1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shared/c2/barrierSetC2.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/resourceArea.hpp" 32 #include "opto/ad.hpp" 33 #include "opto/callGenerator.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/cfgnode.hpp" 36 #include "opto/connode.hpp" 37 #include "opto/loopnode.hpp" 38 #include "opto/machnode.hpp" 39 #include "opto/matcher.hpp" 40 #include "opto/node.hpp" 41 #include "opto/opcodes.hpp" 42 #include "opto/regmask.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/type.hpp" 45 #include "utilities/copy.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "utilities/stringUtils.hpp" 49 50 class RegMask; 51 // #include "phase.hpp" 52 class PhaseTransform; 53 class PhaseGVN; 54 55 // Arena we are currently building Nodes in 56 const uint Node::NotAMachineReg = 0xffff0000; 57 58 #ifndef PRODUCT 59 extern uint nodes_created; 60 #endif 61 #ifdef __clang__ 62 #pragma clang diagnostic push 63 #pragma GCC diagnostic ignored "-Wuninitialized" 64 #endif 65 66 #ifdef ASSERT 67 68 //-------------------------- construct_node------------------------------------ 69 // Set a breakpoint here to identify where a particular node index is built. 70 void Node::verify_construction() { 71 _debug_orig = nullptr; 72 // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx> 73 Compile* C = Compile::current(); 74 assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX"); 75 uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx; 76 set_debug_idx(new_debug_idx); 77 if (!C->phase_optimize_finished()) { 78 // Only check assert during parsing and optimization phase. Skip it while generating code. 79 assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit"); 80 } 81 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) { 82 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx); 83 BREAKPOINT; 84 } 85 #if OPTO_DU_ITERATOR_ASSERT 86 _last_del = nullptr; 87 _del_tick = 0; 88 #endif 89 _hash_lock = 0; 90 } 91 92 93 // #ifdef ASSERT ... 94 95 #if OPTO_DU_ITERATOR_ASSERT 96 void DUIterator_Common::sample(const Node* node) { 97 _vdui = VerifyDUIterators; 98 _node = node; 99 _outcnt = node->_outcnt; 100 _del_tick = node->_del_tick; 101 _last = nullptr; 102 } 103 104 void DUIterator_Common::verify(const Node* node, bool at_end_ok) { 105 assert(_node == node, "consistent iterator source"); 106 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed"); 107 } 108 109 void DUIterator_Common::verify_resync() { 110 // Ensure that the loop body has just deleted the last guy produced. 111 const Node* node = _node; 112 // Ensure that at least one copy of the last-seen edge was deleted. 113 // Note: It is OK to delete multiple copies of the last-seen edge. 114 // Unfortunately, we have no way to verify that all the deletions delete 115 // that same edge. On this point we must use the Honor System. 116 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge"); 117 assert(node->_last_del == _last, "must have deleted the edge just produced"); 118 // We liked this deletion, so accept the resulting outcnt and tick. 119 _outcnt = node->_outcnt; 120 _del_tick = node->_del_tick; 121 } 122 123 void DUIterator_Common::reset(const DUIterator_Common& that) { 124 if (this == &that) return; // ignore assignment to self 125 if (!_vdui) { 126 // We need to initialize everything, overwriting garbage values. 127 _last = that._last; 128 _vdui = that._vdui; 129 } 130 // Note: It is legal (though odd) for an iterator over some node x 131 // to be reassigned to iterate over another node y. Some doubly-nested 132 // progress loops depend on being able to do this. 133 const Node* node = that._node; 134 // Re-initialize everything, except _last. 135 _node = node; 136 _outcnt = node->_outcnt; 137 _del_tick = node->_del_tick; 138 } 139 140 void DUIterator::sample(const Node* node) { 141 DUIterator_Common::sample(node); // Initialize the assertion data. 142 _refresh_tick = 0; // No refreshes have happened, as yet. 143 } 144 145 void DUIterator::verify(const Node* node, bool at_end_ok) { 146 DUIterator_Common::verify(node, at_end_ok); 147 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range"); 148 } 149 150 void DUIterator::verify_increment() { 151 if (_refresh_tick & 1) { 152 // We have refreshed the index during this loop. 153 // Fix up _idx to meet asserts. 154 if (_idx > _outcnt) _idx = _outcnt; 155 } 156 verify(_node, true); 157 } 158 159 void DUIterator::verify_resync() { 160 // Note: We do not assert on _outcnt, because insertions are OK here. 161 DUIterator_Common::verify_resync(); 162 // Make sure we are still in sync, possibly with no more out-edges: 163 verify(_node, true); 164 } 165 166 void DUIterator::reset(const DUIterator& that) { 167 if (this == &that) return; // self assignment is always a no-op 168 assert(that._refresh_tick == 0, "assign only the result of Node::outs()"); 169 assert(that._idx == 0, "assign only the result of Node::outs()"); 170 assert(_idx == that._idx, "already assigned _idx"); 171 if (!_vdui) { 172 // We need to initialize everything, overwriting garbage values. 173 sample(that._node); 174 } else { 175 DUIterator_Common::reset(that); 176 if (_refresh_tick & 1) { 177 _refresh_tick++; // Clear the "was refreshed" flag. 178 } 179 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly"); 180 } 181 } 182 183 void DUIterator::refresh() { 184 DUIterator_Common::sample(_node); // Re-fetch assertion data. 185 _refresh_tick |= 1; // Set the "was refreshed" flag. 186 } 187 188 void DUIterator::verify_finish() { 189 // If the loop has killed the node, do not require it to re-run. 190 if (_node->_outcnt == 0) _refresh_tick &= ~1; 191 // If this assert triggers, it means that a loop used refresh_out_pos 192 // to re-synch an iteration index, but the loop did not correctly 193 // re-run itself, using a "while (progress)" construct. 194 // This iterator enforces the rule that you must keep trying the loop 195 // until it "runs clean" without any need for refreshing. 196 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing"); 197 } 198 199 200 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) { 201 DUIterator_Common::verify(node, at_end_ok); 202 Node** out = node->_out; 203 uint cnt = node->_outcnt; 204 assert(cnt == _outcnt, "no insertions allowed"); 205 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range"); 206 // This last check is carefully designed to work for NO_OUT_ARRAY. 207 } 208 209 void DUIterator_Fast::verify_limit() { 210 const Node* node = _node; 211 verify(node, true); 212 assert(_outp == node->_out + node->_outcnt, "limit still correct"); 213 } 214 215 void DUIterator_Fast::verify_resync() { 216 const Node* node = _node; 217 if (_outp == node->_out + _outcnt) { 218 // Note that the limit imax, not the pointer i, gets updated with the 219 // exact count of deletions. (For the pointer it's always "--i".) 220 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)"); 221 // This is a limit pointer, with a name like "imax". 222 // Fudge the _last field so that the common assert will be happy. 223 _last = (Node*) node->_last_del; 224 DUIterator_Common::verify_resync(); 225 } else { 226 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)"); 227 // A normal internal pointer. 228 DUIterator_Common::verify_resync(); 229 // Make sure we are still in sync, possibly with no more out-edges: 230 verify(node, true); 231 } 232 } 233 234 void DUIterator_Fast::verify_relimit(uint n) { 235 const Node* node = _node; 236 assert((int)n > 0, "use imax -= n only with a positive count"); 237 // This must be a limit pointer, with a name like "imax". 238 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)"); 239 // The reported number of deletions must match what the node saw. 240 assert(node->_del_tick == _del_tick + n, "must have deleted n edges"); 241 // Fudge the _last field so that the common assert will be happy. 242 _last = (Node*) node->_last_del; 243 DUIterator_Common::verify_resync(); 244 } 245 246 void DUIterator_Fast::reset(const DUIterator_Fast& that) { 247 assert(_outp == that._outp, "already assigned _outp"); 248 DUIterator_Common::reset(that); 249 } 250 251 void DUIterator_Last::verify(const Node* node, bool at_end_ok) { 252 // at_end_ok means the _outp is allowed to underflow by 1 253 _outp += at_end_ok; 254 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc. 255 _outp -= at_end_ok; 256 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes"); 257 } 258 259 void DUIterator_Last::verify_limit() { 260 // Do not require the limit address to be resynched. 261 //verify(node, true); 262 assert(_outp == _node->_out, "limit still correct"); 263 } 264 265 void DUIterator_Last::verify_step(uint num_edges) { 266 assert((int)num_edges > 0, "need non-zero edge count for loop progress"); 267 _outcnt -= num_edges; 268 _del_tick += num_edges; 269 // Make sure we are still in sync, possibly with no more out-edges: 270 const Node* node = _node; 271 verify(node, true); 272 assert(node->_last_del == _last, "must have deleted the edge just produced"); 273 } 274 275 #endif //OPTO_DU_ITERATOR_ASSERT 276 277 278 #endif //ASSERT 279 280 281 // This constant used to initialize _out may be any non-null value. 282 // The value null is reserved for the top node only. 283 #define NO_OUT_ARRAY ((Node**)-1) 284 285 // Out-of-line code from node constructors. 286 // Executed only when extra debug info. is being passed around. 287 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) { 288 C->set_node_notes_at(idx, nn); 289 } 290 291 // Shared initialization code. 292 inline int Node::Init(int req) { 293 Compile* C = Compile::current(); 294 int idx = C->next_unique(); 295 NOT_PRODUCT(_igv_idx = C->next_igv_idx()); 296 297 // Allocate memory for the necessary number of edges. 298 if (req > 0) { 299 // Allocate space for _in array to have double alignment. 300 _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*)))); 301 } 302 // If there are default notes floating around, capture them: 303 Node_Notes* nn = C->default_node_notes(); 304 if (nn != nullptr) init_node_notes(C, idx, nn); 305 306 // Note: At this point, C is dead, 307 // and we begin to initialize the new Node. 308 309 _cnt = _max = req; 310 _outcnt = _outmax = 0; 311 _class_id = Class_Node; 312 _flags = 0; 313 _out = NO_OUT_ARRAY; 314 return idx; 315 } 316 317 //------------------------------Node------------------------------------------- 318 // Create a Node, with a given number of required edges. 319 Node::Node(uint req) 320 : _idx(Init(req)) 321 #ifdef ASSERT 322 , _parse_idx(_idx) 323 #endif 324 { 325 assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" ); 326 debug_only( verify_construction() ); 327 NOT_PRODUCT(nodes_created++); 328 if (req == 0) { 329 _in = nullptr; 330 } else { 331 Node** to = _in; 332 for(uint i = 0; i < req; i++) { 333 to[i] = nullptr; 334 } 335 } 336 } 337 338 //------------------------------Node------------------------------------------- 339 Node::Node(Node *n0) 340 : _idx(Init(1)) 341 #ifdef ASSERT 342 , _parse_idx(_idx) 343 #endif 344 { 345 debug_only( verify_construction() ); 346 NOT_PRODUCT(nodes_created++); 347 assert( is_not_dead(n0), "can not use dead node"); 348 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 349 } 350 351 //------------------------------Node------------------------------------------- 352 Node::Node(Node *n0, Node *n1) 353 : _idx(Init(2)) 354 #ifdef ASSERT 355 , _parse_idx(_idx) 356 #endif 357 { 358 debug_only( verify_construction() ); 359 NOT_PRODUCT(nodes_created++); 360 assert( is_not_dead(n0), "can not use dead node"); 361 assert( is_not_dead(n1), "can not use dead node"); 362 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 363 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 364 } 365 366 //------------------------------Node------------------------------------------- 367 Node::Node(Node *n0, Node *n1, Node *n2) 368 : _idx(Init(3)) 369 #ifdef ASSERT 370 , _parse_idx(_idx) 371 #endif 372 { 373 debug_only( verify_construction() ); 374 NOT_PRODUCT(nodes_created++); 375 assert( is_not_dead(n0), "can not use dead node"); 376 assert( is_not_dead(n1), "can not use dead node"); 377 assert( is_not_dead(n2), "can not use dead node"); 378 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 379 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 380 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 381 } 382 383 //------------------------------Node------------------------------------------- 384 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3) 385 : _idx(Init(4)) 386 #ifdef ASSERT 387 , _parse_idx(_idx) 388 #endif 389 { 390 debug_only( verify_construction() ); 391 NOT_PRODUCT(nodes_created++); 392 assert( is_not_dead(n0), "can not use dead node"); 393 assert( is_not_dead(n1), "can not use dead node"); 394 assert( is_not_dead(n2), "can not use dead node"); 395 assert( is_not_dead(n3), "can not use dead node"); 396 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 397 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 398 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 399 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 400 } 401 402 //------------------------------Node------------------------------------------- 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4) 404 : _idx(Init(5)) 405 #ifdef ASSERT 406 , _parse_idx(_idx) 407 #endif 408 { 409 debug_only( verify_construction() ); 410 NOT_PRODUCT(nodes_created++); 411 assert( is_not_dead(n0), "can not use dead node"); 412 assert( is_not_dead(n1), "can not use dead node"); 413 assert( is_not_dead(n2), "can not use dead node"); 414 assert( is_not_dead(n3), "can not use dead node"); 415 assert( is_not_dead(n4), "can not use dead node"); 416 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 417 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 418 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 419 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 420 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 421 } 422 423 //------------------------------Node------------------------------------------- 424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 425 Node *n4, Node *n5) 426 : _idx(Init(6)) 427 #ifdef ASSERT 428 , _parse_idx(_idx) 429 #endif 430 { 431 debug_only( verify_construction() ); 432 NOT_PRODUCT(nodes_created++); 433 assert( is_not_dead(n0), "can not use dead node"); 434 assert( is_not_dead(n1), "can not use dead node"); 435 assert( is_not_dead(n2), "can not use dead node"); 436 assert( is_not_dead(n3), "can not use dead node"); 437 assert( is_not_dead(n4), "can not use dead node"); 438 assert( is_not_dead(n5), "can not use dead node"); 439 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 440 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 441 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 442 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 443 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 444 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 445 } 446 447 //------------------------------Node------------------------------------------- 448 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 449 Node *n4, Node *n5, Node *n6) 450 : _idx(Init(7)) 451 #ifdef ASSERT 452 , _parse_idx(_idx) 453 #endif 454 { 455 debug_only( verify_construction() ); 456 NOT_PRODUCT(nodes_created++); 457 assert( is_not_dead(n0), "can not use dead node"); 458 assert( is_not_dead(n1), "can not use dead node"); 459 assert( is_not_dead(n2), "can not use dead node"); 460 assert( is_not_dead(n3), "can not use dead node"); 461 assert( is_not_dead(n4), "can not use dead node"); 462 assert( is_not_dead(n5), "can not use dead node"); 463 assert( is_not_dead(n6), "can not use dead node"); 464 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 465 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 466 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 467 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 468 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 469 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 470 _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this); 471 } 472 473 #ifdef __clang__ 474 #pragma clang diagnostic pop 475 #endif 476 477 478 //------------------------------clone------------------------------------------ 479 // Clone a Node. 480 Node *Node::clone() const { 481 Compile* C = Compile::current(); 482 uint s = size_of(); // Size of inherited Node 483 Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*)); 484 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); 485 // Set the new input pointer array 486 n->_in = (Node**)(((char*)n)+s); 487 // Cannot share the old output pointer array, so kill it 488 n->_out = NO_OUT_ARRAY; 489 // And reset the counters to 0 490 n->_outcnt = 0; 491 n->_outmax = 0; 492 // Unlock this guy, since he is not in any hash table. 493 debug_only(n->_hash_lock = 0); 494 // Walk the old node's input list to duplicate its edges 495 uint i; 496 for( i = 0; i < len(); i++ ) { 497 Node *x = in(i); 498 n->_in[i] = x; 499 if (x != nullptr) x->add_out(n); 500 } 501 if (is_macro()) { 502 C->add_macro_node(n); 503 } 504 if (is_expensive()) { 505 C->add_expensive_node(n); 506 } 507 if (for_post_loop_opts_igvn()) { 508 // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically. 509 // If it is applicable, it will happen anyway when the cloned node is registered with IGVN. 510 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 511 } 512 if (n->is_ParsePredicate()) { 513 C->add_parse_predicate(n->as_ParsePredicate()); 514 } 515 516 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 517 bs->register_potential_barrier_node(n); 518 519 n->set_idx(C->next_unique()); // Get new unique index as well 520 NOT_PRODUCT(n->_igv_idx = C->next_igv_idx()); 521 debug_only( n->verify_construction() ); 522 NOT_PRODUCT(nodes_created++); 523 // Do not patch over the debug_idx of a clone, because it makes it 524 // impossible to break on the clone's moment of creation. 525 //debug_only( n->set_debug_idx( debug_idx() ) ); 526 527 C->copy_node_notes_to(n, (Node*) this); 528 529 // MachNode clone 530 uint nopnds; 531 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) { 532 MachNode *mach = n->as_Mach(); 533 MachNode *mthis = this->as_Mach(); 534 // Get address of _opnd_array. 535 // It should be the same offset since it is the clone of this node. 536 MachOper **from = mthis->_opnds; 537 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) + 538 pointer_delta((const void*)from, 539 (const void*)(&mthis->_opnds), 1)); 540 mach->_opnds = to; 541 for ( uint i = 0; i < nopnds; ++i ) { 542 to[i] = from[i]->clone(); 543 } 544 } 545 if (n->is_Call()) { 546 // CallGenerator is linked to the original node. 547 CallGenerator* cg = n->as_Call()->generator(); 548 if (cg != nullptr) { 549 CallGenerator* cloned_cg = cg->with_call_node(n->as_Call()); 550 n->as_Call()->set_generator(cloned_cg); 551 552 C->print_inlining_assert_ready(); 553 C->print_inlining_move_to(cg); 554 C->print_inlining_update(cloned_cg); 555 } 556 } 557 if (n->is_SafePoint()) { 558 // Scalar replacement and macro expansion might modify the JVMState. 559 // Clone it to make sure it's not shared between SafePointNodes. 560 n->as_SafePoint()->clone_jvms(C); 561 n->as_SafePoint()->clone_replaced_nodes(); 562 } 563 Compile::current()->record_modified_node(n); 564 return n; // Return the clone 565 } 566 567 //---------------------------setup_is_top-------------------------------------- 568 // Call this when changing the top node, to reassert the invariants 569 // required by Node::is_top. See Compile::set_cached_top_node. 570 void Node::setup_is_top() { 571 if (this == (Node*)Compile::current()->top()) { 572 // This node has just become top. Kill its out array. 573 _outcnt = _outmax = 0; 574 _out = nullptr; // marker value for top 575 assert(is_top(), "must be top"); 576 } else { 577 if (_out == nullptr) _out = NO_OUT_ARRAY; 578 assert(!is_top(), "must not be top"); 579 } 580 } 581 582 //------------------------------~Node------------------------------------------ 583 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 584 void Node::destruct(PhaseValues* phase) { 585 Compile* compile = (phase != nullptr) ? phase->C : Compile::current(); 586 if (phase != nullptr && phase->is_IterGVN()) { 587 phase->is_IterGVN()->_worklist.remove(this); 588 } 589 // If this is the most recently created node, reclaim its index. Otherwise, 590 // record the node as dead to keep liveness information accurate. 591 if ((uint)_idx+1 == compile->unique()) { 592 compile->set_unique(compile->unique()-1); 593 } else { 594 compile->record_dead_node(_idx); 595 } 596 // Clear debug info: 597 Node_Notes* nn = compile->node_notes_at(_idx); 598 if (nn != nullptr) nn->clear(); 599 // Walk the input array, freeing the corresponding output edges 600 _cnt = _max; // forget req/prec distinction 601 uint i; 602 for( i = 0; i < _max; i++ ) { 603 set_req(i, nullptr); 604 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim"); 605 } 606 assert(outcnt() == 0, "deleting a node must not leave a dangling use"); 607 608 if (is_macro()) { 609 compile->remove_macro_node(this); 610 } 611 if (is_expensive()) { 612 compile->remove_expensive_node(this); 613 } 614 if (is_OpaqueTemplateAssertionPredicate()) { 615 compile->remove_template_assertion_predicate_opaq(this); 616 } 617 if (is_ParsePredicate()) { 618 compile->remove_parse_predicate(as_ParsePredicate()); 619 } 620 if (for_post_loop_opts_igvn()) { 621 compile->remove_from_post_loop_opts_igvn(this); 622 } 623 624 if (is_SafePoint()) { 625 as_SafePoint()->delete_replaced_nodes(); 626 627 if (is_CallStaticJava()) { 628 compile->remove_unstable_if_trap(as_CallStaticJava(), false); 629 } 630 } 631 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 632 bs->unregister_potential_barrier_node(this); 633 634 // See if the input array was allocated just prior to the object 635 int edge_size = _max*sizeof(void*); 636 int out_edge_size = _outmax*sizeof(void*); 637 char *in_array = ((char*)_in); 638 char *edge_end = in_array + edge_size; 639 char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out); 640 int node_size = size_of(); 641 642 #ifdef ASSERT 643 // We will not actually delete the storage, but we'll make the node unusable. 644 compile->remove_modified_node(this); 645 *(address*)this = badAddress; // smash the C++ vtbl, probably 646 _in = _out = (Node**) badAddress; 647 _max = _cnt = _outmax = _outcnt = 0; 648 #endif 649 650 // Free the output edge array 651 if (out_edge_size > 0) { 652 compile->node_arena()->Afree(out_array, out_edge_size); 653 } 654 655 // Free the input edge array and the node itself 656 if( edge_end == (char*)this ) { 657 // It was; free the input array and object all in one hit 658 #ifndef ASSERT 659 compile->node_arena()->Afree(in_array, edge_size+node_size); 660 #endif 661 } else { 662 // Free just the input array 663 compile->node_arena()->Afree(in_array, edge_size); 664 665 // Free just the object 666 #ifndef ASSERT 667 compile->node_arena()->Afree(this, node_size); 668 #endif 669 } 670 } 671 672 //------------------------------grow------------------------------------------- 673 // Grow the input array, making space for more edges 674 void Node::grow(uint len) { 675 Arena* arena = Compile::current()->node_arena(); 676 uint new_max = _max; 677 if( new_max == 0 ) { 678 _max = 4; 679 _in = (Node**)arena->Amalloc(4*sizeof(Node*)); 680 Node** to = _in; 681 to[0] = nullptr; 682 to[1] = nullptr; 683 to[2] = nullptr; 684 to[3] = nullptr; 685 return; 686 } 687 new_max = next_power_of_2(len); 688 // Trimming to limit allows a uint8 to handle up to 255 edges. 689 // Previously I was using only powers-of-2 which peaked at 128 edges. 690 //if( new_max >= limit ) new_max = limit-1; 691 _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*)); 692 Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // null all new space 693 _max = new_max; // Record new max length 694 // This assertion makes sure that Node::_max is wide enough to 695 // represent the numerical value of new_max. 696 assert(_max == new_max && _max > len, "int width of _max is too small"); 697 } 698 699 //-----------------------------out_grow---------------------------------------- 700 // Grow the input array, making space for more edges 701 void Node::out_grow( uint len ) { 702 assert(!is_top(), "cannot grow a top node's out array"); 703 Arena* arena = Compile::current()->node_arena(); 704 uint new_max = _outmax; 705 if( new_max == 0 ) { 706 _outmax = 4; 707 _out = (Node **)arena->Amalloc(4*sizeof(Node*)); 708 return; 709 } 710 new_max = next_power_of_2(len); 711 // Trimming to limit allows a uint8 to handle up to 255 edges. 712 // Previously I was using only powers-of-2 which peaked at 128 edges. 713 //if( new_max >= limit ) new_max = limit-1; 714 assert(_out != nullptr && _out != NO_OUT_ARRAY, "out must have sensible value"); 715 _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*)); 716 //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // null all new space 717 _outmax = new_max; // Record new max length 718 // This assertion makes sure that Node::_max is wide enough to 719 // represent the numerical value of new_max. 720 assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small"); 721 } 722 723 #ifdef ASSERT 724 //------------------------------is_dead---------------------------------------- 725 bool Node::is_dead() const { 726 // Mach and pinch point nodes may look like dead. 727 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) ) 728 return false; 729 for( uint i = 0; i < _max; i++ ) 730 if( _in[i] != nullptr ) 731 return false; 732 return true; 733 } 734 735 bool Node::is_not_dead(const Node* n) { 736 return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead()); 737 } 738 739 bool Node::is_reachable_from_root() const { 740 ResourceMark rm; 741 Unique_Node_List wq; 742 wq.push((Node*)this); 743 RootNode* root = Compile::current()->root(); 744 for (uint i = 0; i < wq.size(); i++) { 745 Node* m = wq.at(i); 746 if (m == root) { 747 return true; 748 } 749 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 750 Node* u = m->fast_out(j); 751 wq.push(u); 752 } 753 } 754 return false; 755 } 756 #endif 757 758 //------------------------------is_unreachable--------------------------------- 759 bool Node::is_unreachable(PhaseIterGVN &igvn) const { 760 assert(!is_Mach(), "doesn't work with MachNodes"); 761 return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top()); 762 } 763 764 //------------------------------add_req---------------------------------------- 765 // Add a new required input at the end 766 void Node::add_req( Node *n ) { 767 assert( is_not_dead(n), "can not use dead node"); 768 769 // Look to see if I can move precedence down one without reallocating 770 if( (_cnt >= _max) || (in(_max-1) != nullptr) ) 771 grow( _max+1 ); 772 773 // Find a precedence edge to move 774 if( in(_cnt) != nullptr ) { // Next precedence edge is busy? 775 uint i; 776 for( i=_cnt; i<_max; i++ ) 777 if( in(i) == nullptr ) // Find the null at end of prec edge list 778 break; // There must be one, since we grew the array 779 _in[i] = in(_cnt); // Move prec over, making space for req edge 780 } 781 _in[_cnt++] = n; // Stuff over old prec edge 782 if (n != nullptr) n->add_out((Node *)this); 783 Compile::current()->record_modified_node(this); 784 } 785 786 //---------------------------add_req_batch------------------------------------- 787 // Add a new required input at the end 788 void Node::add_req_batch( Node *n, uint m ) { 789 assert( is_not_dead(n), "can not use dead node"); 790 // check various edge cases 791 if ((int)m <= 1) { 792 assert((int)m >= 0, "oob"); 793 if (m != 0) add_req(n); 794 return; 795 } 796 797 // Look to see if I can move precedence down one without reallocating 798 if( (_cnt+m) > _max || _in[_max-m] ) 799 grow( _max+m ); 800 801 // Find a precedence edge to move 802 if( _in[_cnt] != nullptr ) { // Next precedence edge is busy? 803 uint i; 804 for( i=_cnt; i<_max; i++ ) 805 if( _in[i] == nullptr ) // Find the null at end of prec edge list 806 break; // There must be one, since we grew the array 807 // Slide all the precs over by m positions (assume #prec << m). 808 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*))); 809 } 810 811 // Stuff over the old prec edges 812 for(uint i=0; i<m; i++ ) { 813 _in[_cnt++] = n; 814 } 815 816 // Insert multiple out edges on the node. 817 if (n != nullptr && !n->is_top()) { 818 for(uint i=0; i<m; i++ ) { 819 n->add_out((Node *)this); 820 } 821 } 822 Compile::current()->record_modified_node(this); 823 } 824 825 //------------------------------del_req---------------------------------------- 826 // Delete the required edge and compact the edge array 827 void Node::del_req( uint idx ) { 828 assert( idx < _cnt, "oob"); 829 assert( !VerifyHashTableKeys || _hash_lock == 0, 830 "remove node from hash table before modifying it"); 831 // First remove corresponding def-use edge 832 Node *n = in(idx); 833 if (n != nullptr) n->del_out((Node *)this); 834 _in[idx] = in(--_cnt); // Compact the array 835 // Avoid spec violation: Gap in prec edges. 836 close_prec_gap_at(_cnt); 837 Compile::current()->record_modified_node(this); 838 } 839 840 //------------------------------del_req_ordered-------------------------------- 841 // Delete the required edge and compact the edge array with preserved order 842 void Node::del_req_ordered( uint idx ) { 843 assert( idx < _cnt, "oob"); 844 assert( !VerifyHashTableKeys || _hash_lock == 0, 845 "remove node from hash table before modifying it"); 846 // First remove corresponding def-use edge 847 Node *n = in(idx); 848 if (n != nullptr) n->del_out((Node *)this); 849 if (idx < --_cnt) { // Not last edge ? 850 Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*))); 851 } 852 // Avoid spec violation: Gap in prec edges. 853 close_prec_gap_at(_cnt); 854 Compile::current()->record_modified_node(this); 855 } 856 857 //------------------------------ins_req---------------------------------------- 858 // Insert a new required input at the end 859 void Node::ins_req( uint idx, Node *n ) { 860 assert( is_not_dead(n), "can not use dead node"); 861 add_req(nullptr); // Make space 862 assert( idx < _max, "Must have allocated enough space"); 863 // Slide over 864 if(_cnt-idx-1 > 0) { 865 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*))); 866 } 867 _in[idx] = n; // Stuff over old required edge 868 if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge 869 Compile::current()->record_modified_node(this); 870 } 871 872 //-----------------------------find_edge--------------------------------------- 873 int Node::find_edge(Node* n) { 874 for (uint i = 0; i < len(); i++) { 875 if (_in[i] == n) return i; 876 } 877 return -1; 878 } 879 880 //----------------------------replace_edge------------------------------------- 881 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) { 882 if (old == neww) return 0; // nothing to do 883 uint nrep = 0; 884 for (uint i = 0; i < len(); i++) { 885 if (in(i) == old) { 886 if (i < req()) { 887 if (gvn != nullptr) { 888 set_req_X(i, neww, gvn); 889 } else { 890 set_req(i, neww); 891 } 892 } else { 893 assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here"); 894 assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx); 895 set_prec(i, neww); 896 } 897 nrep++; 898 } 899 } 900 return nrep; 901 } 902 903 /** 904 * Replace input edges in the range pointing to 'old' node. 905 */ 906 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) { 907 if (old == neww) return 0; // nothing to do 908 uint nrep = 0; 909 for (int i = start; i < end; i++) { 910 if (in(i) == old) { 911 set_req_X(i, neww, gvn); 912 nrep++; 913 } 914 } 915 return nrep; 916 } 917 918 //-------------------------disconnect_inputs----------------------------------- 919 // null out all inputs to eliminate incoming Def-Use edges. 920 void Node::disconnect_inputs(Compile* C) { 921 // the layout of Node::_in 922 // r: a required input, null is allowed 923 // p: a precedence, null values are all at the end 924 // ----------------------------------- 925 // |r|...|r|p|...|p|null|...|null| 926 // | | 927 // req() len() 928 // ----------------------------------- 929 for (uint i = 0; i < req(); ++i) { 930 if (in(i) != nullptr) { 931 set_req(i, nullptr); 932 } 933 } 934 935 // Remove precedence edges if any exist 936 // Note: Safepoints may have precedence edges, even during parsing 937 for (uint i = len(); i > req(); ) { 938 rm_prec(--i); // no-op if _in[i] is null 939 } 940 941 #ifdef ASSERT 942 // sanity check 943 for (uint i = 0; i < len(); ++i) { 944 assert(_in[i] == nullptr, "disconnect_inputs() failed!"); 945 } 946 #endif 947 948 // Node::destruct requires all out edges be deleted first 949 // debug_only(destruct();) // no reuse benefit expected 950 C->record_dead_node(_idx); 951 } 952 953 //-----------------------------uncast--------------------------------------- 954 // %%% Temporary, until we sort out CheckCastPP vs. CastPP. 955 // Strip away casting. (It is depth-limited.) 956 // Optionally, keep casts with dependencies. 957 Node* Node::uncast(bool keep_deps) const { 958 // Should be inline: 959 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this; 960 if (is_ConstraintCast()) { 961 return uncast_helper(this, keep_deps); 962 } else { 963 return (Node*) this; 964 } 965 } 966 967 // Find out of current node that matches opcode. 968 Node* Node::find_out_with(int opcode) { 969 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 970 Node* use = fast_out(i); 971 if (use->Opcode() == opcode) { 972 return use; 973 } 974 } 975 return nullptr; 976 } 977 978 // Return true if the current node has an out that matches opcode. 979 bool Node::has_out_with(int opcode) { 980 return (find_out_with(opcode) != nullptr); 981 } 982 983 // Return true if the current node has an out that matches any of the opcodes. 984 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) { 985 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 986 int opcode = fast_out(i)->Opcode(); 987 if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) { 988 return true; 989 } 990 } 991 return false; 992 } 993 994 995 //---------------------------uncast_helper------------------------------------- 996 Node* Node::uncast_helper(const Node* p, bool keep_deps) { 997 #ifdef ASSERT 998 uint depth_count = 0; 999 const Node* orig_p = p; 1000 #endif 1001 1002 while (true) { 1003 #ifdef ASSERT 1004 if (depth_count >= K) { 1005 orig_p->dump(4); 1006 if (p != orig_p) 1007 p->dump(1); 1008 } 1009 assert(depth_count++ < K, "infinite loop in Node::uncast_helper"); 1010 #endif 1011 if (p == nullptr || p->req() != 2) { 1012 break; 1013 } else if (p->is_ConstraintCast()) { 1014 if (keep_deps && p->as_ConstraintCast()->carry_dependency()) { 1015 break; // stop at casts with dependencies 1016 } 1017 p = p->in(1); 1018 } else { 1019 break; 1020 } 1021 } 1022 return (Node*) p; 1023 } 1024 1025 //------------------------------add_prec--------------------------------------- 1026 // Add a new precedence input. Precedence inputs are unordered, with 1027 // duplicates removed and nulls packed down at the end. 1028 void Node::add_prec( Node *n ) { 1029 assert( is_not_dead(n), "can not use dead node"); 1030 1031 // Check for null at end 1032 if( _cnt >= _max || in(_max-1) ) 1033 grow( _max+1 ); 1034 1035 // Find a precedence edge to move 1036 uint i = _cnt; 1037 while( in(i) != nullptr ) { 1038 if (in(i) == n) return; // Avoid spec violation: duplicated prec edge. 1039 i++; 1040 } 1041 _in[i] = n; // Stuff prec edge over null 1042 if ( n != nullptr) n->add_out((Node *)this); // Add mirror edge 1043 1044 #ifdef ASSERT 1045 while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); } 1046 #endif 1047 Compile::current()->record_modified_node(this); 1048 } 1049 1050 //------------------------------rm_prec---------------------------------------- 1051 // Remove a precedence input. Precedence inputs are unordered, with 1052 // duplicates removed and nulls packed down at the end. 1053 void Node::rm_prec( uint j ) { 1054 assert(j < _max, "oob: i=%d, _max=%d", j, _max); 1055 assert(j >= _cnt, "not a precedence edge"); 1056 if (_in[j] == nullptr) return; // Avoid spec violation: Gap in prec edges. 1057 _in[j]->del_out((Node *)this); 1058 close_prec_gap_at(j); 1059 Compile::current()->record_modified_node(this); 1060 } 1061 1062 //------------------------------size_of---------------------------------------- 1063 uint Node::size_of() const { return sizeof(*this); } 1064 1065 //------------------------------ideal_reg-------------------------------------- 1066 uint Node::ideal_reg() const { return 0; } 1067 1068 //------------------------------jvms------------------------------------------- 1069 JVMState* Node::jvms() const { return nullptr; } 1070 1071 #ifdef ASSERT 1072 //------------------------------jvms------------------------------------------- 1073 bool Node::verify_jvms(const JVMState* using_jvms) const { 1074 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1075 if (jvms == using_jvms) return true; 1076 } 1077 return false; 1078 } 1079 1080 //------------------------------init_NodeProperty------------------------------ 1081 void Node::init_NodeProperty() { 1082 assert(_max_classes <= max_juint, "too many NodeProperty classes"); 1083 assert(max_flags() <= max_juint, "too many NodeProperty flags"); 1084 } 1085 1086 //-----------------------------max_flags--------------------------------------- 1087 juint Node::max_flags() { 1088 return (PD::_last_flag << 1) - 1; // allow flags combination 1089 } 1090 #endif 1091 1092 //------------------------------format----------------------------------------- 1093 // Print as assembly 1094 void Node::format( PhaseRegAlloc *, outputStream *st ) const {} 1095 //------------------------------emit------------------------------------------- 1096 // Emit bytes using C2_MacroAssembler 1097 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {} 1098 //------------------------------size------------------------------------------- 1099 // Size of instruction in bytes 1100 uint Node::size(PhaseRegAlloc *ra_) const { return 0; } 1101 1102 //------------------------------CFG Construction------------------------------- 1103 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root, 1104 // Goto and Return. 1105 const Node *Node::is_block_proj() const { return nullptr; } 1106 1107 // Minimum guaranteed type 1108 const Type *Node::bottom_type() const { return Type::BOTTOM; } 1109 1110 1111 //------------------------------raise_bottom_type------------------------------ 1112 // Get the worst-case Type output for this Node. 1113 void Node::raise_bottom_type(const Type* new_type) { 1114 if (is_Type()) { 1115 TypeNode *n = this->as_Type(); 1116 if (VerifyAliases) { 1117 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1118 } 1119 n->set_type(new_type); 1120 } else if (is_Load()) { 1121 LoadNode *n = this->as_Load(); 1122 if (VerifyAliases) { 1123 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1124 } 1125 n->set_type(new_type); 1126 } 1127 } 1128 1129 //------------------------------Identity--------------------------------------- 1130 // Return a node that the given node is equivalent to. 1131 Node* Node::Identity(PhaseGVN* phase) { 1132 return this; // Default to no identities 1133 } 1134 1135 //------------------------------Value------------------------------------------ 1136 // Compute a new Type for a node using the Type of the inputs. 1137 const Type* Node::Value(PhaseGVN* phase) const { 1138 return bottom_type(); // Default to worst-case Type 1139 } 1140 1141 //------------------------------Ideal------------------------------------------ 1142 // 1143 // 'Idealize' the graph rooted at this Node. 1144 // 1145 // In order to be efficient and flexible there are some subtle invariants 1146 // these Ideal calls need to hold. Running with '-XX:VerifyIterativeGVN=1' checks 1147 // these invariants, although its too slow to have on by default. If you are 1148 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1' 1149 // 1150 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this' 1151 // pointer. If ANY change is made, it must return the root of the reshaped 1152 // graph - even if the root is the same Node. Example: swapping the inputs 1153 // to an AddINode gives the same answer and same root, but you still have to 1154 // return the 'this' pointer instead of null. 1155 // 1156 // You cannot return an OLD Node, except for the 'this' pointer. Use the 1157 // Identity call to return an old Node; basically if Identity can find 1158 // another Node have the Ideal call make no change and return null. 1159 // Example: AddINode::Ideal must check for add of zero; in this case it 1160 // returns null instead of doing any graph reshaping. 1161 // 1162 // You cannot modify any old Nodes except for the 'this' pointer. Due to 1163 // sharing there may be other users of the old Nodes relying on their current 1164 // semantics. Modifying them will break the other users. 1165 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for 1166 // "X+3" unchanged in case it is shared. 1167 // 1168 // If you modify the 'this' pointer's inputs, you should use 1169 // 'set_req'. If you are making a new Node (either as the new root or 1170 // some new internal piece) you may use 'init_req' to set the initial 1171 // value. You can make a new Node with either 'new' or 'clone'. In 1172 // either case, def-use info is correctly maintained. 1173 // 1174 // Example: reshape "(X+3)+4" into "X+7": 1175 // set_req(1, in(1)->in(1)); 1176 // set_req(2, phase->intcon(7)); 1177 // return this; 1178 // Example: reshape "X*4" into "X<<2" 1179 // return new LShiftINode(in(1), phase->intcon(2)); 1180 // 1181 // You must call 'phase->transform(X)' on any new Nodes X you make, except 1182 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X". 1183 // Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5))); 1184 // return new AddINode(shift, in(1)); 1185 // 1186 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'. 1187 // These forms are faster than 'phase->transform(new ConNode())' and Do 1188 // The Right Thing with def-use info. 1189 // 1190 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped 1191 // graph uses the 'this' Node it must be the root. If you want a Node with 1192 // the same Opcode as the 'this' pointer use 'clone'. 1193 // 1194 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) { 1195 return nullptr; // Default to being Ideal already 1196 } 1197 1198 // Some nodes have specific Ideal subgraph transformations only if they are 1199 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1200 // for the transformations to happen. 1201 bool Node::has_special_unique_user() const { 1202 assert(outcnt() == 1, "match only for unique out"); 1203 Node* n = unique_out(); 1204 int op = Opcode(); 1205 if (this->is_Store()) { 1206 // Condition for back-to-back stores folding. 1207 return n->Opcode() == op && n->in(MemNode::Memory) == this; 1208 } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) { 1209 // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input 1210 return n->Opcode() == Op_MemBarAcquire; 1211 } else if (op == Op_AddL) { 1212 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 1213 return n->Opcode() == Op_ConvL2I && n->in(1) == this; 1214 } else if (op == Op_SubI || op == Op_SubL) { 1215 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y) 1216 return n->Opcode() == op && n->in(2) == this; 1217 } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) { 1218 // See IfProjNode::Identity() 1219 return true; 1220 } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) { 1221 // See IfNode::fold_compares 1222 return true; 1223 } else { 1224 return false; 1225 } 1226 }; 1227 1228 //--------------------------find_exact_control--------------------------------- 1229 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1230 Node* Node::find_exact_control(Node* ctrl) { 1231 if (ctrl == nullptr && this->is_Region()) 1232 ctrl = this->as_Region()->is_copy(); 1233 1234 if (ctrl != nullptr && ctrl->is_CatchProj()) { 1235 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index) 1236 ctrl = ctrl->in(0); 1237 if (ctrl != nullptr && !ctrl->is_top()) 1238 ctrl = ctrl->in(0); 1239 } 1240 1241 if (ctrl != nullptr && ctrl->is_Proj()) 1242 ctrl = ctrl->in(0); 1243 1244 return ctrl; 1245 } 1246 1247 //--------------------------dominates------------------------------------------ 1248 // Helper function for MemNode::all_controls_dominate(). 1249 // Check if 'this' control node dominates or equal to 'sub' control node. 1250 // We already know that if any path back to Root or Start reaches 'this', 1251 // then all paths so, so this is a simple search for one example, 1252 // not an exhaustive search for a counterexample. 1253 Node::DomResult Node::dominates(Node* sub, Node_List &nlist) { 1254 assert(this->is_CFG(), "expecting control"); 1255 assert(sub != nullptr && sub->is_CFG(), "expecting control"); 1256 1257 // detect dead cycle without regions 1258 int iterations_without_region_limit = DominatorSearchLimit; 1259 1260 Node* orig_sub = sub; 1261 Node* dom = this; 1262 bool met_dom = false; 1263 nlist.clear(); 1264 1265 // Walk 'sub' backward up the chain to 'dom', watching for regions. 1266 // After seeing 'dom', continue up to Root or Start. 1267 // If we hit a region (backward split point), it may be a loop head. 1268 // Keep going through one of the region's inputs. If we reach the 1269 // same region again, go through a different input. Eventually we 1270 // will either exit through the loop head, or give up. 1271 // (If we get confused, break out and return a conservative 'false'.) 1272 while (sub != nullptr) { 1273 if (sub->is_top()) { 1274 // Conservative answer for dead code. 1275 return DomResult::EncounteredDeadCode; 1276 } 1277 if (sub == dom) { 1278 if (nlist.size() == 0) { 1279 // No Region nodes except loops were visited before and the EntryControl 1280 // path was taken for loops: it did not walk in a cycle. 1281 return DomResult::Dominate; 1282 } else if (met_dom) { 1283 break; // already met before: walk in a cycle 1284 } else { 1285 // Region nodes were visited. Continue walk up to Start or Root 1286 // to make sure that it did not walk in a cycle. 1287 met_dom = true; // first time meet 1288 iterations_without_region_limit = DominatorSearchLimit; // Reset 1289 } 1290 } 1291 if (sub->is_Start() || sub->is_Root()) { 1292 // Success if we met 'dom' along a path to Start or Root. 1293 // We assume there are no alternative paths that avoid 'dom'. 1294 // (This assumption is up to the caller to ensure!) 1295 return met_dom ? DomResult::Dominate : DomResult::NotDominate; 1296 } 1297 Node* up = sub->in(0); 1298 // Normalize simple pass-through regions and projections: 1299 up = sub->find_exact_control(up); 1300 // If sub == up, we found a self-loop. Try to push past it. 1301 if (sub == up && sub->is_Loop()) { 1302 // Take loop entry path on the way up to 'dom'. 1303 up = sub->in(1); // in(LoopNode::EntryControl); 1304 } else if (sub == up && sub->is_Region() && sub->req() == 2) { 1305 // Take in(1) path on the way up to 'dom' for regions with only one input 1306 up = sub->in(1); 1307 } else if (sub == up && sub->is_Region()) { 1308 // Try both paths for Regions with 2 input paths (it may be a loop head). 1309 // It could give conservative 'false' answer without information 1310 // which region's input is the entry path. 1311 iterations_without_region_limit = DominatorSearchLimit; // Reset 1312 1313 bool region_was_visited_before = false; 1314 // Was this Region node visited before? 1315 // If so, we have reached it because we accidentally took a 1316 // loop-back edge from 'sub' back into the body of the loop, 1317 // and worked our way up again to the loop header 'sub'. 1318 // So, take the first unexplored path on the way up to 'dom'. 1319 for (int j = nlist.size() - 1; j >= 0; j--) { 1320 intptr_t ni = (intptr_t)nlist.at(j); 1321 Node* visited = (Node*)(ni & ~1); 1322 bool visited_twice_already = ((ni & 1) != 0); 1323 if (visited == sub) { 1324 if (visited_twice_already) { 1325 // Visited 2 paths, but still stuck in loop body. Give up. 1326 return DomResult::NotDominate; 1327 } 1328 // The Region node was visited before only once. 1329 // (We will repush with the low bit set, below.) 1330 nlist.remove(j); 1331 // We will find a new edge and re-insert. 1332 region_was_visited_before = true; 1333 break; 1334 } 1335 } 1336 1337 // Find an incoming edge which has not been seen yet; walk through it. 1338 assert(up == sub, ""); 1339 uint skip = region_was_visited_before ? 1 : 0; 1340 for (uint i = 1; i < sub->req(); i++) { 1341 Node* in = sub->in(i); 1342 if (in != nullptr && !in->is_top() && in != sub) { 1343 if (skip == 0) { 1344 up = in; 1345 break; 1346 } 1347 --skip; // skip this nontrivial input 1348 } 1349 } 1350 1351 // Set 0 bit to indicate that both paths were taken. 1352 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0))); 1353 } 1354 1355 if (up == sub) { 1356 break; // some kind of tight cycle 1357 } 1358 if (up == orig_sub && met_dom) { 1359 // returned back after visiting 'dom' 1360 break; // some kind of cycle 1361 } 1362 if (--iterations_without_region_limit < 0) { 1363 break; // dead cycle 1364 } 1365 sub = up; 1366 } 1367 1368 // Did not meet Root or Start node in pred. chain. 1369 return DomResult::NotDominate; 1370 } 1371 1372 //------------------------------remove_dead_region----------------------------- 1373 // This control node is dead. Follow the subgraph below it making everything 1374 // using it dead as well. This will happen normally via the usual IterGVN 1375 // worklist but this call is more efficient. Do not update use-def info 1376 // inside the dead region, just at the borders. 1377 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) { 1378 // Con's are a popular node to re-hit in the hash table again. 1379 if( dead->is_Con() ) return; 1380 1381 ResourceMark rm; 1382 Node_List nstack; 1383 VectorSet dead_set; // notify uses only once 1384 1385 Node *top = igvn->C->top(); 1386 nstack.push(dead); 1387 bool has_irreducible_loop = igvn->C->has_irreducible_loop(); 1388 1389 while (nstack.size() > 0) { 1390 dead = nstack.pop(); 1391 if (!dead_set.test_set(dead->_idx)) { 1392 // If dead has any live uses, those are now still attached. Notify them before we lose them. 1393 igvn->add_users_to_worklist(dead); 1394 } 1395 if (dead->Opcode() == Op_SafePoint) { 1396 dead->as_SafePoint()->disconnect_from_root(igvn); 1397 } 1398 if (dead->outcnt() > 0) { 1399 // Keep dead node on stack until all uses are processed. 1400 nstack.push(dead); 1401 // For all Users of the Dead... ;-) 1402 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) { 1403 Node* use = dead->last_out(k); 1404 igvn->hash_delete(use); // Yank from hash table prior to mod 1405 if (use->in(0) == dead) { // Found another dead node 1406 assert (!use->is_Con(), "Control for Con node should be Root node."); 1407 use->set_req(0, top); // Cut dead edge to prevent processing 1408 nstack.push(use); // the dead node again. 1409 } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop 1410 use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode) 1411 use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead 1412 use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing 1413 use->set_req(0, top); // Cut self edge 1414 nstack.push(use); 1415 } else { // Else found a not-dead user 1416 // Dead if all inputs are top or null 1417 bool dead_use = !use->is_Root(); // Keep empty graph alive 1418 for (uint j = 1; j < use->req(); j++) { 1419 Node* in = use->in(j); 1420 if (in == dead) { // Turn all dead inputs into TOP 1421 use->set_req(j, top); 1422 } else if (in != nullptr && !in->is_top()) { 1423 dead_use = false; 1424 } 1425 } 1426 if (dead_use) { 1427 if (use->is_Region()) { 1428 use->set_req(0, top); // Cut self edge 1429 } 1430 nstack.push(use); 1431 } else { 1432 igvn->_worklist.push(use); 1433 } 1434 } 1435 // Refresh the iterator, since any number of kills might have happened. 1436 k = dead->last_outs(kmin); 1437 } 1438 } else { // (dead->outcnt() == 0) 1439 // Done with outputs. 1440 igvn->hash_delete(dead); 1441 igvn->_worklist.remove(dead); 1442 igvn->set_type(dead, Type::TOP); 1443 // Kill all inputs to the dead guy 1444 for (uint i=0; i < dead->req(); i++) { 1445 Node *n = dead->in(i); // Get input to dead guy 1446 if (n != nullptr && !n->is_top()) { // Input is valid? 1447 dead->set_req(i, top); // Smash input away 1448 if (n->outcnt() == 0) { // Input also goes dead? 1449 if (!n->is_Con()) 1450 nstack.push(n); // Clear it out as well 1451 } else if (n->outcnt() == 1 && 1452 n->has_special_unique_user()) { 1453 igvn->add_users_to_worklist( n ); 1454 } else if (n->outcnt() <= 2 && n->is_Store()) { 1455 // Push store's uses on worklist to enable folding optimization for 1456 // store/store and store/load to the same address. 1457 // The restriction (outcnt() <= 2) is the same as in set_req_X() 1458 // and remove_globally_dead_node(). 1459 igvn->add_users_to_worklist( n ); 1460 } else { 1461 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n); 1462 } 1463 } 1464 } 1465 igvn->C->remove_useless_node(dead); 1466 } // (dead->outcnt() == 0) 1467 } // while (nstack.size() > 0) for outputs 1468 return; 1469 } 1470 1471 //------------------------------remove_dead_region----------------------------- 1472 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) { 1473 Node *n = in(0); 1474 if( !n ) return false; 1475 // Lost control into this guy? I.e., it became unreachable? 1476 // Aggressively kill all unreachable code. 1477 if (can_reshape && n->is_top()) { 1478 kill_dead_code(this, phase->is_IterGVN()); 1479 return false; // Node is dead. 1480 } 1481 1482 if( n->is_Region() && n->as_Region()->is_copy() ) { 1483 Node *m = n->nonnull_req(); 1484 set_req(0, m); 1485 return true; 1486 } 1487 return false; 1488 } 1489 1490 //------------------------------hash------------------------------------------- 1491 // Hash function over Nodes. 1492 uint Node::hash() const { 1493 uint sum = 0; 1494 for( uint i=0; i<_cnt; i++ ) // Add in all inputs 1495 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded nulls 1496 return (sum>>2) + _cnt + Opcode(); 1497 } 1498 1499 //------------------------------cmp-------------------------------------------- 1500 // Compare special parts of simple Nodes 1501 bool Node::cmp( const Node &n ) const { 1502 return true; // Must be same 1503 } 1504 1505 //------------------------------rematerialize----------------------------------- 1506 // Should we clone rather than spill this instruction? 1507 bool Node::rematerialize() const { 1508 if ( is_Mach() ) 1509 return this->as_Mach()->rematerialize(); 1510 else 1511 return (_flags & Flag_rematerialize) != 0; 1512 } 1513 1514 //------------------------------needs_anti_dependence_check--------------------- 1515 // Nodes which use memory without consuming it, hence need antidependences. 1516 bool Node::needs_anti_dependence_check() const { 1517 if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) { 1518 return false; 1519 } 1520 return in(1)->bottom_type()->has_memory(); 1521 } 1522 1523 // Get an integer constant from a ConNode (or CastIINode). 1524 // Return a default value if there is no apparent constant here. 1525 const TypeInt* Node::find_int_type() const { 1526 if (this->is_Type()) { 1527 return this->as_Type()->type()->isa_int(); 1528 } else if (this->is_Con()) { 1529 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1530 return this->bottom_type()->isa_int(); 1531 } 1532 return nullptr; 1533 } 1534 1535 const TypeInteger* Node::find_integer_type(BasicType bt) const { 1536 if (this->is_Type()) { 1537 return this->as_Type()->type()->isa_integer(bt); 1538 } else if (this->is_Con()) { 1539 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1540 return this->bottom_type()->isa_integer(bt); 1541 } 1542 return nullptr; 1543 } 1544 1545 // Get a pointer constant from a ConstNode. 1546 // Returns the constant if it is a pointer ConstNode 1547 intptr_t Node::get_ptr() const { 1548 assert( Opcode() == Op_ConP, "" ); 1549 return ((ConPNode*)this)->type()->is_ptr()->get_con(); 1550 } 1551 1552 // Get a narrow oop constant from a ConNNode. 1553 intptr_t Node::get_narrowcon() const { 1554 assert( Opcode() == Op_ConN, "" ); 1555 return ((ConNNode*)this)->type()->is_narrowoop()->get_con(); 1556 } 1557 1558 // Get a long constant from a ConNode. 1559 // Return a default value if there is no apparent constant here. 1560 const TypeLong* Node::find_long_type() const { 1561 if (this->is_Type()) { 1562 return this->as_Type()->type()->isa_long(); 1563 } else if (this->is_Con()) { 1564 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1565 return this->bottom_type()->isa_long(); 1566 } 1567 return nullptr; 1568 } 1569 1570 1571 /** 1572 * Return a ptr type for nodes which should have it. 1573 */ 1574 const TypePtr* Node::get_ptr_type() const { 1575 const TypePtr* tp = this->bottom_type()->make_ptr(); 1576 #ifdef ASSERT 1577 if (tp == nullptr) { 1578 this->dump(1); 1579 assert((tp != nullptr), "unexpected node type"); 1580 } 1581 #endif 1582 return tp; 1583 } 1584 1585 // Get a double constant from a ConstNode. 1586 // Returns the constant if it is a double ConstNode 1587 jdouble Node::getd() const { 1588 assert( Opcode() == Op_ConD, "" ); 1589 return ((ConDNode*)this)->type()->is_double_constant()->getd(); 1590 } 1591 1592 // Get a float constant from a ConstNode. 1593 // Returns the constant if it is a float ConstNode 1594 jfloat Node::getf() const { 1595 assert( Opcode() == Op_ConF, "" ); 1596 return ((ConFNode*)this)->type()->is_float_constant()->getf(); 1597 } 1598 1599 #ifndef PRODUCT 1600 1601 // Call this from debugger: 1602 Node* old_root() { 1603 Matcher* matcher = Compile::current()->matcher(); 1604 if (matcher != nullptr) { 1605 Node* new_root = Compile::current()->root(); 1606 Node* old_root = matcher->find_old_node(new_root); 1607 if (old_root != nullptr) { 1608 return old_root; 1609 } 1610 } 1611 tty->print("old_root: not found.\n"); 1612 return nullptr; 1613 } 1614 1615 // BFS traverse all reachable nodes from start, call callback on them 1616 template <typename Callback> 1617 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) { 1618 Unique_Mixed_Node_List worklist; 1619 worklist.add(start); 1620 for (uint i = 0; i < worklist.size(); i++) { 1621 Node* n = worklist[i]; 1622 callback(n); 1623 for (uint i = 0; i < n->len(); i++) { 1624 if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) { 1625 // If only_ctrl is set: Add regions, the root node, or control inputs only 1626 worklist.add(n->in(i)); 1627 } 1628 } 1629 if (traverse_output && !only_ctrl) { 1630 for (uint i = 0; i < n->outcnt(); i++) { 1631 worklist.add(n->raw_out(i)); 1632 } 1633 } 1634 } 1635 } 1636 1637 // BFS traverse from start, return node with idx 1638 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) { 1639 ResourceMark rm; 1640 Node* result = nullptr; 1641 auto callback = [&] (Node* n) { 1642 if (n->_idx == idx) { 1643 if (result != nullptr) { 1644 tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n", 1645 (uintptr_t)result, (uintptr_t)n, idx); 1646 } 1647 result = n; 1648 } 1649 }; 1650 visit_nodes(start, callback, traverse_output, only_ctrl); 1651 return result; 1652 } 1653 1654 static int node_idx_cmp(const Node** n1, const Node** n2) { 1655 return (*n1)->_idx - (*n2)->_idx; 1656 } 1657 1658 static void find_nodes_by_name(Node* start, const char* name) { 1659 ResourceMark rm; 1660 GrowableArray<const Node*> ns; 1661 auto callback = [&] (const Node* n) { 1662 if (StringUtils::is_star_match(name, n->Name())) { 1663 ns.push(n); 1664 } 1665 }; 1666 visit_nodes(start, callback, true, false); 1667 ns.sort(node_idx_cmp); 1668 for (int i = 0; i < ns.length(); i++) { 1669 ns.at(i)->dump(); 1670 } 1671 } 1672 1673 static void find_nodes_by_dump(Node* start, const char* pattern) { 1674 ResourceMark rm; 1675 GrowableArray<const Node*> ns; 1676 auto callback = [&] (const Node* n) { 1677 stringStream stream; 1678 n->dump("", false, &stream); 1679 if (StringUtils::is_star_match(pattern, stream.base())) { 1680 ns.push(n); 1681 } 1682 }; 1683 visit_nodes(start, callback, true, false); 1684 ns.sort(node_idx_cmp); 1685 for (int i = 0; i < ns.length(); i++) { 1686 ns.at(i)->dump(); 1687 } 1688 } 1689 1690 // call from debugger: find node with name pattern in new/current graph 1691 // name can contain "*" in match pattern to match any characters 1692 // the matching is case insensitive 1693 void find_nodes_by_name(const char* name) { 1694 Node* root = Compile::current()->root(); 1695 find_nodes_by_name(root, name); 1696 } 1697 1698 // call from debugger: find node with name pattern in old graph 1699 // name can contain "*" in match pattern to match any characters 1700 // the matching is case insensitive 1701 void find_old_nodes_by_name(const char* name) { 1702 Node* root = old_root(); 1703 find_nodes_by_name(root, name); 1704 } 1705 1706 // call from debugger: find node with dump pattern in new/current graph 1707 // can contain "*" in match pattern to match any characters 1708 // the matching is case insensitive 1709 void find_nodes_by_dump(const char* pattern) { 1710 Node* root = Compile::current()->root(); 1711 find_nodes_by_dump(root, pattern); 1712 } 1713 1714 // call from debugger: find node with name pattern in old graph 1715 // can contain "*" in match pattern to match any characters 1716 // the matching is case insensitive 1717 void find_old_nodes_by_dump(const char* pattern) { 1718 Node* root = old_root(); 1719 find_nodes_by_dump(root, pattern); 1720 } 1721 1722 // Call this from debugger, search in same graph as n: 1723 Node* find_node(Node* n, const int idx) { 1724 return n->find(idx); 1725 } 1726 1727 // Call this from debugger, search in new nodes: 1728 Node* find_node(const int idx) { 1729 return Compile::current()->root()->find(idx); 1730 } 1731 1732 // Call this from debugger, search in old nodes: 1733 Node* find_old_node(const int idx) { 1734 Node* root = old_root(); 1735 return (root == nullptr) ? nullptr : root->find(idx); 1736 } 1737 1738 // Call this from debugger, search in same graph as n: 1739 Node* find_ctrl(Node* n, const int idx) { 1740 return n->find_ctrl(idx); 1741 } 1742 1743 // Call this from debugger, search in new nodes: 1744 Node* find_ctrl(const int idx) { 1745 return Compile::current()->root()->find_ctrl(idx); 1746 } 1747 1748 // Call this from debugger, search in old nodes: 1749 Node* find_old_ctrl(const int idx) { 1750 Node* root = old_root(); 1751 return (root == nullptr) ? nullptr : root->find_ctrl(idx); 1752 } 1753 1754 //------------------------------find_ctrl-------------------------------------- 1755 // Find an ancestor to this node in the control history with given _idx 1756 Node* Node::find_ctrl(int idx) { 1757 return find(idx, true); 1758 } 1759 1760 //------------------------------find------------------------------------------- 1761 // Tries to find the node with the index |idx| starting from this node. If idx is negative, 1762 // the search also includes forward (out) edges. Returns null if not found. 1763 // If only_ctrl is set, the search will only be done on control nodes. Returns null if 1764 // not found or if the node to be found is not a control node (search will not find it). 1765 Node* Node::find(const int idx, bool only_ctrl) { 1766 ResourceMark rm; 1767 return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl); 1768 } 1769 1770 class PrintBFS { 1771 public: 1772 PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st) 1773 : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st), 1774 _dcc(this), _info_uid(cmpkey, hashkey) {} 1775 1776 void run(); 1777 private: 1778 // pipeline steps 1779 bool configure(); 1780 void collect(); 1781 void select(); 1782 void select_all(); 1783 void select_all_paths(); 1784 void select_shortest_path(); 1785 void sort(); 1786 void print(); 1787 1788 // inputs 1789 const Node* _start; 1790 const int _max_distance; 1791 const Node* _target; 1792 const char* _options; 1793 outputStream* _output; 1794 1795 // options 1796 bool _traverse_inputs = false; 1797 bool _traverse_outputs = false; 1798 struct Filter { 1799 bool _control = false; 1800 bool _memory = false; 1801 bool _data = false; 1802 bool _mixed = false; 1803 bool _other = false; 1804 bool is_empty() const { 1805 return !(_control || _memory || _data || _mixed || _other); 1806 } 1807 void set_all() { 1808 _control = true; 1809 _memory = true; 1810 _data = true; 1811 _mixed = true; 1812 _other = true; 1813 } 1814 // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes 1815 // are considered to have control. 1816 bool accepts(const Node* n) { 1817 const Type* t = n->bottom_type(); 1818 return ( _data && t->has_category(Type::Category::Data) ) || 1819 ( _memory && t->has_category(Type::Category::Memory) ) || 1820 ( _mixed && t->has_category(Type::Category::Mixed) ) || 1821 ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) || 1822 ( _other && t->has_category(Type::Category::Other) ); 1823 } 1824 }; 1825 Filter _filter_visit; 1826 Filter _filter_boundary; 1827 bool _sort_idx = false; 1828 bool _all_paths = false; 1829 bool _use_color = false; 1830 bool _print_blocks = false; 1831 bool _print_old = false; 1832 bool _dump_only = false; 1833 void print_options_help(bool print_examples); 1834 bool parse_options(); 1835 1836 public: 1837 class DumpConfigColored : public Node::DumpConfig { 1838 public: 1839 DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {}; 1840 virtual void pre_dump(outputStream* st, const Node* n); 1841 virtual void post_dump(outputStream* st); 1842 private: 1843 PrintBFS* _bfs; 1844 }; 1845 private: 1846 DumpConfigColored _dcc; 1847 1848 // node info 1849 static Node* old_node(const Node* n); // mach node -> prior IR node 1850 void print_node_idx(const Node* n); 1851 void print_block_id(const Block* b); 1852 void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth 1853 1854 // traversal data structures 1855 GrowableArray<const Node*> _worklist; // BFS queue 1856 void maybe_traverse(const Node* src, const Node* dst); 1857 1858 // node info annotation 1859 class Info { 1860 public: 1861 Info() : Info(nullptr, 0) {}; 1862 Info(const Node* node, int distance) 1863 : _node(node), _distance_from_start(distance) {}; 1864 const Node* node() const { return _node; }; 1865 int distance() const { return _distance_from_start; }; 1866 int distance_from_target() const { return _distance_from_target; } 1867 void set_distance_from_target(int d) { _distance_from_target = d; } 1868 GrowableArray<const Node*> edge_bwd; // pointing toward _start 1869 bool is_marked() const { return _mark; } // marked to keep during select 1870 void set_mark() { _mark = true; } 1871 private: 1872 const Node* _node; 1873 int _distance_from_start; // distance from _start 1874 int _distance_from_target = 0; // distance from _target if _all_paths 1875 bool _mark = false; 1876 }; 1877 Dict _info_uid; // Node -> uid 1878 GrowableArray<Info> _info; // uid -> info 1879 1880 Info* find_info(const Node* n) { 1881 size_t uid = (size_t)_info_uid[n]; 1882 if (uid == 0) { 1883 return nullptr; 1884 } 1885 return &_info.at((int)uid); 1886 } 1887 1888 void make_info(const Node* node, const int distance) { 1889 assert(find_info(node) == nullptr, "node does not yet have info"); 1890 size_t uid = _info.length() + 1; 1891 _info_uid.Insert((void*)node, (void*)uid); 1892 _info.at_put_grow((int)uid, Info(node, distance)); 1893 assert(find_info(node)->node() == node, "stored correct node"); 1894 }; 1895 1896 // filled by sort, printed by print 1897 GrowableArray<const Node*> _print_list; 1898 1899 // print header + node table 1900 void print_header() const; 1901 void print_node(const Node* n); 1902 }; 1903 1904 void PrintBFS::run() { 1905 if (!configure()) { 1906 return; 1907 } 1908 collect(); 1909 select(); 1910 sort(); 1911 print(); 1912 } 1913 1914 // set up configuration for BFS and print 1915 bool PrintBFS::configure() { 1916 if (_max_distance < 0) { 1917 _output->print_cr("dump_bfs: max_distance must be non-negative!"); 1918 return false; 1919 } 1920 return parse_options(); 1921 } 1922 1923 // BFS traverse according to configuration, fill worklist and info 1924 void PrintBFS::collect() { 1925 maybe_traverse(_start, _start); 1926 int pos = 0; 1927 while (pos < _worklist.length()) { 1928 const Node* n = _worklist.at(pos++); // next node to traverse 1929 Info* info = find_info(n); 1930 if (!_filter_visit.accepts(n) && n != _start) { 1931 continue; // we hit boundary, do not traverse further 1932 } 1933 if (n != _start && n->is_Root()) { 1934 continue; // traversing through root node would lead to unrelated nodes 1935 } 1936 if (_traverse_inputs && _max_distance > info->distance()) { 1937 for (uint i = 0; i < n->req(); i++) { 1938 maybe_traverse(n, n->in(i)); 1939 } 1940 } 1941 if (_traverse_outputs && _max_distance > info->distance()) { 1942 for (uint i = 0; i < n->outcnt(); i++) { 1943 maybe_traverse(n, n->raw_out(i)); 1944 } 1945 } 1946 } 1947 } 1948 1949 // go through work list, mark those that we want to print 1950 void PrintBFS::select() { 1951 if (_target == nullptr ) { 1952 select_all(); 1953 } else { 1954 if (find_info(_target) == nullptr) { 1955 _output->print_cr("Could not find target in BFS."); 1956 return; 1957 } 1958 if (_all_paths) { 1959 select_all_paths(); 1960 } else { 1961 select_shortest_path(); 1962 } 1963 } 1964 } 1965 1966 // take all nodes from BFS 1967 void PrintBFS::select_all() { 1968 for (int i = 0; i < _worklist.length(); i++) { 1969 const Node* n = _worklist.at(i); 1970 Info* info = find_info(n); 1971 info->set_mark(); 1972 } 1973 } 1974 1975 // traverse backward from target, along edges found in BFS 1976 void PrintBFS::select_all_paths() { 1977 int pos = 0; 1978 GrowableArray<const Node*> backtrace; 1979 // start from target 1980 backtrace.push(_target); 1981 find_info(_target)->set_mark(); 1982 // traverse backward 1983 while (pos < backtrace.length()) { 1984 const Node* n = backtrace.at(pos++); 1985 Info* info = find_info(n); 1986 for (int i = 0; i < info->edge_bwd.length(); i++) { 1987 // all backward edges 1988 const Node* back = info->edge_bwd.at(i); 1989 Info* back_info = find_info(back); 1990 if (!back_info->is_marked()) { 1991 // not yet found this on way back. 1992 back_info->set_distance_from_target(info->distance_from_target() + 1); 1993 if (back_info->distance_from_target() + back_info->distance() <= _max_distance) { 1994 // total distance is small enough 1995 back_info->set_mark(); 1996 backtrace.push(back); 1997 } 1998 } 1999 } 2000 } 2001 } 2002 2003 void PrintBFS::select_shortest_path() { 2004 const Node* current = _target; 2005 while (true) { 2006 Info* info = find_info(current); 2007 info->set_mark(); 2008 if (current == _start) { 2009 break; 2010 } 2011 // first edge -> leads us one step closer to _start 2012 current = info->edge_bwd.at(0); 2013 } 2014 } 2015 2016 // go through worklist in desired order, put the marked ones in print list 2017 void PrintBFS::sort() { 2018 if (_traverse_inputs && !_traverse_outputs) { 2019 // reverse order 2020 for (int i = _worklist.length() - 1; i >= 0; i--) { 2021 const Node* n = _worklist.at(i); 2022 Info* info = find_info(n); 2023 if (info->is_marked()) { 2024 _print_list.push(n); 2025 } 2026 } 2027 } else { 2028 // same order as worklist 2029 for (int i = 0; i < _worklist.length(); i++) { 2030 const Node* n = _worklist.at(i); 2031 Info* info = find_info(n); 2032 if (info->is_marked()) { 2033 _print_list.push(n); 2034 } 2035 } 2036 } 2037 if (_sort_idx) { 2038 _print_list.sort(node_idx_cmp); 2039 } 2040 } 2041 2042 // go through printlist and print 2043 void PrintBFS::print() { 2044 if (_print_list.length() > 0 ) { 2045 print_header(); 2046 for (int i = 0; i < _print_list.length(); i++) { 2047 const Node* n = _print_list.at(i); 2048 print_node(n); 2049 } 2050 } else { 2051 _output->print_cr("No nodes to print."); 2052 } 2053 } 2054 2055 void PrintBFS::print_options_help(bool print_examples) { 2056 _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)"); 2057 _output->print_cr(""); 2058 _output->print_cr("Use cases:"); 2059 _output->print_cr(" BFS traversal: no target required"); 2060 _output->print_cr(" shortest path: set target"); 2061 _output->print_cr(" all paths: set target and put 'A' in options"); 2062 _output->print_cr(" detect loop: subcase of all paths, have start==target"); 2063 _output->print_cr(""); 2064 _output->print_cr("Arguments:"); 2065 _output->print_cr(" this/start: staring point of BFS"); 2066 _output->print_cr(" target:"); 2067 _output->print_cr(" if null: simple BFS"); 2068 _output->print_cr(" else: shortest path or all paths between this/start and target"); 2069 _output->print_cr(" options:"); 2070 _output->print_cr(" if null: same as \"cdmox@B\""); 2071 _output->print_cr(" else: use combination of following characters"); 2072 _output->print_cr(" h: display this help info"); 2073 _output->print_cr(" H: display this help info, with examples"); 2074 _output->print_cr(" +: traverse in-edges (on if neither + nor -)"); 2075 _output->print_cr(" -: traverse out-edges"); 2076 _output->print_cr(" c: visit control nodes"); 2077 _output->print_cr(" d: visit data nodes"); 2078 _output->print_cr(" m: visit memory nodes"); 2079 _output->print_cr(" o: visit other nodes"); 2080 _output->print_cr(" x: visit mixed nodes"); 2081 _output->print_cr(" C: boundary control nodes"); 2082 _output->print_cr(" D: boundary data nodes"); 2083 _output->print_cr(" M: boundary memory nodes"); 2084 _output->print_cr(" O: boundary other nodes"); 2085 _output->print_cr(" X: boundary mixed nodes"); 2086 _output->print_cr(" #: display node category in color (not supported in all terminals)"); 2087 _output->print_cr(" S: sort displayed nodes by node idx"); 2088 _output->print_cr(" A: all paths (not just shortest path to target)"); 2089 _output->print_cr(" @: print old nodes - before matching (if available)"); 2090 _output->print_cr(" B: print scheduling blocks (if available)"); 2091 _output->print_cr(" $: dump only, no header, no other columns"); 2092 _output->print_cr(""); 2093 _output->print_cr("recursively follow edges to nodes with permitted visit types,"); 2094 _output->print_cr("on the boundary additionally display nodes allowed in boundary types"); 2095 _output->print_cr("Note: the categories can be overlapping. For example a mixed node"); 2096 _output->print_cr(" can contain control and memory output. Some from the other"); 2097 _output->print_cr(" category are also control (Halt, Return, etc)."); 2098 _output->print_cr(""); 2099 _output->print_cr("output columns:"); 2100 _output->print_cr(" dist: BFS distance to this/start"); 2101 _output->print_cr(" apd: all paths distance (d_outputart + d_target)"); 2102 _output->print_cr(" block: block identifier, based on _pre_order"); 2103 _output->print_cr(" head: first node in block"); 2104 _output->print_cr(" idom: head node of idom block"); 2105 _output->print_cr(" depth: depth of block (_dom_depth)"); 2106 _output->print_cr(" old: old IR node - before matching"); 2107 _output->print_cr(" dump: node->dump()"); 2108 _output->print_cr(""); 2109 _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string"); 2110 _output->print_cr(" then we set all of them."); 2111 _output->print_cr(" This allows for short strings like \"#\" for colored input traversal"); 2112 _output->print_cr(" or \"-#\" for colored output traversal."); 2113 if (print_examples) { 2114 _output->print_cr(""); 2115 _output->print_cr("Examples:"); 2116 _output->print_cr(" if->dump_bfs(10, 0, \"+cxo\")"); 2117 _output->print_cr(" starting at some if node, traverse inputs recursively"); 2118 _output->print_cr(" only along control (mixed and other can also be control)"); 2119 _output->print_cr(" phi->dump_bfs(5, 0, \"-dxo\")"); 2120 _output->print_cr(" starting at phi node, traverse outputs recursively"); 2121 _output->print_cr(" only along data (mixed and other can also have data flow)"); 2122 _output->print_cr(" find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")"); 2123 _output->print_cr(" find inputs of node 385, up to 3 nodes up (+)"); 2124 _output->print_cr(" traverse all nodes (cdmox), use colors (#)"); 2125 _output->print_cr(" display old nodes and blocks, if they exist"); 2126 _output->print_cr(" useful call to start with"); 2127 _output->print_cr(" find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")"); 2128 _output->print_cr(" find non-data dependencies of a data node"); 2129 _output->print_cr(" follow data node outputs until we find another category"); 2130 _output->print_cr(" node as the boundary"); 2131 _output->print_cr(" x->dump_bfs(10, y, 0)"); 2132 _output->print_cr(" find shortest path from x to y, along any edge or node"); 2133 _output->print_cr(" will not find a path if it is longer than 10"); 2134 _output->print_cr(" useful to find how x and y are related"); 2135 _output->print_cr(" find_node(741)->dump_bfs(20, find_node(746), \"c+\")"); 2136 _output->print_cr(" find shortest control path between two nodes"); 2137 _output->print_cr(" find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")"); 2138 _output->print_cr(" find all paths (A) between two nodes of length at most 8"); 2139 _output->print_cr(" find_node(741)->dump_bfs(7, find_node(741), \"c+A\")"); 2140 _output->print_cr(" find all control loops for this node"); 2141 } 2142 } 2143 2144 bool PrintBFS::parse_options() { 2145 if (_options == nullptr) { 2146 _options = "cdmox@B"; // default options 2147 } 2148 size_t len = strlen(_options); 2149 for (size_t i = 0; i < len; i++) { 2150 switch (_options[i]) { 2151 case '+': 2152 _traverse_inputs = true; 2153 break; 2154 case '-': 2155 _traverse_outputs = true; 2156 break; 2157 case 'c': 2158 _filter_visit._control = true; 2159 break; 2160 case 'm': 2161 _filter_visit._memory = true; 2162 break; 2163 case 'd': 2164 _filter_visit._data = true; 2165 break; 2166 case 'x': 2167 _filter_visit._mixed = true; 2168 break; 2169 case 'o': 2170 _filter_visit._other = true; 2171 break; 2172 case 'C': 2173 _filter_boundary._control = true; 2174 break; 2175 case 'M': 2176 _filter_boundary._memory = true; 2177 break; 2178 case 'D': 2179 _filter_boundary._data = true; 2180 break; 2181 case 'X': 2182 _filter_boundary._mixed = true; 2183 break; 2184 case 'O': 2185 _filter_boundary._other = true; 2186 break; 2187 case 'S': 2188 _sort_idx = true; 2189 break; 2190 case 'A': 2191 _all_paths = true; 2192 break; 2193 case '#': 2194 _use_color = true; 2195 break; 2196 case 'B': 2197 _print_blocks = true; 2198 break; 2199 case '@': 2200 _print_old = true; 2201 break; 2202 case '$': 2203 _dump_only = true; 2204 break; 2205 case 'h': 2206 print_options_help(false); 2207 return false; 2208 case 'H': 2209 print_options_help(true); 2210 return false; 2211 default: 2212 _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]); 2213 _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")"); 2214 return false; 2215 } 2216 } 2217 if (!_traverse_inputs && !_traverse_outputs) { 2218 _traverse_inputs = true; 2219 } 2220 if (_filter_visit.is_empty()) { 2221 _filter_visit.set_all(); 2222 } 2223 Compile* C = Compile::current(); 2224 _print_old &= (C->matcher() != nullptr); // only show old if there are new 2225 _print_blocks &= (C->cfg() != nullptr); // only show blocks if available 2226 return true; 2227 } 2228 2229 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) { 2230 if (!_bfs->_use_color) { 2231 return; 2232 } 2233 Info* info = _bfs->find_info(n); 2234 if (info == nullptr || !info->is_marked()) { 2235 return; 2236 } 2237 2238 const Type* t = n->bottom_type(); 2239 switch (t->category()) { 2240 case Type::Category::Data: 2241 st->print("\u001b[34m"); 2242 break; 2243 case Type::Category::Memory: 2244 st->print("\u001b[32m"); 2245 break; 2246 case Type::Category::Mixed: 2247 st->print("\u001b[35m"); 2248 break; 2249 case Type::Category::Control: 2250 st->print("\u001b[31m"); 2251 break; 2252 case Type::Category::Other: 2253 st->print("\u001b[33m"); 2254 break; 2255 case Type::Category::Undef: 2256 n->dump(); 2257 assert(false, "category undef ??"); 2258 break; 2259 default: 2260 n->dump(); 2261 assert(false, "not covered"); 2262 break; 2263 } 2264 } 2265 2266 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) { 2267 if (!_bfs->_use_color) { 2268 return; 2269 } 2270 st->print("\u001b[0m"); // white 2271 } 2272 2273 Node* PrintBFS::old_node(const Node* n) { 2274 Compile* C = Compile::current(); 2275 if (C->matcher() == nullptr || !C->node_arena()->contains(n)) { 2276 return (Node*)nullptr; 2277 } else { 2278 return C->matcher()->find_old_node(n); 2279 } 2280 } 2281 2282 void PrintBFS::print_node_idx(const Node* n) { 2283 Compile* C = Compile::current(); 2284 char buf[30]; 2285 if (n == nullptr) { 2286 os::snprintf_checked(buf, sizeof(buf), "_"); // null 2287 } else if (C->node_arena()->contains(n)) { 2288 os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx); // new node 2289 } else { 2290 os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node 2291 } 2292 _output->print("%6s", buf); 2293 } 2294 2295 void PrintBFS::print_block_id(const Block* b) { 2296 Compile* C = Compile::current(); 2297 char buf[30]; 2298 os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order); 2299 _output->print("%7s", buf); 2300 } 2301 2302 void PrintBFS::print_node_block(const Node* n) { 2303 Compile* C = Compile::current(); 2304 Block* b = C->node_arena()->contains(n) 2305 ? C->cfg()->get_block_for_node(n) 2306 : nullptr; // guard against old nodes 2307 if (b == nullptr) { 2308 _output->print(" _"); // Block 2309 _output->print(" _"); // head 2310 _output->print(" _"); // idom 2311 _output->print(" _"); // depth 2312 } else { 2313 print_block_id(b); 2314 print_node_idx(b->head()); 2315 if (b->_idom) { 2316 print_node_idx(b->_idom->head()); 2317 } else { 2318 _output->print(" _"); // idom 2319 } 2320 _output->print("%6d ", b->_dom_depth); 2321 } 2322 } 2323 2324 // filter, and add to worklist, add info, note traversal edges 2325 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) { 2326 if (dst != nullptr && 2327 (_filter_visit.accepts(dst) || 2328 _filter_boundary.accepts(dst) || 2329 dst == _start)) { // correct category or start? 2330 if (find_info(dst) == nullptr) { 2331 // never visited - set up info 2332 _worklist.push(dst); 2333 int d = 0; 2334 if (dst != _start) { 2335 d = find_info(src)->distance() + 1; 2336 } 2337 make_info(dst, d); 2338 } 2339 if (src != dst) { 2340 // traversal edges useful during select 2341 find_info(dst)->edge_bwd.push(src); 2342 } 2343 } 2344 } 2345 2346 void PrintBFS::print_header() const { 2347 if (_dump_only) { 2348 return; // no header in dump only mode 2349 } 2350 _output->print("dist"); // distance 2351 if (_all_paths) { 2352 _output->print(" apd"); // all paths distance 2353 } 2354 if (_print_blocks) { 2355 _output->print(" [block head idom depth]"); // block 2356 } 2357 if (_print_old) { 2358 _output->print(" old"); // old node 2359 } 2360 _output->print(" dump\n"); // node dump 2361 _output->print_cr("---------------------------------------------"); 2362 } 2363 2364 void PrintBFS::print_node(const Node* n) { 2365 if (_dump_only) { 2366 n->dump("\n", false, _output, &_dcc); 2367 return; 2368 } 2369 _output->print("%4d", find_info(n)->distance());// distance 2370 if (_all_paths) { 2371 Info* info = find_info(n); 2372 int apd = info->distance() + info->distance_from_target(); 2373 _output->print("%4d", apd); // all paths distance 2374 } 2375 if (_print_blocks) { 2376 print_node_block(n); // block 2377 } 2378 if (_print_old) { 2379 print_node_idx(old_node(n)); // old node 2380 } 2381 _output->print(" "); 2382 n->dump("\n", false, _output, &_dcc); // node dump 2383 } 2384 2385 //------------------------------dump_bfs-------------------------------------- 2386 // Call this from debugger 2387 // Useful for BFS traversal, shortest path, all path, loop detection, etc 2388 // Designed to be more readable, and provide additional info 2389 // To find all options, run: 2390 // find_node(0)->dump_bfs(0,0,"H") 2391 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const { 2392 dump_bfs(max_distance, target, options, tty); 2393 } 2394 2395 // Used to dump to stream. 2396 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const { 2397 PrintBFS bfs(this, max_distance, target, options, st); 2398 bfs.run(); 2399 } 2400 2401 // Call this from debugger, with default arguments 2402 void Node::dump_bfs(const int max_distance) const { 2403 dump_bfs(max_distance, nullptr, nullptr); 2404 } 2405 2406 // -----------------------------dump_idx--------------------------------------- 2407 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const { 2408 if (dc != nullptr) { 2409 dc->pre_dump(st, this); 2410 } 2411 Compile* C = Compile::current(); 2412 bool is_new = C->node_arena()->contains(this); 2413 if (align) { // print prefix empty spaces$ 2414 // +1 for leading digit, +1 for "o" 2415 uint max_width = static_cast<uint>(log10(static_cast<double>(C->unique()))) + 2; 2416 // +1 for leading digit, maybe +1 for "o" 2417 uint width = static_cast<uint>(log10(static_cast<double>(_idx))) + 1 + (is_new ? 0 : 1); 2418 while (max_width > width) { 2419 st->print(" "); 2420 width++; 2421 } 2422 } 2423 if (!is_new) { 2424 st->print("o"); 2425 } 2426 st->print("%d", _idx); 2427 if (dc != nullptr) { 2428 dc->post_dump(st); 2429 } 2430 } 2431 2432 // -----------------------------dump_name-------------------------------------- 2433 void Node::dump_name(outputStream* st, DumpConfig* dc) const { 2434 if (dc != nullptr) { 2435 dc->pre_dump(st, this); 2436 } 2437 st->print("%s", Name()); 2438 if (dc != nullptr) { 2439 dc->post_dump(st); 2440 } 2441 } 2442 2443 // -----------------------------Name------------------------------------------- 2444 extern const char *NodeClassNames[]; 2445 const char *Node::Name() const { return NodeClassNames[Opcode()]; } 2446 2447 static bool is_disconnected(const Node* n) { 2448 for (uint i = 0; i < n->req(); i++) { 2449 if (n->in(i) != nullptr) return false; 2450 } 2451 return true; 2452 } 2453 2454 #ifdef ASSERT 2455 void Node::dump_orig(outputStream *st, bool print_key) const { 2456 Compile* C = Compile::current(); 2457 Node* orig = _debug_orig; 2458 if (not_a_node(orig)) orig = nullptr; 2459 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2460 if (orig == nullptr) return; 2461 if (print_key) { 2462 st->print(" !orig="); 2463 } 2464 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops 2465 if (not_a_node(fast)) fast = nullptr; 2466 while (orig != nullptr) { 2467 bool discon = is_disconnected(orig); // if discon, print [123] else 123 2468 if (discon) st->print("["); 2469 if (!Compile::current()->node_arena()->contains(orig)) 2470 st->print("o"); 2471 st->print("%d", orig->_idx); 2472 if (discon) st->print("]"); 2473 orig = orig->debug_orig(); 2474 if (not_a_node(orig)) orig = nullptr; 2475 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2476 if (orig != nullptr) st->print(","); 2477 if (fast != nullptr) { 2478 // Step fast twice for each single step of orig: 2479 fast = fast->debug_orig(); 2480 if (not_a_node(fast)) fast = nullptr; 2481 if (fast != nullptr && fast != orig) { 2482 fast = fast->debug_orig(); 2483 if (not_a_node(fast)) fast = nullptr; 2484 } 2485 if (fast == orig) { 2486 st->print("..."); 2487 break; 2488 } 2489 } 2490 } 2491 } 2492 2493 void Node::set_debug_orig(Node* orig) { 2494 _debug_orig = orig; 2495 if (BreakAtNode == 0) return; 2496 if (not_a_node(orig)) orig = nullptr; 2497 int trip = 10; 2498 while (orig != nullptr) { 2499 if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) { 2500 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT, 2501 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx()); 2502 BREAKPOINT; 2503 } 2504 orig = orig->debug_orig(); 2505 if (not_a_node(orig)) orig = nullptr; 2506 if (trip-- <= 0) break; 2507 } 2508 } 2509 #endif //ASSERT 2510 2511 //------------------------------dump------------------------------------------ 2512 // Dump a Node 2513 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const { 2514 Compile* C = Compile::current(); 2515 bool is_new = C->node_arena()->contains(this); 2516 C->_in_dump_cnt++; 2517 2518 // idx mark name === 2519 dump_idx(true, st, dc); 2520 st->print(mark ? " >" : " "); 2521 dump_name(st, dc); 2522 st->print(" === "); 2523 2524 // Dump the required and precedence inputs 2525 dump_req(st, dc); 2526 dump_prec(st, dc); 2527 // Dump the outputs 2528 dump_out(st, dc); 2529 2530 if (is_disconnected(this)) { 2531 #ifdef ASSERT 2532 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2533 dump_orig(st); 2534 #endif 2535 st->cr(); 2536 C->_in_dump_cnt--; 2537 return; // don't process dead nodes 2538 } 2539 2540 if (C->clone_map().value(_idx) != 0) { 2541 C->clone_map().dump(_idx, st); 2542 } 2543 // Dump node-specific info 2544 dump_spec(st); 2545 #ifdef ASSERT 2546 // Dump the non-reset _debug_idx 2547 if (Verbose && WizardMode) { 2548 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2549 } 2550 #endif 2551 2552 const Type *t = bottom_type(); 2553 2554 if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) { 2555 const TypeInstPtr *toop = t->isa_instptr(); 2556 const TypeInstKlassPtr *tkls = t->isa_instklassptr(); 2557 if (toop) { 2558 st->print(" Oop:"); 2559 } else if (tkls) { 2560 st->print(" Klass:"); 2561 } 2562 t->dump_on(st); 2563 } else if (t == Type::MEMORY) { 2564 st->print(" Memory:"); 2565 MemNode::dump_adr_type(this, adr_type(), st); 2566 } else if (Verbose || WizardMode) { 2567 st->print(" Type:"); 2568 if (t) { 2569 t->dump_on(st); 2570 } else { 2571 st->print("no type"); 2572 } 2573 } else if (t->isa_vect() && this->is_MachSpillCopy()) { 2574 // Dump MachSpillcopy vector type. 2575 t->dump_on(st); 2576 } 2577 if (is_new) { 2578 DEBUG_ONLY(dump_orig(st)); 2579 Node_Notes* nn = C->node_notes_at(_idx); 2580 if (nn != nullptr && !nn->is_clear()) { 2581 if (nn->jvms() != nullptr) { 2582 st->print(" !jvms:"); 2583 nn->jvms()->dump_spec(st); 2584 } 2585 } 2586 } 2587 if (suffix) st->print("%s", suffix); 2588 C->_in_dump_cnt--; 2589 } 2590 2591 // call from debugger: dump node to tty with newline 2592 void Node::dump() const { 2593 dump("\n"); 2594 } 2595 2596 //------------------------------dump_req-------------------------------------- 2597 void Node::dump_req(outputStream* st, DumpConfig* dc) const { 2598 // Dump the required input edges 2599 for (uint i = 0; i < req(); i++) { // For all required inputs 2600 Node* d = in(i); 2601 if (d == nullptr) { 2602 st->print("_ "); 2603 } else if (not_a_node(d)) { 2604 st->print("not_a_node "); // uninitialized, sentinel, garbage, etc. 2605 } else { 2606 d->dump_idx(false, st, dc); 2607 st->print(" "); 2608 } 2609 } 2610 } 2611 2612 2613 //------------------------------dump_prec------------------------------------- 2614 void Node::dump_prec(outputStream* st, DumpConfig* dc) const { 2615 // Dump the precedence edges 2616 int any_prec = 0; 2617 for (uint i = req(); i < len(); i++) { // For all precedence inputs 2618 Node* p = in(i); 2619 if (p != nullptr) { 2620 if (!any_prec++) st->print(" |"); 2621 if (not_a_node(p)) { st->print("not_a_node "); continue; } 2622 p->dump_idx(false, st, dc); 2623 st->print(" "); 2624 } 2625 } 2626 } 2627 2628 //------------------------------dump_out-------------------------------------- 2629 void Node::dump_out(outputStream* st, DumpConfig* dc) const { 2630 // Delimit the output edges 2631 st->print(" [[ "); 2632 // Dump the output edges 2633 for (uint i = 0; i < _outcnt; i++) { // For all outputs 2634 Node* u = _out[i]; 2635 if (u == nullptr) { 2636 st->print("_ "); 2637 } else if (not_a_node(u)) { 2638 st->print("not_a_node "); 2639 } else { 2640 u->dump_idx(false, st, dc); 2641 st->print(" "); 2642 } 2643 } 2644 st->print("]] "); 2645 } 2646 2647 //------------------------------dump------------------------------------------- 2648 // call from debugger: dump Node's inputs (or outputs if d negative) 2649 void Node::dump(int d) const { 2650 dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$"); 2651 } 2652 2653 //------------------------------dump_ctrl-------------------------------------- 2654 // call from debugger: dump Node's control inputs (or outputs if d negative) 2655 void Node::dump_ctrl(int d) const { 2656 dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c"); 2657 } 2658 2659 //-----------------------------dump_compact------------------------------------ 2660 void Node::dump_comp() const { 2661 this->dump_comp("\n"); 2662 } 2663 2664 //-----------------------------dump_compact------------------------------------ 2665 // Dump a Node in compact representation, i.e., just print its name and index. 2666 // Nodes can specify additional specifics to print in compact representation by 2667 // implementing dump_compact_spec. 2668 void Node::dump_comp(const char* suffix, outputStream *st) const { 2669 Compile* C = Compile::current(); 2670 C->_in_dump_cnt++; 2671 st->print("%s(%d)", Name(), _idx); 2672 this->dump_compact_spec(st); 2673 if (suffix) { 2674 st->print("%s", suffix); 2675 } 2676 C->_in_dump_cnt--; 2677 } 2678 2679 // VERIFICATION CODE 2680 // Verify all nodes if verify_depth is negative 2681 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) { 2682 assert(verify_depth != 0, "depth should not be 0"); 2683 Compile* C = Compile::current(); 2684 uint last_index_on_current_depth = worklist.size() - 1; 2685 verify_depth--; // Visiting the first node on depth 1 2686 // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0 2687 bool add_to_worklist = verify_depth != 0; 2688 2689 for (uint list_index = 0; list_index < worklist.size(); list_index++) { 2690 Node* n = worklist[list_index]; 2691 2692 if (n->is_Con() && n->bottom_type() == Type::TOP) { 2693 if (C->cached_top_node() == nullptr) { 2694 C->set_cached_top_node((Node*)n); 2695 } 2696 assert(C->cached_top_node() == n, "TOP node must be unique"); 2697 } 2698 2699 uint in_len = n->len(); 2700 for (uint i = 0; i < in_len; i++) { 2701 Node* x = n->_in[i]; 2702 if (!x || x->is_top()) { 2703 continue; 2704 } 2705 2706 // Verify my input has a def-use edge to me 2707 // Count use-def edges from n to x 2708 int cnt = 1; 2709 for (uint j = 0; j < i; j++) { 2710 if (n->_in[j] == x) { 2711 cnt++; 2712 break; 2713 } 2714 } 2715 if (cnt == 2) { 2716 // x is already checked as n's previous input, skip its duplicated def-use count checking 2717 continue; 2718 } 2719 for (uint j = i + 1; j < in_len; j++) { 2720 if (n->_in[j] == x) { 2721 cnt++; 2722 } 2723 } 2724 2725 // Count def-use edges from x to n 2726 uint max = x->_outcnt; 2727 for (uint k = 0; k < max; k++) { 2728 if (x->_out[k] == n) { 2729 cnt--; 2730 } 2731 } 2732 assert(cnt == 0, "mismatched def-use edge counts"); 2733 2734 if (add_to_worklist && !visited.test_set(x->_idx)) { 2735 worklist.push(x); 2736 } 2737 } 2738 2739 if (verify_depth > 0 && list_index == last_index_on_current_depth) { 2740 // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and 2741 // store the current last list index which is the last node in the list with the new depth. All nodes 2742 // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0). 2743 verify_depth--; 2744 if (verify_depth == 0) { 2745 add_to_worklist = false; 2746 } 2747 last_index_on_current_depth = worklist.size() - 1; 2748 } 2749 } 2750 } 2751 #endif // not PRODUCT 2752 2753 //------------------------------Registers-------------------------------------- 2754 // Do we Match on this edge index or not? Generally false for Control 2755 // and true for everything else. Weird for calls & returns. 2756 uint Node::match_edge(uint idx) const { 2757 return idx; // True for other than index 0 (control) 2758 } 2759 2760 // Register classes are defined for specific machines 2761 const RegMask &Node::out_RegMask() const { 2762 ShouldNotCallThis(); 2763 return RegMask::Empty; 2764 } 2765 2766 const RegMask &Node::in_RegMask(uint) const { 2767 ShouldNotCallThis(); 2768 return RegMask::Empty; 2769 } 2770 2771 void Node_Array::grow(uint i) { 2772 _nesting.check(_a); // Check if a potential reallocation in the arena is safe 2773 assert(i >= _max, "Should have been checked before, use maybe_grow?"); 2774 assert(_max > 0, "invariant"); 2775 uint old = _max; 2776 _max = next_power_of_2(i); 2777 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*)); 2778 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) ); 2779 } 2780 2781 void Node_Array::insert(uint i, Node* n) { 2782 if (_nodes[_max - 1]) { 2783 grow(_max); 2784 } 2785 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*))); 2786 _nodes[i] = n; 2787 } 2788 2789 void Node_Array::remove(uint i) { 2790 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*))); 2791 _nodes[_max - 1] = nullptr; 2792 } 2793 2794 void Node_Array::dump() const { 2795 #ifndef PRODUCT 2796 for (uint i = 0; i < _max; i++) { 2797 Node* nn = _nodes[i]; 2798 if (nn != nullptr) { 2799 tty->print("%5d--> ",i); nn->dump(); 2800 } 2801 } 2802 #endif 2803 } 2804 2805 //--------------------------is_iteratively_computed------------------------------ 2806 // Operation appears to be iteratively computed (such as an induction variable) 2807 // It is possible for this operation to return false for a loop-varying 2808 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 2809 bool Node::is_iteratively_computed() { 2810 if (ideal_reg()) { // does operation have a result register? 2811 for (uint i = 1; i < req(); i++) { 2812 Node* n = in(i); 2813 if (n != nullptr && n->is_Phi()) { 2814 for (uint j = 1; j < n->req(); j++) { 2815 if (n->in(j) == this) { 2816 return true; 2817 } 2818 } 2819 } 2820 } 2821 } 2822 return false; 2823 } 2824 2825 //--------------------------find_similar------------------------------ 2826 // Return a node with opcode "opc" and same inputs as "this" if one can 2827 // be found; Otherwise return null; 2828 Node* Node::find_similar(int opc) { 2829 if (req() >= 2) { 2830 Node* def = in(1); 2831 if (def && def->outcnt() >= 2) { 2832 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) { 2833 Node* use = def->fast_out(i); 2834 if (use != this && 2835 use->Opcode() == opc && 2836 use->req() == req()) { 2837 uint j; 2838 for (j = 0; j < use->req(); j++) { 2839 if (use->in(j) != in(j)) { 2840 break; 2841 } 2842 } 2843 if (j == use->req()) { 2844 return use; 2845 } 2846 } 2847 } 2848 } 2849 } 2850 return nullptr; 2851 } 2852 2853 2854 //--------------------------unique_ctrl_out_or_null------------------------- 2855 // Return the unique control out if only one. Null if none or more than one. 2856 Node* Node::unique_ctrl_out_or_null() const { 2857 Node* found = nullptr; 2858 for (uint i = 0; i < outcnt(); i++) { 2859 Node* use = raw_out(i); 2860 if (use->is_CFG() && use != this) { 2861 if (found != nullptr) { 2862 return nullptr; 2863 } 2864 found = use; 2865 } 2866 } 2867 return found; 2868 } 2869 2870 //--------------------------unique_ctrl_out------------------------------ 2871 // Return the unique control out. Asserts if none or more than one control out. 2872 Node* Node::unique_ctrl_out() const { 2873 Node* ctrl = unique_ctrl_out_or_null(); 2874 assert(ctrl != nullptr, "control out is assumed to be unique"); 2875 return ctrl; 2876 } 2877 2878 void Node::ensure_control_or_add_prec(Node* c) { 2879 if (in(0) == nullptr) { 2880 set_req(0, c); 2881 } else if (in(0) != c) { 2882 add_prec(c); 2883 } 2884 } 2885 2886 bool Node::is_dead_loop_safe() const { 2887 if (is_Phi()) { 2888 return true; 2889 } 2890 if (is_Proj() && in(0) == nullptr) { 2891 return true; 2892 } 2893 if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) { 2894 if (!is_Proj()) { 2895 return true; 2896 } 2897 if (in(0)->is_Allocate()) { 2898 return false; 2899 } 2900 // MemNode::can_see_stored_value() peeks through the boxing call 2901 if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) { 2902 return false; 2903 } 2904 return true; 2905 } 2906 return false; 2907 } 2908 2909 //============================================================================= 2910 //------------------------------yank------------------------------------------- 2911 // Find and remove 2912 void Node_List::yank( Node *n ) { 2913 uint i; 2914 for (i = 0; i < _cnt; i++) { 2915 if (_nodes[i] == n) { 2916 break; 2917 } 2918 } 2919 2920 if (i < _cnt) { 2921 _nodes[i] = _nodes[--_cnt]; 2922 } 2923 } 2924 2925 //------------------------------dump------------------------------------------- 2926 void Node_List::dump() const { 2927 #ifndef PRODUCT 2928 for (uint i = 0; i < _cnt; i++) { 2929 if (_nodes[i]) { 2930 tty->print("%5d--> ", i); 2931 _nodes[i]->dump(); 2932 } 2933 } 2934 #endif 2935 } 2936 2937 void Node_List::dump_simple() const { 2938 #ifndef PRODUCT 2939 for (uint i = 0; i < _cnt; i++) { 2940 if( _nodes[i] ) { 2941 tty->print(" %d", _nodes[i]->_idx); 2942 } else { 2943 tty->print(" null"); 2944 } 2945 } 2946 #endif 2947 } 2948 2949 //============================================================================= 2950 //------------------------------remove----------------------------------------- 2951 void Unique_Node_List::remove(Node* n) { 2952 if (_in_worklist.test(n->_idx)) { 2953 for (uint i = 0; i < size(); i++) { 2954 if (_nodes[i] == n) { 2955 map(i, Node_List::pop()); 2956 _in_worklist.remove(n->_idx); 2957 return; 2958 } 2959 } 2960 ShouldNotReachHere(); 2961 } 2962 } 2963 2964 //-----------------------remove_useless_nodes---------------------------------- 2965 // Remove useless nodes from worklist 2966 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) { 2967 for (uint i = 0; i < size(); ++i) { 2968 Node *n = at(i); 2969 assert( n != nullptr, "Did not expect null entries in worklist"); 2970 if (!useful.test(n->_idx)) { 2971 _in_worklist.remove(n->_idx); 2972 map(i, Node_List::pop()); 2973 --i; // Visit popped node 2974 // If it was last entry, loop terminates since size() was also reduced 2975 } 2976 } 2977 } 2978 2979 //============================================================================= 2980 void Node_Stack::grow() { 2981 _nesting.check(_a); // Check if a potential reallocation in the arena is safe 2982 if (_inode_top < _inode_max) { 2983 return; // No need to grow 2984 } 2985 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top 2986 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode)); 2987 size_t max = old_max << 1; // max * 2 2988 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max); 2989 _inode_max = _inodes + max; 2990 _inode_top = _inodes + old_top; // restore _top 2991 } 2992 2993 // Node_Stack is used to map nodes. 2994 Node* Node_Stack::find(uint idx) const { 2995 uint sz = size(); 2996 for (uint i = 0; i < sz; i++) { 2997 if (idx == index_at(i)) { 2998 return node_at(i); 2999 } 3000 } 3001 return nullptr; 3002 } 3003 3004 //============================================================================= 3005 uint TypeNode::size_of() const { return sizeof(*this); } 3006 #ifndef PRODUCT 3007 void TypeNode::dump_spec(outputStream *st) const { 3008 if (!Verbose && !WizardMode) { 3009 // standard dump does this in Verbose and WizardMode 3010 st->print(" #"); _type->dump_on(st); 3011 } 3012 } 3013 3014 void TypeNode::dump_compact_spec(outputStream *st) const { 3015 st->print("#"); 3016 _type->dump_on(st); 3017 } 3018 #endif 3019 uint TypeNode::hash() const { 3020 return Node::hash() + _type->hash(); 3021 } 3022 bool TypeNode::cmp(const Node& n) const { 3023 return Type::equals(_type, n.as_Type()->_type); 3024 } 3025 const Type* TypeNode::bottom_type() const { return _type; } 3026 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; } 3027 3028 //------------------------------ideal_reg-------------------------------------- 3029 uint TypeNode::ideal_reg() const { 3030 return _type->ideal_reg(); 3031 }