1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "memory/allocation.inline.hpp" 26 #include "opto/addnode.hpp" 27 #include "opto/connode.hpp" 28 #include "opto/convertnode.hpp" 29 #include "opto/memnode.hpp" 30 #include "opto/mulnode.hpp" 31 #include "opto/phaseX.hpp" 32 #include "opto/subnode.hpp" 33 #include "utilities/powerOfTwo.hpp" 34 35 // Portions of code courtesy of Clifford Click 36 37 38 //============================================================================= 39 //------------------------------hash------------------------------------------- 40 // Hash function over MulNodes. Needs to be commutative; i.e., I swap 41 // (commute) inputs to MulNodes willy-nilly so the hash function must return 42 // the same value in the presence of edge swapping. 43 uint MulNode::hash() const { 44 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); 45 } 46 47 //------------------------------Identity--------------------------------------- 48 // Multiplying a one preserves the other argument 49 Node* MulNode::Identity(PhaseGVN* phase) { 50 const Type *one = mul_id(); // The multiplicative identity 51 if( phase->type( in(1) )->higher_equal( one ) ) return in(2); 52 if( phase->type( in(2) )->higher_equal( one ) ) return in(1); 53 54 return this; 55 } 56 57 //------------------------------Ideal------------------------------------------ 58 // We also canonicalize the Node, moving constants to the right input, 59 // and flatten expressions (so that 1+x+2 becomes x+3). 60 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) { 61 Node* in1 = in(1); 62 Node* in2 = in(2); 63 Node* progress = nullptr; // Progress flag 64 65 // This code is used by And nodes too, but some conversions are 66 // only valid for the actual Mul nodes. 67 uint op = Opcode(); 68 bool real_mul = (op == Op_MulI) || (op == Op_MulL) || 69 (op == Op_MulF) || (op == Op_MulD) || 70 (op == Op_MulHF); 71 72 // Convert "(-a)*(-b)" into "a*b". 73 if (real_mul && in1->is_Sub() && in2->is_Sub()) { 74 if (phase->type(in1->in(1))->is_zero_type() && 75 phase->type(in2->in(1))->is_zero_type()) { 76 set_req_X(1, in1->in(2), phase); 77 set_req_X(2, in2->in(2), phase); 78 in1 = in(1); 79 in2 = in(2); 80 progress = this; 81 } 82 } 83 84 // convert "max(a,b) * min(a,b)" into "a*b". 85 if ((in(1)->Opcode() == max_opcode() && in(2)->Opcode() == min_opcode()) 86 || (in(1)->Opcode() == min_opcode() && in(2)->Opcode() == max_opcode())) { 87 Node *in11 = in(1)->in(1); 88 Node *in12 = in(1)->in(2); 89 90 Node *in21 = in(2)->in(1); 91 Node *in22 = in(2)->in(2); 92 93 if ((in11 == in21 && in12 == in22) || 94 (in11 == in22 && in12 == in21)) { 95 set_req_X(1, in11, phase); 96 set_req_X(2, in12, phase); 97 in1 = in(1); 98 in2 = in(2); 99 progress = this; 100 } 101 } 102 103 const Type* t1 = phase->type(in1); 104 const Type* t2 = phase->type(in2); 105 106 // We are OK if right is a constant, or right is a load and 107 // left is a non-constant. 108 if( !(t2->singleton() || 109 (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) { 110 if( t1->singleton() || // Left input is a constant? 111 // Otherwise, sort inputs (commutativity) to help value numbering. 112 (in(1)->_idx > in(2)->_idx) ) { 113 swap_edges(1, 2); 114 const Type *t = t1; 115 t1 = t2; 116 t2 = t; 117 progress = this; // Made progress 118 } 119 } 120 121 // If the right input is a constant, and the left input is a product of a 122 // constant, flatten the expression tree. 123 if( t2->singleton() && // Right input is a constant? 124 op != Op_MulF && // Float & double cannot reassociate 125 op != Op_MulD && 126 op != Op_MulHF) { 127 if( t2 == Type::TOP ) return nullptr; 128 Node *mul1 = in(1); 129 #ifdef ASSERT 130 // Check for dead loop 131 int op1 = mul1->Opcode(); 132 if ((mul1 == this) || (in(2) == this) || 133 ((op1 == mul_opcode() || op1 == add_opcode()) && 134 ((mul1->in(1) == this) || (mul1->in(2) == this) || 135 (mul1->in(1) == mul1) || (mul1->in(2) == mul1)))) { 136 assert(false, "dead loop in MulNode::Ideal"); 137 } 138 #endif 139 140 if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply? 141 // Mul of a constant? 142 const Type *t12 = phase->type( mul1->in(2) ); 143 if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? 144 // Compute new constant; check for overflow 145 const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12); 146 if( tcon01->singleton() ) { 147 // The Mul of the flattened expression 148 set_req_X(1, mul1->in(1), phase); 149 set_req_X(2, phase->makecon(tcon01), phase); 150 t2 = tcon01; 151 progress = this; // Made progress 152 } 153 } 154 } 155 // If the right input is a constant, and the left input is an add of a 156 // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0 157 const Node *add1 = in(1); 158 if( add1->Opcode() == add_opcode() ) { // Left input is an add? 159 // Add of a constant? 160 const Type *t12 = phase->type( add1->in(2) ); 161 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? 162 assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" ); 163 // Compute new constant; check for overflow 164 const Type *tcon01 = mul_ring(t2,t12); 165 if( tcon01->singleton() ) { 166 167 // Convert (X+con1)*con0 into X*con0 168 Node *mul = clone(); // mul = ()*con0 169 mul->set_req(1,add1->in(1)); // mul = X*con0 170 mul = phase->transform(mul); 171 172 Node *add2 = add1->clone(); 173 add2->set_req(1, mul); // X*con0 + con0*con1 174 add2->set_req(2, phase->makecon(tcon01) ); 175 progress = add2; 176 } 177 } 178 } // End of is left input an add 179 } // End of is right input a Mul 180 181 return progress; 182 } 183 184 //------------------------------Value----------------------------------------- 185 const Type* MulNode::Value(PhaseGVN* phase) const { 186 const Type *t1 = phase->type( in(1) ); 187 const Type *t2 = phase->type( in(2) ); 188 // Either input is TOP ==> the result is TOP 189 if( t1 == Type::TOP ) return Type::TOP; 190 if( t2 == Type::TOP ) return Type::TOP; 191 192 // Either input is ZERO ==> the result is ZERO. 193 // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0 194 int op = Opcode(); 195 if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) { 196 const Type *zero = add_id(); // The multiplicative zero 197 if( t1->higher_equal( zero ) ) return zero; 198 if( t2->higher_equal( zero ) ) return zero; 199 } 200 201 // Code pattern on return from a call that returns an __Value. Can 202 // be optimized away if the return value turns out to be an oop. 203 if (op == Op_AndX && 204 in(1) != nullptr && 205 in(1)->Opcode() == Op_CastP2X && 206 in(1)->in(1) != nullptr && 207 phase->type(in(1)->in(1))->isa_oopptr() && 208 t2->isa_intptr_t()->_lo >= 0 && 209 t2->isa_intptr_t()->_hi <= MinObjAlignmentInBytesMask) { 210 return add_id(); 211 } 212 213 // Either input is BOTTOM ==> the result is the local BOTTOM 214 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) 215 return bottom_type(); 216 217 #if defined(IA32) 218 // Can't trust native compilers to properly fold strict double 219 // multiplication with round-to-zero on this platform. 220 if (op == Op_MulD) { 221 return TypeD::DOUBLE; 222 } 223 #endif 224 225 return mul_ring(t1,t2); // Local flavor of type multiplication 226 } 227 228 MulNode* MulNode::make(Node* in1, Node* in2, BasicType bt) { 229 switch (bt) { 230 case T_INT: 231 return new MulINode(in1, in2); 232 case T_LONG: 233 return new MulLNode(in1, in2); 234 default: 235 fatal("Not implemented for %s", type2name(bt)); 236 } 237 return nullptr; 238 } 239 240 MulNode* MulNode::make_and(Node* in1, Node* in2, BasicType bt) { 241 switch (bt) { 242 case T_INT: 243 return new AndINode(in1, in2); 244 case T_LONG: 245 return new AndLNode(in1, in2); 246 default: 247 fatal("Not implemented for %s", type2name(bt)); 248 } 249 return nullptr; 250 } 251 252 253 //============================================================================= 254 //------------------------------Ideal------------------------------------------ 255 // Check for power-of-2 multiply, then try the regular MulNode::Ideal 256 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) { 257 const jint con = in(2)->find_int_con(0); 258 if (con == 0) { 259 // If in(2) is not a constant, call Ideal() of the parent class to 260 // try to move constant to the right side. 261 return MulNode::Ideal(phase, can_reshape); 262 } 263 264 // Now we have a constant Node on the right and the constant in con. 265 if (con == 1) { 266 // By one is handled by Identity call 267 return nullptr; 268 } 269 270 // Check for negative constant; if so negate the final result 271 bool sign_flip = false; 272 273 unsigned int abs_con = uabs(con); 274 if (abs_con != (unsigned int)con) { 275 sign_flip = true; 276 } 277 278 // Get low bit; check for being the only bit 279 Node *res = nullptr; 280 unsigned int bit1 = submultiple_power_of_2(abs_con); 281 if (bit1 == abs_con) { // Found a power of 2? 282 res = new LShiftINode(in(1), phase->intcon(log2i_exact(bit1))); 283 } else { 284 // Check for constant with 2 bits set 285 unsigned int bit2 = abs_con - bit1; 286 bit2 = bit2 & (0 - bit2); // Extract 2nd bit 287 if (bit2 + bit1 == abs_con) { // Found all bits in con? 288 Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit1)))); 289 Node *n2 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit2)))); 290 res = new AddINode(n2, n1); 291 } else if (is_power_of_2(abs_con + 1)) { 292 // Sleezy: power-of-2 - 1. Next time be generic. 293 unsigned int temp = abs_con + 1; 294 Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(temp)))); 295 res = new SubINode(n1, in(1)); 296 } else { 297 return MulNode::Ideal(phase, can_reshape); 298 } 299 } 300 301 if (sign_flip) { // Need to negate result? 302 res = phase->transform(res);// Transform, before making the zero con 303 res = new SubINode(phase->intcon(0),res); 304 } 305 306 return res; // Return final result 307 } 308 309 // This template class performs type multiplication for MulI/MulLNode. NativeType is either jint or jlong. 310 // In this class, the inputs of the MulNodes are named left and right with types [left_lo,left_hi] and [right_lo,right_hi]. 311 // 312 // In general, the multiplication of two x-bit values could produce a result that consumes up to 2x bits if there is 313 // enough space to hold them all. We can therefore distinguish the following two cases for the product: 314 // - no overflow (i.e. product fits into x bits) 315 // - overflow (i.e. product does not fit into x bits) 316 // 317 // When multiplying the two x-bit inputs 'left' and 'right' with their x-bit types [left_lo,left_hi] and [right_lo,right_hi] 318 // we need to find the minimum and maximum of all possible products to define a new type. To do that, we compute the 319 // cross product of [left_lo,left_hi] and [right_lo,right_hi] in 2x-bit space where no over- or underflow can happen. 320 // The cross product consists of the following four multiplications with 2x-bit results: 321 // (1) left_lo * right_lo 322 // (2) left_lo * right_hi 323 // (3) left_hi * right_lo 324 // (4) left_hi * right_hi 325 // 326 // Let's define the following two functions: 327 // - Lx(i): Returns the lower x bits of the 2x-bit number i. 328 // - Ux(i): Returns the upper x bits of the 2x-bit number i. 329 // 330 // Let's first assume all products are positive where only overflows are possible but no underflows. If there is no 331 // overflow for a product p, then the upper x bits of the 2x-bit result p are all zero: 332 // Ux(p) = 0 333 // Lx(p) = p 334 // 335 // If none of the multiplications (1)-(4) overflow, we can truncate the upper x bits and use the following result type 336 // with x bits: 337 // [result_lo,result_hi] = [MIN(Lx(1),Lx(2),Lx(3),Lx(4)),MAX(Lx(1),Lx(2),Lx(3),Lx(4))] 338 // 339 // If any of these multiplications overflows, we could pessimistically take the bottom type for the x bit result 340 // (i.e. all values in the x-bit space could be possible): 341 // [result_lo,result_hi] = [NativeType_min,NativeType_max] 342 // 343 // However, in case of any overflow, we can do better by analyzing the upper x bits of all multiplications (1)-(4) with 344 // 2x-bit results. The upper x bits tell us something about how many times a multiplication has overflown the lower 345 // x bits. If the upper x bits of (1)-(4) are all equal, then we know that all of these multiplications overflowed 346 // the lower x bits the same number of times: 347 // Ux((1)) = Ux((2)) = Ux((3)) = Ux((4)) 348 // 349 // If all upper x bits are equal, we can conclude: 350 // Lx(MIN((1),(2),(3),(4))) = MIN(Lx(1),Lx(2),Lx(3),Lx(4))) 351 // Lx(MAX((1),(2),(3),(4))) = MAX(Lx(1),Lx(2),Lx(3),Lx(4))) 352 // 353 // Therefore, we can use the same precise x-bit result type as for the no-overflow case: 354 // [result_lo,result_hi] = [(MIN(Lx(1),Lx(2),Lx(3),Lx(4))),MAX(Lx(1),Lx(2),Lx(3),Lx(4)))] 355 // 356 // 357 // Now let's assume that (1)-(4) are signed multiplications where over- and underflow could occur: 358 // Negative numbers are all sign extend with ones. Therefore, if a negative product does not underflow, then the 359 // upper x bits of the 2x-bit result are all set to ones which is minus one in two's complement. If there is an underflow, 360 // the upper x bits are decremented by the number of times an underflow occurred. The smallest possible negative product 361 // is NativeType_min*NativeType_max, where the upper x bits are set to NativeType_min / 2 (b11...0). It is therefore 362 // impossible to underflow the upper x bits. Thus, when having all ones (i.e. minus one) in the upper x bits, we know 363 // that there is no underflow. 364 // 365 // To be able to compare the number of over-/underflows of positive and negative products, respectively, we normalize 366 // the upper x bits of negative 2x-bit products by adding one. This way a product has no over- or underflow if the 367 // normalized upper x bits are zero. Now we can use the same improved type as for strictly positive products because we 368 // can compare the upper x bits in a unified way with N() being the normalization function: 369 // N(Ux((1))) = N(Ux((2))) = N(Ux((3)) = N(Ux((4))) 370 template<typename NativeType> 371 class IntegerTypeMultiplication { 372 373 NativeType _lo_left; 374 NativeType _lo_right; 375 NativeType _hi_left; 376 NativeType _hi_right; 377 short _widen_left; 378 short _widen_right; 379 380 static const Type* overflow_type(); 381 static NativeType multiply_high(NativeType x, NativeType y); 382 const Type* create_type(NativeType lo, NativeType hi) const; 383 384 static NativeType multiply_high_signed_overflow_value(NativeType x, NativeType y) { 385 return normalize_overflow_value(x, y, multiply_high(x, y)); 386 } 387 388 bool cross_product_not_same_overflow_value() const { 389 const NativeType lo_lo_high_product = multiply_high_signed_overflow_value(_lo_left, _lo_right); 390 const NativeType lo_hi_high_product = multiply_high_signed_overflow_value(_lo_left, _hi_right); 391 const NativeType hi_lo_high_product = multiply_high_signed_overflow_value(_hi_left, _lo_right); 392 const NativeType hi_hi_high_product = multiply_high_signed_overflow_value(_hi_left, _hi_right); 393 return lo_lo_high_product != lo_hi_high_product || 394 lo_hi_high_product != hi_lo_high_product || 395 hi_lo_high_product != hi_hi_high_product; 396 } 397 398 bool does_product_overflow(NativeType x, NativeType y) const { 399 return multiply_high_signed_overflow_value(x, y) != 0; 400 } 401 402 static NativeType normalize_overflow_value(const NativeType x, const NativeType y, NativeType result) { 403 return java_multiply(x, y) < 0 ? result + 1 : result; 404 } 405 406 public: 407 template<class IntegerType> 408 IntegerTypeMultiplication(const IntegerType* left, const IntegerType* right) 409 : _lo_left(left->_lo), _lo_right(right->_lo), 410 _hi_left(left->_hi), _hi_right(right->_hi), 411 _widen_left(left->_widen), _widen_right(right->_widen) {} 412 413 // Compute the product type by multiplying the two input type ranges. We take the minimum and maximum of all possible 414 // values (requires 4 multiplications of all possible combinations of the two range boundary values). If any of these 415 // multiplications overflows/underflows, we need to make sure that they all have the same number of overflows/underflows 416 // If that is not the case, we return the bottom type to cover all values due to the inconsistent overflows/underflows). 417 const Type* compute() const { 418 if (cross_product_not_same_overflow_value()) { 419 return overflow_type(); 420 } 421 422 NativeType lo_lo_product = java_multiply(_lo_left, _lo_right); 423 NativeType lo_hi_product = java_multiply(_lo_left, _hi_right); 424 NativeType hi_lo_product = java_multiply(_hi_left, _lo_right); 425 NativeType hi_hi_product = java_multiply(_hi_left, _hi_right); 426 const NativeType min = MIN4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product); 427 const NativeType max = MAX4(lo_lo_product, lo_hi_product, hi_lo_product, hi_hi_product); 428 return create_type(min, max); 429 } 430 431 bool does_overflow() const { 432 return does_product_overflow(_lo_left, _lo_right) || 433 does_product_overflow(_lo_left, _hi_right) || 434 does_product_overflow(_hi_left, _lo_right) || 435 does_product_overflow(_hi_left, _hi_right); 436 } 437 }; 438 439 template <> 440 const Type* IntegerTypeMultiplication<jint>::overflow_type() { 441 return TypeInt::INT; 442 } 443 444 template <> 445 jint IntegerTypeMultiplication<jint>::multiply_high(const jint x, const jint y) { 446 const jlong x_64 = x; 447 const jlong y_64 = y; 448 const jlong product = x_64 * y_64; 449 return (jint)((uint64_t)product >> 32u); 450 } 451 452 template <> 453 const Type* IntegerTypeMultiplication<jint>::create_type(jint lo, jint hi) const { 454 return TypeInt::make(lo, hi, MAX2(_widen_left, _widen_right)); 455 } 456 457 template <> 458 const Type* IntegerTypeMultiplication<jlong>::overflow_type() { 459 return TypeLong::LONG; 460 } 461 462 template <> 463 jlong IntegerTypeMultiplication<jlong>::multiply_high(const jlong x, const jlong y) { 464 return multiply_high_signed(x, y); 465 } 466 467 template <> 468 const Type* IntegerTypeMultiplication<jlong>::create_type(jlong lo, jlong hi) const { 469 return TypeLong::make(lo, hi, MAX2(_widen_left, _widen_right)); 470 } 471 472 // Compute the product type of two integer ranges into this node. 473 const Type* MulINode::mul_ring(const Type* type_left, const Type* type_right) const { 474 const IntegerTypeMultiplication<jint> integer_multiplication(type_left->is_int(), type_right->is_int()); 475 return integer_multiplication.compute(); 476 } 477 478 bool MulINode::does_overflow(const TypeInt* type_left, const TypeInt* type_right) { 479 const IntegerTypeMultiplication<jint> integer_multiplication(type_left, type_right); 480 return integer_multiplication.does_overflow(); 481 } 482 483 // Compute the product type of two long ranges into this node. 484 const Type* MulLNode::mul_ring(const Type* type_left, const Type* type_right) const { 485 const IntegerTypeMultiplication<jlong> integer_multiplication(type_left->is_long(), type_right->is_long()); 486 return integer_multiplication.compute(); 487 } 488 489 //============================================================================= 490 //------------------------------Ideal------------------------------------------ 491 // Check for power-of-2 multiply, then try the regular MulNode::Ideal 492 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 493 const jlong con = in(2)->find_long_con(0); 494 if (con == 0) { 495 // If in(2) is not a constant, call Ideal() of the parent class to 496 // try to move constant to the right side. 497 return MulNode::Ideal(phase, can_reshape); 498 } 499 500 // Now we have a constant Node on the right and the constant in con. 501 if (con == 1) { 502 // By one is handled by Identity call 503 return nullptr; 504 } 505 506 // Check for negative constant; if so negate the final result 507 bool sign_flip = false; 508 julong abs_con = uabs(con); 509 if (abs_con != (julong)con) { 510 sign_flip = true; 511 } 512 513 // Get low bit; check for being the only bit 514 Node *res = nullptr; 515 julong bit1 = submultiple_power_of_2(abs_con); 516 if (bit1 == abs_con) { // Found a power of 2? 517 res = new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1))); 518 } else { 519 520 // Check for constant with 2 bits set 521 julong bit2 = abs_con-bit1; 522 bit2 = bit2 & (0-bit2); // Extract 2nd bit 523 if (bit2 + bit1 == abs_con) { // Found all bits in con? 524 Node *n1 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1)))); 525 Node *n2 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit2)))); 526 res = new AddLNode(n2, n1); 527 528 } else if (is_power_of_2(abs_con+1)) { 529 // Sleezy: power-of-2 -1. Next time be generic. 530 julong temp = abs_con + 1; 531 Node *n1 = phase->transform( new LShiftLNode(in(1), phase->intcon(log2i_exact(temp)))); 532 res = new SubLNode(n1, in(1)); 533 } else { 534 return MulNode::Ideal(phase, can_reshape); 535 } 536 } 537 538 if (sign_flip) { // Need to negate result? 539 res = phase->transform(res);// Transform, before making the zero con 540 res = new SubLNode(phase->longcon(0),res); 541 } 542 543 return res; // Return final result 544 } 545 546 //============================================================================= 547 //------------------------------mul_ring--------------------------------------- 548 // Compute the product type of two double ranges into this node. 549 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const { 550 if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT; 551 return TypeF::make( t0->getf() * t1->getf() ); 552 } 553 554 //------------------------------Ideal--------------------------------------- 555 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal 556 Node* MulFNode::Ideal(PhaseGVN* phase, bool can_reshape) { 557 const TypeF *t2 = phase->type(in(2))->isa_float_constant(); 558 559 // x * 2 -> x + x 560 if (t2 != nullptr && t2->getf() == 2) { 561 Node* base = in(1); 562 return new AddFNode(base, base); 563 } 564 return MulNode::Ideal(phase, can_reshape); 565 } 566 567 //============================================================================= 568 //------------------------------Ideal------------------------------------------ 569 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal 570 Node* MulHFNode::Ideal(PhaseGVN* phase, bool can_reshape) { 571 const TypeH* t2 = phase->type(in(2))->isa_half_float_constant(); 572 573 // x * 2 -> x + x 574 if (t2 != nullptr && t2->getf() == 2) { 575 Node* base = in(1); 576 return new AddHFNode(base, base); 577 } 578 return MulNode::Ideal(phase, can_reshape); 579 } 580 581 // Compute the product type of two half float ranges into this node. 582 const Type* MulHFNode::mul_ring(const Type* t0, const Type* t1) const { 583 if (t0 == Type::HALF_FLOAT || t1 == Type::HALF_FLOAT) { 584 return Type::HALF_FLOAT; 585 } 586 return TypeH::make(t0->getf() * t1->getf()); 587 } 588 589 //============================================================================= 590 //------------------------------mul_ring--------------------------------------- 591 // Compute the product type of two double ranges into this node. 592 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const { 593 if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE; 594 // We must be multiplying 2 double constants. 595 return TypeD::make( t0->getd() * t1->getd() ); 596 } 597 598 //------------------------------Ideal--------------------------------------- 599 // Check to see if we are multiplying by a constant 2 and convert to add, then try the regular MulNode::Ideal 600 Node* MulDNode::Ideal(PhaseGVN* phase, bool can_reshape) { 601 const TypeD *t2 = phase->type(in(2))->isa_double_constant(); 602 603 // x * 2 -> x + x 604 if (t2 != nullptr && t2->getd() == 2) { 605 Node* base = in(1); 606 return new AddDNode(base, base); 607 } 608 609 return MulNode::Ideal(phase, can_reshape); 610 } 611 612 //============================================================================= 613 //------------------------------Value------------------------------------------ 614 const Type* MulHiLNode::Value(PhaseGVN* phase) const { 615 const Type *t1 = phase->type( in(1) ); 616 const Type *t2 = phase->type( in(2) ); 617 const Type *bot = bottom_type(); 618 return MulHiValue(t1, t2, bot); 619 } 620 621 const Type* UMulHiLNode::Value(PhaseGVN* phase) const { 622 const Type *t1 = phase->type( in(1) ); 623 const Type *t2 = phase->type( in(2) ); 624 const Type *bot = bottom_type(); 625 return MulHiValue(t1, t2, bot); 626 } 627 628 // A common routine used by UMulHiLNode and MulHiLNode 629 const Type* MulHiValue(const Type *t1, const Type *t2, const Type *bot) { 630 // Either input is TOP ==> the result is TOP 631 if( t1 == Type::TOP ) return Type::TOP; 632 if( t2 == Type::TOP ) return Type::TOP; 633 634 // Either input is BOTTOM ==> the result is the local BOTTOM 635 if( (t1 == bot) || (t2 == bot) || 636 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 637 return bot; 638 639 // It is not worth trying to constant fold this stuff! 640 return TypeLong::LONG; 641 } 642 643 template<typename IntegerType> 644 static const IntegerType* and_value(const IntegerType* r0, const IntegerType* r1) { 645 typedef typename IntegerType::NativeType NativeType; 646 static_assert(std::is_signed<NativeType>::value, "Native type of IntegerType must be signed!"); 647 648 int widen = MAX2(r0->_widen, r1->_widen); 649 650 // If both types are constants, we can calculate a constant result. 651 if (r0->is_con() && r1->is_con()) { 652 return IntegerType::make(r0->get_con() & r1->get_con()); 653 } 654 655 // If both ranges are positive, the result will range from 0 up to the hi value of the smaller range. The minimum 656 // of the two constrains the upper bound because any higher value in the other range will see all zeroes, so it will be masked out. 657 if (r0->_lo >= 0 && r1->_lo >= 0) { 658 return IntegerType::make(0, MIN2(r0->_hi, r1->_hi), widen); 659 } 660 661 // If only one range is positive, the result will range from 0 up to that range's maximum value. 662 // For the operation 'x & C' where C is a positive constant, the result will be in the range [0..C]. With that observation, 663 // we can say that for any integer c such that 0 <= c <= C will also be in the range [0..C]. Therefore, 'x & [c..C]' 664 // where c >= 0 will be in the range [0..C]. 665 if (r0->_lo >= 0) { 666 return IntegerType::make(0, r0->_hi, widen); 667 } 668 669 if (r1->_lo >= 0) { 670 return IntegerType::make(0, r1->_hi, widen); 671 } 672 673 // At this point, all positive ranges will have already been handled, so the only remaining cases will be negative ranges 674 // and constants. 675 676 assert(r0->_lo < 0 && r1->_lo < 0, "positive ranges should already be handled!"); 677 678 // As two's complement means that both numbers will start with leading 1s, the lower bound of both ranges will contain 679 // the common leading 1s of both minimum values. In order to count them with count_leading_zeros, the bits are inverted. 680 NativeType sel_val = ~MIN2(r0->_lo, r1->_lo); 681 682 NativeType min; 683 if (sel_val == 0) { 684 // Since count_leading_zeros is undefined at 0, we short-circuit the condition where both ranges have a minimum of -1. 685 min = -1; 686 } else { 687 // To get the number of bits to shift, we count the leading 0-bits and then subtract one, as the sign bit is already set. 688 int shift_bits = count_leading_zeros(sel_val) - 1; 689 min = std::numeric_limits<NativeType>::min() >> shift_bits; 690 } 691 692 NativeType max; 693 if (r0->_hi < 0 && r1->_hi < 0) { 694 // If both ranges are negative, then the same optimization as both positive ranges will apply, and the smaller hi 695 // value will mask off any bits set by higher values. 696 max = MIN2(r0->_hi, r1->_hi); 697 } else { 698 // In the case of ranges that cross zero, negative values can cause the higher order bits to be set, so the maximum 699 // positive value can be as high as the larger hi value. 700 max = MAX2(r0->_hi, r1->_hi); 701 } 702 703 return IntegerType::make(min, max, widen); 704 } 705 706 //============================================================================= 707 //------------------------------mul_ring--------------------------------------- 708 // Supplied function returns the product of the inputs IN THE CURRENT RING. 709 // For the logical operations the ring's MUL is really a logical AND function. 710 // This also type-checks the inputs for sanity. Guaranteed never to 711 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 712 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const { 713 const TypeInt* r0 = t0->is_int(); 714 const TypeInt* r1 = t1->is_int(); 715 716 return and_value<TypeInt>(r0, r1); 717 } 718 719 static bool AndIL_is_zero_element_under_mask(const PhaseGVN* phase, const Node* expr, const Node* mask, BasicType bt); 720 721 const Type* AndINode::Value(PhaseGVN* phase) const { 722 if (AndIL_is_zero_element_under_mask(phase, in(1), in(2), T_INT) || 723 AndIL_is_zero_element_under_mask(phase, in(2), in(1), T_INT)) { 724 return TypeInt::ZERO; 725 } 726 727 return MulNode::Value(phase); 728 } 729 730 //------------------------------Identity--------------------------------------- 731 // Masking off the high bits of an unsigned load is not required 732 Node* AndINode::Identity(PhaseGVN* phase) { 733 734 // x & x => x 735 if (in(1) == in(2)) { 736 return in(1); 737 } 738 739 Node* in1 = in(1); 740 uint op = in1->Opcode(); 741 const TypeInt* t2 = phase->type(in(2))->isa_int(); 742 if (t2 && t2->is_con()) { 743 int con = t2->get_con(); 744 // Masking off high bits which are always zero is useless. 745 const TypeInt* t1 = phase->type(in(1))->isa_int(); 746 if (t1 != nullptr && t1->_lo >= 0) { 747 jint t1_support = right_n_bits(1 + log2i_graceful(t1->_hi)); 748 if ((t1_support & con) == t1_support) 749 return in1; 750 } 751 // Masking off the high bits of a unsigned-shift-right is not 752 // needed either. 753 if (op == Op_URShiftI) { 754 const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); 755 if (t12 && t12->is_con()) { // Shift is by a constant 756 int shift = t12->get_con(); 757 shift &= BitsPerJavaInteger - 1; // semantics of Java shifts 758 int mask = max_juint >> shift; 759 if ((mask & con) == mask) // If AND is useless, skip it 760 return in1; 761 } 762 } 763 } 764 return MulNode::Identity(phase); 765 } 766 767 //------------------------------Ideal------------------------------------------ 768 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) { 769 // Simplify (v1 + v2) & mask to v1 & mask or v2 & mask when possible. 770 Node* progress = AndIL_sum_and_mask(phase, T_INT); 771 if (progress != nullptr) { 772 return progress; 773 } 774 775 // Convert "(~a) & (~b)" into "~(a | b)" 776 if (AddNode::is_not(phase, in(1), T_INT) && AddNode::is_not(phase, in(2), T_INT)) { 777 Node* or_a_b = new OrINode(in(1)->in(1), in(2)->in(1)); 778 Node* tn = phase->transform(or_a_b); 779 return AddNode::make_not(phase, tn, T_INT); 780 } 781 782 // Special case constant AND mask 783 const TypeInt *t2 = phase->type( in(2) )->isa_int(); 784 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); 785 const int mask = t2->get_con(); 786 Node *load = in(1); 787 uint lop = load->Opcode(); 788 789 // Masking bits off of a Character? Hi bits are already zero. 790 if( lop == Op_LoadUS && 791 (mask & 0xFFFF0000) ) // Can we make a smaller mask? 792 return new AndINode(load,phase->intcon(mask&0xFFFF)); 793 794 // Masking bits off of a Short? Loading a Character does some masking 795 if (can_reshape && 796 load->outcnt() == 1 && load->unique_out() == this) { 797 if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) { 798 Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase); 799 ldus = phase->transform(ldus); 800 return new AndINode(ldus, phase->intcon(mask & 0xFFFF)); 801 } 802 803 // Masking sign bits off of a Byte? Do an unsigned byte load plus 804 // an and. 805 if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) { 806 Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase); 807 ldub = phase->transform(ldub); 808 return new AndINode(ldub, phase->intcon(mask)); 809 } 810 } 811 812 // Masking off sign bits? Dont make them! 813 if( lop == Op_RShiftI ) { 814 const TypeInt *t12 = phase->type(load->in(2))->isa_int(); 815 if( t12 && t12->is_con() ) { // Shift is by a constant 816 int shift = t12->get_con(); 817 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 818 const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift); 819 // If the AND'ing of the 2 masks has no bits, then only original shifted 820 // bits survive. NO sign-extension bits survive the maskings. 821 if( (sign_bits_mask & mask) == 0 ) { 822 // Use zero-fill shift instead 823 Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2))); 824 return new AndINode( zshift, in(2) ); 825 } 826 } 827 } 828 829 // Check for 'negate/and-1', a pattern emitted when someone asks for 830 // 'mod 2'. Negate leaves the low order bit unchanged (think: complement 831 // plus 1) and the mask is of the low order bit. Skip the negate. 832 if( lop == Op_SubI && mask == 1 && load->in(1) && 833 phase->type(load->in(1)) == TypeInt::ZERO ) 834 return new AndINode( load->in(2), in(2) ); 835 836 return MulNode::Ideal(phase, can_reshape); 837 } 838 839 //============================================================================= 840 //------------------------------mul_ring--------------------------------------- 841 // Supplied function returns the product of the inputs IN THE CURRENT RING. 842 // For the logical operations the ring's MUL is really a logical AND function. 843 // This also type-checks the inputs for sanity. Guaranteed never to 844 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 845 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const { 846 const TypeLong* r0 = t0->is_long(); 847 const TypeLong* r1 = t1->is_long(); 848 849 return and_value<TypeLong>(r0, r1); 850 } 851 852 const Type* AndLNode::Value(PhaseGVN* phase) const { 853 if (AndIL_is_zero_element_under_mask(phase, in(1), in(2), T_LONG) || 854 AndIL_is_zero_element_under_mask(phase, in(2), in(1), T_LONG)) { 855 return TypeLong::ZERO; 856 } 857 858 return MulNode::Value(phase); 859 } 860 861 //------------------------------Identity--------------------------------------- 862 // Masking off the high bits of an unsigned load is not required 863 Node* AndLNode::Identity(PhaseGVN* phase) { 864 865 // x & x => x 866 if (in(1) == in(2)) { 867 return in(1); 868 } 869 870 Node *usr = in(1); 871 const TypeLong *t2 = phase->type( in(2) )->isa_long(); 872 if( t2 && t2->is_con() ) { 873 jlong con = t2->get_con(); 874 // Masking off high bits which are always zero is useless. 875 const TypeLong* t1 = phase->type( in(1) )->isa_long(); 876 if (t1 != nullptr && t1->_lo >= 0) { 877 int bit_count = log2i_graceful(t1->_hi) + 1; 878 jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count)); 879 if ((t1_support & con) == t1_support) 880 return usr; 881 } 882 uint lop = usr->Opcode(); 883 // Masking off the high bits of a unsigned-shift-right is not 884 // needed either. 885 if( lop == Op_URShiftL ) { 886 const TypeInt *t12 = phase->type( usr->in(2) )->isa_int(); 887 if( t12 && t12->is_con() ) { // Shift is by a constant 888 int shift = t12->get_con(); 889 shift &= BitsPerJavaLong - 1; // semantics of Java shifts 890 jlong mask = max_julong >> shift; 891 if( (mask&con) == mask ) // If AND is useless, skip it 892 return usr; 893 } 894 } 895 } 896 return MulNode::Identity(phase); 897 } 898 899 //------------------------------Ideal------------------------------------------ 900 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 901 // Simplify (v1 + v2) & mask to v1 & mask or v2 & mask when possible. 902 Node* progress = AndIL_sum_and_mask(phase, T_LONG); 903 if (progress != nullptr) { 904 return progress; 905 } 906 907 // Convert "(~a) & (~b)" into "~(a | b)" 908 if (AddNode::is_not(phase, in(1), T_LONG) && AddNode::is_not(phase, in(2), T_LONG)) { 909 Node* or_a_b = new OrLNode(in(1)->in(1), in(2)->in(1)); 910 Node* tn = phase->transform(or_a_b); 911 return AddNode::make_not(phase, tn, T_LONG); 912 } 913 914 // Special case constant AND mask 915 const TypeLong *t2 = phase->type( in(2) )->isa_long(); 916 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); 917 const jlong mask = t2->get_con(); 918 919 Node* in1 = in(1); 920 int op = in1->Opcode(); 921 922 // Are we masking a long that was converted from an int with a mask 923 // that fits in 32-bits? Commute them and use an AndINode. Don't 924 // convert masks which would cause a sign extension of the integer 925 // value. This check includes UI2L masks (0x00000000FFFFFFFF) which 926 // would be optimized away later in Identity. 927 if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) { 928 Node* andi = new AndINode(in1->in(1), phase->intcon(mask)); 929 andi = phase->transform(andi); 930 return new ConvI2LNode(andi); 931 } 932 933 // Masking off sign bits? Dont make them! 934 if (op == Op_RShiftL) { 935 const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); 936 if( t12 && t12->is_con() ) { // Shift is by a constant 937 int shift = t12->get_con(); 938 shift &= BitsPerJavaLong - 1; // semantics of Java shifts 939 const julong sign_bits_mask = ~(((julong)CONST64(1) << (julong)(BitsPerJavaLong - shift)) -1); 940 // If the AND'ing of the 2 masks has no bits, then only original shifted 941 // bits survive. NO sign-extension bits survive the maskings. 942 if( (sign_bits_mask & mask) == 0 ) { 943 // Use zero-fill shift instead 944 Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2))); 945 return new AndLNode(zshift, in(2)); 946 } 947 } 948 } 949 950 // Search for GraphKit::mark_word_test patterns and fold the test if the result is statically known 951 Node* load1 = in(1); 952 Node* load2 = nullptr; 953 if (load1->is_Phi() && phase->type(load1)->isa_long()) { 954 load1 = in(1)->in(1); 955 load2 = in(1)->in(2); 956 } 957 if (load1 != nullptr && load1->is_Load() && phase->type(load1)->isa_long() && 958 (load2 == nullptr || (load2->is_Load() && phase->type(load2)->isa_long()))) { 959 const TypePtr* adr_t1 = phase->type(load1->in(MemNode::Address))->isa_ptr(); 960 const TypePtr* adr_t2 = (load2 != nullptr) ? phase->type(load2->in(MemNode::Address))->isa_ptr() : nullptr; 961 if (adr_t1 != nullptr && adr_t1->offset() == oopDesc::mark_offset_in_bytes() && 962 (load2 == nullptr || (adr_t2 != nullptr && adr_t2->offset() == in_bytes(Klass::prototype_header_offset())))) { 963 if (mask == markWord::inline_type_pattern) { 964 if (adr_t1->is_inlinetypeptr()) { 965 set_req_X(1, in(2), phase); 966 return this; 967 } else if (!adr_t1->can_be_inline_type()) { 968 set_req_X(1, phase->longcon(0), phase); 969 return this; 970 } 971 } else if (mask == markWord::null_free_array_bit_in_place) { 972 if (adr_t1->is_null_free()) { 973 set_req_X(1, in(2), phase); 974 return this; 975 } else if (adr_t1->is_not_null_free()) { 976 set_req_X(1, phase->longcon(0), phase); 977 return this; 978 } 979 } else if (mask == markWord::flat_array_bit_in_place) { 980 if (adr_t1->is_flat()) { 981 set_req_X(1, in(2), phase); 982 return this; 983 } else if (adr_t1->is_not_flat()) { 984 set_req_X(1, phase->longcon(0), phase); 985 return this; 986 } 987 } 988 } 989 } 990 991 return MulNode::Ideal(phase, can_reshape); 992 } 993 994 LShiftNode* LShiftNode::make(Node* in1, Node* in2, BasicType bt) { 995 switch (bt) { 996 case T_INT: 997 return new LShiftINode(in1, in2); 998 case T_LONG: 999 return new LShiftLNode(in1, in2); 1000 default: 1001 fatal("Not implemented for %s", type2name(bt)); 1002 } 1003 return nullptr; 1004 } 1005 1006 //============================================================================= 1007 1008 static bool const_shift_count(PhaseGVN* phase, Node* shiftNode, int* count) { 1009 const TypeInt* tcount = phase->type(shiftNode->in(2))->isa_int(); 1010 if (tcount != nullptr && tcount->is_con()) { 1011 *count = tcount->get_con(); 1012 return true; 1013 } 1014 return false; 1015 } 1016 1017 static int maskShiftAmount(PhaseGVN* phase, Node* shiftNode, uint nBits) { 1018 int count = 0; 1019 if (const_shift_count(phase, shiftNode, &count)) { 1020 int maskedShift = count & (nBits - 1); 1021 if (maskedShift == 0) { 1022 // Let Identity() handle 0 shift count. 1023 return 0; 1024 } 1025 1026 if (count != maskedShift) { 1027 shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value. 1028 PhaseIterGVN* igvn = phase->is_IterGVN(); 1029 if (igvn) { 1030 igvn->rehash_node_delayed(shiftNode); 1031 } 1032 } 1033 return maskedShift; 1034 } 1035 return 0; 1036 } 1037 1038 // Called with 1039 // outer_shift = (_ << con0) 1040 // We are looking for the pattern: 1041 // outer_shift = ((X << con1) << con0) 1042 // we denote inner_shift the nested expression (X << con1) 1043 // 1044 // con0 and con1 are both in [0..nbits), as they are computed by maskShiftAmount. 1045 // 1046 // There are 2 cases: 1047 // if con0 + con1 >= nbits => 0 1048 // if con0 + con1 < nbits => X << (con1 + con0) 1049 static Node* collapse_nested_shift_left(PhaseGVN* phase, Node* outer_shift, int con0, BasicType bt) { 1050 assert(bt == T_LONG || bt == T_INT, "Unexpected type"); 1051 int nbits = static_cast<int>(bits_per_java_integer(bt)); 1052 Node* inner_shift = outer_shift->in(1); 1053 if (inner_shift->Opcode() != Op_LShift(bt)) { 1054 return nullptr; 1055 } 1056 1057 int con1 = maskShiftAmount(phase, inner_shift, nbits); 1058 if (con1 == 0) { // Either non-const, or actually 0 (up to mask) and then delegated to Identity() 1059 return nullptr; 1060 } 1061 1062 if (con0 + con1 >= nbits) { 1063 // While it might be tempting to use 1064 // phase->zerocon(bt); 1065 // it would be incorrect: zerocon caches nodes, while Ideal is only allowed 1066 // to return a new node, this or nullptr, but not an old (cached) node. 1067 return ConNode::make(TypeInteger::zero(bt)); 1068 } 1069 1070 // con0 + con1 < nbits ==> actual shift happens now 1071 Node* con0_plus_con1 = phase->intcon(con0 + con1); 1072 return LShiftNode::make(inner_shift->in(1), con0_plus_con1, bt); 1073 } 1074 1075 //------------------------------Identity--------------------------------------- 1076 Node* LShiftINode::Identity(PhaseGVN* phase) { 1077 int count = 0; 1078 if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) { 1079 // Shift by a multiple of 32 does nothing 1080 return in(1); 1081 } 1082 return this; 1083 } 1084 1085 //------------------------------Ideal------------------------------------------ 1086 // If the right input is a constant, and the left input is an add of a 1087 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 1088 // 1089 // Also collapse nested left-shifts with constant rhs: 1090 // (X << con1) << con2 ==> X << (con1 + con2) 1091 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { 1092 int con = maskShiftAmount(phase, this, BitsPerJavaInteger); 1093 if (con == 0) { 1094 return nullptr; 1095 } 1096 1097 // Left input is an add? 1098 Node *add1 = in(1); 1099 int add1_op = add1->Opcode(); 1100 if( add1_op == Op_AddI ) { // Left input is an add? 1101 assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" ); 1102 1103 // Transform is legal, but check for profit. Avoid breaking 'i2s' 1104 // and 'i2b' patterns which typically fold into 'StoreC/StoreB'. 1105 if( con < 16 ) { 1106 // Left input is an add of the same number? 1107 if (add1->in(1) == add1->in(2)) { 1108 // Convert "(x + x) << c0" into "x << (c0 + 1)" 1109 // In general, this optimization cannot be applied for c0 == 31 since 1110 // 2x << 31 != x << 32 = x << 0 = x (e.g. x = 1: 2 << 31 = 0 != 1) 1111 return new LShiftINode(add1->in(1), phase->intcon(con + 1)); 1112 } 1113 1114 // Left input is an add of a constant? 1115 const TypeInt *t12 = phase->type(add1->in(2))->isa_int(); 1116 if( t12 && t12->is_con() ){ // Left input is an add of a con? 1117 // Compute X << con0 1118 Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) ); 1119 // Compute X<<con0 + (con1<<con0) 1120 return new AddINode( lsh, phase->intcon(t12->get_con() << con)); 1121 } 1122 } 1123 } 1124 1125 // Check for "(x >> C1) << C2" 1126 if (add1_op == Op_RShiftI || add1_op == Op_URShiftI) { 1127 int add1Con = 0; 1128 const_shift_count(phase, add1, &add1Con); 1129 1130 // Special case C1 == C2, which just masks off low bits 1131 if (add1Con > 0 && con == add1Con) { 1132 // Convert to "(x & -(1 << C2))" 1133 return new AndINode(add1->in(1), phase->intcon(java_negate(jint(1 << con)))); 1134 } else { 1135 // Wait until the right shift has been sharpened to the correct count 1136 if (add1Con > 0 && add1Con < BitsPerJavaInteger) { 1137 // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed 1138 // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities. 1139 if (phase->is_IterGVN()) { 1140 if (con > add1Con) { 1141 // Creates "(x << (C2 - C1)) & -(1 << C2)" 1142 Node* lshift = phase->transform(new LShiftINode(add1->in(1), phase->intcon(con - add1Con))); 1143 return new AndINode(lshift, phase->intcon(java_negate(jint(1 << con)))); 1144 } else { 1145 assert(con < add1Con, "must be (%d < %d)", con, add1Con); 1146 // Creates "(x >> (C1 - C2)) & -(1 << C2)" 1147 1148 // Handle logical and arithmetic shifts 1149 Node* rshift; 1150 if (add1_op == Op_RShiftI) { 1151 rshift = phase->transform(new RShiftINode(add1->in(1), phase->intcon(add1Con - con))); 1152 } else { 1153 rshift = phase->transform(new URShiftINode(add1->in(1), phase->intcon(add1Con - con))); 1154 } 1155 1156 return new AndINode(rshift, phase->intcon(java_negate(jint(1 << con)))); 1157 } 1158 } else { 1159 phase->record_for_igvn(this); 1160 } 1161 } 1162 } 1163 } 1164 1165 // Check for "((x >> C1) & Y) << C2" 1166 if (add1_op == Op_AndI) { 1167 Node *add2 = add1->in(1); 1168 int add2_op = add2->Opcode(); 1169 if (add2_op == Op_RShiftI || add2_op == Op_URShiftI) { 1170 // Special case C1 == C2, which just masks off low bits 1171 if (add2->in(2) == in(2)) { 1172 // Convert to "(x & (Y << C2))" 1173 Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con))); 1174 return new AndINode(add2->in(1), y_sh); 1175 } 1176 1177 int add2Con = 0; 1178 const_shift_count(phase, add2, &add2Con); 1179 if (add2Con > 0 && add2Con < BitsPerJavaInteger) { 1180 if (phase->is_IterGVN()) { 1181 // Convert to "((x >> C1) << C2) & (Y << C2)" 1182 1183 // Make "(x >> C1) << C2", which will get folded away by the rule above 1184 Node* x_sh = phase->transform(new LShiftINode(add2, phase->intcon(con))); 1185 // Make "Y << C2", which will simplify when Y is a constant 1186 Node* y_sh = phase->transform(new LShiftINode(add1->in(2), phase->intcon(con))); 1187 1188 return new AndINode(x_sh, y_sh); 1189 } else { 1190 phase->record_for_igvn(this); 1191 } 1192 } 1193 } 1194 } 1195 1196 // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits 1197 // before shifting them away. 1198 const jint bits_mask = right_n_bits(BitsPerJavaInteger-con); 1199 if( add1_op == Op_AndI && 1200 phase->type(add1->in(2)) == TypeInt::make( bits_mask ) ) 1201 return new LShiftINode( add1->in(1), in(2) ); 1202 1203 // Performs: 1204 // (X << con1) << con2 ==> X << (con1 + con2) 1205 Node* doubleShift = collapse_nested_shift_left(phase, this, con, T_INT); 1206 if (doubleShift != nullptr) { 1207 return doubleShift; 1208 } 1209 1210 return nullptr; 1211 } 1212 1213 //------------------------------Value------------------------------------------ 1214 // A LShiftINode shifts its input2 left by input1 amount. 1215 const Type* LShiftINode::Value(PhaseGVN* phase) const { 1216 const Type *t1 = phase->type( in(1) ); 1217 const Type *t2 = phase->type( in(2) ); 1218 // Either input is TOP ==> the result is TOP 1219 if( t1 == Type::TOP ) return Type::TOP; 1220 if( t2 == Type::TOP ) return Type::TOP; 1221 1222 // Left input is ZERO ==> the result is ZERO. 1223 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; 1224 // Shift by zero does nothing 1225 if( t2 == TypeInt::ZERO ) return t1; 1226 1227 // Either input is BOTTOM ==> the result is BOTTOM 1228 if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) || 1229 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 1230 return TypeInt::INT; 1231 1232 const TypeInt *r1 = t1->is_int(); // Handy access 1233 const TypeInt *r2 = t2->is_int(); // Handy access 1234 1235 if (!r2->is_con()) 1236 return TypeInt::INT; 1237 1238 uint shift = r2->get_con(); 1239 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 1240 // Shift by a multiple of 32 does nothing: 1241 if (shift == 0) return t1; 1242 1243 // If the shift is a constant, shift the bounds of the type, 1244 // unless this could lead to an overflow. 1245 if (!r1->is_con()) { 1246 jint lo = r1->_lo, hi = r1->_hi; 1247 if (((lo << shift) >> shift) == lo && 1248 ((hi << shift) >> shift) == hi) { 1249 // No overflow. The range shifts up cleanly. 1250 return TypeInt::make((jint)lo << (jint)shift, 1251 (jint)hi << (jint)shift, 1252 MAX2(r1->_widen,r2->_widen)); 1253 } 1254 return TypeInt::INT; 1255 } 1256 1257 return TypeInt::make( (jint)r1->get_con() << (jint)shift ); 1258 } 1259 1260 //============================================================================= 1261 //------------------------------Identity--------------------------------------- 1262 Node* LShiftLNode::Identity(PhaseGVN* phase) { 1263 int count = 0; 1264 if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) { 1265 // Shift by a multiple of 64 does nothing 1266 return in(1); 1267 } 1268 return this; 1269 } 1270 1271 //------------------------------Ideal------------------------------------------ 1272 // If the right input is a constant, and the left input is an add of a 1273 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 1274 // 1275 // Also collapse nested left-shifts with constant rhs: 1276 // (X << con1) << con2 ==> X << (con1 + con2) 1277 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1278 int con = maskShiftAmount(phase, this, BitsPerJavaLong); 1279 if (con == 0) { 1280 return nullptr; 1281 } 1282 1283 // Left input is an add? 1284 Node *add1 = in(1); 1285 int add1_op = add1->Opcode(); 1286 if( add1_op == Op_AddL ) { // Left input is an add? 1287 // Avoid dead data cycles from dead loops 1288 assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" ); 1289 1290 // Left input is an add of the same number? 1291 if (con != (BitsPerJavaLong - 1) && add1->in(1) == add1->in(2)) { 1292 // Convert "(x + x) << c0" into "x << (c0 + 1)" 1293 // Can only be applied if c0 != 63 because: 1294 // (x + x) << 63 = 2x << 63, while 1295 // (x + x) << 63 --transform--> x << 64 = x << 0 = x (!= 2x << 63, for example for x = 1) 1296 // According to the Java spec, chapter 15.19, we only consider the six lowest-order bits of the right-hand operand 1297 // (i.e. "right-hand operand" & 0b111111). Therefore, x << 64 is the same as x << 0 (64 = 0b10000000 & 0b0111111 = 0). 1298 return new LShiftLNode(add1->in(1), phase->intcon(con + 1)); 1299 } 1300 1301 // Left input is an add of a constant? 1302 const TypeLong *t12 = phase->type(add1->in(2))->isa_long(); 1303 if( t12 && t12->is_con() ){ // Left input is an add of a con? 1304 // Compute X << con0 1305 Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) ); 1306 // Compute X<<con0 + (con1<<con0) 1307 return new AddLNode( lsh, phase->longcon(t12->get_con() << con)); 1308 } 1309 } 1310 1311 // Check for "(x >> C1) << C2" 1312 if (add1_op == Op_RShiftL || add1_op == Op_URShiftL) { 1313 int add1Con = 0; 1314 const_shift_count(phase, add1, &add1Con); 1315 1316 // Special case C1 == C2, which just masks off low bits 1317 if (add1Con > 0 && con == add1Con) { 1318 // Convert to "(x & -(1 << C2))" 1319 return new AndLNode(add1->in(1), phase->longcon(java_negate(jlong(CONST64(1) << con)))); 1320 } else { 1321 // Wait until the right shift has been sharpened to the correct count 1322 if (add1Con > 0 && add1Con < BitsPerJavaLong) { 1323 // As loop parsing can produce LShiftI nodes, we should wait until the graph is fully formed 1324 // to apply optimizations, otherwise we can inadvertently stop vectorization opportunities. 1325 if (phase->is_IterGVN()) { 1326 if (con > add1Con) { 1327 // Creates "(x << (C2 - C1)) & -(1 << C2)" 1328 Node* lshift = phase->transform(new LShiftLNode(add1->in(1), phase->intcon(con - add1Con))); 1329 return new AndLNode(lshift, phase->longcon(java_negate(jlong(CONST64(1) << con)))); 1330 } else { 1331 assert(con < add1Con, "must be (%d < %d)", con, add1Con); 1332 // Creates "(x >> (C1 - C2)) & -(1 << C2)" 1333 1334 // Handle logical and arithmetic shifts 1335 Node* rshift; 1336 if (add1_op == Op_RShiftL) { 1337 rshift = phase->transform(new RShiftLNode(add1->in(1), phase->intcon(add1Con - con))); 1338 } else { 1339 rshift = phase->transform(new URShiftLNode(add1->in(1), phase->intcon(add1Con - con))); 1340 } 1341 1342 return new AndLNode(rshift, phase->longcon(java_negate(jlong(CONST64(1) << con)))); 1343 } 1344 } else { 1345 phase->record_for_igvn(this); 1346 } 1347 } 1348 } 1349 } 1350 1351 // Check for "((x >> C1) & Y) << C2" 1352 if (add1_op == Op_AndL) { 1353 Node* add2 = add1->in(1); 1354 int add2_op = add2->Opcode(); 1355 if (add2_op == Op_RShiftL || add2_op == Op_URShiftL) { 1356 // Special case C1 == C2, which just masks off low bits 1357 if (add2->in(2) == in(2)) { 1358 // Convert to "(x & (Y << C2))" 1359 Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con))); 1360 return new AndLNode(add2->in(1), y_sh); 1361 } 1362 1363 int add2Con = 0; 1364 const_shift_count(phase, add2, &add2Con); 1365 if (add2Con > 0 && add2Con < BitsPerJavaLong) { 1366 if (phase->is_IterGVN()) { 1367 // Convert to "((x >> C1) << C2) & (Y << C2)" 1368 1369 // Make "(x >> C1) << C2", which will get folded away by the rule above 1370 Node* x_sh = phase->transform(new LShiftLNode(add2, phase->intcon(con))); 1371 // Make "Y << C2", which will simplify when Y is a constant 1372 Node* y_sh = phase->transform(new LShiftLNode(add1->in(2), phase->intcon(con))); 1373 1374 return new AndLNode(x_sh, y_sh); 1375 } else { 1376 phase->record_for_igvn(this); 1377 } 1378 } 1379 } 1380 } 1381 1382 // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits 1383 // before shifting them away. 1384 const jlong bits_mask = jlong(max_julong >> con); 1385 if( add1_op == Op_AndL && 1386 phase->type(add1->in(2)) == TypeLong::make( bits_mask ) ) 1387 return new LShiftLNode( add1->in(1), in(2) ); 1388 1389 // Performs: 1390 // (X << con1) << con2 ==> X << (con1 + con2) 1391 Node* doubleShift = collapse_nested_shift_left(phase, this, con, T_LONG); 1392 if (doubleShift != nullptr) { 1393 return doubleShift; 1394 } 1395 1396 return nullptr; 1397 } 1398 1399 //------------------------------Value------------------------------------------ 1400 // A LShiftLNode shifts its input2 left by input1 amount. 1401 const Type* LShiftLNode::Value(PhaseGVN* phase) const { 1402 const Type *t1 = phase->type( in(1) ); 1403 const Type *t2 = phase->type( in(2) ); 1404 // Either input is TOP ==> the result is TOP 1405 if( t1 == Type::TOP ) return Type::TOP; 1406 if( t2 == Type::TOP ) return Type::TOP; 1407 1408 // Left input is ZERO ==> the result is ZERO. 1409 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; 1410 // Shift by zero does nothing 1411 if( t2 == TypeInt::ZERO ) return t1; 1412 1413 // Either input is BOTTOM ==> the result is BOTTOM 1414 if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) || 1415 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 1416 return TypeLong::LONG; 1417 1418 const TypeLong *r1 = t1->is_long(); // Handy access 1419 const TypeInt *r2 = t2->is_int(); // Handy access 1420 1421 if (!r2->is_con()) 1422 return TypeLong::LONG; 1423 1424 uint shift = r2->get_con(); 1425 shift &= BitsPerJavaLong - 1; // semantics of Java shifts 1426 // Shift by a multiple of 64 does nothing: 1427 if (shift == 0) return t1; 1428 1429 // If the shift is a constant, shift the bounds of the type, 1430 // unless this could lead to an overflow. 1431 if (!r1->is_con()) { 1432 jlong lo = r1->_lo, hi = r1->_hi; 1433 if (((lo << shift) >> shift) == lo && 1434 ((hi << shift) >> shift) == hi) { 1435 // No overflow. The range shifts up cleanly. 1436 return TypeLong::make((jlong)lo << (jint)shift, 1437 (jlong)hi << (jint)shift, 1438 MAX2(r1->_widen,r2->_widen)); 1439 } 1440 return TypeLong::LONG; 1441 } 1442 1443 return TypeLong::make( (jlong)r1->get_con() << (jint)shift ); 1444 } 1445 1446 RShiftNode* RShiftNode::make(Node* in1, Node* in2, BasicType bt) { 1447 switch (bt) { 1448 case T_INT: 1449 return new RShiftINode(in1, in2); 1450 case T_LONG: 1451 return new RShiftLNode(in1, in2); 1452 default: 1453 fatal("Not implemented for %s", type2name(bt)); 1454 } 1455 return nullptr; 1456 } 1457 1458 1459 //============================================================================= 1460 //------------------------------Identity--------------------------------------- 1461 Node* RShiftNode::IdentityIL(PhaseGVN* phase, BasicType bt) { 1462 int count = 0; 1463 if (const_shift_count(phase, this, &count)) { 1464 if ((count & (bits_per_java_integer(bt) - 1)) == 0) { 1465 // Shift by a multiple of 32/64 does nothing 1466 return in(1); 1467 } 1468 // Check for useless sign-masking 1469 if (in(1)->Opcode() == Op_LShift(bt) && 1470 in(1)->req() == 3 && 1471 in(1)->in(2) == in(2)) { 1472 count &= bits_per_java_integer(bt) - 1; // semantics of Java shifts 1473 // Compute masks for which this shifting doesn't change 1474 jlong lo = (CONST64(-1) << (bits_per_java_integer(bt) - ((uint)count)-1)); // FFFF8000 1475 jlong hi = ~lo; // 00007FFF 1476 const TypeInteger* t11 = phase->type(in(1)->in(1))->isa_integer(bt); 1477 if (t11 == nullptr) { 1478 return this; 1479 } 1480 // Does actual value fit inside of mask? 1481 if (lo <= t11->lo_as_long() && t11->hi_as_long() <= hi) { 1482 return in(1)->in(1); // Then shifting is a nop 1483 } 1484 } 1485 } 1486 return this; 1487 } 1488 1489 Node* RShiftINode::Identity(PhaseGVN* phase) { 1490 return IdentityIL(phase, T_INT); 1491 } 1492 1493 Node* RShiftNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) { 1494 // Inputs may be TOP if they are dead. 1495 const TypeInteger* t1 = phase->type(in(1))->isa_integer(bt); 1496 if (t1 == nullptr) { 1497 return NodeSentinel; // Left input is an integer 1498 } 1499 int shift = maskShiftAmount(phase, this, bits_per_java_integer(bt)); 1500 if (shift == 0) { 1501 return NodeSentinel; 1502 } 1503 1504 // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller. 1505 // and convert to (x >> 24) & (0xFF000000 >> 24) = x >> 24 1506 // Such expressions arise normally from shift chains like (byte)(x >> 24). 1507 const Node* and_node = in(1); 1508 if (and_node->Opcode() != Op_And(bt)) { 1509 return nullptr; 1510 } 1511 const TypeInteger* mask_t = phase->type(and_node->in(2))->isa_integer(bt); 1512 if (mask_t != nullptr && mask_t->is_con()) { 1513 jlong maskbits = mask_t->get_con_as_long(bt); 1514 // Convert to "(x >> shift) & (mask >> shift)" 1515 Node* shr_nomask = phase->transform(RShiftNode::make(and_node->in(1), in(2), bt)); 1516 return MulNode::make_and(shr_nomask, phase->integercon(maskbits >> shift, bt), bt); 1517 } 1518 return nullptr; 1519 } 1520 1521 Node* RShiftINode::Ideal(PhaseGVN* phase, bool can_reshape) { 1522 Node* progress = IdealIL(phase, can_reshape, T_INT); 1523 if (progress == NodeSentinel) { 1524 return nullptr; 1525 } 1526 if (progress != nullptr) { 1527 return progress; 1528 } 1529 int shift = maskShiftAmount(phase, this, BitsPerJavaInteger); 1530 assert(shift != 0, "handled by IdealIL"); 1531 1532 // Check for "(short[i] <<16)>>16" which simply sign-extends 1533 const Node *shl = in(1); 1534 if (shl->Opcode() != Op_LShiftI) { 1535 return nullptr; 1536 } 1537 1538 const TypeInt* left_shift_t = phase->type(shl->in(2))->isa_int(); 1539 if (left_shift_t == nullptr) { 1540 return nullptr; 1541 } 1542 if (shift == 16 && left_shift_t->is_con(16)) { 1543 Node *ld = shl->in(1); 1544 if (ld->Opcode() == Op_LoadS) { 1545 // Sign extension is just useless here. Return a RShiftI of zero instead 1546 // returning 'ld' directly. We cannot return an old Node directly as 1547 // that is the job of 'Identity' calls and Identity calls only work on 1548 // direct inputs ('ld' is an extra Node removed from 'this'). The 1549 // combined optimization requires Identity only return direct inputs. 1550 set_req_X(1, ld, phase); 1551 set_req_X(2, phase->intcon(0), phase); 1552 return this; 1553 } 1554 else if (can_reshape && 1555 ld->Opcode() == Op_LoadUS && 1556 ld->outcnt() == 1 && ld->unique_out() == shl) 1557 // Replace zero-extension-load with sign-extension-load 1558 return ld->as_Load()->convert_to_signed_load(*phase); 1559 } 1560 1561 // Check for "(byte[i] <<24)>>24" which simply sign-extends 1562 if (shift == 24 && left_shift_t->is_con(24)) { 1563 Node *ld = shl->in(1); 1564 if (ld->Opcode() == Op_LoadB) { 1565 // Sign extension is just useless here 1566 set_req_X(1, ld, phase); 1567 set_req_X(2, phase->intcon(0), phase); 1568 return this; 1569 } 1570 } 1571 1572 return nullptr; 1573 } 1574 1575 const Type* RShiftNode::ValueIL(PhaseGVN* phase, BasicType bt) const { 1576 const Type* t1 = phase->type(in(1)); 1577 const Type* t2 = phase->type(in(2)); 1578 // Either input is TOP ==> the result is TOP 1579 if (t1 == Type::TOP) { 1580 return Type::TOP; 1581 } 1582 if (t2 == Type::TOP) { 1583 return Type::TOP; 1584 } 1585 1586 // Left input is ZERO ==> the result is ZERO. 1587 if (t1 == TypeInteger::zero(bt)) { 1588 return TypeInteger::zero(bt); 1589 } 1590 // Shift by zero does nothing 1591 if (t2 == TypeInt::ZERO) { 1592 return t1; 1593 } 1594 1595 // Either input is BOTTOM ==> the result is BOTTOM 1596 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) { 1597 return TypeInteger::bottom(bt); 1598 } 1599 1600 const TypeInteger* r1 = t1->isa_integer(bt); 1601 const TypeInt* r2 = t2->isa_int(); 1602 1603 // If the shift is a constant, just shift the bounds of the type. 1604 // For example, if the shift is 31/63, we just propagate sign bits. 1605 if (!r1->is_con() && r2->is_con()) { 1606 uint shift = r2->get_con(); 1607 shift &= bits_per_java_integer(bt) - 1; // semantics of Java shifts 1608 // Shift by a multiple of 32/64 does nothing: 1609 if (shift == 0) { 1610 return t1; 1611 } 1612 // Calculate reasonably aggressive bounds for the result. 1613 // This is necessary if we are to correctly type things 1614 // like (x<<24>>24) == ((byte)x). 1615 jlong lo = r1->lo_as_long() >> (jint)shift; 1616 jlong hi = r1->hi_as_long() >> (jint)shift; 1617 assert(lo <= hi, "must have valid bounds"); 1618 #ifdef ASSERT 1619 if (bt == T_INT) { 1620 jint lo_verify = checked_cast<jint>(r1->lo_as_long()) >> (jint)shift; 1621 jint hi_verify = checked_cast<jint>(r1->hi_as_long()) >> (jint)shift; 1622 assert((checked_cast<jint>(lo) == lo_verify) && (checked_cast<jint>(hi) == hi_verify), "inconsistent"); 1623 } 1624 #endif 1625 const TypeInteger* ti = TypeInteger::make(lo, hi, MAX2(r1->_widen,r2->_widen), bt); 1626 #ifdef ASSERT 1627 // Make sure we get the sign-capture idiom correct. 1628 if (shift == bits_per_java_integer(bt) - 1) { 1629 if (r1->lo_as_long() >= 0) { 1630 assert(ti == TypeInteger::zero(bt), ">>31/63 of + is 0"); 1631 } 1632 if (r1->hi_as_long() < 0) { 1633 assert(ti == TypeInteger::minus_1(bt), ">>31/63 of - is -1"); 1634 } 1635 } 1636 #endif 1637 return ti; 1638 } 1639 1640 if (!r1->is_con() || !r2->is_con()) { 1641 // If the left input is non-negative the result must also be non-negative, regardless of what the right input is. 1642 if (r1->lo_as_long() >= 0) { 1643 return TypeInteger::make(0, r1->hi_as_long(), MAX2(r1->_widen, r2->_widen), bt); 1644 } 1645 1646 // Conversely, if the left input is negative then the result must be negative. 1647 if (r1->hi_as_long() <= -1) { 1648 return TypeInteger::make(r1->lo_as_long(), -1, MAX2(r1->_widen, r2->_widen), bt); 1649 } 1650 1651 return TypeInteger::bottom(bt); 1652 } 1653 1654 // Signed shift right 1655 return TypeInteger::make(r1->get_con_as_long(bt) >> (r2->get_con() & (bits_per_java_integer(bt) - 1)), bt); 1656 } 1657 1658 const Type* RShiftINode::Value(PhaseGVN* phase) const { 1659 return ValueIL(phase, T_INT); 1660 } 1661 1662 //============================================================================= 1663 //------------------------------Identity--------------------------------------- 1664 Node* RShiftLNode::Identity(PhaseGVN* phase) { 1665 return IdentityIL(phase, T_LONG); 1666 } 1667 1668 Node* RShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1669 Node* progress = IdealIL(phase, can_reshape, T_LONG); 1670 if (progress == NodeSentinel) { 1671 return nullptr; 1672 } 1673 return progress; 1674 } 1675 1676 const Type* RShiftLNode::Value(PhaseGVN* phase) const { 1677 return ValueIL(phase, T_LONG); 1678 } 1679 1680 //============================================================================= 1681 //------------------------------Identity--------------------------------------- 1682 Node* URShiftINode::Identity(PhaseGVN* phase) { 1683 int count = 0; 1684 if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) { 1685 // Shift by a multiple of 32 does nothing 1686 return in(1); 1687 } 1688 1689 // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x". 1690 // Happens during new-array length computation. 1691 // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)] 1692 Node *add = in(1); 1693 if (add->Opcode() == Op_AddI) { 1694 const TypeInt *t2 = phase->type(add->in(2))->isa_int(); 1695 if (t2 && t2->is_con(wordSize - 1) && 1696 add->in(1)->Opcode() == Op_LShiftI) { 1697 // Check that shift_counts are LogBytesPerWord. 1698 Node *lshift_count = add->in(1)->in(2); 1699 const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int(); 1700 if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) && 1701 t_lshift_count == phase->type(in(2))) { 1702 Node *x = add->in(1)->in(1); 1703 const TypeInt *t_x = phase->type(x)->isa_int(); 1704 if (t_x != nullptr && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) { 1705 return x; 1706 } 1707 } 1708 } 1709 } 1710 1711 return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this; 1712 } 1713 1714 //------------------------------Ideal------------------------------------------ 1715 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { 1716 int con = maskShiftAmount(phase, this, BitsPerJavaInteger); 1717 if (con == 0) { 1718 return nullptr; 1719 } 1720 1721 // We'll be wanting the right-shift amount as a mask of that many bits 1722 const int mask = right_n_bits(BitsPerJavaInteger - con); 1723 1724 int in1_op = in(1)->Opcode(); 1725 1726 // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32 1727 if( in1_op == Op_URShiftI ) { 1728 const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int(); 1729 if( t12 && t12->is_con() ) { // Right input is a constant 1730 assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" ); 1731 const int con2 = t12->get_con() & 31; // Shift count is always masked 1732 const int con3 = con+con2; 1733 if( con3 < 32 ) // Only merge shifts if total is < 32 1734 return new URShiftINode( in(1)->in(1), phase->intcon(con3) ); 1735 } 1736 } 1737 1738 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z 1739 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". 1740 // If Q is "X << z" the rounding is useless. Look for patterns like 1741 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. 1742 Node *add = in(1); 1743 const TypeInt *t2 = phase->type(in(2))->isa_int(); 1744 if (in1_op == Op_AddI) { 1745 Node *lshl = add->in(1); 1746 if( lshl->Opcode() == Op_LShiftI && 1747 phase->type(lshl->in(2)) == t2 ) { 1748 Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) ); 1749 Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) ); 1750 return new AndINode( sum, phase->intcon(mask) ); 1751 } 1752 } 1753 1754 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) 1755 // This shortens the mask. Also, if we are extracting a high byte and 1756 // storing it to a buffer, the mask will be removed completely. 1757 Node *andi = in(1); 1758 if( in1_op == Op_AndI ) { 1759 const TypeInt *t3 = phase->type( andi->in(2) )->isa_int(); 1760 if( t3 && t3->is_con() ) { // Right input is a constant 1761 jint mask2 = t3->get_con(); 1762 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) 1763 Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) ); 1764 return new AndINode(newshr, phase->intcon(mask2)); 1765 // The negative values are easier to materialize than positive ones. 1766 // A typical case from address arithmetic is ((x & ~15) >> 4). 1767 // It's better to change that to ((x >> 4) & ~0) versus 1768 // ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64. 1769 } 1770 } 1771 1772 // Check for "(X << z ) >>> z" which simply zero-extends 1773 Node *shl = in(1); 1774 if( in1_op == Op_LShiftI && 1775 phase->type(shl->in(2)) == t2 ) 1776 return new AndINode( shl->in(1), phase->intcon(mask) ); 1777 1778 // Check for (x >> n) >>> 31. Replace with (x >>> 31) 1779 Node *shr = in(1); 1780 if ( in1_op == Op_RShiftI ) { 1781 Node *in11 = shr->in(1); 1782 Node *in12 = shr->in(2); 1783 const TypeInt *t11 = phase->type(in11)->isa_int(); 1784 const TypeInt *t12 = phase->type(in12)->isa_int(); 1785 if ( t11 && t2 && t2->is_con(31) && t12 && t12->is_con() ) { 1786 return new URShiftINode(in11, phase->intcon(31)); 1787 } 1788 } 1789 1790 return nullptr; 1791 } 1792 1793 //------------------------------Value------------------------------------------ 1794 // A URShiftINode shifts its input2 right by input1 amount. 1795 const Type* URShiftINode::Value(PhaseGVN* phase) const { 1796 // (This is a near clone of RShiftINode::Value.) 1797 const Type *t1 = phase->type( in(1) ); 1798 const Type *t2 = phase->type( in(2) ); 1799 // Either input is TOP ==> the result is TOP 1800 if( t1 == Type::TOP ) return Type::TOP; 1801 if( t2 == Type::TOP ) return Type::TOP; 1802 1803 // Left input is ZERO ==> the result is ZERO. 1804 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; 1805 // Shift by zero does nothing 1806 if( t2 == TypeInt::ZERO ) return t1; 1807 1808 // Either input is BOTTOM ==> the result is BOTTOM 1809 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) 1810 return TypeInt::INT; 1811 1812 if (t2 == TypeInt::INT) 1813 return TypeInt::INT; 1814 1815 const TypeInt *r1 = t1->is_int(); // Handy access 1816 const TypeInt *r2 = t2->is_int(); // Handy access 1817 1818 if (r2->is_con()) { 1819 uint shift = r2->get_con(); 1820 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 1821 // Shift by a multiple of 32 does nothing: 1822 if (shift == 0) return t1; 1823 // Calculate reasonably aggressive bounds for the result. 1824 jint lo = (juint)r1->_lo >> (juint)shift; 1825 jint hi = (juint)r1->_hi >> (juint)shift; 1826 if (r1->_hi >= 0 && r1->_lo < 0) { 1827 // If the type has both negative and positive values, 1828 // there are two separate sub-domains to worry about: 1829 // The positive half and the negative half. 1830 jint neg_lo = lo; 1831 jint neg_hi = (juint)-1 >> (juint)shift; 1832 jint pos_lo = (juint) 0 >> (juint)shift; 1833 jint pos_hi = hi; 1834 lo = MIN2(neg_lo, pos_lo); // == 0 1835 hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; 1836 } 1837 assert(lo <= hi, "must have valid bounds"); 1838 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); 1839 #ifdef ASSERT 1840 // Make sure we get the sign-capture idiom correct. 1841 if (shift == BitsPerJavaInteger-1) { 1842 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0"); 1843 if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1"); 1844 } 1845 #endif 1846 return ti; 1847 } 1848 1849 // 1850 // Do not support shifted oops in info for GC 1851 // 1852 // else if( t1->base() == Type::InstPtr ) { 1853 // 1854 // const TypeInstPtr *o = t1->is_instptr(); 1855 // if( t1->singleton() ) 1856 // return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift ); 1857 // } 1858 // else if( t1->base() == Type::KlassPtr ) { 1859 // const TypeKlassPtr *o = t1->is_klassptr(); 1860 // if( t1->singleton() ) 1861 // return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift ); 1862 // } 1863 1864 return TypeInt::INT; 1865 } 1866 1867 //============================================================================= 1868 //------------------------------Identity--------------------------------------- 1869 Node* URShiftLNode::Identity(PhaseGVN* phase) { 1870 int count = 0; 1871 if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) { 1872 // Shift by a multiple of 64 does nothing 1873 return in(1); 1874 } 1875 return this; 1876 } 1877 1878 //------------------------------Ideal------------------------------------------ 1879 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1880 int con = maskShiftAmount(phase, this, BitsPerJavaLong); 1881 if (con == 0) { 1882 return nullptr; 1883 } 1884 1885 // We'll be wanting the right-shift amount as a mask of that many bits 1886 const jlong mask = jlong(max_julong >> con); 1887 1888 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z 1889 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". 1890 // If Q is "X << z" the rounding is useless. Look for patterns like 1891 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. 1892 Node *add = in(1); 1893 const TypeInt *t2 = phase->type(in(2))->isa_int(); 1894 if (add->Opcode() == Op_AddL) { 1895 Node *lshl = add->in(1); 1896 if( lshl->Opcode() == Op_LShiftL && 1897 phase->type(lshl->in(2)) == t2 ) { 1898 Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) ); 1899 Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) ); 1900 return new AndLNode( sum, phase->longcon(mask) ); 1901 } 1902 } 1903 1904 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) 1905 // This shortens the mask. Also, if we are extracting a high byte and 1906 // storing it to a buffer, the mask will be removed completely. 1907 Node *andi = in(1); 1908 if( andi->Opcode() == Op_AndL ) { 1909 const TypeLong *t3 = phase->type( andi->in(2) )->isa_long(); 1910 if( t3 && t3->is_con() ) { // Right input is a constant 1911 jlong mask2 = t3->get_con(); 1912 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) 1913 Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) ); 1914 return new AndLNode(newshr, phase->longcon(mask2)); 1915 } 1916 } 1917 1918 // Check for "(X << z ) >>> z" which simply zero-extends 1919 Node *shl = in(1); 1920 if( shl->Opcode() == Op_LShiftL && 1921 phase->type(shl->in(2)) == t2 ) 1922 return new AndLNode( shl->in(1), phase->longcon(mask) ); 1923 1924 // Check for (x >> n) >>> 63. Replace with (x >>> 63) 1925 Node *shr = in(1); 1926 if ( shr->Opcode() == Op_RShiftL ) { 1927 Node *in11 = shr->in(1); 1928 Node *in12 = shr->in(2); 1929 const TypeLong *t11 = phase->type(in11)->isa_long(); 1930 const TypeInt *t12 = phase->type(in12)->isa_int(); 1931 if ( t11 && t2 && t2->is_con(63) && t12 && t12->is_con() ) { 1932 return new URShiftLNode(in11, phase->intcon(63)); 1933 } 1934 } 1935 return nullptr; 1936 } 1937 1938 //------------------------------Value------------------------------------------ 1939 // A URShiftINode shifts its input2 right by input1 amount. 1940 const Type* URShiftLNode::Value(PhaseGVN* phase) const { 1941 // (This is a near clone of RShiftLNode::Value.) 1942 const Type *t1 = phase->type( in(1) ); 1943 const Type *t2 = phase->type( in(2) ); 1944 // Either input is TOP ==> the result is TOP 1945 if( t1 == Type::TOP ) return Type::TOP; 1946 if( t2 == Type::TOP ) return Type::TOP; 1947 1948 // Left input is ZERO ==> the result is ZERO. 1949 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; 1950 // Shift by zero does nothing 1951 if( t2 == TypeInt::ZERO ) return t1; 1952 1953 // Either input is BOTTOM ==> the result is BOTTOM 1954 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) 1955 return TypeLong::LONG; 1956 1957 if (t2 == TypeInt::INT) 1958 return TypeLong::LONG; 1959 1960 const TypeLong *r1 = t1->is_long(); // Handy access 1961 const TypeInt *r2 = t2->is_int (); // Handy access 1962 1963 if (r2->is_con()) { 1964 uint shift = r2->get_con(); 1965 shift &= BitsPerJavaLong - 1; // semantics of Java shifts 1966 // Shift by a multiple of 64 does nothing: 1967 if (shift == 0) return t1; 1968 // Calculate reasonably aggressive bounds for the result. 1969 jlong lo = (julong)r1->_lo >> (juint)shift; 1970 jlong hi = (julong)r1->_hi >> (juint)shift; 1971 if (r1->_hi >= 0 && r1->_lo < 0) { 1972 // If the type has both negative and positive values, 1973 // there are two separate sub-domains to worry about: 1974 // The positive half and the negative half. 1975 jlong neg_lo = lo; 1976 jlong neg_hi = (julong)-1 >> (juint)shift; 1977 jlong pos_lo = (julong) 0 >> (juint)shift; 1978 jlong pos_hi = hi; 1979 //lo = MIN2(neg_lo, pos_lo); // == 0 1980 lo = neg_lo < pos_lo ? neg_lo : pos_lo; 1981 //hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; 1982 hi = neg_hi > pos_hi ? neg_hi : pos_hi; 1983 } 1984 assert(lo <= hi, "must have valid bounds"); 1985 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); 1986 #ifdef ASSERT 1987 // Make sure we get the sign-capture idiom correct. 1988 if (shift == BitsPerJavaLong - 1) { 1989 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0"); 1990 if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1"); 1991 } 1992 #endif 1993 return tl; 1994 } 1995 1996 return TypeLong::LONG; // Give up 1997 } 1998 1999 //============================================================================= 2000 //------------------------------Ideal------------------------------------------ 2001 Node* FmaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2002 // We canonicalize the node by converting "(-a)*b+c" into "b*(-a)+c" 2003 // This reduces the number of rules in the matcher, as we only need to check 2004 // for negations on the second argument, and not the symmetric case where 2005 // the first argument is negated. 2006 if (in(1)->is_Neg() && !in(2)->is_Neg()) { 2007 swap_edges(1, 2); 2008 return this; 2009 } 2010 return nullptr; 2011 } 2012 2013 //============================================================================= 2014 //------------------------------Value------------------------------------------ 2015 const Type* FmaDNode::Value(PhaseGVN* phase) const { 2016 const Type *t1 = phase->type(in(1)); 2017 if (t1 == Type::TOP) return Type::TOP; 2018 if (t1->base() != Type::DoubleCon) return Type::DOUBLE; 2019 const Type *t2 = phase->type(in(2)); 2020 if (t2 == Type::TOP) return Type::TOP; 2021 if (t2->base() != Type::DoubleCon) return Type::DOUBLE; 2022 const Type *t3 = phase->type(in(3)); 2023 if (t3 == Type::TOP) return Type::TOP; 2024 if (t3->base() != Type::DoubleCon) return Type::DOUBLE; 2025 #ifndef __STDC_IEC_559__ 2026 return Type::DOUBLE; 2027 #else 2028 double d1 = t1->getd(); 2029 double d2 = t2->getd(); 2030 double d3 = t3->getd(); 2031 return TypeD::make(fma(d1, d2, d3)); 2032 #endif 2033 } 2034 2035 //============================================================================= 2036 //------------------------------Value------------------------------------------ 2037 const Type* FmaFNode::Value(PhaseGVN* phase) const { 2038 const Type *t1 = phase->type(in(1)); 2039 if (t1 == Type::TOP) return Type::TOP; 2040 if (t1->base() != Type::FloatCon) return Type::FLOAT; 2041 const Type *t2 = phase->type(in(2)); 2042 if (t2 == Type::TOP) return Type::TOP; 2043 if (t2->base() != Type::FloatCon) return Type::FLOAT; 2044 const Type *t3 = phase->type(in(3)); 2045 if (t3 == Type::TOP) return Type::TOP; 2046 if (t3->base() != Type::FloatCon) return Type::FLOAT; 2047 #ifndef __STDC_IEC_559__ 2048 return Type::FLOAT; 2049 #else 2050 float f1 = t1->getf(); 2051 float f2 = t2->getf(); 2052 float f3 = t3->getf(); 2053 return TypeF::make(fma(f1, f2, f3)); 2054 #endif 2055 } 2056 2057 //============================================================================= 2058 //------------------------------Value------------------------------------------ 2059 const Type* FmaHFNode::Value(PhaseGVN* phase) const { 2060 const Type* t1 = phase->type(in(1)); 2061 if (t1 == Type::TOP) { return Type::TOP; } 2062 if (t1->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; } 2063 const Type* t2 = phase->type(in(2)); 2064 if (t2 == Type::TOP) { return Type::TOP; } 2065 if (t2->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; } 2066 const Type* t3 = phase->type(in(3)); 2067 if (t3 == Type::TOP) { return Type::TOP; } 2068 if (t3->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; } 2069 #ifndef __STDC_IEC_559__ 2070 return Type::HALF_FLOAT; 2071 #else 2072 float f1 = t1->getf(); 2073 float f2 = t2->getf(); 2074 float f3 = t3->getf(); 2075 return TypeH::make(fma(f1, f2, f3)); 2076 #endif 2077 } 2078 2079 //============================================================================= 2080 //------------------------------hash------------------------------------------- 2081 // Hash function for MulAddS2INode. Operation is commutative with commutative pairs. 2082 // The hash function must return the same value when edge swapping is performed. 2083 uint MulAddS2INode::hash() const { 2084 return (uintptr_t)in(1) + (uintptr_t)in(2) + (uintptr_t)in(3) + (uintptr_t)in(4) + Opcode(); 2085 } 2086 2087 //------------------------------Rotate Operations ------------------------------ 2088 2089 Node* RotateLeftNode::Identity(PhaseGVN* phase) { 2090 const Type* t1 = phase->type(in(1)); 2091 if (t1 == Type::TOP) { 2092 return this; 2093 } 2094 int count = 0; 2095 assert(t1->isa_int() || t1->isa_long(), "Unexpected type"); 2096 int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1; 2097 if (const_shift_count(phase, this, &count) && (count & mask) == 0) { 2098 // Rotate by a multiple of 32/64 does nothing 2099 return in(1); 2100 } 2101 return this; 2102 } 2103 2104 const Type* RotateLeftNode::Value(PhaseGVN* phase) const { 2105 const Type* t1 = phase->type(in(1)); 2106 const Type* t2 = phase->type(in(2)); 2107 // Either input is TOP ==> the result is TOP 2108 if (t1 == Type::TOP || t2 == Type::TOP) { 2109 return Type::TOP; 2110 } 2111 2112 if (t1->isa_int()) { 2113 const TypeInt* r1 = t1->is_int(); 2114 const TypeInt* r2 = t2->is_int(); 2115 2116 // Left input is ZERO ==> the result is ZERO. 2117 if (r1 == TypeInt::ZERO) { 2118 return TypeInt::ZERO; 2119 } 2120 // Rotate by zero does nothing 2121 if (r2 == TypeInt::ZERO) { 2122 return r1; 2123 } 2124 if (r1->is_con() && r2->is_con()) { 2125 juint r1_con = (juint)r1->get_con(); 2126 juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts 2127 return TypeInt::make((r1_con << shift) | (r1_con >> (32 - shift))); 2128 } 2129 return TypeInt::INT; 2130 } else { 2131 assert(t1->isa_long(), "Type must be a long"); 2132 const TypeLong* r1 = t1->is_long(); 2133 const TypeInt* r2 = t2->is_int(); 2134 2135 // Left input is ZERO ==> the result is ZERO. 2136 if (r1 == TypeLong::ZERO) { 2137 return TypeLong::ZERO; 2138 } 2139 // Rotate by zero does nothing 2140 if (r2 == TypeInt::ZERO) { 2141 return r1; 2142 } 2143 if (r1->is_con() && r2->is_con()) { 2144 julong r1_con = (julong)r1->get_con(); 2145 julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts 2146 return TypeLong::make((r1_con << shift) | (r1_con >> (64 - shift))); 2147 } 2148 return TypeLong::LONG; 2149 } 2150 } 2151 2152 Node* RotateLeftNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2153 const Type* t1 = phase->type(in(1)); 2154 const Type* t2 = phase->type(in(2)); 2155 if (t2->isa_int() && t2->is_int()->is_con()) { 2156 if (t1->isa_int()) { 2157 int lshift = t2->is_int()->get_con() & 31; 2158 return new RotateRightNode(in(1), phase->intcon(32 - (lshift & 31)), TypeInt::INT); 2159 } else if (t1 != Type::TOP) { 2160 assert(t1->isa_long(), "Type must be a long"); 2161 int lshift = t2->is_int()->get_con() & 63; 2162 return new RotateRightNode(in(1), phase->intcon(64 - (lshift & 63)), TypeLong::LONG); 2163 } 2164 } 2165 return nullptr; 2166 } 2167 2168 Node* RotateRightNode::Identity(PhaseGVN* phase) { 2169 const Type* t1 = phase->type(in(1)); 2170 if (t1 == Type::TOP) { 2171 return this; 2172 } 2173 int count = 0; 2174 assert(t1->isa_int() || t1->isa_long(), "Unexpected type"); 2175 int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1; 2176 if (const_shift_count(phase, this, &count) && (count & mask) == 0) { 2177 // Rotate by a multiple of 32/64 does nothing 2178 return in(1); 2179 } 2180 return this; 2181 } 2182 2183 const Type* RotateRightNode::Value(PhaseGVN* phase) const { 2184 const Type* t1 = phase->type(in(1)); 2185 const Type* t2 = phase->type(in(2)); 2186 // Either input is TOP ==> the result is TOP 2187 if (t1 == Type::TOP || t2 == Type::TOP) { 2188 return Type::TOP; 2189 } 2190 2191 if (t1->isa_int()) { 2192 const TypeInt* r1 = t1->is_int(); 2193 const TypeInt* r2 = t2->is_int(); 2194 2195 // Left input is ZERO ==> the result is ZERO. 2196 if (r1 == TypeInt::ZERO) { 2197 return TypeInt::ZERO; 2198 } 2199 // Rotate by zero does nothing 2200 if (r2 == TypeInt::ZERO) { 2201 return r1; 2202 } 2203 if (r1->is_con() && r2->is_con()) { 2204 juint r1_con = (juint)r1->get_con(); 2205 juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts 2206 return TypeInt::make((r1_con >> shift) | (r1_con << (32 - shift))); 2207 } 2208 return TypeInt::INT; 2209 } else { 2210 assert(t1->isa_long(), "Type must be a long"); 2211 const TypeLong* r1 = t1->is_long(); 2212 const TypeInt* r2 = t2->is_int(); 2213 // Left input is ZERO ==> the result is ZERO. 2214 if (r1 == TypeLong::ZERO) { 2215 return TypeLong::ZERO; 2216 } 2217 // Rotate by zero does nothing 2218 if (r2 == TypeInt::ZERO) { 2219 return r1; 2220 } 2221 if (r1->is_con() && r2->is_con()) { 2222 julong r1_con = (julong)r1->get_con(); 2223 julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts 2224 return TypeLong::make((r1_con >> shift) | (r1_con << (64 - shift))); 2225 } 2226 return TypeLong::LONG; 2227 } 2228 } 2229 2230 //------------------------------ Sum & Mask ------------------------------ 2231 2232 // Returns a lower bound on the number of trailing zeros in expr. 2233 static jint AndIL_min_trailing_zeros(const PhaseGVN* phase, const Node* expr, BasicType bt) { 2234 expr = expr->uncast(); 2235 const TypeInteger* type = phase->type(expr)->isa_integer(bt); 2236 if (type == nullptr) { 2237 return 0; 2238 } 2239 2240 if (type->is_con()) { 2241 jlong con = type->get_con_as_long(bt); 2242 return con == 0L ? (type2aelembytes(bt) * BitsPerByte) : count_trailing_zeros(con); 2243 } 2244 2245 if (expr->Opcode() == Op_ConvI2L) { 2246 expr = expr->in(1)->uncast(); 2247 bt = T_INT; 2248 type = phase->type(expr)->isa_int(); 2249 } 2250 2251 // Pattern: expr = (x << shift) 2252 if (expr->Opcode() == Op_LShift(bt)) { 2253 const TypeInt* shift_t = phase->type(expr->in(2))->isa_int(); 2254 if (shift_t == nullptr || !shift_t->is_con()) { 2255 return 0; 2256 } 2257 // We need to truncate the shift, as it may not have been canonicalized yet. 2258 // T_INT: 0..31 -> shift_mask = 4 * 8 - 1 = 31 2259 // T_LONG: 0..63 -> shift_mask = 8 * 8 - 1 = 63 2260 // (JLS: "Shift Operators") 2261 jint shift_mask = type2aelembytes(bt) * BitsPerByte - 1; 2262 return shift_t->get_con() & shift_mask; 2263 } 2264 2265 return 0; 2266 } 2267 2268 // Checks whether expr is neutral additive element (zero) under mask, 2269 // i.e. whether an expression of the form: 2270 // (AndX (AddX (expr addend) mask) 2271 // (expr + addend) & mask 2272 // is equivalent to 2273 // (AndX addend mask) 2274 // addend & mask 2275 // for any addend. 2276 // (The X in AndX must be I or L, depending on bt). 2277 // 2278 // We check for the sufficient condition when the lowest set bit in expr is higher than 2279 // the highest set bit in mask, i.e.: 2280 // expr: eeeeee0000000000000 2281 // mask: 000000mmmmmmmmmmmmm 2282 // <--w bits---> 2283 // We do not test for other cases. 2284 // 2285 // Correctness: 2286 // Given "expr" with at least "w" trailing zeros, 2287 // let "mod = 2^w", "suffix_mask = mod - 1" 2288 // 2289 // Since "mask" only has bits set where "suffix_mask" does, we have: 2290 // mask = suffix_mask & mask (SUFFIX_MASK) 2291 // 2292 // And since expr only has bits set above w, and suffix_mask only below: 2293 // expr & suffix_mask == 0 (NO_BIT_OVERLAP) 2294 // 2295 // From unsigned modular arithmetic (with unsigned modulo %), and since mod is 2296 // a power of 2, and we are computing in a ring of powers of 2, we know that 2297 // (x + y) % mod = (x % mod + y) % mod 2298 // (x + y) & suffix_mask = (x & suffix_mask + y) & suffix_mask (MOD_ARITH) 2299 // 2300 // We can now prove the equality: 2301 // (expr + addend) & mask 2302 // = (expr + addend) & suffix_mask & mask (SUFFIX_MASK) 2303 // = (expr & suffix_mask + addend) & suffix_mask & mask (MOD_ARITH) 2304 // = (0 + addend) & suffix_mask & mask (NO_BIT_OVERLAP) 2305 // = addend & mask (SUFFIX_MASK) 2306 // 2307 // Hence, an expr with at least w trailing zeros is a neutral additive element under any mask with bit width w. 2308 static bool AndIL_is_zero_element_under_mask(const PhaseGVN* phase, const Node* expr, const Node* mask, BasicType bt) { 2309 // When the mask is negative, it has the most significant bit set. 2310 const TypeInteger* mask_t = phase->type(mask)->isa_integer(bt); 2311 if (mask_t == nullptr || mask_t->lo_as_long() < 0) { 2312 return false; 2313 } 2314 2315 // When the mask is constant zero, we defer to MulNode::Value to eliminate the entire AndX operation. 2316 if (mask_t->hi_as_long() == 0) { 2317 assert(mask_t->lo_as_long() == 0, "checked earlier"); 2318 return false; 2319 } 2320 2321 jint mask_bit_width = BitsPerLong - count_leading_zeros(mask_t->hi_as_long()); 2322 jint expr_trailing_zeros = AndIL_min_trailing_zeros(phase, expr, bt); 2323 return expr_trailing_zeros >= mask_bit_width; 2324 } 2325 2326 // Reduces the pattern: 2327 // (AndX (AddX add1 add2) mask) 2328 // to 2329 // (AndX add1 mask), if add2 is neutral wrt mask (see above), and vice versa. 2330 Node* MulNode::AndIL_sum_and_mask(PhaseGVN* phase, BasicType bt) { 2331 Node* add = in(1); 2332 Node* mask = in(2); 2333 int addidx = 0; 2334 if (add->Opcode() == Op_Add(bt)) { 2335 addidx = 1; 2336 } else if (mask->Opcode() == Op_Add(bt)) { 2337 mask = add; 2338 addidx = 2; 2339 add = in(addidx); 2340 } 2341 if (addidx > 0) { 2342 Node* add1 = add->in(1); 2343 Node* add2 = add->in(2); 2344 if (AndIL_is_zero_element_under_mask(phase, add1, mask, bt)) { 2345 set_req_X(addidx, add2, phase); 2346 return this; 2347 } else if (AndIL_is_zero_element_under_mask(phase, add2, mask, bt)) { 2348 set_req_X(addidx, add1, phase); 2349 return this; 2350 } 2351 } 2352 return nullptr; 2353 }