1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciFlatArrayKlass.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/collectedHeap.inline.hpp" 28 #include "gc/shared/tlab_globals.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/universe.hpp" 31 #include "opto/addnode.hpp" 32 #include "opto/arraycopynode.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/cfgnode.hpp" 36 #include "opto/compile.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/graphKit.hpp" 39 #include "opto/inlinetypenode.hpp" 40 #include "opto/intrinsicnode.hpp" 41 #include "opto/locknode.hpp" 42 #include "opto/loopnode.hpp" 43 #include "opto/macro.hpp" 44 #include "opto/memnode.hpp" 45 #include "opto/narrowptrnode.hpp" 46 #include "opto/node.hpp" 47 #include "opto/opaquenode.hpp" 48 #include "opto/phaseX.hpp" 49 #include "opto/rootnode.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subnode.hpp" 52 #include "opto/subtypenode.hpp" 53 #include "opto/type.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "runtime/continuation.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/stubRoutines.hpp" 58 #include "utilities/macros.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 #if INCLUDE_G1GC 61 #include "gc/g1/g1ThreadLocalData.hpp" 62 #endif // INCLUDE_G1GC 63 64 65 // 66 // Replace any references to "oldref" in inputs to "use" with "newref". 67 // Returns the number of replacements made. 68 // 69 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 70 int nreplacements = 0; 71 uint req = use->req(); 72 for (uint j = 0; j < use->len(); j++) { 73 Node *uin = use->in(j); 74 if (uin == oldref) { 75 if (j < req) 76 use->set_req(j, newref); 77 else 78 use->set_prec(j, newref); 79 nreplacements++; 80 } else if (j >= req && uin == nullptr) { 81 break; 82 } 83 } 84 return nreplacements; 85 } 86 87 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 88 Node* cmp; 89 if (mask != 0) { 90 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 91 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 92 } else { 93 cmp = word; 94 } 95 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 96 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 97 transform_later(iff); 98 99 // Fast path taken. 100 Node *fast_taken = transform_later(new IfFalseNode(iff)); 101 102 // Fast path not-taken, i.e. slow path 103 Node *slow_taken = transform_later(new IfTrueNode(iff)); 104 105 if (return_fast_path) { 106 region->init_req(edge, slow_taken); // Capture slow-control 107 return fast_taken; 108 } else { 109 region->init_req(edge, fast_taken); // Capture fast-control 110 return slow_taken; 111 } 112 } 113 114 //--------------------copy_predefined_input_for_runtime_call-------------------- 115 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 116 // Set fixed predefined input arguments 117 call->init_req( TypeFunc::Control, ctrl ); 118 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 119 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 120 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 121 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 122 } 123 124 //------------------------------make_slow_call--------------------------------- 125 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 126 address slow_call, const char* leaf_name, Node* slow_path, 127 Node* parm0, Node* parm1, Node* parm2) { 128 129 // Slow-path call 130 CallNode *call = leaf_name 131 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 132 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM ); 133 134 // Slow path call has no side-effects, uses few values 135 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 136 if (parm0 != nullptr) call->init_req(TypeFunc::Parms+0, parm0); 137 if (parm1 != nullptr) call->init_req(TypeFunc::Parms+1, parm1); 138 if (parm2 != nullptr) call->init_req(TypeFunc::Parms+2, parm2); 139 call->copy_call_debug_info(&_igvn, oldcall); 140 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 141 _igvn.replace_node(oldcall, call); 142 transform_later(call); 143 144 return call; 145 } 146 147 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 148 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 149 bs->eliminate_gc_barrier(&_igvn, p2x); 150 #ifndef PRODUCT 151 if (PrintOptoStatistics) { 152 Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter); 153 } 154 #endif 155 } 156 157 // Search for a memory operation for the specified memory slice. 158 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 159 Node *orig_mem = mem; 160 Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 161 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 162 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 163 while (true) { 164 if (mem == alloc_mem || mem == start_mem ) { 165 return mem; // hit one of our sentinels 166 } else if (mem->is_MergeMem()) { 167 mem = mem->as_MergeMem()->memory_at(alias_idx); 168 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 169 Node *in = mem->in(0); 170 // we can safely skip over safepoints, calls, locks and membars because we 171 // already know that the object is safe to eliminate. 172 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 173 return in; 174 } else if (in->is_Call()) { 175 CallNode *call = in->as_Call(); 176 if (call->may_modify(tinst, phase)) { 177 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 178 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 179 return in; 180 } 181 } 182 mem = in->in(TypeFunc::Memory); 183 } else if (in->is_MemBar()) { 184 ArrayCopyNode* ac = nullptr; 185 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 186 if (ac != nullptr) { 187 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 188 return ac; 189 } 190 } 191 mem = in->in(TypeFunc::Memory); 192 } else { 193 #ifdef ASSERT 194 in->dump(); 195 mem->dump(); 196 assert(false, "unexpected projection"); 197 #endif 198 } 199 } else if (mem->is_Store()) { 200 const TypePtr* atype = mem->as_Store()->adr_type(); 201 int adr_idx = phase->C->get_alias_index(atype); 202 if (adr_idx == alias_idx) { 203 assert(atype->isa_oopptr(), "address type must be oopptr"); 204 int adr_offset = atype->flat_offset(); 205 uint adr_iid = atype->is_oopptr()->instance_id(); 206 // Array elements references have the same alias_idx 207 // but different offset and different instance_id. 208 if (adr_offset == offset && adr_iid == alloc->_idx) { 209 return mem; 210 } 211 } else { 212 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 213 } 214 mem = mem->in(MemNode::Memory); 215 } else if (mem->is_ClearArray()) { 216 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 217 // Can not bypass initialization of the instance 218 // we are looking. 219 debug_only(intptr_t offset;) 220 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 221 InitializeNode* init = alloc->as_Allocate()->initialization(); 222 // We are looking for stored value, return Initialize node 223 // or memory edge from Allocate node. 224 if (init != nullptr) { 225 return init; 226 } else { 227 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 228 } 229 } 230 // Otherwise skip it (the call updated 'mem' value). 231 } else if (mem->Opcode() == Op_SCMemProj) { 232 mem = mem->in(0); 233 Node* adr = nullptr; 234 if (mem->is_LoadStore()) { 235 adr = mem->in(MemNode::Address); 236 } else { 237 assert(mem->Opcode() == Op_EncodeISOArray || 238 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 239 adr = mem->in(3); // Destination array 240 } 241 const TypePtr* atype = adr->bottom_type()->is_ptr(); 242 int adr_idx = phase->C->get_alias_index(atype); 243 if (adr_idx == alias_idx) { 244 DEBUG_ONLY(mem->dump();) 245 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 246 return nullptr; 247 } 248 mem = mem->in(MemNode::Memory); 249 } else if (mem->Opcode() == Op_StrInflatedCopy) { 250 Node* adr = mem->in(3); // Destination array 251 const TypePtr* atype = adr->bottom_type()->is_ptr(); 252 int adr_idx = phase->C->get_alias_index(atype); 253 if (adr_idx == alias_idx) { 254 DEBUG_ONLY(mem->dump();) 255 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 256 return nullptr; 257 } 258 mem = mem->in(MemNode::Memory); 259 } else { 260 return mem; 261 } 262 assert(mem != orig_mem, "dead memory loop"); 263 } 264 } 265 266 // Generate loads from source of the arraycopy for fields of 267 // destination needed at a deoptimization point 268 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 269 BasicType bt = ft; 270 const Type *type = ftype; 271 if (ft == T_NARROWOOP) { 272 bt = T_OBJECT; 273 type = ftype->make_oopptr(); 274 } 275 Node* res = nullptr; 276 if (ac->is_clonebasic()) { 277 assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination"); 278 Node* base = ac->in(ArrayCopyNode::Src); 279 Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset))); 280 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 281 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 282 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 283 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 284 } else { 285 if (ac->modifies(offset, offset, &_igvn, true)) { 286 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 287 uint shift = exact_log2(type2aelembytes(bt)); 288 Node* src_pos = ac->in(ArrayCopyNode::SrcPos); 289 Node* dest_pos = ac->in(ArrayCopyNode::DestPos); 290 const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int(); 291 const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int(); 292 293 Node* adr = nullptr; 294 Node* base = ac->in(ArrayCopyNode::Src); 295 const TypeAryPtr* adr_type = _igvn.type(base)->is_aryptr(); 296 if (adr_type->is_flat()) { 297 shift = adr_type->flat_log_elem_size(); 298 } 299 if (src_pos_t->is_con() && dest_pos_t->is_con()) { 300 intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset; 301 adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off))); 302 adr_type = _igvn.type(adr)->is_aryptr(); 303 assert(adr_type == _igvn.type(base)->is_aryptr()->add_field_offset_and_offset(off), "incorrect address type"); 304 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 305 // Don't emit a new load from src if src == dst but try to get the value from memory instead 306 return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type, alloc); 307 } 308 } else { 309 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 310 // Non constant offset in the array: we can't statically 311 // determine the value 312 return nullptr; 313 } 314 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 315 #ifdef _LP64 316 diff = _igvn.transform(new ConvI2LNode(diff)); 317 #endif 318 diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift))); 319 320 Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff)); 321 adr = _igvn.transform(new AddPNode(base, base, off)); 322 // In the case of a flat inline type array, each field has its 323 // own slice so we need to extract the field being accessed from 324 // the address computation 325 adr_type = adr_type->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot)->is_aryptr(); 326 adr = _igvn.transform(new CastPPNode(ctl, adr, adr_type)); 327 } 328 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 329 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 330 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 331 } 332 } 333 if (res != nullptr) { 334 if (ftype->isa_narrowoop()) { 335 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 336 assert(res->isa_DecodeN(), "should be narrow oop"); 337 res = _igvn.transform(new EncodePNode(res, ftype)); 338 } 339 return res; 340 } 341 return nullptr; 342 } 343 344 // 345 // Given a Memory Phi, compute a value Phi containing the values from stores 346 // on the input paths. 347 // Note: this function is recursive, its depth is limited by the "level" argument 348 // Returns the computed Phi, or null if it cannot compute it. 349 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 350 assert(mem->is_Phi(), "sanity"); 351 int alias_idx = C->get_alias_index(adr_t); 352 int offset = adr_t->flat_offset(); 353 int instance_id = adr_t->instance_id(); 354 355 // Check if an appropriate value phi already exists. 356 Node* region = mem->in(0); 357 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 358 Node* phi = region->fast_out(k); 359 if (phi->is_Phi() && phi != mem && 360 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 361 return phi; 362 } 363 } 364 // Check if an appropriate new value phi already exists. 365 Node* new_phi = value_phis->find(mem->_idx); 366 if (new_phi != nullptr) 367 return new_phi; 368 369 if (level <= 0) { 370 return nullptr; // Give up: phi tree too deep 371 } 372 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 373 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 374 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 375 376 uint length = mem->req(); 377 GrowableArray <Node *> values(length, length, nullptr); 378 379 // create a new Phi for the value 380 PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset); 381 transform_later(phi); 382 value_phis->push(phi, mem->_idx); 383 384 for (uint j = 1; j < length; j++) { 385 Node *in = mem->in(j); 386 if (in == nullptr || in->is_top()) { 387 values.at_put(j, in); 388 } else { 389 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 390 if (val == start_mem || val == alloc_mem) { 391 // hit a sentinel, return appropriate value 392 Node* init_value = alloc->in(AllocateNode::InitValue); 393 if (init_value != nullptr) { 394 if (val == start_mem) { 395 // TODO 8350865 Somehow we ended up with root mem and therefore walked past the alloc. Fix this. Triggered by TestGenerated::test15 396 // Don't we need field_value_by_offset? 397 return nullptr; 398 } 399 values.at_put(j, init_value); 400 } else { 401 assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null"); 402 values.at_put(j, _igvn.zerocon(ft)); 403 } 404 continue; 405 } 406 if (val->is_Initialize()) { 407 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 408 } 409 if (val == nullptr) { 410 return nullptr; // can't find a value on this path 411 } 412 if (val == mem) { 413 values.at_put(j, mem); 414 } else if (val->is_Store()) { 415 Node* n = val->in(MemNode::ValueIn); 416 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 417 n = bs->step_over_gc_barrier(n); 418 if (is_subword_type(ft)) { 419 n = Compile::narrow_value(ft, n, phi_type, &_igvn, true); 420 } 421 values.at_put(j, n); 422 } else if (val->is_Proj() && val->in(0) == alloc) { 423 Node* init_value = alloc->in(AllocateNode::InitValue); 424 if (init_value != nullptr) { 425 // TODO 8350865 Is this correct for non-all-zero init values? Don't we need field_value_by_offset? 426 values.at_put(j, init_value); 427 } else { 428 assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null"); 429 values.at_put(j, _igvn.zerocon(ft)); 430 } 431 } else if (val->is_Phi()) { 432 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 433 if (val == nullptr) { 434 return nullptr; 435 } 436 values.at_put(j, val); 437 } else if (val->Opcode() == Op_SCMemProj) { 438 assert(val->in(0)->is_LoadStore() || 439 val->in(0)->Opcode() == Op_EncodeISOArray || 440 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 441 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 442 return nullptr; 443 } else if (val->is_ArrayCopy()) { 444 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 445 if (res == nullptr) { 446 return nullptr; 447 } 448 values.at_put(j, res); 449 } else if (val->is_top()) { 450 // This indicates that this path into the phi is dead. Top will eventually also propagate into the Region. 451 // IGVN will clean this up later. 452 values.at_put(j, val); 453 } else { 454 DEBUG_ONLY( val->dump(); ) 455 assert(false, "unknown node on this path"); 456 return nullptr; // unknown node on this path 457 } 458 } 459 } 460 // Set Phi's inputs 461 for (uint j = 1; j < length; j++) { 462 if (values.at(j) == mem) { 463 phi->init_req(j, phi); 464 } else { 465 phi->init_req(j, values.at(j)); 466 } 467 } 468 return phi; 469 } 470 471 // Search the last value stored into the object's field. 472 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 473 assert(adr_t->is_known_instance_field(), "instance required"); 474 int instance_id = adr_t->instance_id(); 475 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 476 477 int alias_idx = C->get_alias_index(adr_t); 478 int offset = adr_t->flat_offset(); 479 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 480 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 481 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 482 VectorSet visited; 483 484 bool done = sfpt_mem == alloc_mem; 485 Node *mem = sfpt_mem; 486 while (!done) { 487 if (visited.test_set(mem->_idx)) { 488 return nullptr; // found a loop, give up 489 } 490 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 491 if (mem == start_mem || mem == alloc_mem) { 492 done = true; // hit a sentinel, return appropriate 0 value 493 } else if (mem->is_Initialize()) { 494 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 495 if (mem == nullptr) { 496 done = true; // Something went wrong. 497 } else if (mem->is_Store()) { 498 const TypePtr* atype = mem->as_Store()->adr_type(); 499 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 500 done = true; 501 } 502 } else if (mem->is_Store()) { 503 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 504 assert(atype != nullptr, "address type must be oopptr"); 505 assert(C->get_alias_index(atype) == alias_idx && 506 atype->is_known_instance_field() && atype->flat_offset() == offset && 507 atype->instance_id() == instance_id, "store is correct memory slice"); 508 done = true; 509 } else if (mem->is_Phi()) { 510 // try to find a phi's unique input 511 Node *unique_input = nullptr; 512 Node *top = C->top(); 513 for (uint i = 1; i < mem->req(); i++) { 514 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 515 if (n == nullptr || n == top || n == mem) { 516 continue; 517 } else if (unique_input == nullptr) { 518 unique_input = n; 519 } else if (unique_input != n) { 520 unique_input = top; 521 break; 522 } 523 } 524 if (unique_input != nullptr && unique_input != top) { 525 mem = unique_input; 526 } else { 527 done = true; 528 } 529 } else if (mem->is_ArrayCopy()) { 530 done = true; 531 } else { 532 DEBUG_ONLY( mem->dump(); ) 533 assert(false, "unexpected node"); 534 } 535 } 536 if (mem != nullptr) { 537 if (mem == start_mem || mem == alloc_mem) { 538 // hit a sentinel, return appropriate value 539 Node* init_value = alloc->in(AllocateNode::InitValue); 540 if (init_value != nullptr) { 541 if (adr_t->is_flat()) { 542 if (init_value->is_EncodeP()) { 543 init_value = init_value->in(1); 544 } 545 assert(adr_t->is_aryptr()->field_offset().get() != Type::OffsetBot, "Unknown offset"); 546 offset = adr_t->is_aryptr()->field_offset().get() + init_value->bottom_type()->inline_klass()->payload_offset(); 547 init_value = init_value->as_InlineType()->field_value_by_offset(offset, true); 548 if (ft == T_NARROWOOP) { 549 init_value = transform_later(new EncodePNode(init_value, init_value->bottom_type()->make_ptr())); 550 } 551 } 552 return init_value; 553 } 554 assert(alloc->in(AllocateNode::RawInitValue) == nullptr, "init value may not be null"); 555 return _igvn.zerocon(ft); 556 } else if (mem->is_Store()) { 557 Node* n = mem->in(MemNode::ValueIn); 558 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 559 n = bs->step_over_gc_barrier(n); 560 return n; 561 } else if (mem->is_Phi()) { 562 // attempt to produce a Phi reflecting the values on the input paths of the Phi 563 Node_Stack value_phis(8); 564 Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 565 if (phi != nullptr) { 566 return phi; 567 } else { 568 // Kill all new Phis 569 while(value_phis.is_nonempty()) { 570 Node* n = value_phis.node(); 571 _igvn.replace_node(n, C->top()); 572 value_phis.pop(); 573 } 574 } 575 } else if (mem->is_ArrayCopy()) { 576 Node* ctl = mem->in(0); 577 Node* m = mem->in(TypeFunc::Memory); 578 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) { 579 // pin the loads in the uncommon trap path 580 ctl = sfpt_ctl; 581 m = sfpt_mem; 582 } 583 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 584 } 585 } 586 // Something went wrong. 587 return nullptr; 588 } 589 590 // Search the last value stored into the inline type's fields (for flat arrays). 591 Node* PhaseMacroExpand::inline_type_from_mem(Node* mem, Node* ctl, ciInlineKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) { 592 // Subtract the offset of the first field to account for the missing oop header 593 offset -= vk->payload_offset(); 594 // Create a new InlineTypeNode and retrieve the field values from memory 595 InlineTypeNode* vt = InlineTypeNode::make_uninitialized(_igvn, vk); 596 transform_later(vt); 597 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) { 598 ciType* field_type = vt->field_type(i); 599 int field_offset = offset + vt->field_offset(i); 600 Node* value = nullptr; 601 if (vt->field_is_flat(i)) { 602 // TODO 8350865 Fix this 603 // assert(vt->field_is_null_free(i), "Unexpected nullable flat field"); 604 if (!vt->field_is_null_free(i)) { 605 return nullptr; 606 } 607 value = inline_type_from_mem(mem, ctl, field_type->as_inline_klass(), adr_type, field_offset, alloc); 608 } else { 609 const Type* ft = Type::get_const_type(field_type); 610 BasicType bt = type2field[field_type->basic_type()]; 611 if (UseCompressedOops && !is_java_primitive(bt)) { 612 ft = ft->make_narrowoop(); 613 bt = T_NARROWOOP; 614 } 615 // Each inline type field has its own memory slice 616 adr_type = adr_type->with_field_offset(field_offset); 617 value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc); 618 if (value != nullptr && ft->isa_narrowoop()) { 619 assert(UseCompressedOops, "unexpected narrow oop"); 620 if (value->is_EncodeP()) { 621 value = value->in(1); 622 } else if (!value->is_InlineType()) { 623 value = transform_later(new DecodeNNode(value, value->get_ptr_type())); 624 } 625 } 626 } 627 if (value != nullptr) { 628 vt->set_field_value(i, value); 629 } else { 630 // We might have reached the TrackedInitializationLimit 631 return nullptr; 632 } 633 } 634 return vt; 635 } 636 637 // Check the possibility of scalar replacement. 638 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) { 639 // Scan the uses of the allocation to check for anything that would 640 // prevent us from eliminating it. 641 NOT_PRODUCT( const char* fail_eliminate = nullptr; ) 642 DEBUG_ONLY( Node* disq_node = nullptr; ) 643 bool can_eliminate = true; 644 bool reduce_merge_precheck = (safepoints == nullptr); 645 646 Unique_Node_List worklist; 647 Node* res = alloc->result_cast(); 648 const TypeOopPtr* res_type = nullptr; 649 if (res == nullptr) { 650 // All users were eliminated. 651 } else if (!res->is_CheckCastPP()) { 652 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 653 can_eliminate = false; 654 } else { 655 worklist.push(res); 656 res_type = igvn->type(res)->isa_oopptr(); 657 if (res_type == nullptr) { 658 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 659 can_eliminate = false; 660 } else if (!res_type->klass_is_exact()) { 661 NOT_PRODUCT(fail_eliminate = "Not an exact type.";) 662 can_eliminate = false; 663 } else if (res_type->isa_aryptr()) { 664 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 665 if (length < 0) { 666 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 667 can_eliminate = false; 668 } 669 } 670 } 671 672 while (can_eliminate && worklist.size() > 0) { 673 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 674 res = worklist.pop(); 675 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); j < jmax && can_eliminate; j++) { 676 Node* use = res->fast_out(j); 677 678 if (use->is_AddP()) { 679 const TypePtr* addp_type = igvn->type(use)->is_ptr(); 680 int offset = addp_type->offset(); 681 682 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 683 NOT_PRODUCT(fail_eliminate = "Undefined field reference";) 684 can_eliminate = false; 685 break; 686 } 687 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 688 k < kmax && can_eliminate; k++) { 689 Node* n = use->fast_out(k); 690 if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) { 691 DEBUG_ONLY(disq_node = n;) 692 if (n->is_Load() || n->is_LoadStore()) { 693 NOT_PRODUCT(fail_eliminate = "Field load";) 694 } else { 695 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 696 } 697 can_eliminate = false; 698 } 699 } 700 } else if (use->is_ArrayCopy() && 701 (use->as_ArrayCopy()->is_clonebasic() || 702 use->as_ArrayCopy()->is_arraycopy_validated() || 703 use->as_ArrayCopy()->is_copyof_validated() || 704 use->as_ArrayCopy()->is_copyofrange_validated()) && 705 use->in(ArrayCopyNode::Dest) == res) { 706 // ok to eliminate 707 } else if (use->is_SafePoint()) { 708 SafePointNode* sfpt = use->as_SafePoint(); 709 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 710 // Object is passed as argument. 711 DEBUG_ONLY(disq_node = use;) 712 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 713 can_eliminate = false; 714 } 715 Node* sfptMem = sfpt->memory(); 716 if (sfptMem == nullptr || sfptMem->is_top()) { 717 DEBUG_ONLY(disq_node = use;) 718 NOT_PRODUCT(fail_eliminate = "null or TOP memory";) 719 can_eliminate = false; 720 } else if (!reduce_merge_precheck) { 721 assert(!res->is_Phi() || !res->as_Phi()->can_be_inline_type(), "Inline type allocations should not have safepoint uses"); 722 safepoints->append_if_missing(sfpt); 723 } 724 } else if (use->is_InlineType() && use->as_InlineType()->get_oop() == res) { 725 // Look at uses 726 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 727 Node* u = use->fast_out(k); 728 if (u->is_InlineType()) { 729 // Use in flat field can be eliminated 730 InlineTypeNode* vt = u->as_InlineType(); 731 for (uint i = 0; i < vt->field_count(); ++i) { 732 if (vt->field_value(i) == use && !vt->field_is_flat(i)) { 733 can_eliminate = false; // Use in non-flat field 734 break; 735 } 736 } 737 } else { 738 // Add other uses to the worklist to process individually 739 worklist.push(use); 740 } 741 } 742 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 743 // Store to mark word of inline type larval buffer 744 assert(res_type->is_inlinetypeptr(), "Unexpected store to mark word"); 745 } else if (res_type->is_inlinetypeptr() && (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore)) { 746 // Inline type buffer allocations are followed by a membar 747 } else if (reduce_merge_precheck && 748 (use->is_Phi() || use->is_EncodeP() || 749 use->Opcode() == Op_MemBarRelease || 750 (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) { 751 // Nothing to do 752 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 753 if (use->is_Phi()) { 754 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 755 NOT_PRODUCT(fail_eliminate = "Object is return value";) 756 } else { 757 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 758 } 759 DEBUG_ONLY(disq_node = use;) 760 } else { 761 if (use->Opcode() == Op_Return) { 762 NOT_PRODUCT(fail_eliminate = "Object is return value";) 763 } else { 764 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 765 } 766 DEBUG_ONLY(disq_node = use;) 767 } 768 can_eliminate = false; 769 } else { 770 assert(use->Opcode() == Op_CastP2X, "should be"); 771 assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null"); 772 } 773 } 774 } 775 776 #ifndef PRODUCT 777 if (PrintEliminateAllocations && safepoints != nullptr) { 778 if (can_eliminate) { 779 tty->print("Scalar "); 780 if (res == nullptr) 781 alloc->dump(); 782 else 783 res->dump(); 784 } else { 785 tty->print("NotScalar (%s)", fail_eliminate); 786 if (res == nullptr) 787 alloc->dump(); 788 else 789 res->dump(); 790 #ifdef ASSERT 791 if (disq_node != nullptr) { 792 tty->print(" >>>> "); 793 disq_node->dump(); 794 } 795 #endif /*ASSERT*/ 796 } 797 } 798 799 if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) { 800 tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : ""); 801 DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();) 802 } 803 #endif 804 return can_eliminate; 805 } 806 807 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) { 808 Node* res = alloc->result_cast(); 809 int nfields = 0; 810 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 811 812 if (res != nullptr) { 813 const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr(); 814 815 if (res_type->isa_instptr()) { 816 // find the fields of the class which will be needed for safepoint debug information 817 ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass(); 818 nfields = iklass->nof_nonstatic_fields(); 819 } else { 820 // find the array's elements which will be needed for safepoint debug information 821 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 822 assert(nfields >= 0, "must be an array klass."); 823 } 824 } 825 826 // rollback processed safepoints 827 while (safepoints_done.length() > 0) { 828 SafePointNode* sfpt_done = safepoints_done.pop(); 829 // remove any extra entries we added to the safepoint 830 uint last = sfpt_done->req() - 1; 831 for (int k = 0; k < nfields; k++) { 832 sfpt_done->del_req(last--); 833 } 834 JVMState *jvms = sfpt_done->jvms(); 835 jvms->set_endoff(sfpt_done->req()); 836 // Now make a pass over the debug information replacing any references 837 // to SafePointScalarObjectNode with the allocated object. 838 int start = jvms->debug_start(); 839 int end = jvms->debug_end(); 840 for (int i = start; i < end; i++) { 841 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 842 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 843 if (scobj->first_index(jvms) == sfpt_done->req() && 844 scobj->n_fields() == (uint)nfields) { 845 assert(scobj->alloc() == alloc, "sanity"); 846 sfpt_done->set_req(i, res); 847 } 848 } 849 } 850 _igvn._worklist.push(sfpt_done); 851 } 852 } 853 854 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt, 855 Unique_Node_List* value_worklist) { 856 // Fields of scalar objs are referenced only at the end 857 // of regular debuginfo at the last (youngest) JVMS. 858 // Record relative start index. 859 ciInstanceKlass* iklass = nullptr; 860 BasicType basic_elem_type = T_ILLEGAL; 861 const Type* field_type = nullptr; 862 const TypeOopPtr* res_type = nullptr; 863 int nfields = 0; 864 int array_base = 0; 865 int element_size = 0; 866 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 867 Node* res = alloc->result_cast(); 868 869 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 870 assert(sfpt->jvms() != nullptr, "missed JVMS"); 871 872 if (res != nullptr) { // Could be null when there are no users 873 res_type = _igvn.type(res)->isa_oopptr(); 874 875 if (res_type->isa_instptr()) { 876 // find the fields of the class which will be needed for safepoint debug information 877 iklass = res_type->is_instptr()->instance_klass(); 878 nfields = iklass->nof_nonstatic_fields(); 879 } else { 880 // find the array's elements which will be needed for safepoint debug information 881 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 882 assert(nfields >= 0, "must be an array klass."); 883 basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type(); 884 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 885 element_size = type2aelembytes(basic_elem_type); 886 field_type = res_type->is_aryptr()->elem(); 887 if (res_type->is_flat()) { 888 // Flat inline type array 889 element_size = res_type->is_aryptr()->flat_elem_size(); 890 } 891 } 892 893 if (res->bottom_type()->is_inlinetypeptr()) { 894 // Nullable inline types have an IsInit field which is added to the safepoint when scalarizing them (see 895 // InlineTypeNode::make_scalar_in_safepoint()). When having circular inline types, we stop scalarizing at depth 1 896 // to avoid an endless recursion. Therefore, we do not have a SafePointScalarObjectNode node here, yet. 897 // We are about to create a SafePointScalarObjectNode as if this is a normal object. Add an additional int input 898 // with value 1 which sets IsInit to true to indicate that the object is always non-null. This input is checked 899 // later in PhaseOutput::filLocArray() for inline types. 900 sfpt->add_req(_igvn.intcon(1)); 901 } 902 } 903 904 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields); 905 sobj->init_req(0, C->root()); 906 transform_later(sobj); 907 908 // Scan object's fields adding an input to the safepoint for each field. 909 for (int j = 0; j < nfields; j++) { 910 intptr_t offset; 911 ciField* field = nullptr; 912 if (iklass != nullptr) { 913 field = iklass->nonstatic_field_at(j); 914 offset = field->offset_in_bytes(); 915 ciType* elem_type = field->type(); 916 basic_elem_type = field->layout_type(); 917 assert(!field->is_flat(), "flat inline type fields should not have safepoint uses"); 918 919 ciField* flat_field = iklass->get_non_flat_field_by_offset(offset); 920 if (flat_field != nullptr && flat_field->is_flat() && !flat_field->is_null_free()) { 921 // TODO 8353432 Add support for nullable, flat fields in non-value class holders 922 // Below code only iterates over the flat representation and therefore misses to 923 // add null markers like we do in InlineTypeNode::add_fields_to_safepoint for value 924 // class holders. 925 _igvn._worklist.push(sfpt); 926 return nullptr; 927 } 928 929 // The next code is taken from Parse::do_get_xxx(). 930 if (is_reference_type(basic_elem_type)) { 931 if (!elem_type->is_loaded()) { 932 field_type = TypeInstPtr::BOTTOM; 933 } else if (field != nullptr && field->is_static_constant()) { 934 ciObject* con = field->constant_value().as_object(); 935 // Do not "join" in the previous type; it doesn't add value, 936 // and may yield a vacuous result if the field is of interface type. 937 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 938 assert(field_type != nullptr, "field singleton type must be consistent"); 939 } else { 940 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 941 } 942 if (UseCompressedOops) { 943 field_type = field_type->make_narrowoop(); 944 basic_elem_type = T_NARROWOOP; 945 } 946 } else { 947 field_type = Type::get_const_basic_type(basic_elem_type); 948 } 949 } else { 950 offset = array_base + j * (intptr_t)element_size; 951 } 952 953 Node* field_val = nullptr; 954 const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 955 if (res_type->is_flat()) { 956 ciInlineKlass* inline_klass = res_type->is_aryptr()->elem()->inline_klass(); 957 assert(inline_klass->flat_in_array(), "must be flat in array"); 958 field_val = inline_type_from_mem(sfpt->memory(), sfpt->control(), inline_klass, field_addr_type->isa_aryptr(), 0, alloc); 959 } else { 960 field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc); 961 } 962 963 // We weren't able to find a value for this field, 964 // give up on eliminating this allocation. 965 if (field_val == nullptr) { 966 uint last = sfpt->req() - 1; 967 for (int k = 0; k < j; k++) { 968 sfpt->del_req(last--); 969 } 970 _igvn._worklist.push(sfpt); 971 972 #ifndef PRODUCT 973 if (PrintEliminateAllocations) { 974 if (field != nullptr) { 975 tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx); 976 field->print(); 977 int field_idx = C->get_alias_index(field_addr_type); 978 tty->print(" (alias_idx=%d)", field_idx); 979 } else { // Array's element 980 tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j); 981 } 982 tty->print(", which prevents elimination of: "); 983 if (res == nullptr) 984 alloc->dump(); 985 else 986 res->dump(); 987 } 988 #endif 989 990 return nullptr; 991 } 992 993 if (UseCompressedOops && field_type->isa_narrowoop()) { 994 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 995 // to be able scalar replace the allocation. 996 if (field_val->is_EncodeP()) { 997 field_val = field_val->in(1); 998 } else if (!field_val->is_InlineType()) { 999 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 1000 } 1001 } 1002 1003 // Keep track of inline types to scalarize them later 1004 if (field_val->is_InlineType()) { 1005 value_worklist->push(field_val); 1006 } else if (field_val->is_Phi()) { 1007 PhiNode* phi = field_val->as_Phi(); 1008 // Eagerly replace inline type phis now since we could be removing an inline type allocation where we must 1009 // scalarize all its fields in safepoints. 1010 field_val = phi->try_push_inline_types_down(&_igvn, true); 1011 if (field_val->is_InlineType()) { 1012 value_worklist->push(field_val); 1013 } 1014 } 1015 sfpt->add_req(field_val); 1016 } 1017 1018 sfpt->jvms()->set_endoff(sfpt->req()); 1019 1020 return sobj; 1021 } 1022 1023 // Do scalar replacement. 1024 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 1025 GrowableArray <SafePointNode *> safepoints_done; 1026 Node* res = alloc->result_cast(); 1027 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 1028 const TypeOopPtr* res_type = nullptr; 1029 if (res != nullptr) { // Could be null when there are no users 1030 res_type = _igvn.type(res)->isa_oopptr(); 1031 } 1032 1033 // Process the safepoint uses 1034 assert(safepoints.length() == 0 || !res_type->is_inlinetypeptr() || C->has_circular_inline_type(), 1035 "Inline type allocations should have been scalarized earlier"); 1036 Unique_Node_List value_worklist; 1037 while (safepoints.length() > 0) { 1038 SafePointNode* sfpt = safepoints.pop(); 1039 SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt, &value_worklist); 1040 1041 if (sobj == nullptr) { 1042 undo_previous_scalarizations(safepoints_done, alloc); 1043 return false; 1044 } 1045 1046 // Now make a pass over the debug information replacing any references 1047 // to the allocated object with "sobj" 1048 JVMState *jvms = sfpt->jvms(); 1049 sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn); 1050 _igvn._worklist.push(sfpt); 1051 1052 // keep it for rollback 1053 safepoints_done.append_if_missing(sfpt); 1054 } 1055 // Scalarize inline types that were added to the safepoint. 1056 // Don't allow linking a constant oop (if available) for flat array elements 1057 // because Deoptimization::reassign_flat_array_elements needs field values. 1058 bool allow_oop = (res_type != nullptr) && !res_type->is_flat(); 1059 for (uint i = 0; i < value_worklist.size(); ++i) { 1060 InlineTypeNode* vt = value_worklist.at(i)->as_InlineType(); 1061 vt->make_scalar_in_safepoints(&_igvn, allow_oop); 1062 } 1063 return true; 1064 } 1065 1066 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 1067 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 1068 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 1069 if (ctl_proj != nullptr) { 1070 igvn.replace_node(ctl_proj, n->in(0)); 1071 } 1072 if (mem_proj != nullptr) { 1073 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 1074 } 1075 } 1076 1077 // Process users of eliminated allocation. 1078 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc, bool inline_alloc) { 1079 Unique_Node_List worklist; 1080 Node* res = alloc->result_cast(); 1081 if (res != nullptr) { 1082 worklist.push(res); 1083 } 1084 while (worklist.size() > 0) { 1085 res = worklist.pop(); 1086 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 1087 Node *use = res->last_out(j); 1088 uint oc1 = res->outcnt(); 1089 1090 if (use->is_AddP()) { 1091 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 1092 Node *n = use->last_out(k); 1093 uint oc2 = use->outcnt(); 1094 if (n->is_Store()) { 1095 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); p < pmax; p++) { 1096 MemBarNode* mb = n->fast_out(p)->isa_MemBar(); 1097 if (mb != nullptr && mb->req() <= MemBarNode::Precedent && mb->in(MemBarNode::Precedent) == n) { 1098 // MemBarVolatiles should have been removed by MemBarNode::Ideal() for non-inline allocations 1099 assert(inline_alloc, "MemBarVolatile should be eliminated for non-escaping object"); 1100 mb->remove(&_igvn); 1101 } 1102 } 1103 _igvn.replace_node(n, n->in(MemNode::Memory)); 1104 } else { 1105 eliminate_gc_barrier(n); 1106 } 1107 k -= (oc2 - use->outcnt()); 1108 } 1109 _igvn.remove_dead_node(use); 1110 } else if (use->is_ArrayCopy()) { 1111 // Disconnect ArrayCopy node 1112 ArrayCopyNode* ac = use->as_ArrayCopy(); 1113 if (ac->is_clonebasic()) { 1114 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 1115 disconnect_projections(ac, _igvn); 1116 assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 1117 Node* membar_before = alloc->in(TypeFunc::Memory)->in(0); 1118 disconnect_projections(membar_before->as_MemBar(), _igvn); 1119 if (membar_after->is_MemBar()) { 1120 disconnect_projections(membar_after->as_MemBar(), _igvn); 1121 } 1122 } else { 1123 assert(ac->is_arraycopy_validated() || 1124 ac->is_copyof_validated() || 1125 ac->is_copyofrange_validated(), "unsupported"); 1126 CallProjections* callprojs = ac->extract_projections(true); 1127 1128 _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O)); 1129 _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory)); 1130 _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control)); 1131 1132 // Set control to top. IGVN will remove the remaining projections 1133 ac->set_req(0, top()); 1134 ac->replace_edge(res, top(), &_igvn); 1135 1136 // Disconnect src right away: it can help find new 1137 // opportunities for allocation elimination 1138 Node* src = ac->in(ArrayCopyNode::Src); 1139 ac->replace_edge(src, top(), &_igvn); 1140 // src can be top at this point if src and dest of the 1141 // arraycopy were the same 1142 if (src->outcnt() == 0 && !src->is_top()) { 1143 _igvn.remove_dead_node(src); 1144 } 1145 } 1146 _igvn._worklist.push(ac); 1147 } else if (use->is_InlineType()) { 1148 assert(use->as_InlineType()->get_oop() == res, "unexpected inline type ptr use"); 1149 // Cut off oop input and remove known instance id from type 1150 _igvn.rehash_node_delayed(use); 1151 use->as_InlineType()->set_oop(_igvn, _igvn.zerocon(T_OBJECT)); 1152 const TypeOopPtr* toop = _igvn.type(use)->is_oopptr()->cast_to_instance_id(TypeOopPtr::InstanceBot); 1153 _igvn.set_type(use, toop); 1154 use->as_InlineType()->set_type(toop); 1155 // Process users 1156 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1157 Node* u = use->fast_out(k); 1158 if (!u->is_InlineType()) { 1159 worklist.push(u); 1160 } 1161 } 1162 } else if (use->Opcode() == Op_StoreX && use->in(MemNode::Address) == res) { 1163 // Store to mark word of inline type larval buffer 1164 assert(inline_alloc, "Unexpected store to mark word"); 1165 _igvn.replace_node(use, use->in(MemNode::Memory)); 1166 } else if (use->Opcode() == Op_MemBarRelease || use->Opcode() == Op_MemBarStoreStore) { 1167 // Inline type buffer allocations are followed by a membar 1168 assert(inline_alloc, "Unexpected MemBarRelease"); 1169 use->as_MemBar()->remove(&_igvn); 1170 } else { 1171 eliminate_gc_barrier(use); 1172 } 1173 j -= (oc1 - res->outcnt()); 1174 } 1175 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 1176 _igvn.remove_dead_node(res); 1177 } 1178 1179 // 1180 // Process other users of allocation's projections 1181 // 1182 if (_callprojs->resproj[0] != nullptr && _callprojs->resproj[0]->outcnt() != 0) { 1183 // First disconnect stores captured by Initialize node. 1184 // If Initialize node is eliminated first in the following code, 1185 // it will kill such stores and DUIterator_Last will assert. 1186 for (DUIterator_Fast jmax, j = _callprojs->resproj[0]->fast_outs(jmax); j < jmax; j++) { 1187 Node* use = _callprojs->resproj[0]->fast_out(j); 1188 if (use->is_AddP()) { 1189 // raw memory addresses used only by the initialization 1190 _igvn.replace_node(use, C->top()); 1191 --j; --jmax; 1192 } 1193 } 1194 for (DUIterator_Last jmin, j = _callprojs->resproj[0]->last_outs(jmin); j >= jmin; ) { 1195 Node* use = _callprojs->resproj[0]->last_out(j); 1196 uint oc1 = _callprojs->resproj[0]->outcnt(); 1197 if (use->is_Initialize()) { 1198 // Eliminate Initialize node. 1199 InitializeNode *init = use->as_Initialize(); 1200 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 1201 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 1202 if (ctrl_proj != nullptr) { 1203 _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); 1204 #ifdef ASSERT 1205 // If the InitializeNode has no memory out, it will die, and tmp will become null 1206 Node* tmp = init->in(TypeFunc::Control); 1207 assert(tmp == nullptr || tmp == _callprojs->fallthrough_catchproj, "allocation control projection"); 1208 #endif 1209 } 1210 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 1211 if (mem_proj != nullptr) { 1212 Node *mem = init->in(TypeFunc::Memory); 1213 #ifdef ASSERT 1214 if (mem->is_MergeMem()) { 1215 assert(mem->in(TypeFunc::Memory) == _callprojs->fallthrough_memproj, "allocation memory projection"); 1216 } else { 1217 assert(mem == _callprojs->fallthrough_memproj, "allocation memory projection"); 1218 } 1219 #endif 1220 _igvn.replace_node(mem_proj, mem); 1221 } 1222 } else if (use->Opcode() == Op_MemBarStoreStore) { 1223 // Inline type buffer allocations are followed by a membar 1224 assert(inline_alloc, "Unexpected MemBarStoreStore"); 1225 use->as_MemBar()->remove(&_igvn); 1226 } else { 1227 assert(false, "only Initialize or AddP expected"); 1228 } 1229 j -= (oc1 - _callprojs->resproj[0]->outcnt()); 1230 } 1231 } 1232 if (_callprojs->fallthrough_catchproj != nullptr) { 1233 _igvn.replace_node(_callprojs->fallthrough_catchproj, alloc->in(TypeFunc::Control)); 1234 } 1235 if (_callprojs->fallthrough_memproj != nullptr) { 1236 _igvn.replace_node(_callprojs->fallthrough_memproj, alloc->in(TypeFunc::Memory)); 1237 } 1238 if (_callprojs->catchall_memproj != nullptr) { 1239 _igvn.replace_node(_callprojs->catchall_memproj, C->top()); 1240 } 1241 if (_callprojs->fallthrough_ioproj != nullptr) { 1242 _igvn.replace_node(_callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 1243 } 1244 if (_callprojs->catchall_ioproj != nullptr) { 1245 _igvn.replace_node(_callprojs->catchall_ioproj, C->top()); 1246 } 1247 if (_callprojs->catchall_catchproj != nullptr) { 1248 _igvn.replace_node(_callprojs->catchall_catchproj, C->top()); 1249 } 1250 } 1251 1252 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1253 // If reallocation fails during deoptimization we'll pop all 1254 // interpreter frames for this compiled frame and that won't play 1255 // nice with JVMTI popframe. 1256 // We avoid this issue by eager reallocation when the popframe request 1257 // is received. 1258 if (!EliminateAllocations) { 1259 return false; 1260 } 1261 Node* klass = alloc->in(AllocateNode::KlassNode); 1262 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1263 1264 // Attempt to eliminate inline type buffer allocations 1265 // regardless of usage and escape/replaceable status. 1266 bool inline_alloc = tklass->isa_instklassptr() && 1267 tklass->is_instklassptr()->instance_klass()->is_inlinetype(); 1268 if (!alloc->_is_non_escaping && !inline_alloc) { 1269 return false; 1270 } 1271 // Eliminate boxing allocations which are not used 1272 // regardless scalar replaceable status. 1273 Node* res = alloc->result_cast(); 1274 bool boxing_alloc = (res == nullptr) && C->eliminate_boxing() && 1275 tklass->isa_instklassptr() && 1276 tklass->is_instklassptr()->instance_klass()->is_box_klass(); 1277 if (!alloc->_is_scalar_replaceable && !boxing_alloc && !inline_alloc) { 1278 return false; 1279 } 1280 1281 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1282 1283 GrowableArray <SafePointNode *> safepoints; 1284 if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) { 1285 return false; 1286 } 1287 1288 if (!alloc->_is_scalar_replaceable) { 1289 assert(res == nullptr || inline_alloc, "sanity"); 1290 // We can only eliminate allocation if all debug info references 1291 // are already replaced with SafePointScalarObject because 1292 // we can't search for a fields value without instance_id. 1293 if (safepoints.length() > 0) { 1294 assert(!inline_alloc || C->has_circular_inline_type(), 1295 "Inline type allocations should have been scalarized earlier"); 1296 return false; 1297 } 1298 } 1299 1300 if (!scalar_replacement(alloc, safepoints)) { 1301 return false; 1302 } 1303 1304 CompileLog* log = C->log(); 1305 if (log != nullptr) { 1306 log->head("eliminate_allocation type='%d'", 1307 log->identify(tklass->exact_klass())); 1308 JVMState* p = alloc->jvms(); 1309 while (p != nullptr) { 1310 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1311 p = p->caller(); 1312 } 1313 log->tail("eliminate_allocation"); 1314 } 1315 1316 process_users_of_allocation(alloc, inline_alloc); 1317 1318 #ifndef PRODUCT 1319 if (PrintEliminateAllocations) { 1320 if (alloc->is_AllocateArray()) 1321 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1322 else 1323 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1324 } 1325 #endif 1326 1327 return true; 1328 } 1329 1330 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1331 // EA should remove all uses of non-escaping boxing node. 1332 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) { 1333 return false; 1334 } 1335 1336 assert(boxing->result_cast() == nullptr, "unexpected boxing node result"); 1337 1338 _callprojs = boxing->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1339 1340 const TypeTuple* r = boxing->tf()->range_sig(); 1341 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1342 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1343 assert(t != nullptr, "sanity"); 1344 1345 CompileLog* log = C->log(); 1346 if (log != nullptr) { 1347 log->head("eliminate_boxing type='%d'", 1348 log->identify(t->instance_klass())); 1349 JVMState* p = boxing->jvms(); 1350 while (p != nullptr) { 1351 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1352 p = p->caller(); 1353 } 1354 log->tail("eliminate_boxing"); 1355 } 1356 1357 process_users_of_allocation(boxing); 1358 1359 #ifndef PRODUCT 1360 if (PrintEliminateAllocations) { 1361 tty->print("++++ Eliminated: %d ", boxing->_idx); 1362 boxing->method()->print_short_name(tty); 1363 tty->cr(); 1364 } 1365 #endif 1366 1367 return true; 1368 } 1369 1370 1371 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1372 Node* adr = basic_plus_adr(base, offset); 1373 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1374 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1375 transform_later(value); 1376 return value; 1377 } 1378 1379 1380 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1381 Node* adr = basic_plus_adr(base, offset); 1382 mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered); 1383 transform_later(mem); 1384 return mem; 1385 } 1386 1387 //============================================================================= 1388 // 1389 // A L L O C A T I O N 1390 // 1391 // Allocation attempts to be fast in the case of frequent small objects. 1392 // It breaks down like this: 1393 // 1394 // 1) Size in doublewords is computed. This is a constant for objects and 1395 // variable for most arrays. Doubleword units are used to avoid size 1396 // overflow of huge doubleword arrays. We need doublewords in the end for 1397 // rounding. 1398 // 1399 // 2) Size is checked for being 'too large'. Too-large allocations will go 1400 // the slow path into the VM. The slow path can throw any required 1401 // exceptions, and does all the special checks for very large arrays. The 1402 // size test can constant-fold away for objects. For objects with 1403 // finalizers it constant-folds the otherway: you always go slow with 1404 // finalizers. 1405 // 1406 // 3) If NOT using TLABs, this is the contended loop-back point. 1407 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1408 // 1409 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1410 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1411 // "size*8" we always enter the VM, where "largish" is a constant picked small 1412 // enough that there's always space between the eden max and 4Gig (old space is 1413 // there so it's quite large) and large enough that the cost of entering the VM 1414 // is dwarfed by the cost to initialize the space. 1415 // 1416 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1417 // down. If contended, repeat at step 3. If using TLABs normal-store 1418 // adjusted heap top back down; there is no contention. 1419 // 1420 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1421 // fields. 1422 // 1423 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1424 // oop flavor. 1425 // 1426 //============================================================================= 1427 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1428 // Allocations bigger than this always go the slow route. 1429 // This value must be small enough that allocation attempts that need to 1430 // trigger exceptions go the slow route. Also, it must be small enough so 1431 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1432 //=============================================================================j// 1433 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1434 // The allocator will coalesce int->oop copies away. See comment in 1435 // coalesce.cpp about how this works. It depends critically on the exact 1436 // code shape produced here, so if you are changing this code shape 1437 // make sure the GC info for the heap-top is correct in and around the 1438 // slow-path call. 1439 // 1440 1441 void PhaseMacroExpand::expand_allocate_common( 1442 AllocateNode* alloc, // allocation node to be expanded 1443 Node* length, // array length for an array allocation 1444 Node* init_val, // value to initialize the array with 1445 const TypeFunc* slow_call_type, // Type of slow call 1446 address slow_call_address, // Address of slow call 1447 Node* valid_length_test // whether length is valid or not 1448 ) 1449 { 1450 Node* ctrl = alloc->in(TypeFunc::Control); 1451 Node* mem = alloc->in(TypeFunc::Memory); 1452 Node* i_o = alloc->in(TypeFunc::I_O); 1453 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1454 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1455 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1456 assert(ctrl != nullptr, "must have control"); 1457 1458 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1459 // they will not be used if "always_slow" is set 1460 enum { slow_result_path = 1, fast_result_path = 2 }; 1461 Node *result_region = nullptr; 1462 Node *result_phi_rawmem = nullptr; 1463 Node *result_phi_rawoop = nullptr; 1464 Node *result_phi_i_o = nullptr; 1465 1466 // The initial slow comparison is a size check, the comparison 1467 // we want to do is a BoolTest::gt 1468 bool expand_fast_path = true; 1469 int tv = _igvn.find_int_con(initial_slow_test, -1); 1470 if (tv >= 0) { 1471 // InitialTest has constant result 1472 // 0 - can fit in TLAB 1473 // 1 - always too big or negative 1474 assert(tv <= 1, "0 or 1 if a constant"); 1475 expand_fast_path = (tv == 0); 1476 initial_slow_test = nullptr; 1477 } else { 1478 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1479 } 1480 1481 if (!UseTLAB) { 1482 // Force slow-path allocation 1483 expand_fast_path = false; 1484 initial_slow_test = nullptr; 1485 } 1486 1487 bool allocation_has_use = (alloc->result_cast() != nullptr); 1488 if (!allocation_has_use) { 1489 InitializeNode* init = alloc->initialization(); 1490 if (init != nullptr) { 1491 init->remove(&_igvn); 1492 } 1493 if (expand_fast_path && (initial_slow_test == nullptr)) { 1494 // Remove allocation node and return. 1495 // Size is a non-negative constant -> no initial check needed -> directly to fast path. 1496 // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left. 1497 #ifndef PRODUCT 1498 if (PrintEliminateAllocations) { 1499 tty->print("NotUsed "); 1500 Node* res = alloc->proj_out_or_null(TypeFunc::Parms); 1501 if (res != nullptr) { 1502 res->dump(); 1503 } else { 1504 alloc->dump(); 1505 } 1506 } 1507 #endif 1508 yank_alloc_node(alloc); 1509 return; 1510 } 1511 } 1512 1513 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1514 Node *slow_region = nullptr; 1515 Node *toobig_false = ctrl; 1516 1517 // generate the initial test if necessary 1518 if (initial_slow_test != nullptr ) { 1519 assert (expand_fast_path, "Only need test if there is a fast path"); 1520 slow_region = new RegionNode(3); 1521 1522 // Now make the initial failure test. Usually a too-big test but 1523 // might be a TRUE for finalizers. 1524 IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1525 transform_later(toobig_iff); 1526 // Plug the failing-too-big test into the slow-path region 1527 Node* toobig_true = new IfTrueNode(toobig_iff); 1528 transform_later(toobig_true); 1529 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1530 toobig_false = new IfFalseNode(toobig_iff); 1531 transform_later(toobig_false); 1532 } else { 1533 // No initial test, just fall into next case 1534 assert(allocation_has_use || !expand_fast_path, "Should already have been handled"); 1535 toobig_false = ctrl; 1536 debug_only(slow_region = NodeSentinel); 1537 } 1538 1539 // If we are here there are several possibilities 1540 // - expand_fast_path is false - then only a slow path is expanded. That's it. 1541 // no_initial_check means a constant allocation. 1542 // - If check always evaluates to false -> expand_fast_path is false (see above) 1543 // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath) 1544 // if !allocation_has_use the fast path is empty 1545 // if !allocation_has_use && no_initial_check 1546 // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all. 1547 // removed by yank_alloc_node above. 1548 1549 Node *slow_mem = mem; // save the current memory state for slow path 1550 // generate the fast allocation code unless we know that the initial test will always go slow 1551 if (expand_fast_path) { 1552 // Fast path modifies only raw memory. 1553 if (mem->is_MergeMem()) { 1554 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1555 } 1556 1557 // allocate the Region and Phi nodes for the result 1558 result_region = new RegionNode(3); 1559 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1560 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1561 1562 // Grab regular I/O before optional prefetch may change it. 1563 // Slow-path does no I/O so just set it to the original I/O. 1564 result_phi_i_o->init_req(slow_result_path, i_o); 1565 1566 // Name successful fast-path variables 1567 Node* fast_oop_ctrl; 1568 Node* fast_oop_rawmem; 1569 1570 if (allocation_has_use) { 1571 Node* needgc_ctrl = nullptr; 1572 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1573 1574 intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1575 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1576 Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, 1577 fast_oop_ctrl, fast_oop_rawmem, 1578 prefetch_lines); 1579 1580 if (initial_slow_test != nullptr) { 1581 // This completes all paths into the slow merge point 1582 slow_region->init_req(need_gc_path, needgc_ctrl); 1583 transform_later(slow_region); 1584 } else { 1585 // No initial slow path needed! 1586 // Just fall from the need-GC path straight into the VM call. 1587 slow_region = needgc_ctrl; 1588 } 1589 1590 InitializeNode* init = alloc->initialization(); 1591 fast_oop_rawmem = initialize_object(alloc, 1592 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1593 klass_node, length, size_in_bytes); 1594 expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem); 1595 expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem); 1596 1597 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1598 } else { 1599 assert (initial_slow_test != nullptr, "sanity"); 1600 fast_oop_ctrl = toobig_false; 1601 fast_oop_rawmem = mem; 1602 transform_later(slow_region); 1603 } 1604 1605 // Plug in the successful fast-path into the result merge point 1606 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1607 result_phi_i_o ->init_req(fast_result_path, i_o); 1608 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1609 } else { 1610 slow_region = ctrl; 1611 result_phi_i_o = i_o; // Rename it to use in the following code. 1612 } 1613 1614 // Generate slow-path call 1615 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1616 OptoRuntime::stub_name(slow_call_address), 1617 TypePtr::BOTTOM); 1618 call->init_req(TypeFunc::Control, slow_region); 1619 call->init_req(TypeFunc::I_O, top()); // does no i/o 1620 call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs 1621 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1622 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1623 1624 call->init_req(TypeFunc::Parms+0, klass_node); 1625 if (length != nullptr) { 1626 call->init_req(TypeFunc::Parms+1, length); 1627 if (init_val != nullptr) { 1628 call->init_req(TypeFunc::Parms+2, init_val); 1629 } 1630 } else { 1631 // Let the runtime know if this is a larval allocation 1632 call->init_req(TypeFunc::Parms+1, _igvn.intcon(alloc->_larval)); 1633 } 1634 1635 // Copy debug information and adjust JVMState information, then replace 1636 // allocate node with the call 1637 call->copy_call_debug_info(&_igvn, alloc); 1638 // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify 1639 // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough 1640 // path dies). 1641 if (valid_length_test != nullptr) { 1642 call->add_req(valid_length_test); 1643 } 1644 if (expand_fast_path) { 1645 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1646 } else { 1647 // Hook i_o projection to avoid its elimination during allocation 1648 // replacement (when only a slow call is generated). 1649 call->set_req(TypeFunc::I_O, result_phi_i_o); 1650 } 1651 _igvn.replace_node(alloc, call); 1652 transform_later(call); 1653 1654 // Identify the output projections from the allocate node and 1655 // adjust any references to them. 1656 // The control and io projections look like: 1657 // 1658 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1659 // Allocate Catch 1660 // ^---Proj(io) <-------+ ^---CatchProj(io) 1661 // 1662 // We are interested in the CatchProj nodes. 1663 // 1664 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1665 1666 // An allocate node has separate memory projections for the uses on 1667 // the control and i_o paths. Replace the control memory projection with 1668 // result_phi_rawmem (unless we are only generating a slow call when 1669 // both memory projections are combined) 1670 if (expand_fast_path && _callprojs->fallthrough_memproj != nullptr) { 1671 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, result_phi_rawmem); 1672 } 1673 // Now change uses of catchall_memproj to use fallthrough_memproj and delete 1674 // catchall_memproj so we end up with a call that has only 1 memory projection. 1675 if (_callprojs->catchall_memproj != nullptr) { 1676 if (_callprojs->fallthrough_memproj == nullptr) { 1677 _callprojs->fallthrough_memproj = new ProjNode(call, TypeFunc::Memory); 1678 transform_later(_callprojs->fallthrough_memproj); 1679 } 1680 _igvn.replace_in_uses(_callprojs->catchall_memproj, _callprojs->fallthrough_memproj); 1681 _igvn.remove_dead_node(_callprojs->catchall_memproj); 1682 } 1683 1684 // An allocate node has separate i_o projections for the uses on the control 1685 // and i_o paths. Always replace the control i_o projection with result i_o 1686 // otherwise incoming i_o become dead when only a slow call is generated 1687 // (it is different from memory projections where both projections are 1688 // combined in such case). 1689 if (_callprojs->fallthrough_ioproj != nullptr) { 1690 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, result_phi_i_o); 1691 } 1692 // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete 1693 // catchall_ioproj so we end up with a call that has only 1 i_o projection. 1694 if (_callprojs->catchall_ioproj != nullptr) { 1695 if (_callprojs->fallthrough_ioproj == nullptr) { 1696 _callprojs->fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O); 1697 transform_later(_callprojs->fallthrough_ioproj); 1698 } 1699 _igvn.replace_in_uses(_callprojs->catchall_ioproj, _callprojs->fallthrough_ioproj); 1700 _igvn.remove_dead_node(_callprojs->catchall_ioproj); 1701 } 1702 1703 // if we generated only a slow call, we are done 1704 if (!expand_fast_path) { 1705 // Now we can unhook i_o. 1706 if (result_phi_i_o->outcnt() > 1) { 1707 call->set_req(TypeFunc::I_O, top()); 1708 } else { 1709 assert(result_phi_i_o->unique_ctrl_out() == call, "sanity"); 1710 // Case of new array with negative size known during compilation. 1711 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1712 // following code since call to runtime will throw exception. 1713 // As result there will be no users of i_o after the call. 1714 // Leave i_o attached to this call to avoid problems in preceding graph. 1715 } 1716 return; 1717 } 1718 1719 if (_callprojs->fallthrough_catchproj != nullptr) { 1720 ctrl = _callprojs->fallthrough_catchproj->clone(); 1721 transform_later(ctrl); 1722 _igvn.replace_node(_callprojs->fallthrough_catchproj, result_region); 1723 } else { 1724 ctrl = top(); 1725 } 1726 Node *slow_result; 1727 if (_callprojs->resproj[0] == nullptr) { 1728 // no uses of the allocation result 1729 slow_result = top(); 1730 } else { 1731 slow_result = _callprojs->resproj[0]->clone(); 1732 transform_later(slow_result); 1733 _igvn.replace_node(_callprojs->resproj[0], result_phi_rawoop); 1734 } 1735 1736 // Plug slow-path into result merge point 1737 result_region->init_req( slow_result_path, ctrl); 1738 transform_later(result_region); 1739 if (allocation_has_use) { 1740 result_phi_rawoop->init_req(slow_result_path, slow_result); 1741 transform_later(result_phi_rawoop); 1742 } 1743 result_phi_rawmem->init_req(slow_result_path, _callprojs->fallthrough_memproj); 1744 transform_later(result_phi_rawmem); 1745 transform_later(result_phi_i_o); 1746 // This completes all paths into the result merge point 1747 } 1748 1749 // Remove alloc node that has no uses. 1750 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) { 1751 Node* ctrl = alloc->in(TypeFunc::Control); 1752 Node* mem = alloc->in(TypeFunc::Memory); 1753 Node* i_o = alloc->in(TypeFunc::I_O); 1754 1755 _callprojs = alloc->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 1756 if (_callprojs->resproj[0] != nullptr) { 1757 for (DUIterator_Fast imax, i = _callprojs->resproj[0]->fast_outs(imax); i < imax; i++) { 1758 Node* use = _callprojs->resproj[0]->fast_out(i); 1759 use->isa_MemBar()->remove(&_igvn); 1760 --imax; 1761 --i; // back up iterator 1762 } 1763 assert(_callprojs->resproj[0]->outcnt() == 0, "all uses must be deleted"); 1764 _igvn.remove_dead_node(_callprojs->resproj[0]); 1765 } 1766 if (_callprojs->fallthrough_catchproj != nullptr) { 1767 _igvn.replace_in_uses(_callprojs->fallthrough_catchproj, ctrl); 1768 _igvn.remove_dead_node(_callprojs->fallthrough_catchproj); 1769 } 1770 if (_callprojs->catchall_catchproj != nullptr) { 1771 _igvn.rehash_node_delayed(_callprojs->catchall_catchproj); 1772 _callprojs->catchall_catchproj->set_req(0, top()); 1773 } 1774 if (_callprojs->fallthrough_proj != nullptr) { 1775 Node* catchnode = _callprojs->fallthrough_proj->unique_ctrl_out(); 1776 _igvn.remove_dead_node(catchnode); 1777 _igvn.remove_dead_node(_callprojs->fallthrough_proj); 1778 } 1779 if (_callprojs->fallthrough_memproj != nullptr) { 1780 _igvn.replace_in_uses(_callprojs->fallthrough_memproj, mem); 1781 _igvn.remove_dead_node(_callprojs->fallthrough_memproj); 1782 } 1783 if (_callprojs->fallthrough_ioproj != nullptr) { 1784 _igvn.replace_in_uses(_callprojs->fallthrough_ioproj, i_o); 1785 _igvn.remove_dead_node(_callprojs->fallthrough_ioproj); 1786 } 1787 if (_callprojs->catchall_memproj != nullptr) { 1788 _igvn.rehash_node_delayed(_callprojs->catchall_memproj); 1789 _callprojs->catchall_memproj->set_req(0, top()); 1790 } 1791 if (_callprojs->catchall_ioproj != nullptr) { 1792 _igvn.rehash_node_delayed(_callprojs->catchall_ioproj); 1793 _callprojs->catchall_ioproj->set_req(0, top()); 1794 } 1795 #ifndef PRODUCT 1796 if (PrintEliminateAllocations) { 1797 if (alloc->is_AllocateArray()) { 1798 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1799 } else { 1800 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1801 } 1802 } 1803 #endif 1804 _igvn.remove_dead_node(alloc); 1805 } 1806 1807 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init, 1808 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) { 1809 // If initialization is performed by an array copy, any required 1810 // MemBarStoreStore was already added. If the object does not 1811 // escape no need for a MemBarStoreStore. If the object does not 1812 // escape in its initializer and memory barrier (MemBarStoreStore or 1813 // stronger) is already added at exit of initializer, also no need 1814 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1815 // so that stores that initialize this object can't be reordered 1816 // with a subsequent store that makes this object accessible by 1817 // other threads. 1818 // Other threads include java threads and JVM internal threads 1819 // (for example concurrent GC threads). Current concurrent GC 1820 // implementation: G1 will not scan newly created object, 1821 // so it's safe to skip storestore barrier when allocation does 1822 // not escape. 1823 if (!alloc->does_not_escape_thread() && 1824 !alloc->is_allocation_MemBar_redundant() && 1825 (init == nullptr || !init->is_complete_with_arraycopy())) { 1826 if (init == nullptr || init->req() < InitializeNode::RawStores) { 1827 // No InitializeNode or no stores captured by zeroing 1828 // elimination. Simply add the MemBarStoreStore after object 1829 // initialization. 1830 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1831 transform_later(mb); 1832 1833 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1834 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1835 fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control); 1836 transform_later(fast_oop_ctrl); 1837 fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory); 1838 transform_later(fast_oop_rawmem); 1839 } else { 1840 // Add the MemBarStoreStore after the InitializeNode so that 1841 // all stores performing the initialization that were moved 1842 // before the InitializeNode happen before the storestore 1843 // barrier. 1844 1845 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1846 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1847 1848 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1849 transform_later(mb); 1850 1851 Node* ctrl = new ProjNode(init, TypeFunc::Control); 1852 transform_later(ctrl); 1853 Node* mem = new ProjNode(init, TypeFunc::Memory); 1854 transform_later(mem); 1855 1856 // The MemBarStoreStore depends on control and memory coming 1857 // from the InitializeNode 1858 mb->init_req(TypeFunc::Memory, mem); 1859 mb->init_req(TypeFunc::Control, ctrl); 1860 1861 ctrl = new ProjNode(mb, TypeFunc::Control); 1862 transform_later(ctrl); 1863 mem = new ProjNode(mb, TypeFunc::Memory); 1864 transform_later(mem); 1865 1866 // All nodes that depended on the InitializeNode for control 1867 // and memory must now depend on the MemBarNode that itself 1868 // depends on the InitializeNode 1869 if (init_ctrl != nullptr) { 1870 _igvn.replace_node(init_ctrl, ctrl); 1871 } 1872 if (init_mem != nullptr) { 1873 _igvn.replace_node(init_mem, mem); 1874 } 1875 } 1876 } 1877 } 1878 1879 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop, 1880 Node*& ctrl, Node*& rawmem) { 1881 if (C->env()->dtrace_alloc_probes()) { 1882 // Slow-path call 1883 int size = TypeFunc::Parms + 2; 1884 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1885 CAST_FROM_FN_PTR(address, 1886 static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)), 1887 "dtrace_object_alloc", 1888 TypeRawPtr::BOTTOM); 1889 1890 // Get base of thread-local storage area 1891 Node* thread = new ThreadLocalNode(); 1892 transform_later(thread); 1893 1894 call->init_req(TypeFunc::Parms + 0, thread); 1895 call->init_req(TypeFunc::Parms + 1, oop); 1896 call->init_req(TypeFunc::Control, ctrl); 1897 call->init_req(TypeFunc::I_O , top()); // does no i/o 1898 call->init_req(TypeFunc::Memory , rawmem); 1899 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1900 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1901 transform_later(call); 1902 ctrl = new ProjNode(call, TypeFunc::Control); 1903 transform_later(ctrl); 1904 rawmem = new ProjNode(call, TypeFunc::Memory); 1905 transform_later(rawmem); 1906 } 1907 } 1908 1909 // Helper for PhaseMacroExpand::expand_allocate_common. 1910 // Initializes the newly-allocated storage. 1911 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1912 Node* control, Node* rawmem, Node* object, 1913 Node* klass_node, Node* length, 1914 Node* size_in_bytes) { 1915 InitializeNode* init = alloc->initialization(); 1916 // Store the klass & mark bits 1917 Node* mark_node = alloc->make_ideal_mark(&_igvn, control, rawmem); 1918 if (!mark_node->is_Con()) { 1919 transform_later(mark_node); 1920 } 1921 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type()); 1922 1923 if (!UseCompactObjectHeaders) { 1924 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1925 } 1926 int header_size = alloc->minimum_header_size(); // conservatively small 1927 1928 // Array length 1929 if (length != nullptr) { // Arrays need length field 1930 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1931 // conservatively small header size: 1932 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1933 if (_igvn.type(klass_node)->isa_aryklassptr()) { // we know the exact header size in most cases: 1934 BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 1935 if (is_reference_type(elem, true)) { 1936 elem = T_OBJECT; 1937 } 1938 header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem)); 1939 } 1940 } 1941 1942 // Clear the object body, if necessary. 1943 if (init == nullptr) { 1944 // The init has somehow disappeared; be cautious and clear everything. 1945 // 1946 // This can happen if a node is allocated but an uncommon trap occurs 1947 // immediately. In this case, the Initialize gets associated with the 1948 // trap, and may be placed in a different (outer) loop, if the Allocate 1949 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1950 // there can be two Allocates to one Initialize. The answer in all these 1951 // edge cases is safety first. It is always safe to clear immediately 1952 // within an Allocate, and then (maybe or maybe not) clear some more later. 1953 if (!(UseTLAB && ZeroTLAB)) { 1954 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1955 alloc->in(AllocateNode::InitValue), 1956 alloc->in(AllocateNode::RawInitValue), 1957 header_size, size_in_bytes, 1958 &_igvn); 1959 } 1960 } else { 1961 if (!init->is_complete()) { 1962 // Try to win by zeroing only what the init does not store. 1963 // We can also try to do some peephole optimizations, 1964 // such as combining some adjacent subword stores. 1965 rawmem = init->complete_stores(control, rawmem, object, 1966 header_size, size_in_bytes, &_igvn); 1967 } 1968 // We have no more use for this link, since the AllocateNode goes away: 1969 init->set_req(InitializeNode::RawAddress, top()); 1970 // (If we keep the link, it just confuses the register allocator, 1971 // who thinks he sees a real use of the address by the membar.) 1972 } 1973 1974 return rawmem; 1975 } 1976 1977 // Generate prefetch instructions for next allocations. 1978 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1979 Node*& contended_phi_rawmem, 1980 Node* old_eden_top, Node* new_eden_top, 1981 intx lines) { 1982 enum { fall_in_path = 1, pf_path = 2 }; 1983 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1984 // Generate prefetch allocation with watermark check. 1985 // As an allocation hits the watermark, we will prefetch starting 1986 // at a "distance" away from watermark. 1987 1988 Node *pf_region = new RegionNode(3); 1989 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1990 TypeRawPtr::BOTTOM ); 1991 // I/O is used for Prefetch 1992 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1993 1994 Node *thread = new ThreadLocalNode(); 1995 transform_later(thread); 1996 1997 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1998 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1999 transform_later(eden_pf_adr); 2000 2001 Node *old_pf_wm = new LoadPNode(needgc_false, 2002 contended_phi_rawmem, eden_pf_adr, 2003 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 2004 MemNode::unordered); 2005 transform_later(old_pf_wm); 2006 2007 // check against new_eden_top 2008 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 2009 transform_later(need_pf_cmp); 2010 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 2011 transform_later(need_pf_bol); 2012 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 2013 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 2014 transform_later(need_pf_iff); 2015 2016 // true node, add prefetchdistance 2017 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 2018 transform_later(need_pf_true); 2019 2020 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 2021 transform_later(need_pf_false); 2022 2023 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 2024 _igvn.MakeConX(AllocatePrefetchDistance) ); 2025 transform_later(new_pf_wmt ); 2026 new_pf_wmt->set_req(0, need_pf_true); 2027 2028 Node *store_new_wmt = new StorePNode(need_pf_true, 2029 contended_phi_rawmem, eden_pf_adr, 2030 TypeRawPtr::BOTTOM, new_pf_wmt, 2031 MemNode::unordered); 2032 transform_later(store_new_wmt); 2033 2034 // adding prefetches 2035 pf_phi_abio->init_req( fall_in_path, i_o ); 2036 2037 Node *prefetch_adr; 2038 Node *prefetch; 2039 uint step_size = AllocatePrefetchStepSize; 2040 uint distance = 0; 2041 2042 for ( intx i = 0; i < lines; i++ ) { 2043 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 2044 _igvn.MakeConX(distance) ); 2045 transform_later(prefetch_adr); 2046 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2047 transform_later(prefetch); 2048 distance += step_size; 2049 i_o = prefetch; 2050 } 2051 pf_phi_abio->set_req( pf_path, i_o ); 2052 2053 pf_region->init_req( fall_in_path, need_pf_false ); 2054 pf_region->init_req( pf_path, need_pf_true ); 2055 2056 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 2057 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 2058 2059 transform_later(pf_region); 2060 transform_later(pf_phi_rawmem); 2061 transform_later(pf_phi_abio); 2062 2063 needgc_false = pf_region; 2064 contended_phi_rawmem = pf_phi_rawmem; 2065 i_o = pf_phi_abio; 2066 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 2067 // Insert a prefetch instruction for each allocation. 2068 // This code is used to generate 1 prefetch instruction per cache line. 2069 2070 // Generate several prefetch instructions. 2071 uint step_size = AllocatePrefetchStepSize; 2072 uint distance = AllocatePrefetchDistance; 2073 2074 // Next cache address. 2075 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 2076 _igvn.MakeConX(step_size + distance)); 2077 transform_later(cache_adr); 2078 cache_adr = new CastP2XNode(needgc_false, cache_adr); 2079 transform_later(cache_adr); 2080 // Address is aligned to execute prefetch to the beginning of cache line size 2081 // (it is important when BIS instruction is used on SPARC as prefetch). 2082 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 2083 cache_adr = new AndXNode(cache_adr, mask); 2084 transform_later(cache_adr); 2085 cache_adr = new CastX2PNode(cache_adr); 2086 transform_later(cache_adr); 2087 2088 // Prefetch 2089 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 2090 prefetch->set_req(0, needgc_false); 2091 transform_later(prefetch); 2092 contended_phi_rawmem = prefetch; 2093 Node *prefetch_adr; 2094 distance = step_size; 2095 for ( intx i = 1; i < lines; i++ ) { 2096 prefetch_adr = new AddPNode( cache_adr, cache_adr, 2097 _igvn.MakeConX(distance) ); 2098 transform_later(prefetch_adr); 2099 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 2100 transform_later(prefetch); 2101 distance += step_size; 2102 contended_phi_rawmem = prefetch; 2103 } 2104 } else if( AllocatePrefetchStyle > 0 ) { 2105 // Insert a prefetch for each allocation only on the fast-path 2106 Node *prefetch_adr; 2107 Node *prefetch; 2108 // Generate several prefetch instructions. 2109 uint step_size = AllocatePrefetchStepSize; 2110 uint distance = AllocatePrefetchDistance; 2111 for ( intx i = 0; i < lines; i++ ) { 2112 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 2113 _igvn.MakeConX(distance) ); 2114 transform_later(prefetch_adr); 2115 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2116 // Do not let it float too high, since if eden_top == eden_end, 2117 // both might be null. 2118 if( i == 0 ) { // Set control for first prefetch, next follows it 2119 prefetch->init_req(0, needgc_false); 2120 } 2121 transform_later(prefetch); 2122 distance += step_size; 2123 i_o = prefetch; 2124 } 2125 } 2126 return i_o; 2127 } 2128 2129 2130 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 2131 expand_allocate_common(alloc, nullptr, nullptr, 2132 OptoRuntime::new_instance_Type(), 2133 OptoRuntime::new_instance_Java(), nullptr); 2134 } 2135 2136 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 2137 Node* length = alloc->in(AllocateNode::ALength); 2138 Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest); 2139 InitializeNode* init = alloc->initialization(); 2140 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2141 Node* init_value = alloc->in(AllocateNode::InitValue); 2142 const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr(); 2143 const TypeFunc* slow_call_type; 2144 address slow_call_address; // Address of slow call 2145 if (init != nullptr && init->is_complete_with_arraycopy() && 2146 ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) { 2147 // Don't zero type array during slow allocation in VM since 2148 // it will be initialized later by arraycopy in compiled code. 2149 slow_call_address = OptoRuntime::new_array_nozero_Java(); 2150 slow_call_type = OptoRuntime::new_array_nozero_Type(); 2151 } else { 2152 slow_call_address = OptoRuntime::new_array_Java(); 2153 slow_call_type = OptoRuntime::new_array_Type(); 2154 2155 if (init_value == nullptr) { 2156 init_value = _igvn.zerocon(T_OBJECT); 2157 } else if (UseCompressedOops) { 2158 init_value = transform_later(new DecodeNNode(init_value, init_value->bottom_type()->make_ptr())); 2159 } 2160 } 2161 expand_allocate_common(alloc, length, init_value, 2162 slow_call_type, 2163 slow_call_address, valid_length_test); 2164 } 2165 2166 //-------------------mark_eliminated_box---------------------------------- 2167 // 2168 // During EA obj may point to several objects but after few ideal graph 2169 // transformations (CCP) it may point to only one non escaping object 2170 // (but still using phi), corresponding locks and unlocks will be marked 2171 // for elimination. Later obj could be replaced with a new node (new phi) 2172 // and which does not have escape information. And later after some graph 2173 // reshape other locks and unlocks (which were not marked for elimination 2174 // before) are connected to this new obj (phi) but they still will not be 2175 // marked for elimination since new obj has no escape information. 2176 // Mark all associated (same box and obj) lock and unlock nodes for 2177 // elimination if some of them marked already. 2178 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) { 2179 BoxLockNode* oldbox = box->as_BoxLock(); 2180 if (oldbox->is_eliminated()) { 2181 return; // This BoxLock node was processed already. 2182 } 2183 assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region"); 2184 // New implementation (EliminateNestedLocks) has separate BoxLock 2185 // node for each locked region so mark all associated locks/unlocks as 2186 // eliminated even if different objects are referenced in one locked region 2187 // (for example, OSR compilation of nested loop inside locked scope). 2188 if (EliminateNestedLocks || 2189 oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) { 2190 // Box is used only in one lock region. Mark this box as eliminated. 2191 oldbox->set_local(); // This verifies correct state of BoxLock 2192 _igvn.hash_delete(oldbox); 2193 oldbox->set_eliminated(); // This changes box's hash value 2194 _igvn.hash_insert(oldbox); 2195 2196 for (uint i = 0; i < oldbox->outcnt(); i++) { 2197 Node* u = oldbox->raw_out(i); 2198 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 2199 AbstractLockNode* alock = u->as_AbstractLock(); 2200 // Check lock's box since box could be referenced by Lock's debug info. 2201 if (alock->box_node() == oldbox) { 2202 // Mark eliminated all related locks and unlocks. 2203 #ifdef ASSERT 2204 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 2205 #endif 2206 alock->set_non_esc_obj(); 2207 } 2208 } 2209 } 2210 return; 2211 } 2212 2213 // Create new "eliminated" BoxLock node and use it in monitor debug info 2214 // instead of oldbox for the same object. 2215 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 2216 2217 // Note: BoxLock node is marked eliminated only here and it is used 2218 // to indicate that all associated lock and unlock nodes are marked 2219 // for elimination. 2220 newbox->set_local(); // This verifies correct state of BoxLock 2221 newbox->set_eliminated(); 2222 transform_later(newbox); 2223 2224 // Replace old box node with new box for all users of the same object. 2225 for (uint i = 0; i < oldbox->outcnt();) { 2226 bool next_edge = true; 2227 2228 Node* u = oldbox->raw_out(i); 2229 if (u->is_AbstractLock()) { 2230 AbstractLockNode* alock = u->as_AbstractLock(); 2231 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 2232 // Replace Box and mark eliminated all related locks and unlocks. 2233 #ifdef ASSERT 2234 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 2235 #endif 2236 alock->set_non_esc_obj(); 2237 _igvn.rehash_node_delayed(alock); 2238 alock->set_box_node(newbox); 2239 next_edge = false; 2240 } 2241 } 2242 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2243 FastLockNode* flock = u->as_FastLock(); 2244 assert(flock->box_node() == oldbox, "sanity"); 2245 _igvn.rehash_node_delayed(flock); 2246 flock->set_box_node(newbox); 2247 next_edge = false; 2248 } 2249 2250 // Replace old box in monitor debug info. 2251 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2252 SafePointNode* sfn = u->as_SafePoint(); 2253 JVMState* youngest_jvms = sfn->jvms(); 2254 int max_depth = youngest_jvms->depth(); 2255 for (int depth = 1; depth <= max_depth; depth++) { 2256 JVMState* jvms = youngest_jvms->of_depth(depth); 2257 int num_mon = jvms->nof_monitors(); 2258 // Loop over monitors 2259 for (int idx = 0; idx < num_mon; idx++) { 2260 Node* obj_node = sfn->monitor_obj(jvms, idx); 2261 Node* box_node = sfn->monitor_box(jvms, idx); 2262 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2263 int j = jvms->monitor_box_offset(idx); 2264 _igvn.replace_input_of(u, j, newbox); 2265 next_edge = false; 2266 } 2267 } 2268 } 2269 } 2270 if (next_edge) i++; 2271 } 2272 } 2273 2274 //-----------------------mark_eliminated_locking_nodes----------------------- 2275 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2276 if (!alock->is_balanced()) { 2277 return; // Can't do any more elimination for this locking region 2278 } 2279 if (EliminateNestedLocks) { 2280 if (alock->is_nested()) { 2281 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2282 return; 2283 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2284 // Only Lock node has JVMState needed here. 2285 // Not that preceding claim is documented anywhere else. 2286 if (alock->jvms() != nullptr) { 2287 if (alock->as_Lock()->is_nested_lock_region()) { 2288 // Mark eliminated related nested locks and unlocks. 2289 Node* obj = alock->obj_node(); 2290 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2291 assert(!box_node->is_eliminated(), "should not be marked yet"); 2292 // Note: BoxLock node is marked eliminated only here 2293 // and it is used to indicate that all associated lock 2294 // and unlock nodes are marked for elimination. 2295 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2296 for (uint i = 0; i < box_node->outcnt(); i++) { 2297 Node* u = box_node->raw_out(i); 2298 if (u->is_AbstractLock()) { 2299 alock = u->as_AbstractLock(); 2300 if (alock->box_node() == box_node) { 2301 // Verify that this Box is referenced only by related locks. 2302 assert(alock->obj_node()->eqv_uncast(obj), ""); 2303 // Mark all related locks and unlocks. 2304 #ifdef ASSERT 2305 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2306 #endif 2307 alock->set_nested(); 2308 } 2309 } 2310 } 2311 } else { 2312 #ifdef ASSERT 2313 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2314 if (C->log() != nullptr) 2315 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2316 #endif 2317 } 2318 } 2319 return; 2320 } 2321 // Process locks for non escaping object 2322 assert(alock->is_non_esc_obj(), ""); 2323 } // EliminateNestedLocks 2324 2325 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2326 // Look for all locks of this object and mark them and 2327 // corresponding BoxLock nodes as eliminated. 2328 Node* obj = alock->obj_node(); 2329 for (uint j = 0; j < obj->outcnt(); j++) { 2330 Node* o = obj->raw_out(j); 2331 if (o->is_AbstractLock() && 2332 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2333 alock = o->as_AbstractLock(); 2334 Node* box = alock->box_node(); 2335 // Replace old box node with new eliminated box for all users 2336 // of the same object and mark related locks as eliminated. 2337 mark_eliminated_box(box, obj); 2338 } 2339 } 2340 } 2341 } 2342 2343 // we have determined that this lock/unlock can be eliminated, we simply 2344 // eliminate the node without expanding it. 2345 // 2346 // Note: The membar's associated with the lock/unlock are currently not 2347 // eliminated. This should be investigated as a future enhancement. 2348 // 2349 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2350 2351 if (!alock->is_eliminated()) { 2352 return false; 2353 } 2354 #ifdef ASSERT 2355 if (!alock->is_coarsened()) { 2356 // Check that new "eliminated" BoxLock node is created. 2357 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2358 assert(oldbox->is_eliminated(), "should be done already"); 2359 } 2360 #endif 2361 2362 alock->log_lock_optimization(C, "eliminate_lock"); 2363 2364 #ifndef PRODUCT 2365 if (PrintEliminateLocks) { 2366 tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string()); 2367 } 2368 #endif 2369 2370 Node* mem = alock->in(TypeFunc::Memory); 2371 Node* ctrl = alock->in(TypeFunc::Control); 2372 guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null"); 2373 2374 _callprojs = alock->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2375 // There are 2 projections from the lock. The lock node will 2376 // be deleted when its last use is subsumed below. 2377 assert(alock->outcnt() == 2 && 2378 _callprojs->fallthrough_proj != nullptr && 2379 _callprojs->fallthrough_memproj != nullptr, 2380 "Unexpected projections from Lock/Unlock"); 2381 2382 Node* fallthroughproj = _callprojs->fallthrough_proj; 2383 Node* memproj_fallthrough = _callprojs->fallthrough_memproj; 2384 2385 // The memory projection from a lock/unlock is RawMem 2386 // The input to a Lock is merged memory, so extract its RawMem input 2387 // (unless the MergeMem has been optimized away.) 2388 if (alock->is_Lock()) { 2389 // Search for MemBarAcquireLock node and delete it also. 2390 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2391 assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, ""); 2392 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2393 Node* memproj = membar->proj_out(TypeFunc::Memory); 2394 _igvn.replace_node(ctrlproj, fallthroughproj); 2395 _igvn.replace_node(memproj, memproj_fallthrough); 2396 2397 // Delete FastLock node also if this Lock node is unique user 2398 // (a loop peeling may clone a Lock node). 2399 Node* flock = alock->as_Lock()->fastlock_node(); 2400 if (flock->outcnt() == 1) { 2401 assert(flock->unique_out() == alock, "sanity"); 2402 _igvn.replace_node(flock, top()); 2403 } 2404 } 2405 2406 // Search for MemBarReleaseLock node and delete it also. 2407 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2408 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2409 assert(membar->Opcode() == Op_MemBarReleaseLock && 2410 mem->is_Proj() && membar == mem->in(0), ""); 2411 _igvn.replace_node(fallthroughproj, ctrl); 2412 _igvn.replace_node(memproj_fallthrough, mem); 2413 fallthroughproj = ctrl; 2414 memproj_fallthrough = mem; 2415 ctrl = membar->in(TypeFunc::Control); 2416 mem = membar->in(TypeFunc::Memory); 2417 } 2418 2419 _igvn.replace_node(fallthroughproj, ctrl); 2420 _igvn.replace_node(memproj_fallthrough, mem); 2421 return true; 2422 } 2423 2424 2425 //------------------------------expand_lock_node---------------------- 2426 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2427 2428 Node* ctrl = lock->in(TypeFunc::Control); 2429 Node* mem = lock->in(TypeFunc::Memory); 2430 Node* obj = lock->obj_node(); 2431 Node* box = lock->box_node(); 2432 Node* flock = lock->fastlock_node(); 2433 2434 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2435 2436 // Make the merge point 2437 Node *region; 2438 Node *mem_phi; 2439 Node *slow_path; 2440 2441 region = new RegionNode(3); 2442 // create a Phi for the memory state 2443 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2444 2445 // Optimize test; set region slot 2 2446 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2447 mem_phi->init_req(2, mem); 2448 2449 // Make slow path call 2450 CallNode* call = make_slow_call(lock, OptoRuntime::complete_monitor_enter_Type(), 2451 OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path, 2452 obj, box, nullptr); 2453 2454 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2455 2456 // Slow path can only throw asynchronous exceptions, which are always 2457 // de-opted. So the compiler thinks the slow-call can never throw an 2458 // exception. If it DOES throw an exception we would need the debug 2459 // info removed first (since if it throws there is no monitor). 2460 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2461 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2462 2463 // Capture slow path 2464 // disconnect fall-through projection from call and create a new one 2465 // hook up users of fall-through projection to region 2466 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2467 transform_later(slow_ctrl); 2468 _igvn.hash_delete(_callprojs->fallthrough_proj); 2469 _callprojs->fallthrough_proj->disconnect_inputs(C); 2470 region->init_req(1, slow_ctrl); 2471 // region inputs are now complete 2472 transform_later(region); 2473 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2474 2475 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2476 2477 mem_phi->init_req(1, memproj); 2478 2479 transform_later(mem_phi); 2480 2481 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2482 } 2483 2484 //------------------------------expand_unlock_node---------------------- 2485 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2486 2487 Node* ctrl = unlock->in(TypeFunc::Control); 2488 Node* mem = unlock->in(TypeFunc::Memory); 2489 Node* obj = unlock->obj_node(); 2490 Node* box = unlock->box_node(); 2491 2492 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2493 2494 // No need for a null check on unlock 2495 2496 // Make the merge point 2497 Node *region; 2498 Node *mem_phi; 2499 2500 region = new RegionNode(3); 2501 // create a Phi for the memory state 2502 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2503 2504 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2505 funlock = transform_later( funlock )->as_FastUnlock(); 2506 // Optimize test; set region slot 2 2507 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2508 Node *thread = transform_later(new ThreadLocalNode()); 2509 2510 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2511 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2512 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2513 2514 _callprojs = call->extract_projections(false /*separate_io_proj*/, false /*do_asserts*/); 2515 assert(_callprojs->fallthrough_ioproj == nullptr && _callprojs->catchall_ioproj == nullptr && 2516 _callprojs->catchall_memproj == nullptr && _callprojs->catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2517 2518 // No exceptions for unlocking 2519 // Capture slow path 2520 // disconnect fall-through projection from call and create a new one 2521 // hook up users of fall-through projection to region 2522 Node *slow_ctrl = _callprojs->fallthrough_proj->clone(); 2523 transform_later(slow_ctrl); 2524 _igvn.hash_delete(_callprojs->fallthrough_proj); 2525 _callprojs->fallthrough_proj->disconnect_inputs(C); 2526 region->init_req(1, slow_ctrl); 2527 // region inputs are now complete 2528 transform_later(region); 2529 _igvn.replace_node(_callprojs->fallthrough_proj, region); 2530 2531 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2532 mem_phi->init_req(1, memproj ); 2533 mem_phi->init_req(2, mem); 2534 transform_later(mem_phi); 2535 2536 _igvn.replace_node(_callprojs->fallthrough_memproj, mem_phi); 2537 } 2538 2539 // An inline type might be returned from the call but we don't know its 2540 // type. Either we get a buffered inline type (and nothing needs to be done) 2541 // or one of the values being returned is the klass of the inline type 2542 // and we need to allocate an inline type instance of that type and 2543 // initialize it with other values being returned. In that case, we 2544 // first try a fast path allocation and initialize the value with the 2545 // inline klass's pack handler or we fall back to a runtime call. 2546 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) { 2547 assert(call->method()->is_method_handle_intrinsic(), "must be a method handle intrinsic call"); 2548 Node* ret = call->proj_out_or_null(TypeFunc::Parms); 2549 if (ret == nullptr) { 2550 return; 2551 } 2552 const TypeFunc* tf = call->_tf; 2553 const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc(); 2554 const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain); 2555 call->_tf = new_tf; 2556 // Make sure the change of type is applied before projections are processed by igvn 2557 _igvn.set_type(call, call->Value(&_igvn)); 2558 _igvn.set_type(ret, ret->Value(&_igvn)); 2559 2560 // Before any new projection is added: 2561 CallProjections* projs = call->extract_projections(true, true); 2562 2563 // Create temporary hook nodes that will be replaced below. 2564 // Add an input to prevent hook nodes from being dead. 2565 Node* ctl = new Node(call); 2566 Node* mem = new Node(ctl); 2567 Node* io = new Node(ctl); 2568 Node* ex_ctl = new Node(ctl); 2569 Node* ex_mem = new Node(ctl); 2570 Node* ex_io = new Node(ctl); 2571 Node* res = new Node(ctl); 2572 2573 // Allocate a new buffered inline type only if a new one is not returned 2574 Node* cast = transform_later(new CastP2XNode(ctl, res)); 2575 Node* mask = MakeConX(0x1); 2576 Node* masked = transform_later(new AndXNode(cast, mask)); 2577 Node* cmp = transform_later(new CmpXNode(masked, mask)); 2578 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2579 IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN); 2580 transform_later(allocation_iff); 2581 Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff)); 2582 Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff)); 2583 Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::BOTTOM)); 2584 2585 // Try to allocate a new buffered inline instance either from TLAB or eden space 2586 Node* needgc_ctrl = nullptr; // needgc means slowcase, i.e. allocation failed 2587 CallLeafNoFPNode* handler_call; 2588 const bool alloc_in_place = UseTLAB; 2589 if (alloc_in_place) { 2590 Node* fast_oop_ctrl = nullptr; 2591 Node* fast_oop_rawmem = nullptr; 2592 Node* mask2 = MakeConX(-2); 2593 Node* masked2 = transform_later(new AndXNode(cast, mask2)); 2594 Node* rawklassptr = transform_later(new CastX2PNode(masked2)); 2595 Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeInstKlassPtr::OBJECT_OR_NULL)); 2596 Node* layout_val = make_load(nullptr, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT); 2597 Node* size_in_bytes = ConvI2X(layout_val); 2598 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2599 Node* fast_oop = bs->obj_allocate(this, mem, allocation_ctl, size_in_bytes, io, needgc_ctrl, 2600 fast_oop_ctrl, fast_oop_rawmem, 2601 AllocateInstancePrefetchLines); 2602 // Allocation succeed, initialize buffered inline instance header firstly, 2603 // and then initialize its fields with an inline class specific handler 2604 Node* mark_node = makecon(TypeRawPtr::make((address)markWord::inline_type_prototype().value())); 2605 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); 2606 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 2607 if (UseCompressedClassPointers) { 2608 fast_oop_rawmem = make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT); 2609 } 2610 Node* fixed_block = make_load(fast_oop_ctrl, fast_oop_rawmem, klass_node, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2611 Node* pack_handler = make_load(fast_oop_ctrl, fast_oop_rawmem, fixed_block, in_bytes(InlineKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2612 handler_call = new CallLeafNoFPNode(OptoRuntime::pack_inline_type_Type(), 2613 nullptr, 2614 "pack handler", 2615 TypeRawPtr::BOTTOM); 2616 handler_call->init_req(TypeFunc::Control, fast_oop_ctrl); 2617 handler_call->init_req(TypeFunc::Memory, fast_oop_rawmem); 2618 handler_call->init_req(TypeFunc::I_O, top()); 2619 handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2620 handler_call->init_req(TypeFunc::ReturnAdr, top()); 2621 handler_call->init_req(TypeFunc::Parms, pack_handler); 2622 handler_call->init_req(TypeFunc::Parms+1, fast_oop); 2623 } else { 2624 needgc_ctrl = allocation_ctl; 2625 } 2626 2627 // Allocation failed, fall back to a runtime call 2628 CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_inline_type_fields_Type(), 2629 StubRoutines::store_inline_type_fields_to_buf(), 2630 "store_inline_type_fields", 2631 TypePtr::BOTTOM); 2632 slow_call->init_req(TypeFunc::Control, needgc_ctrl); 2633 slow_call->init_req(TypeFunc::Memory, mem); 2634 slow_call->init_req(TypeFunc::I_O, io); 2635 slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2636 slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr)); 2637 slow_call->init_req(TypeFunc::Parms, res); 2638 2639 Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control)); 2640 Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory)); 2641 Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O)); 2642 Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms)); 2643 Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2)); 2644 Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)); 2645 Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci)); 2646 2647 Node* ex_r = new RegionNode(3); 2648 Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM); 2649 Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO); 2650 ex_r->init_req(1, slow_excp); 2651 ex_mem_phi->init_req(1, slow_mem); 2652 ex_io_phi->init_req(1, slow_io); 2653 ex_r->init_req(2, ex_ctl); 2654 ex_mem_phi->init_req(2, ex_mem); 2655 ex_io_phi->init_req(2, ex_io); 2656 transform_later(ex_r); 2657 transform_later(ex_mem_phi); 2658 transform_later(ex_io_phi); 2659 2660 // We don't know how many values are returned. This assumes the 2661 // worst case, that all available registers are used. 2662 for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) { 2663 if (domain->field_at(i) == Type::HALF) { 2664 slow_call->init_req(i, top()); 2665 if (alloc_in_place) { 2666 handler_call->init_req(i+1, top()); 2667 } 2668 continue; 2669 } 2670 Node* proj = transform_later(new ProjNode(call, i)); 2671 slow_call->init_req(i, proj); 2672 if (alloc_in_place) { 2673 handler_call->init_req(i+1, proj); 2674 } 2675 } 2676 // We can safepoint at that new call 2677 slow_call->copy_call_debug_info(&_igvn, call); 2678 transform_later(slow_call); 2679 if (alloc_in_place) { 2680 transform_later(handler_call); 2681 } 2682 2683 Node* fast_ctl = nullptr; 2684 Node* fast_res = nullptr; 2685 MergeMemNode* fast_mem = nullptr; 2686 if (alloc_in_place) { 2687 fast_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control)); 2688 Node* rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory)); 2689 fast_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms)); 2690 fast_mem = MergeMemNode::make(mem); 2691 fast_mem->set_memory_at(Compile::AliasIdxRaw, rawmem); 2692 transform_later(fast_mem); 2693 } 2694 2695 Node* r = new RegionNode(alloc_in_place ? 4 : 3); 2696 Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2697 Node* io_phi = new PhiNode(r, Type::ABIO); 2698 Node* res_phi = new PhiNode(r, TypeInstPtr::BOTTOM); 2699 r->init_req(1, no_allocation_ctl); 2700 mem_phi->init_req(1, mem); 2701 io_phi->init_req(1, io); 2702 res_phi->init_req(1, no_allocation_res); 2703 r->init_req(2, slow_norm); 2704 mem_phi->init_req(2, slow_mem); 2705 io_phi->init_req(2, slow_io); 2706 res_phi->init_req(2, slow_res); 2707 if (alloc_in_place) { 2708 r->init_req(3, fast_ctl); 2709 mem_phi->init_req(3, fast_mem); 2710 io_phi->init_req(3, io); 2711 res_phi->init_req(3, fast_res); 2712 } 2713 transform_later(r); 2714 transform_later(mem_phi); 2715 transform_later(io_phi); 2716 transform_later(res_phi); 2717 2718 // Do not let stores that initialize this buffer be reordered with a subsequent 2719 // store that would make this buffer accessible by other threads. 2720 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 2721 transform_later(mb); 2722 mb->init_req(TypeFunc::Memory, mem_phi); 2723 mb->init_req(TypeFunc::Control, r); 2724 r = new ProjNode(mb, TypeFunc::Control); 2725 transform_later(r); 2726 mem_phi = new ProjNode(mb, TypeFunc::Memory); 2727 transform_later(mem_phi); 2728 2729 assert(projs->nb_resproj == 1, "unexpected number of results"); 2730 _igvn.replace_in_uses(projs->fallthrough_catchproj, r); 2731 _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi); 2732 _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi); 2733 _igvn.replace_in_uses(projs->resproj[0], res_phi); 2734 _igvn.replace_in_uses(projs->catchall_catchproj, ex_r); 2735 _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi); 2736 _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi); 2737 // The CatchNode should not use the ex_io_phi. Re-connect it to the catchall_ioproj. 2738 Node* cn = projs->fallthrough_catchproj->in(0); 2739 _igvn.replace_input_of(cn, 1, projs->catchall_ioproj); 2740 2741 _igvn.replace_node(ctl, projs->fallthrough_catchproj); 2742 _igvn.replace_node(mem, projs->fallthrough_memproj); 2743 _igvn.replace_node(io, projs->fallthrough_ioproj); 2744 _igvn.replace_node(res, projs->resproj[0]); 2745 _igvn.replace_node(ex_ctl, projs->catchall_catchproj); 2746 _igvn.replace_node(ex_mem, projs->catchall_memproj); 2747 _igvn.replace_node(ex_io, projs->catchall_ioproj); 2748 } 2749 2750 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) { 2751 assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned"); 2752 Node* bol = check->unique_out(); 2753 Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass); 2754 Node* superklass = check->in(SubTypeCheckNode::SuperKlass); 2755 assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node"); 2756 2757 for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) { 2758 Node* iff = bol->last_out(i); 2759 assert(iff->is_If(), "where's the if?"); 2760 2761 if (iff->in(0)->is_top()) { 2762 _igvn.replace_input_of(iff, 1, C->top()); 2763 continue; 2764 } 2765 2766 Node* iftrue = iff->as_If()->proj_out(1); 2767 Node* iffalse = iff->as_If()->proj_out(0); 2768 Node* ctrl = iff->in(0); 2769 2770 Node* subklass = nullptr; 2771 if (_igvn.type(obj_or_subklass)->isa_klassptr()) { 2772 subklass = obj_or_subklass; 2773 } else { 2774 Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes()); 2775 subklass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2776 } 2777 2778 Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci()); 2779 2780 _igvn.replace_input_of(iff, 0, C->top()); 2781 _igvn.replace_node(iftrue, not_subtype_ctrl); 2782 _igvn.replace_node(iffalse, ctrl); 2783 } 2784 _igvn.replace_node(check, C->top()); 2785 } 2786 2787 // FlatArrayCheckNode (array1 array2 ...) is expanded into: 2788 // 2789 // long mark = array1.mark | array2.mark | ...; 2790 // long locked_bit = markWord::unlocked_value & array1.mark & array2.mark & ...; 2791 // if (locked_bit == 0) { 2792 // // One array is locked, load prototype header from the klass 2793 // mark = array1.klass.proto | array2.klass.proto | ... 2794 // } 2795 // if ((mark & markWord::flat_array_bit_in_place) == 0) { 2796 // ... 2797 // } 2798 void PhaseMacroExpand::expand_flatarraycheck_node(FlatArrayCheckNode* check) { 2799 bool array_inputs = _igvn.type(check->in(FlatArrayCheckNode::ArrayOrKlass))->isa_oopptr() != nullptr; 2800 if (array_inputs) { 2801 Node* mark = MakeConX(0); 2802 Node* locked_bit = MakeConX(markWord::unlocked_value); 2803 Node* mem = check->in(FlatArrayCheckNode::Memory); 2804 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2805 Node* ary = check->in(i); 2806 const TypeOopPtr* t = _igvn.type(ary)->isa_oopptr(); 2807 assert(t != nullptr, "Mixing array and klass inputs"); 2808 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2809 Node* mark_adr = basic_plus_adr(ary, oopDesc::mark_offset_in_bytes()); 2810 Node* mark_load = _igvn.transform(LoadNode::make(_igvn, nullptr, mem, mark_adr, mark_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2811 mark = _igvn.transform(new OrXNode(mark, mark_load)); 2812 locked_bit = _igvn.transform(new AndXNode(locked_bit, mark_load)); 2813 } 2814 assert(!mark->is_Con(), "Should have been optimized out"); 2815 Node* cmp = _igvn.transform(new CmpXNode(locked_bit, MakeConX(0))); 2816 Node* is_unlocked = _igvn.transform(new BoolNode(cmp, BoolTest::ne)); 2817 2818 // BoolNode might be shared, replace each if user 2819 Node* old_bol = check->unique_out(); 2820 assert(old_bol->is_Bool() && old_bol->as_Bool()->_test._test == BoolTest::ne, "unexpected condition"); 2821 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2822 IfNode* old_iff = old_bol->last_out(i)->as_If(); 2823 Node* ctrl = old_iff->in(0); 2824 RegionNode* region = new RegionNode(3); 2825 Node* mark_phi = new PhiNode(region, TypeX_X); 2826 2827 // Check if array is unlocked 2828 IfNode* iff = _igvn.transform(new IfNode(ctrl, is_unlocked, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2829 2830 // Unlocked: Use bits from mark word 2831 region->init_req(1, _igvn.transform(new IfTrueNode(iff))); 2832 mark_phi->init_req(1, mark); 2833 2834 // Locked: Load prototype header from klass 2835 ctrl = _igvn.transform(new IfFalseNode(iff)); 2836 Node* proto = MakeConX(0); 2837 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2838 Node* ary = check->in(i); 2839 // Make loads control dependent to make sure they are only executed if array is locked 2840 Node* klass_adr = basic_plus_adr(ary, oopDesc::klass_offset_in_bytes()); 2841 Node* klass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2842 Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset())); 2843 Node* proto_load = _igvn.transform(LoadNode::make(_igvn, ctrl, C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); 2844 proto = _igvn.transform(new OrXNode(proto, proto_load)); 2845 } 2846 region->init_req(2, ctrl); 2847 mark_phi->init_req(2, proto); 2848 2849 // Check if flat array bits are set 2850 Node* mask = MakeConX(markWord::flat_array_bit_in_place); 2851 Node* masked = _igvn.transform(new AndXNode(_igvn.transform(mark_phi), mask)); 2852 cmp = _igvn.transform(new CmpXNode(masked, MakeConX(0))); 2853 Node* is_not_flat = _igvn.transform(new BoolNode(cmp, BoolTest::eq)); 2854 2855 ctrl = _igvn.transform(region); 2856 iff = _igvn.transform(new IfNode(ctrl, is_not_flat, PROB_MAX, COUNT_UNKNOWN))->as_If(); 2857 _igvn.replace_node(old_iff, iff); 2858 } 2859 _igvn.replace_node(check, C->top()); 2860 } else { 2861 // Fall back to layout helper check 2862 Node* lhs = intcon(0); 2863 for (uint i = FlatArrayCheckNode::ArrayOrKlass; i < check->req(); ++i) { 2864 Node* array_or_klass = check->in(i); 2865 Node* klass = nullptr; 2866 const TypePtr* t = _igvn.type(array_or_klass)->is_ptr(); 2867 assert(!t->is_flat() && !t->is_not_flat(), "Should have been optimized out"); 2868 if (t->isa_oopptr() != nullptr) { 2869 Node* klass_adr = basic_plus_adr(array_or_klass, oopDesc::klass_offset_in_bytes()); 2870 klass = transform_later(LoadKlassNode::make(_igvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT)); 2871 } else { 2872 assert(t->isa_klassptr(), "Unexpected input type"); 2873 klass = array_or_klass; 2874 } 2875 Node* lh_addr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset())); 2876 Node* lh_val = _igvn.transform(LoadNode::make(_igvn, nullptr, C->immutable_memory(), lh_addr, lh_addr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered)); 2877 lhs = _igvn.transform(new OrINode(lhs, lh_val)); 2878 } 2879 Node* masked = transform_later(new AndINode(lhs, intcon(Klass::_lh_array_tag_flat_value_bit_inplace))); 2880 Node* cmp = transform_later(new CmpINode(masked, intcon(0))); 2881 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2882 Node* m2b = transform_later(new Conv2BNode(masked)); 2883 // The matcher expects the input to If nodes to be produced by a Bool(CmpI..) 2884 // pattern, but the input to other potential users (e.g. Phi) to be some 2885 // other pattern (e.g. a Conv2B node, possibly idealized as a CMoveI). 2886 Node* old_bol = check->unique_out(); 2887 for (DUIterator_Last imin, i = old_bol->last_outs(imin); i >= imin; --i) { 2888 Node* user = old_bol->last_out(i); 2889 for (uint j = 0; j < user->req(); j++) { 2890 Node* n = user->in(j); 2891 if (n == old_bol) { 2892 _igvn.replace_input_of(user, j, user->is_If() ? bol : m2b); 2893 } 2894 } 2895 } 2896 _igvn.replace_node(check, C->top()); 2897 } 2898 } 2899 2900 //---------------------------eliminate_macro_nodes---------------------- 2901 // Eliminate scalar replaced allocations and associated locks. 2902 void PhaseMacroExpand::eliminate_macro_nodes() { 2903 if (C->macro_count() == 0) 2904 return; 2905 NOT_PRODUCT(int membar_before = count_MemBar(C);) 2906 2907 // Before elimination may re-mark (change to Nested or NonEscObj) 2908 // all associated (same box and obj) lock and unlock nodes. 2909 int cnt = C->macro_count(); 2910 for (int i=0; i < cnt; i++) { 2911 Node *n = C->macro_node(i); 2912 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2913 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2914 } 2915 } 2916 // Re-marking may break consistency of Coarsened locks. 2917 if (!C->coarsened_locks_consistent()) { 2918 return; // recompile without Coarsened locks if broken 2919 } else { 2920 // After coarsened locks are eliminated locking regions 2921 // become unbalanced. We should not execute any more 2922 // locks elimination optimizations on them. 2923 C->mark_unbalanced_boxes(); 2924 } 2925 2926 // First, attempt to eliminate locks 2927 bool progress = true; 2928 while (progress) { 2929 progress = false; 2930 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2931 Node* n = C->macro_node(i - 1); 2932 bool success = false; 2933 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2934 if (n->is_AbstractLock()) { 2935 success = eliminate_locking_node(n->as_AbstractLock()); 2936 #ifndef PRODUCT 2937 if (success && PrintOptoStatistics) { 2938 Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter); 2939 } 2940 #endif 2941 } 2942 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2943 progress = progress || success; 2944 } 2945 } 2946 // Next, attempt to eliminate allocations 2947 _has_locks = false; 2948 progress = true; 2949 while (progress) { 2950 progress = false; 2951 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2952 Node* n = C->macro_node(i - 1); 2953 bool success = false; 2954 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2955 switch (n->class_id()) { 2956 case Node::Class_Allocate: 2957 case Node::Class_AllocateArray: 2958 success = eliminate_allocate_node(n->as_Allocate()); 2959 #ifndef PRODUCT 2960 if (success && PrintOptoStatistics) { 2961 Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter); 2962 } 2963 #endif 2964 break; 2965 case Node::Class_CallStaticJava: { 2966 CallStaticJavaNode* call = n->as_CallStaticJava(); 2967 if (!call->method()->is_method_handle_intrinsic()) { 2968 success = eliminate_boxing_node(n->as_CallStaticJava()); 2969 } 2970 break; 2971 } 2972 case Node::Class_Lock: 2973 case Node::Class_Unlock: 2974 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2975 _has_locks = true; 2976 break; 2977 case Node::Class_ArrayCopy: 2978 break; 2979 case Node::Class_OuterStripMinedLoop: 2980 break; 2981 case Node::Class_SubTypeCheck: 2982 break; 2983 case Node::Class_Opaque1: 2984 break; 2985 case Node::Class_FlatArrayCheck: 2986 break; 2987 default: 2988 assert(n->Opcode() == Op_LoopLimit || 2989 n->Opcode() == Op_ModD || 2990 n->Opcode() == Op_ModF || 2991 n->is_OpaqueNotNull() || 2992 n->is_OpaqueInitializedAssertionPredicate() || 2993 n->Opcode() == Op_MaxL || 2994 n->Opcode() == Op_MinL || 2995 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 2996 "unknown node type in macro list"); 2997 } 2998 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2999 progress = progress || success; 3000 } 3001 } 3002 #ifndef PRODUCT 3003 if (PrintOptoStatistics) { 3004 int membar_after = count_MemBar(C); 3005 Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after); 3006 } 3007 #endif 3008 } 3009 3010 //------------------------------expand_macro_nodes---------------------- 3011 // Returns true if a failure occurred. 3012 bool PhaseMacroExpand::expand_macro_nodes() { 3013 // Do not allow new macro nodes once we started to expand 3014 C->reset_allow_macro_nodes(); 3015 if (StressMacroExpansion) { 3016 C->shuffle_macro_nodes(); 3017 } 3018 // Last attempt to eliminate macro nodes. 3019 eliminate_macro_nodes(); 3020 if (C->failing()) return true; 3021 3022 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 3023 bool progress = true; 3024 while (progress) { 3025 progress = false; 3026 for (int i = C->macro_count(); i > 0; i--) { 3027 Node* n = C->macro_node(i-1); 3028 bool success = false; 3029 DEBUG_ONLY(int old_macro_count = C->macro_count();) 3030 if (n->Opcode() == Op_LoopLimit) { 3031 // Remove it from macro list and put on IGVN worklist to optimize. 3032 C->remove_macro_node(n); 3033 _igvn._worklist.push(n); 3034 success = true; 3035 } else if (n->Opcode() == Op_CallStaticJava) { 3036 CallStaticJavaNode* call = n->as_CallStaticJava(); 3037 if (!call->method()->is_method_handle_intrinsic()) { 3038 // Remove it from macro list and put on IGVN worklist to optimize. 3039 C->remove_macro_node(n); 3040 _igvn._worklist.push(n); 3041 success = true; 3042 } 3043 } else if (n->is_Opaque1()) { 3044 _igvn.replace_node(n, n->in(1)); 3045 success = true; 3046 } else if (n->is_OpaqueNotNull()) { 3047 // Tests with OpaqueNotNull nodes are implicitly known to be true. Replace the node with true. In debug builds, 3048 // we leave the test in the graph to have an additional sanity check at runtime. If the test fails (i.e. a bug), 3049 // we will execute a Halt node. 3050 #ifdef ASSERT 3051 _igvn.replace_node(n, n->in(1)); 3052 #else 3053 _igvn.replace_node(n, _igvn.intcon(1)); 3054 #endif 3055 success = true; 3056 } else if (n->is_OpaqueInitializedAssertionPredicate()) { 3057 // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product 3058 // builds as they are useless. In debug builds we keep them as additional verification code. Even though 3059 // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to 3060 // enable folding of dead control paths within which cast nodes become top after due to impossible types - 3061 // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now. 3062 #ifdef ASSERT 3063 _igvn.replace_node(n, n->in(1)); 3064 #else 3065 _igvn.replace_node(n, _igvn.intcon(1)); 3066 #endif // ASSERT 3067 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 3068 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 3069 C->remove_macro_node(n); 3070 success = true; 3071 } else if (n->Opcode() == Op_MaxL) { 3072 // Since MaxL and MinL are not implemented in the backend, we expand them to 3073 // a CMoveL construct now. At least until here, the type could be computed 3074 // precisely. CMoveL is not so smart, but we can give it at least the best 3075 // type we know abouot n now. 3076 Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn); 3077 _igvn.replace_node(n, repl); 3078 success = true; 3079 } else if (n->Opcode() == Op_MinL) { 3080 Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn); 3081 _igvn.replace_node(n, repl); 3082 success = true; 3083 } 3084 assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list"); 3085 progress = progress || success; 3086 if (success) { 3087 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3088 } 3089 } 3090 } 3091 3092 // Clean up the graph so we're less likely to hit the maximum node 3093 // limit 3094 _igvn.set_delay_transform(false); 3095 _igvn.optimize(); 3096 if (C->failing()) return true; 3097 _igvn.set_delay_transform(true); 3098 3099 3100 // Because we run IGVN after each expansion, some macro nodes may go 3101 // dead and be removed from the list as we iterate over it. Move 3102 // Allocate nodes (processed in a second pass) at the beginning of 3103 // the list and then iterate from the last element of the list until 3104 // an Allocate node is seen. This is robust to random deletion in 3105 // the list due to nodes going dead. 3106 C->sort_macro_nodes(); 3107 3108 // expand arraycopy "macro" nodes first 3109 // For ReduceBulkZeroing, we must first process all arraycopy nodes 3110 // before the allocate nodes are expanded. 3111 while (C->macro_count() > 0) { 3112 int macro_count = C->macro_count(); 3113 Node * n = C->macro_node(macro_count-1); 3114 assert(n->is_macro(), "only macro nodes expected here"); 3115 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3116 // node is unreachable, so don't try to expand it 3117 C->remove_macro_node(n); 3118 continue; 3119 } 3120 if (n->is_Allocate()) { 3121 break; 3122 } 3123 // Make sure expansion will not cause node limit to be exceeded. 3124 // Worst case is a macro node gets expanded into about 200 nodes. 3125 // Allow 50% more for optimization. 3126 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3127 return true; 3128 } 3129 3130 DEBUG_ONLY(int old_macro_count = C->macro_count();) 3131 switch (n->class_id()) { 3132 case Node::Class_Lock: 3133 expand_lock_node(n->as_Lock()); 3134 break; 3135 case Node::Class_Unlock: 3136 expand_unlock_node(n->as_Unlock()); 3137 break; 3138 case Node::Class_ArrayCopy: 3139 expand_arraycopy_node(n->as_ArrayCopy()); 3140 break; 3141 case Node::Class_SubTypeCheck: 3142 expand_subtypecheck_node(n->as_SubTypeCheck()); 3143 break; 3144 case Node::Class_CallStaticJava: 3145 expand_mh_intrinsic_return(n->as_CallStaticJava()); 3146 C->remove_macro_node(n); 3147 break; 3148 case Node::Class_FlatArrayCheck: 3149 expand_flatarraycheck_node(n->as_FlatArrayCheck()); 3150 break; 3151 default: 3152 switch (n->Opcode()) { 3153 case Op_ModD: 3154 case Op_ModF: { 3155 bool is_drem = n->Opcode() == Op_ModD; 3156 CallNode* mod_macro = n->as_Call(); 3157 CallNode* call = new CallLeafNode(mod_macro->tf(), 3158 is_drem ? CAST_FROM_FN_PTR(address, SharedRuntime::drem) 3159 : CAST_FROM_FN_PTR(address, SharedRuntime::frem), 3160 is_drem ? "drem" : "frem", TypeRawPtr::BOTTOM); 3161 call->init_req(TypeFunc::Control, mod_macro->in(TypeFunc::Control)); 3162 call->init_req(TypeFunc::I_O, mod_macro->in(TypeFunc::I_O)); 3163 call->init_req(TypeFunc::Memory, mod_macro->in(TypeFunc::Memory)); 3164 call->init_req(TypeFunc::ReturnAdr, mod_macro->in(TypeFunc::ReturnAdr)); 3165 call->init_req(TypeFunc::FramePtr, mod_macro->in(TypeFunc::FramePtr)); 3166 for (unsigned int i = 0; i < mod_macro->tf()->domain_cc()->cnt() - TypeFunc::Parms; i++) { 3167 call->init_req(TypeFunc::Parms + i, mod_macro->in(TypeFunc::Parms + i)); 3168 } 3169 _igvn.replace_node(mod_macro, call); 3170 transform_later(call); 3171 break; 3172 } 3173 default: 3174 assert(false, "unknown node type in macro list"); 3175 } 3176 } 3177 assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list"); 3178 if (C->failing()) return true; 3179 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3180 3181 // Clean up the graph so we're less likely to hit the maximum node 3182 // limit 3183 _igvn.set_delay_transform(false); 3184 _igvn.optimize(); 3185 if (C->failing()) return true; 3186 _igvn.set_delay_transform(true); 3187 } 3188 3189 // All nodes except Allocate nodes are expanded now. There could be 3190 // new optimization opportunities (such as folding newly created 3191 // load from a just allocated object). Run IGVN. 3192 3193 // expand "macro" nodes 3194 // nodes are removed from the macro list as they are processed 3195 while (C->macro_count() > 0) { 3196 int macro_count = C->macro_count(); 3197 Node * n = C->macro_node(macro_count-1); 3198 assert(n->is_macro(), "only macro nodes expected here"); 3199 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 3200 // node is unreachable, so don't try to expand it 3201 C->remove_macro_node(n); 3202 continue; 3203 } 3204 // Make sure expansion will not cause node limit to be exceeded. 3205 // Worst case is a macro node gets expanded into about 200 nodes. 3206 // Allow 50% more for optimization. 3207 if (C->check_node_count(300, "out of nodes before macro expansion")) { 3208 return true; 3209 } 3210 switch (n->class_id()) { 3211 case Node::Class_Allocate: 3212 expand_allocate(n->as_Allocate()); 3213 break; 3214 case Node::Class_AllocateArray: 3215 expand_allocate_array(n->as_AllocateArray()); 3216 break; 3217 default: 3218 assert(false, "unknown node type in macro list"); 3219 } 3220 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 3221 if (C->failing()) return true; 3222 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 3223 3224 // Clean up the graph so we're less likely to hit the maximum node 3225 // limit 3226 _igvn.set_delay_transform(false); 3227 _igvn.optimize(); 3228 if (C->failing()) return true; 3229 _igvn.set_delay_transform(true); 3230 } 3231 3232 _igvn.set_delay_transform(false); 3233 return false; 3234 } 3235 3236 #ifndef PRODUCT 3237 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0; 3238 int PhaseMacroExpand::_monitor_objects_removed_counter = 0; 3239 int PhaseMacroExpand::_GC_barriers_removed_counter = 0; 3240 int PhaseMacroExpand::_memory_barriers_removed_counter = 0; 3241 3242 void PhaseMacroExpand::print_statistics() { 3243 tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter)); 3244 tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter)); 3245 tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter)); 3246 tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter)); 3247 } 3248 3249 int PhaseMacroExpand::count_MemBar(Compile *C) { 3250 if (!PrintOptoStatistics) { 3251 return 0; 3252 } 3253 Unique_Node_List ideal_nodes; 3254 int total = 0; 3255 ideal_nodes.map(C->live_nodes(), nullptr); 3256 ideal_nodes.push(C->root()); 3257 for (uint next = 0; next < ideal_nodes.size(); ++next) { 3258 Node* n = ideal_nodes.at(next); 3259 if (n->is_MemBar()) { 3260 total++; 3261 } 3262 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3263 Node* m = n->fast_out(i); 3264 ideal_nodes.push(m); 3265 } 3266 } 3267 return total; 3268 } 3269 #endif