1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "libadt/vectset.hpp" 29 #include "memory/allocation.inline.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "opto/ad.hpp" 32 #include "opto/callGenerator.hpp" 33 #include "opto/castnode.hpp" 34 #include "opto/cfgnode.hpp" 35 #include "opto/connode.hpp" 36 #include "opto/loopnode.hpp" 37 #include "opto/machnode.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/node.hpp" 40 #include "opto/opcodes.hpp" 41 #include "opto/regmask.hpp" 42 #include "opto/rootnode.hpp" 43 #include "opto/type.hpp" 44 #include "utilities/copy.hpp" 45 #include "utilities/macros.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "utilities/stringUtils.hpp" 48 49 class RegMask; 50 // #include "phase.hpp" 51 class PhaseTransform; 52 class PhaseGVN; 53 54 // Arena we are currently building Nodes in 55 const uint Node::NotAMachineReg = 0xffff0000; 56 57 #ifndef PRODUCT 58 extern uint nodes_created; 59 #endif 60 #ifdef __clang__ 61 #pragma clang diagnostic push 62 #pragma GCC diagnostic ignored "-Wuninitialized" 63 #endif 64 65 #ifdef ASSERT 66 67 //-------------------------- construct_node------------------------------------ 68 // Set a breakpoint here to identify where a particular node index is built. 69 void Node::verify_construction() { 70 _debug_orig = nullptr; 71 // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx> 72 Compile* C = Compile::current(); 73 assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX"); 74 uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx; 75 set_debug_idx(new_debug_idx); 76 if (!C->phase_optimize_finished()) { 77 // Only check assert during parsing and optimization phase. Skip it while generating code. 78 assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit"); 79 } 80 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) { 81 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx); 82 BREAKPOINT; 83 } 84 #if OPTO_DU_ITERATOR_ASSERT 85 _last_del = nullptr; 86 _del_tick = 0; 87 #endif 88 _hash_lock = 0; 89 } 90 91 92 // #ifdef ASSERT ... 93 94 #if OPTO_DU_ITERATOR_ASSERT 95 void DUIterator_Common::sample(const Node* node) { 96 _vdui = VerifyDUIterators; 97 _node = node; 98 _outcnt = node->_outcnt; 99 _del_tick = node->_del_tick; 100 _last = nullptr; 101 } 102 103 void DUIterator_Common::verify(const Node* node, bool at_end_ok) { 104 assert(_node == node, "consistent iterator source"); 105 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed"); 106 } 107 108 void DUIterator_Common::verify_resync() { 109 // Ensure that the loop body has just deleted the last guy produced. 110 const Node* node = _node; 111 // Ensure that at least one copy of the last-seen edge was deleted. 112 // Note: It is OK to delete multiple copies of the last-seen edge. 113 // Unfortunately, we have no way to verify that all the deletions delete 114 // that same edge. On this point we must use the Honor System. 115 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge"); 116 assert(node->_last_del == _last, "must have deleted the edge just produced"); 117 // We liked this deletion, so accept the resulting outcnt and tick. 118 _outcnt = node->_outcnt; 119 _del_tick = node->_del_tick; 120 } 121 122 void DUIterator_Common::reset(const DUIterator_Common& that) { 123 if (this == &that) return; // ignore assignment to self 124 if (!_vdui) { 125 // We need to initialize everything, overwriting garbage values. 126 _last = that._last; 127 _vdui = that._vdui; 128 } 129 // Note: It is legal (though odd) for an iterator over some node x 130 // to be reassigned to iterate over another node y. Some doubly-nested 131 // progress loops depend on being able to do this. 132 const Node* node = that._node; 133 // Re-initialize everything, except _last. 134 _node = node; 135 _outcnt = node->_outcnt; 136 _del_tick = node->_del_tick; 137 } 138 139 void DUIterator::sample(const Node* node) { 140 DUIterator_Common::sample(node); // Initialize the assertion data. 141 _refresh_tick = 0; // No refreshes have happened, as yet. 142 } 143 144 void DUIterator::verify(const Node* node, bool at_end_ok) { 145 DUIterator_Common::verify(node, at_end_ok); 146 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range"); 147 } 148 149 void DUIterator::verify_increment() { 150 if (_refresh_tick & 1) { 151 // We have refreshed the index during this loop. 152 // Fix up _idx to meet asserts. 153 if (_idx > _outcnt) _idx = _outcnt; 154 } 155 verify(_node, true); 156 } 157 158 void DUIterator::verify_resync() { 159 // Note: We do not assert on _outcnt, because insertions are OK here. 160 DUIterator_Common::verify_resync(); 161 // Make sure we are still in sync, possibly with no more out-edges: 162 verify(_node, true); 163 } 164 165 void DUIterator::reset(const DUIterator& that) { 166 if (this == &that) return; // self assignment is always a no-op 167 assert(that._refresh_tick == 0, "assign only the result of Node::outs()"); 168 assert(that._idx == 0, "assign only the result of Node::outs()"); 169 assert(_idx == that._idx, "already assigned _idx"); 170 if (!_vdui) { 171 // We need to initialize everything, overwriting garbage values. 172 sample(that._node); 173 } else { 174 DUIterator_Common::reset(that); 175 if (_refresh_tick & 1) { 176 _refresh_tick++; // Clear the "was refreshed" flag. 177 } 178 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly"); 179 } 180 } 181 182 void DUIterator::refresh() { 183 DUIterator_Common::sample(_node); // Re-fetch assertion data. 184 _refresh_tick |= 1; // Set the "was refreshed" flag. 185 } 186 187 void DUIterator::verify_finish() { 188 // If the loop has killed the node, do not require it to re-run. 189 if (_node->_outcnt == 0) _refresh_tick &= ~1; 190 // If this assert triggers, it means that a loop used refresh_out_pos 191 // to re-synch an iteration index, but the loop did not correctly 192 // re-run itself, using a "while (progress)" construct. 193 // This iterator enforces the rule that you must keep trying the loop 194 // until it "runs clean" without any need for refreshing. 195 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing"); 196 } 197 198 199 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) { 200 DUIterator_Common::verify(node, at_end_ok); 201 Node** out = node->_out; 202 uint cnt = node->_outcnt; 203 assert(cnt == _outcnt, "no insertions allowed"); 204 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range"); 205 // This last check is carefully designed to work for NO_OUT_ARRAY. 206 } 207 208 void DUIterator_Fast::verify_limit() { 209 const Node* node = _node; 210 verify(node, true); 211 assert(_outp == node->_out + node->_outcnt, "limit still correct"); 212 } 213 214 void DUIterator_Fast::verify_resync() { 215 const Node* node = _node; 216 if (_outp == node->_out + _outcnt) { 217 // Note that the limit imax, not the pointer i, gets updated with the 218 // exact count of deletions. (For the pointer it's always "--i".) 219 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)"); 220 // This is a limit pointer, with a name like "imax". 221 // Fudge the _last field so that the common assert will be happy. 222 _last = (Node*) node->_last_del; 223 DUIterator_Common::verify_resync(); 224 } else { 225 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)"); 226 // A normal internal pointer. 227 DUIterator_Common::verify_resync(); 228 // Make sure we are still in sync, possibly with no more out-edges: 229 verify(node, true); 230 } 231 } 232 233 void DUIterator_Fast::verify_relimit(uint n) { 234 const Node* node = _node; 235 assert((int)n > 0, "use imax -= n only with a positive count"); 236 // This must be a limit pointer, with a name like "imax". 237 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)"); 238 // The reported number of deletions must match what the node saw. 239 assert(node->_del_tick == _del_tick + n, "must have deleted n edges"); 240 // Fudge the _last field so that the common assert will be happy. 241 _last = (Node*) node->_last_del; 242 DUIterator_Common::verify_resync(); 243 } 244 245 void DUIterator_Fast::reset(const DUIterator_Fast& that) { 246 assert(_outp == that._outp, "already assigned _outp"); 247 DUIterator_Common::reset(that); 248 } 249 250 void DUIterator_Last::verify(const Node* node, bool at_end_ok) { 251 // at_end_ok means the _outp is allowed to underflow by 1 252 _outp += at_end_ok; 253 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc. 254 _outp -= at_end_ok; 255 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes"); 256 } 257 258 void DUIterator_Last::verify_limit() { 259 // Do not require the limit address to be resynched. 260 //verify(node, true); 261 assert(_outp == _node->_out, "limit still correct"); 262 } 263 264 void DUIterator_Last::verify_step(uint num_edges) { 265 assert((int)num_edges > 0, "need non-zero edge count for loop progress"); 266 _outcnt -= num_edges; 267 _del_tick += num_edges; 268 // Make sure we are still in sync, possibly with no more out-edges: 269 const Node* node = _node; 270 verify(node, true); 271 assert(node->_last_del == _last, "must have deleted the edge just produced"); 272 } 273 274 #endif //OPTO_DU_ITERATOR_ASSERT 275 276 277 #endif //ASSERT 278 279 280 // This constant used to initialize _out may be any non-null value. 281 // The value null is reserved for the top node only. 282 #define NO_OUT_ARRAY ((Node**)-1) 283 284 // Out-of-line code from node constructors. 285 // Executed only when extra debug info. is being passed around. 286 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) { 287 C->set_node_notes_at(idx, nn); 288 } 289 290 // Shared initialization code. 291 inline int Node::Init(int req) { 292 Compile* C = Compile::current(); 293 int idx = C->next_unique(); 294 NOT_PRODUCT(_igv_idx = C->next_igv_idx()); 295 296 // Allocate memory for the necessary number of edges. 297 if (req > 0) { 298 // Allocate space for _in array to have double alignment. 299 _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*)))); 300 } 301 // If there are default notes floating around, capture them: 302 Node_Notes* nn = C->default_node_notes(); 303 if (nn != nullptr) init_node_notes(C, idx, nn); 304 305 // Note: At this point, C is dead, 306 // and we begin to initialize the new Node. 307 308 _cnt = _max = req; 309 _outcnt = _outmax = 0; 310 _class_id = Class_Node; 311 _flags = 0; 312 _out = NO_OUT_ARRAY; 313 return idx; 314 } 315 316 //------------------------------Node------------------------------------------- 317 // Create a Node, with a given number of required edges. 318 Node::Node(uint req) 319 : _idx(Init(req)) 320 #ifdef ASSERT 321 , _parse_idx(_idx) 322 #endif 323 { 324 assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" ); 325 debug_only( verify_construction() ); 326 NOT_PRODUCT(nodes_created++); 327 if (req == 0) { 328 _in = nullptr; 329 } else { 330 Node** to = _in; 331 for(uint i = 0; i < req; i++) { 332 to[i] = nullptr; 333 } 334 } 335 } 336 337 //------------------------------Node------------------------------------------- 338 Node::Node(Node *n0) 339 : _idx(Init(1)) 340 #ifdef ASSERT 341 , _parse_idx(_idx) 342 #endif 343 { 344 debug_only( verify_construction() ); 345 NOT_PRODUCT(nodes_created++); 346 assert( is_not_dead(n0), "can not use dead node"); 347 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 348 } 349 350 //------------------------------Node------------------------------------------- 351 Node::Node(Node *n0, Node *n1) 352 : _idx(Init(2)) 353 #ifdef ASSERT 354 , _parse_idx(_idx) 355 #endif 356 { 357 debug_only( verify_construction() ); 358 NOT_PRODUCT(nodes_created++); 359 assert( is_not_dead(n0), "can not use dead node"); 360 assert( is_not_dead(n1), "can not use dead node"); 361 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 362 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 363 } 364 365 //------------------------------Node------------------------------------------- 366 Node::Node(Node *n0, Node *n1, Node *n2) 367 : _idx(Init(3)) 368 #ifdef ASSERT 369 , _parse_idx(_idx) 370 #endif 371 { 372 debug_only( verify_construction() ); 373 NOT_PRODUCT(nodes_created++); 374 assert( is_not_dead(n0), "can not use dead node"); 375 assert( is_not_dead(n1), "can not use dead node"); 376 assert( is_not_dead(n2), "can not use dead node"); 377 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 378 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 379 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 380 } 381 382 //------------------------------Node------------------------------------------- 383 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3) 384 : _idx(Init(4)) 385 #ifdef ASSERT 386 , _parse_idx(_idx) 387 #endif 388 { 389 debug_only( verify_construction() ); 390 NOT_PRODUCT(nodes_created++); 391 assert( is_not_dead(n0), "can not use dead node"); 392 assert( is_not_dead(n1), "can not use dead node"); 393 assert( is_not_dead(n2), "can not use dead node"); 394 assert( is_not_dead(n3), "can not use dead node"); 395 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 396 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 397 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 398 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 399 } 400 401 //------------------------------Node------------------------------------------- 402 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4) 403 : _idx(Init(5)) 404 #ifdef ASSERT 405 , _parse_idx(_idx) 406 #endif 407 { 408 debug_only( verify_construction() ); 409 NOT_PRODUCT(nodes_created++); 410 assert( is_not_dead(n0), "can not use dead node"); 411 assert( is_not_dead(n1), "can not use dead node"); 412 assert( is_not_dead(n2), "can not use dead node"); 413 assert( is_not_dead(n3), "can not use dead node"); 414 assert( is_not_dead(n4), "can not use dead node"); 415 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 416 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 417 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 418 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 419 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 420 } 421 422 //------------------------------Node------------------------------------------- 423 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 424 Node *n4, Node *n5) 425 : _idx(Init(6)) 426 #ifdef ASSERT 427 , _parse_idx(_idx) 428 #endif 429 { 430 debug_only( verify_construction() ); 431 NOT_PRODUCT(nodes_created++); 432 assert( is_not_dead(n0), "can not use dead node"); 433 assert( is_not_dead(n1), "can not use dead node"); 434 assert( is_not_dead(n2), "can not use dead node"); 435 assert( is_not_dead(n3), "can not use dead node"); 436 assert( is_not_dead(n4), "can not use dead node"); 437 assert( is_not_dead(n5), "can not use dead node"); 438 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 439 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 440 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 441 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 442 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 443 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 444 } 445 446 //------------------------------Node------------------------------------------- 447 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 448 Node *n4, Node *n5, Node *n6) 449 : _idx(Init(7)) 450 #ifdef ASSERT 451 , _parse_idx(_idx) 452 #endif 453 { 454 debug_only( verify_construction() ); 455 NOT_PRODUCT(nodes_created++); 456 assert( is_not_dead(n0), "can not use dead node"); 457 assert( is_not_dead(n1), "can not use dead node"); 458 assert( is_not_dead(n2), "can not use dead node"); 459 assert( is_not_dead(n3), "can not use dead node"); 460 assert( is_not_dead(n4), "can not use dead node"); 461 assert( is_not_dead(n5), "can not use dead node"); 462 assert( is_not_dead(n6), "can not use dead node"); 463 _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this); 464 _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this); 465 _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this); 466 _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this); 467 _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this); 468 _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this); 469 _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this); 470 } 471 472 #ifdef __clang__ 473 #pragma clang diagnostic pop 474 #endif 475 476 477 //------------------------------clone------------------------------------------ 478 // Clone a Node. 479 Node *Node::clone() const { 480 Compile* C = Compile::current(); 481 uint s = size_of(); // Size of inherited Node 482 Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*)); 483 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); 484 // Set the new input pointer array 485 n->_in = (Node**)(((char*)n)+s); 486 // Cannot share the old output pointer array, so kill it 487 n->_out = NO_OUT_ARRAY; 488 // And reset the counters to 0 489 n->_outcnt = 0; 490 n->_outmax = 0; 491 // Unlock this guy, since he is not in any hash table. 492 debug_only(n->_hash_lock = 0); 493 // Walk the old node's input list to duplicate its edges 494 uint i; 495 for( i = 0; i < len(); i++ ) { 496 Node *x = in(i); 497 n->_in[i] = x; 498 if (x != nullptr) x->add_out(n); 499 } 500 if (is_macro()) { 501 C->add_macro_node(n); 502 } 503 if (is_expensive()) { 504 C->add_expensive_node(n); 505 } 506 if (for_post_loop_opts_igvn()) { 507 // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically. 508 // If it is applicable, it will happen anyway when the cloned node is registered with IGVN. 509 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 510 } 511 if (for_merge_stores_igvn()) { 512 // Don't add cloned node to Compile::_for_merge_stores_igvn list automatically. 513 // If it is applicable, it will happen anyway when the cloned node is registered with IGVN. 514 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 515 } 516 if (n->is_ParsePredicate()) { 517 C->add_parse_predicate(n->as_ParsePredicate()); 518 } 519 if (n->is_OpaqueTemplateAssertionPredicate()) { 520 C->add_template_assertion_predicate_opaque(n->as_OpaqueTemplateAssertionPredicate()); 521 } 522 523 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 524 bs->register_potential_barrier_node(n); 525 526 n->set_idx(C->next_unique()); // Get new unique index as well 527 NOT_PRODUCT(n->_igv_idx = C->next_igv_idx()); 528 debug_only( n->verify_construction() ); 529 NOT_PRODUCT(nodes_created++); 530 // Do not patch over the debug_idx of a clone, because it makes it 531 // impossible to break on the clone's moment of creation. 532 //debug_only( n->set_debug_idx( debug_idx() ) ); 533 534 C->copy_node_notes_to(n, (Node*) this); 535 536 // MachNode clone 537 uint nopnds; 538 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) { 539 MachNode *mach = n->as_Mach(); 540 MachNode *mthis = this->as_Mach(); 541 // Get address of _opnd_array. 542 // It should be the same offset since it is the clone of this node. 543 MachOper **from = mthis->_opnds; 544 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) + 545 pointer_delta((const void*)from, 546 (const void*)(&mthis->_opnds), 1)); 547 mach->_opnds = to; 548 for ( uint i = 0; i < nopnds; ++i ) { 549 to[i] = from[i]->clone(); 550 } 551 } 552 if (n->is_Call()) { 553 // CallGenerator is linked to the original node. 554 CallGenerator* cg = n->as_Call()->generator(); 555 if (cg != nullptr) { 556 CallGenerator* cloned_cg = cg->with_call_node(n->as_Call()); 557 n->as_Call()->set_generator(cloned_cg); 558 } 559 } 560 if (n->is_SafePoint()) { 561 // Scalar replacement and macro expansion might modify the JVMState. 562 // Clone it to make sure it's not shared between SafePointNodes. 563 n->as_SafePoint()->clone_jvms(C); 564 n->as_SafePoint()->clone_replaced_nodes(); 565 } 566 Compile::current()->record_modified_node(n); 567 return n; // Return the clone 568 } 569 570 //---------------------------setup_is_top-------------------------------------- 571 // Call this when changing the top node, to reassert the invariants 572 // required by Node::is_top. See Compile::set_cached_top_node. 573 void Node::setup_is_top() { 574 if (this == (Node*)Compile::current()->top()) { 575 // This node has just become top. Kill its out array. 576 _outcnt = _outmax = 0; 577 _out = nullptr; // marker value for top 578 assert(is_top(), "must be top"); 579 } else { 580 if (_out == nullptr) _out = NO_OUT_ARRAY; 581 assert(!is_top(), "must not be top"); 582 } 583 } 584 585 //------------------------------~Node------------------------------------------ 586 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 587 void Node::destruct(PhaseValues* phase) { 588 Compile* compile = (phase != nullptr) ? phase->C : Compile::current(); 589 if (phase != nullptr && phase->is_IterGVN()) { 590 phase->is_IterGVN()->_worklist.remove(this); 591 } 592 // If this is the most recently created node, reclaim its index. Otherwise, 593 // record the node as dead to keep liveness information accurate. 594 if ((uint)_idx+1 == compile->unique()) { 595 compile->set_unique(compile->unique()-1); 596 } else { 597 compile->record_dead_node(_idx); 598 } 599 // Clear debug info: 600 Node_Notes* nn = compile->node_notes_at(_idx); 601 if (nn != nullptr) nn->clear(); 602 // Walk the input array, freeing the corresponding output edges 603 _cnt = _max; // forget req/prec distinction 604 uint i; 605 for( i = 0; i < _max; i++ ) { 606 set_req(i, nullptr); 607 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim"); 608 } 609 assert(outcnt() == 0, "deleting a node must not leave a dangling use"); 610 611 if (is_macro()) { 612 compile->remove_macro_node(this); 613 } 614 if (is_expensive()) { 615 compile->remove_expensive_node(this); 616 } 617 if (is_OpaqueTemplateAssertionPredicate()) { 618 compile->remove_template_assertion_predicate_opaque(as_OpaqueTemplateAssertionPredicate()); 619 } 620 if (is_ParsePredicate()) { 621 compile->remove_parse_predicate(as_ParsePredicate()); 622 } 623 if (for_post_loop_opts_igvn()) { 624 compile->remove_from_post_loop_opts_igvn(this); 625 } 626 if (for_merge_stores_igvn()) { 627 compile->remove_from_merge_stores_igvn(this); 628 } 629 630 if (is_SafePoint()) { 631 as_SafePoint()->delete_replaced_nodes(); 632 633 if (is_CallStaticJava()) { 634 compile->remove_unstable_if_trap(as_CallStaticJava(), false); 635 } 636 } 637 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 638 bs->unregister_potential_barrier_node(this); 639 640 // See if the input array was allocated just prior to the object 641 int edge_size = _max*sizeof(void*); 642 int out_edge_size = _outmax*sizeof(void*); 643 char *in_array = ((char*)_in); 644 char *edge_end = in_array + edge_size; 645 char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out); 646 int node_size = size_of(); 647 648 #ifdef ASSERT 649 // We will not actually delete the storage, but we'll make the node unusable. 650 compile->remove_modified_node(this); 651 *(address*)this = badAddress; // smash the C++ vtbl, probably 652 _in = _out = (Node**) badAddress; 653 _max = _cnt = _outmax = _outcnt = 0; 654 #endif 655 656 // Free the output edge array 657 if (out_edge_size > 0) { 658 compile->node_arena()->Afree(out_array, out_edge_size); 659 } 660 661 // Free the input edge array and the node itself 662 if( edge_end == (char*)this ) { 663 // It was; free the input array and object all in one hit 664 #ifndef ASSERT 665 compile->node_arena()->Afree(in_array, edge_size+node_size); 666 #endif 667 } else { 668 // Free just the input array 669 compile->node_arena()->Afree(in_array, edge_size); 670 671 // Free just the object 672 #ifndef ASSERT 673 compile->node_arena()->Afree(this, node_size); 674 #endif 675 } 676 } 677 678 // Resize input or output array to grow it to the next larger power-of-2 bigger 679 // than len. 680 void Node::resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing) { 681 Arena* arena = Compile::current()->node_arena(); 682 uint new_max = max_size; 683 if (new_max == 0) { 684 max_size = 4; 685 array = (Node**)arena->Amalloc(4 * sizeof(Node*)); 686 if (needs_clearing) { 687 array[0] = nullptr; 688 array[1] = nullptr; 689 array[2] = nullptr; 690 array[3] = nullptr; 691 } 692 return; 693 } 694 new_max = next_power_of_2(len); 695 assert(needs_clearing || (array != nullptr && array != NO_OUT_ARRAY), "out must have sensible value"); 696 array = (Node**)arena->Arealloc(array, max_size * sizeof(Node*), new_max * sizeof(Node*)); 697 if (needs_clearing) { 698 Copy::zero_to_bytes(&array[max_size], (new_max - max_size) * sizeof(Node*)); // null all new space 699 } 700 max_size = new_max; // Record new max length 701 // This assertion makes sure that Node::_max is wide enough to 702 // represent the numerical value of new_max. 703 assert(max_size > len, "int width of _max or _outmax is too small"); 704 } 705 706 //------------------------------grow------------------------------------------- 707 // Grow the input array, making space for more edges 708 void Node::grow(uint len) { 709 resize_array(_in, _max, len, true); 710 } 711 712 //-----------------------------out_grow---------------------------------------- 713 // Grow the input array, making space for more edges 714 void Node::out_grow(uint len) { 715 assert(!is_top(), "cannot grow a top node's out array"); 716 resize_array(_out, _outmax, len, false); 717 } 718 719 #ifdef ASSERT 720 //------------------------------is_dead---------------------------------------- 721 bool Node::is_dead() const { 722 // Mach and pinch point nodes may look like dead. 723 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) ) 724 return false; 725 for( uint i = 0; i < _max; i++ ) 726 if( _in[i] != nullptr ) 727 return false; 728 return true; 729 } 730 731 bool Node::is_not_dead(const Node* n) { 732 return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead()); 733 } 734 735 bool Node::is_reachable_from_root() const { 736 ResourceMark rm; 737 Unique_Node_List wq; 738 wq.push((Node*)this); 739 RootNode* root = Compile::current()->root(); 740 for (uint i = 0; i < wq.size(); i++) { 741 Node* m = wq.at(i); 742 if (m == root) { 743 return true; 744 } 745 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 746 Node* u = m->fast_out(j); 747 wq.push(u); 748 } 749 } 750 return false; 751 } 752 #endif 753 754 //------------------------------is_unreachable--------------------------------- 755 bool Node::is_unreachable(PhaseIterGVN &igvn) const { 756 assert(!is_Mach(), "doesn't work with MachNodes"); 757 return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top()); 758 } 759 760 //------------------------------add_req---------------------------------------- 761 // Add a new required input at the end 762 void Node::add_req( Node *n ) { 763 assert( is_not_dead(n), "can not use dead node"); 764 765 // Look to see if I can move precedence down one without reallocating 766 if( (_cnt >= _max) || (in(_max-1) != nullptr) ) 767 grow( _max+1 ); 768 769 // Find a precedence edge to move 770 if( in(_cnt) != nullptr ) { // Next precedence edge is busy? 771 uint i; 772 for( i=_cnt; i<_max; i++ ) 773 if( in(i) == nullptr ) // Find the null at end of prec edge list 774 break; // There must be one, since we grew the array 775 _in[i] = in(_cnt); // Move prec over, making space for req edge 776 } 777 _in[_cnt++] = n; // Stuff over old prec edge 778 if (n != nullptr) n->add_out((Node *)this); 779 Compile::current()->record_modified_node(this); 780 } 781 782 //---------------------------add_req_batch------------------------------------- 783 // Add a new required input at the end 784 void Node::add_req_batch( Node *n, uint m ) { 785 assert( is_not_dead(n), "can not use dead node"); 786 // check various edge cases 787 if ((int)m <= 1) { 788 assert((int)m >= 0, "oob"); 789 if (m != 0) add_req(n); 790 return; 791 } 792 793 // Look to see if I can move precedence down one without reallocating 794 if( (_cnt+m) > _max || _in[_max-m] ) 795 grow( _max+m ); 796 797 // Find a precedence edge to move 798 if( _in[_cnt] != nullptr ) { // Next precedence edge is busy? 799 uint i; 800 for( i=_cnt; i<_max; i++ ) 801 if( _in[i] == nullptr ) // Find the null at end of prec edge list 802 break; // There must be one, since we grew the array 803 // Slide all the precs over by m positions (assume #prec << m). 804 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*))); 805 } 806 807 // Stuff over the old prec edges 808 for(uint i=0; i<m; i++ ) { 809 _in[_cnt++] = n; 810 } 811 812 // Insert multiple out edges on the node. 813 if (n != nullptr && !n->is_top()) { 814 for(uint i=0; i<m; i++ ) { 815 n->add_out((Node *)this); 816 } 817 } 818 Compile::current()->record_modified_node(this); 819 } 820 821 //------------------------------del_req---------------------------------------- 822 // Delete the required edge and compact the edge array 823 void Node::del_req( uint idx ) { 824 assert( idx < _cnt, "oob"); 825 assert( !VerifyHashTableKeys || _hash_lock == 0, 826 "remove node from hash table before modifying it"); 827 // First remove corresponding def-use edge 828 Node *n = in(idx); 829 if (n != nullptr) n->del_out((Node *)this); 830 _in[idx] = in(--_cnt); // Compact the array 831 // Avoid spec violation: Gap in prec edges. 832 close_prec_gap_at(_cnt); 833 Compile::current()->record_modified_node(this); 834 } 835 836 //------------------------------del_req_ordered-------------------------------- 837 // Delete the required edge and compact the edge array with preserved order 838 void Node::del_req_ordered( uint idx ) { 839 assert( idx < _cnt, "oob"); 840 assert( !VerifyHashTableKeys || _hash_lock == 0, 841 "remove node from hash table before modifying it"); 842 // First remove corresponding def-use edge 843 Node *n = in(idx); 844 if (n != nullptr) n->del_out((Node *)this); 845 if (idx < --_cnt) { // Not last edge ? 846 Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*))); 847 } 848 // Avoid spec violation: Gap in prec edges. 849 close_prec_gap_at(_cnt); 850 Compile::current()->record_modified_node(this); 851 } 852 853 //------------------------------ins_req---------------------------------------- 854 // Insert a new required input at the end 855 void Node::ins_req( uint idx, Node *n ) { 856 assert( is_not_dead(n), "can not use dead node"); 857 add_req(nullptr); // Make space 858 assert( idx < _max, "Must have allocated enough space"); 859 // Slide over 860 if(_cnt-idx-1 > 0) { 861 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*))); 862 } 863 _in[idx] = n; // Stuff over old required edge 864 if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge 865 Compile::current()->record_modified_node(this); 866 } 867 868 //-----------------------------find_edge--------------------------------------- 869 int Node::find_edge(Node* n) { 870 for (uint i = 0; i < len(); i++) { 871 if (_in[i] == n) return i; 872 } 873 return -1; 874 } 875 876 //----------------------------replace_edge------------------------------------- 877 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) { 878 if (old == neww) return 0; // nothing to do 879 uint nrep = 0; 880 for (uint i = 0; i < len(); i++) { 881 if (in(i) == old) { 882 if (i < req()) { 883 if (gvn != nullptr) { 884 set_req_X(i, neww, gvn); 885 } else { 886 set_req(i, neww); 887 } 888 } else { 889 assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here"); 890 assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx); 891 set_prec(i, neww); 892 } 893 nrep++; 894 } 895 } 896 return nrep; 897 } 898 899 /** 900 * Replace input edges in the range pointing to 'old' node. 901 */ 902 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) { 903 if (old == neww) return 0; // nothing to do 904 uint nrep = 0; 905 for (int i = start; i < end; i++) { 906 if (in(i) == old) { 907 set_req_X(i, neww, gvn); 908 nrep++; 909 } 910 } 911 return nrep; 912 } 913 914 //-------------------------disconnect_inputs----------------------------------- 915 // null out all inputs to eliminate incoming Def-Use edges. 916 void Node::disconnect_inputs(Compile* C) { 917 // the layout of Node::_in 918 // r: a required input, null is allowed 919 // p: a precedence, null values are all at the end 920 // ----------------------------------- 921 // |r|...|r|p|...|p|null|...|null| 922 // | | 923 // req() len() 924 // ----------------------------------- 925 for (uint i = 0; i < req(); ++i) { 926 if (in(i) != nullptr) { 927 set_req(i, nullptr); 928 } 929 } 930 931 // Remove precedence edges if any exist 932 // Note: Safepoints may have precedence edges, even during parsing 933 for (uint i = len(); i > req(); ) { 934 rm_prec(--i); // no-op if _in[i] is null 935 } 936 937 #ifdef ASSERT 938 // sanity check 939 for (uint i = 0; i < len(); ++i) { 940 assert(_in[i] == nullptr, "disconnect_inputs() failed!"); 941 } 942 #endif 943 944 // Node::destruct requires all out edges be deleted first 945 // debug_only(destruct();) // no reuse benefit expected 946 C->record_dead_node(_idx); 947 } 948 949 //-----------------------------uncast--------------------------------------- 950 // %%% Temporary, until we sort out CheckCastPP vs. CastPP. 951 // Strip away casting. (It is depth-limited.) 952 // Optionally, keep casts with dependencies. 953 Node* Node::uncast(bool keep_deps) const { 954 // Should be inline: 955 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this; 956 if (is_ConstraintCast()) { 957 return uncast_helper(this, keep_deps); 958 } else { 959 return (Node*) this; 960 } 961 } 962 963 // Find out of current node that matches opcode. 964 Node* Node::find_out_with(int opcode) { 965 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 966 Node* use = fast_out(i); 967 if (use->Opcode() == opcode) { 968 return use; 969 } 970 } 971 return nullptr; 972 } 973 974 // Return true if the current node has an out that matches opcode. 975 bool Node::has_out_with(int opcode) { 976 return (find_out_with(opcode) != nullptr); 977 } 978 979 // Return true if the current node has an out that matches any of the opcodes. 980 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) { 981 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 982 int opcode = fast_out(i)->Opcode(); 983 if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) { 984 return true; 985 } 986 } 987 return false; 988 } 989 990 991 //---------------------------uncast_helper------------------------------------- 992 Node* Node::uncast_helper(const Node* p, bool keep_deps) { 993 #ifdef ASSERT 994 uint depth_count = 0; 995 const Node* orig_p = p; 996 #endif 997 998 while (true) { 999 #ifdef ASSERT 1000 if (depth_count >= K) { 1001 orig_p->dump(4); 1002 if (p != orig_p) 1003 p->dump(1); 1004 } 1005 assert(depth_count++ < K, "infinite loop in Node::uncast_helper"); 1006 #endif 1007 if (p == nullptr || p->req() != 2) { 1008 break; 1009 } else if (p->is_ConstraintCast()) { 1010 if (keep_deps && p->as_ConstraintCast()->carry_dependency()) { 1011 break; // stop at casts with dependencies 1012 } 1013 p = p->in(1); 1014 } else { 1015 break; 1016 } 1017 } 1018 return (Node*) p; 1019 } 1020 1021 //------------------------------add_prec--------------------------------------- 1022 // Add a new precedence input. Precedence inputs are unordered, with 1023 // duplicates removed and nulls packed down at the end. 1024 void Node::add_prec( Node *n ) { 1025 assert( is_not_dead(n), "can not use dead node"); 1026 1027 // Check for null at end 1028 if( _cnt >= _max || in(_max-1) ) 1029 grow( _max+1 ); 1030 1031 // Find a precedence edge to move 1032 uint i = _cnt; 1033 while( in(i) != nullptr ) { 1034 if (in(i) == n) return; // Avoid spec violation: duplicated prec edge. 1035 i++; 1036 } 1037 _in[i] = n; // Stuff prec edge over null 1038 if ( n != nullptr) n->add_out((Node *)this); // Add mirror edge 1039 1040 #ifdef ASSERT 1041 while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); } 1042 #endif 1043 Compile::current()->record_modified_node(this); 1044 } 1045 1046 //------------------------------rm_prec---------------------------------------- 1047 // Remove a precedence input. Precedence inputs are unordered, with 1048 // duplicates removed and nulls packed down at the end. 1049 void Node::rm_prec( uint j ) { 1050 assert(j < _max, "oob: i=%d, _max=%d", j, _max); 1051 assert(j >= _cnt, "not a precedence edge"); 1052 if (_in[j] == nullptr) return; // Avoid spec violation: Gap in prec edges. 1053 _in[j]->del_out((Node *)this); 1054 close_prec_gap_at(j); 1055 Compile::current()->record_modified_node(this); 1056 } 1057 1058 //------------------------------size_of---------------------------------------- 1059 uint Node::size_of() const { return sizeof(*this); } 1060 1061 //------------------------------ideal_reg-------------------------------------- 1062 uint Node::ideal_reg() const { return 0; } 1063 1064 //------------------------------jvms------------------------------------------- 1065 JVMState* Node::jvms() const { return nullptr; } 1066 1067 #ifdef ASSERT 1068 //------------------------------jvms------------------------------------------- 1069 bool Node::verify_jvms(const JVMState* using_jvms) const { 1070 for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1071 if (jvms == using_jvms) return true; 1072 } 1073 return false; 1074 } 1075 1076 //------------------------------init_NodeProperty------------------------------ 1077 void Node::init_NodeProperty() { 1078 assert(_max_classes <= max_juint, "too many NodeProperty classes"); 1079 assert(max_flags() <= max_juint, "too many NodeProperty flags"); 1080 } 1081 1082 //-----------------------------max_flags--------------------------------------- 1083 juint Node::max_flags() { 1084 return (PD::_last_flag << 1) - 1; // allow flags combination 1085 } 1086 #endif 1087 1088 //------------------------------format----------------------------------------- 1089 // Print as assembly 1090 void Node::format( PhaseRegAlloc *, outputStream *st ) const {} 1091 //------------------------------emit------------------------------------------- 1092 // Emit bytes using C2_MacroAssembler 1093 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {} 1094 //------------------------------size------------------------------------------- 1095 // Size of instruction in bytes 1096 uint Node::size(PhaseRegAlloc *ra_) const { return 0; } 1097 1098 //------------------------------CFG Construction------------------------------- 1099 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root, 1100 // Goto and Return. 1101 const Node *Node::is_block_proj() const { return nullptr; } 1102 1103 // Minimum guaranteed type 1104 const Type *Node::bottom_type() const { return Type::BOTTOM; } 1105 1106 1107 //------------------------------raise_bottom_type------------------------------ 1108 // Get the worst-case Type output for this Node. 1109 void Node::raise_bottom_type(const Type* new_type) { 1110 if (is_Type()) { 1111 TypeNode *n = this->as_Type(); 1112 if (VerifyAliases) { 1113 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1114 } 1115 n->set_type(new_type); 1116 } else if (is_Load()) { 1117 LoadNode *n = this->as_Load(); 1118 if (VerifyAliases) { 1119 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1120 } 1121 n->set_type(new_type); 1122 } 1123 } 1124 1125 //------------------------------Identity--------------------------------------- 1126 // Return a node that the given node is equivalent to. 1127 Node* Node::Identity(PhaseGVN* phase) { 1128 return this; // Default to no identities 1129 } 1130 1131 //------------------------------Value------------------------------------------ 1132 // Compute a new Type for a node using the Type of the inputs. 1133 const Type* Node::Value(PhaseGVN* phase) const { 1134 return bottom_type(); // Default to worst-case Type 1135 } 1136 1137 //------------------------------Ideal------------------------------------------ 1138 // 1139 // 'Idealize' the graph rooted at this Node. 1140 // 1141 // In order to be efficient and flexible there are some subtle invariants 1142 // these Ideal calls need to hold. Running with '-XX:VerifyIterativeGVN=1' checks 1143 // these invariants, although its too slow to have on by default. If you are 1144 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1' 1145 // 1146 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this' 1147 // pointer. If ANY change is made, it must return the root of the reshaped 1148 // graph - even if the root is the same Node. Example: swapping the inputs 1149 // to an AddINode gives the same answer and same root, but you still have to 1150 // return the 'this' pointer instead of null. 1151 // 1152 // You cannot return an OLD Node, except for the 'this' pointer. Use the 1153 // Identity call to return an old Node; basically if Identity can find 1154 // another Node have the Ideal call make no change and return null. 1155 // Example: AddINode::Ideal must check for add of zero; in this case it 1156 // returns null instead of doing any graph reshaping. 1157 // 1158 // You cannot modify any old Nodes except for the 'this' pointer. Due to 1159 // sharing there may be other users of the old Nodes relying on their current 1160 // semantics. Modifying them will break the other users. 1161 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for 1162 // "X+3" unchanged in case it is shared. 1163 // 1164 // If you modify the 'this' pointer's inputs, you should use 1165 // 'set_req'. If you are making a new Node (either as the new root or 1166 // some new internal piece) you may use 'init_req' to set the initial 1167 // value. You can make a new Node with either 'new' or 'clone'. In 1168 // either case, def-use info is correctly maintained. 1169 // 1170 // Example: reshape "(X+3)+4" into "X+7": 1171 // set_req(1, in(1)->in(1)); 1172 // set_req(2, phase->intcon(7)); 1173 // return this; 1174 // Example: reshape "X*4" into "X<<2" 1175 // return new LShiftINode(in(1), phase->intcon(2)); 1176 // 1177 // You must call 'phase->transform(X)' on any new Nodes X you make, except 1178 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X". 1179 // Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5))); 1180 // return new AddINode(shift, in(1)); 1181 // 1182 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'. 1183 // These forms are faster than 'phase->transform(new ConNode())' and Do 1184 // The Right Thing with def-use info. 1185 // 1186 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped 1187 // graph uses the 'this' Node it must be the root. If you want a Node with 1188 // the same Opcode as the 'this' pointer use 'clone'. 1189 // 1190 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) { 1191 return nullptr; // Default to being Ideal already 1192 } 1193 1194 // Some nodes have specific Ideal subgraph transformations only if they are 1195 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1196 // for the transformations to happen. 1197 bool Node::has_special_unique_user() const { 1198 assert(outcnt() == 1, "match only for unique out"); 1199 Node* n = unique_out(); 1200 int op = Opcode(); 1201 if (this->is_Store()) { 1202 // Condition for back-to-back stores folding. 1203 return n->Opcode() == op && n->in(MemNode::Memory) == this; 1204 } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) { 1205 // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input 1206 return n->Opcode() == Op_MemBarAcquire; 1207 } else if (op == Op_AddL) { 1208 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 1209 return n->Opcode() == Op_ConvL2I && n->in(1) == this; 1210 } else if (op == Op_SubI || op == Op_SubL) { 1211 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y) 1212 return n->Opcode() == op && n->in(2) == this; 1213 } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) { 1214 // See IfProjNode::Identity() 1215 return true; 1216 } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) { 1217 // See IfNode::fold_compares 1218 return true; 1219 } else { 1220 return false; 1221 } 1222 }; 1223 1224 //--------------------------find_exact_control--------------------------------- 1225 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1226 Node* Node::find_exact_control(Node* ctrl) { 1227 if (ctrl == nullptr && this->is_Region()) 1228 ctrl = this->as_Region()->is_copy(); 1229 1230 if (ctrl != nullptr && ctrl->is_CatchProj()) { 1231 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index) 1232 ctrl = ctrl->in(0); 1233 if (ctrl != nullptr && !ctrl->is_top()) 1234 ctrl = ctrl->in(0); 1235 } 1236 1237 if (ctrl != nullptr && ctrl->is_Proj()) 1238 ctrl = ctrl->in(0); 1239 1240 return ctrl; 1241 } 1242 1243 //--------------------------dominates------------------------------------------ 1244 // Helper function for MemNode::all_controls_dominate(). 1245 // Check if 'this' control node dominates or equal to 'sub' control node. 1246 // We already know that if any path back to Root or Start reaches 'this', 1247 // then all paths so, so this is a simple search for one example, 1248 // not an exhaustive search for a counterexample. 1249 Node::DomResult Node::dominates(Node* sub, Node_List &nlist) { 1250 assert(this->is_CFG(), "expecting control"); 1251 assert(sub != nullptr && sub->is_CFG(), "expecting control"); 1252 1253 // detect dead cycle without regions 1254 int iterations_without_region_limit = DominatorSearchLimit; 1255 1256 Node* orig_sub = sub; 1257 Node* dom = this; 1258 bool met_dom = false; 1259 nlist.clear(); 1260 1261 // Walk 'sub' backward up the chain to 'dom', watching for regions. 1262 // After seeing 'dom', continue up to Root or Start. 1263 // If we hit a region (backward split point), it may be a loop head. 1264 // Keep going through one of the region's inputs. If we reach the 1265 // same region again, go through a different input. Eventually we 1266 // will either exit through the loop head, or give up. 1267 // (If we get confused, break out and return a conservative 'false'.) 1268 while (sub != nullptr) { 1269 if (sub->is_top()) { 1270 // Conservative answer for dead code. 1271 return DomResult::EncounteredDeadCode; 1272 } 1273 if (sub == dom) { 1274 if (nlist.size() == 0) { 1275 // No Region nodes except loops were visited before and the EntryControl 1276 // path was taken for loops: it did not walk in a cycle. 1277 return DomResult::Dominate; 1278 } else if (met_dom) { 1279 break; // already met before: walk in a cycle 1280 } else { 1281 // Region nodes were visited. Continue walk up to Start or Root 1282 // to make sure that it did not walk in a cycle. 1283 met_dom = true; // first time meet 1284 iterations_without_region_limit = DominatorSearchLimit; // Reset 1285 } 1286 } 1287 if (sub->is_Start() || sub->is_Root()) { 1288 // Success if we met 'dom' along a path to Start or Root. 1289 // We assume there are no alternative paths that avoid 'dom'. 1290 // (This assumption is up to the caller to ensure!) 1291 return met_dom ? DomResult::Dominate : DomResult::NotDominate; 1292 } 1293 Node* up = sub->in(0); 1294 // Normalize simple pass-through regions and projections: 1295 up = sub->find_exact_control(up); 1296 // If sub == up, we found a self-loop. Try to push past it. 1297 if (sub == up && sub->is_Loop()) { 1298 // Take loop entry path on the way up to 'dom'. 1299 up = sub->in(1); // in(LoopNode::EntryControl); 1300 } else if (sub == up && sub->is_Region() && sub->req() == 2) { 1301 // Take in(1) path on the way up to 'dom' for regions with only one input 1302 up = sub->in(1); 1303 } else if (sub == up && sub->is_Region()) { 1304 // Try both paths for Regions with 2 input paths (it may be a loop head). 1305 // It could give conservative 'false' answer without information 1306 // which region's input is the entry path. 1307 iterations_without_region_limit = DominatorSearchLimit; // Reset 1308 1309 bool region_was_visited_before = false; 1310 // Was this Region node visited before? 1311 // If so, we have reached it because we accidentally took a 1312 // loop-back edge from 'sub' back into the body of the loop, 1313 // and worked our way up again to the loop header 'sub'. 1314 // So, take the first unexplored path on the way up to 'dom'. 1315 for (int j = nlist.size() - 1; j >= 0; j--) { 1316 intptr_t ni = (intptr_t)nlist.at(j); 1317 Node* visited = (Node*)(ni & ~1); 1318 bool visited_twice_already = ((ni & 1) != 0); 1319 if (visited == sub) { 1320 if (visited_twice_already) { 1321 // Visited 2 paths, but still stuck in loop body. Give up. 1322 return DomResult::NotDominate; 1323 } 1324 // The Region node was visited before only once. 1325 // (We will repush with the low bit set, below.) 1326 nlist.remove(j); 1327 // We will find a new edge and re-insert. 1328 region_was_visited_before = true; 1329 break; 1330 } 1331 } 1332 1333 // Find an incoming edge which has not been seen yet; walk through it. 1334 assert(up == sub, ""); 1335 uint skip = region_was_visited_before ? 1 : 0; 1336 for (uint i = 1; i < sub->req(); i++) { 1337 Node* in = sub->in(i); 1338 if (in != nullptr && !in->is_top() && in != sub) { 1339 if (skip == 0) { 1340 up = in; 1341 break; 1342 } 1343 --skip; // skip this nontrivial input 1344 } 1345 } 1346 1347 // Set 0 bit to indicate that both paths were taken. 1348 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0))); 1349 } 1350 1351 if (up == sub) { 1352 break; // some kind of tight cycle 1353 } 1354 if (up == orig_sub && met_dom) { 1355 // returned back after visiting 'dom' 1356 break; // some kind of cycle 1357 } 1358 if (--iterations_without_region_limit < 0) { 1359 break; // dead cycle 1360 } 1361 sub = up; 1362 } 1363 1364 // Did not meet Root or Start node in pred. chain. 1365 return DomResult::NotDominate; 1366 } 1367 1368 //------------------------------remove_dead_region----------------------------- 1369 // This control node is dead. Follow the subgraph below it making everything 1370 // using it dead as well. This will happen normally via the usual IterGVN 1371 // worklist but this call is more efficient. Do not update use-def info 1372 // inside the dead region, just at the borders. 1373 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) { 1374 // Con's are a popular node to re-hit in the hash table again. 1375 if( dead->is_Con() ) return; 1376 1377 ResourceMark rm; 1378 Node_List nstack; 1379 VectorSet dead_set; // notify uses only once 1380 1381 Node *top = igvn->C->top(); 1382 nstack.push(dead); 1383 bool has_irreducible_loop = igvn->C->has_irreducible_loop(); 1384 1385 while (nstack.size() > 0) { 1386 dead = nstack.pop(); 1387 if (!dead_set.test_set(dead->_idx)) { 1388 // If dead has any live uses, those are now still attached. Notify them before we lose them. 1389 igvn->add_users_to_worklist(dead); 1390 } 1391 if (dead->Opcode() == Op_SafePoint) { 1392 dead->as_SafePoint()->disconnect_from_root(igvn); 1393 } 1394 if (dead->outcnt() > 0) { 1395 // Keep dead node on stack until all uses are processed. 1396 nstack.push(dead); 1397 // For all Users of the Dead... ;-) 1398 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) { 1399 Node* use = dead->last_out(k); 1400 igvn->hash_delete(use); // Yank from hash table prior to mod 1401 if (use->in(0) == dead) { // Found another dead node 1402 assert (!use->is_Con(), "Control for Con node should be Root node."); 1403 use->set_req(0, top); // Cut dead edge to prevent processing 1404 nstack.push(use); // the dead node again. 1405 } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop 1406 use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode) 1407 use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead 1408 use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing 1409 use->set_req(0, top); // Cut self edge 1410 nstack.push(use); 1411 } else { // Else found a not-dead user 1412 // Dead if all inputs are top or null 1413 bool dead_use = !use->is_Root(); // Keep empty graph alive 1414 for (uint j = 1; j < use->req(); j++) { 1415 Node* in = use->in(j); 1416 if (in == dead) { // Turn all dead inputs into TOP 1417 use->set_req(j, top); 1418 } else if (in != nullptr && !in->is_top()) { 1419 dead_use = false; 1420 } 1421 } 1422 if (dead_use) { 1423 if (use->is_Region()) { 1424 use->set_req(0, top); // Cut self edge 1425 } 1426 nstack.push(use); 1427 } else { 1428 igvn->_worklist.push(use); 1429 } 1430 } 1431 // Refresh the iterator, since any number of kills might have happened. 1432 k = dead->last_outs(kmin); 1433 } 1434 } else { // (dead->outcnt() == 0) 1435 // Done with outputs. 1436 igvn->hash_delete(dead); 1437 igvn->_worklist.remove(dead); 1438 igvn->set_type(dead, Type::TOP); 1439 // Kill all inputs to the dead guy 1440 for (uint i=0; i < dead->req(); i++) { 1441 Node *n = dead->in(i); // Get input to dead guy 1442 if (n != nullptr && !n->is_top()) { // Input is valid? 1443 dead->set_req(i, top); // Smash input away 1444 if (n->outcnt() == 0) { // Input also goes dead? 1445 if (!n->is_Con()) 1446 nstack.push(n); // Clear it out as well 1447 } else if (n->outcnt() == 1 && 1448 n->has_special_unique_user()) { 1449 igvn->add_users_to_worklist( n ); 1450 } else if (n->outcnt() <= 2 && n->is_Store()) { 1451 // Push store's uses on worklist to enable folding optimization for 1452 // store/store and store/load to the same address. 1453 // The restriction (outcnt() <= 2) is the same as in set_req_X() 1454 // and remove_globally_dead_node(). 1455 igvn->add_users_to_worklist( n ); 1456 } else if (dead->is_data_proj_of_pure_function(n)) { 1457 igvn->_worklist.push(n); 1458 } else { 1459 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n); 1460 } 1461 } 1462 } 1463 igvn->C->remove_useless_node(dead); 1464 } // (dead->outcnt() == 0) 1465 } // while (nstack.size() > 0) for outputs 1466 return; 1467 } 1468 1469 //------------------------------remove_dead_region----------------------------- 1470 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) { 1471 Node *n = in(0); 1472 if( !n ) return false; 1473 // Lost control into this guy? I.e., it became unreachable? 1474 // Aggressively kill all unreachable code. 1475 if (can_reshape && n->is_top()) { 1476 kill_dead_code(this, phase->is_IterGVN()); 1477 return false; // Node is dead. 1478 } 1479 1480 if( n->is_Region() && n->as_Region()->is_copy() ) { 1481 Node *m = n->nonnull_req(); 1482 set_req(0, m); 1483 return true; 1484 } 1485 return false; 1486 } 1487 1488 //------------------------------hash------------------------------------------- 1489 // Hash function over Nodes. 1490 uint Node::hash() const { 1491 uint sum = 0; 1492 for( uint i=0; i<_cnt; i++ ) // Add in all inputs 1493 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded nulls 1494 return (sum>>2) + _cnt + Opcode(); 1495 } 1496 1497 //------------------------------cmp-------------------------------------------- 1498 // Compare special parts of simple Nodes 1499 bool Node::cmp( const Node &n ) const { 1500 return true; // Must be same 1501 } 1502 1503 //------------------------------rematerialize----------------------------------- 1504 // Should we clone rather than spill this instruction? 1505 bool Node::rematerialize() const { 1506 if ( is_Mach() ) 1507 return this->as_Mach()->rematerialize(); 1508 else 1509 return (_flags & Flag_rematerialize) != 0; 1510 } 1511 1512 //------------------------------needs_anti_dependence_check--------------------- 1513 // Nodes which use memory without consuming it, hence need antidependences. 1514 bool Node::needs_anti_dependence_check() const { 1515 if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) { 1516 return false; 1517 } 1518 return in(1)->bottom_type()->has_memory(); 1519 } 1520 1521 // Get an integer constant from a ConNode (or CastIINode). 1522 // Return a default value if there is no apparent constant here. 1523 const TypeInt* Node::find_int_type() const { 1524 if (this->is_Type()) { 1525 return this->as_Type()->type()->isa_int(); 1526 } else if (this->is_Con()) { 1527 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1528 return this->bottom_type()->isa_int(); 1529 } 1530 return nullptr; 1531 } 1532 1533 const TypeInteger* Node::find_integer_type(BasicType bt) const { 1534 if (this->is_Type()) { 1535 return this->as_Type()->type()->isa_integer(bt); 1536 } else if (this->is_Con()) { 1537 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1538 return this->bottom_type()->isa_integer(bt); 1539 } 1540 return nullptr; 1541 } 1542 1543 // Get a pointer constant from a ConstNode. 1544 // Returns the constant if it is a pointer ConstNode 1545 intptr_t Node::get_ptr() const { 1546 assert( Opcode() == Op_ConP, "" ); 1547 return ((ConPNode*)this)->type()->is_ptr()->get_con(); 1548 } 1549 1550 // Get a narrow oop constant from a ConNNode. 1551 intptr_t Node::get_narrowcon() const { 1552 assert( Opcode() == Op_ConN, "" ); 1553 return ((ConNNode*)this)->type()->is_narrowoop()->get_con(); 1554 } 1555 1556 // Get a long constant from a ConNode. 1557 // Return a default value if there is no apparent constant here. 1558 const TypeLong* Node::find_long_type() const { 1559 if (this->is_Type()) { 1560 return this->as_Type()->type()->isa_long(); 1561 } else if (this->is_Con()) { 1562 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1563 return this->bottom_type()->isa_long(); 1564 } 1565 return nullptr; 1566 } 1567 1568 1569 /** 1570 * Return a ptr type for nodes which should have it. 1571 */ 1572 const TypePtr* Node::get_ptr_type() const { 1573 const TypePtr* tp = this->bottom_type()->make_ptr(); 1574 #ifdef ASSERT 1575 if (tp == nullptr) { 1576 this->dump(1); 1577 assert((tp != nullptr), "unexpected node type"); 1578 } 1579 #endif 1580 return tp; 1581 } 1582 1583 // Get a double constant from a ConstNode. 1584 // Returns the constant if it is a double ConstNode 1585 jdouble Node::getd() const { 1586 assert( Opcode() == Op_ConD, "" ); 1587 return ((ConDNode*)this)->type()->is_double_constant()->getd(); 1588 } 1589 1590 // Get a float constant from a ConstNode. 1591 // Returns the constant if it is a float ConstNode 1592 jfloat Node::getf() const { 1593 assert( Opcode() == Op_ConF, "" ); 1594 return ((ConFNode*)this)->type()->is_float_constant()->getf(); 1595 } 1596 1597 // Get a half float constant from a ConstNode. 1598 // Returns the constant if it is a float ConstNode 1599 jshort Node::geth() const { 1600 assert( Opcode() == Op_ConH, "" ); 1601 return ((ConHNode*)this)->type()->is_half_float_constant()->geth(); 1602 } 1603 1604 #ifndef PRODUCT 1605 1606 // Call this from debugger: 1607 Node* old_root() { 1608 Matcher* matcher = Compile::current()->matcher(); 1609 if (matcher != nullptr) { 1610 Node* new_root = Compile::current()->root(); 1611 Node* old_root = matcher->find_old_node(new_root); 1612 if (old_root != nullptr) { 1613 return old_root; 1614 } 1615 } 1616 tty->print("old_root: not found.\n"); 1617 return nullptr; 1618 } 1619 1620 // BFS traverse all reachable nodes from start, call callback on them 1621 template <typename Callback> 1622 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) { 1623 Unique_Mixed_Node_List worklist; 1624 worklist.add(start); 1625 for (uint i = 0; i < worklist.size(); i++) { 1626 Node* n = worklist[i]; 1627 callback(n); 1628 for (uint i = 0; i < n->len(); i++) { 1629 if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) { 1630 // If only_ctrl is set: Add regions, the root node, or control inputs only 1631 worklist.add(n->in(i)); 1632 } 1633 } 1634 if (traverse_output && !only_ctrl) { 1635 for (uint i = 0; i < n->outcnt(); i++) { 1636 worklist.add(n->raw_out(i)); 1637 } 1638 } 1639 } 1640 } 1641 1642 // BFS traverse from start, return node with idx 1643 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) { 1644 ResourceMark rm; 1645 Node* result = nullptr; 1646 auto callback = [&] (Node* n) { 1647 if (n->_idx == idx) { 1648 if (result != nullptr) { 1649 tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n", 1650 (uintptr_t)result, (uintptr_t)n, idx); 1651 } 1652 result = n; 1653 } 1654 }; 1655 visit_nodes(start, callback, traverse_output, only_ctrl); 1656 return result; 1657 } 1658 1659 static int node_idx_cmp(const Node** n1, const Node** n2) { 1660 return (*n1)->_idx - (*n2)->_idx; 1661 } 1662 1663 static void find_nodes_by_name(Node* start, const char* name) { 1664 ResourceMark rm; 1665 GrowableArray<const Node*> ns; 1666 auto callback = [&] (const Node* n) { 1667 if (StringUtils::is_star_match(name, n->Name())) { 1668 ns.push(n); 1669 } 1670 }; 1671 visit_nodes(start, callback, true, false); 1672 ns.sort(node_idx_cmp); 1673 for (int i = 0; i < ns.length(); i++) { 1674 ns.at(i)->dump(); 1675 } 1676 } 1677 1678 static void find_nodes_by_dump(Node* start, const char* pattern) { 1679 ResourceMark rm; 1680 GrowableArray<const Node*> ns; 1681 auto callback = [&] (const Node* n) { 1682 stringStream stream; 1683 n->dump("", false, &stream); 1684 if (StringUtils::is_star_match(pattern, stream.base())) { 1685 ns.push(n); 1686 } 1687 }; 1688 visit_nodes(start, callback, true, false); 1689 ns.sort(node_idx_cmp); 1690 for (int i = 0; i < ns.length(); i++) { 1691 ns.at(i)->dump(); 1692 } 1693 } 1694 1695 // call from debugger: find node with name pattern in new/current graph 1696 // name can contain "*" in match pattern to match any characters 1697 // the matching is case insensitive 1698 void find_nodes_by_name(const char* name) { 1699 Node* root = Compile::current()->root(); 1700 find_nodes_by_name(root, name); 1701 } 1702 1703 // call from debugger: find node with name pattern in old graph 1704 // name can contain "*" in match pattern to match any characters 1705 // the matching is case insensitive 1706 void find_old_nodes_by_name(const char* name) { 1707 Node* root = old_root(); 1708 find_nodes_by_name(root, name); 1709 } 1710 1711 // call from debugger: find node with dump pattern in new/current graph 1712 // can contain "*" in match pattern to match any characters 1713 // the matching is case insensitive 1714 void find_nodes_by_dump(const char* pattern) { 1715 Node* root = Compile::current()->root(); 1716 find_nodes_by_dump(root, pattern); 1717 } 1718 1719 // call from debugger: find node with name pattern in old graph 1720 // can contain "*" in match pattern to match any characters 1721 // the matching is case insensitive 1722 void find_old_nodes_by_dump(const char* pattern) { 1723 Node* root = old_root(); 1724 find_nodes_by_dump(root, pattern); 1725 } 1726 1727 // Call this from debugger, search in same graph as n: 1728 Node* find_node(Node* n, const int idx) { 1729 return n->find(idx); 1730 } 1731 1732 // Call this from debugger, search in new nodes: 1733 Node* find_node(const int idx) { 1734 return Compile::current()->root()->find(idx); 1735 } 1736 1737 // Call this from debugger, search in old nodes: 1738 Node* find_old_node(const int idx) { 1739 Node* root = old_root(); 1740 return (root == nullptr) ? nullptr : root->find(idx); 1741 } 1742 1743 // Call this from debugger, search in same graph as n: 1744 Node* find_ctrl(Node* n, const int idx) { 1745 return n->find_ctrl(idx); 1746 } 1747 1748 // Call this from debugger, search in new nodes: 1749 Node* find_ctrl(const int idx) { 1750 return Compile::current()->root()->find_ctrl(idx); 1751 } 1752 1753 // Call this from debugger, search in old nodes: 1754 Node* find_old_ctrl(const int idx) { 1755 Node* root = old_root(); 1756 return (root == nullptr) ? nullptr : root->find_ctrl(idx); 1757 } 1758 1759 //------------------------------find_ctrl-------------------------------------- 1760 // Find an ancestor to this node in the control history with given _idx 1761 Node* Node::find_ctrl(int idx) { 1762 return find(idx, true); 1763 } 1764 1765 //------------------------------find------------------------------------------- 1766 // Tries to find the node with the index |idx| starting from this node. If idx is negative, 1767 // the search also includes forward (out) edges. Returns null if not found. 1768 // If only_ctrl is set, the search will only be done on control nodes. Returns null if 1769 // not found or if the node to be found is not a control node (search will not find it). 1770 Node* Node::find(const int idx, bool only_ctrl) { 1771 ResourceMark rm; 1772 return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl); 1773 } 1774 1775 class PrintBFS { 1776 public: 1777 PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st) 1778 : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st), 1779 _dcc(this), _info_uid(cmpkey, hashkey) {} 1780 1781 void run(); 1782 private: 1783 // pipeline steps 1784 bool configure(); 1785 void collect(); 1786 void select(); 1787 void select_all(); 1788 void select_all_paths(); 1789 void select_shortest_path(); 1790 void sort(); 1791 void print(); 1792 1793 // inputs 1794 const Node* _start; 1795 const int _max_distance; 1796 const Node* _target; 1797 const char* _options; 1798 outputStream* _output; 1799 1800 // options 1801 bool _traverse_inputs = false; 1802 bool _traverse_outputs = false; 1803 struct Filter { 1804 bool _control = false; 1805 bool _memory = false; 1806 bool _data = false; 1807 bool _mixed = false; 1808 bool _other = false; 1809 bool is_empty() const { 1810 return !(_control || _memory || _data || _mixed || _other); 1811 } 1812 void set_all() { 1813 _control = true; 1814 _memory = true; 1815 _data = true; 1816 _mixed = true; 1817 _other = true; 1818 } 1819 // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes 1820 // are considered to have control. 1821 bool accepts(const Node* n) { 1822 const Type* t = n->bottom_type(); 1823 return ( _data && t->has_category(Type::Category::Data) ) || 1824 ( _memory && t->has_category(Type::Category::Memory) ) || 1825 ( _mixed && t->has_category(Type::Category::Mixed) ) || 1826 ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) || 1827 ( _other && t->has_category(Type::Category::Other) ); 1828 } 1829 }; 1830 Filter _filter_visit; 1831 Filter _filter_boundary; 1832 bool _sort_idx = false; 1833 bool _all_paths = false; 1834 bool _use_color = false; 1835 bool _print_blocks = false; 1836 bool _print_old = false; 1837 bool _dump_only = false; 1838 bool _print_igv = false; 1839 1840 void print_options_help(bool print_examples); 1841 bool parse_options(); 1842 1843 public: 1844 class DumpConfigColored : public Node::DumpConfig { 1845 public: 1846 DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {}; 1847 virtual void pre_dump(outputStream* st, const Node* n); 1848 virtual void post_dump(outputStream* st); 1849 private: 1850 PrintBFS* _bfs; 1851 }; 1852 private: 1853 DumpConfigColored _dcc; 1854 1855 // node info 1856 static Node* old_node(const Node* n); // mach node -> prior IR node 1857 void print_node_idx(const Node* n); 1858 void print_block_id(const Block* b); 1859 void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth 1860 1861 // traversal data structures 1862 GrowableArray<const Node*> _worklist; // BFS queue 1863 void maybe_traverse(const Node* src, const Node* dst); 1864 1865 // node info annotation 1866 class Info { 1867 public: 1868 Info() : Info(nullptr, 0) {}; 1869 Info(const Node* node, int distance) 1870 : _node(node), _distance_from_start(distance) {}; 1871 const Node* node() const { return _node; }; 1872 int distance() const { return _distance_from_start; }; 1873 int distance_from_target() const { return _distance_from_target; } 1874 void set_distance_from_target(int d) { _distance_from_target = d; } 1875 GrowableArray<const Node*> edge_bwd; // pointing toward _start 1876 bool is_marked() const { return _mark; } // marked to keep during select 1877 void set_mark() { _mark = true; } 1878 private: 1879 const Node* _node; 1880 int _distance_from_start; // distance from _start 1881 int _distance_from_target = 0; // distance from _target if _all_paths 1882 bool _mark = false; 1883 }; 1884 Dict _info_uid; // Node -> uid 1885 GrowableArray<Info> _info; // uid -> info 1886 1887 Info* find_info(const Node* n) { 1888 size_t uid = (size_t)_info_uid[n]; 1889 if (uid == 0) { 1890 return nullptr; 1891 } 1892 return &_info.at((int)uid); 1893 } 1894 1895 void make_info(const Node* node, const int distance) { 1896 assert(find_info(node) == nullptr, "node does not yet have info"); 1897 size_t uid = _info.length() + 1; 1898 _info_uid.Insert((void*)node, (void*)uid); 1899 _info.at_put_grow((int)uid, Info(node, distance)); 1900 assert(find_info(node)->node() == node, "stored correct node"); 1901 }; 1902 1903 // filled by sort, printed by print 1904 GrowableArray<const Node*> _print_list; 1905 1906 // print header + node table 1907 void print_header() const; 1908 void print_node(const Node* n); 1909 }; 1910 1911 void PrintBFS::run() { 1912 if (!configure()) { 1913 return; 1914 } 1915 collect(); 1916 select(); 1917 sort(); 1918 print(); 1919 } 1920 1921 // set up configuration for BFS and print 1922 bool PrintBFS::configure() { 1923 if (_max_distance < 0) { 1924 _output->print_cr("dump_bfs: max_distance must be non-negative!"); 1925 return false; 1926 } 1927 return parse_options(); 1928 } 1929 1930 // BFS traverse according to configuration, fill worklist and info 1931 void PrintBFS::collect() { 1932 maybe_traverse(_start, _start); 1933 int pos = 0; 1934 while (pos < _worklist.length()) { 1935 const Node* n = _worklist.at(pos++); // next node to traverse 1936 Info* info = find_info(n); 1937 if (!_filter_visit.accepts(n) && n != _start) { 1938 continue; // we hit boundary, do not traverse further 1939 } 1940 if (n != _start && n->is_Root()) { 1941 continue; // traversing through root node would lead to unrelated nodes 1942 } 1943 if (_traverse_inputs && _max_distance > info->distance()) { 1944 for (uint i = 0; i < n->req(); i++) { 1945 maybe_traverse(n, n->in(i)); 1946 } 1947 } 1948 if (_traverse_outputs && _max_distance > info->distance()) { 1949 for (uint i = 0; i < n->outcnt(); i++) { 1950 maybe_traverse(n, n->raw_out(i)); 1951 } 1952 } 1953 } 1954 } 1955 1956 // go through work list, mark those that we want to print 1957 void PrintBFS::select() { 1958 if (_target == nullptr ) { 1959 select_all(); 1960 } else { 1961 if (find_info(_target) == nullptr) { 1962 _output->print_cr("Could not find target in BFS."); 1963 return; 1964 } 1965 if (_all_paths) { 1966 select_all_paths(); 1967 } else { 1968 select_shortest_path(); 1969 } 1970 } 1971 } 1972 1973 // take all nodes from BFS 1974 void PrintBFS::select_all() { 1975 for (int i = 0; i < _worklist.length(); i++) { 1976 const Node* n = _worklist.at(i); 1977 Info* info = find_info(n); 1978 info->set_mark(); 1979 } 1980 } 1981 1982 // traverse backward from target, along edges found in BFS 1983 void PrintBFS::select_all_paths() { 1984 int pos = 0; 1985 GrowableArray<const Node*> backtrace; 1986 // start from target 1987 backtrace.push(_target); 1988 find_info(_target)->set_mark(); 1989 // traverse backward 1990 while (pos < backtrace.length()) { 1991 const Node* n = backtrace.at(pos++); 1992 Info* info = find_info(n); 1993 for (int i = 0; i < info->edge_bwd.length(); i++) { 1994 // all backward edges 1995 const Node* back = info->edge_bwd.at(i); 1996 Info* back_info = find_info(back); 1997 if (!back_info->is_marked()) { 1998 // not yet found this on way back. 1999 back_info->set_distance_from_target(info->distance_from_target() + 1); 2000 if (back_info->distance_from_target() + back_info->distance() <= _max_distance) { 2001 // total distance is small enough 2002 back_info->set_mark(); 2003 backtrace.push(back); 2004 } 2005 } 2006 } 2007 } 2008 } 2009 2010 void PrintBFS::select_shortest_path() { 2011 const Node* current = _target; 2012 while (true) { 2013 Info* info = find_info(current); 2014 info->set_mark(); 2015 if (current == _start) { 2016 break; 2017 } 2018 // first edge -> leads us one step closer to _start 2019 current = info->edge_bwd.at(0); 2020 } 2021 } 2022 2023 // go through worklist in desired order, put the marked ones in print list 2024 void PrintBFS::sort() { 2025 if (_traverse_inputs && !_traverse_outputs) { 2026 // reverse order 2027 for (int i = _worklist.length() - 1; i >= 0; i--) { 2028 const Node* n = _worklist.at(i); 2029 Info* info = find_info(n); 2030 if (info->is_marked()) { 2031 _print_list.push(n); 2032 } 2033 } 2034 } else { 2035 // same order as worklist 2036 for (int i = 0; i < _worklist.length(); i++) { 2037 const Node* n = _worklist.at(i); 2038 Info* info = find_info(n); 2039 if (info->is_marked()) { 2040 _print_list.push(n); 2041 } 2042 } 2043 } 2044 if (_sort_idx) { 2045 _print_list.sort(node_idx_cmp); 2046 } 2047 } 2048 2049 // go through printlist and print 2050 void PrintBFS::print() { 2051 if (_print_list.length() > 0 ) { 2052 print_header(); 2053 for (int i = 0; i < _print_list.length(); i++) { 2054 const Node* n = _print_list.at(i); 2055 print_node(n); 2056 } 2057 if (_print_igv) { 2058 Compile* C = Compile::current(); 2059 C->init_igv(); 2060 C->igv_print_graph_to_network("PrintBFS", (Node*) C->root(), _print_list); 2061 } 2062 } else { 2063 _output->print_cr("No nodes to print."); 2064 } 2065 } 2066 2067 void PrintBFS::print_options_help(bool print_examples) { 2068 _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)"); 2069 _output->print_cr(""); 2070 _output->print_cr("Use cases:"); 2071 _output->print_cr(" BFS traversal: no target required"); 2072 _output->print_cr(" shortest path: set target"); 2073 _output->print_cr(" all paths: set target and put 'A' in options"); 2074 _output->print_cr(" detect loop: subcase of all paths, have start==target"); 2075 _output->print_cr(""); 2076 _output->print_cr("Arguments:"); 2077 _output->print_cr(" this/start: staring point of BFS"); 2078 _output->print_cr(" target:"); 2079 _output->print_cr(" if null: simple BFS"); 2080 _output->print_cr(" else: shortest path or all paths between this/start and target"); 2081 _output->print_cr(" options:"); 2082 _output->print_cr(" if null: same as \"cdmox@B\""); 2083 _output->print_cr(" else: use combination of following characters"); 2084 _output->print_cr(" h: display this help info"); 2085 _output->print_cr(" H: display this help info, with examples"); 2086 _output->print_cr(" +: traverse in-edges (on if neither + nor -)"); 2087 _output->print_cr(" -: traverse out-edges"); 2088 _output->print_cr(" c: visit control nodes"); 2089 _output->print_cr(" d: visit data nodes"); 2090 _output->print_cr(" m: visit memory nodes"); 2091 _output->print_cr(" o: visit other nodes"); 2092 _output->print_cr(" x: visit mixed nodes"); 2093 _output->print_cr(" C: boundary control nodes"); 2094 _output->print_cr(" D: boundary data nodes"); 2095 _output->print_cr(" M: boundary memory nodes"); 2096 _output->print_cr(" O: boundary other nodes"); 2097 _output->print_cr(" X: boundary mixed nodes"); 2098 _output->print_cr(" #: display node category in color (not supported in all terminals)"); 2099 _output->print_cr(" S: sort displayed nodes by node idx"); 2100 _output->print_cr(" A: all paths (not just shortest path to target)"); 2101 _output->print_cr(" @: print old nodes - before matching (if available)"); 2102 _output->print_cr(" B: print scheduling blocks (if available)"); 2103 _output->print_cr(" $: dump only, no header, no other columns"); 2104 _output->print_cr(" !: show nodes on IGV (sent over network stream)"); 2105 _output->print_cr(""); 2106 _output->print_cr("recursively follow edges to nodes with permitted visit types,"); 2107 _output->print_cr("on the boundary additionally display nodes allowed in boundary types"); 2108 _output->print_cr("Note: the categories can be overlapping. For example a mixed node"); 2109 _output->print_cr(" can contain control and memory output. Some from the other"); 2110 _output->print_cr(" category are also control (Halt, Return, etc)."); 2111 _output->print_cr(""); 2112 _output->print_cr("output columns:"); 2113 _output->print_cr(" dist: BFS distance to this/start"); 2114 _output->print_cr(" apd: all paths distance (d_outputart + d_target)"); 2115 _output->print_cr(" block: block identifier, based on _pre_order"); 2116 _output->print_cr(" head: first node in block"); 2117 _output->print_cr(" idom: head node of idom block"); 2118 _output->print_cr(" depth: depth of block (_dom_depth)"); 2119 _output->print_cr(" old: old IR node - before matching"); 2120 _output->print_cr(" dump: node->dump()"); 2121 _output->print_cr(""); 2122 _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string"); 2123 _output->print_cr(" then we set all of them."); 2124 _output->print_cr(" This allows for short strings like \"#\" for colored input traversal"); 2125 _output->print_cr(" or \"-#\" for colored output traversal."); 2126 if (print_examples) { 2127 _output->print_cr(""); 2128 _output->print_cr("Examples:"); 2129 _output->print_cr(" if->dump_bfs(10, 0, \"+cxo\")"); 2130 _output->print_cr(" starting at some if node, traverse inputs recursively"); 2131 _output->print_cr(" only along control (mixed and other can also be control)"); 2132 _output->print_cr(" phi->dump_bfs(5, 0, \"-dxo\")"); 2133 _output->print_cr(" starting at phi node, traverse outputs recursively"); 2134 _output->print_cr(" only along data (mixed and other can also have data flow)"); 2135 _output->print_cr(" find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")"); 2136 _output->print_cr(" find inputs of node 385, up to 3 nodes up (+)"); 2137 _output->print_cr(" traverse all nodes (cdmox), use colors (#)"); 2138 _output->print_cr(" display old nodes and blocks, if they exist"); 2139 _output->print_cr(" useful call to start with"); 2140 _output->print_cr(" find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")"); 2141 _output->print_cr(" find non-data dependencies of a data node"); 2142 _output->print_cr(" follow data node outputs until we find another category"); 2143 _output->print_cr(" node as the boundary"); 2144 _output->print_cr(" x->dump_bfs(10, y, 0)"); 2145 _output->print_cr(" find shortest path from x to y, along any edge or node"); 2146 _output->print_cr(" will not find a path if it is longer than 10"); 2147 _output->print_cr(" useful to find how x and y are related"); 2148 _output->print_cr(" find_node(741)->dump_bfs(20, find_node(746), \"c+\")"); 2149 _output->print_cr(" find shortest control path between two nodes"); 2150 _output->print_cr(" find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")"); 2151 _output->print_cr(" find all paths (A) between two nodes of length at most 8"); 2152 _output->print_cr(" find_node(741)->dump_bfs(7, find_node(741), \"c+A\")"); 2153 _output->print_cr(" find all control loops for this node"); 2154 } 2155 } 2156 2157 bool PrintBFS::parse_options() { 2158 if (_options == nullptr) { 2159 _options = "cdmox@B"; // default options 2160 } 2161 size_t len = strlen(_options); 2162 for (size_t i = 0; i < len; i++) { 2163 switch (_options[i]) { 2164 case '+': 2165 _traverse_inputs = true; 2166 break; 2167 case '-': 2168 _traverse_outputs = true; 2169 break; 2170 case 'c': 2171 _filter_visit._control = true; 2172 break; 2173 case 'm': 2174 _filter_visit._memory = true; 2175 break; 2176 case 'd': 2177 _filter_visit._data = true; 2178 break; 2179 case 'x': 2180 _filter_visit._mixed = true; 2181 break; 2182 case 'o': 2183 _filter_visit._other = true; 2184 break; 2185 case 'C': 2186 _filter_boundary._control = true; 2187 break; 2188 case 'M': 2189 _filter_boundary._memory = true; 2190 break; 2191 case 'D': 2192 _filter_boundary._data = true; 2193 break; 2194 case 'X': 2195 _filter_boundary._mixed = true; 2196 break; 2197 case 'O': 2198 _filter_boundary._other = true; 2199 break; 2200 case 'S': 2201 _sort_idx = true; 2202 break; 2203 case 'A': 2204 _all_paths = true; 2205 break; 2206 case '#': 2207 _use_color = true; 2208 break; 2209 case 'B': 2210 _print_blocks = true; 2211 break; 2212 case '@': 2213 _print_old = true; 2214 break; 2215 case '$': 2216 _dump_only = true; 2217 break; 2218 case '!': 2219 _print_igv = true; 2220 break; 2221 case 'h': 2222 print_options_help(false); 2223 return false; 2224 case 'H': 2225 print_options_help(true); 2226 return false; 2227 default: 2228 _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]); 2229 _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")"); 2230 return false; 2231 } 2232 } 2233 if (!_traverse_inputs && !_traverse_outputs) { 2234 _traverse_inputs = true; 2235 } 2236 if (_filter_visit.is_empty()) { 2237 _filter_visit.set_all(); 2238 } 2239 Compile* C = Compile::current(); 2240 _print_old &= (C->matcher() != nullptr); // only show old if there are new 2241 _print_blocks &= (C->cfg() != nullptr); // only show blocks if available 2242 return true; 2243 } 2244 2245 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) { 2246 if (!_bfs->_use_color) { 2247 return; 2248 } 2249 Info* info = _bfs->find_info(n); 2250 if (info == nullptr || !info->is_marked()) { 2251 return; 2252 } 2253 2254 const Type* t = n->bottom_type(); 2255 switch (t->category()) { 2256 case Type::Category::Data: 2257 st->print("\u001b[34m"); 2258 break; 2259 case Type::Category::Memory: 2260 st->print("\u001b[32m"); 2261 break; 2262 case Type::Category::Mixed: 2263 st->print("\u001b[35m"); 2264 break; 2265 case Type::Category::Control: 2266 st->print("\u001b[31m"); 2267 break; 2268 case Type::Category::Other: 2269 st->print("\u001b[33m"); 2270 break; 2271 case Type::Category::Undef: 2272 n->dump(); 2273 assert(false, "category undef ??"); 2274 break; 2275 default: 2276 n->dump(); 2277 assert(false, "not covered"); 2278 break; 2279 } 2280 } 2281 2282 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) { 2283 if (!_bfs->_use_color) { 2284 return; 2285 } 2286 st->print("\u001b[0m"); // white 2287 } 2288 2289 Node* PrintBFS::old_node(const Node* n) { 2290 Compile* C = Compile::current(); 2291 if (C->matcher() == nullptr || !C->node_arena()->contains(n)) { 2292 return (Node*)nullptr; 2293 } else { 2294 return C->matcher()->find_old_node(n); 2295 } 2296 } 2297 2298 void PrintBFS::print_node_idx(const Node* n) { 2299 Compile* C = Compile::current(); 2300 char buf[30]; 2301 if (n == nullptr) { 2302 os::snprintf_checked(buf, sizeof(buf), "_"); // null 2303 } else if (C->node_arena()->contains(n)) { 2304 os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx); // new node 2305 } else { 2306 os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node 2307 } 2308 _output->print("%6s", buf); 2309 } 2310 2311 void PrintBFS::print_block_id(const Block* b) { 2312 Compile* C = Compile::current(); 2313 char buf[30]; 2314 os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order); 2315 _output->print("%7s", buf); 2316 } 2317 2318 void PrintBFS::print_node_block(const Node* n) { 2319 Compile* C = Compile::current(); 2320 Block* b = C->node_arena()->contains(n) 2321 ? C->cfg()->get_block_for_node(n) 2322 : nullptr; // guard against old nodes 2323 if (b == nullptr) { 2324 _output->print(" _"); // Block 2325 _output->print(" _"); // head 2326 _output->print(" _"); // idom 2327 _output->print(" _"); // depth 2328 } else { 2329 print_block_id(b); 2330 print_node_idx(b->head()); 2331 if (b->_idom) { 2332 print_node_idx(b->_idom->head()); 2333 } else { 2334 _output->print(" _"); // idom 2335 } 2336 _output->print("%6d ", b->_dom_depth); 2337 } 2338 } 2339 2340 // filter, and add to worklist, add info, note traversal edges 2341 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) { 2342 if (dst != nullptr && 2343 (_filter_visit.accepts(dst) || 2344 _filter_boundary.accepts(dst) || 2345 dst == _start)) { // correct category or start? 2346 if (find_info(dst) == nullptr) { 2347 // never visited - set up info 2348 _worklist.push(dst); 2349 int d = 0; 2350 if (dst != _start) { 2351 d = find_info(src)->distance() + 1; 2352 } 2353 make_info(dst, d); 2354 } 2355 if (src != dst) { 2356 // traversal edges useful during select 2357 find_info(dst)->edge_bwd.push(src); 2358 } 2359 } 2360 } 2361 2362 void PrintBFS::print_header() const { 2363 if (_dump_only) { 2364 return; // no header in dump only mode 2365 } 2366 _output->print("dist"); // distance 2367 if (_all_paths) { 2368 _output->print(" apd"); // all paths distance 2369 } 2370 if (_print_blocks) { 2371 _output->print(" [block head idom depth]"); // block 2372 } 2373 if (_print_old) { 2374 _output->print(" old"); // old node 2375 } 2376 _output->print(" dump\n"); // node dump 2377 _output->print_cr("---------------------------------------------"); 2378 } 2379 2380 void PrintBFS::print_node(const Node* n) { 2381 if (_dump_only) { 2382 n->dump("\n", false, _output, &_dcc); 2383 return; 2384 } 2385 _output->print("%4d", find_info(n)->distance());// distance 2386 if (_all_paths) { 2387 Info* info = find_info(n); 2388 int apd = info->distance() + info->distance_from_target(); 2389 _output->print("%4d", apd); // all paths distance 2390 } 2391 if (_print_blocks) { 2392 print_node_block(n); // block 2393 } 2394 if (_print_old) { 2395 print_node_idx(old_node(n)); // old node 2396 } 2397 _output->print(" "); 2398 n->dump("\n", false, _output, &_dcc); // node dump 2399 } 2400 2401 //------------------------------dump_bfs-------------------------------------- 2402 // Call this from debugger 2403 // Useful for BFS traversal, shortest path, all path, loop detection, etc 2404 // Designed to be more readable, and provide additional info 2405 // To find all options, run: 2406 // find_node(0)->dump_bfs(0,0,"H") 2407 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const { 2408 dump_bfs(max_distance, target, options, tty); 2409 } 2410 2411 // Used to dump to stream. 2412 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const { 2413 PrintBFS bfs(this, max_distance, target, options, st); 2414 bfs.run(); 2415 } 2416 2417 // Call this from debugger, with default arguments 2418 void Node::dump_bfs(const int max_distance) const { 2419 dump_bfs(max_distance, nullptr, nullptr); 2420 } 2421 2422 // -----------------------------dump_idx--------------------------------------- 2423 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const { 2424 if (dc != nullptr) { 2425 dc->pre_dump(st, this); 2426 } 2427 Compile* C = Compile::current(); 2428 bool is_new = C->node_arena()->contains(this); 2429 if (align) { // print prefix empty spaces$ 2430 // +1 for leading digit, +1 for "o" 2431 uint max_width = (C->unique() == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(C->unique())))) + 2; 2432 // +1 for leading digit, maybe +1 for "o" 2433 uint width = (_idx == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(_idx)))) + 1 + (is_new ? 0 : 1); 2434 while (max_width > width) { 2435 st->print(" "); 2436 width++; 2437 } 2438 } 2439 if (!is_new) { 2440 st->print("o"); 2441 } 2442 st->print("%d", _idx); 2443 if (dc != nullptr) { 2444 dc->post_dump(st); 2445 } 2446 } 2447 2448 // -----------------------------dump_name-------------------------------------- 2449 void Node::dump_name(outputStream* st, DumpConfig* dc) const { 2450 if (dc != nullptr) { 2451 dc->pre_dump(st, this); 2452 } 2453 st->print("%s", Name()); 2454 if (dc != nullptr) { 2455 dc->post_dump(st); 2456 } 2457 } 2458 2459 // -----------------------------Name------------------------------------------- 2460 extern const char *NodeClassNames[]; 2461 const char *Node::Name() const { return NodeClassNames[Opcode()]; } 2462 2463 static bool is_disconnected(const Node* n) { 2464 for (uint i = 0; i < n->req(); i++) { 2465 if (n->in(i) != nullptr) return false; 2466 } 2467 return true; 2468 } 2469 2470 #ifdef ASSERT 2471 void Node::dump_orig(outputStream *st, bool print_key) const { 2472 Compile* C = Compile::current(); 2473 Node* orig = _debug_orig; 2474 if (not_a_node(orig)) orig = nullptr; 2475 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2476 if (orig == nullptr) return; 2477 if (print_key) { 2478 st->print(" !orig="); 2479 } 2480 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops 2481 if (not_a_node(fast)) fast = nullptr; 2482 while (orig != nullptr) { 2483 bool discon = is_disconnected(orig); // if discon, print [123] else 123 2484 if (discon) st->print("["); 2485 if (!Compile::current()->node_arena()->contains(orig)) 2486 st->print("o"); 2487 st->print("%d", orig->_idx); 2488 if (discon) st->print("]"); 2489 orig = orig->debug_orig(); 2490 if (not_a_node(orig)) orig = nullptr; 2491 if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr; 2492 if (orig != nullptr) st->print(","); 2493 if (fast != nullptr) { 2494 // Step fast twice for each single step of orig: 2495 fast = fast->debug_orig(); 2496 if (not_a_node(fast)) fast = nullptr; 2497 if (fast != nullptr && fast != orig) { 2498 fast = fast->debug_orig(); 2499 if (not_a_node(fast)) fast = nullptr; 2500 } 2501 if (fast == orig) { 2502 st->print("..."); 2503 break; 2504 } 2505 } 2506 } 2507 } 2508 2509 void Node::set_debug_orig(Node* orig) { 2510 _debug_orig = orig; 2511 if (BreakAtNode == 0) return; 2512 if (not_a_node(orig)) orig = nullptr; 2513 int trip = 10; 2514 while (orig != nullptr) { 2515 if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) { 2516 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT, 2517 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx()); 2518 BREAKPOINT; 2519 } 2520 orig = orig->debug_orig(); 2521 if (not_a_node(orig)) orig = nullptr; 2522 if (trip-- <= 0) break; 2523 } 2524 } 2525 #endif //ASSERT 2526 2527 //------------------------------dump------------------------------------------ 2528 // Dump a Node 2529 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const { 2530 Compile* C = Compile::current(); 2531 bool is_new = C->node_arena()->contains(this); 2532 C->_in_dump_cnt++; 2533 2534 // idx mark name === 2535 dump_idx(true, st, dc); 2536 st->print(mark ? " >" : " "); 2537 dump_name(st, dc); 2538 st->print(" === "); 2539 2540 // Dump the required and precedence inputs 2541 dump_req(st, dc); 2542 dump_prec(st, dc); 2543 // Dump the outputs 2544 dump_out(st, dc); 2545 2546 if (is_disconnected(this)) { 2547 #ifdef ASSERT 2548 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2549 dump_orig(st); 2550 #endif 2551 st->cr(); 2552 C->_in_dump_cnt--; 2553 return; // don't process dead nodes 2554 } 2555 2556 if (C->clone_map().value(_idx) != 0) { 2557 C->clone_map().dump(_idx, st); 2558 } 2559 // Dump node-specific info 2560 dump_spec(st); 2561 #ifdef ASSERT 2562 // Dump the non-reset _debug_idx 2563 if (Verbose && WizardMode) { 2564 st->print(" [" UINT64_FORMAT "]", debug_idx()); 2565 } 2566 #endif 2567 2568 const Type *t = bottom_type(); 2569 2570 if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) { 2571 const TypeInstPtr *toop = t->isa_instptr(); 2572 const TypeInstKlassPtr *tkls = t->isa_instklassptr(); 2573 if (toop) { 2574 st->print(" Oop:"); 2575 } else if (tkls) { 2576 st->print(" Klass:"); 2577 } 2578 t->dump_on(st); 2579 } else if (t == Type::MEMORY) { 2580 st->print(" Memory:"); 2581 MemNode::dump_adr_type(this, adr_type(), st); 2582 } else if (Verbose || WizardMode) { 2583 st->print(" Type:"); 2584 if (t) { 2585 t->dump_on(st); 2586 } else { 2587 st->print("no type"); 2588 } 2589 } else if (t->isa_vect() && this->is_MachSpillCopy()) { 2590 // Dump MachSpillcopy vector type. 2591 t->dump_on(st); 2592 } 2593 if (is_new) { 2594 DEBUG_ONLY(dump_orig(st)); 2595 Node_Notes* nn = C->node_notes_at(_idx); 2596 if (nn != nullptr && !nn->is_clear()) { 2597 if (nn->jvms() != nullptr) { 2598 st->print(" !jvms:"); 2599 nn->jvms()->dump_spec(st); 2600 } 2601 } 2602 } 2603 if (suffix) st->print("%s", suffix); 2604 C->_in_dump_cnt--; 2605 } 2606 2607 // call from debugger: dump node to tty with newline 2608 void Node::dump() const { 2609 dump("\n"); 2610 } 2611 2612 //------------------------------dump_req-------------------------------------- 2613 void Node::dump_req(outputStream* st, DumpConfig* dc) const { 2614 // Dump the required input edges 2615 for (uint i = 0; i < req(); i++) { // For all required inputs 2616 Node* d = in(i); 2617 if (d == nullptr) { 2618 st->print("_ "); 2619 } else if (not_a_node(d)) { 2620 st->print("not_a_node "); // uninitialized, sentinel, garbage, etc. 2621 } else { 2622 d->dump_idx(false, st, dc); 2623 st->print(" "); 2624 } 2625 } 2626 } 2627 2628 2629 //------------------------------dump_prec------------------------------------- 2630 void Node::dump_prec(outputStream* st, DumpConfig* dc) const { 2631 // Dump the precedence edges 2632 int any_prec = 0; 2633 for (uint i = req(); i < len(); i++) { // For all precedence inputs 2634 Node* p = in(i); 2635 if (p != nullptr) { 2636 if (!any_prec++) st->print(" |"); 2637 if (not_a_node(p)) { st->print("not_a_node "); continue; } 2638 p->dump_idx(false, st, dc); 2639 st->print(" "); 2640 } 2641 } 2642 } 2643 2644 //------------------------------dump_out-------------------------------------- 2645 void Node::dump_out(outputStream* st, DumpConfig* dc) const { 2646 // Delimit the output edges 2647 st->print(" [[ "); 2648 // Dump the output edges 2649 for (uint i = 0; i < _outcnt; i++) { // For all outputs 2650 Node* u = _out[i]; 2651 if (u == nullptr) { 2652 st->print("_ "); 2653 } else if (not_a_node(u)) { 2654 st->print("not_a_node "); 2655 } else { 2656 u->dump_idx(false, st, dc); 2657 st->print(" "); 2658 } 2659 } 2660 st->print("]] "); 2661 } 2662 2663 //------------------------------dump------------------------------------------- 2664 // call from debugger: dump Node's inputs (or outputs if d negative) 2665 void Node::dump(int d) const { 2666 dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$"); 2667 } 2668 2669 //------------------------------dump_ctrl-------------------------------------- 2670 // call from debugger: dump Node's control inputs (or outputs if d negative) 2671 void Node::dump_ctrl(int d) const { 2672 dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c"); 2673 } 2674 2675 //-----------------------------dump_compact------------------------------------ 2676 void Node::dump_comp() const { 2677 this->dump_comp("\n"); 2678 } 2679 2680 //-----------------------------dump_compact------------------------------------ 2681 // Dump a Node in compact representation, i.e., just print its name and index. 2682 // Nodes can specify additional specifics to print in compact representation by 2683 // implementing dump_compact_spec. 2684 void Node::dump_comp(const char* suffix, outputStream *st) const { 2685 Compile* C = Compile::current(); 2686 C->_in_dump_cnt++; 2687 st->print("%s(%d)", Name(), _idx); 2688 this->dump_compact_spec(st); 2689 if (suffix) { 2690 st->print("%s", suffix); 2691 } 2692 C->_in_dump_cnt--; 2693 } 2694 2695 // VERIFICATION CODE 2696 // Verify all nodes if verify_depth is negative 2697 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) { 2698 assert(verify_depth != 0, "depth should not be 0"); 2699 Compile* C = Compile::current(); 2700 uint last_index_on_current_depth = worklist.size() - 1; 2701 verify_depth--; // Visiting the first node on depth 1 2702 // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0 2703 bool add_to_worklist = verify_depth != 0; 2704 2705 for (uint list_index = 0; list_index < worklist.size(); list_index++) { 2706 Node* n = worklist[list_index]; 2707 2708 if (n->is_Con() && n->bottom_type() == Type::TOP) { 2709 if (C->cached_top_node() == nullptr) { 2710 C->set_cached_top_node((Node*)n); 2711 } 2712 assert(C->cached_top_node() == n, "TOP node must be unique"); 2713 } 2714 2715 uint in_len = n->len(); 2716 for (uint i = 0; i < in_len; i++) { 2717 Node* x = n->_in[i]; 2718 if (!x || x->is_top()) { 2719 continue; 2720 } 2721 2722 // Verify my input has a def-use edge to me 2723 // Count use-def edges from n to x 2724 int cnt = 1; 2725 for (uint j = 0; j < i; j++) { 2726 if (n->_in[j] == x) { 2727 cnt++; 2728 break; 2729 } 2730 } 2731 if (cnt == 2) { 2732 // x is already checked as n's previous input, skip its duplicated def-use count checking 2733 continue; 2734 } 2735 for (uint j = i + 1; j < in_len; j++) { 2736 if (n->_in[j] == x) { 2737 cnt++; 2738 } 2739 } 2740 2741 // Count def-use edges from x to n 2742 uint max = x->_outcnt; 2743 for (uint k = 0; k < max; k++) { 2744 if (x->_out[k] == n) { 2745 cnt--; 2746 } 2747 } 2748 assert(cnt == 0, "mismatched def-use edge counts"); 2749 2750 if (add_to_worklist && !visited.test_set(x->_idx)) { 2751 worklist.push(x); 2752 } 2753 } 2754 2755 if (verify_depth > 0 && list_index == last_index_on_current_depth) { 2756 // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and 2757 // store the current last list index which is the last node in the list with the new depth. All nodes 2758 // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0). 2759 verify_depth--; 2760 if (verify_depth == 0) { 2761 add_to_worklist = false; 2762 } 2763 last_index_on_current_depth = worklist.size() - 1; 2764 } 2765 } 2766 } 2767 #endif // not PRODUCT 2768 2769 //------------------------------Registers-------------------------------------- 2770 // Do we Match on this edge index or not? Generally false for Control 2771 // and true for everything else. Weird for calls & returns. 2772 uint Node::match_edge(uint idx) const { 2773 return idx; // True for other than index 0 (control) 2774 } 2775 2776 // Register classes are defined for specific machines 2777 const RegMask &Node::out_RegMask() const { 2778 ShouldNotCallThis(); 2779 return RegMask::Empty; 2780 } 2781 2782 const RegMask &Node::in_RegMask(uint) const { 2783 ShouldNotCallThis(); 2784 return RegMask::Empty; 2785 } 2786 2787 void Node_Array::grow(uint i) { 2788 _nesting.check(_a); // Check if a potential reallocation in the arena is safe 2789 assert(i >= _max, "Should have been checked before, use maybe_grow?"); 2790 assert(_max > 0, "invariant"); 2791 uint old = _max; 2792 _max = next_power_of_2(i); 2793 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*)); 2794 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) ); 2795 } 2796 2797 void Node_Array::insert(uint i, Node* n) { 2798 if (_nodes[_max - 1]) { 2799 grow(_max); 2800 } 2801 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*))); 2802 _nodes[i] = n; 2803 } 2804 2805 void Node_Array::remove(uint i) { 2806 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*))); 2807 _nodes[_max - 1] = nullptr; 2808 } 2809 2810 void Node_Array::dump() const { 2811 #ifndef PRODUCT 2812 for (uint i = 0; i < _max; i++) { 2813 Node* nn = _nodes[i]; 2814 if (nn != nullptr) { 2815 tty->print("%5d--> ",i); nn->dump(); 2816 } 2817 } 2818 #endif 2819 } 2820 2821 //--------------------------is_iteratively_computed------------------------------ 2822 // Operation appears to be iteratively computed (such as an induction variable) 2823 // It is possible for this operation to return false for a loop-varying 2824 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 2825 bool Node::is_iteratively_computed() { 2826 if (ideal_reg()) { // does operation have a result register? 2827 for (uint i = 1; i < req(); i++) { 2828 Node* n = in(i); 2829 if (n != nullptr && n->is_Phi()) { 2830 for (uint j = 1; j < n->req(); j++) { 2831 if (n->in(j) == this) { 2832 return true; 2833 } 2834 } 2835 } 2836 } 2837 } 2838 return false; 2839 } 2840 2841 //--------------------------find_similar------------------------------ 2842 // Return a node with opcode "opc" and same inputs as "this" if one can 2843 // be found; Otherwise return null; 2844 Node* Node::find_similar(int opc) { 2845 if (req() >= 2) { 2846 Node* def = in(1); 2847 if (def && def->outcnt() >= 2) { 2848 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) { 2849 Node* use = def->fast_out(i); 2850 if (use != this && 2851 use->Opcode() == opc && 2852 use->req() == req()) { 2853 uint j; 2854 for (j = 0; j < use->req(); j++) { 2855 if (use->in(j) != in(j)) { 2856 break; 2857 } 2858 } 2859 if (j == use->req()) { 2860 return use; 2861 } 2862 } 2863 } 2864 } 2865 } 2866 return nullptr; 2867 } 2868 2869 2870 //--------------------------unique_ctrl_out_or_null------------------------- 2871 // Return the unique control out if only one. Null if none or more than one. 2872 Node* Node::unique_ctrl_out_or_null() const { 2873 Node* found = nullptr; 2874 for (uint i = 0; i < outcnt(); i++) { 2875 Node* use = raw_out(i); 2876 if (use->is_CFG() && use != this) { 2877 if (found != nullptr) { 2878 return nullptr; 2879 } 2880 found = use; 2881 } 2882 } 2883 return found; 2884 } 2885 2886 //--------------------------unique_ctrl_out------------------------------ 2887 // Return the unique control out. Asserts if none or more than one control out. 2888 Node* Node::unique_ctrl_out() const { 2889 Node* ctrl = unique_ctrl_out_or_null(); 2890 assert(ctrl != nullptr, "control out is assumed to be unique"); 2891 return ctrl; 2892 } 2893 2894 void Node::ensure_control_or_add_prec(Node* c) { 2895 if (in(0) == nullptr) { 2896 set_req(0, c); 2897 } else if (in(0) != c) { 2898 add_prec(c); 2899 } 2900 } 2901 2902 void Node::add_prec_from(Node* n) { 2903 for (uint i = n->req(); i < n->len(); i++) { 2904 Node* prec = n->in(i); 2905 if (prec != nullptr) { 2906 add_prec(prec); 2907 } 2908 } 2909 } 2910 2911 bool Node::is_dead_loop_safe() const { 2912 if (is_Phi()) { 2913 return true; 2914 } 2915 if (is_Proj() && in(0) == nullptr) { 2916 return true; 2917 } 2918 if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) { 2919 if (!is_Proj()) { 2920 return true; 2921 } 2922 if (in(0)->is_Allocate()) { 2923 return false; 2924 } 2925 // MemNode::can_see_stored_value() peeks through the boxing call 2926 if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) { 2927 return false; 2928 } 2929 return true; 2930 } 2931 return false; 2932 } 2933 2934 bool Node::is_div_or_mod(BasicType bt) const { return Opcode() == Op_Div(bt) || Opcode() == Op_Mod(bt) || 2935 Opcode() == Op_UDiv(bt) || Opcode() == Op_UMod(bt); } 2936 2937 bool Node::is_pure_function() const { 2938 switch (Opcode()) { 2939 case Op_ModD: 2940 case Op_ModF: 2941 return true; 2942 default: 2943 return false; 2944 } 2945 } 2946 2947 // `maybe_pure_function` is assumed to be the input of `this`. This is a bit redundant, 2948 // but we already have and need maybe_pure_function in all the call sites, so 2949 // it makes it obvious that the `maybe_pure_function` is the same node as in the caller, 2950 // while it takes more thinking to realize that a locally computed in(0) must be equal to 2951 // the local in the caller. 2952 bool Node::is_data_proj_of_pure_function(const Node* maybe_pure_function) const { 2953 return Opcode() == Op_Proj && as_Proj()->_con == TypeFunc::Parms && maybe_pure_function->is_pure_function(); 2954 } 2955 2956 //============================================================================= 2957 //------------------------------yank------------------------------------------- 2958 // Find and remove 2959 void Node_List::yank( Node *n ) { 2960 uint i; 2961 for (i = 0; i < _cnt; i++) { 2962 if (_nodes[i] == n) { 2963 break; 2964 } 2965 } 2966 2967 if (i < _cnt) { 2968 _nodes[i] = _nodes[--_cnt]; 2969 } 2970 } 2971 2972 //------------------------------dump------------------------------------------- 2973 void Node_List::dump() const { 2974 #ifndef PRODUCT 2975 for (uint i = 0; i < _cnt; i++) { 2976 if (_nodes[i]) { 2977 tty->print("%5d--> ", i); 2978 _nodes[i]->dump(); 2979 } 2980 } 2981 #endif 2982 } 2983 2984 void Node_List::dump_simple() const { 2985 #ifndef PRODUCT 2986 for (uint i = 0; i < _cnt; i++) { 2987 if( _nodes[i] ) { 2988 tty->print(" %d", _nodes[i]->_idx); 2989 } else { 2990 tty->print(" null"); 2991 } 2992 } 2993 #endif 2994 } 2995 2996 //============================================================================= 2997 //------------------------------remove----------------------------------------- 2998 void Unique_Node_List::remove(Node* n) { 2999 if (_in_worklist.test(n->_idx)) { 3000 for (uint i = 0; i < size(); i++) { 3001 if (_nodes[i] == n) { 3002 map(i, Node_List::pop()); 3003 _in_worklist.remove(n->_idx); 3004 return; 3005 } 3006 } 3007 ShouldNotReachHere(); 3008 } 3009 } 3010 3011 //-----------------------remove_useless_nodes---------------------------------- 3012 // Remove useless nodes from worklist 3013 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) { 3014 for (uint i = 0; i < size(); ++i) { 3015 Node *n = at(i); 3016 assert( n != nullptr, "Did not expect null entries in worklist"); 3017 if (!useful.test(n->_idx)) { 3018 _in_worklist.remove(n->_idx); 3019 map(i, Node_List::pop()); 3020 --i; // Visit popped node 3021 // If it was last entry, loop terminates since size() was also reduced 3022 } 3023 } 3024 } 3025 3026 //============================================================================= 3027 void Node_Stack::grow() { 3028 _nesting.check(_a); // Check if a potential reallocation in the arena is safe 3029 if (_inode_top < _inode_max) { 3030 return; // No need to grow 3031 } 3032 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top 3033 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode)); 3034 size_t max = old_max << 1; // max * 2 3035 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max); 3036 _inode_max = _inodes + max; 3037 _inode_top = _inodes + old_top; // restore _top 3038 } 3039 3040 // Node_Stack is used to map nodes. 3041 Node* Node_Stack::find(uint idx) const { 3042 uint sz = size(); 3043 for (uint i = 0; i < sz; i++) { 3044 if (idx == index_at(i)) { 3045 return node_at(i); 3046 } 3047 } 3048 return nullptr; 3049 } 3050 3051 //============================================================================= 3052 uint TypeNode::size_of() const { return sizeof(*this); } 3053 #ifndef PRODUCT 3054 void TypeNode::dump_spec(outputStream *st) const { 3055 if (!Verbose && !WizardMode) { 3056 // standard dump does this in Verbose and WizardMode 3057 st->print(" #"); _type->dump_on(st); 3058 } 3059 } 3060 3061 void TypeNode::dump_compact_spec(outputStream *st) const { 3062 st->print("#"); 3063 _type->dump_on(st); 3064 } 3065 #endif 3066 uint TypeNode::hash() const { 3067 return Node::hash() + _type->hash(); 3068 } 3069 bool TypeNode::cmp(const Node& n) const { 3070 return Type::equals(_type, n.as_Type()->_type); 3071 } 3072 const Type* TypeNode::bottom_type() const { return _type; } 3073 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; } 3074 3075 //------------------------------ideal_reg-------------------------------------- 3076 uint TypeNode::ideal_reg() const { 3077 return _type->ideal_reg(); 3078 }