1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/ad.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/loopnode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/regmask.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "opto/type.hpp"
  44 #include "utilities/copy.hpp"
  45 #include "utilities/macros.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 
  49 class RegMask;
  50 // #include "phase.hpp"
  51 class PhaseTransform;
  52 class PhaseGVN;
  53 
  54 // Arena we are currently building Nodes in
  55 const uint Node::NotAMachineReg = 0xffff0000;
  56 
  57 #ifndef PRODUCT
  58 extern uint nodes_created;
  59 #endif
  60 #ifdef __clang__
  61 #pragma clang diagnostic push
  62 #pragma GCC diagnostic ignored "-Wuninitialized"
  63 #endif
  64 
  65 #ifdef ASSERT
  66 
  67 //-------------------------- construct_node------------------------------------
  68 // Set a breakpoint here to identify where a particular node index is built.
  69 void Node::verify_construction() {
  70   _debug_orig = nullptr;
  71   // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx>
  72   Compile* C = Compile::current();
  73   assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  74   uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx;
  75   set_debug_idx(new_debug_idx);
  76   if (!C->phase_optimize_finished()) {
  77     // Only check assert during parsing and optimization phase. Skip it while generating code.
  78     assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit");
  79   }
  80   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) {
  81     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx);
  82     BREAKPOINT;
  83   }
  84 #if OPTO_DU_ITERATOR_ASSERT
  85   _last_del = nullptr;
  86   _del_tick = 0;
  87 #endif
  88   _hash_lock = 0;
  89 }
  90 
  91 
  92 // #ifdef ASSERT ...
  93 
  94 #if OPTO_DU_ITERATOR_ASSERT
  95 void DUIterator_Common::sample(const Node* node) {
  96   _vdui     = VerifyDUIterators;
  97   _node     = node;
  98   _outcnt   = node->_outcnt;
  99   _del_tick = node->_del_tick;
 100   _last     = nullptr;
 101 }
 102 
 103 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 104   assert(_node     == node, "consistent iterator source");
 105   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 106 }
 107 
 108 void DUIterator_Common::verify_resync() {
 109   // Ensure that the loop body has just deleted the last guy produced.
 110   const Node* node = _node;
 111   // Ensure that at least one copy of the last-seen edge was deleted.
 112   // Note:  It is OK to delete multiple copies of the last-seen edge.
 113   // Unfortunately, we have no way to verify that all the deletions delete
 114   // that same edge.  On this point we must use the Honor System.
 115   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 116   assert(node->_last_del == _last, "must have deleted the edge just produced");
 117   // We liked this deletion, so accept the resulting outcnt and tick.
 118   _outcnt   = node->_outcnt;
 119   _del_tick = node->_del_tick;
 120 }
 121 
 122 void DUIterator_Common::reset(const DUIterator_Common& that) {
 123   if (this == &that)  return;  // ignore assignment to self
 124   if (!_vdui) {
 125     // We need to initialize everything, overwriting garbage values.
 126     _last = that._last;
 127     _vdui = that._vdui;
 128   }
 129   // Note:  It is legal (though odd) for an iterator over some node x
 130   // to be reassigned to iterate over another node y.  Some doubly-nested
 131   // progress loops depend on being able to do this.
 132   const Node* node = that._node;
 133   // Re-initialize everything, except _last.
 134   _node     = node;
 135   _outcnt   = node->_outcnt;
 136   _del_tick = node->_del_tick;
 137 }
 138 
 139 void DUIterator::sample(const Node* node) {
 140   DUIterator_Common::sample(node);      // Initialize the assertion data.
 141   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 142 }
 143 
 144 void DUIterator::verify(const Node* node, bool at_end_ok) {
 145   DUIterator_Common::verify(node, at_end_ok);
 146   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 147 }
 148 
 149 void DUIterator::verify_increment() {
 150   if (_refresh_tick & 1) {
 151     // We have refreshed the index during this loop.
 152     // Fix up _idx to meet asserts.
 153     if (_idx > _outcnt)  _idx = _outcnt;
 154   }
 155   verify(_node, true);
 156 }
 157 
 158 void DUIterator::verify_resync() {
 159   // Note:  We do not assert on _outcnt, because insertions are OK here.
 160   DUIterator_Common::verify_resync();
 161   // Make sure we are still in sync, possibly with no more out-edges:
 162   verify(_node, true);
 163 }
 164 
 165 void DUIterator::reset(const DUIterator& that) {
 166   if (this == &that)  return;  // self assignment is always a no-op
 167   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 168   assert(that._idx          == 0, "assign only the result of Node::outs()");
 169   assert(_idx               == that._idx, "already assigned _idx");
 170   if (!_vdui) {
 171     // We need to initialize everything, overwriting garbage values.
 172     sample(that._node);
 173   } else {
 174     DUIterator_Common::reset(that);
 175     if (_refresh_tick & 1) {
 176       _refresh_tick++;                  // Clear the "was refreshed" flag.
 177     }
 178     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 179   }
 180 }
 181 
 182 void DUIterator::refresh() {
 183   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 184   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 185 }
 186 
 187 void DUIterator::verify_finish() {
 188   // If the loop has killed the node, do not require it to re-run.
 189   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 190   // If this assert triggers, it means that a loop used refresh_out_pos
 191   // to re-synch an iteration index, but the loop did not correctly
 192   // re-run itself, using a "while (progress)" construct.
 193   // This iterator enforces the rule that you must keep trying the loop
 194   // until it "runs clean" without any need for refreshing.
 195   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 196 }
 197 
 198 
 199 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 200   DUIterator_Common::verify(node, at_end_ok);
 201   Node** out    = node->_out;
 202   uint   cnt    = node->_outcnt;
 203   assert(cnt == _outcnt, "no insertions allowed");
 204   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 205   // This last check is carefully designed to work for NO_OUT_ARRAY.
 206 }
 207 
 208 void DUIterator_Fast::verify_limit() {
 209   const Node* node = _node;
 210   verify(node, true);
 211   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 212 }
 213 
 214 void DUIterator_Fast::verify_resync() {
 215   const Node* node = _node;
 216   if (_outp == node->_out + _outcnt) {
 217     // Note that the limit imax, not the pointer i, gets updated with the
 218     // exact count of deletions.  (For the pointer it's always "--i".)
 219     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 220     // This is a limit pointer, with a name like "imax".
 221     // Fudge the _last field so that the common assert will be happy.
 222     _last = (Node*) node->_last_del;
 223     DUIterator_Common::verify_resync();
 224   } else {
 225     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 226     // A normal internal pointer.
 227     DUIterator_Common::verify_resync();
 228     // Make sure we are still in sync, possibly with no more out-edges:
 229     verify(node, true);
 230   }
 231 }
 232 
 233 void DUIterator_Fast::verify_relimit(uint n) {
 234   const Node* node = _node;
 235   assert((int)n > 0, "use imax -= n only with a positive count");
 236   // This must be a limit pointer, with a name like "imax".
 237   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 238   // The reported number of deletions must match what the node saw.
 239   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 240   // Fudge the _last field so that the common assert will be happy.
 241   _last = (Node*) node->_last_del;
 242   DUIterator_Common::verify_resync();
 243 }
 244 
 245 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 246   assert(_outp              == that._outp, "already assigned _outp");
 247   DUIterator_Common::reset(that);
 248 }
 249 
 250 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 251   // at_end_ok means the _outp is allowed to underflow by 1
 252   _outp += at_end_ok;
 253   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 254   _outp -= at_end_ok;
 255   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 256 }
 257 
 258 void DUIterator_Last::verify_limit() {
 259   // Do not require the limit address to be resynched.
 260   //verify(node, true);
 261   assert(_outp == _node->_out, "limit still correct");
 262 }
 263 
 264 void DUIterator_Last::verify_step(uint num_edges) {
 265   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 266   _outcnt   -= num_edges;
 267   _del_tick += num_edges;
 268   // Make sure we are still in sync, possibly with no more out-edges:
 269   const Node* node = _node;
 270   verify(node, true);
 271   assert(node->_last_del == _last, "must have deleted the edge just produced");
 272 }
 273 
 274 #endif //OPTO_DU_ITERATOR_ASSERT
 275 
 276 
 277 #endif //ASSERT
 278 
 279 
 280 // This constant used to initialize _out may be any non-null value.
 281 // The value null is reserved for the top node only.
 282 #define NO_OUT_ARRAY ((Node**)-1)
 283 
 284 // Out-of-line code from node constructors.
 285 // Executed only when extra debug info. is being passed around.
 286 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 287   C->set_node_notes_at(idx, nn);
 288 }
 289 
 290 // Shared initialization code.
 291 inline int Node::Init(int req) {
 292   Compile* C = Compile::current();
 293   int idx = C->next_unique();
 294   NOT_PRODUCT(_igv_idx = C->next_igv_idx());
 295 
 296   // Allocate memory for the necessary number of edges.
 297   if (req > 0) {
 298     // Allocate space for _in array to have double alignment.
 299     _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*))));
 300   }
 301   // If there are default notes floating around, capture them:
 302   Node_Notes* nn = C->default_node_notes();
 303   if (nn != nullptr)  init_node_notes(C, idx, nn);
 304 
 305   // Note:  At this point, C is dead,
 306   // and we begin to initialize the new Node.
 307 
 308   _cnt = _max = req;
 309   _outcnt = _outmax = 0;
 310   _class_id = Class_Node;
 311   _flags = 0;
 312   _out = NO_OUT_ARRAY;
 313   return idx;
 314 }
 315 
 316 //------------------------------Node-------------------------------------------
 317 // Create a Node, with a given number of required edges.
 318 Node::Node(uint req)
 319   : _idx(Init(req))
 320 #ifdef ASSERT
 321   , _parse_idx(_idx)
 322 #endif
 323 {
 324   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 325   debug_only( verify_construction() );
 326   NOT_PRODUCT(nodes_created++);
 327   if (req == 0) {
 328     _in = nullptr;
 329   } else {
 330     Node** to = _in;
 331     for(uint i = 0; i < req; i++) {
 332       to[i] = nullptr;
 333     }
 334   }
 335 }
 336 
 337 //------------------------------Node-------------------------------------------
 338 Node::Node(Node *n0)
 339   : _idx(Init(1))
 340 #ifdef ASSERT
 341   , _parse_idx(_idx)
 342 #endif
 343 {
 344   debug_only( verify_construction() );
 345   NOT_PRODUCT(nodes_created++);
 346   assert( is_not_dead(n0), "can not use dead node");
 347   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 348 }
 349 
 350 //------------------------------Node-------------------------------------------
 351 Node::Node(Node *n0, Node *n1)
 352   : _idx(Init(2))
 353 #ifdef ASSERT
 354   , _parse_idx(_idx)
 355 #endif
 356 {
 357   debug_only( verify_construction() );
 358   NOT_PRODUCT(nodes_created++);
 359   assert( is_not_dead(n0), "can not use dead node");
 360   assert( is_not_dead(n1), "can not use dead node");
 361   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 362   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 363 }
 364 
 365 //------------------------------Node-------------------------------------------
 366 Node::Node(Node *n0, Node *n1, Node *n2)
 367   : _idx(Init(3))
 368 #ifdef ASSERT
 369   , _parse_idx(_idx)
 370 #endif
 371 {
 372   debug_only( verify_construction() );
 373   NOT_PRODUCT(nodes_created++);
 374   assert( is_not_dead(n0), "can not use dead node");
 375   assert( is_not_dead(n1), "can not use dead node");
 376   assert( is_not_dead(n2), "can not use dead node");
 377   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 378   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 379   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 380 }
 381 
 382 //------------------------------Node-------------------------------------------
 383 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 384   : _idx(Init(4))
 385 #ifdef ASSERT
 386   , _parse_idx(_idx)
 387 #endif
 388 {
 389   debug_only( verify_construction() );
 390   NOT_PRODUCT(nodes_created++);
 391   assert( is_not_dead(n0), "can not use dead node");
 392   assert( is_not_dead(n1), "can not use dead node");
 393   assert( is_not_dead(n2), "can not use dead node");
 394   assert( is_not_dead(n3), "can not use dead node");
 395   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 396   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 397   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 398   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 399 }
 400 
 401 //------------------------------Node-------------------------------------------
 402 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 403   : _idx(Init(5))
 404 #ifdef ASSERT
 405   , _parse_idx(_idx)
 406 #endif
 407 {
 408   debug_only( verify_construction() );
 409   NOT_PRODUCT(nodes_created++);
 410   assert( is_not_dead(n0), "can not use dead node");
 411   assert( is_not_dead(n1), "can not use dead node");
 412   assert( is_not_dead(n2), "can not use dead node");
 413   assert( is_not_dead(n3), "can not use dead node");
 414   assert( is_not_dead(n4), "can not use dead node");
 415   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 416   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 417   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 418   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 419   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 420 }
 421 
 422 //------------------------------Node-------------------------------------------
 423 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 424                      Node *n4, Node *n5)
 425   : _idx(Init(6))
 426 #ifdef ASSERT
 427   , _parse_idx(_idx)
 428 #endif
 429 {
 430   debug_only( verify_construction() );
 431   NOT_PRODUCT(nodes_created++);
 432   assert( is_not_dead(n0), "can not use dead node");
 433   assert( is_not_dead(n1), "can not use dead node");
 434   assert( is_not_dead(n2), "can not use dead node");
 435   assert( is_not_dead(n3), "can not use dead node");
 436   assert( is_not_dead(n4), "can not use dead node");
 437   assert( is_not_dead(n5), "can not use dead node");
 438   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 439   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 440   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 441   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 442   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 443   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 444 }
 445 
 446 //------------------------------Node-------------------------------------------
 447 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 448                      Node *n4, Node *n5, Node *n6)
 449   : _idx(Init(7))
 450 #ifdef ASSERT
 451   , _parse_idx(_idx)
 452 #endif
 453 {
 454   debug_only( verify_construction() );
 455   NOT_PRODUCT(nodes_created++);
 456   assert( is_not_dead(n0), "can not use dead node");
 457   assert( is_not_dead(n1), "can not use dead node");
 458   assert( is_not_dead(n2), "can not use dead node");
 459   assert( is_not_dead(n3), "can not use dead node");
 460   assert( is_not_dead(n4), "can not use dead node");
 461   assert( is_not_dead(n5), "can not use dead node");
 462   assert( is_not_dead(n6), "can not use dead node");
 463   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 464   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 465   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 466   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 467   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 468   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 469   _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this);
 470 }
 471 
 472 #ifdef __clang__
 473 #pragma clang diagnostic pop
 474 #endif
 475 
 476 
 477 //------------------------------clone------------------------------------------
 478 // Clone a Node.
 479 Node *Node::clone() const {
 480   Compile* C = Compile::current();
 481   uint s = size_of();           // Size of inherited Node
 482   Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*));
 483   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 484   // Set the new input pointer array
 485   n->_in = (Node**)(((char*)n)+s);
 486   // Cannot share the old output pointer array, so kill it
 487   n->_out = NO_OUT_ARRAY;
 488   // And reset the counters to 0
 489   n->_outcnt = 0;
 490   n->_outmax = 0;
 491   // Unlock this guy, since he is not in any hash table.
 492   debug_only(n->_hash_lock = 0);
 493   // Walk the old node's input list to duplicate its edges
 494   uint i;
 495   for( i = 0; i < len(); i++ ) {
 496     Node *x = in(i);
 497     n->_in[i] = x;
 498     if (x != nullptr) x->add_out(n);
 499   }
 500   if (is_macro()) {
 501     C->add_macro_node(n);
 502   }
 503   if (is_expensive()) {
 504     C->add_expensive_node(n);
 505   }
 506   if (for_post_loop_opts_igvn()) {
 507     // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically.
 508     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 509     n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
 510   }
 511   if (for_merge_stores_igvn()) {
 512     // Don't add cloned node to Compile::_for_merge_stores_igvn list automatically.
 513     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 514     n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
 515   }
 516   if (n->is_ParsePredicate()) {
 517     C->add_parse_predicate(n->as_ParsePredicate());
 518   }
 519   if (n->is_OpaqueTemplateAssertionPredicate()) {
 520     C->add_template_assertion_predicate_opaque(n->as_OpaqueTemplateAssertionPredicate());
 521   }
 522 
 523   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 524   bs->register_potential_barrier_node(n);
 525 
 526   n->set_idx(C->next_unique()); // Get new unique index as well
 527   NOT_PRODUCT(n->_igv_idx = C->next_igv_idx());
 528   debug_only( n->verify_construction() );
 529   NOT_PRODUCT(nodes_created++);
 530   // Do not patch over the debug_idx of a clone, because it makes it
 531   // impossible to break on the clone's moment of creation.
 532   //debug_only( n->set_debug_idx( debug_idx() ) );
 533 
 534   C->copy_node_notes_to(n, (Node*) this);
 535 
 536   // MachNode clone
 537   uint nopnds;
 538   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 539     MachNode *mach  = n->as_Mach();
 540     MachNode *mthis = this->as_Mach();
 541     // Get address of _opnd_array.
 542     // It should be the same offset since it is the clone of this node.
 543     MachOper **from = mthis->_opnds;
 544     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 545                     pointer_delta((const void*)from,
 546                                   (const void*)(&mthis->_opnds), 1));
 547     mach->_opnds = to;
 548     for ( uint i = 0; i < nopnds; ++i ) {
 549       to[i] = from[i]->clone();
 550     }
 551   }
 552   if (n->is_Call()) {
 553     // CallGenerator is linked to the original node.
 554     CallGenerator* cg = n->as_Call()->generator();
 555     if (cg != nullptr) {
 556       CallGenerator* cloned_cg = cg->with_call_node(n->as_Call());
 557       n->as_Call()->set_generator(cloned_cg);
 558     }
 559   }
 560   if (n->is_SafePoint()) {
 561     // Scalar replacement and macro expansion might modify the JVMState.
 562     // Clone it to make sure it's not shared between SafePointNodes.
 563     n->as_SafePoint()->clone_jvms(C);
 564     n->as_SafePoint()->clone_replaced_nodes();
 565   }
 566   Compile::current()->record_modified_node(n);
 567   return n;                     // Return the clone
 568 }
 569 
 570 //---------------------------setup_is_top--------------------------------------
 571 // Call this when changing the top node, to reassert the invariants
 572 // required by Node::is_top.  See Compile::set_cached_top_node.
 573 void Node::setup_is_top() {
 574   if (this == (Node*)Compile::current()->top()) {
 575     // This node has just become top.  Kill its out array.
 576     _outcnt = _outmax = 0;
 577     _out = nullptr;                           // marker value for top
 578     assert(is_top(), "must be top");
 579   } else {
 580     if (_out == nullptr)  _out = NO_OUT_ARRAY;
 581     assert(!is_top(), "must not be top");
 582   }
 583 }
 584 
 585 //------------------------------~Node------------------------------------------
 586 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 587 void Node::destruct(PhaseValues* phase) {
 588   Compile* compile = (phase != nullptr) ? phase->C : Compile::current();
 589   if (phase != nullptr && phase->is_IterGVN()) {
 590     phase->is_IterGVN()->_worklist.remove(this);
 591   }
 592   // If this is the most recently created node, reclaim its index. Otherwise,
 593   // record the node as dead to keep liveness information accurate.
 594   if ((uint)_idx+1 == compile->unique()) {
 595     compile->set_unique(compile->unique()-1);
 596   } else {
 597     compile->record_dead_node(_idx);
 598   }
 599   // Clear debug info:
 600   Node_Notes* nn = compile->node_notes_at(_idx);
 601   if (nn != nullptr)  nn->clear();
 602   // Walk the input array, freeing the corresponding output edges
 603   _cnt = _max;  // forget req/prec distinction
 604   uint i;
 605   for( i = 0; i < _max; i++ ) {
 606     set_req(i, nullptr);
 607     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 608   }
 609   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 610 
 611   if (is_macro()) {
 612     compile->remove_macro_node(this);
 613   }
 614   if (is_expensive()) {
 615     compile->remove_expensive_node(this);
 616   }
 617   if (is_OpaqueTemplateAssertionPredicate()) {
 618     compile->remove_template_assertion_predicate_opaque(as_OpaqueTemplateAssertionPredicate());
 619   }
 620   if (is_ParsePredicate()) {
 621     compile->remove_parse_predicate(as_ParsePredicate());
 622   }
 623   if (for_post_loop_opts_igvn()) {
 624     compile->remove_from_post_loop_opts_igvn(this);
 625   }
 626   if (for_merge_stores_igvn()) {
 627     compile->remove_from_merge_stores_igvn(this);
 628   }
 629 
 630   if (is_SafePoint()) {
 631     as_SafePoint()->delete_replaced_nodes();
 632 
 633     if (is_CallStaticJava()) {
 634       compile->remove_unstable_if_trap(as_CallStaticJava(), false);
 635     }
 636   }
 637   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 638   bs->unregister_potential_barrier_node(this);
 639 
 640   // See if the input array was allocated just prior to the object
 641   int edge_size = _max*sizeof(void*);
 642   int out_edge_size = _outmax*sizeof(void*);
 643   char *in_array = ((char*)_in);
 644   char *edge_end = in_array + edge_size;
 645   char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out);
 646   int node_size = size_of();
 647 
 648 #ifdef ASSERT
 649   // We will not actually delete the storage, but we'll make the node unusable.
 650   compile->remove_modified_node(this);
 651   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 652   _in = _out = (Node**) badAddress;
 653   _max = _cnt = _outmax = _outcnt = 0;
 654 #endif
 655 
 656   // Free the output edge array
 657   if (out_edge_size > 0) {
 658     compile->node_arena()->Afree(out_array, out_edge_size);
 659   }
 660 
 661   // Free the input edge array and the node itself
 662   if( edge_end == (char*)this ) {
 663     // It was; free the input array and object all in one hit
 664 #ifndef ASSERT
 665     compile->node_arena()->Afree(in_array, edge_size+node_size);
 666 #endif
 667   } else {
 668     // Free just the input array
 669     compile->node_arena()->Afree(in_array, edge_size);
 670 
 671     // Free just the object
 672 #ifndef ASSERT
 673     compile->node_arena()->Afree(this, node_size);
 674 #endif
 675   }
 676 }
 677 
 678 // Resize input or output array to grow it to the next larger power-of-2 bigger
 679 // than len.
 680 void Node::resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing) {
 681   Arena* arena = Compile::current()->node_arena();
 682   uint new_max = max_size;
 683   if (new_max == 0) {
 684     max_size = 4;
 685     array = (Node**)arena->Amalloc(4 * sizeof(Node*));
 686     if (needs_clearing) {
 687       array[0] = nullptr;
 688       array[1] = nullptr;
 689       array[2] = nullptr;
 690       array[3] = nullptr;
 691     }
 692     return;
 693   }
 694   new_max = next_power_of_2(len);
 695   assert(needs_clearing || (array != nullptr && array != NO_OUT_ARRAY), "out must have sensible value");
 696   array = (Node**)arena->Arealloc(array, max_size * sizeof(Node*), new_max * sizeof(Node*));
 697   if (needs_clearing) {
 698     Copy::zero_to_bytes(&array[max_size], (new_max - max_size) * sizeof(Node*)); // null all new space
 699   }
 700   max_size = new_max;               // Record new max length
 701   // This assertion makes sure that Node::_max is wide enough to
 702   // represent the numerical value of new_max.
 703   assert(max_size > len, "int width of _max or _outmax is too small");
 704 }
 705 
 706 //------------------------------grow-------------------------------------------
 707 // Grow the input array, making space for more edges
 708 void Node::grow(uint len) {
 709   resize_array(_in, _max, len, true);
 710 }
 711 
 712 //-----------------------------out_grow----------------------------------------
 713 // Grow the input array, making space for more edges
 714 void Node::out_grow(uint len) {
 715   assert(!is_top(), "cannot grow a top node's out array");
 716   resize_array(_out, _outmax, len, false);
 717 }
 718 
 719 #ifdef ASSERT
 720 //------------------------------is_dead----------------------------------------
 721 bool Node::is_dead() const {
 722   // Mach and pinch point nodes may look like dead.
 723   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 724     return false;
 725   for( uint i = 0; i < _max; i++ )
 726     if( _in[i] != nullptr )
 727       return false;
 728   return true;
 729 }
 730 
 731 bool Node::is_not_dead(const Node* n) {
 732   return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead());
 733 }
 734 
 735 bool Node::is_reachable_from_root() const {
 736   ResourceMark rm;
 737   Unique_Node_List wq;
 738   wq.push((Node*)this);
 739   RootNode* root = Compile::current()->root();
 740   for (uint i = 0; i < wq.size(); i++) {
 741     Node* m = wq.at(i);
 742     if (m == root) {
 743       return true;
 744     }
 745     for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
 746       Node* u = m->fast_out(j);
 747       wq.push(u);
 748     }
 749   }
 750   return false;
 751 }
 752 #endif
 753 
 754 //------------------------------is_unreachable---------------------------------
 755 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 756   assert(!is_Mach(), "doesn't work with MachNodes");
 757   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top());
 758 }
 759 
 760 //------------------------------add_req----------------------------------------
 761 // Add a new required input at the end
 762 void Node::add_req( Node *n ) {
 763   assert( is_not_dead(n), "can not use dead node");
 764 
 765   // Look to see if I can move precedence down one without reallocating
 766   if( (_cnt >= _max) || (in(_max-1) != nullptr) )
 767     grow( _max+1 );
 768 
 769   // Find a precedence edge to move
 770   if( in(_cnt) != nullptr ) {   // Next precedence edge is busy?
 771     uint i;
 772     for( i=_cnt; i<_max; i++ )
 773       if( in(i) == nullptr )    // Find the null at end of prec edge list
 774         break;                  // There must be one, since we grew the array
 775     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 776   }
 777   _in[_cnt++] = n;            // Stuff over old prec edge
 778   if (n != nullptr) n->add_out((Node *)this);
 779   Compile::current()->record_modified_node(this);
 780 }
 781 
 782 //---------------------------add_req_batch-------------------------------------
 783 // Add a new required input at the end
 784 void Node::add_req_batch( Node *n, uint m ) {
 785   assert( is_not_dead(n), "can not use dead node");
 786   // check various edge cases
 787   if ((int)m <= 1) {
 788     assert((int)m >= 0, "oob");
 789     if (m != 0)  add_req(n);
 790     return;
 791   }
 792 
 793   // Look to see if I can move precedence down one without reallocating
 794   if( (_cnt+m) > _max || _in[_max-m] )
 795     grow( _max+m );
 796 
 797   // Find a precedence edge to move
 798   if( _in[_cnt] != nullptr ) {  // Next precedence edge is busy?
 799     uint i;
 800     for( i=_cnt; i<_max; i++ )
 801       if( _in[i] == nullptr )   // Find the null at end of prec edge list
 802         break;                  // There must be one, since we grew the array
 803     // Slide all the precs over by m positions (assume #prec << m).
 804     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 805   }
 806 
 807   // Stuff over the old prec edges
 808   for(uint i=0; i<m; i++ ) {
 809     _in[_cnt++] = n;
 810   }
 811 
 812   // Insert multiple out edges on the node.
 813   if (n != nullptr && !n->is_top()) {
 814     for(uint i=0; i<m; i++ ) {
 815       n->add_out((Node *)this);
 816     }
 817   }
 818   Compile::current()->record_modified_node(this);
 819 }
 820 
 821 //------------------------------del_req----------------------------------------
 822 // Delete the required edge and compact the edge array
 823 void Node::del_req( uint idx ) {
 824   assert( idx < _cnt, "oob");
 825   assert( !VerifyHashTableKeys || _hash_lock == 0,
 826           "remove node from hash table before modifying it");
 827   // First remove corresponding def-use edge
 828   Node *n = in(idx);
 829   if (n != nullptr) n->del_out((Node *)this);
 830   _in[idx] = in(--_cnt); // Compact the array
 831   // Avoid spec violation: Gap in prec edges.
 832   close_prec_gap_at(_cnt);
 833   Compile::current()->record_modified_node(this);
 834 }
 835 
 836 //------------------------------del_req_ordered--------------------------------
 837 // Delete the required edge and compact the edge array with preserved order
 838 void Node::del_req_ordered( uint idx ) {
 839   assert( idx < _cnt, "oob");
 840   assert( !VerifyHashTableKeys || _hash_lock == 0,
 841           "remove node from hash table before modifying it");
 842   // First remove corresponding def-use edge
 843   Node *n = in(idx);
 844   if (n != nullptr) n->del_out((Node *)this);
 845   if (idx < --_cnt) {    // Not last edge ?
 846     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 847   }
 848   // Avoid spec violation: Gap in prec edges.
 849   close_prec_gap_at(_cnt);
 850   Compile::current()->record_modified_node(this);
 851 }
 852 
 853 //------------------------------ins_req----------------------------------------
 854 // Insert a new required input at the end
 855 void Node::ins_req( uint idx, Node *n ) {
 856   assert( is_not_dead(n), "can not use dead node");
 857   add_req(nullptr);                // Make space
 858   assert( idx < _max, "Must have allocated enough space");
 859   // Slide over
 860   if(_cnt-idx-1 > 0) {
 861     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 862   }
 863   _in[idx] = n;                            // Stuff over old required edge
 864   if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge
 865   Compile::current()->record_modified_node(this);
 866 }
 867 
 868 //-----------------------------find_edge---------------------------------------
 869 int Node::find_edge(Node* n) {
 870   for (uint i = 0; i < len(); i++) {
 871     if (_in[i] == n)  return i;
 872   }
 873   return -1;
 874 }
 875 
 876 //----------------------------replace_edge-------------------------------------
 877 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) {
 878   if (old == neww)  return 0;  // nothing to do
 879   uint nrep = 0;
 880   for (uint i = 0; i < len(); i++) {
 881     if (in(i) == old) {
 882       if (i < req()) {
 883         if (gvn != nullptr) {
 884           set_req_X(i, neww, gvn);
 885         } else {
 886           set_req(i, neww);
 887         }
 888       } else {
 889         assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here");
 890         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 891         set_prec(i, neww);
 892       }
 893       nrep++;
 894     }
 895   }
 896   return nrep;
 897 }
 898 
 899 /**
 900  * Replace input edges in the range pointing to 'old' node.
 901  */
 902 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) {
 903   if (old == neww)  return 0;  // nothing to do
 904   uint nrep = 0;
 905   for (int i = start; i < end; i++) {
 906     if (in(i) == old) {
 907       set_req_X(i, neww, gvn);
 908       nrep++;
 909     }
 910   }
 911   return nrep;
 912 }
 913 
 914 //-------------------------disconnect_inputs-----------------------------------
 915 // null out all inputs to eliminate incoming Def-Use edges.
 916 void Node::disconnect_inputs(Compile* C) {
 917   // the layout of Node::_in
 918   // r: a required input, null is allowed
 919   // p: a precedence, null values are all at the end
 920   // -----------------------------------
 921   // |r|...|r|p|...|p|null|...|null|
 922   //         |                     |
 923   //         req()                 len()
 924   // -----------------------------------
 925   for (uint i = 0; i < req(); ++i) {
 926     if (in(i) != nullptr) {
 927       set_req(i, nullptr);
 928     }
 929   }
 930 
 931   // Remove precedence edges if any exist
 932   // Note: Safepoints may have precedence edges, even during parsing
 933   for (uint i = len(); i > req(); ) {
 934     rm_prec(--i);  // no-op if _in[i] is null
 935   }
 936 
 937 #ifdef ASSERT
 938   // sanity check
 939   for (uint i = 0; i < len(); ++i) {
 940     assert(_in[i] == nullptr, "disconnect_inputs() failed!");
 941   }
 942 #endif
 943 
 944   // Node::destruct requires all out edges be deleted first
 945   // debug_only(destruct();)   // no reuse benefit expected
 946   C->record_dead_node(_idx);
 947 }
 948 
 949 //-----------------------------uncast---------------------------------------
 950 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 951 // Strip away casting.  (It is depth-limited.)
 952 // Optionally, keep casts with dependencies.
 953 Node* Node::uncast(bool keep_deps) const {
 954   // Should be inline:
 955   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 956   if (is_ConstraintCast()) {
 957     return uncast_helper(this, keep_deps);
 958   } else {
 959     return (Node*) this;
 960   }
 961 }
 962 
 963 // Find out of current node that matches opcode.
 964 Node* Node::find_out_with(int opcode) {
 965   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 966     Node* use = fast_out(i);
 967     if (use->Opcode() == opcode) {
 968       return use;
 969     }
 970   }
 971   return nullptr;
 972 }
 973 
 974 // Return true if the current node has an out that matches opcode.
 975 bool Node::has_out_with(int opcode) {
 976   return (find_out_with(opcode) != nullptr);
 977 }
 978 
 979 // Return true if the current node has an out that matches any of the opcodes.
 980 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 981   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 982       int opcode = fast_out(i)->Opcode();
 983       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 984         return true;
 985       }
 986   }
 987   return false;
 988 }
 989 
 990 
 991 //---------------------------uncast_helper-------------------------------------
 992 Node* Node::uncast_helper(const Node* p, bool keep_deps) {
 993 #ifdef ASSERT
 994   uint depth_count = 0;
 995   const Node* orig_p = p;
 996 #endif
 997 
 998   while (true) {
 999 #ifdef ASSERT
1000     if (depth_count >= K) {
1001       orig_p->dump(4);
1002       if (p != orig_p)
1003         p->dump(1);
1004     }
1005     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
1006 #endif
1007     if (p == nullptr || p->req() != 2) {
1008       break;
1009     } else if (p->is_ConstraintCast()) {
1010       if (keep_deps && p->as_ConstraintCast()->carry_dependency()) {
1011         break; // stop at casts with dependencies
1012       }
1013       p = p->in(1);
1014     } else {
1015       break;
1016     }
1017   }
1018   return (Node*) p;
1019 }
1020 
1021 //------------------------------add_prec---------------------------------------
1022 // Add a new precedence input.  Precedence inputs are unordered, with
1023 // duplicates removed and nulls packed down at the end.
1024 void Node::add_prec( Node *n ) {
1025   assert( is_not_dead(n), "can not use dead node");
1026 
1027   // Check for null at end
1028   if( _cnt >= _max || in(_max-1) )
1029     grow( _max+1 );
1030 
1031   // Find a precedence edge to move
1032   uint i = _cnt;
1033   while( in(i) != nullptr ) {
1034     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
1035     i++;
1036   }
1037   _in[i] = n;                                   // Stuff prec edge over null
1038   if ( n != nullptr) n->add_out((Node *)this);  // Add mirror edge
1039 
1040 #ifdef ASSERT
1041   while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); }
1042 #endif
1043   Compile::current()->record_modified_node(this);
1044 }
1045 
1046 //------------------------------rm_prec----------------------------------------
1047 // Remove a precedence input.  Precedence inputs are unordered, with
1048 // duplicates removed and nulls packed down at the end.
1049 void Node::rm_prec( uint j ) {
1050   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1051   assert(j >= _cnt, "not a precedence edge");
1052   if (_in[j] == nullptr) return;   // Avoid spec violation: Gap in prec edges.
1053   _in[j]->del_out((Node *)this);
1054   close_prec_gap_at(j);
1055   Compile::current()->record_modified_node(this);
1056 }
1057 
1058 //------------------------------size_of----------------------------------------
1059 uint Node::size_of() const { return sizeof(*this); }
1060 
1061 //------------------------------ideal_reg--------------------------------------
1062 uint Node::ideal_reg() const { return 0; }
1063 
1064 //------------------------------jvms-------------------------------------------
1065 JVMState* Node::jvms() const { return nullptr; }
1066 
1067 #ifdef ASSERT
1068 //------------------------------jvms-------------------------------------------
1069 bool Node::verify_jvms(const JVMState* using_jvms) const {
1070   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1071     if (jvms == using_jvms)  return true;
1072   }
1073   return false;
1074 }
1075 
1076 //------------------------------init_NodeProperty------------------------------
1077 void Node::init_NodeProperty() {
1078   assert(_max_classes <= max_juint, "too many NodeProperty classes");
1079   assert(max_flags() <= max_juint, "too many NodeProperty flags");
1080 }
1081 
1082 //-----------------------------max_flags---------------------------------------
1083 juint Node::max_flags() {
1084   return (PD::_last_flag << 1) - 1; // allow flags combination
1085 }
1086 #endif
1087 
1088 //------------------------------format-----------------------------------------
1089 // Print as assembly
1090 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1091 //------------------------------emit-------------------------------------------
1092 // Emit bytes using C2_MacroAssembler
1093 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {}
1094 //------------------------------size-------------------------------------------
1095 // Size of instruction in bytes
1096 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1097 
1098 //------------------------------CFG Construction-------------------------------
1099 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1100 // Goto and Return.
1101 const Node *Node::is_block_proj() const { return nullptr; }
1102 
1103 // Minimum guaranteed type
1104 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1105 
1106 
1107 //------------------------------raise_bottom_type------------------------------
1108 // Get the worst-case Type output for this Node.
1109 void Node::raise_bottom_type(const Type* new_type) {
1110   if (is_Type()) {
1111     TypeNode *n = this->as_Type();
1112     if (VerifyAliases) {
1113       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1114     }
1115     n->set_type(new_type);
1116   } else if (is_Load()) {
1117     LoadNode *n = this->as_Load();
1118     if (VerifyAliases) {
1119       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1120     }
1121     n->set_type(new_type);
1122   }
1123 }
1124 
1125 //------------------------------Identity---------------------------------------
1126 // Return a node that the given node is equivalent to.
1127 Node* Node::Identity(PhaseGVN* phase) {
1128   return this;                  // Default to no identities
1129 }
1130 
1131 //------------------------------Value------------------------------------------
1132 // Compute a new Type for a node using the Type of the inputs.
1133 const Type* Node::Value(PhaseGVN* phase) const {
1134   return bottom_type();         // Default to worst-case Type
1135 }
1136 
1137 //------------------------------Ideal------------------------------------------
1138 //
1139 // 'Idealize' the graph rooted at this Node.
1140 //
1141 // In order to be efficient and flexible there are some subtle invariants
1142 // these Ideal calls need to hold.  Running with '-XX:VerifyIterativeGVN=1' checks
1143 // these invariants, although its too slow to have on by default.  If you are
1144 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1'
1145 //
1146 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1147 // pointer.  If ANY change is made, it must return the root of the reshaped
1148 // graph - even if the root is the same Node.  Example: swapping the inputs
1149 // to an AddINode gives the same answer and same root, but you still have to
1150 // return the 'this' pointer instead of null.
1151 //
1152 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1153 // Identity call to return an old Node; basically if Identity can find
1154 // another Node have the Ideal call make no change and return null.
1155 // Example: AddINode::Ideal must check for add of zero; in this case it
1156 // returns null instead of doing any graph reshaping.
1157 //
1158 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1159 // sharing there may be other users of the old Nodes relying on their current
1160 // semantics.  Modifying them will break the other users.
1161 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1162 // "X+3" unchanged in case it is shared.
1163 //
1164 // If you modify the 'this' pointer's inputs, you should use
1165 // 'set_req'.  If you are making a new Node (either as the new root or
1166 // some new internal piece) you may use 'init_req' to set the initial
1167 // value.  You can make a new Node with either 'new' or 'clone'.  In
1168 // either case, def-use info is correctly maintained.
1169 //
1170 // Example: reshape "(X+3)+4" into "X+7":
1171 //    set_req(1, in(1)->in(1));
1172 //    set_req(2, phase->intcon(7));
1173 //    return this;
1174 // Example: reshape "X*4" into "X<<2"
1175 //    return new LShiftINode(in(1), phase->intcon(2));
1176 //
1177 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1178 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1179 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1180 //    return new AddINode(shift, in(1));
1181 //
1182 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1183 // These forms are faster than 'phase->transform(new ConNode())' and Do
1184 // The Right Thing with def-use info.
1185 //
1186 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1187 // graph uses the 'this' Node it must be the root.  If you want a Node with
1188 // the same Opcode as the 'this' pointer use 'clone'.
1189 //
1190 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1191   return nullptr;                  // Default to being Ideal already
1192 }
1193 
1194 // Some nodes have specific Ideal subgraph transformations only if they are
1195 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1196 // for the transformations to happen.
1197 bool Node::has_special_unique_user() const {
1198   assert(outcnt() == 1, "match only for unique out");
1199   Node* n = unique_out();
1200   int op  = Opcode();
1201   if (this->is_Store()) {
1202     // Condition for back-to-back stores folding.
1203     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1204   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1205     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1206     return n->Opcode() == Op_MemBarAcquire;
1207   } else if (op == Op_AddL) {
1208     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1209     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1210   } else if (op == Op_SubI || op == Op_SubL) {
1211     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1212     return n->Opcode() == op && n->in(2) == this;
1213   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1214     // See IfProjNode::Identity()
1215     return true;
1216   } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) {
1217     // See IfNode::fold_compares
1218     return true;
1219   } else {
1220     return false;
1221   }
1222 };
1223 
1224 //--------------------------find_exact_control---------------------------------
1225 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1226 Node* Node::find_exact_control(Node* ctrl) {
1227   if (ctrl == nullptr && this->is_Region())
1228     ctrl = this->as_Region()->is_copy();
1229 
1230   if (ctrl != nullptr && ctrl->is_CatchProj()) {
1231     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1232       ctrl = ctrl->in(0);
1233     if (ctrl != nullptr && !ctrl->is_top())
1234       ctrl = ctrl->in(0);
1235   }
1236 
1237   if (ctrl != nullptr && ctrl->is_Proj())
1238     ctrl = ctrl->in(0);
1239 
1240   return ctrl;
1241 }
1242 
1243 //--------------------------dominates------------------------------------------
1244 // Helper function for MemNode::all_controls_dominate().
1245 // Check if 'this' control node dominates or equal to 'sub' control node.
1246 // We already know that if any path back to Root or Start reaches 'this',
1247 // then all paths so, so this is a simple search for one example,
1248 // not an exhaustive search for a counterexample.
1249 Node::DomResult Node::dominates(Node* sub, Node_List &nlist) {
1250   assert(this->is_CFG(), "expecting control");
1251   assert(sub != nullptr && sub->is_CFG(), "expecting control");
1252 
1253   // detect dead cycle without regions
1254   int iterations_without_region_limit = DominatorSearchLimit;
1255 
1256   Node* orig_sub = sub;
1257   Node* dom      = this;
1258   bool  met_dom  = false;
1259   nlist.clear();
1260 
1261   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1262   // After seeing 'dom', continue up to Root or Start.
1263   // If we hit a region (backward split point), it may be a loop head.
1264   // Keep going through one of the region's inputs.  If we reach the
1265   // same region again, go through a different input.  Eventually we
1266   // will either exit through the loop head, or give up.
1267   // (If we get confused, break out and return a conservative 'false'.)
1268   while (sub != nullptr) {
1269     if (sub->is_top()) {
1270       // Conservative answer for dead code.
1271       return DomResult::EncounteredDeadCode;
1272     }
1273     if (sub == dom) {
1274       if (nlist.size() == 0) {
1275         // No Region nodes except loops were visited before and the EntryControl
1276         // path was taken for loops: it did not walk in a cycle.
1277         return DomResult::Dominate;
1278       } else if (met_dom) {
1279         break;          // already met before: walk in a cycle
1280       } else {
1281         // Region nodes were visited. Continue walk up to Start or Root
1282         // to make sure that it did not walk in a cycle.
1283         met_dom = true; // first time meet
1284         iterations_without_region_limit = DominatorSearchLimit; // Reset
1285      }
1286     }
1287     if (sub->is_Start() || sub->is_Root()) {
1288       // Success if we met 'dom' along a path to Start or Root.
1289       // We assume there are no alternative paths that avoid 'dom'.
1290       // (This assumption is up to the caller to ensure!)
1291       return met_dom ? DomResult::Dominate : DomResult::NotDominate;
1292     }
1293     Node* up = sub->in(0);
1294     // Normalize simple pass-through regions and projections:
1295     up = sub->find_exact_control(up);
1296     // If sub == up, we found a self-loop.  Try to push past it.
1297     if (sub == up && sub->is_Loop()) {
1298       // Take loop entry path on the way up to 'dom'.
1299       up = sub->in(1); // in(LoopNode::EntryControl);
1300     } else if (sub == up && sub->is_Region() && sub->req() == 2) {
1301       // Take in(1) path on the way up to 'dom' for regions with only one input
1302       up = sub->in(1);
1303     } else if (sub == up && sub->is_Region()) {
1304       // Try both paths for Regions with 2 input paths (it may be a loop head).
1305       // It could give conservative 'false' answer without information
1306       // which region's input is the entry path.
1307       iterations_without_region_limit = DominatorSearchLimit; // Reset
1308 
1309       bool region_was_visited_before = false;
1310       // Was this Region node visited before?
1311       // If so, we have reached it because we accidentally took a
1312       // loop-back edge from 'sub' back into the body of the loop,
1313       // and worked our way up again to the loop header 'sub'.
1314       // So, take the first unexplored path on the way up to 'dom'.
1315       for (int j = nlist.size() - 1; j >= 0; j--) {
1316         intptr_t ni = (intptr_t)nlist.at(j);
1317         Node* visited = (Node*)(ni & ~1);
1318         bool  visited_twice_already = ((ni & 1) != 0);
1319         if (visited == sub) {
1320           if (visited_twice_already) {
1321             // Visited 2 paths, but still stuck in loop body.  Give up.
1322             return DomResult::NotDominate;
1323           }
1324           // The Region node was visited before only once.
1325           // (We will repush with the low bit set, below.)
1326           nlist.remove(j);
1327           // We will find a new edge and re-insert.
1328           region_was_visited_before = true;
1329           break;
1330         }
1331       }
1332 
1333       // Find an incoming edge which has not been seen yet; walk through it.
1334       assert(up == sub, "");
1335       uint skip = region_was_visited_before ? 1 : 0;
1336       for (uint i = 1; i < sub->req(); i++) {
1337         Node* in = sub->in(i);
1338         if (in != nullptr && !in->is_top() && in != sub) {
1339           if (skip == 0) {
1340             up = in;
1341             break;
1342           }
1343           --skip;               // skip this nontrivial input
1344         }
1345       }
1346 
1347       // Set 0 bit to indicate that both paths were taken.
1348       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1349     }
1350 
1351     if (up == sub) {
1352       break;    // some kind of tight cycle
1353     }
1354     if (up == orig_sub && met_dom) {
1355       // returned back after visiting 'dom'
1356       break;    // some kind of cycle
1357     }
1358     if (--iterations_without_region_limit < 0) {
1359       break;    // dead cycle
1360     }
1361     sub = up;
1362   }
1363 
1364   // Did not meet Root or Start node in pred. chain.
1365   return DomResult::NotDominate;
1366 }
1367 
1368 //------------------------------remove_dead_region-----------------------------
1369 // This control node is dead.  Follow the subgraph below it making everything
1370 // using it dead as well.  This will happen normally via the usual IterGVN
1371 // worklist but this call is more efficient.  Do not update use-def info
1372 // inside the dead region, just at the borders.
1373 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1374   // Con's are a popular node to re-hit in the hash table again.
1375   if( dead->is_Con() ) return;
1376 
1377   ResourceMark rm;
1378   Node_List nstack;
1379   VectorSet dead_set; // notify uses only once
1380 
1381   Node *top = igvn->C->top();
1382   nstack.push(dead);
1383   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1384 
1385   while (nstack.size() > 0) {
1386     dead = nstack.pop();
1387     if (!dead_set.test_set(dead->_idx)) {
1388       // If dead has any live uses, those are now still attached. Notify them before we lose them.
1389       igvn->add_users_to_worklist(dead);
1390     }
1391     if (dead->Opcode() == Op_SafePoint) {
1392       dead->as_SafePoint()->disconnect_from_root(igvn);
1393     }
1394     if (dead->outcnt() > 0) {
1395       // Keep dead node on stack until all uses are processed.
1396       nstack.push(dead);
1397       // For all Users of the Dead...    ;-)
1398       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1399         Node* use = dead->last_out(k);
1400         igvn->hash_delete(use);       // Yank from hash table prior to mod
1401         if (use->in(0) == dead) {     // Found another dead node
1402           assert (!use->is_Con(), "Control for Con node should be Root node.");
1403           use->set_req(0, top);       // Cut dead edge to prevent processing
1404           nstack.push(use);           // the dead node again.
1405         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1406                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1407                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1408           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1409           use->set_req(0, top);       // Cut self edge
1410           nstack.push(use);
1411         } else {                      // Else found a not-dead user
1412           // Dead if all inputs are top or null
1413           bool dead_use = !use->is_Root(); // Keep empty graph alive
1414           for (uint j = 1; j < use->req(); j++) {
1415             Node* in = use->in(j);
1416             if (in == dead) {         // Turn all dead inputs into TOP
1417               use->set_req(j, top);
1418             } else if (in != nullptr && !in->is_top()) {
1419               dead_use = false;
1420             }
1421           }
1422           if (dead_use) {
1423             if (use->is_Region()) {
1424               use->set_req(0, top);   // Cut self edge
1425             }
1426             nstack.push(use);
1427           } else {
1428             igvn->_worklist.push(use);
1429           }
1430         }
1431         // Refresh the iterator, since any number of kills might have happened.
1432         k = dead->last_outs(kmin);
1433       }
1434     } else { // (dead->outcnt() == 0)
1435       // Done with outputs.
1436       igvn->hash_delete(dead);
1437       igvn->_worklist.remove(dead);
1438       igvn->set_type(dead, Type::TOP);
1439       // Kill all inputs to the dead guy
1440       for (uint i=0; i < dead->req(); i++) {
1441         Node *n = dead->in(i);      // Get input to dead guy
1442         if (n != nullptr && !n->is_top()) { // Input is valid?
1443           dead->set_req(i, top);    // Smash input away
1444           if (n->outcnt() == 0) {   // Input also goes dead?
1445             if (!n->is_Con())
1446               nstack.push(n);       // Clear it out as well
1447           } else if (n->outcnt() == 1 &&
1448                      n->has_special_unique_user()) {
1449             igvn->add_users_to_worklist( n );
1450           } else if (n->outcnt() <= 2 && n->is_Store()) {
1451             // Push store's uses on worklist to enable folding optimization for
1452             // store/store and store/load to the same address.
1453             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1454             // and remove_globally_dead_node().
1455             igvn->add_users_to_worklist( n );
1456           } else if (dead->is_data_proj_of_pure_function(n)) {
1457             igvn->_worklist.push(n);
1458           } else {
1459             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
1460           }
1461         }
1462       }
1463       igvn->C->remove_useless_node(dead);
1464     } // (dead->outcnt() == 0)
1465   }   // while (nstack.size() > 0) for outputs
1466   return;
1467 }
1468 
1469 //------------------------------remove_dead_region-----------------------------
1470 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1471   Node *n = in(0);
1472   if( !n ) return false;
1473   // Lost control into this guy?  I.e., it became unreachable?
1474   // Aggressively kill all unreachable code.
1475   if (can_reshape && n->is_top()) {
1476     kill_dead_code(this, phase->is_IterGVN());
1477     return false; // Node is dead.
1478   }
1479 
1480   if( n->is_Region() && n->as_Region()->is_copy() ) {
1481     Node *m = n->nonnull_req();
1482     set_req(0, m);
1483     return true;
1484   }
1485   return false;
1486 }
1487 
1488 //------------------------------hash-------------------------------------------
1489 // Hash function over Nodes.
1490 uint Node::hash() const {
1491   uint sum = 0;
1492   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1493     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded nulls
1494   return (sum>>2) + _cnt + Opcode();
1495 }
1496 
1497 //------------------------------cmp--------------------------------------------
1498 // Compare special parts of simple Nodes
1499 bool Node::cmp( const Node &n ) const {
1500   return true;                  // Must be same
1501 }
1502 
1503 //------------------------------rematerialize-----------------------------------
1504 // Should we clone rather than spill this instruction?
1505 bool Node::rematerialize() const {
1506   if ( is_Mach() )
1507     return this->as_Mach()->rematerialize();
1508   else
1509     return (_flags & Flag_rematerialize) != 0;
1510 }
1511 
1512 //------------------------------needs_anti_dependence_check---------------------
1513 // Nodes which use memory without consuming it, hence need antidependences.
1514 bool Node::needs_anti_dependence_check() const {
1515   if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) {
1516     return false;
1517   }
1518   return in(1)->bottom_type()->has_memory();
1519 }
1520 
1521 // Get an integer constant from a ConNode (or CastIINode).
1522 // Return a default value if there is no apparent constant here.
1523 const TypeInt* Node::find_int_type() const {
1524   if (this->is_Type()) {
1525     return this->as_Type()->type()->isa_int();
1526   } else if (this->is_Con()) {
1527     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1528     return this->bottom_type()->isa_int();
1529   }
1530   return nullptr;
1531 }
1532 
1533 const TypeInteger* Node::find_integer_type(BasicType bt) const {
1534   if (this->is_Type()) {
1535     return this->as_Type()->type()->isa_integer(bt);
1536   } else if (this->is_Con()) {
1537     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1538     return this->bottom_type()->isa_integer(bt);
1539   }
1540   return nullptr;
1541 }
1542 
1543 // Get a pointer constant from a ConstNode.
1544 // Returns the constant if it is a pointer ConstNode
1545 intptr_t Node::get_ptr() const {
1546   assert( Opcode() == Op_ConP, "" );
1547   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1548 }
1549 
1550 // Get a narrow oop constant from a ConNNode.
1551 intptr_t Node::get_narrowcon() const {
1552   assert( Opcode() == Op_ConN, "" );
1553   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1554 }
1555 
1556 // Get a long constant from a ConNode.
1557 // Return a default value if there is no apparent constant here.
1558 const TypeLong* Node::find_long_type() const {
1559   if (this->is_Type()) {
1560     return this->as_Type()->type()->isa_long();
1561   } else if (this->is_Con()) {
1562     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1563     return this->bottom_type()->isa_long();
1564   }
1565   return nullptr;
1566 }
1567 
1568 
1569 /**
1570  * Return a ptr type for nodes which should have it.
1571  */
1572 const TypePtr* Node::get_ptr_type() const {
1573   const TypePtr* tp = this->bottom_type()->make_ptr();
1574 #ifdef ASSERT
1575   if (tp == nullptr) {
1576     this->dump(1);
1577     assert((tp != nullptr), "unexpected node type");
1578   }
1579 #endif
1580   return tp;
1581 }
1582 
1583 // Get a double constant from a ConstNode.
1584 // Returns the constant if it is a double ConstNode
1585 jdouble Node::getd() const {
1586   assert( Opcode() == Op_ConD, "" );
1587   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1588 }
1589 
1590 // Get a float constant from a ConstNode.
1591 // Returns the constant if it is a float ConstNode
1592 jfloat Node::getf() const {
1593   assert( Opcode() == Op_ConF, "" );
1594   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1595 }
1596 
1597 // Get a half float constant from a ConstNode.
1598 // Returns the constant if it is a float ConstNode
1599 jshort Node::geth() const {
1600   assert( Opcode() == Op_ConH, "" );
1601   return ((ConHNode*)this)->type()->is_half_float_constant()->geth();
1602 }
1603 
1604 #ifndef PRODUCT
1605 
1606 // Call this from debugger:
1607 Node* old_root() {
1608   Matcher* matcher = Compile::current()->matcher();
1609   if (matcher != nullptr) {
1610     Node* new_root = Compile::current()->root();
1611     Node* old_root = matcher->find_old_node(new_root);
1612     if (old_root != nullptr) {
1613       return old_root;
1614     }
1615   }
1616   tty->print("old_root: not found.\n");
1617   return nullptr;
1618 }
1619 
1620 // BFS traverse all reachable nodes from start, call callback on them
1621 template <typename Callback>
1622 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) {
1623   Unique_Mixed_Node_List worklist;
1624   worklist.add(start);
1625   for (uint i = 0; i < worklist.size(); i++) {
1626     Node* n = worklist[i];
1627     callback(n);
1628     for (uint i = 0; i < n->len(); i++) {
1629       if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) {
1630         // If only_ctrl is set: Add regions, the root node, or control inputs only
1631         worklist.add(n->in(i));
1632       }
1633     }
1634     if (traverse_output && !only_ctrl) {
1635       for (uint i = 0; i < n->outcnt(); i++) {
1636         worklist.add(n->raw_out(i));
1637       }
1638     }
1639   }
1640 }
1641 
1642 // BFS traverse from start, return node with idx
1643 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) {
1644   ResourceMark rm;
1645   Node* result = nullptr;
1646   auto callback = [&] (Node* n) {
1647     if (n->_idx == idx) {
1648       if (result != nullptr) {
1649         tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1650           (uintptr_t)result, (uintptr_t)n, idx);
1651       }
1652       result = n;
1653     }
1654   };
1655   visit_nodes(start, callback, traverse_output, only_ctrl);
1656   return result;
1657 }
1658 
1659 static int node_idx_cmp(const Node** n1, const Node** n2) {
1660   return (*n1)->_idx - (*n2)->_idx;
1661 }
1662 
1663 static void find_nodes_by_name(Node* start, const char* name) {
1664   ResourceMark rm;
1665   GrowableArray<const Node*> ns;
1666   auto callback = [&] (const Node* n) {
1667     if (StringUtils::is_star_match(name, n->Name())) {
1668       ns.push(n);
1669     }
1670   };
1671   visit_nodes(start, callback, true, false);
1672   ns.sort(node_idx_cmp);
1673   for (int i = 0; i < ns.length(); i++) {
1674     ns.at(i)->dump();
1675   }
1676 }
1677 
1678 static void find_nodes_by_dump(Node* start, const char* pattern) {
1679   ResourceMark rm;
1680   GrowableArray<const Node*> ns;
1681   auto callback = [&] (const Node* n) {
1682     stringStream stream;
1683     n->dump("", false, &stream);
1684     if (StringUtils::is_star_match(pattern, stream.base())) {
1685       ns.push(n);
1686     }
1687   };
1688   visit_nodes(start, callback, true, false);
1689   ns.sort(node_idx_cmp);
1690   for (int i = 0; i < ns.length(); i++) {
1691     ns.at(i)->dump();
1692   }
1693 }
1694 
1695 // call from debugger: find node with name pattern in new/current graph
1696 // name can contain "*" in match pattern to match any characters
1697 // the matching is case insensitive
1698 void find_nodes_by_name(const char* name) {
1699   Node* root = Compile::current()->root();
1700   find_nodes_by_name(root, name);
1701 }
1702 
1703 // call from debugger: find node with name pattern in old graph
1704 // name can contain "*" in match pattern to match any characters
1705 // the matching is case insensitive
1706 void find_old_nodes_by_name(const char* name) {
1707   Node* root = old_root();
1708   find_nodes_by_name(root, name);
1709 }
1710 
1711 // call from debugger: find node with dump pattern in new/current graph
1712 // can contain "*" in match pattern to match any characters
1713 // the matching is case insensitive
1714 void find_nodes_by_dump(const char* pattern) {
1715   Node* root = Compile::current()->root();
1716   find_nodes_by_dump(root, pattern);
1717 }
1718 
1719 // call from debugger: find node with name pattern in old graph
1720 // can contain "*" in match pattern to match any characters
1721 // the matching is case insensitive
1722 void find_old_nodes_by_dump(const char* pattern) {
1723   Node* root = old_root();
1724   find_nodes_by_dump(root, pattern);
1725 }
1726 
1727 // Call this from debugger, search in same graph as n:
1728 Node* find_node(Node* n, const int idx) {
1729   return n->find(idx);
1730 }
1731 
1732 // Call this from debugger, search in new nodes:
1733 Node* find_node(const int idx) {
1734   return Compile::current()->root()->find(idx);
1735 }
1736 
1737 // Call this from debugger, search in old nodes:
1738 Node* find_old_node(const int idx) {
1739   Node* root = old_root();
1740   return (root == nullptr) ? nullptr : root->find(idx);
1741 }
1742 
1743 // Call this from debugger, search in same graph as n:
1744 Node* find_ctrl(Node* n, const int idx) {
1745   return n->find_ctrl(idx);
1746 }
1747 
1748 // Call this from debugger, search in new nodes:
1749 Node* find_ctrl(const int idx) {
1750   return Compile::current()->root()->find_ctrl(idx);
1751 }
1752 
1753 // Call this from debugger, search in old nodes:
1754 Node* find_old_ctrl(const int idx) {
1755   Node* root = old_root();
1756   return (root == nullptr) ? nullptr : root->find_ctrl(idx);
1757 }
1758 
1759 //------------------------------find_ctrl--------------------------------------
1760 // Find an ancestor to this node in the control history with given _idx
1761 Node* Node::find_ctrl(int idx) {
1762   return find(idx, true);
1763 }
1764 
1765 //------------------------------find-------------------------------------------
1766 // Tries to find the node with the index |idx| starting from this node. If idx is negative,
1767 // the search also includes forward (out) edges. Returns null if not found.
1768 // If only_ctrl is set, the search will only be done on control nodes. Returns null if
1769 // not found or if the node to be found is not a control node (search will not find it).
1770 Node* Node::find(const int idx, bool only_ctrl) {
1771   ResourceMark rm;
1772   return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl);
1773 }
1774 
1775 class PrintBFS {
1776 public:
1777   PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st)
1778   : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st),
1779     _dcc(this), _info_uid(cmpkey, hashkey) {}
1780 
1781   void run();
1782 private:
1783   // pipeline steps
1784   bool configure();
1785   void collect();
1786   void select();
1787   void select_all();
1788   void select_all_paths();
1789   void select_shortest_path();
1790   void sort();
1791   void print();
1792 
1793   // inputs
1794   const Node* _start;
1795   const int _max_distance;
1796   const Node* _target;
1797   const char* _options;
1798   outputStream* _output;
1799 
1800   // options
1801   bool _traverse_inputs = false;
1802   bool _traverse_outputs = false;
1803   struct Filter {
1804     bool _control = false;
1805     bool _memory = false;
1806     bool _data = false;
1807     bool _mixed = false;
1808     bool _other = false;
1809     bool is_empty() const {
1810       return !(_control || _memory || _data || _mixed || _other);
1811     }
1812     void set_all() {
1813       _control = true;
1814       _memory = true;
1815       _data = true;
1816       _mixed = true;
1817       _other = true;
1818     }
1819     // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes
1820     // are considered to have control.
1821     bool accepts(const Node* n) {
1822       const Type* t = n->bottom_type();
1823       return ( _data    &&  t->has_category(Type::Category::Data)                    ) ||
1824              ( _memory  &&  t->has_category(Type::Category::Memory)                  ) ||
1825              ( _mixed   &&  t->has_category(Type::Category::Mixed)                   ) ||
1826              ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) ||
1827              ( _other   &&  t->has_category(Type::Category::Other)                   );
1828     }
1829   };
1830   Filter _filter_visit;
1831   Filter _filter_boundary;
1832   bool _sort_idx = false;
1833   bool _all_paths = false;
1834   bool _use_color = false;
1835   bool _print_blocks = false;
1836   bool _print_old = false;
1837   bool _dump_only = false;
1838   bool _print_igv = false;
1839 
1840   void print_options_help(bool print_examples);
1841   bool parse_options();
1842 
1843 public:
1844   class DumpConfigColored : public Node::DumpConfig {
1845   public:
1846     DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {};
1847     virtual void pre_dump(outputStream* st, const Node* n);
1848     virtual void post_dump(outputStream* st);
1849   private:
1850     PrintBFS* _bfs;
1851   };
1852 private:
1853   DumpConfigColored _dcc;
1854 
1855   // node info
1856   static Node* old_node(const Node* n); // mach node -> prior IR node
1857   void print_node_idx(const Node* n);
1858   void print_block_id(const Block* b);
1859   void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth
1860 
1861   // traversal data structures
1862   GrowableArray<const Node*> _worklist; // BFS queue
1863   void maybe_traverse(const Node* src, const Node* dst);
1864 
1865   // node info annotation
1866   class Info {
1867   public:
1868     Info() : Info(nullptr, 0) {};
1869     Info(const Node* node, int distance)
1870       : _node(node), _distance_from_start(distance) {};
1871     const Node* node() const { return _node; };
1872     int distance() const { return _distance_from_start; };
1873     int distance_from_target() const { return _distance_from_target; }
1874     void set_distance_from_target(int d) { _distance_from_target = d; }
1875     GrowableArray<const Node*> edge_bwd; // pointing toward _start
1876     bool is_marked() const { return _mark; } // marked to keep during select
1877     void set_mark() { _mark = true; }
1878   private:
1879     const Node* _node;
1880     int _distance_from_start; // distance from _start
1881     int _distance_from_target = 0; // distance from _target if _all_paths
1882     bool _mark = false;
1883   };
1884   Dict _info_uid;            // Node -> uid
1885   GrowableArray<Info> _info; // uid  -> info
1886 
1887   Info* find_info(const Node* n) {
1888     size_t uid = (size_t)_info_uid[n];
1889     if (uid == 0) {
1890       return nullptr;
1891     }
1892     return &_info.at((int)uid);
1893   }
1894 
1895   void make_info(const Node* node, const int distance) {
1896     assert(find_info(node) == nullptr, "node does not yet have info");
1897     size_t uid = _info.length() + 1;
1898     _info_uid.Insert((void*)node, (void*)uid);
1899     _info.at_put_grow((int)uid, Info(node, distance));
1900     assert(find_info(node)->node() == node, "stored correct node");
1901   };
1902 
1903   // filled by sort, printed by print
1904   GrowableArray<const Node*> _print_list;
1905 
1906   // print header + node table
1907   void print_header() const;
1908   void print_node(const Node* n);
1909 };
1910 
1911 void PrintBFS::run() {
1912   if (!configure()) {
1913     return;
1914   }
1915   collect();
1916   select();
1917   sort();
1918   print();
1919 }
1920 
1921 // set up configuration for BFS and print
1922 bool PrintBFS::configure() {
1923   if (_max_distance < 0) {
1924     _output->print_cr("dump_bfs: max_distance must be non-negative!");
1925     return false;
1926   }
1927   return parse_options();
1928 }
1929 
1930 // BFS traverse according to configuration, fill worklist and info
1931 void PrintBFS::collect() {
1932   maybe_traverse(_start, _start);
1933   int pos = 0;
1934   while (pos < _worklist.length()) {
1935     const Node* n = _worklist.at(pos++); // next node to traverse
1936     Info* info = find_info(n);
1937     if (!_filter_visit.accepts(n) && n != _start) {
1938       continue; // we hit boundary, do not traverse further
1939     }
1940     if (n != _start && n->is_Root()) {
1941       continue; // traversing through root node would lead to unrelated nodes
1942     }
1943     if (_traverse_inputs && _max_distance > info->distance()) {
1944       for (uint i = 0; i < n->req(); i++) {
1945         maybe_traverse(n, n->in(i));
1946       }
1947     }
1948     if (_traverse_outputs && _max_distance > info->distance()) {
1949       for (uint i = 0; i < n->outcnt(); i++) {
1950         maybe_traverse(n, n->raw_out(i));
1951       }
1952     }
1953   }
1954 }
1955 
1956 // go through work list, mark those that we want to print
1957 void PrintBFS::select() {
1958   if (_target == nullptr ) {
1959     select_all();
1960   } else {
1961     if (find_info(_target) == nullptr) {
1962       _output->print_cr("Could not find target in BFS.");
1963       return;
1964     }
1965     if (_all_paths) {
1966       select_all_paths();
1967     } else {
1968       select_shortest_path();
1969     }
1970   }
1971 }
1972 
1973 // take all nodes from BFS
1974 void PrintBFS::select_all() {
1975   for (int i = 0; i < _worklist.length(); i++) {
1976     const Node* n = _worklist.at(i);
1977     Info* info = find_info(n);
1978     info->set_mark();
1979   }
1980 }
1981 
1982 // traverse backward from target, along edges found in BFS
1983 void PrintBFS::select_all_paths() {
1984   int pos = 0;
1985   GrowableArray<const Node*> backtrace;
1986   // start from target
1987   backtrace.push(_target);
1988   find_info(_target)->set_mark();
1989   // traverse backward
1990   while (pos < backtrace.length()) {
1991     const Node* n = backtrace.at(pos++);
1992     Info* info = find_info(n);
1993     for (int i = 0; i < info->edge_bwd.length(); i++) {
1994       // all backward edges
1995       const Node* back = info->edge_bwd.at(i);
1996       Info* back_info = find_info(back);
1997       if (!back_info->is_marked()) {
1998         // not yet found this on way back.
1999         back_info->set_distance_from_target(info->distance_from_target() + 1);
2000         if (back_info->distance_from_target() + back_info->distance() <= _max_distance) {
2001           // total distance is small enough
2002           back_info->set_mark();
2003           backtrace.push(back);
2004         }
2005       }
2006     }
2007   }
2008 }
2009 
2010 void PrintBFS::select_shortest_path() {
2011   const Node* current = _target;
2012   while (true) {
2013     Info* info = find_info(current);
2014     info->set_mark();
2015     if (current == _start) {
2016       break;
2017     }
2018     // first edge -> leads us one step closer to _start
2019     current = info->edge_bwd.at(0);
2020   }
2021 }
2022 
2023 // go through worklist in desired order, put the marked ones in print list
2024 void PrintBFS::sort() {
2025   if (_traverse_inputs && !_traverse_outputs) {
2026     // reverse order
2027     for (int i = _worklist.length() - 1; i >= 0; i--) {
2028       const Node* n = _worklist.at(i);
2029       Info* info = find_info(n);
2030       if (info->is_marked()) {
2031         _print_list.push(n);
2032       }
2033     }
2034   } else {
2035     // same order as worklist
2036     for (int i = 0; i < _worklist.length(); i++) {
2037       const Node* n = _worklist.at(i);
2038       Info* info = find_info(n);
2039       if (info->is_marked()) {
2040         _print_list.push(n);
2041       }
2042     }
2043   }
2044   if (_sort_idx) {
2045     _print_list.sort(node_idx_cmp);
2046   }
2047 }
2048 
2049 // go through printlist and print
2050 void PrintBFS::print() {
2051   if (_print_list.length() > 0 ) {
2052     print_header();
2053     for (int i = 0; i < _print_list.length(); i++) {
2054       const Node* n = _print_list.at(i);
2055       print_node(n);
2056     }
2057     if (_print_igv) {
2058       Compile* C = Compile::current();
2059       C->init_igv();
2060       C->igv_print_graph_to_network("PrintBFS", (Node*) C->root(), _print_list);
2061     }
2062   } else {
2063     _output->print_cr("No nodes to print.");
2064   }
2065 }
2066 
2067 void PrintBFS::print_options_help(bool print_examples) {
2068   _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)");
2069   _output->print_cr("");
2070   _output->print_cr("Use cases:");
2071   _output->print_cr("  BFS traversal: no target required");
2072   _output->print_cr("  shortest path: set target");
2073   _output->print_cr("  all paths: set target and put 'A' in options");
2074   _output->print_cr("  detect loop: subcase of all paths, have start==target");
2075   _output->print_cr("");
2076   _output->print_cr("Arguments:");
2077   _output->print_cr("  this/start: staring point of BFS");
2078   _output->print_cr("  target:");
2079   _output->print_cr("    if null: simple BFS");
2080   _output->print_cr("    else: shortest path or all paths between this/start and target");
2081   _output->print_cr("  options:");
2082   _output->print_cr("    if null: same as \"cdmox@B\"");
2083   _output->print_cr("    else: use combination of following characters");
2084   _output->print_cr("      h: display this help info");
2085   _output->print_cr("      H: display this help info, with examples");
2086   _output->print_cr("      +: traverse in-edges (on if neither + nor -)");
2087   _output->print_cr("      -: traverse out-edges");
2088   _output->print_cr("      c: visit control nodes");
2089   _output->print_cr("      d: visit data nodes");
2090   _output->print_cr("      m: visit memory nodes");
2091   _output->print_cr("      o: visit other nodes");
2092   _output->print_cr("      x: visit mixed nodes");
2093   _output->print_cr("      C: boundary control nodes");
2094   _output->print_cr("      D: boundary data nodes");
2095   _output->print_cr("      M: boundary memory nodes");
2096   _output->print_cr("      O: boundary other nodes");
2097   _output->print_cr("      X: boundary mixed nodes");
2098   _output->print_cr("      #: display node category in color (not supported in all terminals)");
2099   _output->print_cr("      S: sort displayed nodes by node idx");
2100   _output->print_cr("      A: all paths (not just shortest path to target)");
2101   _output->print_cr("      @: print old nodes - before matching (if available)");
2102   _output->print_cr("      B: print scheduling blocks (if available)");
2103   _output->print_cr("      $: dump only, no header, no other columns");
2104   _output->print_cr("      !: show nodes on IGV (sent over network stream)");
2105   _output->print_cr("");
2106   _output->print_cr("recursively follow edges to nodes with permitted visit types,");
2107   _output->print_cr("on the boundary additionally display nodes allowed in boundary types");
2108   _output->print_cr("Note: the categories can be overlapping. For example a mixed node");
2109   _output->print_cr("      can contain control and memory output. Some from the other");
2110   _output->print_cr("      category are also control (Halt, Return, etc).");
2111   _output->print_cr("");
2112   _output->print_cr("output columns:");
2113   _output->print_cr("  dist:  BFS distance to this/start");
2114   _output->print_cr("  apd:   all paths distance (d_outputart + d_target)");
2115   _output->print_cr("  block: block identifier, based on _pre_order");
2116   _output->print_cr("  head:  first node in block");
2117   _output->print_cr("  idom:  head node of idom block");
2118   _output->print_cr("  depth: depth of block (_dom_depth)");
2119   _output->print_cr("  old:   old IR node - before matching");
2120   _output->print_cr("  dump:  node->dump()");
2121   _output->print_cr("");
2122   _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string");
2123   _output->print_cr("      then we set all of them.");
2124   _output->print_cr("      This allows for short strings like \"#\" for colored input traversal");
2125   _output->print_cr("      or \"-#\" for colored output traversal.");
2126   if (print_examples) {
2127     _output->print_cr("");
2128     _output->print_cr("Examples:");
2129     _output->print_cr("  if->dump_bfs(10, 0, \"+cxo\")");
2130     _output->print_cr("    starting at some if node, traverse inputs recursively");
2131     _output->print_cr("    only along control (mixed and other can also be control)");
2132     _output->print_cr("  phi->dump_bfs(5, 0, \"-dxo\")");
2133     _output->print_cr("    starting at phi node, traverse outputs recursively");
2134     _output->print_cr("    only along data (mixed and other can also have data flow)");
2135     _output->print_cr("  find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")");
2136     _output->print_cr("    find inputs of node 385, up to 3 nodes up (+)");
2137     _output->print_cr("    traverse all nodes (cdmox), use colors (#)");
2138     _output->print_cr("    display old nodes and blocks, if they exist");
2139     _output->print_cr("    useful call to start with");
2140     _output->print_cr("  find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")");
2141     _output->print_cr("    find non-data dependencies of a data node");
2142     _output->print_cr("    follow data node outputs until we find another category");
2143     _output->print_cr("    node as the boundary");
2144     _output->print_cr("  x->dump_bfs(10, y, 0)");
2145     _output->print_cr("    find shortest path from x to y, along any edge or node");
2146     _output->print_cr("    will not find a path if it is longer than 10");
2147     _output->print_cr("    useful to find how x and y are related");
2148     _output->print_cr("  find_node(741)->dump_bfs(20, find_node(746), \"c+\")");
2149     _output->print_cr("    find shortest control path between two nodes");
2150     _output->print_cr("  find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")");
2151     _output->print_cr("    find all paths (A) between two nodes of length at most 8");
2152     _output->print_cr("  find_node(741)->dump_bfs(7, find_node(741), \"c+A\")");
2153     _output->print_cr("    find all control loops for this node");
2154   }
2155 }
2156 
2157 bool PrintBFS::parse_options() {
2158   if (_options == nullptr) {
2159     _options = "cdmox@B"; // default options
2160   }
2161   size_t len = strlen(_options);
2162   for (size_t i = 0; i < len; i++) {
2163     switch (_options[i]) {
2164       case '+':
2165         _traverse_inputs = true;
2166         break;
2167       case '-':
2168         _traverse_outputs = true;
2169         break;
2170       case 'c':
2171         _filter_visit._control = true;
2172         break;
2173       case 'm':
2174         _filter_visit._memory = true;
2175         break;
2176       case 'd':
2177         _filter_visit._data = true;
2178         break;
2179       case 'x':
2180         _filter_visit._mixed = true;
2181         break;
2182       case 'o':
2183         _filter_visit._other = true;
2184         break;
2185       case 'C':
2186         _filter_boundary._control = true;
2187         break;
2188       case 'M':
2189         _filter_boundary._memory = true;
2190         break;
2191       case 'D':
2192         _filter_boundary._data = true;
2193         break;
2194       case 'X':
2195         _filter_boundary._mixed = true;
2196         break;
2197       case 'O':
2198         _filter_boundary._other = true;
2199         break;
2200       case 'S':
2201         _sort_idx = true;
2202         break;
2203       case 'A':
2204         _all_paths = true;
2205         break;
2206       case '#':
2207         _use_color = true;
2208         break;
2209       case 'B':
2210         _print_blocks = true;
2211         break;
2212       case '@':
2213         _print_old = true;
2214         break;
2215       case '$':
2216         _dump_only = true;
2217         break;
2218       case '!':
2219         _print_igv = true;
2220         break;
2221       case 'h':
2222         print_options_help(false);
2223         return false;
2224        case 'H':
2225         print_options_help(true);
2226         return false;
2227       default:
2228         _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]);
2229         _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")");
2230         return false;
2231     }
2232   }
2233   if (!_traverse_inputs && !_traverse_outputs) {
2234     _traverse_inputs = true;
2235   }
2236   if (_filter_visit.is_empty()) {
2237     _filter_visit.set_all();
2238   }
2239   Compile* C = Compile::current();
2240   _print_old &= (C->matcher() != nullptr); // only show old if there are new
2241   _print_blocks &= (C->cfg() != nullptr); // only show blocks if available
2242   return true;
2243 }
2244 
2245 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) {
2246   if (!_bfs->_use_color) {
2247     return;
2248   }
2249   Info* info = _bfs->find_info(n);
2250   if (info == nullptr || !info->is_marked()) {
2251     return;
2252   }
2253 
2254   const Type* t = n->bottom_type();
2255   switch (t->category()) {
2256     case Type::Category::Data:
2257       st->print("\u001b[34m");
2258       break;
2259     case Type::Category::Memory:
2260       st->print("\u001b[32m");
2261       break;
2262     case Type::Category::Mixed:
2263       st->print("\u001b[35m");
2264       break;
2265     case Type::Category::Control:
2266       st->print("\u001b[31m");
2267       break;
2268     case Type::Category::Other:
2269       st->print("\u001b[33m");
2270       break;
2271     case Type::Category::Undef:
2272       n->dump();
2273       assert(false, "category undef ??");
2274       break;
2275     default:
2276       n->dump();
2277       assert(false, "not covered");
2278       break;
2279   }
2280 }
2281 
2282 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) {
2283   if (!_bfs->_use_color) {
2284     return;
2285   }
2286   st->print("\u001b[0m"); // white
2287 }
2288 
2289 Node* PrintBFS::old_node(const Node* n) {
2290   Compile* C = Compile::current();
2291   if (C->matcher() == nullptr || !C->node_arena()->contains(n)) {
2292     return (Node*)nullptr;
2293   } else {
2294     return C->matcher()->find_old_node(n);
2295   }
2296 }
2297 
2298 void PrintBFS::print_node_idx(const Node* n) {
2299   Compile* C = Compile::current();
2300   char buf[30];
2301   if (n == nullptr) {
2302     os::snprintf_checked(buf, sizeof(buf), "_");           // null
2303   } else if (C->node_arena()->contains(n)) {
2304     os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx);  // new node
2305   } else {
2306     os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node
2307   }
2308   _output->print("%6s", buf);
2309 }
2310 
2311 void PrintBFS::print_block_id(const Block* b) {
2312   Compile* C = Compile::current();
2313   char buf[30];
2314   os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order);
2315   _output->print("%7s", buf);
2316 }
2317 
2318 void PrintBFS::print_node_block(const Node* n) {
2319   Compile* C = Compile::current();
2320   Block* b = C->node_arena()->contains(n)
2321              ? C->cfg()->get_block_for_node(n)
2322              : nullptr; // guard against old nodes
2323   if (b == nullptr) {
2324     _output->print("      _"); // Block
2325     _output->print("     _");  // head
2326     _output->print("     _");  // idom
2327     _output->print("      _"); // depth
2328   } else {
2329     print_block_id(b);
2330     print_node_idx(b->head());
2331     if (b->_idom) {
2332       print_node_idx(b->_idom->head());
2333     } else {
2334       _output->print("     _"); // idom
2335     }
2336     _output->print("%6d ", b->_dom_depth);
2337   }
2338 }
2339 
2340 // filter, and add to worklist, add info, note traversal edges
2341 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) {
2342   if (dst != nullptr &&
2343      (_filter_visit.accepts(dst) ||
2344       _filter_boundary.accepts(dst) ||
2345       dst == _start)) { // correct category or start?
2346     if (find_info(dst) == nullptr) {
2347       // never visited - set up info
2348       _worklist.push(dst);
2349       int d = 0;
2350       if (dst != _start) {
2351         d = find_info(src)->distance() + 1;
2352       }
2353       make_info(dst, d);
2354     }
2355     if (src != dst) {
2356       // traversal edges useful during select
2357       find_info(dst)->edge_bwd.push(src);
2358     }
2359   }
2360 }
2361 
2362 void PrintBFS::print_header() const {
2363   if (_dump_only) {
2364     return; // no header in dump only mode
2365   }
2366   _output->print("dist");                         // distance
2367   if (_all_paths) {
2368     _output->print(" apd");                       // all paths distance
2369   }
2370   if (_print_blocks) {
2371     _output->print(" [block  head  idom depth]"); // block
2372   }
2373   if (_print_old) {
2374     _output->print("   old");                     // old node
2375   }
2376   _output->print(" dump\n");                      // node dump
2377   _output->print_cr("---------------------------------------------");
2378 }
2379 
2380 void PrintBFS::print_node(const Node* n) {
2381   if (_dump_only) {
2382     n->dump("\n", false, _output, &_dcc);
2383     return;
2384   }
2385   _output->print("%4d", find_info(n)->distance());// distance
2386   if (_all_paths) {
2387     Info* info = find_info(n);
2388     int apd = info->distance() + info->distance_from_target();
2389     _output->print("%4d", apd);                   // all paths distance
2390   }
2391   if (_print_blocks) {
2392     print_node_block(n);                          // block
2393   }
2394   if (_print_old) {
2395     print_node_idx(old_node(n));                  // old node
2396   }
2397   _output->print(" ");
2398   n->dump("\n", false, _output, &_dcc);           // node dump
2399 }
2400 
2401 //------------------------------dump_bfs--------------------------------------
2402 // Call this from debugger
2403 // Useful for BFS traversal, shortest path, all path, loop detection, etc
2404 // Designed to be more readable, and provide additional info
2405 // To find all options, run:
2406 //   find_node(0)->dump_bfs(0,0,"H")
2407 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const {
2408   dump_bfs(max_distance, target, options, tty);
2409 }
2410 
2411 // Used to dump to stream.
2412 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const {
2413   PrintBFS bfs(this, max_distance, target, options, st);
2414   bfs.run();
2415 }
2416 
2417 // Call this from debugger, with default arguments
2418 void Node::dump_bfs(const int max_distance) const {
2419   dump_bfs(max_distance, nullptr, nullptr);
2420 }
2421 
2422 // -----------------------------dump_idx---------------------------------------
2423 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const {
2424   if (dc != nullptr) {
2425     dc->pre_dump(st, this);
2426   }
2427   Compile* C = Compile::current();
2428   bool is_new = C->node_arena()->contains(this);
2429   if (align) { // print prefix empty spaces$
2430     // +1 for leading digit, +1 for "o"
2431     uint max_width = (C->unique() == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(C->unique())))) + 2;
2432     // +1 for leading digit, maybe +1 for "o"
2433     uint width = (_idx == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(_idx)))) + 1 + (is_new ? 0 : 1);
2434     while (max_width > width) {
2435       st->print(" ");
2436       width++;
2437     }
2438   }
2439   if (!is_new) {
2440     st->print("o");
2441   }
2442   st->print("%d", _idx);
2443   if (dc != nullptr) {
2444     dc->post_dump(st);
2445   }
2446 }
2447 
2448 // -----------------------------dump_name--------------------------------------
2449 void Node::dump_name(outputStream* st, DumpConfig* dc) const {
2450   if (dc != nullptr) {
2451     dc->pre_dump(st, this);
2452   }
2453   st->print("%s", Name());
2454   if (dc != nullptr) {
2455     dc->post_dump(st);
2456   }
2457 }
2458 
2459 // -----------------------------Name-------------------------------------------
2460 extern const char *NodeClassNames[];
2461 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
2462 
2463 static bool is_disconnected(const Node* n) {
2464   for (uint i = 0; i < n->req(); i++) {
2465     if (n->in(i) != nullptr)  return false;
2466   }
2467   return true;
2468 }
2469 
2470 #ifdef ASSERT
2471 void Node::dump_orig(outputStream *st, bool print_key) const {
2472   Compile* C = Compile::current();
2473   Node* orig = _debug_orig;
2474   if (not_a_node(orig)) orig = nullptr;
2475   if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2476   if (orig == nullptr) return;
2477   if (print_key) {
2478     st->print(" !orig=");
2479   }
2480   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
2481   if (not_a_node(fast)) fast = nullptr;
2482   while (orig != nullptr) {
2483     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
2484     if (discon) st->print("[");
2485     if (!Compile::current()->node_arena()->contains(orig))
2486       st->print("o");
2487     st->print("%d", orig->_idx);
2488     if (discon) st->print("]");
2489     orig = orig->debug_orig();
2490     if (not_a_node(orig)) orig = nullptr;
2491     if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2492     if (orig != nullptr) st->print(",");
2493     if (fast != nullptr) {
2494       // Step fast twice for each single step of orig:
2495       fast = fast->debug_orig();
2496       if (not_a_node(fast)) fast = nullptr;
2497       if (fast != nullptr && fast != orig) {
2498         fast = fast->debug_orig();
2499         if (not_a_node(fast)) fast = nullptr;
2500       }
2501       if (fast == orig) {
2502         st->print("...");
2503         break;
2504       }
2505     }
2506   }
2507 }
2508 
2509 void Node::set_debug_orig(Node* orig) {
2510   _debug_orig = orig;
2511   if (BreakAtNode == 0)  return;
2512   if (not_a_node(orig))  orig = nullptr;
2513   int trip = 10;
2514   while (orig != nullptr) {
2515     if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) {
2516       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT,
2517                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
2518       BREAKPOINT;
2519     }
2520     orig = orig->debug_orig();
2521     if (not_a_node(orig))  orig = nullptr;
2522     if (trip-- <= 0)  break;
2523   }
2524 }
2525 #endif //ASSERT
2526 
2527 //------------------------------dump------------------------------------------
2528 // Dump a Node
2529 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const {
2530   Compile* C = Compile::current();
2531   bool is_new = C->node_arena()->contains(this);
2532   C->_in_dump_cnt++;
2533 
2534   // idx mark name ===
2535   dump_idx(true, st, dc);
2536   st->print(mark ? " >" : "  ");
2537   dump_name(st, dc);
2538   st->print("  === ");
2539 
2540   // Dump the required and precedence inputs
2541   dump_req(st, dc);
2542   dump_prec(st, dc);
2543   // Dump the outputs
2544   dump_out(st, dc);
2545 
2546   if (is_disconnected(this)) {
2547 #ifdef ASSERT
2548     st->print("  [" UINT64_FORMAT "]", debug_idx());
2549     dump_orig(st);
2550 #endif
2551     st->cr();
2552     C->_in_dump_cnt--;
2553     return;                     // don't process dead nodes
2554   }
2555 
2556   if (C->clone_map().value(_idx) != 0) {
2557     C->clone_map().dump(_idx, st);
2558   }
2559   // Dump node-specific info
2560   dump_spec(st);
2561 #ifdef ASSERT
2562   // Dump the non-reset _debug_idx
2563   if (Verbose && WizardMode) {
2564     st->print("  [" UINT64_FORMAT "]", debug_idx());
2565   }
2566 #endif
2567 
2568   const Type *t = bottom_type();
2569 
2570   if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) {
2571     const TypeInstPtr  *toop = t->isa_instptr();
2572     const TypeInstKlassPtr *tkls = t->isa_instklassptr();
2573     if (toop) {
2574       st->print("  Oop:");
2575     } else if (tkls) {
2576       st->print("  Klass:");
2577     }
2578     t->dump_on(st);
2579   } else if (t == Type::MEMORY) {
2580     st->print("  Memory:");
2581     MemNode::dump_adr_type(this, adr_type(), st);
2582   } else if (Verbose || WizardMode) {
2583     st->print("  Type:");
2584     if (t) {
2585       t->dump_on(st);
2586     } else {
2587       st->print("no type");
2588     }
2589   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
2590     // Dump MachSpillcopy vector type.
2591     t->dump_on(st);
2592   }
2593   if (is_new) {
2594     DEBUG_ONLY(dump_orig(st));
2595     Node_Notes* nn = C->node_notes_at(_idx);
2596     if (nn != nullptr && !nn->is_clear()) {
2597       if (nn->jvms() != nullptr) {
2598         st->print(" !jvms:");
2599         nn->jvms()->dump_spec(st);
2600       }
2601     }
2602   }
2603   if (suffix) st->print("%s", suffix);
2604   C->_in_dump_cnt--;
2605 }
2606 
2607 // call from debugger: dump node to tty with newline
2608 void Node::dump() const {
2609   dump("\n");
2610 }
2611 
2612 //------------------------------dump_req--------------------------------------
2613 void Node::dump_req(outputStream* st, DumpConfig* dc) const {
2614   // Dump the required input edges
2615   for (uint i = 0; i < req(); i++) {    // For all required inputs
2616     Node* d = in(i);
2617     if (d == nullptr) {
2618       st->print("_ ");
2619     } else if (not_a_node(d)) {
2620       st->print("not_a_node ");  // uninitialized, sentinel, garbage, etc.
2621     } else {
2622       d->dump_idx(false, st, dc);
2623       st->print(" ");
2624     }
2625   }
2626 }
2627 
2628 
2629 //------------------------------dump_prec-------------------------------------
2630 void Node::dump_prec(outputStream* st, DumpConfig* dc) const {
2631   // Dump the precedence edges
2632   int any_prec = 0;
2633   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
2634     Node* p = in(i);
2635     if (p != nullptr) {
2636       if (!any_prec++) st->print(" |");
2637       if (not_a_node(p)) { st->print("not_a_node "); continue; }
2638       p->dump_idx(false, st, dc);
2639       st->print(" ");
2640     }
2641   }
2642 }
2643 
2644 //------------------------------dump_out--------------------------------------
2645 void Node::dump_out(outputStream* st, DumpConfig* dc) const {
2646   // Delimit the output edges
2647   st->print(" [[ ");
2648   // Dump the output edges
2649   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
2650     Node* u = _out[i];
2651     if (u == nullptr) {
2652       st->print("_ ");
2653     } else if (not_a_node(u)) {
2654       st->print("not_a_node ");
2655     } else {
2656       u->dump_idx(false, st, dc);
2657       st->print(" ");
2658     }
2659   }
2660   st->print("]] ");
2661 }
2662 
2663 //------------------------------dump-------------------------------------------
2664 // call from debugger: dump Node's inputs (or outputs if d negative)
2665 void Node::dump(int d) const {
2666   dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$");
2667 }
2668 
2669 //------------------------------dump_ctrl--------------------------------------
2670 // call from debugger: dump Node's control inputs (or outputs if d negative)
2671 void Node::dump_ctrl(int d) const {
2672   dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c");
2673 }
2674 
2675 //-----------------------------dump_compact------------------------------------
2676 void Node::dump_comp() const {
2677   this->dump_comp("\n");
2678 }
2679 
2680 //-----------------------------dump_compact------------------------------------
2681 // Dump a Node in compact representation, i.e., just print its name and index.
2682 // Nodes can specify additional specifics to print in compact representation by
2683 // implementing dump_compact_spec.
2684 void Node::dump_comp(const char* suffix, outputStream *st) const {
2685   Compile* C = Compile::current();
2686   C->_in_dump_cnt++;
2687   st->print("%s(%d)", Name(), _idx);
2688   this->dump_compact_spec(st);
2689   if (suffix) {
2690     st->print("%s", suffix);
2691   }
2692   C->_in_dump_cnt--;
2693 }
2694 
2695 // VERIFICATION CODE
2696 // Verify all nodes if verify_depth is negative
2697 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) {
2698   assert(verify_depth != 0, "depth should not be 0");
2699   Compile* C = Compile::current();
2700   uint last_index_on_current_depth = worklist.size() - 1;
2701   verify_depth--; // Visiting the first node on depth 1
2702   // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0
2703   bool add_to_worklist = verify_depth != 0;
2704 
2705   for (uint list_index = 0; list_index < worklist.size(); list_index++) {
2706     Node* n = worklist[list_index];
2707 
2708     if (n->is_Con() && n->bottom_type() == Type::TOP) {
2709       if (C->cached_top_node() == nullptr) {
2710         C->set_cached_top_node((Node*)n);
2711       }
2712       assert(C->cached_top_node() == n, "TOP node must be unique");
2713     }
2714 
2715     uint in_len = n->len();
2716     for (uint i = 0; i < in_len; i++) {
2717       Node* x = n->_in[i];
2718       if (!x || x->is_top()) {
2719         continue;
2720       }
2721 
2722       // Verify my input has a def-use edge to me
2723       // Count use-def edges from n to x
2724       int cnt = 1;
2725       for (uint j = 0; j < i; j++) {
2726         if (n->_in[j] == x) {
2727           cnt++;
2728           break;
2729         }
2730       }
2731       if (cnt == 2) {
2732         // x is already checked as n's previous input, skip its duplicated def-use count checking
2733         continue;
2734       }
2735       for (uint j = i + 1; j < in_len; j++) {
2736         if (n->_in[j] == x) {
2737           cnt++;
2738         }
2739       }
2740 
2741       // Count def-use edges from x to n
2742       uint max = x->_outcnt;
2743       for (uint k = 0; k < max; k++) {
2744         if (x->_out[k] == n) {
2745           cnt--;
2746         }
2747       }
2748       assert(cnt == 0, "mismatched def-use edge counts");
2749 
2750       if (add_to_worklist && !visited.test_set(x->_idx)) {
2751         worklist.push(x);
2752       }
2753     }
2754 
2755     if (verify_depth > 0 && list_index == last_index_on_current_depth) {
2756       // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and
2757       // store the current last list index which is the last node in the list with the new depth. All nodes
2758       // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0).
2759       verify_depth--;
2760       if (verify_depth == 0) {
2761         add_to_worklist = false;
2762       }
2763       last_index_on_current_depth = worklist.size() - 1;
2764     }
2765   }
2766 }
2767 #endif // not PRODUCT
2768 
2769 //------------------------------Registers--------------------------------------
2770 // Do we Match on this edge index or not?  Generally false for Control
2771 // and true for everything else.  Weird for calls & returns.
2772 uint Node::match_edge(uint idx) const {
2773   return idx;                   // True for other than index 0 (control)
2774 }
2775 
2776 // Register classes are defined for specific machines
2777 const RegMask &Node::out_RegMask() const {
2778   ShouldNotCallThis();
2779   return RegMask::Empty;
2780 }
2781 
2782 const RegMask &Node::in_RegMask(uint) const {
2783   ShouldNotCallThis();
2784   return RegMask::Empty;
2785 }
2786 
2787 void Node_Array::grow(uint i) {
2788   _nesting.check(_a); // Check if a potential reallocation in the arena is safe
2789   assert(i >= _max, "Should have been checked before, use maybe_grow?");
2790   assert(_max > 0, "invariant");
2791   uint old = _max;
2792   _max = next_power_of_2(i);
2793   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2794   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2795 }
2796 
2797 void Node_Array::insert(uint i, Node* n) {
2798   if (_nodes[_max - 1]) {
2799     grow(_max);
2800   }
2801   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*)));
2802   _nodes[i] = n;
2803 }
2804 
2805 void Node_Array::remove(uint i) {
2806   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*)));
2807   _nodes[_max - 1] = nullptr;
2808 }
2809 
2810 void Node_Array::dump() const {
2811 #ifndef PRODUCT
2812   for (uint i = 0; i < _max; i++) {
2813     Node* nn = _nodes[i];
2814     if (nn != nullptr) {
2815       tty->print("%5d--> ",i); nn->dump();
2816     }
2817   }
2818 #endif
2819 }
2820 
2821 //--------------------------is_iteratively_computed------------------------------
2822 // Operation appears to be iteratively computed (such as an induction variable)
2823 // It is possible for this operation to return false for a loop-varying
2824 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2825 bool Node::is_iteratively_computed() {
2826   if (ideal_reg()) { // does operation have a result register?
2827     for (uint i = 1; i < req(); i++) {
2828       Node* n = in(i);
2829       if (n != nullptr && n->is_Phi()) {
2830         for (uint j = 1; j < n->req(); j++) {
2831           if (n->in(j) == this) {
2832             return true;
2833           }
2834         }
2835       }
2836     }
2837   }
2838   return false;
2839 }
2840 
2841 //--------------------------find_similar------------------------------
2842 // Return a node with opcode "opc" and same inputs as "this" if one can
2843 // be found; Otherwise return null;
2844 Node* Node::find_similar(int opc) {
2845   if (req() >= 2) {
2846     Node* def = in(1);
2847     if (def && def->outcnt() >= 2) {
2848       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2849         Node* use = def->fast_out(i);
2850         if (use != this &&
2851             use->Opcode() == opc &&
2852             use->req() == req()) {
2853           uint j;
2854           for (j = 0; j < use->req(); j++) {
2855             if (use->in(j) != in(j)) {
2856               break;
2857             }
2858           }
2859           if (j == use->req()) {
2860             return use;
2861           }
2862         }
2863       }
2864     }
2865   }
2866   return nullptr;
2867 }
2868 
2869 
2870 //--------------------------unique_ctrl_out_or_null-------------------------
2871 // Return the unique control out if only one. Null if none or more than one.
2872 Node* Node::unique_ctrl_out_or_null() const {
2873   Node* found = nullptr;
2874   for (uint i = 0; i < outcnt(); i++) {
2875     Node* use = raw_out(i);
2876     if (use->is_CFG() && use != this) {
2877       if (found != nullptr) {
2878         return nullptr;
2879       }
2880       found = use;
2881     }
2882   }
2883   return found;
2884 }
2885 
2886 //--------------------------unique_ctrl_out------------------------------
2887 // Return the unique control out. Asserts if none or more than one control out.
2888 Node* Node::unique_ctrl_out() const {
2889   Node* ctrl = unique_ctrl_out_or_null();
2890   assert(ctrl != nullptr, "control out is assumed to be unique");
2891   return ctrl;
2892 }
2893 
2894 void Node::ensure_control_or_add_prec(Node* c) {
2895   if (in(0) == nullptr) {
2896     set_req(0, c);
2897   } else if (in(0) != c) {
2898     add_prec(c);
2899   }
2900 }
2901 
2902 void Node::add_prec_from(Node* n) {
2903   for (uint i = n->req(); i < n->len(); i++) {
2904     Node* prec = n->in(i);
2905     if (prec != nullptr) {
2906       add_prec(prec);
2907     }
2908   }
2909 }
2910 
2911 bool Node::is_dead_loop_safe() const {
2912   if (is_Phi()) {
2913     return true;
2914   }
2915   if (is_Proj() && in(0) == nullptr)  {
2916     return true;
2917   }
2918   if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) {
2919     if (!is_Proj()) {
2920       return true;
2921     }
2922     if (in(0)->is_Allocate()) {
2923       return false;
2924     }
2925     // MemNode::can_see_stored_value() peeks through the boxing call
2926     if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) {
2927       return false;
2928     }
2929     return true;
2930   }
2931   return false;
2932 }
2933 
2934 bool Node::is_div_or_mod(BasicType bt) const { return Opcode() == Op_Div(bt) || Opcode() == Op_Mod(bt) ||
2935                                                       Opcode() == Op_UDiv(bt) || Opcode() == Op_UMod(bt); }
2936 
2937 bool Node::is_pure_function() const {
2938   switch (Opcode()) {
2939   case Op_ModD:
2940   case Op_ModF:
2941     return true;
2942   default:
2943     return false;
2944   }
2945 }
2946 
2947 // `maybe_pure_function` is assumed to be the input of `this`. This is a bit redundant,
2948 // but we already have and need maybe_pure_function in all the call sites, so
2949 // it makes it obvious that the `maybe_pure_function` is the same node as in the caller,
2950 // while it takes more thinking to realize that a locally computed in(0) must be equal to
2951 // the local in the caller.
2952 bool Node::is_data_proj_of_pure_function(const Node* maybe_pure_function) const {
2953   return Opcode() == Op_Proj && as_Proj()->_con == TypeFunc::Parms && maybe_pure_function->is_pure_function();
2954 }
2955 
2956 //=============================================================================
2957 //------------------------------yank-------------------------------------------
2958 // Find and remove
2959 void Node_List::yank( Node *n ) {
2960   uint i;
2961   for (i = 0; i < _cnt; i++) {
2962     if (_nodes[i] == n) {
2963       break;
2964     }
2965   }
2966 
2967   if (i < _cnt) {
2968     _nodes[i] = _nodes[--_cnt];
2969   }
2970 }
2971 
2972 //------------------------------dump-------------------------------------------
2973 void Node_List::dump() const {
2974 #ifndef PRODUCT
2975   for (uint i = 0; i < _cnt; i++) {
2976     if (_nodes[i]) {
2977       tty->print("%5d--> ", i);
2978       _nodes[i]->dump();
2979     }
2980   }
2981 #endif
2982 }
2983 
2984 void Node_List::dump_simple() const {
2985 #ifndef PRODUCT
2986   for (uint i = 0; i < _cnt; i++) {
2987     if( _nodes[i] ) {
2988       tty->print(" %d", _nodes[i]->_idx);
2989     } else {
2990       tty->print(" null");
2991     }
2992   }
2993 #endif
2994 }
2995 
2996 //=============================================================================
2997 //------------------------------remove-----------------------------------------
2998 void Unique_Node_List::remove(Node* n) {
2999   if (_in_worklist.test(n->_idx)) {
3000     for (uint i = 0; i < size(); i++) {
3001       if (_nodes[i] == n) {
3002         map(i, Node_List::pop());
3003         _in_worklist.remove(n->_idx);
3004         return;
3005       }
3006     }
3007     ShouldNotReachHere();
3008   }
3009 }
3010 
3011 //-----------------------remove_useless_nodes----------------------------------
3012 // Remove useless nodes from worklist
3013 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
3014   for (uint i = 0; i < size(); ++i) {
3015     Node *n = at(i);
3016     assert( n != nullptr, "Did not expect null entries in worklist");
3017     if (!useful.test(n->_idx)) {
3018       _in_worklist.remove(n->_idx);
3019       map(i, Node_List::pop());
3020       --i;  // Visit popped node
3021       // If it was last entry, loop terminates since size() was also reduced
3022     }
3023   }
3024 }
3025 
3026 //=============================================================================
3027 void Node_Stack::grow() {
3028   _nesting.check(_a); // Check if a potential reallocation in the arena is safe
3029   if (_inode_top < _inode_max) {
3030     return; // No need to grow
3031   }
3032   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
3033   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
3034   size_t max = old_max << 1;             // max * 2
3035   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
3036   _inode_max = _inodes + max;
3037   _inode_top = _inodes + old_top;        // restore _top
3038 }
3039 
3040 // Node_Stack is used to map nodes.
3041 Node* Node_Stack::find(uint idx) const {
3042   uint sz = size();
3043   for (uint i = 0; i < sz; i++) {
3044     if (idx == index_at(i)) {
3045       return node_at(i);
3046     }
3047   }
3048   return nullptr;
3049 }
3050 
3051 //=============================================================================
3052 uint TypeNode::size_of() const { return sizeof(*this); }
3053 #ifndef PRODUCT
3054 void TypeNode::dump_spec(outputStream *st) const {
3055   if (!Verbose && !WizardMode) {
3056     // standard dump does this in Verbose and WizardMode
3057     st->print(" #"); _type->dump_on(st);
3058   }
3059 }
3060 
3061 void TypeNode::dump_compact_spec(outputStream *st) const {
3062   st->print("#");
3063   _type->dump_on(st);
3064 }
3065 #endif
3066 uint TypeNode::hash() const {
3067   return Node::hash() + _type->hash();
3068 }
3069 bool TypeNode::cmp(const Node& n) const {
3070   return Type::equals(_type, n.as_Type()->_type);
3071 }
3072 const Type* TypeNode::bottom_type() const { return _type; }
3073 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
3074 
3075 //------------------------------ideal_reg--------------------------------------
3076 uint TypeNode::ideal_reg() const {
3077   return _type->ideal_reg();
3078 }