6003 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 6004 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 6005 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 6006 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 6007 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 6008 JVMState* saved_jvms_before_guards) { 6009 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 6010 // There is at least one unrelated uncommon trap which needs to be replaced. 6011 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 6012 6013 JVMState* saved_jvms = jvms(); 6014 const int saved_reexecute_sp = _reexecute_sp; 6015 set_jvms(sfpt->jvms()); 6016 _reexecute_sp = jvms()->sp(); 6017 6018 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 6019 6020 // Restore state 6021 set_jvms(saved_jvms); 6022 _reexecute_sp = saved_reexecute_sp; 6023 } 6024 } 6025 6026 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 6027 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 6028 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 6029 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 6030 while (if_proj->is_IfProj()) { 6031 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 6032 if (uncommon_trap != nullptr) { 6033 create_new_uncommon_trap(uncommon_trap); 6034 } 6035 assert(if_proj->in(0)->is_If(), "must be If"); 6036 if_proj = if_proj->in(0)->in(0); 6037 } 6038 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 6039 "must have reached control projection of init node"); 6040 } 6041 6042 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 6043 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 6044 assert(trap_request != 0, "no valid UCT trap request"); 6045 PreserveJVMState pjvms(this); 6046 set_control(uncommon_trap_call->in(0)); 6047 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 6048 Deoptimization::trap_request_action(trap_request)); 6049 assert(stopped(), "Should be stopped"); 6050 _gvn.hash_delete(uncommon_trap_call); 6051 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 6052 } 6053 6054 // Common checks for array sorting intrinsics arguments. 6055 // Returns `true` if checks passed. 6056 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 6057 // check address of the class 6058 if (elementType == nullptr || elementType->is_top()) { 6059 return false; // dead path 6060 } 6061 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 6062 if (elem_klass == nullptr) { 6063 return false; // dead path 6064 } 6065 // java_mirror_type() returns non-null for compile-time Class constants only 6066 ciType* elem_type = elem_klass->java_mirror_type(); 6067 if (elem_type == nullptr) { 6068 return false; 6069 } 6070 bt = elem_type->basic_type(); 6071 // Disable the intrinsic if the CPU does not support SIMD sort 6072 if (!Matcher::supports_simd_sort(bt)) { 6073 return false; 6074 } 6075 // check address of the array 6076 if (obj == nullptr || obj->is_top()) { 6077 return false; // dead path 6078 } 6079 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 6080 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 6081 return false; // failed input validation 6082 } 6083 return true; 6084 } 6085 6086 //------------------------------inline_array_partition----------------------- 6087 bool LibraryCallKit::inline_array_partition() { 6088 address stubAddr = StubRoutines::select_array_partition_function(); 6089 if (stubAddr == nullptr) { 6090 return false; // Intrinsic's stub is not implemented on this platform 6091 } 6092 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 6093 6094 // no receiver because it is a static method 6095 Node* elementType = argument(0); 6096 Node* obj = argument(1); 6097 Node* offset = argument(2); // long 6098 Node* fromIndex = argument(4); 6099 Node* toIndex = argument(5); 6100 Node* indexPivot1 = argument(6); 6101 Node* indexPivot2 = argument(7); 6102 // PartitionOperation: argument(8) is ignored 6103 6104 Node* pivotIndices = nullptr; 6105 BasicType bt = T_ILLEGAL; 6106 6107 if (!check_array_sort_arguments(elementType, obj, bt)) { 6108 return false; 6109 } 6110 null_check(obj); 6111 // If obj is dead, only null-path is taken. 6112 if (stopped()) { 6113 return true; 6114 } 6115 // Set the original stack and the reexecute bit for the interpreter to reexecute 6116 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 6117 { PreserveReexecuteState preexecs(this); 6118 jvms()->set_should_reexecute(true); 6119 6120 Node* obj_adr = make_unsafe_address(obj, offset); 6121 6122 // create the pivotIndices array of type int and size = 2 6123 Node* size = intcon(2); 6124 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 6125 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 6126 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 6127 guarantee(alloc != nullptr, "created above"); 6128 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 6129 6130 // pass the basic type enum to the stub 6131 Node* elemType = intcon(bt); 6132 6133 // Call the stub 6134 const char *stubName = "array_partition_stub"; 6135 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 6136 stubAddr, stubName, TypePtr::BOTTOM, 6137 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 6138 indexPivot1, indexPivot2); 6139 6140 } // original reexecute is set back here 6141 6142 if (!stopped()) { 6143 set_result(pivotIndices); 6144 } 6145 6146 return true; 6147 } 6148 6149 6150 //------------------------------inline_array_sort----------------------- 6151 bool LibraryCallKit::inline_array_sort() { 6152 address stubAddr = StubRoutines::select_arraysort_function(); 6153 if (stubAddr == nullptr) { 6154 return false; // Intrinsic's stub is not implemented on this platform 6155 } 6156 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 6157 6158 // no receiver because it is a static method 6159 Node* elementType = argument(0); 6160 Node* obj = argument(1); 6161 Node* offset = argument(2); // long 6162 Node* fromIndex = argument(4); 6163 Node* toIndex = argument(5); 6164 // SortOperation: argument(6) is ignored 6165 6166 BasicType bt = T_ILLEGAL; 6167 6168 if (!check_array_sort_arguments(elementType, obj, bt)) { 6169 return false; 6170 } 6171 null_check(obj); 6172 // If obj is dead, only null-path is taken. 6173 if (stopped()) { 6174 return true; 6175 } 6176 Node* obj_adr = make_unsafe_address(obj, offset); 6177 6178 // pass the basic type enum to the stub 6179 Node* elemType = intcon(bt); 6180 6181 // Call the stub. 6182 const char *stubName = "arraysort_stub"; 6183 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 6184 stubAddr, stubName, TypePtr::BOTTOM, 6185 obj_adr, elemType, fromIndex, toIndex); 6186 6187 return true; 6188 } 6189 6190 6191 //------------------------------inline_arraycopy----------------------- 6192 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 6193 // Object dest, int destPos, 6194 // int length); 6195 bool LibraryCallKit::inline_arraycopy() { 6196 // Get the arguments. 6197 Node* src = argument(0); // type: oop 6198 Node* src_offset = argument(1); // type: int 6199 Node* dest = argument(2); // type: oop 6200 Node* dest_offset = argument(3); // type: int 6201 Node* length = argument(4); // type: int 6202 6203 uint new_idx = C->unique(); 6204 6205 // Check for allocation before we add nodes that would confuse 6206 // tightly_coupled_allocation() 6207 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 6208 6209 int saved_reexecute_sp = -1; 6210 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 6211 // See arraycopy_restore_alloc_state() comment 6212 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 6213 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 6214 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 6215 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 6216 6217 // The following tests must be performed 6218 // (1) src and dest are arrays. 6219 // (2) src and dest arrays must have elements of the same BasicType 6220 // (3) src and dest must not be null. 6221 // (4) src_offset must not be negative. 6222 // (5) dest_offset must not be negative. 6223 // (6) length must not be negative. 6224 // (7) src_offset + length must not exceed length of src. 6225 // (8) dest_offset + length must not exceed length of dest. 6226 // (9) each element of an oop array must be assignable 6227 6228 // (3) src and dest must not be null. 6229 // always do this here because we need the JVM state for uncommon traps 6230 Node* null_ctl = top(); 6231 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 6232 assert(null_ctl->is_top(), "no null control here"); 6233 dest = null_check(dest, T_ARRAY); 6234 6235 if (!can_emit_guards) { 6236 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 6237 // guards but the arraycopy node could still take advantage of a 6238 // tightly allocated allocation. tightly_coupled_allocation() is 6239 // called again to make sure it takes the null check above into 6240 // account: the null check is mandatory and if it caused an 6241 // uncommon trap to be emitted then the allocation can't be 6242 // considered tightly coupled in this context. 6243 alloc = tightly_coupled_allocation(dest); 6244 } 6245 6246 bool validated = false; 6247 6248 const Type* src_type = _gvn.type(src); 6249 const Type* dest_type = _gvn.type(dest); 6250 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6251 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6252 6253 // Do we have the type of src? 6254 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6255 // Do we have the type of dest? 6256 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6257 // Is the type for src from speculation? 6258 bool src_spec = false; 6259 // Is the type for dest from speculation? 6260 bool dest_spec = false; 6261 6262 if ((!has_src || !has_dest) && can_emit_guards) { 6263 // We don't have sufficient type information, let's see if 6264 // speculative types can help. We need to have types for both src 6265 // and dest so that it pays off. 6266 6267 // Do we already have or could we have type information for src 6268 bool could_have_src = has_src; 6269 // Do we already have or could we have type information for dest 6270 bool could_have_dest = has_dest; 6271 6272 ciKlass* src_k = nullptr; 6273 if (!has_src) { 6274 src_k = src_type->speculative_type_not_null(); 6275 if (src_k != nullptr && src_k->is_array_klass()) { 6276 could_have_src = true; 6277 } 6278 } 6279 6280 ciKlass* dest_k = nullptr; 6281 if (!has_dest) { 6282 dest_k = dest_type->speculative_type_not_null(); 6283 if (dest_k != nullptr && dest_k->is_array_klass()) { 6284 could_have_dest = true; 6285 } 6286 } 6287 6288 if (could_have_src && could_have_dest) { 6289 // This is going to pay off so emit the required guards 6290 if (!has_src) { 6291 src = maybe_cast_profiled_obj(src, src_k, true); 6292 src_type = _gvn.type(src); 6293 top_src = src_type->isa_aryptr(); 6294 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6295 src_spec = true; 6296 } 6297 if (!has_dest) { 6298 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6299 dest_type = _gvn.type(dest); 6300 top_dest = dest_type->isa_aryptr(); 6301 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6302 dest_spec = true; 6303 } 6304 } 6305 } 6306 6307 if (has_src && has_dest && can_emit_guards) { 6308 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 6309 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 6310 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 6311 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 6312 6313 if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) { 6314 // If both arrays are object arrays then having the exact types 6315 // for both will remove the need for a subtype check at runtime 6316 // before the call and may make it possible to pick a faster copy 6317 // routine (without a subtype check on every element) 6318 // Do we have the exact type of src? 6319 bool could_have_src = src_spec; 6320 // Do we have the exact type of dest? 6321 bool could_have_dest = dest_spec; 6322 ciKlass* src_k = nullptr; 6323 ciKlass* dest_k = nullptr; 6324 if (!src_spec) { 6325 src_k = src_type->speculative_type_not_null(); 6326 if (src_k != nullptr && src_k->is_array_klass()) { 6327 could_have_src = true; 6328 } 6329 } 6330 if (!dest_spec) { 6331 dest_k = dest_type->speculative_type_not_null(); 6332 if (dest_k != nullptr && dest_k->is_array_klass()) { 6333 could_have_dest = true; 6334 } 6335 } 6336 if (could_have_src && could_have_dest) { 6337 // If we can have both exact types, emit the missing guards 6338 if (could_have_src && !src_spec) { 6339 src = maybe_cast_profiled_obj(src, src_k, true); 6340 src_type = _gvn.type(src); 6341 top_src = src_type->isa_aryptr(); 6342 } 6343 if (could_have_dest && !dest_spec) { 6344 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6345 dest_type = _gvn.type(dest); 6346 top_dest = dest_type->isa_aryptr(); 6347 } 6348 } 6349 } 6350 } 6351 6352 ciMethod* trap_method = method(); 6353 int trap_bci = bci(); 6354 if (saved_jvms_before_guards != nullptr) { 6355 trap_method = alloc->jvms()->method(); 6356 trap_bci = alloc->jvms()->bci(); 6357 } 6358 6359 bool negative_length_guard_generated = false; 6360 6361 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 6362 can_emit_guards && !src->is_top() && !dest->is_top()) { 6363 // validate arguments: enables transformation the ArrayCopyNode 6364 validated = true; 6365 6366 RegionNode* slow_region = new RegionNode(1); 6367 record_for_igvn(slow_region); 6368 6369 // (1) src and dest are arrays. 6370 generate_non_array_guard(load_object_klass(src), slow_region, &src); 6371 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 6372 6373 // (2) src and dest arrays must have elements of the same BasicType 6374 // done at macro expansion or at Ideal transformation time 6375 6376 // (4) src_offset must not be negative. 6377 generate_negative_guard(src_offset, slow_region); 6378 6379 // (5) dest_offset must not be negative. 6380 generate_negative_guard(dest_offset, slow_region); 6381 6382 // (7) src_offset + length must not exceed length of src. 6383 generate_limit_guard(src_offset, length, 6384 load_array_length(src), 6385 slow_region); 6386 6387 // (8) dest_offset + length must not exceed length of dest. 6388 generate_limit_guard(dest_offset, length, 6389 load_array_length(dest), 6390 slow_region); 6391 6392 // (6) length must not be negative. 6393 // This is also checked in generate_arraycopy() during macro expansion, but 6394 // we also have to check it here for the case where the ArrayCopyNode will 6395 // be eliminated by Escape Analysis. 6396 if (EliminateAllocations) { 6397 generate_negative_guard(length, slow_region); 6398 negative_length_guard_generated = true; 6399 } 6400 6401 // (9) each element of an oop array must be assignable 6402 Node* dest_klass = load_object_klass(dest); 6403 if (src != dest) { 6404 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 6405 slow_region->add_req(not_subtype_ctrl); 6406 } 6407 6408 // TODO 8350865 Fix below logic. Also handle atomicity. 6409 generate_fair_guard(flat_array_test(src), slow_region); 6410 generate_fair_guard(flat_array_test(dest), slow_region); 6411 6412 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6413 const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6414 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6415 src_type = _gvn.type(src); 6416 top_src = src_type->isa_aryptr(); 6417 6418 // Handle flat inline type arrays (null-free arrays are handled by the subtype check above) 6419 if (!stopped() && UseArrayFlattening) { 6420 // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here. 6421 assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat"); 6422 if (top_src != nullptr && top_src->is_flat()) { 6423 // Src is flat, check that dest is flat as well 6424 if (top_dest != nullptr && !top_dest->is_flat()) { 6425 generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region); 6426 // Since dest is flat and src <: dest, dest must have the same type as src. 6427 top_dest = top_src->cast_to_exactness(false); 6428 assert(top_dest->is_flat(), "dest must be flat"); 6429 dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest)); 6430 } 6431 } else if (top_src == nullptr || !top_src->is_not_flat()) { 6432 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 6433 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 6434 assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat"); 6435 generate_fair_guard(flat_array_test(src), slow_region); 6436 if (top_src != nullptr) { 6437 top_src = top_src->cast_to_not_flat(); 6438 src = _gvn.transform(new CheckCastPPNode(control(), src, top_src)); 6439 } 6440 } 6441 } 6442 6443 { 6444 PreserveJVMState pjvms(this); 6445 set_control(_gvn.transform(slow_region)); 6446 uncommon_trap(Deoptimization::Reason_intrinsic, 6447 Deoptimization::Action_make_not_entrant); 6448 assert(stopped(), "Should be stopped"); 6449 } 6450 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6451 } 6452 6453 if (stopped()) { 6454 return true; 6455 } 6456 6457 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6458 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6459 // so the compiler has a chance to eliminate them: during macro expansion, 6460 // we have to set their control (CastPP nodes are eliminated). 6461 load_object_klass(src), load_object_klass(dest), 6462 load_array_length(src), load_array_length(dest)); 6463 6464 ac->set_arraycopy(validated); 6465 6466 Node* n = _gvn.transform(ac); 6467 if (n == ac) { 6468 ac->connect_outputs(this); 6469 } else { 6470 assert(validated, "shouldn't transform if all arguments not validated"); 6471 set_all_memory(n); 6472 } 6473 clear_upper_avx(); 6474 6475 6476 return true; 6477 } 6478 6479 6480 // Helper function which determines if an arraycopy immediately follows 6481 // an allocation, with no intervening tests or other escapes for the object. 6482 AllocateArrayNode* 6483 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6484 if (stopped()) return nullptr; // no fast path 6485 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6486 6487 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6488 if (alloc == nullptr) return nullptr; 6489 6490 Node* rawmem = memory(Compile::AliasIdxRaw); 6491 // Is the allocation's memory state untouched? 6492 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6493 // Bail out if there have been raw-memory effects since the allocation. 6494 // (Example: There might have been a call or safepoint.) 6495 return nullptr; 6496 } 6497 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6498 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6499 return nullptr; 6500 } 6501 6502 // There must be no unexpected observers of this allocation. 6503 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6504 Node* obs = ptr->fast_out(i); 6505 if (obs != this->map()) { 6506 return nullptr; 6507 } 6508 } 6509 6510 // This arraycopy must unconditionally follow the allocation of the ptr. 6511 Node* alloc_ctl = ptr->in(0); 6512 Node* ctl = control(); 6513 while (ctl != alloc_ctl) { 6514 // There may be guards which feed into the slow_region. 6515 // Any other control flow means that we might not get a chance 6516 // to finish initializing the allocated object. 6517 // Various low-level checks bottom out in uncommon traps. These 6518 // are considered safe since we've already checked above that 6519 // there is no unexpected observer of this allocation. 6520 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6521 assert(ctl->in(0)->is_If(), "must be If"); 6522 ctl = ctl->in(0)->in(0); 6523 } else { 6524 return nullptr; 6525 } 6526 } 6527 6528 // If we get this far, we have an allocation which immediately 6529 // precedes the arraycopy, and we can take over zeroing the new object. 6530 // The arraycopy will finish the initialization, and provide 6531 // a new control state to which we will anchor the destination pointer. 6532 6533 return alloc; 6534 } 6535 6536 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6537 if (node->is_IfProj()) { 6538 Node* other_proj = node->as_IfProj()->other_if_proj(); 6539 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6540 Node* obs = other_proj->fast_out(j); 6541 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6542 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6543 return obs->as_CallStaticJava(); 6544 } 6545 } 6546 } 6547 return nullptr; 6548 } 6549 6550 //-------------inline_encodeISOArray----------------------------------- 6551 // encode char[] to byte[] in ISO_8859_1 or ASCII 6552 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6553 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6554 // no receiver since it is static method 6555 Node *src = argument(0); 6556 Node *src_offset = argument(1); 6557 Node *dst = argument(2); 6558 Node *dst_offset = argument(3); 6559 Node *length = argument(4); 6560 6561 src = must_be_not_null(src, true); 6562 dst = must_be_not_null(dst, true); 6563 6564 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6565 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6566 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6567 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6568 // failed array check 6569 return false; 6570 } 6571 6572 // Figure out the size and type of the elements we will be copying. 6573 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6574 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6575 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6576 return false; 6577 } 6578 6579 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6580 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6581 // 'src_start' points to src array + scaled offset 6582 // 'dst_start' points to dst array + scaled offset 6583 6584 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6585 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6586 enc = _gvn.transform(enc); 6587 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6588 set_memory(res_mem, mtype); 6589 set_result(enc); 6590 clear_upper_avx(); 6591 6592 return true; 6593 } 6594 6595 //-------------inline_multiplyToLen----------------------------------- 6596 bool LibraryCallKit::inline_multiplyToLen() { 6597 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6598 6599 address stubAddr = StubRoutines::multiplyToLen(); 6600 if (stubAddr == nullptr) { 6601 return false; // Intrinsic's stub is not implemented on this platform 6602 } 6603 const char* stubName = "multiplyToLen"; 6604 6605 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6606 6607 // no receiver because it is a static method 6608 Node* x = argument(0); 6609 Node* xlen = argument(1); 6610 Node* y = argument(2); 6611 Node* ylen = argument(3); 6612 Node* z = argument(4); 6613 6614 x = must_be_not_null(x, true); 6615 y = must_be_not_null(y, true); 6616 6617 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6618 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6619 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6620 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6621 // failed array check 6622 return false; 6623 } 6624 6625 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6626 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6627 if (x_elem != T_INT || y_elem != T_INT) { 6628 return false; 6629 } 6630 6631 Node* x_start = array_element_address(x, intcon(0), x_elem); 6632 Node* y_start = array_element_address(y, intcon(0), y_elem); 6633 // 'x_start' points to x array + scaled xlen 6634 // 'y_start' points to y array + scaled ylen 6635 6636 Node* z_start = array_element_address(z, intcon(0), T_INT); 6637 6638 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6639 OptoRuntime::multiplyToLen_Type(), 6640 stubAddr, stubName, TypePtr::BOTTOM, 6641 x_start, xlen, y_start, ylen, z_start); 6642 6643 C->set_has_split_ifs(true); // Has chance for split-if optimization 6644 set_result(z); 6645 return true; 6646 } 6647 6648 //-------------inline_squareToLen------------------------------------ 6649 bool LibraryCallKit::inline_squareToLen() { 6650 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6651 6652 address stubAddr = StubRoutines::squareToLen(); 6653 if (stubAddr == nullptr) { 6654 return false; // Intrinsic's stub is not implemented on this platform 6655 } 6656 const char* stubName = "squareToLen"; 6657 6658 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6659 6660 Node* x = argument(0); 6661 Node* len = argument(1); 6662 Node* z = argument(2); 6663 Node* zlen = argument(3); 6664 6665 x = must_be_not_null(x, true); 6666 z = must_be_not_null(z, true); 6667 6668 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6669 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6670 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6671 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6672 // failed array check 6673 return false; 6674 } 6675 6676 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6677 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6678 if (x_elem != T_INT || z_elem != T_INT) { 6679 return false; 6680 } 6681 6682 6683 Node* x_start = array_element_address(x, intcon(0), x_elem); 6684 Node* z_start = array_element_address(z, intcon(0), z_elem); 6685 6686 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6687 OptoRuntime::squareToLen_Type(), 6688 stubAddr, stubName, TypePtr::BOTTOM, 6689 x_start, len, z_start, zlen); 6690 6691 set_result(z); 6692 return true; 6693 } 6694 6695 //-------------inline_mulAdd------------------------------------------ 6696 bool LibraryCallKit::inline_mulAdd() { 6697 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6698 6699 address stubAddr = StubRoutines::mulAdd(); 6700 if (stubAddr == nullptr) { 6701 return false; // Intrinsic's stub is not implemented on this platform 6702 } 6703 const char* stubName = "mulAdd"; 6704 6705 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6706 6707 Node* out = argument(0); 6708 Node* in = argument(1); 6709 Node* offset = argument(2); 6710 Node* len = argument(3); 6711 Node* k = argument(4); 6712 6713 in = must_be_not_null(in, true); 6714 out = must_be_not_null(out, true); 6715 6716 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6717 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6718 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6719 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6720 // failed array check 6721 return false; 6722 } 6723 6724 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6725 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6726 if (out_elem != T_INT || in_elem != T_INT) { 6727 return false; 6728 } 6729 6730 Node* outlen = load_array_length(out); 6731 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6732 Node* out_start = array_element_address(out, intcon(0), out_elem); 6733 Node* in_start = array_element_address(in, intcon(0), in_elem); 6734 6735 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6736 OptoRuntime::mulAdd_Type(), 6737 stubAddr, stubName, TypePtr::BOTTOM, 6738 out_start,in_start, new_offset, len, k); 6739 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6740 set_result(result); 6741 return true; 6742 } 6743 6744 //-------------inline_montgomeryMultiply----------------------------------- 6745 bool LibraryCallKit::inline_montgomeryMultiply() { 6746 address stubAddr = StubRoutines::montgomeryMultiply(); 6747 if (stubAddr == nullptr) { 6748 return false; // Intrinsic's stub is not implemented on this platform 6749 } 6750 6751 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6752 const char* stubName = "montgomery_multiply"; 6753 6754 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6755 6756 Node* a = argument(0); 6757 Node* b = argument(1); 6758 Node* n = argument(2); 6759 Node* len = argument(3); 6760 Node* inv = argument(4); 6761 Node* m = argument(6); 6762 6763 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6764 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6765 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6766 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6767 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6768 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6769 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6770 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6771 // failed array check 6772 return false; 6773 } 6774 6775 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6776 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6777 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6778 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6779 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6780 return false; 6781 } 6782 6783 // Make the call 6784 { 6785 Node* a_start = array_element_address(a, intcon(0), a_elem); 6786 Node* b_start = array_element_address(b, intcon(0), b_elem); 6787 Node* n_start = array_element_address(n, intcon(0), n_elem); 6788 Node* m_start = array_element_address(m, intcon(0), m_elem); 6789 6790 Node* call = make_runtime_call(RC_LEAF, 6791 OptoRuntime::montgomeryMultiply_Type(), 6792 stubAddr, stubName, TypePtr::BOTTOM, 6793 a_start, b_start, n_start, len, inv, top(), 6794 m_start); 6795 set_result(m); 6796 } 6797 6798 return true; 6799 } 6800 6801 bool LibraryCallKit::inline_montgomerySquare() { 6802 address stubAddr = StubRoutines::montgomerySquare(); 6803 if (stubAddr == nullptr) { 6804 return false; // Intrinsic's stub is not implemented on this platform 6805 } 6806 6807 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6808 const char* stubName = "montgomery_square"; 6809 6810 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6811 6812 Node* a = argument(0); 6813 Node* n = argument(1); 6814 Node* len = argument(2); 6815 Node* inv = argument(3); 6816 Node* m = argument(5); 6817 6818 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6819 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6820 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6821 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6822 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6823 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6824 // failed array check 6825 return false; 6826 } 6827 6828 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6829 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6830 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6831 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6832 return false; 6833 } 6834 6835 // Make the call 6836 { 6837 Node* a_start = array_element_address(a, intcon(0), a_elem); 6838 Node* n_start = array_element_address(n, intcon(0), n_elem); 6839 Node* m_start = array_element_address(m, intcon(0), m_elem); 6840 6841 Node* call = make_runtime_call(RC_LEAF, 6842 OptoRuntime::montgomerySquare_Type(), 6843 stubAddr, stubName, TypePtr::BOTTOM, 6844 a_start, n_start, len, inv, top(), 6845 m_start); 6846 set_result(m); 6847 } 6848 6849 return true; 6850 } 6851 6852 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6853 address stubAddr = nullptr; 6854 const char* stubName = nullptr; 6855 6856 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6857 if (stubAddr == nullptr) { 6858 return false; // Intrinsic's stub is not implemented on this platform 6859 } 6860 6861 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6862 6863 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6864 6865 Node* newArr = argument(0); 6866 Node* oldArr = argument(1); 6867 Node* newIdx = argument(2); 6868 Node* shiftCount = argument(3); 6869 Node* numIter = argument(4); 6870 6871 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6872 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6873 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6874 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6875 return false; 6876 } 6877 6878 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6879 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6880 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6881 return false; 6882 } 6883 6884 // Make the call 6885 { 6886 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6887 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6888 6889 Node* call = make_runtime_call(RC_LEAF, 6890 OptoRuntime::bigIntegerShift_Type(), 6891 stubAddr, 6892 stubName, 6893 TypePtr::BOTTOM, 6894 newArr_start, 6895 oldArr_start, 6896 newIdx, 6897 shiftCount, 6898 numIter); 6899 } 6900 6901 return true; 6902 } 6903 6904 //-------------inline_vectorizedMismatch------------------------------ 6905 bool LibraryCallKit::inline_vectorizedMismatch() { 6906 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6907 6908 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6909 Node* obja = argument(0); // Object 6910 Node* aoffset = argument(1); // long 6911 Node* objb = argument(3); // Object 6912 Node* boffset = argument(4); // long 6913 Node* length = argument(6); // int 6914 Node* scale = argument(7); // int 6915 6916 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6917 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6918 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6919 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6920 scale == top()) { 6921 return false; // failed input validation 6922 } 6923 6924 Node* obja_adr = make_unsafe_address(obja, aoffset); 6925 Node* objb_adr = make_unsafe_address(objb, boffset); 6926 6927 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6928 // 6929 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6930 // if (length <= inline_limit) { 6931 // inline_path: 6932 // vmask = VectorMaskGen length 6933 // vload1 = LoadVectorMasked obja, vmask 6934 // vload2 = LoadVectorMasked objb, vmask 6935 // result1 = VectorCmpMasked vload1, vload2, vmask 6936 // } else { 6937 // call_stub_path: 6938 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6939 // } 6940 // exit_block: 6941 // return Phi(result1, result2); 6942 // 6943 enum { inline_path = 1, // input is small enough to process it all at once 6944 stub_path = 2, // input is too large; call into the VM 6945 PATH_LIMIT = 3 6946 }; 6947 6948 Node* exit_block = new RegionNode(PATH_LIMIT); 6949 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6950 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6951 6952 Node* call_stub_path = control(); 6953 6954 BasicType elem_bt = T_ILLEGAL; 6955 6956 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6957 if (scale_t->is_con()) { 6958 switch (scale_t->get_con()) { 6959 case 0: elem_bt = T_BYTE; break; 6960 case 1: elem_bt = T_SHORT; break; 6961 case 2: elem_bt = T_INT; break; 6962 case 3: elem_bt = T_LONG; break; 6963 6964 default: elem_bt = T_ILLEGAL; break; // not supported 6965 } 6966 } 6967 6968 int inline_limit = 0; 6969 bool do_partial_inline = false; 6970 6971 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6972 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6973 do_partial_inline = inline_limit >= 16; 6974 } 6975 6976 if (do_partial_inline) { 6977 assert(elem_bt != T_ILLEGAL, "sanity"); 6978 6979 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6980 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6981 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6982 6983 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6984 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6985 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6986 6987 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6988 6989 if (!stopped()) { 6990 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6991 6992 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6993 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6994 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6995 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6996 6997 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6998 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6999 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 7000 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 7001 7002 exit_block->init_req(inline_path, control()); 7003 memory_phi->init_req(inline_path, map()->memory()); 7004 result_phi->init_req(inline_path, result); 7005 7006 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 7007 clear_upper_avx(); 7008 } 7009 } 7010 } 7011 7012 if (call_stub_path != nullptr) { 7013 set_control(call_stub_path); 7014 7015 Node* call = make_runtime_call(RC_LEAF, 7016 OptoRuntime::vectorizedMismatch_Type(), 7017 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 7018 obja_adr, objb_adr, length, scale); 7019 7020 exit_block->init_req(stub_path, control()); 7021 memory_phi->init_req(stub_path, map()->memory()); 7022 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 7023 } 7024 7025 exit_block = _gvn.transform(exit_block); 7026 memory_phi = _gvn.transform(memory_phi); 7027 result_phi = _gvn.transform(result_phi); 7028 7029 set_control(exit_block); 7030 set_all_memory(memory_phi); 7031 set_result(result_phi); 7032 7033 return true; 7034 } 7035 7036 //------------------------------inline_vectorizedHashcode---------------------------- 7037 bool LibraryCallKit::inline_vectorizedHashCode() { 7038 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 7039 7040 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 7041 Node* array = argument(0); 7042 Node* offset = argument(1); 7043 Node* length = argument(2); 7044 Node* initialValue = argument(3); 7045 Node* basic_type = argument(4); 7046 7047 if (basic_type == top()) { 7048 return false; // failed input validation 7049 } 7050 7051 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 7052 if (!basic_type_t->is_con()) { 7053 return false; // Only intrinsify if mode argument is constant 7054 } 7055 7056 array = must_be_not_null(array, true); 7057 7058 BasicType bt = (BasicType)basic_type_t->get_con(); 7059 7060 // Resolve address of first element 7061 Node* array_start = array_element_address(array, offset, bt); 7062 7063 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 7064 array_start, length, initialValue, basic_type))); 7065 clear_upper_avx(); 7066 7067 return true; 7068 } 7069 7070 /** 7071 * Calculate CRC32 for byte. 7072 * int java.util.zip.CRC32.update(int crc, int b) 7073 */ 7074 bool LibraryCallKit::inline_updateCRC32() { 7075 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7076 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 7077 // no receiver since it is static method 7078 Node* crc = argument(0); // type: int 7079 Node* b = argument(1); // type: int 7080 7081 /* 7082 * int c = ~ crc; 7083 * b = timesXtoThe32[(b ^ c) & 0xFF]; 7084 * b = b ^ (c >>> 8); 7085 * crc = ~b; 7086 */ 7087 7088 Node* M1 = intcon(-1); 7089 crc = _gvn.transform(new XorINode(crc, M1)); 7090 Node* result = _gvn.transform(new XorINode(crc, b)); 7091 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 7092 7093 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 7094 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 7095 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 7096 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 7097 7098 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 7099 result = _gvn.transform(new XorINode(crc, result)); 7100 result = _gvn.transform(new XorINode(result, M1)); 7101 set_result(result); 7102 return true; 7103 } 7104 7105 /** 7106 * Calculate CRC32 for byte[] array. 7107 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 7108 */ 7109 bool LibraryCallKit::inline_updateBytesCRC32() { 7110 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7111 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7112 // no receiver since it is static method 7113 Node* crc = argument(0); // type: int 7114 Node* src = argument(1); // type: oop 7115 Node* offset = argument(2); // type: int 7116 Node* length = argument(3); // type: int 7117 7118 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7119 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7120 // failed array check 7121 return false; 7122 } 7123 7124 // Figure out the size and type of the elements we will be copying. 7125 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7126 if (src_elem != T_BYTE) { 7127 return false; 7128 } 7129 7130 // 'src_start' points to src array + scaled offset 7131 src = must_be_not_null(src, true); 7132 Node* src_start = array_element_address(src, offset, src_elem); 7133 7134 // We assume that range check is done by caller. 7135 // TODO: generate range check (offset+length < src.length) in debug VM. 7136 7137 // Call the stub. 7138 address stubAddr = StubRoutines::updateBytesCRC32(); 7139 const char *stubName = "updateBytesCRC32"; 7140 7141 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7142 stubAddr, stubName, TypePtr::BOTTOM, 7143 crc, src_start, length); 7144 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7145 set_result(result); 7146 return true; 7147 } 7148 7149 /** 7150 * Calculate CRC32 for ByteBuffer. 7151 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 7152 */ 7153 bool LibraryCallKit::inline_updateByteBufferCRC32() { 7154 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7155 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7156 // no receiver since it is static method 7157 Node* crc = argument(0); // type: int 7158 Node* src = argument(1); // type: long 7159 Node* offset = argument(3); // type: int 7160 Node* length = argument(4); // type: int 7161 7162 src = ConvL2X(src); // adjust Java long to machine word 7163 Node* base = _gvn.transform(new CastX2PNode(src)); 7164 offset = ConvI2X(offset); 7165 7166 // 'src_start' points to src array + scaled offset 7167 Node* src_start = basic_plus_adr(top(), base, offset); 7168 7169 // Call the stub. 7170 address stubAddr = StubRoutines::updateBytesCRC32(); 7171 const char *stubName = "updateBytesCRC32"; 7172 7173 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7174 stubAddr, stubName, TypePtr::BOTTOM, 7175 crc, src_start, length); 7176 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7177 set_result(result); 7178 return true; 7179 } 7180 7181 //------------------------------get_table_from_crc32c_class----------------------- 7182 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 7183 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 7184 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 7185 7186 return table; 7187 } 7188 7189 //------------------------------inline_updateBytesCRC32C----------------------- 7190 // 7191 // Calculate CRC32C for byte[] array. 7192 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 7193 // 7194 bool LibraryCallKit::inline_updateBytesCRC32C() { 7195 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7196 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7197 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7198 // no receiver since it is a static method 7199 Node* crc = argument(0); // type: int 7200 Node* src = argument(1); // type: oop 7201 Node* offset = argument(2); // type: int 7202 Node* end = argument(3); // type: int 7203 7204 Node* length = _gvn.transform(new SubINode(end, offset)); 7205 7206 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7207 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7208 // failed array check 7209 return false; 7210 } 7211 7212 // Figure out the size and type of the elements we will be copying. 7213 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7214 if (src_elem != T_BYTE) { 7215 return false; 7216 } 7217 7218 // 'src_start' points to src array + scaled offset 7219 src = must_be_not_null(src, true); 7220 Node* src_start = array_element_address(src, offset, src_elem); 7221 7222 // static final int[] byteTable in class CRC32C 7223 Node* table = get_table_from_crc32c_class(callee()->holder()); 7224 table = must_be_not_null(table, true); 7225 Node* table_start = array_element_address(table, intcon(0), T_INT); 7226 7227 // We assume that range check is done by caller. 7228 // TODO: generate range check (offset+length < src.length) in debug VM. 7229 7230 // Call the stub. 7231 address stubAddr = StubRoutines::updateBytesCRC32C(); 7232 const char *stubName = "updateBytesCRC32C"; 7233 7234 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7235 stubAddr, stubName, TypePtr::BOTTOM, 7236 crc, src_start, length, table_start); 7237 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7238 set_result(result); 7239 return true; 7240 } 7241 7242 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 7243 // 7244 // Calculate CRC32C for DirectByteBuffer. 7245 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 7246 // 7247 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 7248 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7249 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 7250 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7251 // no receiver since it is a static method 7252 Node* crc = argument(0); // type: int 7253 Node* src = argument(1); // type: long 7254 Node* offset = argument(3); // type: int 7255 Node* end = argument(4); // type: int 7256 7257 Node* length = _gvn.transform(new SubINode(end, offset)); 7258 7259 src = ConvL2X(src); // adjust Java long to machine word 7260 Node* base = _gvn.transform(new CastX2PNode(src)); 7261 offset = ConvI2X(offset); 7262 7263 // 'src_start' points to src array + scaled offset 7264 Node* src_start = basic_plus_adr(top(), base, offset); 7265 7266 // static final int[] byteTable in class CRC32C 7267 Node* table = get_table_from_crc32c_class(callee()->holder()); 7268 table = must_be_not_null(table, true); 7269 Node* table_start = array_element_address(table, intcon(0), T_INT); 7270 7271 // Call the stub. 7272 address stubAddr = StubRoutines::updateBytesCRC32C(); 7273 const char *stubName = "updateBytesCRC32C"; 7274 7275 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7276 stubAddr, stubName, TypePtr::BOTTOM, 7277 crc, src_start, length, table_start); 7278 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7279 set_result(result); 7280 return true; 7281 } 7282 7283 //------------------------------inline_updateBytesAdler32---------------------- 7284 // 7285 // Calculate Adler32 checksum for byte[] array. 7286 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 7287 // 7288 bool LibraryCallKit::inline_updateBytesAdler32() { 7289 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7290 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7291 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7292 // no receiver since it is static method 7293 Node* crc = argument(0); // type: int 7294 Node* src = argument(1); // type: oop 7295 Node* offset = argument(2); // type: int 7296 Node* length = argument(3); // type: int 7297 7298 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7299 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7300 // failed array check 7301 return false; 7302 } 7303 7304 // Figure out the size and type of the elements we will be copying. 7305 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7306 if (src_elem != T_BYTE) { 7307 return false; 7308 } 7309 7310 // 'src_start' points to src array + scaled offset 7311 Node* src_start = array_element_address(src, offset, src_elem); 7312 7313 // We assume that range check is done by caller. 7314 // TODO: generate range check (offset+length < src.length) in debug VM. 7315 7316 // Call the stub. 7317 address stubAddr = StubRoutines::updateBytesAdler32(); 7318 const char *stubName = "updateBytesAdler32"; 7319 7320 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7321 stubAddr, stubName, TypePtr::BOTTOM, 7322 crc, src_start, length); 7323 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7324 set_result(result); 7325 return true; 7326 } 7327 7328 //------------------------------inline_updateByteBufferAdler32--------------- 7329 // 7330 // Calculate Adler32 checksum for DirectByteBuffer. 7331 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 7332 // 7333 bool LibraryCallKit::inline_updateByteBufferAdler32() { 7334 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7335 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7336 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7337 // no receiver since it is static method 7338 Node* crc = argument(0); // type: int 7339 Node* src = argument(1); // type: long 7340 Node* offset = argument(3); // type: int 7341 Node* length = argument(4); // type: int 7342 7343 src = ConvL2X(src); // adjust Java long to machine word 7344 Node* base = _gvn.transform(new CastX2PNode(src)); 7345 offset = ConvI2X(offset); 7346 7347 // 'src_start' points to src array + scaled offset 7348 Node* src_start = basic_plus_adr(top(), base, offset); 7349 7350 // Call the stub. 7351 address stubAddr = StubRoutines::updateBytesAdler32(); 7352 const char *stubName = "updateBytesAdler32"; 7353 7354 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7355 stubAddr, stubName, TypePtr::BOTTOM, 7356 crc, src_start, length); 7357 7358 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7359 set_result(result); 7360 return true; 7361 } 7362 7363 //----------------------------inline_reference_get---------------------------- 7364 // public T java.lang.ref.Reference.get(); 7365 bool LibraryCallKit::inline_reference_get() { 7366 const int referent_offset = java_lang_ref_Reference::referent_offset(); 7367 7368 // Get the argument: 7369 Node* reference_obj = null_check_receiver(); 7370 if (stopped()) return true; 7371 7372 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 7373 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7374 decorators, /*is_static*/ false, nullptr); 7375 if (result == nullptr) return false; 7376 7377 // Add memory barrier to prevent commoning reads from this field 7378 // across safepoint since GC can change its value. 7379 insert_mem_bar(Op_MemBarCPUOrder); 7380 7381 set_result(result); 7382 return true; 7383 } 7384 7385 //----------------------------inline_reference_refersTo0---------------------------- 7386 // bool java.lang.ref.Reference.refersTo0(); 7387 // bool java.lang.ref.PhantomReference.refersTo0(); 7388 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 7389 // Get arguments: 7390 Node* reference_obj = null_check_receiver(); 7391 Node* other_obj = argument(1); 7392 if (stopped()) return true; 7393 7394 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7395 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7396 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7397 decorators, /*is_static*/ false, nullptr); 7398 if (referent == nullptr) return false; 7399 7400 // Add memory barrier to prevent commoning reads from this field 7401 // across safepoint since GC can change its value. 7402 insert_mem_bar(Op_MemBarCPUOrder); 7403 7404 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7405 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7406 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7407 7408 RegionNode* region = new RegionNode(3); 7409 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7410 7411 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7412 region->init_req(1, if_true); 7413 phi->init_req(1, intcon(1)); 7414 7415 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7416 region->init_req(2, if_false); 7417 phi->init_req(2, intcon(0)); 7418 7419 set_control(_gvn.transform(region)); 7420 record_for_igvn(region); 7421 set_result(_gvn.transform(phi)); 7422 return true; 7423 } 7424 7425 //----------------------------inline_reference_clear0---------------------------- 7426 // void java.lang.ref.Reference.clear0(); 7427 // void java.lang.ref.PhantomReference.clear0(); 7428 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 7429 // This matches the implementation in JVM_ReferenceClear, see the comments there. 7430 7431 // Get arguments 7432 Node* reference_obj = null_check_receiver(); 7433 if (stopped()) return true; 7434 7435 // Common access parameters 7436 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7437 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7438 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7439 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7440 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7441 7442 Node* referent = access_load_at(reference_obj, 7443 referent_field_addr, 7444 referent_field_addr_type, 7445 val_type, 7446 T_OBJECT, 7447 decorators); 7448 7449 IdealKit ideal(this); 7450 #define __ ideal. 7451 __ if_then(referent, BoolTest::ne, null()); 7452 sync_kit(ideal); 7453 access_store_at(reference_obj, 7454 referent_field_addr, 7455 referent_field_addr_type, 7456 null(), 7457 val_type, 7458 T_OBJECT, 7459 decorators); 7460 __ sync_kit(this); 7461 __ end_if(); 7462 final_sync(ideal); 7463 #undef __ 7464 7465 return true; 7466 } 7467 7468 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7469 DecoratorSet decorators, bool is_static, 7470 ciInstanceKlass* fromKls) { 7471 if (fromKls == nullptr) { 7472 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7473 assert(tinst != nullptr, "obj is null"); 7474 assert(tinst->is_loaded(), "obj is not loaded"); 7475 fromKls = tinst->instance_klass(); 7476 } else { 7477 assert(is_static, "only for static field access"); 7478 } 7479 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7480 ciSymbol::make(fieldTypeString), 7481 is_static); 7482 7483 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7484 if (field == nullptr) return (Node *) nullptr; 7485 7486 if (is_static) { 7487 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7488 fromObj = makecon(tip); 7489 } 7490 7491 // Next code copied from Parse::do_get_xxx(): 7492 7493 // Compute address and memory type. 7494 int offset = field->offset_in_bytes(); 7495 bool is_vol = field->is_volatile(); 7496 ciType* field_klass = field->type(); 7497 assert(field_klass->is_loaded(), "should be loaded"); 7498 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7499 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7500 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7501 "slice of address and input slice don't match"); 7502 BasicType bt = field->layout_type(); 7503 7504 // Build the resultant type of the load 7505 const Type *type; 7506 if (bt == T_OBJECT) { 7507 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7508 } else { 7509 type = Type::get_const_basic_type(bt); 7510 } 7511 7512 if (is_vol) { 7513 decorators |= MO_SEQ_CST; 7514 } 7515 7516 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7517 } 7518 7519 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7520 bool is_exact /* true */, bool is_static /* false */, 7521 ciInstanceKlass * fromKls /* nullptr */) { 7522 if (fromKls == nullptr) { 7523 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7524 assert(tinst != nullptr, "obj is null"); 7525 assert(tinst->is_loaded(), "obj is not loaded"); 7526 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7527 fromKls = tinst->instance_klass(); 7528 } 7529 else { 7530 assert(is_static, "only for static field access"); 7531 } 7532 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7533 ciSymbol::make(fieldTypeString), 7534 is_static); 7535 7536 assert(field != nullptr, "undefined field"); 7537 assert(!field->is_volatile(), "not defined for volatile fields"); 7538 7539 if (is_static) { 7540 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7541 fromObj = makecon(tip); 7542 } 7543 7544 // Next code copied from Parse::do_get_xxx(): 7545 7546 // Compute address and memory type. 7547 int offset = field->offset_in_bytes(); 7548 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7549 7550 return adr; 7551 } 7552 7553 //------------------------------inline_aescrypt_Block----------------------- 7554 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7555 address stubAddr = nullptr; 7556 const char *stubName; 7557 assert(UseAES, "need AES instruction support"); 7558 7559 switch(id) { 7560 case vmIntrinsics::_aescrypt_encryptBlock: 7561 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7562 stubName = "aescrypt_encryptBlock"; 7563 break; 7564 case vmIntrinsics::_aescrypt_decryptBlock: 7565 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7566 stubName = "aescrypt_decryptBlock"; 7567 break; 7568 default: 7569 break; 7570 } 7571 if (stubAddr == nullptr) return false; 7572 7573 Node* aescrypt_object = argument(0); 7574 Node* src = argument(1); 7575 Node* src_offset = argument(2); 7576 Node* dest = argument(3); 7577 Node* dest_offset = argument(4); 7578 7579 src = must_be_not_null(src, true); 7580 dest = must_be_not_null(dest, true); 7581 7582 // (1) src and dest are arrays. 7583 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7584 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7585 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7586 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7587 7588 // for the quick and dirty code we will skip all the checks. 7589 // we are just trying to get the call to be generated. 7590 Node* src_start = src; 7591 Node* dest_start = dest; 7592 if (src_offset != nullptr || dest_offset != nullptr) { 7593 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7594 src_start = array_element_address(src, src_offset, T_BYTE); 7595 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7596 } 7597 7598 // now need to get the start of its expanded key array 7599 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7600 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7601 if (k_start == nullptr) return false; 7602 7603 // Call the stub. 7604 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7605 stubAddr, stubName, TypePtr::BOTTOM, 7606 src_start, dest_start, k_start); 7607 7608 return true; 7609 } 7610 7611 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7612 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7613 address stubAddr = nullptr; 7614 const char *stubName = nullptr; 7615 7616 assert(UseAES, "need AES instruction support"); 7617 7618 switch(id) { 7619 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7620 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7621 stubName = "cipherBlockChaining_encryptAESCrypt"; 7622 break; 7623 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7624 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7625 stubName = "cipherBlockChaining_decryptAESCrypt"; 7626 break; 7627 default: 7628 break; 7629 } 7630 if (stubAddr == nullptr) return false; 7631 7632 Node* cipherBlockChaining_object = argument(0); 7633 Node* src = argument(1); 7634 Node* src_offset = argument(2); 7635 Node* len = argument(3); 7636 Node* dest = argument(4); 7637 Node* dest_offset = argument(5); 7638 7639 src = must_be_not_null(src, false); 7640 dest = must_be_not_null(dest, false); 7641 7642 // (1) src and dest are arrays. 7643 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7644 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7645 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7646 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7647 7648 // checks are the responsibility of the caller 7649 Node* src_start = src; 7650 Node* dest_start = dest; 7651 if (src_offset != nullptr || dest_offset != nullptr) { 7652 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7653 src_start = array_element_address(src, src_offset, T_BYTE); 7654 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7655 } 7656 7657 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7658 // (because of the predicated logic executed earlier). 7659 // so we cast it here safely. 7660 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7661 7662 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7663 if (embeddedCipherObj == nullptr) return false; 7664 7665 // cast it to what we know it will be at runtime 7666 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7667 assert(tinst != nullptr, "CBC obj is null"); 7668 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7669 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7670 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7671 7672 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7673 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7674 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7675 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7676 aescrypt_object = _gvn.transform(aescrypt_object); 7677 7678 // we need to get the start of the aescrypt_object's expanded key array 7679 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7680 if (k_start == nullptr) return false; 7681 7682 // similarly, get the start address of the r vector 7683 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7684 if (objRvec == nullptr) return false; 7685 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7686 7687 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7688 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7689 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7690 stubAddr, stubName, TypePtr::BOTTOM, 7691 src_start, dest_start, k_start, r_start, len); 7692 7693 // return cipher length (int) 7694 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7695 set_result(retvalue); 7696 return true; 7697 } 7698 7699 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7700 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7701 address stubAddr = nullptr; 7702 const char *stubName = nullptr; 7703 7704 assert(UseAES, "need AES instruction support"); 7705 7706 switch (id) { 7707 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7708 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7709 stubName = "electronicCodeBook_encryptAESCrypt"; 7710 break; 7711 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7712 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7713 stubName = "electronicCodeBook_decryptAESCrypt"; 7714 break; 7715 default: 7716 break; 7717 } 7718 7719 if (stubAddr == nullptr) return false; 7720 7721 Node* electronicCodeBook_object = argument(0); 7722 Node* src = argument(1); 7723 Node* src_offset = argument(2); 7724 Node* len = argument(3); 7725 Node* dest = argument(4); 7726 Node* dest_offset = argument(5); 7727 7728 // (1) src and dest are arrays. 7729 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7730 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7731 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7732 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7733 7734 // checks are the responsibility of the caller 7735 Node* src_start = src; 7736 Node* dest_start = dest; 7737 if (src_offset != nullptr || dest_offset != nullptr) { 7738 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7739 src_start = array_element_address(src, src_offset, T_BYTE); 7740 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7741 } 7742 7743 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7744 // (because of the predicated logic executed earlier). 7745 // so we cast it here safely. 7746 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7747 7748 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7749 if (embeddedCipherObj == nullptr) return false; 7750 7751 // cast it to what we know it will be at runtime 7752 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7753 assert(tinst != nullptr, "ECB obj is null"); 7754 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7755 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7756 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7757 7758 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7759 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7760 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7761 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7762 aescrypt_object = _gvn.transform(aescrypt_object); 7763 7764 // we need to get the start of the aescrypt_object's expanded key array 7765 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7766 if (k_start == nullptr) return false; 7767 7768 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7769 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7770 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7771 stubAddr, stubName, TypePtr::BOTTOM, 7772 src_start, dest_start, k_start, len); 7773 7774 // return cipher length (int) 7775 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7776 set_result(retvalue); 7777 return true; 7778 } 7779 7780 //------------------------------inline_counterMode_AESCrypt----------------------- 7781 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7782 assert(UseAES, "need AES instruction support"); 7783 if (!UseAESCTRIntrinsics) return false; 7784 7785 address stubAddr = nullptr; 7786 const char *stubName = nullptr; 7787 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7788 stubAddr = StubRoutines::counterMode_AESCrypt(); 7789 stubName = "counterMode_AESCrypt"; 7790 } 7791 if (stubAddr == nullptr) return false; 7792 7793 Node* counterMode_object = argument(0); 7794 Node* src = argument(1); 7795 Node* src_offset = argument(2); 7796 Node* len = argument(3); 7797 Node* dest = argument(4); 7798 Node* dest_offset = argument(5); 7799 7800 // (1) src and dest are arrays. 7801 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7802 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7803 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7804 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7805 7806 // checks are the responsibility of the caller 7807 Node* src_start = src; 7808 Node* dest_start = dest; 7809 if (src_offset != nullptr || dest_offset != nullptr) { 7810 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7811 src_start = array_element_address(src, src_offset, T_BYTE); 7812 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7813 } 7814 7815 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7816 // (because of the predicated logic executed earlier). 7817 // so we cast it here safely. 7818 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7819 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7820 if (embeddedCipherObj == nullptr) return false; 7821 // cast it to what we know it will be at runtime 7822 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7823 assert(tinst != nullptr, "CTR obj is null"); 7824 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7825 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7826 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7827 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7828 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7829 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7830 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7831 aescrypt_object = _gvn.transform(aescrypt_object); 7832 // we need to get the start of the aescrypt_object's expanded key array 7833 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7834 if (k_start == nullptr) return false; 7835 // similarly, get the start address of the r vector 7836 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7837 if (obj_counter == nullptr) return false; 7838 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7839 7840 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7841 if (saved_encCounter == nullptr) return false; 7842 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7843 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7844 7845 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7846 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7847 OptoRuntime::counterMode_aescrypt_Type(), 7848 stubAddr, stubName, TypePtr::BOTTOM, 7849 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7850 7851 // return cipher length (int) 7852 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7853 set_result(retvalue); 7854 return true; 7855 } 7856 7857 //------------------------------get_key_start_from_aescrypt_object----------------------- 7858 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7859 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7860 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7861 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7862 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7863 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7864 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7865 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7866 if (objSessionK == nullptr) { 7867 return (Node *) nullptr; 7868 } 7869 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7870 #else 7871 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7872 #endif // PPC64 7873 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7874 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7875 7876 // now have the array, need to get the start address of the K array 7877 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7878 return k_start; 7879 } 7880 7881 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7882 // Return node representing slow path of predicate check. 7883 // the pseudo code we want to emulate with this predicate is: 7884 // for encryption: 7885 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7886 // for decryption: 7887 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7888 // note cipher==plain is more conservative than the original java code but that's OK 7889 // 7890 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7891 // The receiver was checked for null already. 7892 Node* objCBC = argument(0); 7893 7894 Node* src = argument(1); 7895 Node* dest = argument(4); 7896 7897 // Load embeddedCipher field of CipherBlockChaining object. 7898 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7899 7900 // get AESCrypt klass for instanceOf check 7901 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7902 // will have same classloader as CipherBlockChaining object 7903 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7904 assert(tinst != nullptr, "CBCobj is null"); 7905 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7906 7907 // we want to do an instanceof comparison against the AESCrypt class 7908 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7909 if (!klass_AESCrypt->is_loaded()) { 7910 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7911 Node* ctrl = control(); 7912 set_control(top()); // no regular fast path 7913 return ctrl; 7914 } 7915 7916 src = must_be_not_null(src, true); 7917 dest = must_be_not_null(dest, true); 7918 7919 // Resolve oops to stable for CmpP below. 7920 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7921 7922 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7923 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7924 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7925 7926 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7927 7928 // for encryption, we are done 7929 if (!decrypting) 7930 return instof_false; // even if it is null 7931 7932 // for decryption, we need to add a further check to avoid 7933 // taking the intrinsic path when cipher and plain are the same 7934 // see the original java code for why. 7935 RegionNode* region = new RegionNode(3); 7936 region->init_req(1, instof_false); 7937 7938 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7939 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7940 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7941 region->init_req(2, src_dest_conjoint); 7942 7943 record_for_igvn(region); 7944 return _gvn.transform(region); 7945 } 7946 7947 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7948 // Return node representing slow path of predicate check. 7949 // the pseudo code we want to emulate with this predicate is: 7950 // for encryption: 7951 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7952 // for decryption: 7953 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7954 // note cipher==plain is more conservative than the original java code but that's OK 7955 // 7956 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7957 // The receiver was checked for null already. 7958 Node* objECB = argument(0); 7959 7960 // Load embeddedCipher field of ElectronicCodeBook object. 7961 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7962 7963 // get AESCrypt klass for instanceOf check 7964 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7965 // will have same classloader as ElectronicCodeBook object 7966 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7967 assert(tinst != nullptr, "ECBobj is null"); 7968 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7969 7970 // we want to do an instanceof comparison against the AESCrypt class 7971 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7972 if (!klass_AESCrypt->is_loaded()) { 7973 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7974 Node* ctrl = control(); 7975 set_control(top()); // no regular fast path 7976 return ctrl; 7977 } 7978 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7979 7980 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7981 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7982 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7983 7984 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7985 7986 // for encryption, we are done 7987 if (!decrypting) 7988 return instof_false; // even if it is null 7989 7990 // for decryption, we need to add a further check to avoid 7991 // taking the intrinsic path when cipher and plain are the same 7992 // see the original java code for why. 7993 RegionNode* region = new RegionNode(3); 7994 region->init_req(1, instof_false); 7995 Node* src = argument(1); 7996 Node* dest = argument(4); 7997 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7998 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7999 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 8000 region->init_req(2, src_dest_conjoint); 8001 8002 record_for_igvn(region); 8003 return _gvn.transform(region); 8004 } 8005 8006 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 8007 // Return node representing slow path of predicate check. 8008 // the pseudo code we want to emulate with this predicate is: 8009 // for encryption: 8010 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8011 // for decryption: 8012 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8013 // note cipher==plain is more conservative than the original java code but that's OK 8014 // 8015 8016 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 8017 // The receiver was checked for null already. 8018 Node* objCTR = argument(0); 8019 8020 // Load embeddedCipher field of CipherBlockChaining object. 8021 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8022 8023 // get AESCrypt klass for instanceOf check 8024 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8025 // will have same classloader as CipherBlockChaining object 8026 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 8027 assert(tinst != nullptr, "CTRobj is null"); 8028 assert(tinst->is_loaded(), "CTRobj is not loaded"); 8029 8030 // we want to do an instanceof comparison against the AESCrypt class 8031 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8032 if (!klass_AESCrypt->is_loaded()) { 8033 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8034 Node* ctrl = control(); 8035 set_control(top()); // no regular fast path 8036 return ctrl; 8037 } 8038 8039 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8040 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8041 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8042 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8043 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8044 8045 return instof_false; // even if it is null 8046 } 8047 8048 //------------------------------inline_ghash_processBlocks 8049 bool LibraryCallKit::inline_ghash_processBlocks() { 8050 address stubAddr; 8051 const char *stubName; 8052 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 8053 8054 stubAddr = StubRoutines::ghash_processBlocks(); 8055 stubName = "ghash_processBlocks"; 8056 8057 Node* data = argument(0); 8058 Node* offset = argument(1); 8059 Node* len = argument(2); 8060 Node* state = argument(3); 8061 Node* subkeyH = argument(4); 8062 8063 state = must_be_not_null(state, true); 8064 subkeyH = must_be_not_null(subkeyH, true); 8065 data = must_be_not_null(data, true); 8066 8067 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8068 assert(state_start, "state is null"); 8069 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 8070 assert(subkeyH_start, "subkeyH is null"); 8071 Node* data_start = array_element_address(data, offset, T_BYTE); 8072 assert(data_start, "data is null"); 8073 8074 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 8075 OptoRuntime::ghash_processBlocks_Type(), 8076 stubAddr, stubName, TypePtr::BOTTOM, 8077 state_start, subkeyH_start, data_start, len); 8078 return true; 8079 } 8080 8081 //------------------------------inline_chacha20Block 8082 bool LibraryCallKit::inline_chacha20Block() { 8083 address stubAddr; 8084 const char *stubName; 8085 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 8086 8087 stubAddr = StubRoutines::chacha20Block(); 8088 stubName = "chacha20Block"; 8089 8090 Node* state = argument(0); 8091 Node* result = argument(1); 8092 8093 state = must_be_not_null(state, true); 8094 result = must_be_not_null(result, true); 8095 8096 Node* state_start = array_element_address(state, intcon(0), T_INT); 8097 assert(state_start, "state is null"); 8098 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 8099 assert(result_start, "result is null"); 8100 8101 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 8102 OptoRuntime::chacha20Block_Type(), 8103 stubAddr, stubName, TypePtr::BOTTOM, 8104 state_start, result_start); 8105 // return key stream length (int) 8106 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 8107 set_result(retvalue); 8108 return true; 8109 } 8110 8111 //------------------------------inline_dilithiumAlmostNtt 8112 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 8113 address stubAddr; 8114 const char *stubName; 8115 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8116 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 8117 8118 stubAddr = StubRoutines::dilithiumAlmostNtt(); 8119 stubName = "dilithiumAlmostNtt"; 8120 if (!stubAddr) return false; 8121 8122 Node* coeffs = argument(0); 8123 Node* ntt_zetas = argument(1); 8124 8125 coeffs = must_be_not_null(coeffs, true); 8126 ntt_zetas = must_be_not_null(ntt_zetas, true); 8127 8128 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8129 assert(coeffs_start, "coeffs is null"); 8130 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 8131 assert(ntt_zetas_start, "ntt_zetas is null"); 8132 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8133 OptoRuntime::dilithiumAlmostNtt_Type(), 8134 stubAddr, stubName, TypePtr::BOTTOM, 8135 coeffs_start, ntt_zetas_start); 8136 // return an int 8137 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 8138 set_result(retvalue); 8139 return true; 8140 } 8141 8142 //------------------------------inline_dilithiumAlmostInverseNtt 8143 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 8144 address stubAddr; 8145 const char *stubName; 8146 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8147 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 8148 8149 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 8150 stubName = "dilithiumAlmostInverseNtt"; 8151 if (!stubAddr) return false; 8152 8153 Node* coeffs = argument(0); 8154 Node* zetas = argument(1); 8155 8156 coeffs = must_be_not_null(coeffs, true); 8157 zetas = must_be_not_null(zetas, true); 8158 8159 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8160 assert(coeffs_start, "coeffs is null"); 8161 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 8162 assert(zetas_start, "inverseNtt_zetas is null"); 8163 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8164 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 8165 stubAddr, stubName, TypePtr::BOTTOM, 8166 coeffs_start, zetas_start); 8167 8168 // return an int 8169 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 8170 set_result(retvalue); 8171 return true; 8172 } 8173 8174 //------------------------------inline_dilithiumNttMult 8175 bool LibraryCallKit::inline_dilithiumNttMult() { 8176 address stubAddr; 8177 const char *stubName; 8178 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8179 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 8180 8181 stubAddr = StubRoutines::dilithiumNttMult(); 8182 stubName = "dilithiumNttMult"; 8183 if (!stubAddr) return false; 8184 8185 Node* result = argument(0); 8186 Node* ntta = argument(1); 8187 Node* nttb = argument(2); 8188 8189 result = must_be_not_null(result, true); 8190 ntta = must_be_not_null(ntta, true); 8191 nttb = must_be_not_null(nttb, true); 8192 8193 Node* result_start = array_element_address(result, intcon(0), T_INT); 8194 assert(result_start, "result is null"); 8195 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 8196 assert(ntta_start, "ntta is null"); 8197 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 8198 assert(nttb_start, "nttb is null"); 8199 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8200 OptoRuntime::dilithiumNttMult_Type(), 8201 stubAddr, stubName, TypePtr::BOTTOM, 8202 result_start, ntta_start, nttb_start); 8203 8204 // return an int 8205 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 8206 set_result(retvalue); 8207 8208 return true; 8209 } 8210 8211 //------------------------------inline_dilithiumMontMulByConstant 8212 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 8213 address stubAddr; 8214 const char *stubName; 8215 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8216 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8217 8218 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8219 stubName = "dilithiumMontMulByConstant"; 8220 if (!stubAddr) return false; 8221 8222 Node* coeffs = argument(0); 8223 Node* constant = argument(1); 8224 8225 coeffs = must_be_not_null(coeffs, true); 8226 8227 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8228 assert(coeffs_start, "coeffs is null"); 8229 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8230 OptoRuntime::dilithiumMontMulByConstant_Type(), 8231 stubAddr, stubName, TypePtr::BOTTOM, 8232 coeffs_start, constant); 8233 8234 // return an int 8235 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8236 set_result(retvalue); 8237 return true; 8238 } 8239 8240 8241 //------------------------------inline_dilithiumDecomposePoly 8242 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8243 address stubAddr; 8244 const char *stubName; 8245 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8246 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8247 8248 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8249 stubName = "dilithiumDecomposePoly"; 8250 if (!stubAddr) return false; 8251 8252 Node* input = argument(0); 8253 Node* lowPart = argument(1); 8254 Node* highPart = argument(2); 8255 Node* twoGamma2 = argument(3); 8256 Node* multiplier = argument(4); 8257 8258 input = must_be_not_null(input, true); 8259 lowPart = must_be_not_null(lowPart, true); 8260 highPart = must_be_not_null(highPart, true); 8261 8262 Node* input_start = array_element_address(input, intcon(0), T_INT); 8263 assert(input_start, "input is null"); 8264 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8265 assert(lowPart_start, "lowPart is null"); 8266 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8267 assert(highPart_start, "highPart is null"); 8268 8269 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8270 OptoRuntime::dilithiumDecomposePoly_Type(), 8271 stubAddr, stubName, TypePtr::BOTTOM, 8272 input_start, lowPart_start, highPart_start, 8273 twoGamma2, multiplier); 8274 8275 // return an int 8276 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8277 set_result(retvalue); 8278 return true; 8279 } 8280 8281 bool LibraryCallKit::inline_base64_encodeBlock() { 8282 address stubAddr; 8283 const char *stubName; 8284 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8285 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8286 stubAddr = StubRoutines::base64_encodeBlock(); 8287 stubName = "encodeBlock"; 8288 8289 if (!stubAddr) return false; 8290 Node* base64obj = argument(0); 8291 Node* src = argument(1); 8292 Node* offset = argument(2); 8293 Node* len = argument(3); 8294 Node* dest = argument(4); 8295 Node* dp = argument(5); 8296 Node* isURL = argument(6); 8297 8298 src = must_be_not_null(src, true); 8299 dest = must_be_not_null(dest, true); 8300 8301 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8302 assert(src_start, "source array is null"); 8303 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8304 assert(dest_start, "destination array is null"); 8305 8306 Node* base64 = make_runtime_call(RC_LEAF, 8307 OptoRuntime::base64_encodeBlock_Type(), 8308 stubAddr, stubName, TypePtr::BOTTOM, 8309 src_start, offset, len, dest_start, dp, isURL); 8310 return true; 8311 } 8312 8313 bool LibraryCallKit::inline_base64_decodeBlock() { 8314 address stubAddr; 8315 const char *stubName; 8316 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8317 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8318 stubAddr = StubRoutines::base64_decodeBlock(); 8319 stubName = "decodeBlock"; 8320 8321 if (!stubAddr) return false; 8322 Node* base64obj = argument(0); 8323 Node* src = argument(1); 8324 Node* src_offset = argument(2); 8325 Node* len = argument(3); 8326 Node* dest = argument(4); 8327 Node* dest_offset = argument(5); 8328 Node* isURL = argument(6); 8329 Node* isMIME = argument(7); 8330 8331 src = must_be_not_null(src, true); 8332 dest = must_be_not_null(dest, true); 8333 8334 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8335 assert(src_start, "source array is null"); 8336 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8337 assert(dest_start, "destination array is null"); 8338 8339 Node* call = make_runtime_call(RC_LEAF, 8340 OptoRuntime::base64_decodeBlock_Type(), 8341 stubAddr, stubName, TypePtr::BOTTOM, 8342 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8343 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8344 set_result(result); 8345 return true; 8346 } 8347 8348 bool LibraryCallKit::inline_poly1305_processBlocks() { 8349 address stubAddr; 8350 const char *stubName; 8351 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8352 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8353 stubAddr = StubRoutines::poly1305_processBlocks(); 8354 stubName = "poly1305_processBlocks"; 8355 8356 if (!stubAddr) return false; 8357 null_check_receiver(); // null-check receiver 8358 if (stopped()) return true; 8359 8360 Node* input = argument(1); 8361 Node* input_offset = argument(2); 8362 Node* len = argument(3); 8363 Node* alimbs = argument(4); 8364 Node* rlimbs = argument(5); 8365 8366 input = must_be_not_null(input, true); 8367 alimbs = must_be_not_null(alimbs, true); 8368 rlimbs = must_be_not_null(rlimbs, true); 8369 8370 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8371 assert(input_start, "input array is null"); 8372 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8373 assert(acc_start, "acc array is null"); 8374 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8375 assert(r_start, "r array is null"); 8376 8377 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8378 OptoRuntime::poly1305_processBlocks_Type(), 8379 stubAddr, stubName, TypePtr::BOTTOM, 8380 input_start, len, acc_start, r_start); 8381 return true; 8382 } 8383 8384 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8385 address stubAddr; 8386 const char *stubName; 8387 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8388 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8389 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8390 stubName = "intpoly_montgomeryMult_P256"; 8391 8392 if (!stubAddr) return false; 8393 null_check_receiver(); // null-check receiver 8394 if (stopped()) return true; 8395 8396 Node* a = argument(1); 8397 Node* b = argument(2); 8398 Node* r = argument(3); 8399 8400 a = must_be_not_null(a, true); 8401 b = must_be_not_null(b, true); 8402 r = must_be_not_null(r, true); 8403 8404 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8405 assert(a_start, "a array is null"); 8406 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8407 assert(b_start, "b array is null"); 8408 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8409 assert(r_start, "r array is null"); 8410 8411 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8412 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8413 stubAddr, stubName, TypePtr::BOTTOM, 8414 a_start, b_start, r_start); 8415 return true; 8416 } 8417 8418 bool LibraryCallKit::inline_intpoly_assign() { 8419 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8420 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8421 const char *stubName = "intpoly_assign"; 8422 address stubAddr = StubRoutines::intpoly_assign(); 8423 if (!stubAddr) return false; 8424 8425 Node* set = argument(0); 8426 Node* a = argument(1); 8427 Node* b = argument(2); 8428 Node* arr_length = load_array_length(a); 8429 8430 a = must_be_not_null(a, true); 8431 b = must_be_not_null(b, true); 8432 8433 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8434 assert(a_start, "a array is null"); 8435 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8436 assert(b_start, "b array is null"); 8437 8438 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8439 OptoRuntime::intpoly_assign_Type(), 8440 stubAddr, stubName, TypePtr::BOTTOM, 8441 set, a_start, b_start, arr_length); 8442 return true; 8443 } 8444 8445 //------------------------------inline_digestBase_implCompress----------------------- 8446 // 8447 // Calculate MD5 for single-block byte[] array. 8448 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8449 // 8450 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8451 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8452 // 8453 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8454 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8455 // 8456 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8457 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8458 // 8459 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8460 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8461 // 8462 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8463 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8464 8465 Node* digestBase_obj = argument(0); 8466 Node* src = argument(1); // type oop 8467 Node* ofs = argument(2); // type int 8468 8469 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8470 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8471 // failed array check 8472 return false; 8473 } 8474 // Figure out the size and type of the elements we will be copying. 8475 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8476 if (src_elem != T_BYTE) { 8477 return false; 8478 } 8479 // 'src_start' points to src array + offset 8480 src = must_be_not_null(src, true); 8481 Node* src_start = array_element_address(src, ofs, src_elem); 8482 Node* state = nullptr; 8483 Node* block_size = nullptr; 8484 address stubAddr; 8485 const char *stubName; 8486 8487 switch(id) { 8488 case vmIntrinsics::_md5_implCompress: 8489 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8490 state = get_state_from_digest_object(digestBase_obj, T_INT); 8491 stubAddr = StubRoutines::md5_implCompress(); 8492 stubName = "md5_implCompress"; 8493 break; 8494 case vmIntrinsics::_sha_implCompress: 8495 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8496 state = get_state_from_digest_object(digestBase_obj, T_INT); 8497 stubAddr = StubRoutines::sha1_implCompress(); 8498 stubName = "sha1_implCompress"; 8499 break; 8500 case vmIntrinsics::_sha2_implCompress: 8501 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8502 state = get_state_from_digest_object(digestBase_obj, T_INT); 8503 stubAddr = StubRoutines::sha256_implCompress(); 8504 stubName = "sha256_implCompress"; 8505 break; 8506 case vmIntrinsics::_sha5_implCompress: 8507 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8508 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8509 stubAddr = StubRoutines::sha512_implCompress(); 8510 stubName = "sha512_implCompress"; 8511 break; 8512 case vmIntrinsics::_sha3_implCompress: 8513 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8514 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8515 stubAddr = StubRoutines::sha3_implCompress(); 8516 stubName = "sha3_implCompress"; 8517 block_size = get_block_size_from_digest_object(digestBase_obj); 8518 if (block_size == nullptr) return false; 8519 break; 8520 default: 8521 fatal_unexpected_iid(id); 8522 return false; 8523 } 8524 if (state == nullptr) return false; 8525 8526 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8527 if (stubAddr == nullptr) return false; 8528 8529 // Call the stub. 8530 Node* call; 8531 if (block_size == nullptr) { 8532 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8533 stubAddr, stubName, TypePtr::BOTTOM, 8534 src_start, state); 8535 } else { 8536 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8537 stubAddr, stubName, TypePtr::BOTTOM, 8538 src_start, state, block_size); 8539 } 8540 8541 return true; 8542 } 8543 8544 //------------------------------inline_double_keccak 8545 bool LibraryCallKit::inline_double_keccak() { 8546 address stubAddr; 8547 const char *stubName; 8548 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8549 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8550 8551 stubAddr = StubRoutines::double_keccak(); 8552 stubName = "double_keccak"; 8553 if (!stubAddr) return false; 8554 8555 Node* status0 = argument(0); 8556 Node* status1 = argument(1); 8557 8558 status0 = must_be_not_null(status0, true); 8559 status1 = must_be_not_null(status1, true); 8560 8561 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8562 assert(status0_start, "status0 is null"); 8563 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8564 assert(status1_start, "status1 is null"); 8565 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8566 OptoRuntime::double_keccak_Type(), 8567 stubAddr, stubName, TypePtr::BOTTOM, 8568 status0_start, status1_start); 8569 // return an int 8570 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8571 set_result(retvalue); 8572 return true; 8573 } 8574 8575 8576 //------------------------------inline_digestBase_implCompressMB----------------------- 8577 // 8578 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8579 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8580 // 8581 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8582 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8583 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8584 assert((uint)predicate < 5, "sanity"); 8585 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8586 8587 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8588 Node* src = argument(1); // byte[] array 8589 Node* ofs = argument(2); // type int 8590 Node* limit = argument(3); // type int 8591 8592 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8593 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8594 // failed array check 8595 return false; 8596 } 8597 // Figure out the size and type of the elements we will be copying. 8598 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8599 if (src_elem != T_BYTE) { 8600 return false; 8601 } 8602 // 'src_start' points to src array + offset 8603 src = must_be_not_null(src, false); 8604 Node* src_start = array_element_address(src, ofs, src_elem); 8605 8606 const char* klass_digestBase_name = nullptr; 8607 const char* stub_name = nullptr; 8608 address stub_addr = nullptr; 8609 BasicType elem_type = T_INT; 8610 8611 switch (predicate) { 8612 case 0: 8613 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8614 klass_digestBase_name = "sun/security/provider/MD5"; 8615 stub_name = "md5_implCompressMB"; 8616 stub_addr = StubRoutines::md5_implCompressMB(); 8617 } 8618 break; 8619 case 1: 8620 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8621 klass_digestBase_name = "sun/security/provider/SHA"; 8622 stub_name = "sha1_implCompressMB"; 8623 stub_addr = StubRoutines::sha1_implCompressMB(); 8624 } 8625 break; 8626 case 2: 8627 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8628 klass_digestBase_name = "sun/security/provider/SHA2"; 8629 stub_name = "sha256_implCompressMB"; 8630 stub_addr = StubRoutines::sha256_implCompressMB(); 8631 } 8632 break; 8633 case 3: 8634 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8635 klass_digestBase_name = "sun/security/provider/SHA5"; 8636 stub_name = "sha512_implCompressMB"; 8637 stub_addr = StubRoutines::sha512_implCompressMB(); 8638 elem_type = T_LONG; 8639 } 8640 break; 8641 case 4: 8642 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8643 klass_digestBase_name = "sun/security/provider/SHA3"; 8644 stub_name = "sha3_implCompressMB"; 8645 stub_addr = StubRoutines::sha3_implCompressMB(); 8646 elem_type = T_LONG; 8647 } 8648 break; 8649 default: 8650 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8651 } 8652 if (klass_digestBase_name != nullptr) { 8653 assert(stub_addr != nullptr, "Stub is generated"); 8654 if (stub_addr == nullptr) return false; 8655 8656 // get DigestBase klass to lookup for SHA klass 8657 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8658 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8659 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8660 8661 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8662 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8663 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8664 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8665 } 8666 return false; 8667 } 8668 8669 //------------------------------inline_digestBase_implCompressMB----------------------- 8670 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8671 BasicType elem_type, address stubAddr, const char *stubName, 8672 Node* src_start, Node* ofs, Node* limit) { 8673 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8674 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8675 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8676 digest_obj = _gvn.transform(digest_obj); 8677 8678 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8679 if (state == nullptr) return false; 8680 8681 Node* block_size = nullptr; 8682 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8683 block_size = get_block_size_from_digest_object(digest_obj); 8684 if (block_size == nullptr) return false; 8685 } 8686 8687 // Call the stub. 8688 Node* call; 8689 if (block_size == nullptr) { 8690 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8691 OptoRuntime::digestBase_implCompressMB_Type(false), 8692 stubAddr, stubName, TypePtr::BOTTOM, 8693 src_start, state, ofs, limit); 8694 } else { 8695 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8696 OptoRuntime::digestBase_implCompressMB_Type(true), 8697 stubAddr, stubName, TypePtr::BOTTOM, 8698 src_start, state, block_size, ofs, limit); 8699 } 8700 8701 // return ofs (int) 8702 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8703 set_result(result); 8704 8705 return true; 8706 } 8707 8708 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8709 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8710 assert(UseAES, "need AES instruction support"); 8711 address stubAddr = nullptr; 8712 const char *stubName = nullptr; 8713 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8714 stubName = "galoisCounterMode_AESCrypt"; 8715 8716 if (stubAddr == nullptr) return false; 8717 8718 Node* in = argument(0); 8719 Node* inOfs = argument(1); 8720 Node* len = argument(2); 8721 Node* ct = argument(3); 8722 Node* ctOfs = argument(4); 8723 Node* out = argument(5); 8724 Node* outOfs = argument(6); 8725 Node* gctr_object = argument(7); 8726 Node* ghash_object = argument(8); 8727 8728 // (1) in, ct and out are arrays. 8729 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8730 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8731 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8732 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8733 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8734 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8735 8736 // checks are the responsibility of the caller 8737 Node* in_start = in; 8738 Node* ct_start = ct; 8739 Node* out_start = out; 8740 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8741 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8742 in_start = array_element_address(in, inOfs, T_BYTE); 8743 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8744 out_start = array_element_address(out, outOfs, T_BYTE); 8745 } 8746 8747 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8748 // (because of the predicated logic executed earlier). 8749 // so we cast it here safely. 8750 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8751 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8752 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8753 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8754 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8755 8756 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8757 return false; 8758 } 8759 // cast it to what we know it will be at runtime 8760 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8761 assert(tinst != nullptr, "GCTR obj is null"); 8762 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8763 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8764 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8765 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8766 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8767 const TypeOopPtr* xtype = aklass->as_instance_type(); 8768 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8769 aescrypt_object = _gvn.transform(aescrypt_object); 8770 // we need to get the start of the aescrypt_object's expanded key array 8771 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8772 if (k_start == nullptr) return false; 8773 // similarly, get the start address of the r vector 8774 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8775 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8776 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8777 8778 8779 // Call the stub, passing params 8780 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8781 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8782 stubAddr, stubName, TypePtr::BOTTOM, 8783 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8784 8785 // return cipher length (int) 8786 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8787 set_result(retvalue); 8788 8789 return true; 8790 } 8791 8792 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8793 // Return node representing slow path of predicate check. 8794 // the pseudo code we want to emulate with this predicate is: 8795 // for encryption: 8796 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8797 // for decryption: 8798 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8799 // note cipher==plain is more conservative than the original java code but that's OK 8800 // 8801 8802 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8803 // The receiver was checked for null already. 8804 Node* objGCTR = argument(7); 8805 // Load embeddedCipher field of GCTR object. 8806 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8807 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8808 8809 // get AESCrypt klass for instanceOf check 8810 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8811 // will have same classloader as CipherBlockChaining object 8812 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8813 assert(tinst != nullptr, "GCTR obj is null"); 8814 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8815 8816 // we want to do an instanceof comparison against the AESCrypt class 8817 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8818 if (!klass_AESCrypt->is_loaded()) { 8819 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8820 Node* ctrl = control(); 8821 set_control(top()); // no regular fast path 8822 return ctrl; 8823 } 8824 8825 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8826 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8827 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8828 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8829 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8830 8831 return instof_false; // even if it is null 8832 } 8833 8834 //------------------------------get_state_from_digest_object----------------------- 8835 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8836 const char* state_type; 8837 switch (elem_type) { 8838 case T_BYTE: state_type = "[B"; break; 8839 case T_INT: state_type = "[I"; break; 8840 case T_LONG: state_type = "[J"; break; 8841 default: ShouldNotReachHere(); 8842 } 8843 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8844 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8845 if (digest_state == nullptr) return (Node *) nullptr; 8846 8847 // now have the array, need to get the start address of the state array 8848 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8849 return state; 8850 } 8851 8852 //------------------------------get_block_size_from_sha3_object---------------------------------- 8853 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8854 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8855 assert (block_size != nullptr, "sanity"); 8856 return block_size; 8857 } 8858 8859 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8860 // Return node representing slow path of predicate check. 8861 // the pseudo code we want to emulate with this predicate is: 8862 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8863 // 8864 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8865 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8866 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8867 assert((uint)predicate < 5, "sanity"); 8868 8869 // The receiver was checked for null already. 8870 Node* digestBaseObj = argument(0); 8871 8872 // get DigestBase klass for instanceOf check 8873 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8874 assert(tinst != nullptr, "digestBaseObj is null"); 8875 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8876 8877 const char* klass_name = nullptr; 8878 switch (predicate) { 8879 case 0: 8880 if (UseMD5Intrinsics) { 8881 // we want to do an instanceof comparison against the MD5 class 8882 klass_name = "sun/security/provider/MD5"; 8883 } 8884 break; 8885 case 1: 8886 if (UseSHA1Intrinsics) { 8887 // we want to do an instanceof comparison against the SHA class 8888 klass_name = "sun/security/provider/SHA"; 8889 } 8890 break; 8891 case 2: 8892 if (UseSHA256Intrinsics) { 8893 // we want to do an instanceof comparison against the SHA2 class 8894 klass_name = "sun/security/provider/SHA2"; 8895 } 8896 break; 8897 case 3: 8898 if (UseSHA512Intrinsics) { 8899 // we want to do an instanceof comparison against the SHA5 class 8900 klass_name = "sun/security/provider/SHA5"; 8901 } 8902 break; 8903 case 4: 8904 if (UseSHA3Intrinsics) { 8905 // we want to do an instanceof comparison against the SHA3 class 8906 klass_name = "sun/security/provider/SHA3"; 8907 } 8908 break; 8909 default: 8910 fatal("unknown SHA intrinsic predicate: %d", predicate); 8911 } 8912 8913 ciKlass* klass = nullptr; 8914 if (klass_name != nullptr) { 8915 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8916 } 8917 if ((klass == nullptr) || !klass->is_loaded()) { 8918 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8919 Node* ctrl = control(); 8920 set_control(top()); // no intrinsic path 8921 return ctrl; 8922 } 8923 ciInstanceKlass* instklass = klass->as_instance_klass(); 8924 8925 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8926 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8927 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8928 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8929 8930 return instof_false; // even if it is null 8931 } 8932 8933 //-------------inline_fma----------------------------------- 8934 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8935 Node *a = nullptr; 8936 Node *b = nullptr; 8937 Node *c = nullptr; 8938 Node* result = nullptr; 8939 switch (id) { 8940 case vmIntrinsics::_fmaD: 8941 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8942 // no receiver since it is static method 8943 a = argument(0); 8944 b = argument(2); 8945 c = argument(4); 8946 result = _gvn.transform(new FmaDNode(a, b, c)); 8947 break; 8948 case vmIntrinsics::_fmaF: 8949 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8950 a = argument(0); 8951 b = argument(1); 8952 c = argument(2); 8953 result = _gvn.transform(new FmaFNode(a, b, c)); 8954 break; 8955 default: 8956 fatal_unexpected_iid(id); break; 8957 } 8958 set_result(result); 8959 return true; 8960 } 8961 8962 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8963 // argument(0) is receiver 8964 Node* codePoint = argument(1); 8965 Node* n = nullptr; 8966 8967 switch (id) { 8968 case vmIntrinsics::_isDigit : 8969 n = new DigitNode(control(), codePoint); 8970 break; 8971 case vmIntrinsics::_isLowerCase : 8972 n = new LowerCaseNode(control(), codePoint); 8973 break; 8974 case vmIntrinsics::_isUpperCase : 8975 n = new UpperCaseNode(control(), codePoint); 8976 break; 8977 case vmIntrinsics::_isWhitespace : 8978 n = new WhitespaceNode(control(), codePoint); 8979 break; 8980 default: 8981 fatal_unexpected_iid(id); 8982 } 8983 8984 set_result(_gvn.transform(n)); 8985 return true; 8986 } 8987 8988 bool LibraryCallKit::inline_profileBoolean() { 8989 Node* counts = argument(1); 8990 const TypeAryPtr* ary = nullptr; 8991 ciArray* aobj = nullptr; 8992 if (counts->is_Con() 8993 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8994 && (aobj = ary->const_oop()->as_array()) != nullptr 8995 && (aobj->length() == 2)) { 8996 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8997 jint false_cnt = aobj->element_value(0).as_int(); 8998 jint true_cnt = aobj->element_value(1).as_int(); 8999 9000 if (C->log() != nullptr) { 9001 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 9002 false_cnt, true_cnt); 9003 } 9004 9005 if (false_cnt + true_cnt == 0) { 9006 // According to profile, never executed. 9007 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 9008 Deoptimization::Action_reinterpret); 9009 return true; 9010 } 9011 9012 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 9013 // is a number of each value occurrences. 9014 Node* result = argument(0); 9015 if (false_cnt == 0 || true_cnt == 0) { 9016 // According to profile, one value has been never seen. 9017 int expected_val = (false_cnt == 0) ? 1 : 0; 9018 9019 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 9020 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 9021 9022 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 9023 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 9024 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 9025 9026 { // Slow path: uncommon trap for never seen value and then reexecute 9027 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 9028 // the value has been seen at least once. 9029 PreserveJVMState pjvms(this); 9030 PreserveReexecuteState preexecs(this); 9031 jvms()->set_should_reexecute(true); 9032 9033 set_control(slow_path); 9034 set_i_o(i_o()); 9035 9036 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 9037 Deoptimization::Action_reinterpret); 9038 } 9039 // The guard for never seen value enables sharpening of the result and 9040 // returning a constant. It allows to eliminate branches on the same value 9041 // later on. 9042 set_control(fast_path); 9043 result = intcon(expected_val); 9044 } 9045 // Stop profiling. 9046 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 9047 // By replacing method body with profile data (represented as ProfileBooleanNode 9048 // on IR level) we effectively disable profiling. 9049 // It enables full speed execution once optimized code is generated. 9050 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 9051 C->record_for_igvn(profile); 9052 set_result(profile); 9053 return true; 9054 } else { 9055 // Continue profiling. 9056 // Profile data isn't available at the moment. So, execute method's bytecode version. 9057 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 9058 // is compiled and counters aren't available since corresponding MethodHandle 9059 // isn't a compile-time constant. 9060 return false; 9061 } 9062 } 9063 9064 bool LibraryCallKit::inline_isCompileConstant() { 9065 Node* n = argument(0); 9066 set_result(n->is_Con() ? intcon(1) : intcon(0)); 9067 return true; 9068 } 9069 9070 //------------------------------- inline_getObjectSize -------------------------------------- 9071 // 9072 // Calculate the runtime size of the object/array. 9073 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 9074 // 9075 bool LibraryCallKit::inline_getObjectSize() { 9076 Node* obj = argument(3); 9077 Node* klass_node = load_object_klass(obj); 9078 9079 jint layout_con = Klass::_lh_neutral_value; 9080 Node* layout_val = get_layout_helper(klass_node, layout_con); 9081 int layout_is_con = (layout_val == nullptr); 9082 9083 if (layout_is_con) { 9084 // Layout helper is constant, can figure out things at compile time. 9085 9086 if (Klass::layout_helper_is_instance(layout_con)) { 9087 // Instance case: layout_con contains the size itself. 9088 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 9089 set_result(size); 9090 } else { 9091 // Array case: size is round(header + element_size*arraylength). 9092 // Since arraylength is different for every array instance, we have to 9093 // compute the whole thing at runtime. 9094 9095 Node* arr_length = load_array_length(obj); 9096 9097 int round_mask = MinObjAlignmentInBytes - 1; 9098 int hsize = Klass::layout_helper_header_size(layout_con); 9099 int eshift = Klass::layout_helper_log2_element_size(layout_con); 9100 9101 if ((round_mask & ~right_n_bits(eshift)) == 0) { 9102 round_mask = 0; // strength-reduce it if it goes away completely 9103 } 9104 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 9105 Node* header_size = intcon(hsize + round_mask); 9106 9107 Node* lengthx = ConvI2X(arr_length); 9108 Node* headerx = ConvI2X(header_size); 9109 9110 Node* abody = lengthx; 9111 if (eshift != 0) { 9112 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 9113 } 9114 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 9115 if (round_mask != 0) { 9116 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 9117 } 9118 size = ConvX2L(size); 9119 set_result(size); 9120 } 9121 } else { 9122 // Layout helper is not constant, need to test for array-ness at runtime. 9123 9124 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 9125 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 9126 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 9127 record_for_igvn(result_reg); 9128 9129 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 9130 if (array_ctl != nullptr) { 9131 // Array case: size is round(header + element_size*arraylength). 9132 // Since arraylength is different for every array instance, we have to 9133 // compute the whole thing at runtime. 9134 9135 PreserveJVMState pjvms(this); 9136 set_control(array_ctl); 9137 Node* arr_length = load_array_length(obj); 9138 9139 int round_mask = MinObjAlignmentInBytes - 1; 9140 Node* mask = intcon(round_mask); 9141 9142 Node* hss = intcon(Klass::_lh_header_size_shift); 9143 Node* hsm = intcon(Klass::_lh_header_size_mask); 9144 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 9145 header_size = _gvn.transform(new AndINode(header_size, hsm)); 9146 header_size = _gvn.transform(new AddINode(header_size, mask)); 9147 9148 // There is no need to mask or shift this value. 9149 // The semantics of LShiftINode include an implicit mask to 0x1F. 9150 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 9151 Node* elem_shift = layout_val; 9152 9153 Node* lengthx = ConvI2X(arr_length); 9154 Node* headerx = ConvI2X(header_size); 9155 9156 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 9157 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 9158 if (round_mask != 0) { 9159 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 9160 } 9161 size = ConvX2L(size); 9162 9163 result_reg->init_req(_array_path, control()); 9164 result_val->init_req(_array_path, size); 9165 } 9166 9167 if (!stopped()) { 9168 // Instance case: the layout helper gives us instance size almost directly, 9169 // but we need to mask out the _lh_instance_slow_path_bit. 9170 Node* size = ConvI2X(layout_val); 9171 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 9172 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 9173 size = _gvn.transform(new AndXNode(size, mask)); 9174 size = ConvX2L(size); 9175 9176 result_reg->init_req(_instance_path, control()); 9177 result_val->init_req(_instance_path, size); 9178 } 9179 9180 set_result(result_reg, result_val); 9181 } 9182 9183 return true; 9184 } 9185 9186 //------------------------------- inline_blackhole -------------------------------------- 9187 // 9188 // Make sure all arguments to this node are alive. 9189 // This matches methods that were requested to be blackholed through compile commands. 9190 // 9191 bool LibraryCallKit::inline_blackhole() { 9192 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 9193 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 9194 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 9195 9196 // Blackhole node pinches only the control, not memory. This allows 9197 // the blackhole to be pinned in the loop that computes blackholed 9198 // values, but have no other side effects, like breaking the optimizations 9199 // across the blackhole. 9200 9201 Node* bh = _gvn.transform(new BlackholeNode(control())); 9202 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 9203 9204 // Bind call arguments as blackhole arguments to keep them alive 9205 uint nargs = callee()->arg_size(); 9206 for (uint i = 0; i < nargs; i++) { 9207 bh->add_req(argument(i)); 9208 } 9209 9210 return true; 9211 } 9212 9213 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9214 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9215 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9216 return nullptr; // box klass is not Float16 9217 } 9218 9219 // Null check; get notnull casted pointer 9220 Node* null_ctl = top(); 9221 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9222 // If not_null_box is dead, only null-path is taken 9223 if (stopped()) { 9224 set_control(null_ctl); 9225 return nullptr; 9226 } 9227 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9228 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9229 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9230 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9231 } 9232 9233 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9234 PreserveReexecuteState preexecs(this); 9235 jvms()->set_should_reexecute(true); 9236 9237 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9238 Node* klass_node = makecon(klass_type); 9239 Node* box = new_instance(klass_node); 9240 9241 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9242 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9243 9244 Node* field_store = _gvn.transform(access_store_at(box, 9245 value_field, 9246 value_adr_type, 9247 value, 9248 TypeInt::SHORT, 9249 T_SHORT, 9250 IN_HEAP)); 9251 set_memory(field_store, value_adr_type); 9252 return box; 9253 } 9254 9255 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9256 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9257 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9258 return false; 9259 } 9260 9261 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9262 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9263 return false; 9264 } 9265 9266 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9267 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9268 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9269 ciSymbols::short_signature(), 9270 false); 9271 assert(field != nullptr, ""); 9272 9273 // Transformed nodes 9274 Node* fld1 = nullptr; 9275 Node* fld2 = nullptr; 9276 Node* fld3 = nullptr; 9277 switch(num_args) { 9278 case 3: 9279 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9280 if (fld3 == nullptr) { 9281 return false; 9282 } 9283 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9284 // fall-through 9285 case 2: 9286 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9287 if (fld2 == nullptr) { 9288 return false; 9289 } 9290 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9291 // fall-through 9292 case 1: 9293 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9294 if (fld1 == nullptr) { 9295 return false; 9296 } 9297 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9298 break; 9299 default: fatal("Unsupported number of arguments %d", num_args); 9300 } 9301 9302 Node* result = nullptr; 9303 switch (id) { 9304 // Unary operations 9305 case vmIntrinsics::_sqrt_float16: 9306 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9307 break; 9308 // Ternary operations 9309 case vmIntrinsics::_fma_float16: 9310 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9311 break; 9312 default: 9313 fatal_unexpected_iid(id); 9314 break; 9315 } 9316 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9317 set_result(box_fp16_value(float16_box_type, field, result)); 9318 return true; 9319 } 9320