1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "memory/resourceArea.hpp" 30 #include "oops/compressedOops.hpp" 31 #include "opto/ad.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/idealGraphPrinter.hpp" 35 #include "opto/matcher.hpp" 36 #include "opto/memnode.hpp" 37 #include "opto/movenode.hpp" 38 #include "opto/opcodes.hpp" 39 #include "opto/regmask.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/runtime.hpp" 42 #include "opto/type.hpp" 43 #include "opto/vectornode.hpp" 44 #include "runtime/os.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/align.hpp" 47 48 OptoReg::Name OptoReg::c_frame_pointer; 49 50 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; 51 RegMask Matcher::mreg2regmask[_last_Mach_Reg]; 52 RegMask Matcher::caller_save_regmask; 53 RegMask Matcher::caller_save_regmask_exclude_soe; 54 RegMask Matcher::mh_caller_save_regmask; 55 RegMask Matcher::mh_caller_save_regmask_exclude_soe; 56 RegMask Matcher::STACK_ONLY_mask; 57 RegMask Matcher::c_frame_ptr_mask; 58 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; 59 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; 60 61 //---------------------------Matcher------------------------------------------- 62 Matcher::Matcher() 63 : PhaseTransform( Phase::Ins_Select ), 64 _states_arena(Chunk::medium_size, mtCompiler), 65 _new_nodes(C->comp_arena()), 66 _visited(&_states_arena), 67 _shared(&_states_arena), 68 _dontcare(&_states_arena), 69 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), 70 _swallowed(swallowed), 71 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), 72 _end_inst_chain_rule(_END_INST_CHAIN_RULE), 73 _must_clone(must_clone), 74 _shared_nodes(C->comp_arena()), 75 #ifndef PRODUCT 76 _old2new_map(C->comp_arena()), 77 _new2old_map(C->comp_arena()), 78 _reused(C->comp_arena()), 79 #endif // !PRODUCT 80 _allocation_started(false), 81 _ruleName(ruleName), 82 _register_save_policy(register_save_policy), 83 _c_reg_save_policy(c_reg_save_policy), 84 _register_save_type(register_save_type) { 85 C->set_matcher(this); 86 87 idealreg2spillmask [Op_RegI] = nullptr; 88 idealreg2spillmask [Op_RegN] = nullptr; 89 idealreg2spillmask [Op_RegL] = nullptr; 90 idealreg2spillmask [Op_RegF] = nullptr; 91 idealreg2spillmask [Op_RegD] = nullptr; 92 idealreg2spillmask [Op_RegP] = nullptr; 93 idealreg2spillmask [Op_VecA] = nullptr; 94 idealreg2spillmask [Op_VecS] = nullptr; 95 idealreg2spillmask [Op_VecD] = nullptr; 96 idealreg2spillmask [Op_VecX] = nullptr; 97 idealreg2spillmask [Op_VecY] = nullptr; 98 idealreg2spillmask [Op_VecZ] = nullptr; 99 idealreg2spillmask [Op_RegFlags] = nullptr; 100 idealreg2spillmask [Op_RegVectMask] = nullptr; 101 102 idealreg2debugmask [Op_RegI] = nullptr; 103 idealreg2debugmask [Op_RegN] = nullptr; 104 idealreg2debugmask [Op_RegL] = nullptr; 105 idealreg2debugmask [Op_RegF] = nullptr; 106 idealreg2debugmask [Op_RegD] = nullptr; 107 idealreg2debugmask [Op_RegP] = nullptr; 108 idealreg2debugmask [Op_VecA] = nullptr; 109 idealreg2debugmask [Op_VecS] = nullptr; 110 idealreg2debugmask [Op_VecD] = nullptr; 111 idealreg2debugmask [Op_VecX] = nullptr; 112 idealreg2debugmask [Op_VecY] = nullptr; 113 idealreg2debugmask [Op_VecZ] = nullptr; 114 idealreg2debugmask [Op_RegFlags] = nullptr; 115 idealreg2debugmask [Op_RegVectMask] = nullptr; 116 117 idealreg2mhdebugmask[Op_RegI] = nullptr; 118 idealreg2mhdebugmask[Op_RegN] = nullptr; 119 idealreg2mhdebugmask[Op_RegL] = nullptr; 120 idealreg2mhdebugmask[Op_RegF] = nullptr; 121 idealreg2mhdebugmask[Op_RegD] = nullptr; 122 idealreg2mhdebugmask[Op_RegP] = nullptr; 123 idealreg2mhdebugmask[Op_VecA] = nullptr; 124 idealreg2mhdebugmask[Op_VecS] = nullptr; 125 idealreg2mhdebugmask[Op_VecD] = nullptr; 126 idealreg2mhdebugmask[Op_VecX] = nullptr; 127 idealreg2mhdebugmask[Op_VecY] = nullptr; 128 idealreg2mhdebugmask[Op_VecZ] = nullptr; 129 idealreg2mhdebugmask[Op_RegFlags] = nullptr; 130 idealreg2mhdebugmask[Op_RegVectMask] = nullptr; 131 132 debug_only(_mem_node = nullptr;) // Ideal memory node consumed by mach node 133 } 134 135 //------------------------------warp_incoming_stk_arg------------------------ 136 // This warps a VMReg into an OptoReg::Name 137 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { 138 OptoReg::Name warped; 139 if( reg->is_stack() ) { // Stack slot argument? 140 warped = OptoReg::add(_old_SP, reg->reg2stack() ); 141 warped = OptoReg::add(warped, C->out_preserve_stack_slots()); 142 if( warped >= _in_arg_limit ) 143 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen 144 if (!RegMask::can_represent_arg(warped)) { 145 // the compiler cannot represent this method's calling sequence 146 // Bailout. We do not have space to represent all arguments. 147 C->record_method_not_compilable("unsupported incoming calling sequence"); 148 return OptoReg::Bad; 149 } 150 return warped; 151 } 152 return OptoReg::as_OptoReg(reg); 153 } 154 155 //---------------------------compute_old_SP------------------------------------ 156 OptoReg::Name Compile::compute_old_SP() { 157 int fixed = fixed_slots(); 158 int preserve = in_preserve_stack_slots(); 159 return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots())); 160 } 161 162 163 164 #ifdef ASSERT 165 void Matcher::verify_new_nodes_only(Node* xroot) { 166 // Make sure that the new graph only references new nodes 167 ResourceMark rm; 168 Unique_Node_List worklist; 169 VectorSet visited; 170 worklist.push(xroot); 171 while (worklist.size() > 0) { 172 Node* n = worklist.pop(); 173 if (visited.test_set(n->_idx)) { 174 continue; 175 } 176 assert(C->node_arena()->contains(n), "dead node"); 177 for (uint j = 0; j < n->req(); j++) { 178 Node* in = n->in(j); 179 if (in != nullptr) { 180 worklist.push(in); 181 } 182 } 183 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 184 worklist.push(n->fast_out(j)); 185 } 186 } 187 } 188 #endif 189 190 191 //---------------------------match--------------------------------------------- 192 void Matcher::match( ) { 193 if( MaxLabelRootDepth < 100 ) { // Too small? 194 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum"); 195 MaxLabelRootDepth = 100; 196 } 197 // One-time initialization of some register masks. 198 init_spill_mask( C->root()->in(1) ); 199 if (C->failing()) { 200 return; 201 } 202 _return_addr_mask = return_addr(); 203 #ifdef _LP64 204 // Pointers take 2 slots in 64-bit land 205 _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); 206 #endif 207 208 // Map a Java-signature return type into return register-value 209 // machine registers for 0, 1 and 2 returned values. 210 const TypeTuple *range = C->tf()->range(); 211 if( range->cnt() > TypeFunc::Parms ) { // If not a void function 212 // Get ideal-register return type 213 uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); 214 // Get machine return register 215 uint sop = C->start()->Opcode(); 216 OptoRegPair regs = return_value(ireg); 217 218 // And mask for same 219 _return_value_mask = RegMask(regs.first()); 220 if( OptoReg::is_valid(regs.second()) ) 221 _return_value_mask.Insert(regs.second()); 222 } 223 224 // --------------- 225 // Frame Layout 226 227 // Need the method signature to determine the incoming argument types, 228 // because the types determine which registers the incoming arguments are 229 // in, and this affects the matched code. 230 const TypeTuple *domain = C->tf()->domain(); 231 uint argcnt = domain->cnt() - TypeFunc::Parms; 232 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 233 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 234 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt ); 235 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt ); 236 uint i; 237 for( i = 0; i<argcnt; i++ ) { 238 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 239 } 240 241 // Pass array of ideal registers and length to USER code (from the AD file) 242 // that will convert this to an array of register numbers. 243 const StartNode *start = C->start(); 244 start->calling_convention( sig_bt, vm_parm_regs, argcnt ); 245 #ifdef ASSERT 246 // Sanity check users' calling convention. Real handy while trying to 247 // get the initial port correct. 248 { for (uint i = 0; i<argcnt; i++) { 249 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 250 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" ); 251 _parm_regs[i].set_bad(); 252 continue; 253 } 254 VMReg parm_reg = vm_parm_regs[i].first(); 255 assert(parm_reg->is_valid(), "invalid arg?"); 256 if (parm_reg->is_reg()) { 257 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); 258 assert(can_be_java_arg(opto_parm_reg) || 259 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) || 260 opto_parm_reg == inline_cache_reg(), 261 "parameters in register must be preserved by runtime stubs"); 262 } 263 for (uint j = 0; j < i; j++) { 264 assert(parm_reg != vm_parm_regs[j].first(), 265 "calling conv. must produce distinct regs"); 266 } 267 } 268 } 269 #endif 270 271 // Do some initial frame layout. 272 273 // Compute the old incoming SP (may be called FP) as 274 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. 275 _old_SP = C->compute_old_SP(); 276 assert( is_even(_old_SP), "must be even" ); 277 278 // Compute highest incoming stack argument as 279 // _old_SP + out_preserve_stack_slots + incoming argument size. 280 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 281 assert( is_even(_in_arg_limit), "out_preserve must be even" ); 282 for( i = 0; i < argcnt; i++ ) { 283 // Permit args to have no register 284 _calling_convention_mask[i].Clear(); 285 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 286 _parm_regs[i].set_bad(); 287 continue; 288 } 289 // calling_convention returns stack arguments as a count of 290 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to 291 // the allocators point of view, taking into account all the 292 // preserve area, locks & pad2. 293 294 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); 295 if (C->failing()) { 296 return; 297 } 298 if( OptoReg::is_valid(reg1)) 299 _calling_convention_mask[i].Insert(reg1); 300 301 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); 302 if (C->failing()) { 303 return; 304 } 305 if( OptoReg::is_valid(reg2)) 306 _calling_convention_mask[i].Insert(reg2); 307 308 // Saved biased stack-slot register number 309 _parm_regs[i].set_pair(reg2, reg1); 310 } 311 312 // Finally, make sure the incoming arguments take up an even number of 313 // words, in case the arguments or locals need to contain doubleword stack 314 // slots. The rest of the system assumes that stack slot pairs (in 315 // particular, in the spill area) which look aligned will in fact be 316 // aligned relative to the stack pointer in the target machine. Double 317 // stack slots will always be allocated aligned. 318 _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong)); 319 320 // Compute highest outgoing stack argument as 321 // _new_SP + out_preserve_stack_slots + max(outgoing argument size). 322 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 323 assert( is_even(_out_arg_limit), "out_preserve must be even" ); 324 325 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { 326 // the compiler cannot represent this method's calling sequence 327 // Bailout. We do not have space to represent all arguments. 328 C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); 329 } 330 331 if (C->failing()) return; // bailed out on incoming arg failure 332 333 // --------------- 334 // Collect roots of matcher trees. Every node for which 335 // _shared[_idx] is cleared is guaranteed to not be shared, and thus 336 // can be a valid interior of some tree. 337 find_shared( C->root() ); 338 find_shared( C->top() ); 339 340 C->print_method(PHASE_BEFORE_MATCHING, 1); 341 342 // Create new ideal node ConP #null even if it does exist in old space 343 // to avoid false sharing if the corresponding mach node is not used. 344 // The corresponding mach node is only used in rare cases for derived 345 // pointers. 346 Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR); 347 348 // Swap out to old-space; emptying new-space 349 Arena* old = C->swap_old_and_new(); 350 351 // Save debug and profile information for nodes in old space: 352 _old_node_note_array = C->node_note_array(); 353 if (_old_node_note_array != nullptr) { 354 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> 355 (C->comp_arena(), _old_node_note_array->length(), 356 0, nullptr)); 357 } 358 359 // Pre-size the new_node table to avoid the need for range checks. 360 grow_new_node_array(C->unique()); 361 362 // Reset node counter so MachNodes start with _idx at 0 363 int live_nodes = C->live_nodes(); 364 C->set_unique(0); 365 C->reset_dead_node_list(); 366 367 // Recursively match trees from old space into new space. 368 // Correct leaves of new-space Nodes; they point to old-space. 369 _visited.clear(); 370 Node* const n = xform(C->top(), live_nodes); 371 if (C->failing()) return; 372 C->set_cached_top_node(n); 373 if (!C->failing()) { 374 Node* xroot = xform( C->root(), 1 ); 375 if (C->failing()) return; 376 if (xroot == nullptr) { 377 Matcher::soft_match_failure(); // recursive matching process failed 378 assert(false, "instruction match failed"); 379 C->record_method_not_compilable("instruction match failed"); 380 } else { 381 // During matching shared constants were attached to C->root() 382 // because xroot wasn't available yet, so transfer the uses to 383 // the xroot. 384 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { 385 Node* n = C->root()->fast_out(j); 386 if (C->node_arena()->contains(n)) { 387 assert(n->in(0) == C->root(), "should be control user"); 388 n->set_req(0, xroot); 389 --j; 390 --jmax; 391 } 392 } 393 394 // Generate new mach node for ConP #null 395 assert(new_ideal_null != nullptr, "sanity"); 396 _mach_null = match_tree(new_ideal_null); 397 // Don't set control, it will confuse GCM since there are no uses. 398 // The control will be set when this node is used first time 399 // in find_base_for_derived(). 400 assert(_mach_null != nullptr || C->failure_is_artificial(), ""); // bailouts are handled below. 401 402 C->set_root(xroot->is_Root() ? xroot->as_Root() : nullptr); 403 404 #ifdef ASSERT 405 verify_new_nodes_only(xroot); 406 #endif 407 } 408 } 409 if (C->top() == nullptr || C->root() == nullptr) { 410 // New graph lost. This is due to a compilation failure we encountered earlier. 411 stringStream ss; 412 if (C->failure_reason() != nullptr) { 413 ss.print("graph lost: %s", C->failure_reason()); 414 } else { 415 assert(C->failure_reason() != nullptr, "graph lost: reason unknown"); 416 ss.print("graph lost: reason unknown"); 417 } 418 C->record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 419 } 420 if (C->failing()) { 421 // delete old; 422 old->destruct_contents(); 423 return; 424 } 425 assert( C->top(), "" ); 426 assert( C->root(), "" ); 427 validate_null_checks(); 428 429 // Now smoke old-space 430 NOT_DEBUG( old->destruct_contents() ); 431 432 // ------------------------ 433 // Set up save-on-entry registers. 434 Fixup_Save_On_Entry( ); 435 436 { // Cleanup mach IR after selection phase is over. 437 Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]); 438 do_postselect_cleanup(); 439 if (C->failing()) return; 440 assert(verify_after_postselect_cleanup(), ""); 441 } 442 } 443 444 //------------------------------Fixup_Save_On_Entry---------------------------- 445 // The stated purpose of this routine is to take care of save-on-entry 446 // registers. However, the overall goal of the Match phase is to convert into 447 // machine-specific instructions which have RegMasks to guide allocation. 448 // So what this procedure really does is put a valid RegMask on each input 449 // to the machine-specific variations of all Return, TailCall and Halt 450 // instructions. It also adds edgs to define the save-on-entry values (and of 451 // course gives them a mask). 452 453 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { 454 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size ); 455 // Do all the pre-defined register masks 456 rms[TypeFunc::Control ] = RegMask::Empty; 457 rms[TypeFunc::I_O ] = RegMask::Empty; 458 rms[TypeFunc::Memory ] = RegMask::Empty; 459 rms[TypeFunc::ReturnAdr] = ret_adr; 460 rms[TypeFunc::FramePtr ] = fp; 461 return rms; 462 } 463 464 int Matcher::scalable_predicate_reg_slots() { 465 assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(), 466 "scalable predicate vector should be supported"); 467 int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte; 468 // We assume each predicate register is one-eighth of the size of 469 // scalable vector register, one mask bit per vector byte. 470 int predicate_reg_bit_size = vector_reg_bit_size >> 3; 471 // Compute number of slots which is required when scalable predicate 472 // register is spilled. E.g. if scalable vector register is 640 bits, 473 // predicate register is 80 bits, which is 2.5 * slots. 474 // We will round up the slot number to power of 2, which is required 475 // by find_first_set(). 476 int slots = predicate_reg_bit_size & (BitsPerInt - 1) 477 ? (predicate_reg_bit_size >> LogBitsPerInt) + 1 478 : predicate_reg_bit_size >> LogBitsPerInt; 479 return round_up_power_of_2(slots); 480 } 481 482 #define NOF_STACK_MASKS (3*13) 483 484 // Create the initial stack mask used by values spilling to the stack. 485 // Disallow any debug info in outgoing argument areas by setting the 486 // initial mask accordingly. 487 void Matcher::init_first_stack_mask() { 488 489 // Allocate storage for spill masks as masks for the appropriate load type. 490 RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS); 491 492 // Initialize empty placeholder masks into the newly allocated arena 493 for (int i = 0; i < NOF_STACK_MASKS; i++) { 494 new (rms + i) RegMask(); 495 } 496 497 idealreg2spillmask [Op_RegN] = &rms[0]; 498 idealreg2spillmask [Op_RegI] = &rms[1]; 499 idealreg2spillmask [Op_RegL] = &rms[2]; 500 idealreg2spillmask [Op_RegF] = &rms[3]; 501 idealreg2spillmask [Op_RegD] = &rms[4]; 502 idealreg2spillmask [Op_RegP] = &rms[5]; 503 504 idealreg2debugmask [Op_RegN] = &rms[6]; 505 idealreg2debugmask [Op_RegI] = &rms[7]; 506 idealreg2debugmask [Op_RegL] = &rms[8]; 507 idealreg2debugmask [Op_RegF] = &rms[9]; 508 idealreg2debugmask [Op_RegD] = &rms[10]; 509 idealreg2debugmask [Op_RegP] = &rms[11]; 510 511 idealreg2mhdebugmask[Op_RegN] = &rms[12]; 512 idealreg2mhdebugmask[Op_RegI] = &rms[13]; 513 idealreg2mhdebugmask[Op_RegL] = &rms[14]; 514 idealreg2mhdebugmask[Op_RegF] = &rms[15]; 515 idealreg2mhdebugmask[Op_RegD] = &rms[16]; 516 idealreg2mhdebugmask[Op_RegP] = &rms[17]; 517 518 idealreg2spillmask [Op_VecA] = &rms[18]; 519 idealreg2spillmask [Op_VecS] = &rms[19]; 520 idealreg2spillmask [Op_VecD] = &rms[20]; 521 idealreg2spillmask [Op_VecX] = &rms[21]; 522 idealreg2spillmask [Op_VecY] = &rms[22]; 523 idealreg2spillmask [Op_VecZ] = &rms[23]; 524 525 idealreg2debugmask [Op_VecA] = &rms[24]; 526 idealreg2debugmask [Op_VecS] = &rms[25]; 527 idealreg2debugmask [Op_VecD] = &rms[26]; 528 idealreg2debugmask [Op_VecX] = &rms[27]; 529 idealreg2debugmask [Op_VecY] = &rms[28]; 530 idealreg2debugmask [Op_VecZ] = &rms[29]; 531 532 idealreg2mhdebugmask[Op_VecA] = &rms[30]; 533 idealreg2mhdebugmask[Op_VecS] = &rms[31]; 534 idealreg2mhdebugmask[Op_VecD] = &rms[32]; 535 idealreg2mhdebugmask[Op_VecX] = &rms[33]; 536 idealreg2mhdebugmask[Op_VecY] = &rms[34]; 537 idealreg2mhdebugmask[Op_VecZ] = &rms[35]; 538 539 idealreg2spillmask [Op_RegVectMask] = &rms[36]; 540 idealreg2debugmask [Op_RegVectMask] = &rms[37]; 541 idealreg2mhdebugmask[Op_RegVectMask] = &rms[38]; 542 543 OptoReg::Name i; 544 545 // At first, start with the empty mask 546 C->FIRST_STACK_mask().Clear(); 547 548 // Add in the incoming argument area 549 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 550 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { 551 C->FIRST_STACK_mask().Insert(i); 552 } 553 // Add in all bits past the outgoing argument area 554 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)), 555 "must be able to represent all call arguments in reg mask"); 556 OptoReg::Name init = _out_arg_limit; 557 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { 558 C->FIRST_STACK_mask().Insert(i); 559 } 560 // Finally, set the "infinite stack" bit. 561 C->FIRST_STACK_mask().set_AllStack(); 562 563 // Make spill masks. Registers for their class, plus FIRST_STACK_mask. 564 RegMask aligned_stack_mask = C->FIRST_STACK_mask(); 565 // Keep spill masks aligned. 566 aligned_stack_mask.clear_to_pairs(); 567 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 568 RegMask scalable_stack_mask = aligned_stack_mask; 569 570 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; 571 #ifdef _LP64 572 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; 573 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); 574 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); 575 #else 576 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); 577 #endif 578 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; 579 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); 580 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; 581 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); 582 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; 583 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); 584 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; 585 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); 586 587 if (Matcher::has_predicated_vectors()) { 588 *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; 589 idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask); 590 } else { 591 *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty; 592 } 593 594 if (Matcher::vector_size_supported(T_BYTE,4)) { 595 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; 596 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); 597 } else { 598 *idealreg2spillmask[Op_VecS] = RegMask::Empty; 599 } 600 601 if (Matcher::vector_size_supported(T_FLOAT,2)) { 602 // For VecD we need dual alignment and 8 bytes (2 slots) for spills. 603 // RA guarantees such alignment since it is needed for Double and Long values. 604 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; 605 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); 606 } else { 607 *idealreg2spillmask[Op_VecD] = RegMask::Empty; 608 } 609 610 if (Matcher::vector_size_supported(T_FLOAT,4)) { 611 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. 612 // 613 // RA can use input arguments stack slots for spills but until RA 614 // we don't know frame size and offset of input arg stack slots. 615 // 616 // Exclude last input arg stack slots to avoid spilling vectors there 617 // otherwise vector spills could stomp over stack slots in caller frame. 618 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 619 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { 620 aligned_stack_mask.Remove(in); 621 in = OptoReg::add(in, -1); 622 } 623 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); 624 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 625 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; 626 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); 627 } else { 628 *idealreg2spillmask[Op_VecX] = RegMask::Empty; 629 } 630 631 if (Matcher::vector_size_supported(T_FLOAT,8)) { 632 // For VecY we need octo alignment and 32 bytes (8 slots) for spills. 633 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 634 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { 635 aligned_stack_mask.Remove(in); 636 in = OptoReg::add(in, -1); 637 } 638 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); 639 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 640 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; 641 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); 642 } else { 643 *idealreg2spillmask[Op_VecY] = RegMask::Empty; 644 } 645 646 if (Matcher::vector_size_supported(T_FLOAT,16)) { 647 // For VecZ we need enough alignment and 64 bytes (16 slots) for spills. 648 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 649 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) { 650 aligned_stack_mask.Remove(in); 651 in = OptoReg::add(in, -1); 652 } 653 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ); 654 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 655 *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ]; 656 idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask); 657 } else { 658 *idealreg2spillmask[Op_VecZ] = RegMask::Empty; 659 } 660 661 if (Matcher::supports_scalable_vector()) { 662 int k = 1; 663 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 664 if (Matcher::has_predicated_vectors()) { 665 // Exclude last input arg stack slots to avoid spilling vector register there, 666 // otherwise RegVectMask spills could stomp over stack slots in caller frame. 667 for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) { 668 scalable_stack_mask.Remove(in); 669 in = OptoReg::add(in, -1); 670 } 671 672 // For RegVectMask 673 scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots()); 674 assert(scalable_stack_mask.is_AllStack(), "should be infinite stack"); 675 *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; 676 idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask); 677 } 678 679 // Exclude last input arg stack slots to avoid spilling vector register there, 680 // otherwise vector spills could stomp over stack slots in caller frame. 681 for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) { 682 scalable_stack_mask.Remove(in); 683 in = OptoReg::add(in, -1); 684 } 685 686 // For VecA 687 scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA); 688 assert(scalable_stack_mask.is_AllStack(), "should be infinite stack"); 689 *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA]; 690 idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask); 691 } else { 692 *idealreg2spillmask[Op_VecA] = RegMask::Empty; 693 } 694 695 if (UseFPUForSpilling) { 696 // This mask logic assumes that the spill operations are 697 // symmetric and that the registers involved are the same size. 698 // On sparc for instance we may have to use 64 bit moves will 699 // kill 2 registers when used with F0-F31. 700 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); 701 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); 702 #ifdef _LP64 703 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); 704 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 705 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 706 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); 707 #else 708 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); 709 #ifdef ARM 710 // ARM has support for moving 64bit values between a pair of 711 // integer registers and a double register 712 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 713 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 714 #endif 715 #endif 716 } 717 718 // Make up debug masks. Any spill slot plus callee-save (SOE) registers. 719 // Caller-save (SOC, AS) registers are assumed to be trashable by the various 720 // inline-cache fixup routines. 721 *idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN]; 722 *idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI]; 723 *idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL]; 724 *idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF]; 725 *idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD]; 726 *idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP]; 727 *idealreg2debugmask [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; 728 729 *idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA]; 730 *idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS]; 731 *idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD]; 732 *idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX]; 733 *idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY]; 734 *idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ]; 735 736 *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN]; 737 *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI]; 738 *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL]; 739 *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF]; 740 *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD]; 741 *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP]; 742 *idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; 743 744 *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA]; 745 *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS]; 746 *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD]; 747 *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX]; 748 *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY]; 749 *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ]; 750 751 // Prevent stub compilations from attempting to reference 752 // callee-saved (SOE) registers from debug info 753 bool exclude_soe = !Compile::current()->is_method_compilation(); 754 RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask; 755 RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask; 756 757 idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask); 758 idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask); 759 idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask); 760 idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask); 761 idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask); 762 idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask); 763 idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask); 764 765 idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask); 766 idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask); 767 idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask); 768 idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask); 769 idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask); 770 idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask); 771 772 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask); 773 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask); 774 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask); 775 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask); 776 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask); 777 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask); 778 idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask); 779 780 idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask); 781 idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask); 782 idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask); 783 idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask); 784 idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask); 785 idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask); 786 } 787 788 //---------------------------is_save_on_entry---------------------------------- 789 bool Matcher::is_save_on_entry(int reg) { 790 return 791 _register_save_policy[reg] == 'E' || 792 _register_save_policy[reg] == 'A'; // Save-on-entry register? 793 } 794 795 //---------------------------Fixup_Save_On_Entry------------------------------- 796 void Matcher::Fixup_Save_On_Entry( ) { 797 init_first_stack_mask(); 798 799 Node *root = C->root(); // Short name for root 800 // Count number of save-on-entry registers. 801 uint soe_cnt = number_of_saved_registers(); 802 uint i; 803 804 // Find the procedure Start Node 805 StartNode *start = C->start(); 806 assert( start, "Expect a start node" ); 807 808 // Input RegMask array shared by all Returns. 809 // The type for doubles and longs has a count of 2, but 810 // there is only 1 returned value 811 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); 812 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 813 // Returns have 0 or 1 returned values depending on call signature. 814 // Return register is specified by return_value in the AD file. 815 if (ret_edge_cnt > TypeFunc::Parms) 816 ret_rms[TypeFunc::Parms+0] = _return_value_mask; 817 818 // Input RegMask array shared by all ForwardExceptions 819 uint forw_exc_edge_cnt = TypeFunc::Parms; 820 RegMask* forw_exc_rms = init_input_masks( forw_exc_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 821 822 // Input RegMask array shared by all Rethrows. 823 uint reth_edge_cnt = TypeFunc::Parms+1; 824 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 825 // Rethrow takes exception oop only, but in the argument 0 slot. 826 OptoReg::Name reg = find_receiver(); 827 if (reg >= 0) { 828 reth_rms[TypeFunc::Parms] = mreg2regmask[reg]; 829 #ifdef _LP64 830 // Need two slots for ptrs in 64-bit land 831 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1)); 832 #endif 833 } 834 835 // Input RegMask array shared by all TailCalls 836 uint tail_call_edge_cnt = TypeFunc::Parms+2; 837 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 838 839 // Input RegMask array shared by all TailJumps 840 uint tail_jump_edge_cnt = TypeFunc::Parms+2; 841 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 842 843 // TailCalls have 2 returned values (target & moop), whose masks come 844 // from the usual MachNode/MachOper mechanism. Find a sample 845 // TailCall to extract these masks and put the correct masks into 846 // the tail_call_rms array. 847 for( i=1; i < root->req(); i++ ) { 848 MachReturnNode *m = root->in(i)->as_MachReturn(); 849 if( m->ideal_Opcode() == Op_TailCall ) { 850 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 851 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 852 break; 853 } 854 } 855 856 // TailJumps have 2 returned values (target & ex_oop), whose masks come 857 // from the usual MachNode/MachOper mechanism. Find a sample 858 // TailJump to extract these masks and put the correct masks into 859 // the tail_jump_rms array. 860 for( i=1; i < root->req(); i++ ) { 861 MachReturnNode *m = root->in(i)->as_MachReturn(); 862 if( m->ideal_Opcode() == Op_TailJump ) { 863 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 864 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 865 break; 866 } 867 } 868 869 // Input RegMask array shared by all Halts 870 uint halt_edge_cnt = TypeFunc::Parms; 871 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 872 873 // Capture the return input masks into each exit flavor 874 for( i=1; i < root->req(); i++ ) { 875 MachReturnNode *exit = root->in(i)->as_MachReturn(); 876 switch( exit->ideal_Opcode() ) { 877 case Op_Return : exit->_in_rms = ret_rms; break; 878 case Op_Rethrow : exit->_in_rms = reth_rms; break; 879 case Op_TailCall : exit->_in_rms = tail_call_rms; break; 880 case Op_TailJump : exit->_in_rms = tail_jump_rms; break; 881 case Op_ForwardException: exit->_in_rms = forw_exc_rms; break; 882 case Op_Halt : exit->_in_rms = halt_rms; break; 883 default : ShouldNotReachHere(); 884 } 885 } 886 887 // Next unused projection number from Start. 888 int proj_cnt = C->tf()->domain()->cnt(); 889 890 // Do all the save-on-entry registers. Make projections from Start for 891 // them, and give them a use at the exit points. To the allocator, they 892 // look like incoming register arguments. 893 for( i = 0; i < _last_Mach_Reg; i++ ) { 894 if( is_save_on_entry(i) ) { 895 896 // Add the save-on-entry to the mask array 897 ret_rms [ ret_edge_cnt] = mreg2regmask[i]; 898 reth_rms [ reth_edge_cnt] = mreg2regmask[i]; 899 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; 900 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; 901 forw_exc_rms [ forw_exc_edge_cnt] = mreg2regmask[i]; 902 // Halts need the SOE registers, but only in the stack as debug info. 903 // A just-prior uncommon-trap or deoptimization will use the SOE regs. 904 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; 905 906 Node *mproj; 907 908 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's 909 // into a single RegD. 910 if( (i&1) == 0 && 911 _register_save_type[i ] == Op_RegF && 912 _register_save_type[i+1] == Op_RegF && 913 is_save_on_entry(i+1) ) { 914 // Add other bit for double 915 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 916 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 917 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 918 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 919 forw_exc_rms [ forw_exc_edge_cnt].Insert(OptoReg::Name(i+1)); 920 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 921 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); 922 proj_cnt += 2; // Skip 2 for doubles 923 } 924 else if( (i&1) == 1 && // Else check for high half of double 925 _register_save_type[i-1] == Op_RegF && 926 _register_save_type[i ] == Op_RegF && 927 is_save_on_entry(i-1) ) { 928 ret_rms [ ret_edge_cnt] = RegMask::Empty; 929 reth_rms [ reth_edge_cnt] = RegMask::Empty; 930 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 931 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 932 forw_exc_rms [ forw_exc_edge_cnt] = RegMask::Empty; 933 halt_rms [ halt_edge_cnt] = RegMask::Empty; 934 mproj = C->top(); 935 } 936 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's 937 // into a single RegL. 938 else if( (i&1) == 0 && 939 _register_save_type[i ] == Op_RegI && 940 _register_save_type[i+1] == Op_RegI && 941 is_save_on_entry(i+1) ) { 942 // Add other bit for long 943 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 944 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 945 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 946 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 947 forw_exc_rms [ forw_exc_edge_cnt].Insert(OptoReg::Name(i+1)); 948 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 949 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); 950 proj_cnt += 2; // Skip 2 for longs 951 } 952 else if( (i&1) == 1 && // Else check for high half of long 953 _register_save_type[i-1] == Op_RegI && 954 _register_save_type[i ] == Op_RegI && 955 is_save_on_entry(i-1) ) { 956 ret_rms [ ret_edge_cnt] = RegMask::Empty; 957 reth_rms [ reth_edge_cnt] = RegMask::Empty; 958 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 959 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 960 forw_exc_rms [ forw_exc_edge_cnt] = RegMask::Empty; 961 halt_rms [ halt_edge_cnt] = RegMask::Empty; 962 mproj = C->top(); 963 } else { 964 // Make a projection for it off the Start 965 mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); 966 } 967 968 ret_edge_cnt ++; 969 reth_edge_cnt ++; 970 tail_call_edge_cnt ++; 971 tail_jump_edge_cnt ++; 972 forw_exc_edge_cnt++; 973 halt_edge_cnt ++; 974 975 // Add a use of the SOE register to all exit paths 976 for (uint j=1; j < root->req(); j++) { 977 root->in(j)->add_req(mproj); 978 } 979 } // End of if a save-on-entry register 980 } // End of for all machine registers 981 } 982 983 //------------------------------init_spill_mask-------------------------------- 984 void Matcher::init_spill_mask( Node *ret ) { 985 if( idealreg2regmask[Op_RegI] ) return; // One time only init 986 987 OptoReg::c_frame_pointer = c_frame_pointer(); 988 c_frame_ptr_mask = c_frame_pointer(); 989 #ifdef _LP64 990 // pointers are twice as big 991 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); 992 #endif 993 994 // Start at OptoReg::stack0() 995 STACK_ONLY_mask.Clear(); 996 OptoReg::Name init = OptoReg::stack2reg(0); 997 // STACK_ONLY_mask is all stack bits 998 OptoReg::Name i; 999 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) 1000 STACK_ONLY_mask.Insert(i); 1001 // Also set the "infinite stack" bit. 1002 STACK_ONLY_mask.set_AllStack(); 1003 1004 for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) { 1005 // Copy the register names over into the shared world. 1006 // SharedInfo::regName[i] = regName[i]; 1007 // Handy RegMasks per machine register 1008 mreg2regmask[i].Insert(i); 1009 1010 // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks. 1011 if (_register_save_policy[i] == 'C' || 1012 _register_save_policy[i] == 'A') { 1013 caller_save_regmask.Insert(i); 1014 mh_caller_save_regmask.Insert(i); 1015 } 1016 // Exclude save-on-entry registers from debug masks for stub compilations. 1017 if (_register_save_policy[i] == 'C' || 1018 _register_save_policy[i] == 'A' || 1019 _register_save_policy[i] == 'E') { 1020 caller_save_regmask_exclude_soe.Insert(i); 1021 mh_caller_save_regmask_exclude_soe.Insert(i); 1022 } 1023 } 1024 1025 // Also exclude the register we use to save the SP for MethodHandle 1026 // invokes to from the corresponding MH debug masks 1027 const RegMask sp_save_mask = method_handle_invoke_SP_save_mask(); 1028 mh_caller_save_regmask.OR(sp_save_mask); 1029 mh_caller_save_regmask_exclude_soe.OR(sp_save_mask); 1030 1031 // Grab the Frame Pointer 1032 Node *fp = ret->in(TypeFunc::FramePtr); 1033 // Share frame pointer while making spill ops 1034 set_shared(fp); 1035 1036 // Get the ADLC notion of the right regmask, for each basic type. 1037 #ifdef _LP64 1038 idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret); 1039 #endif 1040 idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret); 1041 idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret); 1042 idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret); 1043 idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret); 1044 idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret); 1045 idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret); 1046 idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret); 1047 idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret); 1048 idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret); 1049 idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret); 1050 idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret); 1051 idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret); 1052 } 1053 1054 #ifdef ASSERT 1055 static void match_alias_type(Compile* C, Node* n, Node* m) { 1056 if (!VerifyAliases) return; // do not go looking for trouble by default 1057 const TypePtr* nat = n->adr_type(); 1058 const TypePtr* mat = m->adr_type(); 1059 int nidx = C->get_alias_index(nat); 1060 int midx = C->get_alias_index(mat); 1061 // Detune the assert for cases like (AndI 0xFF (LoadB p)). 1062 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { 1063 for (uint i = 1; i < n->req(); i++) { 1064 Node* n1 = n->in(i); 1065 const TypePtr* n1at = n1->adr_type(); 1066 if (n1at != nullptr) { 1067 nat = n1at; 1068 nidx = C->get_alias_index(n1at); 1069 } 1070 } 1071 } 1072 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: 1073 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { 1074 switch (n->Opcode()) { 1075 case Op_PrefetchAllocation: 1076 nidx = Compile::AliasIdxRaw; 1077 nat = TypeRawPtr::BOTTOM; 1078 break; 1079 } 1080 } 1081 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { 1082 switch (n->Opcode()) { 1083 case Op_ClearArray: 1084 midx = Compile::AliasIdxRaw; 1085 mat = TypeRawPtr::BOTTOM; 1086 break; 1087 } 1088 } 1089 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { 1090 switch (n->Opcode()) { 1091 case Op_Return: 1092 case Op_Rethrow: 1093 case Op_Halt: 1094 case Op_TailCall: 1095 case Op_TailJump: 1096 case Op_ForwardException: 1097 nidx = Compile::AliasIdxBot; 1098 nat = TypePtr::BOTTOM; 1099 break; 1100 } 1101 } 1102 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { 1103 switch (n->Opcode()) { 1104 case Op_StrComp: 1105 case Op_StrEquals: 1106 case Op_StrIndexOf: 1107 case Op_StrIndexOfChar: 1108 case Op_AryEq: 1109 case Op_VectorizedHashCode: 1110 case Op_CountPositives: 1111 case Op_MemBarVolatile: 1112 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? 1113 case Op_StrInflatedCopy: 1114 case Op_StrCompressedCopy: 1115 case Op_OnSpinWait: 1116 case Op_EncodeISOArray: 1117 nidx = Compile::AliasIdxTop; 1118 nat = nullptr; 1119 break; 1120 } 1121 } 1122 if (nidx != midx) { 1123 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { 1124 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); 1125 n->dump(); 1126 m->dump(); 1127 } 1128 assert(C->subsume_loads() && C->must_alias(nat, midx), 1129 "must not lose alias info when matching"); 1130 } 1131 } 1132 #endif 1133 1134 //------------------------------xform------------------------------------------ 1135 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine 1136 // Node in new-space. Given a new-space Node, recursively walk his children. 1137 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; } 1138 Node *Matcher::xform( Node *n, int max_stack ) { 1139 // Use one stack to keep both: child's node/state and parent's node/index 1140 MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 1141 mstack.push(n, Visit, nullptr, -1); // set null as parent to indicate root 1142 while (mstack.is_nonempty()) { 1143 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); 1144 if (C->failing()) return nullptr; 1145 n = mstack.node(); // Leave node on stack 1146 Node_State nstate = mstack.state(); 1147 if (nstate == Visit) { 1148 mstack.set_state(Post_Visit); 1149 Node *oldn = n; 1150 // Old-space or new-space check 1151 if (!C->node_arena()->contains(n)) { 1152 // Old space! 1153 Node* m; 1154 if (has_new_node(n)) { // Not yet Label/Reduced 1155 m = new_node(n); 1156 } else { 1157 if (!is_dontcare(n)) { // Matcher can match this guy 1158 // Calls match special. They match alone with no children. 1159 // Their children, the incoming arguments, match normally. 1160 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); 1161 if (C->failing()) return nullptr; 1162 if (m == nullptr) { Matcher::soft_match_failure(); return nullptr; } 1163 if (n->is_MemBar()) { 1164 m->as_MachMemBar()->set_adr_type(n->adr_type()); 1165 } 1166 } else { // Nothing the matcher cares about 1167 if (n->is_Proj() && n->in(0) != nullptr && n->in(0)->is_Multi()) { // Projections? 1168 // Convert to machine-dependent projection 1169 m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); 1170 NOT_PRODUCT(record_new2old(m, n);) 1171 if (m->in(0) != nullptr) // m might be top 1172 collect_null_checks(m, n); 1173 } else { // Else just a regular 'ol guy 1174 m = n->clone(); // So just clone into new-space 1175 NOT_PRODUCT(record_new2old(m, n);) 1176 // Def-Use edges will be added incrementally as Uses 1177 // of this node are matched. 1178 assert(m->outcnt() == 0, "no Uses of this clone yet"); 1179 } 1180 } 1181 1182 set_new_node(n, m); // Map old to new 1183 if (_old_node_note_array != nullptr) { 1184 Node_Notes* nn = C->locate_node_notes(_old_node_note_array, 1185 n->_idx); 1186 C->set_node_notes_at(m->_idx, nn); 1187 } 1188 debug_only(match_alias_type(C, n, m)); 1189 } 1190 n = m; // n is now a new-space node 1191 mstack.set_node(n); 1192 } 1193 1194 // New space! 1195 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) 1196 1197 int i; 1198 // Put precedence edges on stack first (match them last). 1199 for (i = oldn->req(); (uint)i < oldn->len(); i++) { 1200 Node *m = oldn->in(i); 1201 if (m == nullptr) break; 1202 // set -1 to call add_prec() instead of set_req() during Step1 1203 mstack.push(m, Visit, n, -1); 1204 } 1205 1206 // Handle precedence edges for interior nodes 1207 for (i = n->len()-1; (uint)i >= n->req(); i--) { 1208 Node *m = n->in(i); 1209 if (m == nullptr || C->node_arena()->contains(m)) continue; 1210 n->rm_prec(i); 1211 // set -1 to call add_prec() instead of set_req() during Step1 1212 mstack.push(m, Visit, n, -1); 1213 } 1214 1215 // For constant debug info, I'd rather have unmatched constants. 1216 int cnt = n->req(); 1217 JVMState* jvms = n->jvms(); 1218 int debug_cnt = jvms ? jvms->debug_start() : cnt; 1219 1220 // Now do only debug info. Clone constants rather than matching. 1221 // Constants are represented directly in the debug info without 1222 // the need for executable machine instructions. 1223 // Monitor boxes are also represented directly. 1224 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do 1225 Node *m = n->in(i); // Get input 1226 int op = m->Opcode(); 1227 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites"); 1228 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || 1229 op == Op_ConF || op == Op_ConD || op == Op_ConL 1230 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp 1231 ) { 1232 m = m->clone(); 1233 NOT_PRODUCT(record_new2old(m, n)); 1234 mstack.push(m, Post_Visit, n, i); // Don't need to visit 1235 mstack.push(m->in(0), Visit, m, 0); 1236 } else { 1237 mstack.push(m, Visit, n, i); 1238 } 1239 } 1240 1241 // And now walk his children, and convert his inputs to new-space. 1242 for( ; i >= 0; --i ) { // For all normal inputs do 1243 Node *m = n->in(i); // Get input 1244 if(m != nullptr) 1245 mstack.push(m, Visit, n, i); 1246 } 1247 1248 } 1249 else if (nstate == Post_Visit) { 1250 // Set xformed input 1251 Node *p = mstack.parent(); 1252 if (p != nullptr) { // root doesn't have parent 1253 int i = (int)mstack.index(); 1254 if (i >= 0) 1255 p->set_req(i, n); // required input 1256 else if (i == -1) 1257 p->add_prec(n); // precedence input 1258 else 1259 ShouldNotReachHere(); 1260 } 1261 mstack.pop(); // remove processed node from stack 1262 } 1263 else { 1264 ShouldNotReachHere(); 1265 } 1266 } // while (mstack.is_nonempty()) 1267 return n; // Return new-space Node 1268 } 1269 1270 //------------------------------warp_outgoing_stk_arg------------------------ 1271 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { 1272 // Convert outgoing argument location to a pre-biased stack offset 1273 if (reg->is_stack()) { 1274 OptoReg::Name warped = reg->reg2stack(); 1275 // Adjust the stack slot offset to be the register number used 1276 // by the allocator. 1277 warped = OptoReg::add(begin_out_arg_area, warped); 1278 // Keep track of the largest numbered stack slot used for an arg. 1279 // Largest used slot per call-site indicates the amount of stack 1280 // that is killed by the call. 1281 if( warped >= out_arg_limit_per_call ) 1282 out_arg_limit_per_call = OptoReg::add(warped,1); 1283 if (!RegMask::can_represent_arg(warped)) { 1284 // Bailout. For example not enough space on stack for all arguments. Happens for methods with too many arguments. 1285 C->record_method_not_compilable("unsupported calling sequence"); 1286 return OptoReg::Bad; 1287 } 1288 return warped; 1289 } 1290 return OptoReg::as_OptoReg(reg); 1291 } 1292 1293 1294 //------------------------------match_sfpt------------------------------------- 1295 // Helper function to match call instructions. Calls match special. 1296 // They match alone with no children. Their children, the incoming 1297 // arguments, match normally. 1298 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { 1299 MachSafePointNode *msfpt = nullptr; 1300 MachCallNode *mcall = nullptr; 1301 uint cnt; 1302 // Split out case for SafePoint vs Call 1303 CallNode *call; 1304 const TypeTuple *domain; 1305 ciMethod* method = nullptr; 1306 bool is_method_handle_invoke = false; // for special kill effects 1307 if( sfpt->is_Call() ) { 1308 call = sfpt->as_Call(); 1309 domain = call->tf()->domain(); 1310 cnt = domain->cnt(); 1311 1312 // Match just the call, nothing else 1313 MachNode *m = match_tree(call); 1314 if (C->failing()) return nullptr; 1315 if( m == nullptr ) { Matcher::soft_match_failure(); return nullptr; } 1316 1317 // Copy data from the Ideal SafePoint to the machine version 1318 mcall = m->as_MachCall(); 1319 1320 mcall->set_tf( call->tf()); 1321 mcall->set_entry_point( call->entry_point()); 1322 mcall->set_cnt( call->cnt()); 1323 mcall->set_guaranteed_safepoint(call->guaranteed_safepoint()); 1324 1325 if( mcall->is_MachCallJava() ) { 1326 MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); 1327 const CallJavaNode *call_java = call->as_CallJava(); 1328 assert(call_java->validate_symbolic_info(), "inconsistent info"); 1329 method = call_java->method(); 1330 mcall_java->_method = method; 1331 mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); 1332 is_method_handle_invoke = call_java->is_method_handle_invoke(); 1333 mcall_java->_method_handle_invoke = is_method_handle_invoke; 1334 mcall_java->_override_symbolic_info = call_java->override_symbolic_info(); 1335 mcall_java->_arg_escape = call_java->arg_escape(); 1336 if (is_method_handle_invoke) { 1337 C->set_has_method_handle_invokes(true); 1338 } 1339 if( mcall_java->is_MachCallStaticJava() ) 1340 mcall_java->as_MachCallStaticJava()->_name = 1341 call_java->as_CallStaticJava()->_name; 1342 if( mcall_java->is_MachCallDynamicJava() ) 1343 mcall_java->as_MachCallDynamicJava()->_vtable_index = 1344 call_java->as_CallDynamicJava()->_vtable_index; 1345 } 1346 else if( mcall->is_MachCallRuntime() ) { 1347 MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime(); 1348 mach_call_rt->_name = call->as_CallRuntime()->_name; 1349 mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP(); 1350 } 1351 msfpt = mcall; 1352 } 1353 // This is a non-call safepoint 1354 else { 1355 call = nullptr; 1356 domain = nullptr; 1357 MachNode *mn = match_tree(sfpt); 1358 if (C->failing()) return nullptr; 1359 msfpt = mn->as_MachSafePoint(); 1360 cnt = TypeFunc::Parms; 1361 } 1362 msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope(); 1363 1364 // Advertise the correct memory effects (for anti-dependence computation). 1365 msfpt->set_adr_type(sfpt->adr_type()); 1366 1367 // Allocate a private array of RegMasks. These RegMasks are not shared. 1368 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt ); 1369 // Empty them all. 1370 for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask(); 1371 1372 // Do all the pre-defined non-Empty register masks 1373 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; 1374 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; 1375 1376 // Place first outgoing argument can possibly be put. 1377 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 1378 assert( is_even(begin_out_arg_area), "" ); 1379 // Compute max outgoing register number per call site. 1380 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; 1381 // Calls to C may hammer extra stack slots above and beyond any arguments. 1382 // These are usually backing store for register arguments for varargs. 1383 if( call != nullptr && call->is_CallRuntime() ) 1384 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); 1385 1386 1387 // Do the normal argument list (parameters) register masks 1388 int argcnt = cnt - TypeFunc::Parms; 1389 if( argcnt > 0 ) { // Skip it all if we have no args 1390 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 1391 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 1392 int i; 1393 for( i = 0; i < argcnt; i++ ) { 1394 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 1395 } 1396 // V-call to pick proper calling convention 1397 call->calling_convention( sig_bt, parm_regs, argcnt ); 1398 1399 #ifdef ASSERT 1400 // Sanity check users' calling convention. Really handy during 1401 // the initial porting effort. Fairly expensive otherwise. 1402 { for (int i = 0; i<argcnt; i++) { 1403 if( !parm_regs[i].first()->is_valid() && 1404 !parm_regs[i].second()->is_valid() ) continue; 1405 VMReg reg1 = parm_regs[i].first(); 1406 VMReg reg2 = parm_regs[i].second(); 1407 for (int j = 0; j < i; j++) { 1408 if( !parm_regs[j].first()->is_valid() && 1409 !parm_regs[j].second()->is_valid() ) continue; 1410 VMReg reg3 = parm_regs[j].first(); 1411 VMReg reg4 = parm_regs[j].second(); 1412 if( !reg1->is_valid() ) { 1413 assert( !reg2->is_valid(), "valid halvsies" ); 1414 } else if( !reg3->is_valid() ) { 1415 assert( !reg4->is_valid(), "valid halvsies" ); 1416 } else { 1417 assert( reg1 != reg2, "calling conv. must produce distinct regs"); 1418 assert( reg1 != reg3, "calling conv. must produce distinct regs"); 1419 assert( reg1 != reg4, "calling conv. must produce distinct regs"); 1420 assert( reg2 != reg3, "calling conv. must produce distinct regs"); 1421 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs"); 1422 assert( reg3 != reg4, "calling conv. must produce distinct regs"); 1423 } 1424 } 1425 } 1426 } 1427 #endif 1428 1429 // Visit each argument. Compute its outgoing register mask. 1430 // Return results now can have 2 bits returned. 1431 // Compute max over all outgoing arguments both per call-site 1432 // and over the entire method. 1433 for( i = 0; i < argcnt; i++ ) { 1434 // Address of incoming argument mask to fill in 1435 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; 1436 VMReg first = parm_regs[i].first(); 1437 VMReg second = parm_regs[i].second(); 1438 if(!first->is_valid() && 1439 !second->is_valid()) { 1440 continue; // Avoid Halves 1441 } 1442 // Handle case where arguments are in vector registers. 1443 if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) { 1444 OptoReg::Name reg_fst = OptoReg::as_OptoReg(first); 1445 OptoReg::Name reg_snd = OptoReg::as_OptoReg(second); 1446 assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd); 1447 for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) { 1448 rm->Insert(r); 1449 } 1450 } 1451 // Grab first register, adjust stack slots and insert in mask. 1452 OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call ); 1453 if (C->failing()) { 1454 return nullptr; 1455 } 1456 if (OptoReg::is_valid(reg1)) 1457 rm->Insert( reg1 ); 1458 // Grab second register (if any), adjust stack slots and insert in mask. 1459 OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call ); 1460 if (C->failing()) { 1461 return nullptr; 1462 } 1463 if (OptoReg::is_valid(reg2)) 1464 rm->Insert( reg2 ); 1465 } // End of for all arguments 1466 } 1467 1468 // Compute the max stack slot killed by any call. These will not be 1469 // available for debug info, and will be used to adjust FIRST_STACK_mask 1470 // after all call sites have been visited. 1471 if( _out_arg_limit < out_arg_limit_per_call) 1472 _out_arg_limit = out_arg_limit_per_call; 1473 1474 if (mcall) { 1475 // Kill the outgoing argument area, including any non-argument holes and 1476 // any legacy C-killed slots. Use Fat-Projections to do the killing. 1477 // Since the max-per-method covers the max-per-call-site and debug info 1478 // is excluded on the max-per-method basis, debug info cannot land in 1479 // this killed area. 1480 uint r_cnt = mcall->tf()->range()->cnt(); 1481 MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); 1482 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { 1483 // Bailout. We do not have space to represent all arguments. 1484 C->record_method_not_compilable("unsupported outgoing calling sequence"); 1485 } else { 1486 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) 1487 proj->_rout.Insert(OptoReg::Name(i)); 1488 } 1489 if (proj->_rout.is_NotEmpty()) { 1490 push_projection(proj); 1491 } 1492 } 1493 // Transfer the safepoint information from the call to the mcall 1494 // Move the JVMState list 1495 msfpt->set_jvms(sfpt->jvms()); 1496 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { 1497 jvms->set_map(sfpt); 1498 } 1499 1500 // Debug inputs begin just after the last incoming parameter 1501 assert((mcall == nullptr) || (mcall->jvms() == nullptr) || 1502 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), ""); 1503 1504 // Add additional edges. 1505 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { 1506 // For these calls we can not add MachConstantBase in expand(), as the 1507 // ins are not complete then. 1508 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); 1509 if (msfpt->jvms() && 1510 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { 1511 // We added an edge before jvms, so we must adapt the position of the ins. 1512 msfpt->jvms()->adapt_position(+1); 1513 } 1514 } 1515 1516 // Registers killed by the call are set in the local scheduling pass 1517 // of Global Code Motion. 1518 return msfpt; 1519 } 1520 1521 //---------------------------match_tree---------------------------------------- 1522 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part 1523 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for 1524 // making GotoNodes while building the CFG and in init_spill_mask() to identify 1525 // a Load's result RegMask for memoization in idealreg2regmask[] 1526 MachNode *Matcher::match_tree( const Node *n ) { 1527 assert( n->Opcode() != Op_Phi, "cannot match" ); 1528 assert( !n->is_block_start(), "cannot match" ); 1529 // Set the mark for all locally allocated State objects. 1530 // When this call returns, the _states_arena arena will be reset 1531 // freeing all State objects. 1532 ResourceMark rm( &_states_arena ); 1533 1534 LabelRootDepth = 0; 1535 1536 // StoreNodes require their Memory input to match any LoadNodes 1537 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; 1538 #ifdef ASSERT 1539 Node* save_mem_node = _mem_node; 1540 _mem_node = n->is_Store() ? (Node*)n : nullptr; 1541 #endif 1542 // State object for root node of match tree 1543 // Allocate it on _states_arena - stack allocation can cause stack overflow. 1544 State *s = new (&_states_arena) State; 1545 s->_kids[0] = nullptr; 1546 s->_kids[1] = nullptr; 1547 s->_leaf = (Node*)n; 1548 // Label the input tree, allocating labels from top-level arena 1549 Node* root_mem = mem; 1550 Label_Root(n, s, n->in(0), root_mem); 1551 if (C->failing()) return nullptr; 1552 1553 // The minimum cost match for the whole tree is found at the root State 1554 uint mincost = max_juint; 1555 uint cost = max_juint; 1556 uint i; 1557 for (i = 0; i < NUM_OPERANDS; i++) { 1558 if (s->valid(i) && // valid entry and 1559 s->cost(i) < cost && // low cost and 1560 s->rule(i) >= NUM_OPERANDS) {// not an operand 1561 mincost = i; 1562 cost = s->cost(i); 1563 } 1564 } 1565 if (mincost == max_juint) { 1566 #ifndef PRODUCT 1567 tty->print("No matching rule for:"); 1568 s->dump(); 1569 #endif 1570 Matcher::soft_match_failure(); 1571 return nullptr; 1572 } 1573 // Reduce input tree based upon the state labels to machine Nodes 1574 MachNode *m = ReduceInst(s, s->rule(mincost), mem); 1575 // New-to-old mapping is done in ReduceInst, to cover complex instructions. 1576 NOT_PRODUCT(_old2new_map.map(n->_idx, m);) 1577 1578 // Add any Matcher-ignored edges 1579 uint cnt = n->req(); 1580 uint start = 1; 1581 if( mem != (Node*)1 ) start = MemNode::Memory+1; 1582 if( n->is_AddP() ) { 1583 assert( mem == (Node*)1, "" ); 1584 start = AddPNode::Base+1; 1585 } 1586 for( i = start; i < cnt; i++ ) { 1587 if( !n->match_edge(i) ) { 1588 if( i < m->req() ) 1589 m->ins_req( i, n->in(i) ); 1590 else 1591 m->add_req( n->in(i) ); 1592 } 1593 } 1594 1595 debug_only( _mem_node = save_mem_node; ) 1596 return m; 1597 } 1598 1599 1600 //------------------------------match_into_reg--------------------------------- 1601 // Choose to either match this Node in a register or part of the current 1602 // match tree. Return true for requiring a register and false for matching 1603 // as part of the current match tree. 1604 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { 1605 1606 const Type *t = m->bottom_type(); 1607 1608 if (t->singleton()) { 1609 // Never force constants into registers. Allow them to match as 1610 // constants or registers. Copies of the same value will share 1611 // the same register. See find_shared_node. 1612 return false; 1613 } else { // Not a constant 1614 if (!shared && Matcher::is_encode_and_store_pattern(n, m)) { 1615 // Make it possible to match "encode and store" patterns with non-shared 1616 // encode operations that are pinned to a control node (e.g. by CastPP 1617 // node removal in final graph reshaping). The matched instruction cannot 1618 // float above the encode's control node because it is pinned to the 1619 // store's control node. 1620 return false; 1621 } 1622 // Stop recursion if they have different Controls. 1623 Node* m_control = m->in(0); 1624 // Control of load's memory can post-dominates load's control. 1625 // So use it since load can't float above its memory. 1626 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : nullptr; 1627 if (control && m_control && control != m_control && control != mem_control) { 1628 1629 // Actually, we can live with the most conservative control we 1630 // find, if it post-dominates the others. This allows us to 1631 // pick up load/op/store trees where the load can float a little 1632 // above the store. 1633 Node *x = control; 1634 const uint max_scan = 6; // Arbitrary scan cutoff 1635 uint j; 1636 for (j=0; j<max_scan; j++) { 1637 if (x->is_Region()) // Bail out at merge points 1638 return true; 1639 x = x->in(0); 1640 if (x == m_control) // Does 'control' post-dominate 1641 break; // m->in(0)? If so, we can use it 1642 if (x == mem_control) // Does 'control' post-dominate 1643 break; // mem_control? If so, we can use it 1644 } 1645 if (j == max_scan) // No post-domination before scan end? 1646 return true; // Then break the match tree up 1647 } 1648 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || 1649 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { 1650 // These are commonly used in address expressions and can 1651 // efficiently fold into them on X64 in some cases. 1652 return false; 1653 } 1654 } 1655 1656 // Not forceable cloning. If shared, put it into a register. 1657 return shared; 1658 } 1659 1660 1661 //------------------------------Instruction Selection-------------------------- 1662 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match 1663 // ideal nodes to machine instructions. Trees are delimited by shared Nodes, 1664 // things the Matcher does not match (e.g., Memory), and things with different 1665 // Controls (hence forced into different blocks). We pass in the Control 1666 // selected for this entire State tree. 1667 1668 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the 1669 // Store and the Load must have identical Memories (as well as identical 1670 // pointers). Since the Matcher does not have anything for Memory (and 1671 // does not handle DAGs), I have to match the Memory input myself. If the 1672 // Tree root is a Store or if there are multiple Loads in the tree, I require 1673 // all Loads to have the identical memory. 1674 Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) { 1675 // Since Label_Root is a recursive function, its possible that we might run 1676 // out of stack space. See bugs 6272980 & 6227033 for more info. 1677 LabelRootDepth++; 1678 if (LabelRootDepth > MaxLabelRootDepth) { 1679 // Bailout. Can for example be hit with a deep chain of operations. 1680 C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth"); 1681 return nullptr; 1682 } 1683 uint care = 0; // Edges matcher cares about 1684 uint cnt = n->req(); 1685 uint i = 0; 1686 1687 // Examine children for memory state 1688 // Can only subsume a child into your match-tree if that child's memory state 1689 // is not modified along the path to another input. 1690 // It is unsafe even if the other inputs are separate roots. 1691 Node *input_mem = nullptr; 1692 for( i = 1; i < cnt; i++ ) { 1693 if( !n->match_edge(i) ) continue; 1694 Node *m = n->in(i); // Get ith input 1695 assert( m, "expect non-null children" ); 1696 if( m->is_Load() ) { 1697 if( input_mem == nullptr ) { 1698 input_mem = m->in(MemNode::Memory); 1699 if (mem == (Node*)1) { 1700 // Save this memory to bail out if there's another memory access 1701 // to a different memory location in the same tree. 1702 mem = input_mem; 1703 } 1704 } else if( input_mem != m->in(MemNode::Memory) ) { 1705 input_mem = NodeSentinel; 1706 } 1707 } 1708 } 1709 1710 for( i = 1; i < cnt; i++ ){// For my children 1711 if( !n->match_edge(i) ) continue; 1712 Node *m = n->in(i); // Get ith input 1713 // Allocate states out of a private arena 1714 State *s = new (&_states_arena) State; 1715 svec->_kids[care++] = s; 1716 assert( care <= 2, "binary only for now" ); 1717 1718 // Recursively label the State tree. 1719 s->_kids[0] = nullptr; 1720 s->_kids[1] = nullptr; 1721 s->_leaf = m; 1722 1723 // Check for leaves of the State Tree; things that cannot be a part of 1724 // the current tree. If it finds any, that value is matched as a 1725 // register operand. If not, then the normal matching is used. 1726 if( match_into_reg(n, m, control, i, is_shared(m)) || 1727 // Stop recursion if this is a LoadNode and there is another memory access 1728 // to a different memory location in the same tree (for example, a StoreNode 1729 // at the root of this tree or another LoadNode in one of the children). 1730 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || 1731 // Can NOT include the match of a subtree when its memory state 1732 // is used by any of the other subtrees 1733 (input_mem == NodeSentinel) ) { 1734 // Print when we exclude matching due to different memory states at input-loads 1735 if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel) 1736 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) { 1737 tty->print_cr("invalid input_mem"); 1738 } 1739 // Switch to a register-only opcode; this value must be in a register 1740 // and cannot be subsumed as part of a larger instruction. 1741 s->DFA( m->ideal_reg(), m ); 1742 1743 } else { 1744 // If match tree has no control and we do, adopt it for entire tree 1745 if( control == nullptr && m->in(0) != nullptr && m->req() > 1 ) 1746 control = m->in(0); // Pick up control 1747 // Else match as a normal part of the match tree. 1748 control = Label_Root(m, s, control, mem); 1749 if (C->failing()) return nullptr; 1750 } 1751 } 1752 1753 // Call DFA to match this node, and return 1754 svec->DFA( n->Opcode(), n ); 1755 1756 #ifdef ASSERT 1757 uint x; 1758 for( x = 0; x < _LAST_MACH_OPER; x++ ) 1759 if( svec->valid(x) ) 1760 break; 1761 1762 if (x >= _LAST_MACH_OPER) { 1763 n->dump(); 1764 svec->dump(); 1765 assert( false, "bad AD file" ); 1766 } 1767 #endif 1768 return control; 1769 } 1770 1771 1772 // Con nodes reduced using the same rule can share their MachNode 1773 // which reduces the number of copies of a constant in the final 1774 // program. The register allocator is free to split uses later to 1775 // split live ranges. 1776 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { 1777 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return nullptr; 1778 1779 // See if this Con has already been reduced using this rule. 1780 if (_shared_nodes.max() <= leaf->_idx) return nullptr; 1781 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); 1782 if (last != nullptr && rule == last->rule()) { 1783 // Don't expect control change for DecodeN 1784 if (leaf->is_DecodeNarrowPtr()) 1785 return last; 1786 // Get the new space root. 1787 Node* xroot = new_node(C->root()); 1788 if (xroot == nullptr) { 1789 // This shouldn't happen give the order of matching. 1790 return nullptr; 1791 } 1792 1793 // Shared constants need to have their control be root so they 1794 // can be scheduled properly. 1795 Node* control = last->in(0); 1796 if (control != xroot) { 1797 if (control == nullptr || control == C->root()) { 1798 last->set_req(0, xroot); 1799 } else { 1800 assert(false, "unexpected control"); 1801 return nullptr; 1802 } 1803 } 1804 return last; 1805 } 1806 return nullptr; 1807 } 1808 1809 1810 //------------------------------ReduceInst------------------------------------- 1811 // Reduce a State tree (with given Control) into a tree of MachNodes. 1812 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into 1813 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. 1814 // Each MachNode has a number of complicated MachOper operands; each 1815 // MachOper also covers a further tree of Ideal Nodes. 1816 1817 // The root of the Ideal match tree is always an instruction, so we enter 1818 // the recursion here. After building the MachNode, we need to recurse 1819 // the tree checking for these cases: 1820 // (1) Child is an instruction - 1821 // Build the instruction (recursively), add it as an edge. 1822 // Build a simple operand (register) to hold the result of the instruction. 1823 // (2) Child is an interior part of an instruction - 1824 // Skip over it (do nothing) 1825 // (3) Child is the start of a operand - 1826 // Build the operand, place it inside the instruction 1827 // Call ReduceOper. 1828 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { 1829 assert( rule >= NUM_OPERANDS, "called with operand rule" ); 1830 1831 MachNode* shared_node = find_shared_node(s->_leaf, rule); 1832 if (shared_node != nullptr) { 1833 return shared_node; 1834 } 1835 1836 // Build the object to represent this state & prepare for recursive calls 1837 MachNode *mach = s->MachNodeGenerator(rule); 1838 guarantee(mach != nullptr, "Missing MachNode"); 1839 mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]); 1840 assert( mach->_opnds[0] != nullptr, "Missing result operand" ); 1841 Node *leaf = s->_leaf; 1842 NOT_PRODUCT(record_new2old(mach, leaf);) 1843 // Check for instruction or instruction chain rule 1844 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { 1845 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf), 1846 "duplicating node that's already been matched"); 1847 // Instruction 1848 mach->add_req( leaf->in(0) ); // Set initial control 1849 // Reduce interior of complex instruction 1850 ReduceInst_Interior( s, rule, mem, mach, 1 ); 1851 } else { 1852 // Instruction chain rules are data-dependent on their inputs 1853 mach->add_req(nullptr); // Set initial control to none 1854 ReduceInst_Chain_Rule( s, rule, mem, mach ); 1855 } 1856 1857 // If a Memory was used, insert a Memory edge 1858 if( mem != (Node*)1 ) { 1859 mach->ins_req(MemNode::Memory,mem); 1860 #ifdef ASSERT 1861 // Verify adr type after matching memory operation 1862 const MachOper* oper = mach->memory_operand(); 1863 if (oper != nullptr && oper != (MachOper*)-1) { 1864 // It has a unique memory operand. Find corresponding ideal mem node. 1865 Node* m = nullptr; 1866 if (leaf->is_Mem()) { 1867 m = leaf; 1868 } else { 1869 m = _mem_node; 1870 assert(m != nullptr && m->is_Mem(), "expecting memory node"); 1871 } 1872 const Type* mach_at = mach->adr_type(); 1873 // DecodeN node consumed by an address may have different type 1874 // than its input. Don't compare types for such case. 1875 if (m->adr_type() != mach_at && 1876 (m->in(MemNode::Address)->is_DecodeNarrowPtr() || 1877 (m->in(MemNode::Address)->is_AddP() && 1878 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) || 1879 (m->in(MemNode::Address)->is_AddP() && 1880 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && 1881 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) { 1882 mach_at = m->adr_type(); 1883 } 1884 if (m->adr_type() != mach_at) { 1885 m->dump(); 1886 tty->print_cr("mach:"); 1887 mach->dump(1); 1888 } 1889 assert(m->adr_type() == mach_at, "matcher should not change adr type"); 1890 } 1891 #endif 1892 } 1893 1894 // If the _leaf is an AddP, insert the base edge 1895 if (leaf->is_AddP()) { 1896 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); 1897 } 1898 1899 uint number_of_projections_prior = number_of_projections(); 1900 1901 // Perform any 1-to-many expansions required 1902 MachNode *ex = mach->Expand(s, _projection_list, mem); 1903 if (ex != mach) { 1904 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match"); 1905 if( ex->in(1)->is_Con() ) 1906 ex->in(1)->set_req(0, C->root()); 1907 // Remove old node from the graph 1908 for( uint i=0; i<mach->req(); i++ ) { 1909 mach->set_req(i,nullptr); 1910 } 1911 NOT_PRODUCT(record_new2old(ex, s->_leaf);) 1912 } 1913 1914 // PhaseChaitin::fixup_spills will sometimes generate spill code 1915 // via the matcher. By the time, nodes have been wired into the CFG, 1916 // and any further nodes generated by expand rules will be left hanging 1917 // in space, and will not get emitted as output code. Catch this. 1918 // Also, catch any new register allocation constraints ("projections") 1919 // generated belatedly during spill code generation. 1920 if (_allocation_started) { 1921 guarantee(ex == mach, "no expand rules during spill generation"); 1922 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation"); 1923 } 1924 1925 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { 1926 // Record the con for sharing 1927 _shared_nodes.map(leaf->_idx, ex); 1928 } 1929 1930 // Have mach nodes inherit GC barrier data 1931 mach->set_barrier_data(MemNode::barrier_data(leaf)); 1932 1933 return ex; 1934 } 1935 1936 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { 1937 for (uint i = n->req(); i < n->len(); i++) { 1938 if (n->in(i) != nullptr) { 1939 mach->add_prec(n->in(i)); 1940 } 1941 } 1942 } 1943 1944 void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) { 1945 // 'op' is what I am expecting to receive 1946 int op = _leftOp[rule]; 1947 // Operand type to catch childs result 1948 // This is what my child will give me. 1949 unsigned int opnd_class_instance = s->rule(op); 1950 // Choose between operand class or not. 1951 // This is what I will receive. 1952 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op; 1953 // New rule for child. Chase operand classes to get the actual rule. 1954 unsigned int newrule = s->rule(catch_op); 1955 1956 if (newrule < NUM_OPERANDS) { 1957 // Chain from operand or operand class, may be output of shared node 1958 assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand"); 1959 // Insert operand into array of operands for this instruction 1960 mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance); 1961 1962 ReduceOper(s, newrule, mem, mach); 1963 } else { 1964 // Chain from the result of an instruction 1965 assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand"); 1966 mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]); 1967 Node *mem1 = (Node*)1; 1968 debug_only(Node *save_mem_node = _mem_node;) 1969 mach->add_req( ReduceInst(s, newrule, mem1) ); 1970 debug_only(_mem_node = save_mem_node;) 1971 } 1972 return; 1973 } 1974 1975 1976 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { 1977 handle_precedence_edges(s->_leaf, mach); 1978 1979 if( s->_leaf->is_Load() ) { 1980 Node *mem2 = s->_leaf->in(MemNode::Memory); 1981 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" ); 1982 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;) 1983 mem = mem2; 1984 } 1985 if( s->_leaf->in(0) != nullptr && s->_leaf->req() > 1) { 1986 if( mach->in(0) == nullptr ) 1987 mach->set_req(0, s->_leaf->in(0)); 1988 } 1989 1990 // Now recursively walk the state tree & add operand list. 1991 for( uint i=0; i<2; i++ ) { // binary tree 1992 State *newstate = s->_kids[i]; 1993 if( newstate == nullptr ) break; // Might only have 1 child 1994 // 'op' is what I am expecting to receive 1995 int op; 1996 if( i == 0 ) { 1997 op = _leftOp[rule]; 1998 } else { 1999 op = _rightOp[rule]; 2000 } 2001 // Operand type to catch childs result 2002 // This is what my child will give me. 2003 int opnd_class_instance = newstate->rule(op); 2004 // Choose between operand class or not. 2005 // This is what I will receive. 2006 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op; 2007 // New rule for child. Chase operand classes to get the actual rule. 2008 int newrule = newstate->rule(catch_op); 2009 2010 if (newrule < NUM_OPERANDS) { // Operand/operandClass or internalOp/instruction? 2011 // Operand/operandClass 2012 // Insert operand into array of operands for this instruction 2013 mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance); 2014 ReduceOper(newstate, newrule, mem, mach); 2015 2016 } else { // Child is internal operand or new instruction 2017 if (newrule < _LAST_MACH_OPER) { // internal operand or instruction? 2018 // internal operand --> call ReduceInst_Interior 2019 // Interior of complex instruction. Do nothing but recurse. 2020 num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds); 2021 } else { 2022 // instruction --> call build operand( ) to catch result 2023 // --> ReduceInst( newrule ) 2024 mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]); 2025 Node *mem1 = (Node*)1; 2026 debug_only(Node *save_mem_node = _mem_node;) 2027 mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); 2028 debug_only(_mem_node = save_mem_node;) 2029 } 2030 } 2031 assert( mach->_opnds[num_opnds-1], "" ); 2032 } 2033 return num_opnds; 2034 } 2035 2036 // This routine walks the interior of possible complex operands. 2037 // At each point we check our children in the match tree: 2038 // (1) No children - 2039 // We are a leaf; add _leaf field as an input to the MachNode 2040 // (2) Child is an internal operand - 2041 // Skip over it ( do nothing ) 2042 // (3) Child is an instruction - 2043 // Call ReduceInst recursively and 2044 // and instruction as an input to the MachNode 2045 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { 2046 assert( rule < _LAST_MACH_OPER, "called with operand rule" ); 2047 State *kid = s->_kids[0]; 2048 assert( kid == nullptr || s->_leaf->in(0) == nullptr, "internal operands have no control" ); 2049 2050 // Leaf? And not subsumed? 2051 if( kid == nullptr && !_swallowed[rule] ) { 2052 mach->add_req( s->_leaf ); // Add leaf pointer 2053 return; // Bail out 2054 } 2055 2056 if( s->_leaf->is_Load() ) { 2057 assert( mem == (Node*)1, "multiple Memories being matched at once?" ); 2058 mem = s->_leaf->in(MemNode::Memory); 2059 debug_only(_mem_node = s->_leaf;) 2060 } 2061 2062 handle_precedence_edges(s->_leaf, mach); 2063 2064 if( s->_leaf->in(0) && s->_leaf->req() > 1) { 2065 if( !mach->in(0) ) 2066 mach->set_req(0,s->_leaf->in(0)); 2067 else { 2068 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" ); 2069 } 2070 } 2071 2072 for (uint i = 0; kid != nullptr && i < 2; kid = s->_kids[1], i++) { // binary tree 2073 int newrule; 2074 if( i == 0) { 2075 newrule = kid->rule(_leftOp[rule]); 2076 } else { 2077 newrule = kid->rule(_rightOp[rule]); 2078 } 2079 2080 if (newrule < _LAST_MACH_OPER) { // Operand or instruction? 2081 // Internal operand; recurse but do nothing else 2082 ReduceOper(kid, newrule, mem, mach); 2083 2084 } else { // Child is a new instruction 2085 // Reduce the instruction, and add a direct pointer from this 2086 // machine instruction to the newly reduced one. 2087 Node *mem1 = (Node*)1; 2088 debug_only(Node *save_mem_node = _mem_node;) 2089 mach->add_req( ReduceInst( kid, newrule, mem1 ) ); 2090 debug_only(_mem_node = save_mem_node;) 2091 } 2092 } 2093 } 2094 2095 2096 // ------------------------------------------------------------------------- 2097 // Java-Java calling convention 2098 // (what you use when Java calls Java) 2099 2100 //------------------------------find_receiver---------------------------------- 2101 // For a given signature, return the OptoReg for parameter 0. 2102 OptoReg::Name Matcher::find_receiver() { 2103 VMRegPair regs; 2104 BasicType sig_bt = T_OBJECT; 2105 SharedRuntime::java_calling_convention(&sig_bt, ®s, 1); 2106 // Return argument 0 register. In the LP64 build pointers 2107 // take 2 registers, but the VM wants only the 'main' name. 2108 return OptoReg::as_OptoReg(regs.first()); 2109 } 2110 2111 bool Matcher::is_vshift_con_pattern(Node* n, Node* m) { 2112 if (n != nullptr && m != nullptr) { 2113 return VectorNode::is_vector_shift(n) && 2114 VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con(); 2115 } 2116 return false; 2117 } 2118 2119 bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) { 2120 // Must clone all producers of flags, or we will not match correctly. 2121 // Suppose a compare setting int-flags is shared (e.g., a switch-tree) 2122 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags 2123 // are also there, so we may match a float-branch to int-flags and 2124 // expect the allocator to haul the flags from the int-side to the 2125 // fp-side. No can do. 2126 if (_must_clone[m->Opcode()]) { 2127 mstack.push(m, Visit); 2128 return true; 2129 } 2130 return pd_clone_node(n, m, mstack); 2131 } 2132 2133 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { 2134 Node *off = m->in(AddPNode::Offset); 2135 if (off->is_Con()) { 2136 address_visited.test_set(m->_idx); // Flag as address_visited 2137 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2138 // Clone X+offset as it also folds into most addressing expressions 2139 mstack.push(off, Visit); 2140 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2141 return true; 2142 } 2143 return false; 2144 } 2145 2146 // A method-klass-holder may be passed in the inline_cache_reg 2147 // and then expanded into the inline_cache_reg and a method_ptr register 2148 // defined in ad_<arch>.cpp 2149 2150 //------------------------------find_shared------------------------------------ 2151 // Set bits if Node is shared or otherwise a root 2152 void Matcher::find_shared(Node* n) { 2153 // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc 2154 MStack mstack(C->live_nodes() * 2); 2155 // Mark nodes as address_visited if they are inputs to an address expression 2156 VectorSet address_visited; 2157 mstack.push(n, Visit); // Don't need to pre-visit root node 2158 while (mstack.is_nonempty()) { 2159 n = mstack.node(); // Leave node on stack 2160 Node_State nstate = mstack.state(); 2161 uint nop = n->Opcode(); 2162 if (nstate == Pre_Visit) { 2163 if (address_visited.test(n->_idx)) { // Visited in address already? 2164 // Flag as visited and shared now. 2165 set_visited(n); 2166 } 2167 if (is_visited(n)) { // Visited already? 2168 // Node is shared and has no reason to clone. Flag it as shared. 2169 // This causes it to match into a register for the sharing. 2170 set_shared(n); // Flag as shared and 2171 if (n->is_DecodeNarrowPtr()) { 2172 // Oop field/array element loads must be shared but since 2173 // they are shared through a DecodeN they may appear to have 2174 // a single use so force sharing here. 2175 set_shared(n->in(1)); 2176 } 2177 mstack.pop(); // remove node from stack 2178 continue; 2179 } 2180 nstate = Visit; // Not already visited; so visit now 2181 } 2182 if (nstate == Visit) { 2183 mstack.set_state(Post_Visit); 2184 set_visited(n); // Flag as visited now 2185 bool mem_op = false; 2186 int mem_addr_idx = MemNode::Address; 2187 if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) { 2188 continue; 2189 } 2190 for (int i = n->req() - 1; i >= 0; --i) { // For my children 2191 Node* m = n->in(i); // Get ith input 2192 if (m == nullptr) { 2193 continue; // Ignore nulls 2194 } 2195 if (clone_node(n, m, mstack)) { 2196 continue; 2197 } 2198 2199 // Clone addressing expressions as they are "free" in memory access instructions 2200 if (mem_op && i == mem_addr_idx && m->is_AddP() && 2201 // When there are other uses besides address expressions 2202 // put it on stack and mark as shared. 2203 !is_visited(m)) { 2204 // Some inputs for address expression are not put on stack 2205 // to avoid marking them as shared and forcing them into register 2206 // if they are used only in address expressions. 2207 // But they should be marked as shared if there are other uses 2208 // besides address expressions. 2209 2210 if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) { 2211 continue; 2212 } 2213 } // if( mem_op && 2214 mstack.push(m, Pre_Visit); 2215 } // for(int i = ...) 2216 } 2217 else if (nstate == Alt_Post_Visit) { 2218 mstack.pop(); // Remove node from stack 2219 // We cannot remove the Cmp input from the Bool here, as the Bool may be 2220 // shared and all users of the Bool need to move the Cmp in parallel. 2221 // This leaves both the Bool and the If pointing at the Cmp. To 2222 // prevent the Matcher from trying to Match the Cmp along both paths 2223 // BoolNode::match_edge always returns a zero. 2224 2225 // We reorder the Op_If in a pre-order manner, so we can visit without 2226 // accidentally sharing the Cmp (the Bool and the If make 2 users). 2227 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool 2228 } 2229 else if (nstate == Post_Visit) { 2230 mstack.pop(); // Remove node from stack 2231 2232 // Now hack a few special opcodes 2233 uint opcode = n->Opcode(); 2234 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode); 2235 if (!gc_handled) { 2236 find_shared_post_visit(n, opcode); 2237 } 2238 } 2239 else { 2240 ShouldNotReachHere(); 2241 } 2242 } // end of while (mstack.is_nonempty()) 2243 } 2244 2245 bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) { 2246 switch(opcode) { // Handle some opcodes special 2247 case Op_Phi: // Treat Phis as shared roots 2248 case Op_Parm: 2249 case Op_Proj: // All handled specially during matching 2250 case Op_SafePointScalarObject: 2251 set_shared(n); 2252 set_dontcare(n); 2253 break; 2254 case Op_If: 2255 case Op_CountedLoopEnd: 2256 mstack.set_state(Alt_Post_Visit); // Alternative way 2257 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps 2258 // with matching cmp/branch in 1 instruction. The Matcher needs the 2259 // Bool and CmpX side-by-side, because it can only get at constants 2260 // that are at the leaves of Match trees, and the Bool's condition acts 2261 // as a constant here. 2262 mstack.push(n->in(1), Visit); // Clone the Bool 2263 mstack.push(n->in(0), Pre_Visit); // Visit control input 2264 return true; // while (mstack.is_nonempty()) 2265 case Op_ConvI2D: // These forms efficiently match with a prior 2266 case Op_ConvI2F: // Load but not a following Store 2267 if( n->in(1)->is_Load() && // Prior load 2268 n->outcnt() == 1 && // Not already shared 2269 n->unique_out()->is_Store() ) // Following store 2270 set_shared(n); // Force it to be a root 2271 break; 2272 case Op_ReverseBytesI: 2273 case Op_ReverseBytesL: 2274 if( n->in(1)->is_Load() && // Prior load 2275 n->outcnt() == 1 ) // Not already shared 2276 set_shared(n); // Force it to be a root 2277 break; 2278 case Op_BoxLock: // Can't match until we get stack-regs in ADLC 2279 case Op_IfFalse: 2280 case Op_IfTrue: 2281 case Op_MachProj: 2282 case Op_MergeMem: 2283 case Op_Catch: 2284 case Op_CatchProj: 2285 case Op_CProj: 2286 case Op_JumpProj: 2287 case Op_JProj: 2288 case Op_NeverBranch: 2289 set_dontcare(n); 2290 break; 2291 case Op_Jump: 2292 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) 2293 mstack.push(n->in(0), Pre_Visit); // Visit Control input 2294 return true; // while (mstack.is_nonempty()) 2295 case Op_StrComp: 2296 case Op_StrEquals: 2297 case Op_StrIndexOf: 2298 case Op_StrIndexOfChar: 2299 case Op_AryEq: 2300 case Op_VectorizedHashCode: 2301 case Op_CountPositives: 2302 case Op_StrInflatedCopy: 2303 case Op_StrCompressedCopy: 2304 case Op_EncodeISOArray: 2305 case Op_FmaD: 2306 case Op_FmaF: 2307 case Op_FmaVD: 2308 case Op_FmaVF: 2309 case Op_MacroLogicV: 2310 case Op_VectorCmpMasked: 2311 case Op_CompressV: 2312 case Op_CompressM: 2313 case Op_ExpandV: 2314 case Op_VectorLoadMask: 2315 set_shared(n); // Force result into register (it will be anyways) 2316 break; 2317 case Op_ConP: { // Convert pointers above the centerline to NUL 2318 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2319 const TypePtr* tp = tn->type()->is_ptr(); 2320 if (tp->_ptr == TypePtr::AnyNull) { 2321 tn->set_type(TypePtr::NULL_PTR); 2322 } 2323 break; 2324 } 2325 case Op_ConN: { // Convert narrow pointers above the centerline to NUL 2326 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2327 const TypePtr* tp = tn->type()->make_ptr(); 2328 if (tp && tp->_ptr == TypePtr::AnyNull) { 2329 tn->set_type(TypeNarrowOop::NULL_PTR); 2330 } 2331 break; 2332 } 2333 case Op_Binary: // These are introduced in the Post_Visit state. 2334 ShouldNotReachHere(); 2335 break; 2336 case Op_ClearArray: 2337 case Op_SafePoint: 2338 mem_op = true; 2339 break; 2340 default: 2341 if( n->is_Store() ) { 2342 // Do match stores, despite no ideal reg 2343 mem_op = true; 2344 break; 2345 } 2346 if( n->is_Mem() ) { // Loads and LoadStores 2347 mem_op = true; 2348 // Loads must be root of match tree due to prior load conflict 2349 if( C->subsume_loads() == false ) 2350 set_shared(n); 2351 } 2352 // Fall into default case 2353 if( !n->ideal_reg() ) 2354 set_dontcare(n); // Unmatchable Nodes 2355 } // end_switch 2356 return false; 2357 } 2358 2359 void Matcher::find_shared_post_visit(Node* n, uint opcode) { 2360 if (n->is_predicated_vector()) { 2361 // Restructure into binary trees for Matching. 2362 if (n->req() == 4) { 2363 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2364 n->set_req(2, n->in(3)); 2365 n->del_req(3); 2366 } else if (n->req() == 5) { 2367 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2368 n->set_req(2, new BinaryNode(n->in(3), n->in(4))); 2369 n->del_req(4); 2370 n->del_req(3); 2371 } else if (n->req() == 6) { 2372 Node* b3 = new BinaryNode(n->in(4), n->in(5)); 2373 Node* b2 = new BinaryNode(n->in(3), b3); 2374 Node* b1 = new BinaryNode(n->in(2), b2); 2375 n->set_req(2, b1); 2376 n->del_req(5); 2377 n->del_req(4); 2378 n->del_req(3); 2379 } 2380 return; 2381 } 2382 2383 switch(opcode) { // Handle some opcodes special 2384 case Op_CompareAndExchangeB: 2385 case Op_CompareAndExchangeS: 2386 case Op_CompareAndExchangeI: 2387 case Op_CompareAndExchangeL: 2388 case Op_CompareAndExchangeP: 2389 case Op_CompareAndExchangeN: 2390 case Op_WeakCompareAndSwapB: 2391 case Op_WeakCompareAndSwapS: 2392 case Op_WeakCompareAndSwapI: 2393 case Op_WeakCompareAndSwapL: 2394 case Op_WeakCompareAndSwapP: 2395 case Op_WeakCompareAndSwapN: 2396 case Op_CompareAndSwapB: 2397 case Op_CompareAndSwapS: 2398 case Op_CompareAndSwapI: 2399 case Op_CompareAndSwapL: 2400 case Op_CompareAndSwapP: 2401 case Op_CompareAndSwapN: { // Convert trinary to binary-tree 2402 Node* newval = n->in(MemNode::ValueIn); 2403 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 2404 Node* pair = new BinaryNode(oldval, newval); 2405 n->set_req(MemNode::ValueIn, pair); 2406 n->del_req(LoadStoreConditionalNode::ExpectedIn); 2407 break; 2408 } 2409 case Op_CMoveD: // Convert trinary to binary-tree 2410 case Op_CMoveF: 2411 case Op_CMoveI: 2412 case Op_CMoveL: 2413 case Op_CMoveN: 2414 case Op_CMoveP: { 2415 // Restructure into a binary tree for Matching. It's possible that 2416 // we could move this code up next to the graph reshaping for IfNodes 2417 // or vice-versa, but I do not want to debug this for Ladybird. 2418 // 10/2/2000 CNC. 2419 Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1)); 2420 n->set_req(1, pair1); 2421 Node* pair2 = new BinaryNode(n->in(2), n->in(3)); 2422 n->set_req(2, pair2); 2423 n->del_req(3); 2424 break; 2425 } 2426 case Op_MacroLogicV: { 2427 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2428 Node* pair2 = new BinaryNode(n->in(3), n->in(4)); 2429 n->set_req(1, pair1); 2430 n->set_req(2, pair2); 2431 n->del_req(4); 2432 n->del_req(3); 2433 break; 2434 } 2435 case Op_StoreVectorMasked: { 2436 Node* pair = new BinaryNode(n->in(3), n->in(4)); 2437 n->set_req(3, pair); 2438 n->del_req(4); 2439 break; 2440 } 2441 case Op_SelectFromTwoVector: 2442 case Op_LoopLimit: { 2443 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2444 n->set_req(1, pair1); 2445 n->set_req(2, n->in(3)); 2446 n->del_req(3); 2447 break; 2448 } 2449 case Op_StrEquals: 2450 case Op_StrIndexOfChar: { 2451 Node* pair1 = new BinaryNode(n->in(2), n->in(3)); 2452 n->set_req(2, pair1); 2453 n->set_req(3, n->in(4)); 2454 n->del_req(4); 2455 break; 2456 } 2457 case Op_StrComp: 2458 case Op_StrIndexOf: 2459 case Op_VectorizedHashCode: { 2460 Node* pair1 = new BinaryNode(n->in(2), n->in(3)); 2461 n->set_req(2, pair1); 2462 Node* pair2 = new BinaryNode(n->in(4),n->in(5)); 2463 n->set_req(3, pair2); 2464 n->del_req(5); 2465 n->del_req(4); 2466 break; 2467 } 2468 case Op_EncodeISOArray: 2469 case Op_StrCompressedCopy: 2470 case Op_StrInflatedCopy: { 2471 // Restructure into a binary tree for Matching. 2472 Node* pair = new BinaryNode(n->in(3), n->in(4)); 2473 n->set_req(3, pair); 2474 n->del_req(4); 2475 break; 2476 } 2477 case Op_FmaD: 2478 case Op_FmaF: 2479 case Op_FmaVD: 2480 case Op_FmaVF: { 2481 // Restructure into a binary tree for Matching. 2482 Node* pair = new BinaryNode(n->in(1), n->in(2)); 2483 n->set_req(2, pair); 2484 n->set_req(1, n->in(3)); 2485 n->del_req(3); 2486 break; 2487 } 2488 case Op_MulAddS2I: { 2489 Node* pair1 = new BinaryNode(n->in(1), n->in(2)); 2490 Node* pair2 = new BinaryNode(n->in(3), n->in(4)); 2491 n->set_req(1, pair1); 2492 n->set_req(2, pair2); 2493 n->del_req(4); 2494 n->del_req(3); 2495 break; 2496 } 2497 case Op_VectorCmpMasked: 2498 case Op_CopySignD: 2499 case Op_SignumVF: 2500 case Op_SignumVD: 2501 case Op_SignumF: 2502 case Op_SignumD: { 2503 Node* pair = new BinaryNode(n->in(2), n->in(3)); 2504 n->set_req(2, pair); 2505 n->del_req(3); 2506 break; 2507 } 2508 case Op_VectorBlend: 2509 case Op_VectorInsert: { 2510 Node* pair = new BinaryNode(n->in(1), n->in(2)); 2511 n->set_req(1, pair); 2512 n->set_req(2, n->in(3)); 2513 n->del_req(3); 2514 break; 2515 } 2516 case Op_LoadVectorGather: 2517 if (is_subword_type(n->bottom_type()->is_vect()->element_basic_type())) { 2518 Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2519 n->set_req(MemNode::ValueIn, pair); 2520 n->del_req(MemNode::ValueIn+1); 2521 } 2522 break; 2523 case Op_LoadVectorGatherMasked: 2524 if (is_subword_type(n->bottom_type()->is_vect()->element_basic_type())) { 2525 Node* pair2 = new BinaryNode(n->in(MemNode::ValueIn + 1), n->in(MemNode::ValueIn + 2)); 2526 Node* pair1 = new BinaryNode(n->in(MemNode::ValueIn), pair2); 2527 n->set_req(MemNode::ValueIn, pair1); 2528 n->del_req(MemNode::ValueIn+2); 2529 n->del_req(MemNode::ValueIn+1); 2530 break; 2531 } // fall-through 2532 case Op_StoreVectorScatter: { 2533 Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2534 n->set_req(MemNode::ValueIn, pair); 2535 n->del_req(MemNode::ValueIn+1); 2536 break; 2537 } 2538 case Op_StoreVectorScatterMasked: { 2539 Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2)); 2540 n->set_req(MemNode::ValueIn+1, pair); 2541 n->del_req(MemNode::ValueIn+2); 2542 pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); 2543 n->set_req(MemNode::ValueIn, pair); 2544 n->del_req(MemNode::ValueIn+1); 2545 break; 2546 } 2547 case Op_VectorMaskCmp: { 2548 n->set_req(1, new BinaryNode(n->in(1), n->in(2))); 2549 n->set_req(2, n->in(3)); 2550 n->del_req(3); 2551 break; 2552 } 2553 case Op_PartialSubtypeCheck: { 2554 if (UseSecondarySupersTable && n->in(2)->is_Con()) { 2555 // PartialSubtypeCheck uses both constant and register operands for superclass input. 2556 n->set_req(2, new BinaryNode(n->in(2), n->in(2))); 2557 break; 2558 } 2559 break; 2560 } 2561 default: 2562 break; 2563 } 2564 } 2565 2566 #ifndef PRODUCT 2567 void Matcher::record_new2old(Node* newn, Node* old) { 2568 _new2old_map.map(newn->_idx, old); 2569 if (!_reused.test_set(old->_igv_idx)) { 2570 // Reuse the Ideal-level IGV identifier so that the node can be tracked 2571 // across matching. If there are multiple machine nodes expanded from the 2572 // same Ideal node, only one will reuse its IGV identifier. 2573 newn->_igv_idx = old->_igv_idx; 2574 } 2575 } 2576 2577 // machine-independent root to machine-dependent root 2578 void Matcher::dump_old2new_map() { 2579 _old2new_map.dump(); 2580 } 2581 #endif // !PRODUCT 2582 2583 //---------------------------collect_null_checks------------------------------- 2584 // Find null checks in the ideal graph; write a machine-specific node for 2585 // it. Used by later implicit-null-check handling. Actually collects 2586 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal 2587 // value being tested. 2588 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { 2589 Node *iff = proj->in(0); 2590 if( iff->Opcode() == Op_If ) { 2591 // During matching If's have Bool & Cmp side-by-side 2592 BoolNode *b = iff->in(1)->as_Bool(); 2593 Node *cmp = iff->in(2); 2594 int opc = cmp->Opcode(); 2595 if (opc != Op_CmpP && opc != Op_CmpN) return; 2596 2597 const Type* ct = cmp->in(2)->bottom_type(); 2598 if (ct == TypePtr::NULL_PTR || 2599 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { 2600 2601 bool push_it = false; 2602 if( proj->Opcode() == Op_IfTrue ) { 2603 #ifndef PRODUCT 2604 extern uint all_null_checks_found; 2605 all_null_checks_found++; 2606 #endif 2607 if( b->_test._test == BoolTest::ne ) { 2608 push_it = true; 2609 } 2610 } else { 2611 assert( proj->Opcode() == Op_IfFalse, "" ); 2612 if( b->_test._test == BoolTest::eq ) { 2613 push_it = true; 2614 } 2615 } 2616 if( push_it ) { 2617 _null_check_tests.push(proj); 2618 Node* val = cmp->in(1); 2619 #ifdef _LP64 2620 if (val->bottom_type()->isa_narrowoop() && 2621 !Matcher::narrow_oop_use_complex_address()) { 2622 // 2623 // Look for DecodeN node which should be pinned to orig_proj. 2624 // On platforms (Sparc) which can not handle 2 adds 2625 // in addressing mode we have to keep a DecodeN node and 2626 // use it to do implicit null check in address. 2627 // 2628 // DecodeN node was pinned to non-null path (orig_proj) during 2629 // CastPP transformation in final_graph_reshaping_impl(). 2630 // 2631 uint cnt = orig_proj->outcnt(); 2632 for (uint i = 0; i < orig_proj->outcnt(); i++) { 2633 Node* d = orig_proj->raw_out(i); 2634 if (d->is_DecodeN() && d->in(1) == val) { 2635 val = d; 2636 val->set_req(0, nullptr); // Unpin now. 2637 // Mark this as special case to distinguish from 2638 // a regular case: CmpP(DecodeN, null). 2639 val = (Node*)(((intptr_t)val) | 1); 2640 break; 2641 } 2642 } 2643 } 2644 #endif 2645 _null_check_tests.push(val); 2646 } 2647 } 2648 } 2649 } 2650 2651 //---------------------------validate_null_checks------------------------------ 2652 // Its possible that the value being null checked is not the root of a match 2653 // tree. If so, I cannot use the value in an implicit null check. 2654 void Matcher::validate_null_checks( ) { 2655 uint cnt = _null_check_tests.size(); 2656 for( uint i=0; i < cnt; i+=2 ) { 2657 Node *test = _null_check_tests[i]; 2658 Node *val = _null_check_tests[i+1]; 2659 bool is_decoden = ((intptr_t)val) & 1; 2660 val = (Node*)(((intptr_t)val) & ~1); 2661 if (has_new_node(val)) { 2662 Node* new_val = new_node(val); 2663 if (is_decoden) { 2664 assert(val->is_DecodeNarrowPtr() && val->in(0) == nullptr, "sanity"); 2665 // Note: new_val may have a control edge if 2666 // the original ideal node DecodeN was matched before 2667 // it was unpinned in Matcher::collect_null_checks(). 2668 // Unpin the mach node and mark it. 2669 new_val->set_req(0, nullptr); 2670 new_val = (Node*)(((intptr_t)new_val) | 1); 2671 } 2672 // Is a match-tree root, so replace with the matched value 2673 _null_check_tests.map(i+1, new_val); 2674 } else { 2675 // Yank from candidate list 2676 _null_check_tests.map(i+1,_null_check_tests[--cnt]); 2677 _null_check_tests.map(i,_null_check_tests[--cnt]); 2678 _null_check_tests.pop(); 2679 _null_check_tests.pop(); 2680 i-=2; 2681 } 2682 } 2683 } 2684 2685 bool Matcher::gen_narrow_oop_implicit_null_checks() { 2686 // Advice matcher to perform null checks on the narrow oop side. 2687 // Implicit checks are not possible on the uncompressed oop side anyway 2688 // (at least not for read accesses). 2689 // Performs significantly better (especially on Power 6). 2690 if (!os::zero_page_read_protected()) { 2691 return true; 2692 } 2693 return CompressedOops::use_implicit_null_checks() && 2694 (narrow_oop_use_complex_address() || 2695 CompressedOops::base() != nullptr); 2696 } 2697 2698 // Compute RegMask for an ideal register. 2699 const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) { 2700 assert(!C->failing_internal() || C->failure_is_artificial(), "already failing."); 2701 if (C->failing()) { 2702 return nullptr; 2703 } 2704 const Type* t = Type::mreg2type[ideal_reg]; 2705 if (t == nullptr) { 2706 assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg); 2707 return nullptr; // not supported 2708 } 2709 Node* fp = ret->in(TypeFunc::FramePtr); 2710 Node* mem = ret->in(TypeFunc::Memory); 2711 const TypePtr* atp = TypePtr::BOTTOM; 2712 MemNode::MemOrd mo = MemNode::unordered; 2713 2714 Node* spill; 2715 switch (ideal_reg) { 2716 case Op_RegN: spill = new LoadNNode(nullptr, mem, fp, atp, t->is_narrowoop(), mo); break; 2717 case Op_RegI: spill = new LoadINode(nullptr, mem, fp, atp, t->is_int(), mo); break; 2718 case Op_RegP: spill = new LoadPNode(nullptr, mem, fp, atp, t->is_ptr(), mo); break; 2719 case Op_RegF: spill = new LoadFNode(nullptr, mem, fp, atp, t, mo); break; 2720 case Op_RegD: spill = new LoadDNode(nullptr, mem, fp, atp, t, mo); break; 2721 case Op_RegL: spill = new LoadLNode(nullptr, mem, fp, atp, t->is_long(), mo); break; 2722 2723 case Op_VecA: // fall-through 2724 case Op_VecS: // fall-through 2725 case Op_VecD: // fall-through 2726 case Op_VecX: // fall-through 2727 case Op_VecY: // fall-through 2728 case Op_VecZ: spill = new LoadVectorNode(nullptr, mem, fp, atp, t->is_vect()); break; 2729 case Op_RegVectMask: return Matcher::predicate_reg_mask(); 2730 2731 default: ShouldNotReachHere(); 2732 } 2733 MachNode* mspill = match_tree(spill); 2734 assert(mspill != nullptr || C->failure_is_artificial(), "matching failed: %d", ideal_reg); 2735 if (C->failing()) { 2736 return nullptr; 2737 } 2738 // Handle generic vector operand case 2739 if (Matcher::supports_generic_vector_operands && t->isa_vect()) { 2740 specialize_mach_node(mspill); 2741 } 2742 return &mspill->out_RegMask(); 2743 } 2744 2745 // Process Mach IR right after selection phase is over. 2746 void Matcher::do_postselect_cleanup() { 2747 if (supports_generic_vector_operands) { 2748 specialize_generic_vector_operands(); 2749 if (C->failing()) return; 2750 } 2751 } 2752 2753 //---------------------------------------------------------------------- 2754 // Generic machine operands elision. 2755 //---------------------------------------------------------------------- 2756 2757 // Compute concrete vector operand for a generic TEMP vector mach node based on its user info. 2758 void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) { 2759 assert(use->in(idx) == tmp, "not a user"); 2760 assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet"); 2761 2762 if ((uint)idx == use->two_adr()) { // DEF_TEMP case 2763 tmp->_opnds[0] = use->_opnds[0]->clone(); 2764 } else { 2765 uint ideal_vreg = vector_ideal_reg(C->max_vector_size()); 2766 tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/); 2767 } 2768 } 2769 2770 // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx). 2771 MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) { 2772 assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates"); 2773 Node* def = nullptr; 2774 if (opnd_idx == 0) { // DEF 2775 def = m; // use mach node itself to compute vector operand type 2776 } else { 2777 int base_idx = m->operand_index(opnd_idx); 2778 def = m->in(base_idx); 2779 if (def->is_Mach()) { 2780 if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) { 2781 specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site 2782 } else if (is_reg2reg_move(def->as_Mach())) { 2783 def = def->in(1); // skip over generic reg-to-reg moves 2784 } 2785 } 2786 } 2787 assert(def->bottom_type()->isa_vect(), "not a vector"); 2788 uint ideal_vreg = def->bottom_type()->ideal_reg(); 2789 return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/); 2790 } 2791 2792 void Matcher::specialize_mach_node(MachNode* m) { 2793 assert(!m->is_MachTemp(), "processed along with its user"); 2794 // For generic use operands pull specific register class operands from 2795 // its def instruction's output operand (def operand). 2796 for (uint i = 0; i < m->num_opnds(); i++) { 2797 if (Matcher::is_generic_vector(m->_opnds[i])) { 2798 m->_opnds[i] = specialize_vector_operand(m, i); 2799 } 2800 } 2801 } 2802 2803 // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph. 2804 void Matcher::specialize_generic_vector_operands() { 2805 assert(supports_generic_vector_operands, "sanity"); 2806 ResourceMark rm; 2807 2808 // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ]) 2809 // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec). 2810 Unique_Node_List live_nodes; 2811 C->identify_useful_nodes(live_nodes); 2812 2813 while (live_nodes.size() > 0) { 2814 MachNode* m = live_nodes.pop()->isa_Mach(); 2815 if (m != nullptr) { 2816 if (Matcher::is_reg2reg_move(m)) { 2817 // Register allocator properly handles vec <=> leg moves using register masks. 2818 int opnd_idx = m->operand_index(1); 2819 Node* def = m->in(opnd_idx); 2820 m->subsume_by(def, C); 2821 } else if (m->is_MachTemp()) { 2822 // process MachTemp nodes at use site (see Matcher::specialize_vector_operand) 2823 } else { 2824 specialize_mach_node(m); 2825 } 2826 } 2827 } 2828 } 2829 2830 uint Matcher::vector_length(const Node* n) { 2831 const TypeVect* vt = n->bottom_type()->is_vect(); 2832 return vt->length(); 2833 } 2834 2835 uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) { 2836 int def_idx = use->operand_index(opnd); 2837 Node* def = use->in(def_idx); 2838 return def->bottom_type()->is_vect()->length(); 2839 } 2840 2841 uint Matcher::vector_length_in_bytes(const Node* n) { 2842 const TypeVect* vt = n->bottom_type()->is_vect(); 2843 return vt->length_in_bytes(); 2844 } 2845 2846 uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) { 2847 uint def_idx = use->operand_index(opnd); 2848 Node* def = use->in(def_idx); 2849 return def->bottom_type()->is_vect()->length_in_bytes(); 2850 } 2851 2852 BasicType Matcher::vector_element_basic_type(const Node* n) { 2853 const TypeVect* vt = n->bottom_type()->is_vect(); 2854 return vt->element_basic_type(); 2855 } 2856 2857 BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) { 2858 int def_idx = use->operand_index(opnd); 2859 Node* def = use->in(def_idx); 2860 return def->bottom_type()->is_vect()->element_basic_type(); 2861 } 2862 2863 bool Matcher::is_non_long_integral_vector(const Node* n) { 2864 BasicType bt = vector_element_basic_type(n); 2865 assert(bt != T_CHAR, "char is not allowed in vector"); 2866 return is_subword_type(bt) || bt == T_INT; 2867 } 2868 2869 bool Matcher::is_encode_and_store_pattern(const Node* n, const Node* m) { 2870 if (n == nullptr || 2871 m == nullptr || 2872 n->Opcode() != Op_StoreN || 2873 !m->is_EncodeP() || 2874 n->as_Store()->barrier_data() == 0) { 2875 return false; 2876 } 2877 assert(m == n->in(MemNode::ValueIn), "m should be input to n"); 2878 return true; 2879 } 2880 2881 #ifdef ASSERT 2882 bool Matcher::verify_after_postselect_cleanup() { 2883 assert(!C->failing_internal() || C->failure_is_artificial(), "sanity"); 2884 if (supports_generic_vector_operands) { 2885 Unique_Node_List useful; 2886 C->identify_useful_nodes(useful); 2887 for (uint i = 0; i < useful.size(); i++) { 2888 MachNode* m = useful.at(i)->isa_Mach(); 2889 if (m != nullptr) { 2890 assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed"); 2891 for (uint j = 0; j < m->num_opnds(); j++) { 2892 assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed"); 2893 } 2894 } 2895 } 2896 } 2897 return true; 2898 } 2899 #endif // ASSERT 2900 2901 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or 2902 // atomic instruction acting as a store_load barrier without any 2903 // intervening volatile load, and thus we don't need a barrier here. 2904 // We retain the Node to act as a compiler ordering barrier. 2905 bool Matcher::post_store_load_barrier(const Node* vmb) { 2906 Compile* C = Compile::current(); 2907 assert(vmb->is_MemBar(), ""); 2908 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, ""); 2909 const MemBarNode* membar = vmb->as_MemBar(); 2910 2911 // Get the Ideal Proj node, ctrl, that can be used to iterate forward 2912 Node* ctrl = nullptr; 2913 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { 2914 Node* p = membar->fast_out(i); 2915 assert(p->is_Proj(), "only projections here"); 2916 if ((p->as_Proj()->_con == TypeFunc::Control) && 2917 !C->node_arena()->contains(p)) { // Unmatched old-space only 2918 ctrl = p; 2919 break; 2920 } 2921 } 2922 assert((ctrl != nullptr), "missing control projection"); 2923 2924 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { 2925 Node *x = ctrl->fast_out(j); 2926 int xop = x->Opcode(); 2927 2928 // We don't need current barrier if we see another or a lock 2929 // before seeing volatile load. 2930 // 2931 // Op_Fastunlock previously appeared in the Op_* list below. 2932 // With the advent of 1-0 lock operations we're no longer guaranteed 2933 // that a monitor exit operation contains a serializing instruction. 2934 2935 if (xop == Op_MemBarVolatile || 2936 xop == Op_CompareAndExchangeB || 2937 xop == Op_CompareAndExchangeS || 2938 xop == Op_CompareAndExchangeI || 2939 xop == Op_CompareAndExchangeL || 2940 xop == Op_CompareAndExchangeP || 2941 xop == Op_CompareAndExchangeN || 2942 xop == Op_WeakCompareAndSwapB || 2943 xop == Op_WeakCompareAndSwapS || 2944 xop == Op_WeakCompareAndSwapL || 2945 xop == Op_WeakCompareAndSwapP || 2946 xop == Op_WeakCompareAndSwapN || 2947 xop == Op_WeakCompareAndSwapI || 2948 xop == Op_CompareAndSwapB || 2949 xop == Op_CompareAndSwapS || 2950 xop == Op_CompareAndSwapL || 2951 xop == Op_CompareAndSwapP || 2952 xop == Op_CompareAndSwapN || 2953 xop == Op_CompareAndSwapI || 2954 BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) { 2955 return true; 2956 } 2957 2958 // Op_FastLock previously appeared in the Op_* list above. 2959 if (xop == Op_FastLock) { 2960 return true; 2961 } 2962 2963 if (x->is_MemBar()) { 2964 // We must retain this membar if there is an upcoming volatile 2965 // load, which will be followed by acquire membar. 2966 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { 2967 return false; 2968 } else { 2969 // For other kinds of barriers, check by pretending we 2970 // are them, and seeing if we can be removed. 2971 return post_store_load_barrier(x->as_MemBar()); 2972 } 2973 } 2974 2975 // probably not necessary to check for these 2976 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { 2977 return false; 2978 } 2979 } 2980 return false; 2981 } 2982 2983 // Check whether node n is a branch to an uncommon trap that we could 2984 // optimize as test with very high branch costs in case of going to 2985 // the uncommon trap. The code must be able to be recompiled to use 2986 // a cheaper test. 2987 bool Matcher::branches_to_uncommon_trap(const Node *n) { 2988 // Don't do it for natives, adapters, or runtime stubs 2989 Compile *C = Compile::current(); 2990 if (!C->is_method_compilation()) return false; 2991 2992 assert(n->is_If(), "You should only call this on if nodes."); 2993 IfNode *ifn = n->as_If(); 2994 2995 Node *ifFalse = nullptr; 2996 for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { 2997 if (ifn->fast_out(i)->is_IfFalse()) { 2998 ifFalse = ifn->fast_out(i); 2999 break; 3000 } 3001 } 3002 assert(ifFalse, "An If should have an ifFalse. Graph is broken."); 3003 3004 Node *reg = ifFalse; 3005 int cnt = 4; // We must protect against cycles. Limit to 4 iterations. 3006 // Alternatively use visited set? Seems too expensive. 3007 while (reg != nullptr && cnt > 0) { 3008 CallNode *call = nullptr; 3009 RegionNode *nxt_reg = nullptr; 3010 for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { 3011 Node *o = reg->fast_out(i); 3012 if (o->is_Call()) { 3013 call = o->as_Call(); 3014 } 3015 if (o->is_Region()) { 3016 nxt_reg = o->as_Region(); 3017 } 3018 } 3019 3020 if (call && 3021 call->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) { 3022 const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); 3023 if (trtype->isa_int() && trtype->is_int()->is_con()) { 3024 jint tr_con = trtype->is_int()->get_con(); 3025 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); 3026 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); 3027 assert((int)reason < (int)BitsPerInt, "recode bit map"); 3028 3029 if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) 3030 && action != Deoptimization::Action_none) { 3031 // This uncommon trap is sure to recompile, eventually. 3032 // When that happens, C->too_many_traps will prevent 3033 // this transformation from happening again. 3034 return true; 3035 } 3036 } 3037 } 3038 3039 reg = nxt_reg; 3040 cnt--; 3041 } 3042 3043 return false; 3044 } 3045 3046 //============================================================================= 3047 //---------------------------State--------------------------------------------- 3048 State::State(void) : _rule() { 3049 #ifdef ASSERT 3050 _id = 0; 3051 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 3052 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 3053 #endif 3054 } 3055 3056 #ifdef ASSERT 3057 State::~State() { 3058 _id = 99; 3059 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 3060 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 3061 memset(_cost, -3, sizeof(_cost)); 3062 memset(_rule, -3, sizeof(_rule)); 3063 } 3064 #endif 3065 3066 #ifndef PRODUCT 3067 //---------------------------dump---------------------------------------------- 3068 void State::dump() { 3069 tty->print("\n"); 3070 dump(0); 3071 } 3072 3073 void State::dump(int depth) { 3074 for (int j = 0; j < depth; j++) { 3075 tty->print(" "); 3076 } 3077 tty->print("--N: "); 3078 _leaf->dump(); 3079 uint i; 3080 for (i = 0; i < _LAST_MACH_OPER; i++) { 3081 // Check for valid entry 3082 if (valid(i)) { 3083 for (int j = 0; j < depth; j++) { 3084 tty->print(" "); 3085 } 3086 assert(cost(i) != max_juint, "cost must be a valid value"); 3087 assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule"); 3088 tty->print_cr("%s %d %s", 3089 ruleName[i], cost(i), ruleName[rule(i)] ); 3090 } 3091 } 3092 tty->cr(); 3093 3094 for (i = 0; i < 2; i++) { 3095 if (_kids[i]) { 3096 _kids[i]->dump(depth + 1); 3097 } 3098 } 3099 } 3100 #endif